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Impediments to mathematical creativity: Fixation and flexibility in proof validation 

Per Øystein Haavold1 

UiT, The Arctic University of Norway, Tromsø 

Abstract: Mathematical techniques in proof writing can be narrowed down to specific proof 
styles. Simply put, proofs can be direct or indirect- the latter using the Law of the Excluded 
Middle from logic as well as the axiom of Choice, to prove existence of mathematical objects. 
However, the thinking skills involved in writing indirect proofs are prone to errors, especially 
from novice proof writers such as prospective teachers. Creativity in mathematics entails the 
use of both direct and indirect approaches to determine the validity of a statement. In this article, 
I shed some light on this relationship, by reporting on some findings from a study on how 
students comprehend and validate direct and indirect proofs. Furthermore, I use the constructs 
of fixation and flexibility from creativity research to examine student approaches to direct and 
indirect proofs.  
Keywords: Fixation; Indirect proof; proof validation; proof comprehension 

1 Introduction 

Creativity researchers have often conceptualized and investigated creativity as a de facto static 

phenomenon through fixed measures (see for instance Sriraman & Haavold, 2017). These 

approaches have contributed invaluably to our understanding of creativity, but they offer 

limited insight into the dynamic and multifaceted nature of creativity (Sriraman, 2009). 

Recently it has therefore been argued that a more dynamic, micro-longitudinal approach to 

studying creativity is needed – particularly with a focus on creativity in classrooms (Beghetto 

& Karawowski, 2019). In this study, I adopt this process-view of creativity and take a dynamic 

approach to investigate a key aspect of creativity – cognitive flexibility – in the setting of 

mathematical proofs.  

Creative behavior always involve some form of uncertainty and surprise (Beghetto & 

Karawowski, 2019). Cognitive flexibility refers to our ability to switch between different 

mental sets, tasks and strategies in light of this uncertainty. It is considered a key characteristic 

of both human cognition and in models of creativity (Ionescu, 2012). Cognitive fixation, on the 

other hand, is the counterpart to flexibility. The notion of people struggling to come up with 

creative solutions because they fixate, or fail to abandon non-productive strategies, has its roots 

a long way back in psychological literature and features particularly in the writings of the 

Gestalt school (Haylock, 1987). This effect, commonly known as Luchin’s Einstellung effect 
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(1942), is seen when the subject continues to apply that method or process even when it 

becomes inappropriate, inefficient or unsuccessful. The capacity of breaking from mental sets 

overcoming fixations and mental rigidity are frequent themes in discussions of the creative 

process. Recently, Nijstaad et al. (2010) proposed a model that argues that creativity, as the 

generation of original and appropriate ideas, is the result of cognitive flexibility and cognitive 

persistence. According to Nijstaad et al. (2010), cognitive flexibility is a key element for 

achieving creative insights, problem solutions, or ideas through the use of flexible switching 

among categories, approaches, and sets, and through the use of remote (rather than close) 

associations. 

Research on the teaching and learning of proof has been a focus of mathematics education 

research for more than four decades. Tall’s (1979) study on university students’ preferences for 

a particular type of proof of contradiction viz., a generic proof versus a standard proof for the 

irrationality of √2 suggested no significant difference in their preference. However when 

showed a different irrational number other than √2, the students preferred a generic approach. 

Researchers have argued that this observation applies to indirect proofs in general, as students 

both dislike and experience a lack of conviction from them (see for instance Harel & Sowder, 

1998; Leron, 1985). Several explanations have been proposed for this observation. Leron 

(1985) pointed to the non-constructive nature of indirect proofs. Understanding a proof depends 

on the construction of mental entities corresponding with the mathematical objects or symbols 

in the proof. However, in an indirect proof the learner works within a “false impossible world”. 

According to Leron (1985) this leads to a detachment from a “real mathematical world” created 

within our minds, and it consequently creates a cognitive strain that makes indirect proofs 

particularly problematic. Antonini and Mariotti (2008), on the other hand, argued that students’ 

struggled with indirect proofs at the level of logical theorems. To know truth in a mathematical 

sense requires both a mathematical and logical theory. Indirect proofs are unique in the sense 

that they require learners to reason within logical meta-theorems, such as (¬𝑞𝑞 → ¬𝑝𝑝)  ≡ (𝑝𝑝 →

𝑞𝑞).  

In this article, I report on some findings from a study on how students comprehend and validate 

direct and indirect proofs in the context of cognitive flexibility and attempt to answer the 

following questions: 

1. How do students validate and comprehend direct and indirect proofs? 

2. Are students able to adapt their approaches to proof validation and proof 

comprehension flexibly according to the nature of the proofs? 



  TME, vol. 18, nos.1&2, p.141 

 

When students read mathematical proofs, the process can be separated into two related 

purposes: comprehension and validation (Weber and Mejia-Ramos, 2011). For proof 

comprehension, the purpose is primarily to understand the content of the proof and learn from 

it. This positions the reader in the role of a traditional learner, where the purpose is to make 

sense of and understand a proof. For proof validation, on the other hand, the reader takes the 

position of a critic, who takes evaluative authority and judges the argument. Here, the purpose 

is to determine the correctness of the proof (Selden & Selden, 2017). While it is not clear how 

comprehension and validation are related, the latter requires the reader of the proof to be explicit 

about his or her ideas whereas comprehension is more of an internal process. 

However, recent eye-movement analyses from Parse et al. (2018) indicate that proof 

comprehension and proof validation do not involve different reading behavior. Although these 

findings do not provide direct information about conscious experience, they do at least strongly 

suggest that comprehension and validation are closely related. In this study, I do not presume a 

specific relationship between proof comprehension and proof validation, but instead see them 

as two intertwined processes involved in the reading of proofs. By explicitly conceptualizing 

and investigating how students attempt to both comprehend and validate direct and indirect 

proofs, respectively, this study may be able to provide some more insight on whether students 

find indirect proofs less convincing than direct proofs.  

2 Theory 

2.1 Cognitive fixation and flexibility 

Although cognitive flexibility seems like an intuitive concept, there is still a lack of a clear 

definition and comprehension of the phenomenon (Ionescu, 2012). However, the Handbook of 

Behavioral Neuroscience (2016) broadly outlines cognitive flexibility as the ability to adapt 

behaviors in response to changes in the environment. In a review of the literature, Ionescu 

(2012) identified several behaviors that are considered cognitive flexible: switching between 

tasks or multitasking; changing behavior in light of a new rule; finding a new solution to a 

problem; and creating new knowledge or tools. In this paper, I focus on one particular aspect 

of cognitive flexibility that is especially important to the field of mathematics. All mathematics 

educators will have experienced children or students who stubbornly stick to inappropriate 

methods or strategies (see for instance Haavold, 2011). One explanation for this is that they are 

subject to a mental set and their thinking is fixated along inappropriate lines (Haylock, 1987). 
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In this paper, flexibility is seen as the ability to break away from unproductive mental sets and 

fixations when solving mathematical problems. Krutetskii (1976) noted that this type of 

flexibility was a key component of general mathematical ability: “Mathematical ability appears 

in varied approaches to the solution of a problem and in easy and free switching from one 

mental operation to another. The talented student is able, when necessary, to leave the patterned 

stereotyped means of solving a problem and find a few different ways of solving it ... this is the 

real appearance of mathematical creativity.” (p. 117).  

In a review of the literature on fixations in mathematics, Haylock (1987) concludes that there 

are at least two important types of fixation that are applicable to working on mathematical 

problems: algorithmic fixation and content universe fixation. Algorithmic fixation is closely 

related to the Einstellung effect (Luchin, 1942), and it refers to when students continue to use 

an initially successful algorithm learnt beforehand or developed through the sequence of tasks 

themselves. The other type of fixation, content universe fixation, is in particular relevant for the 

study reported here. According to Haylock (1987), this type of fixation refers to situations 

where students’ thinking about mathematical problems is restricted unnecessarily to an 

insufficient range of elements that may be used or related to the problem. To overcome this 

kind of fixation, and to allow the mind to range over a wider set of possibilities than might first 

come to one’s conscious awareness, is an important aspect of problem solving and creativity.  

2.1 Proof comprehension 

Proof comprehension means understanding a proof (Selden & Selden, 2017). However, as 

mentioned, most research on reading of proofs have focused on whether or not students are 

convinced by mathematical arguments, and their corresponding rationale. Although several 

studies have proposed explanations for why students struggle with validating proofs, few have 

sought out to investigate how students try to understand proofs (Mejia-Ramos et al., 2012).  

The reading comprehension model for high school geometry proofs, proposed by Yang and Lin 

(2008), was the first attempt to explicitly define and analyze what it could mean to understand 

mathematical proofs. In this model, the authors proposed that readers attempt to comprehend a 

text by integrating new information into pre-information, through a cyclic process of deduction, 

induction, abduction, and selection and memorization. Mejia-Ramos et al. (2017) argued that 

the model proposed by Yang and Lin (2008) is insufficient to probe students’ understanding of 

proofs outside high school geometry. For instance, the model does not take into account how 

logical nuances in a proof by contradiction should be understood. Furthermore, Yang and Lin’s 

(2008) model does not assess whether students are able to summarize the main ideas behind a 
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proof, or use them in other cases. Both of which are important to prospective teachers, as they 

must be able to summarize big ideas, and approach problems and solutions flexibly in their 

classrooms.  

Mejia-Ramos et al (2012) proposed a model, built on the work of Yang and Lin (2008), which 

takes into account these issues. In this model, Mejia-Ramos et al. (2012) define proof 

comprehension as the types of understanding that were valued by mathematicians and 

mathematics educators in the literature. A proof can be understood either locally as a series of 

individual deductions, or holistically based upon the ideas or methods that motivate the proof 

in its entirety. In the model, there are seven dimensions to understanding a proof. These seven 

understandings are divided into local and holistic understandings. Local understandings of 

proof deal with aspects that can be garnered by reading a small number of statements in the 

proof. The local dimensions are: 

1. Meaning of terms and statements: Understanding the meaning of terms and individual 

statements of the proof. This includes stating the definitions of terms used in the theorem 

statement and proof and identifying trivial implications of a given statement. 

2. Justification of claims: Understanding why each claim made in the proof follows from 

previous ones, and being able to identify claims that follow from a given statement later 

in the proof. In this study, this applies in particular to algebraic operations, since the 

proofs are fairly simple. 

3. Logical status of statements and proof framework: Understanding the logical relation 

between the assumptions and conclusions in a proof, identifying the proof technique 

being used, and conceptualizing the proof in terms of its proof framework. 

Holistic understandings of proof focus on the big ideas of the proof, or synthesizing the entire 

or large parts of the proof into a coherent whole. The global dimensions are: 

1. Identifying the modular structure: Understanding how a proof can be broken into 

mathematically independent parts or sub-proofs, and how these parts logically relate to 

one another 

2. Illustrating with examples: Understanding how a sequence of inferences can be applied 

to verify that a general theorem is true for a specific example. 

3. Summarizing via high-level ideas: Understanding the overarching logical structure of 

the proof and being able to summarize a proof in terms of these ideas. 

4. Transferring the general ideas or methods to another context: Being able to use the ideas 

or methods in the proof to establish a different theorem. 
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2.2 Proof validation  

Much of the research on students’ work on proofs is based on asking students to construct proofs 

for specific conditional mathematical statements (Stylianides et al., 2017). Proof validation, on 

the other hand, is a less studied approach for investigating students’ understanding of proof. 

Although proof construction and proof validation are both important to understanding proofs, 

research has shown that validating proofs is different from constructing proofs (Selden & 

Selden, 2017). When students attempt to validate proofs, they read and determine whether 

arguments and sub-arguments are correct, and this provides a different perspective on students’ 

understanding of proofs.  

It should be noted here that validating a proof is more complex than a simple top-down reading 

of the proof and claiming the proof is either valid or invalid. Nevertheless, in this study I limit 

my conceptualization of validation to what can be inferred from observations. I do this by 

utilizing Harel and Sowder’s (1998) ideas about proof schemes. According to them, a person’s 

proof scheme “consists of what constitutes ascertaining and persuading for that person” (1998, 

p. 244). In this study, proof validation is therefore conceptualized as the judgment of the validity 

of a proof or argument, and the corresponding explicit justification. 

A common finding in the literature is that students often accept logically invalid deductions, 

confuse evidence and proof, focus too much on surface properties, and concentrate on algebraic 

manipulations (Knuth, 2002; Weber, 2010; Hodds et al., 2014; Selden & Selden, 2017). Selden 

and Selden (2003) for instance investigated how eight mathematics and mathematics education 

mathematics majors read and evaluated four student-generated proofs of a single theorem. They 

found that the students tended to focus on surface properties such as computations and algebraic 

notations, rather than underlying logical structures. Another common theme in the recent 

literature is that these problems are caused by either a confusion of the relationship between 

empirical evidence and deductive proofs, or because the students lack the skill or will to 

evaluate an argument properly (Inglis & Alcock, 2012). Much of the related research suggests 

that students find empirical arguments convincing and believe they constitute an acceptable 

form of mathematical proof (See for instance Recio & Godino, 2001; Knuth, 2002; Segal, 

2000). However, the connection between the types of arguments that students construct and 

what they actually find convincing is not straightforward. Harel and Sowder (1998) interviewed 

students in advanced mathematics courses in various settings, and found that they regularly 

tried to prove by providing empirical examples. Weber (2010), on the other hand, found that 

few students believed empirical arguments could be valid proofs. Instead, many of the students 
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judged invalid deductive arguments to be valid proofs. He concluded that the difficulties with 

proof validation were primarily related to skill at validating deductive arguments and not to the 

misconception that non-deductive arguments might constitute valid proofs. A possible 

explanation for this apparent contradiction is that sometimes students have no recourse but to 

use examples as means of justifications, simply because deductive arguments are too difficult.  

2.3 Indirect Proofs 

In this study indirect proofs refer predominantly to the method of reductio ad absurdum which 

can be traced back to Book I of The Elements. Indirect proofs refer to both proofs by 

contradiction as well as proofs by contraposition. Both proof by contradiction and that of 

contraposition have common elements. To prove P=>Q is true using a proof by contradiction 

one starts by assuming P and not Q and works towards a contradiction. The nuance here is that 

one does not know where the contradiction will occur. In a proof by contraposition, one assumes 

not Q and works towards the conclusion of not P, thereby contradicting some known statement. 

In the latter the contradiction is already known whereas in the former the contradiction is not 

known, making it more difficult to comprehend the chain of reasoning.  

3 Methods 

3.1 Participants and procedure 

The participants in the study were 18 pre-service teachers enrolled in a five year pre-service 

teacher education program, specifically aimed at teaching in secondary school. The students 

were not mathematics specialists, but were expected to graduate with a Master’s degree in 

mathematics education. Prior to the mathematics education course on proof and deductive 

reasoning, the students had 60 credits of mathematics (geometry, algebra, number theory, 

calculus, probability theory). All 18 students had above median grades in the previous 

mathematics courses and other subjects, and they had specific course modules on proofs in 

mathematics. 

I collected the data for this paper through pairwise task based interviews (Goldin, 1997). The 

interviews lasted for about 60-70 minutes, and 18 students – nine pairs – participated. The pre-

service teacher students were all volunteers, and they were asked to partner up with another 

student whom they worked and collaborated well. In the interview  each pair of students were 

presented two theorems and six mathematical proofs and asked three open-ended questions: a) 

what do they think about the theorems, b) what do they think about the proofs, and c) do they 

have any other comments or thoughts. The students were then asked if the proofs were correct, 
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and to work on each of the proofs as they normally would, without any help from the 

interviewer. This section of the interview followed a think aloud protocol (Kuusela & Pallab, 

2000). During this part of the interview, the interviewer answered clarification questions, but 

deflected more task specific and content related questions back to the students. 

The six proofs were separated into three proofs for each of two mathematical theorems (see 

table 1). Eventually, when the conversation between the two students came to a stop, the 

interviewer asked a series of questions from an interview guide based on the theoretical 

framework on proof comprehension (Mejia-Ramos et al., 2012).  

 

Table 1: Proof validation tasks  

Task 1 Task 2 

Theorem: Suppose 𝑛𝑛 is an integer.  If 𝑛𝑛2 is 

even, then 𝑛𝑛 is even.  
Theorem: √2 is an irrational number.  

 

Proof A: If 𝑛𝑛 is even, then we can write 𝑛𝑛 =

2𝑘𝑘. We then see that 𝑛𝑛2 = (2𝑘𝑘)2 = 4𝑘𝑘2 =

2 ∙ 2𝑘𝑘2. Therefore, 𝑛𝑛2 is even.  

Proof A: Suppose that √2 is a rational 

number. Then we can write it as an 

irreducible fraction 𝑎𝑎
𝑏𝑏

= √2.  

We square both sides and see that  𝑎𝑎
2

𝑏𝑏2
= 2 ⟹

𝑎𝑎2 = 2𝑏𝑏2.  

2𝑏𝑏2 is even, and therefore 𝑎𝑎2 must also be 

even. It follows that 𝑎𝑎 is even, and we can 

write 𝑎𝑎 as 𝑎𝑎 = 2𝑘𝑘.  

We substitute 𝑎𝑎 = 2𝑘𝑘 into 𝑎𝑎2 = 2𝑏𝑏2, and see 

that (2𝑘𝑘)2 = 2𝑏𝑏2. 

We then see that 4𝑘𝑘2 = 2𝑏𝑏2 ⟹ 2𝑎𝑎2 = 𝑏𝑏2. 

Therefore, 𝑏𝑏2 must be even, and it follows 

that 𝑏𝑏 must be even as well. 

We now have that both 𝑎𝑎 and 𝑏𝑏 are even. But 

that means  𝑎𝑎
𝑏𝑏
 is not irreducible, which 
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contradicts our assumption. We therefore 

have to conclude that √2 is irrational.   

 

Proof B: Suppose 𝑛𝑛 is not even. Then it is 

odd, and we can write 𝑛𝑛 = 2𝑘𝑘 + 1. 

We then see that 𝑛𝑛2 = (2𝑘𝑘 + 1)2 = 4𝑘𝑘2 +

4𝑘𝑘 + 1 = 2(2𝑘𝑘2 + 𝑘𝑘) + 1.  

That means 𝑛𝑛2 is also odd. We therefore have 

to conclude the theorem in task 1 is correct. 

Proof B: We can write √2 = 1 + �√2 −

1� = 1 + 1
1+√2

.  

Because  �√2−1��√2+1�
1�√2+1�

= 1
�1+√2�

.  

It follows then that √2 = 1 + 1
1+√2

= 1 +

1

1+�1+ 1
1+√2

�
= 1 + 1

2+ 1
1+√2

, 

However, we can again make the same 

substitution, and this expression is an infinite 

continued fraction: 

1 + 1
2+ 1

1+√2

= 1 + 1
2+ 1

2+ 1
1+√2

= 1 + 1
2+ 1

2+ 1
2+ 1

1+√2

 = 

So √2 is therefore irrational.  

 

Proof C: 𝑛𝑛2 + 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1) is even. Since 

𝑛𝑛2 is even, then 𝑛𝑛 must also be even.  

 

Proof C: Suppose that √2 is a rational 

number. Then we can write it as an 

irreducible fraction 𝑎𝑎
𝑏𝑏

= √2.  

We square both sides and see that  𝑎𝑎
2

𝑏𝑏2
= 2 ⟹

𝑎𝑎2 = 2𝑏𝑏2. 

Every integer can be factored into primes, 

and we suppose this has been done for 𝑎𝑎 and 

𝑏𝑏. Thus in 𝑎𝑎2 there are certain number of 

primes doubled up. And in 𝑏𝑏2 there are a 

certain number of doubled-up primes. But, in 

2𝑏𝑏2 there is a 2 that has no partner. We have 
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a contradiction and must conclude that √2 is 

irrational.   

 

3.2 Materials 

In laboratory settings, cognitive flexibility is typically investigated using task-switching 

paradigms (Ionescu, 2012). In this paradigm, participants are required to alternate between two 

or more tasks. The materials used in this study were two proof validation tasks that consisted 

of two theorems, with three corresponding proofs for each of them, and an interview guide 

consisting of ten open-ended questions. Both the proof validation tasks and the interview guide 

was designed research questions in mind, and in accordance to the guide suggested by Mejia-

Ramos et al. (2017). More specifically, I used the comprehension categories described in the 

framework and the associated template questions to generate proof tasks and open-ended 

questions that could reveal the students’ understanding and conviction of proofs. This meant 

that I chose mathematical theorems that were appropriate for the students’ academic level, and 

could be comprehended fairly quickly. The corresponding proofs were selected so they could 

elicit students’ understanding of proofs at both the local and holistic level. I also selected both 

correct and incorrect proofs, at both a local and holistic level, so that the validation process 

would be genuine. 

Table 1:  

Proof 1A establishes the converse relationship of theorem 1. The first proof is therefore 

incorrect. The purpose of the proof was to see if the students were able to notice the incorrect 

logical relationship. Furthermore, proof 1A was in superficially similar to proof 1B. Proof 1B 

is a contrapositive proof of the theorem in task 1. However, there is a small error error in the 

proof, so neither proof 1A nor proof 1B are entirely correct. These two flawed proofs were 

chosen to investigate more closely how the participants attempted to make sense of the both the 

local aspects and holistic aspects of the proofs (Mejia-Ramos et al., 2012).  

Proof 1C in task 1 is a short, direct proof. The key observation is that if n is an integer, then the 

right side of the equation, n(n+1), must be an even number. The proof is purposely presented 

without a detailed explanation. The reason is that I wanted to see if the students were able to 

identify and utilize the abstract information in the proof, and flexibly approach the algebraic 

expression – in other words, comprehend both the local and the holistic aspects of the proof.  
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Proof 2A is a proof by contradiction and in many ways an algebraic variant of the Pythagoreans’ 

first geometric proof of that the square root of two is irrational. The proof is also probably the 

most common proof of the irrationality of √2. However, the proof contains a small algebraic 

error in line eleven. The purpose was to see if the students focus on the overarching proof 

structure or the internal correctness of each mathematical inference in the proof. Proof 2B first 

demonstrate that √2=1+1/(1+√2), and then that the right side expression is an infinite continued 

fraction.  

Proof 2C uses a similar approach as proof 2A, but the contradiction is demonstrated with the 

fundamental theorem of arithmetic, which says every integer greater than 1 has a unique 

factorization into powers of primes. While proof A emphasizes logical inexorableness, proof B 

“seems to reveal the heart of the matter” (Davis et al., 2011, p. 331), This proof was chosen to 

see if an aesthetic component, such as clarity and simplicity, influenced how the students 

attempted to validate and comprehend it. 

3.3 Analysis 

The interviews were analyzed retrospectively using qualitative content analysis (Mayring, 

2015). First, I transcribed all nine interviews, and analyzed each interview separately. For each 

interview, I extracted all text components captured by the categories defined in the proof 

comprehension framework (Mejia-Ramos et al., 2012). Using the category system in the 

framework, I was able to assess and characterize each pair of students’ way of comprehending 

the proofs according to the local and holistic dimensions. The purpose here was to get a clear 

description of which comprehension dimensions the students used, and even more importantly, 

which comprehension dimensions they did not use. 

To identify how students validated the proofs, I built categories that summarized whether the 

students assessed the proof as valid or invalid, and their justification for this assessment 

(Toulmin, 1969). This was done by looking at the statements each student made for each 

theorem and proof, and summarizing the text excerpts into a specific category. I then worked 

through each of the other students similarly, and checked whether the proof validation fell under 

the same category. If not, I built a new category. This resulted in categories that stated whether 

the students viewed the proof as valid or invalid, and a description of the corresponding 

justification. 

To answer the research questions, I first summed up the validation and comprehension 

categories used by the students for each proof. This provided a general overview of how 
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students validated and comprehended direct and indirect proofs respectively. I then looked more 

closely at the pattern between the nature of the proofs and the comprehension and validation 

categories. This allowed me to see if the students’ approached indirect and direct proofs 

flexibly. Finally, I isolated individual student statements to identify possible explanations for 

how the nature of the proofs might hinder or facilitate cognitive flexibility.  

4 RESULTS 

To illustrate the underlying analysis of the students’ work, I first present some examples of how 

the analytical framework was used to categorize students’ comprehension and validation of the 

proofs.  

4.1 Students’ work 

How students validated proofs 

Four categories of how the students justified their proof validation was identified – although 

not every category was observed for every proof. The first I called because of logical conditions, 

and it refers to cases where students rejected or accepted a proof by explicitly referencing the 

logical status of statements in the proof. An example of this category is found in proof 1B. Here, 

Sofie told Carrie: “this proof can’t be correct, because they make a completely different 

assumption here. In the original statement, they say that if n squared is even.” The students 

rejected the validity of the proof due to the logical status of the assumption in the proof. The 

second category is because of empirical verification, and it refers to cases where students 

accepted or rejected a proof based on numerical examples. In proof 1A, for instance, one student 

Sofie said “So proof A is correct, because we have calculated it.” and Carrie answered “yes, it 

worked for all numbers we tried.” The third category, because of algebraic verification, points 

to attempts to work through the proof line by line, by assessing the algebraic transformations. 

For proof 1A, Caroline stated for instance, to Christian that the proof was valid because: “we 

did the algebraic operations it and saw that the algebraic statements on each side of the equal 

sign was the same. Every algebraic manipulation was correct, so the proof is correct as well.” 

Each of the three categories was separated further into whether the students considered the 

proof valid or invalid. The fourth category is proof is incomprehensible, because the proof 

statements doesn’t make sense. It was singled out as a separate category, as it covered incidents 

when the students explicitly stated that they were unable to assess a proof as either valid or 

invalid; the reason being that certain statements in the proof were incomprehensible to the 

students. 
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How students comprehended proofs 

Although the students’ use of comprehension dimensions varied greatly, all of the 

comprehension dimensions were identified in the analysis – except for holistic dimension 1 

(H1). I provide here an excerpt here to illustrate how I categorized the students’ use of proof 

comprehension dimensions local 1 (L1), local 2 (L2) and holistic 2 (H2). The other dimensions 

(L3, H3 and H4) were identified in a similar manner.   

Eight students used dimensions L1, L2, and H2 in order to comprehend proof 1A. Sofie and 

Carrie approached the proof in the following way:  

Sofie: What if we try a few numbers first, and see what happens? Let’s first try a simple number.  

Carrie: Let’s use n equals ten. If n is an even number we can write two times a number.  

Sofie: That means n, or 10, equals two times five. N squared is then two times five squared, 

which is 100.  

Carrie: It’ll work with other numbers as well. For instance six gives us 36. 

Sofie: 100 gives us 10000. All of which are even numbers. 

Carrie: we also know that two k squared is two k times two k, which is 4 k squared… 

Sofie: which is two times two k squared. So this is also correct. 

Carrie: agreed.  

Sofie: So proof A is correct, because we have calculated it. 

Carrie: yes, it worked for all numbers we tried. 

Sofie: yes.  

This exchange between Sofie and Carrie started with inserting specific even numbers for 𝑛𝑛 and 

then verifying that 𝑛𝑛2 is also an even number. I classified this part of the exchange as both 

dimensions L1 and H2. The reason is that the students identified both examples that illustrated 

the assumption and conclusion statement of the proof, and also illustrated a sequence of 

inferences with a specific numerical example. Of course, in short proofs like this, it is difficult 

to draw a clear line between L1 and H2. In this study, I have classified any attempt at 

understanding individual and isolated terms and statements, including the use of examples to 

illustrate individual statements, as L1. However, if a numerical example was used to illustrate 

a sequence of inferences across several individual statements, I classified it as H2. In the second 

half of this exchange, Sofie and Carrie verified algebraically why each statement in the proof 

followed from the previous one, which is comprehension dimension L2. 

4.2 Relationship between proofs and students work 
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Table 2:  Proof validations and proof comprehension dimensions for each proof  
 N L1 L2 L3 H1 H2 H3 H4 
Direct proofs         
Proof 1A         
  Invalid logical 4 4 4 4  4 4  
  Valid empirical 8 8 8   8   
  Valid algebraic 6 6 6      
Proof 2B         
  Valid algebraic 18 18 18      
Proof 1C         
  Valid logical 8 8  8  8 8  
  Incomprehensible 10 10 10      
Total 54 54 46 12   20 12  
Indirect proofs         
Proof 1B         
  Valid logical 2 2  2  2 2  
  Invalid algebraic 6 6 6      
  Invalid logical 10 10       
Proof 2A         
  Valid logical 2 2  2  2 2  
  Invalid algebraic 6 6 6      
  Invalid logical 10 10       
Proof 2C         
  Valid logical 2 2  2  2 2 2 
  Invalid logical 16 16 6      
Total 54 54 18 6  6 6 2 
    

There were 54 proof validation attempts of direct and indirect proofs respectively (table 2). For 

the indirect proofs, the students validated the proofs 34 times correctly and 20 times incorrectly. 

For the direct proofs, the students validated the proofs 30 times correctly and 24 times 

incorrectly. Immediately, it would seem that indirect proofs are not more difficult than direct 

proofs.  

However, when the comprehension dimensions the students used and how they justified their 

validation attempts are taken into account, the pattern becomes more nuanced. There were two 

main differences in how students attempted to comprehend direct and indirect proofs. First, all, 

or nearly all, students employed both L1 and L2 for the direct proofs. For the indirect proofs, 

however, L2 is only used a total of 18 times. Second, the students rarely used the holistic 

comprehension dimensions, and when they were used, they were primarily used for direct 

proofs. When the students justified their validation attempts, they relied primarily on the logical 

conditions of the proofs when they validated indirect proofs. 42 proof validations were justified 

based on logical conditions of statements in the proofs, while 12 proof validations were justified 

based on algebraic verification. For direct proofs, the students based their justifications on 

logical conditions 12 times, algebraic verification 24 times, and empirical verification 8 times.  
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These findings indicate that students approach indirect and direct proofs differently. However, 

table 2 only shows correct uses of comprehension dimensions. In many cases, the students tried, 

but failed, to use certain comprehension dimensions when they validated the proofs. 

Furthermore, the students were given an unequal number of direct and indirect proofs for each 

theorem, and the proofs were both valid and invalid, with both local and holistic errors. To 

answer the research questions, I therefore have take into account the relationship between the 

students’ justification and each proof, as well as the students’ attempts at using other 

comprehension dimensions.  

In proof 1A, only four students recognized the erroneous logical structure of the proof. The 

other 14 students concluded the proof was valid, after verifying it either algebraically or 

empirically. Six of the students concluded 1B was invalid, due to a small algebraic error. 

However, and more interestingly, none of the six students used L3 and considered the logical 

structure of the proof. An additional ten students said the proof was invalid, because of the 

logical conditions of the proof. These ten students attempted to use L3, but concluded that the 

proof was invalid because the proof proved a different logical relationship than the original 

statement. For proof 1C, ten students said the proof didn’t make any sense because the 

assumption and conclusion were stated simultaneously in the proof. The ten students used 

dimensions L1 and L2. They also attempted to use L3, but failed to understand the logical 

conditions of the statements.  

Six students concluded that proof 2A was invalid, after trying to verify it algebraically. These 

students used dimensions L1 and L2, but they never discussed the logical structure of the proof 

or used any other comprehension dimensions. Ten students said the proof was invalid because 

of the logical conditions of statements in the proof. These students used L1 and attempted, but 

failed, to use L3. For proof 2B, all 18 students concluded the proof was valid, after using L1 

and L2. None of them considered the logical structure of the proof or individual proof 

statements. This was very different from proof 2C. Here, 16 of 18 students concluded the proof 

was invalid based on logical conditions. All 16 students attempted to use L3, but failed to 

understand the logical condition and meaning of proof statements.  

4.3 General themes 

In proof 1A, the relationship between the assumption and the conclusion is converse, and only 

four students’ recognized this error. This lack of attention to or understanding of the logical 

structure of proofs, is also seen in the indirect proofs 1B, 2A and 2C. Proof 2C is a valid indirect 

proof, but only two students’ concluded as such. As for proof 1B and 2A, 16 students assessed 
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the validity of the proof correctly. However, it is important to point out that ten of the students, 

for each of the two proofs, rejected the proof erroneously based on logical conditions. 

Furthermore, six of the students, in each case, rejected the proofs based on algebraic 

manipulations, without ever considering the logical structure of the proof. It could be claimed 

that there was no need to evaluate the logical structure of proof 1B and 2A, as the students’ 

validated the proofs correctly based on algebraic manipulations. However, if we compare proof 

2A and 2C, then we see that this is probably not the case. Proof 2A and 2C are similar in 

structure, and proves the same theorem. The students who correctly rejected proof 2A based on 

algebraic errors, also concluded incorrectly that proof 2C was invalid.  

The students’ statements provide a plausible explanation for these findings. In proof 1B, 2A 

and 2C, a majority of the students explicitly stated that the proofs were confusing or invalid 

because they made assumptions that contradicted the original theorem. In proof 1B, for 

instance, ten students concluded that the proof was invalid because it proved a different logical 

relationship than the original theorem in task 1. Proof 1B is a contrapositive proof, and it could 

be that the students found it difficult to understand that “A ⇒ B” is equivalent to “not B ⇒ not 

A”. Antonini and Mariotti (2008) argue that indirect proofs are unique, because they require 

learners to reason with theorems that are part of logical theory, or metatheorems. Weber (2010) 

observed similar behavior when students accepted invalid deductive proofs, as they neglected 

checking if assumptions and conclusions of the proof were aligned with assumptions and 

conclusions of the given theorem. However, the students in this study did not simply reject the 

indirect proofs because they were unable to link the assumptions and conclusions of the proof 

to the original theorem statement. In this study, the students rejected the proofs because the 

proofs made assumptions that contradicted the statements in the theorem. The same argument 

was seen in proof 2A and 2C, where a majority of the students expressed confusion or 

skepticism because the proof made an assumption that, in their view, contradicted the original 

statement.  

A possible explanation for the students’ problems is that their minds were set in an inappropriate 

direction, and they were too rigidly adhering to an approach that was not fruitful. The students’ 

approach to the problems, were inflexible and too fixed on pre-determined attitudes (Krutetskii, 

1976; Haylock, 1987). Haylock (1987) referred to this as content universe fixation. As 

mentioned earlier, this refers to situations where students’ thinking about mathematical 

problems is restricted unnecessarily to an insufficient range of elements that may be used or 

related to the problem. A majority of the students’ approach to proof 1C, which was direct, lend 
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further support to this idea. Here, ten students expressed confusion as to how 𝑛𝑛2 and 𝑛𝑛 could 

both be placed on the left side of the equation. One was the assumption and the other was the 

conclusion in the original statement. It seems that the students had pre-conceived ideas of how 

proofs should be constructed. A proof should make the same assumption as the statement which 

one is trying to prove, and through some step-by-step procedure arrive at the same conclusion 

as stated in the original conditional statement.  

This also ties to the consistency hypothesis that argues that there are “rules” for governing what 

is accepted or rejected in a conceptual system within mathematics, and contradiction depends 

on meaning (Sierpinska, 2007). More specifically, if a statement is meaningless to a student, 

then the question of consistency becomes meaningless as well. In this study, a majority of 

students’ expressed confusion and skepticism as to how the indirect proofs could make 

assumptions that were different from the original statement. The cause of this needs to be further 

investigated. However, certain statements from the students allows us to propose a hypothesis. 

A majority of the students explicitly questioned the validity of the original assumptions in the 

indirect proofs. Working on 2C, for instance, Sandra asked “how can we assume something that 

is incorrect”. Similar phrases are found across a majority of the interviews with students when 

they were working on the indirect proofs.  The students expressed doubts as to how the indirect 

proofs can make assumptions that differ from the statement they’re trying to prove. 

Furthermore, the interviews indicate that the students presume that the statement they’re trying 

to prove is correct, and therefore doubt how a proof can make assumptions that ostensibly 

contradict it.  

This does, however, not explain why 14 of 18 students concluded proof 1A was correct. Proof 

1A makes an initial assumption that is different from the original statement. But unlike the 

indirect proofs, the initial assumption in proof 1A is not the negation of the initial assumption 

in the original statement. It is possible that the students only rejected a proof if it made 

assumptions that clearly contradicted the original statement, and not proofs that simply made 

“different” assumptions.  

5 Conclusion 

On the surface, it would seem that indirect proofs are not more difficult than direct proofs. 

Students validate indirect and direct proofs correctly about the same rate. However, when the 

comprehension dimensions the students used, how they justified their validation attempts, and 

the validity of each proof, are taken into account, some differences between indirect and direct 
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proofs appear. The students in this study tended to focus on the logical structure of the indirect 

proofs, while they focused more on algebraic and empirical verification of direct proofs. 

Furthermore, the students seemed to reject indirect proofs based on a preconceived idea of what 

a valid proof should look like. Based on the observations in this study, it seems the students 

think proofs should make the same assumption as the statement that we are trying to prove, and 

through some step-by-step procedure arrive at the same conclusion as stated in the original 

conditional statement. When the proofs diverged from this preconceived idea of how a proof 

should look like, the students’ tended to reject it. I therefore propose that the students’ approach 

to the problems were inflexible and too fixed on pre-determined mental sets related to 

mathematical proofs.  

5.1 Limitations 

Some limitations to this study are worth mentioning. First, the students were interviewed in 

pairs and not one-on-one. This was done to elicit natural talk between the students, to provide 

some insight into how the students were thinking. Although I did not observe that any of the 

pairs of students were particularly dominated by one of the students, it is possible that some 

students would have given different answers if they had been interviewed one-on-one. Second, 

it is possible that each student has his or her preferred way of reading proofs. However, how 

each student attempted to comprehend and validate the proofs varied across the proofs. This 

indicates that each student did not have a single preferred way of comprehending and validating 

the proofs, but instead adapted to each new situation.  Lastly, in this study, some tasks were 

incorrect, some were correct. I cannot be sure about how students would have reacted to the 

same proofs if the situation had been altered. However, there are some indications of this, as 

some of the proofs were similar on a structural level, but dissimilar on a local level. For instance, 

by comparing the students’ performance on proof 2A and proof 2C, it is possible to see how a 

local error in 2A influence the students’ work.  
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