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Squaring the Circle and Doubling the Cube in Space-Time

Espen Gaarder Haug

Norwegian University of Life Sciences, Ås, Norway

ABSTRACT: Squaring the Circle is a famous geometry problem going all the way back to the ancient
Greeks. It is the great quest of constructing a square with the same area as a circle using a compass
and straightedge in a finite number of steps. Since it was proven that ⇡ was a transcendental number in
1882, the task of Squaring the Circle has been considered impossible. Here, we will show it is possible
to Square the Circle in space-time. It is not possible to Square the Circle in Euclidean space alone, but
it is fully possible in space-time, and after all we live in a world with not only space, but also time. By
drawing the circle from one reference frame and drawing the square from another reference frame, we
can indeed Square the Circle. By taking into account space-time rather than just space, the impossible
becomes possible! However, it is not enough simply to understand math in order to Square the Circle, one
must understand some “basic” space-time physics as well. As a bonus, we have added a solution to the
impossibility of Doubling the Cube. As a double bonus, we have also Boxed the Sphere! As we will see,
one could claim that we have simply bent the rules and moved the problem from one place to another.
One of the essential points of this paper, however, is that we can move challenging space problems out
from space and into time, and vice versa.
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Introduction

Before Lindemann [Lin] in 1882 proved that ⇡ was a transcendental number,1 there was a long series of
attempts to square the circle. Hobson [Hob] did a thorough job in reviewing and describing the long and
interesting history of Squaring the Circle, and he concluded:

It has thus been proved that ⇡ is a transcendental number...the impossibility of “squaring
the circle” has been e↵ectively established. – Ernest Hobson

To get an idea of the impossibility of Squaring the Circle, consider that we make a circle with radius
r = 1; then the area of the circle must be ⇡r2 = ⇡. To get a square with area ⇡, the length of each
side must be

p
⇡. To construct a square with sides exactly

p
⇡ is impossible with only a compass and a

straightedge in a finite number of steps.
Interestingly, in 1913 Hobson also mentioned that

The history of our problem falls into three periods marked out fundamentally distinct dif-
ferences in respect of method, of immediate aims, and of equipment in the possession of
intellectual tools. – Ernest Hobson

Much has happened since Hobson’s publication that basically covered the period from the ancient
Greeks to the end of the 19th century, and we can now perhaps consider ourselves to be in a fourth
period with additional intellectual tools developed in the last century or so. In more recent times, there
have been a few claims of Squaring the Circle for certain non-Euclidean spaces such as the hyperbolic
plane, also known as Bolyai–Lobachevskian geometry (see [Jag] and [Gre]). Still, these “claims” have
been overoptimistic. For example, there are no squares as such in the hyperbolic plane.

One cannot square the circle in Euclidean space alone; however, as we will prove: One can Square
the Circle in Space-Time (at least hypothetically), and we are clearly living in space-time and not only
in space. Once we take into account how observations of time and distance are a↵ected by motion, it
surprisingly becomes possible to square the circle.

Before the late 19th century, no one had figured out that the length of an object or the distance
traveled or even time itself would be a↵ected by how fast we moved. Interestingly, just a few years after
it was proven that ⇡ was transcendental we got a breakthrough in understanding that distances and time
were a↵ected by motion. Fitzgerald [Fit] was the first to suggest that the null result of the Michelson–
Morley speed of light experiment could be explained by assuming that the length of any material object
(including the earth itself) contracts along the direction in which it is moving through the ether, or, as
explained in his own words:

I would suggest that almost the only hypothesis that can reconcile this opposition is that
the length of the material bodies changes according as they are moving through the ether or
across it, by an amount depending on the square of the ratio of their velocity to that of light.
– FitzGerald, May 1889

Lorentz [Lor] mathematically formalizes length contraction, suggesting that objects and any type of

matter that travels against the ether has to contract by
q
1� v2

c2 , where v is the speed of the object

against the ether and c is the well-known experimentally tested speed of light.2

Larmor [Lar] added time-dilation3 to the FitzGerald and Lorentz length contraction and was the first
to develop a mathematical theory that is fully consistent with the null result of the Michelson-Morley
experiment. Bear in mind that FitzGerald, Lorentz, and Larmor all still assumed the ether existed and
it was originally to “save” the ether that they introduced length contraction and time dilation. Even the
famous mathematician and physicist Henry Poincaré believed in the presence of the ether. Still, in 1905
Poincaré [Poi] concluded that it would be impossible to detect the earth’s motion against the ether. Henry
Poincaré therefore made the suggestion to synchronize clocks a distance apart using the “assumption”
that the one-way speed of light for synchronization purposes was the same as the well-tested round-trip

1Hermite [Her] had, just years before, proven that e was a transcendental number.
2More precisely the well-tested round-trip speed of light.
3Time dilation has been proven in a series of experiments, see for example [Hae], [HK2, HK] and [Bea].
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speed of light. Einstein instead abandoned the ether and assumed that the true one-way speed of light
was the same as the round-trip speed of light and used this assumption to synchronize his clocks.

Bear in mind that FitzGerald and original Lorentz length contraction is actually not mathematically
the same as Einstein [Ein, Ein2] length contraction, even though it looks mathematically identical at
first sight. For example, Patheria [Pat] points out correctly that there is a major di↵erence between
FitzGerald and Lorentz transformation on one side and Einstein length transformation on the other side:

It must be pointed out here that the contraction hypothesis, put forward by FitzGerald and
Lorentz, was of entirely di↵erent character and must not be confused with the e↵ect obtained
here [Einstein length contraction]. That hypothesis did not refer to a mutually reciprocal
e↵ect; it is rather suggesting a contraction in the absolute sense, arising from the motion
of an object with respect to the aether or, so to say, from ‘absolute’ motion. According to
a relativistic standpoint, neither absolute motion nor any e↵ect accruing therefrom has any
physical meaning.4

After Lorentz became heavily influenced by the view of Poincaré he seems to have changed his own
view that motion against the ether likely not could be detected, so we should probably look at the speed
v in the Poincaré [Poi] adjusted Lorentz transformation5 as the relative speed between frames rather
than the speed against the ether, even though Lorentz not is very clear on this point in 1904. With
this in mind, it is not incorrect to use the term Lorentz contraction in the Einstein theory for length
contraction, as many physicists do today. Personally, I prefer to distinguish between FitzGerald and the
(original) Lorentz contraction: on the one hand, where the speed v represents the velocity against the
ether, and on the other hand, in the Einstein theory, where v represents the relative velocity as measured
with Einstein-Poincaré synchronized clocks. Even though several di↵erent relativity theories exist, we
will concentrate on Squaring the Circle inside Einstein’s special relativity theory here, which is to say
inside what we can call “Euclidian Einstein space-time.”, better known as Minkowski [Min] space-time.

1 Squaring the Circle in Space-Time

We will show that we can draw a square with area ⇡ without relying directly on ⇡, but only indirectly
on ⇡. Assume a train platform (embankment) and a train. We first draw a circle on the embankment
using only a compass, see Figure 1 upper panel. We can call the radius of the circle one, that is r = 1. It
could be one cm, one inch, one meter, or whatever radius we prefer. Next we mark a straightedge with
the compass so we have a length equal to the radius of the square. Next we build a perfect square based
on this length. In other words, we have constructed a one by one square, also known as a unit square.
This square should be built in a solid material that we can transport.

Next we will move the square on board a train. This train is currently at rest relative to the em-
bankment. Then we accelerate this train to a very fast velocity relative to the embankment; we will get
back to exactly what velocity later. Naturally, we could just as well have constructed the square on the
train while the train was standing still relative to the embankment, or later while the train was moving
relative to the embankment. What is important is that we build the unit square (side length equal to
the radius of the circle) in and from the frame in which it is at rest.

So far we have “only” worked in space, now we also need to work a little in time. At each corner of the
square we mount a clock. Next we will synchronize these clocks using the Einstein clock synchronizing
procedure. That is to say, we are synchronizing the clocks with light signals assuming that the one-way
speed of light is isotropic and the same as the well-tested round-trip speed of light.

Next we hang the square with the clocks out on the side of the train. At each clock we have connected
a laser. At a given point in time, each clock will simultaneously trigger the lasers. Bear in mind the
lasers are fired simultaneously as observed from the train. However, Einstein’s relativity of simultaneity
means that the lasers on the train are not fired simultaneously as observed from the embankment. The
embankment is covered with photosensitive paper. The lasers (photons) will hit the embankment and
make a mark for each corner. See Figure 1 middle and lower panels. The figure gives a clear idea of how

4See [Pat] page 41.
5Which is the one referred to when physicists today talk about the Lorentz transformation.
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Figure 1: Squaring the Circle. Comparison between embankment frame and the train frame. It is worth
noting here that visualization is not necessarily the same as relativistic measurements as observed with
Einstein synchronized clocks, see section 14 for more on this.

Illustration by Line Halsnes.
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the the Lorentz contraction is obtained.6

There is no length contraction in the transverse direction, so the distance between the two laser marks
on the embankment in the transverse direction on the embankment must be one (for example, 1 meter).
However, in the parallel direction we will have length contraction. The distance between the marks on the
embankment will appear contracted from the train. Remember we are going to try to Square the Circle;
that is to make the area of the square equal to the circle. The area of the circle is ⇡. The transverse
length of the square is one. What is the speed of a train (second frame) that will give the sides of ⇡ in
the embankment, but only 1 from the frame we draw the sides from (the train)? We must have a length
contraction factor � equal to 1

⇡ to accomplish this, since ⇡ ⇥ 1
⇡ = 1. This means we get the following

equation to solve based on special relativity theory:

1

⇡
=

r
1� v2

c2
✓
1

⇡

◆2

= 1� v2

c2

v = c

r
1� 1

⇡2
(1.1)

and we have

1 = ⇡

r
1� v2

c2

1 = ⇡ ⇥

vuut
1�

⇣
c
q

1� 1
⇡2

⌘2

c2

1 = ⇡
1

⇡
(1.2)

This means that when we have two frames traveling at a relative speed7 of v = c
q

1� 1
⇡2 we can indeed

Square the Circle. There is nothing wrong with drawing the square in one frame and then “transferring”
it to another frame. Some people might claim that this is bending the rules. This is partly true, but there
were no rules about how fast we could move the pen, or if we should calculate the area as observed from
the square itself, or from the moving pen (train) that is ‘drawing’ it. We will return to some self-criticism
a bit later in this paper. And as we soon will see, this solution contains two solutions, including a simpler
solution that we will also discuss.

In Einstein’s special relativity theory, length contraction is reciprocal. So, we could just as well have
drawn the circle on board the train and then we could draw the square8 in the train from the embankment.
The situation would be symmetrical. The velocity of the train relative to the embankment is the same as
the velocity of the embankment relative to the train, as long as they are measured with Einstein-Poincaré
synchronized clocks.

2 Checking the area

Again, the circle is drawn on the embankment (or on the train) and the square is drawn on the train
and then transferred to the embankment from the train, or vice versa. The circle is drawn with radius
r = 1, as observed from the embankment frame, and the square is initially drawn with sides 1 by 1 from
the frame in which it is at rest.

The observer on the embankment observes a circle with radius one and a rectangle with sides 1 by
⇡, both at rest on the embankment. The area of the circle is ⇡ and the area of the rectangle is ⇡. The

6The visualization of a rapidly moving object can be more complex. If, for example, the color is being recorded, then
that too will be distorted by the Doppler e↵ect variation. However, this is beyond the scope of this article. See also section
14 concerning more on visualization versus measurements.

7As measured with Einstein-Poincaré synchronized clocks.
8Or at least the side lines for the square.
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Figure 2: Comparison between embankment frame and the train frame. (It is worth noting here that visu-
alization is not necessarily the same as relativistic measurements as observed with Einstein synchronized
clocks, see section 14 for more on this.)

observer on the train can check the areas. The train observer sees a perfect square (a unit square) with
area 1; the square is at rest with respect to the train. The circle (that is at rest on the embankment) is
observed as an ellipse by the train observer. Figure 2 illustrates how the two di↵erent frames observe the
circle (ellipse) and the square (rectangle).

As there is no length contraction in the transverse direction, the ellipse semi-major, as observed from
the train, is the same as the radius of the circle, as observed from the embankment, that is r. The
semi-minor axis on the ellipse is contracted, as observed from the train, and must be

r

vuut
1�

⇣
c
q
1� 1

⇡2

⌘2

c2
= r

1

⇡
. (2.1)

And if we have chosen radius r = 1, this gives a semi-minor axis of 1
⇡ . The area of an ellipse is given

by Aellipse = ⇡ab, where a and b are the semi-major and the semi-minor axes respectively. This gives us
an area of the ellipse of Aellipse = ⇡⇥ 1⇥ 1

⇡ = 1. This is the same as the area of the square on board the
train, as observed from the train.

Bear in mind that in the solution as observed from the train, we do not need to have any clocks
mounted to the square to make marks on the embankment. Here we simply draw a unit circle on the
embankment (in one frame) as observed from the embankment and then we draw a unit square on board
the train from the train, for example on the floor of the train. The square can be drawn on board the
train while we are standing still relative to the embankment, or later while we are moving relative to
the embankment. Now we simply observe the circle on the embankment from the train. The circle will
appear as an ellipse and the area of the ellipse and the square are the same: they are one. A drawn unit
circle has the same area as a drawn unit square, quite remarkable indeed.

Both the train observer and the embankment observer can agree that the area of the circle and the
square are identical. However, the embankment observer will claim that the square is a rectangle and
the train observer will claim that the circle is an ellipse. Still, the circle was drawn and observed as
a circle by the drawer and the square was drawn and observed as a square by the drawer. We have
indeed Squared the Circle! And this seems to be the “only” way to square a circle in Euclidian Einstein
space-time (Minkowski space-time).
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3 How can this be?

Einstein’s special relativity theory predicts reciprocal length contraction. Assume two identical me-
ter sticks are made in the same reference frame L = 1. Next one of the meter sticks is carried on

board the train. The train is accelerated9 to a speed of c
q

1� 1
⇡2 . Now from the train, the meter

stick at rest on the embankment will be observed to have length contracted and have a length of:

1 ⇥
r
1�

⇣
c
q
1� 1

⇡2

⌘2

/c2 ⇡ 0.3183. At the same time, the meter stick at rest in the train will be

observed to have length ⇡ 0.3183, as observed from the embankment. In Einstein‘s special relativity
theory, length contraction is reciprocal. Still, in the section above we claimed that the laser signals sent
out simultaneously (simultaneously as observed from the train) will make marks on the embankment that
have a distance between them of ⇡ meters. How can a one meter stick in the train that is observed to be
contracted from the embankment actually make marks on the embankment that are ⇡ meters apart?

The signals sent out simultaneously from each end of the rod (the rods making up the unit square)
at rest in the train will not be observed to be sent out simultaneously from the embankment. Events
happening simultaneously on the train, as observed with Einstein synchronized clocks, will from the
embankment have an observed time di↵erence of

Lv

c2
q

1� v2

c2

. (3.1)

This is well-known from Einstein’s theory as the relativity of simultaneity.10 Where L is the length of
the rod as observed from the frame it is at rest in, for example 1 meter, the distance between the marks
on the embankment from the lasers sent out from the two ends of rod simultaneously as measured from
the train will make marks at the embankment with the following distance apart as measured from the
embankment

L

r
1� v2

c2
+

Lv

c2
q
1� v2

c2

v =
Lq

1� v2

c2

(3.2)

and since v = c
q
1� 1

⇡2 we get

Lq
1� c2(1� 1

⇡2 )
c2

= L⇡ (3.3)

and if L = 1 meter then the length between the two marks on the embankment between the square
sides parallel to the railroad will be ⇡ meters. This is just another way to check that our results in the
previous section are correct and consistent with Einstein’s special relativity theory. That we can Square
the Circle in Minkowski space-time is also strongly related to how clocks are synchronized in special
relativity theory: the clocks are Einstein (Poincaré) synchronized. We could also have found this directly
from the Lorentz transformation:

x̂ =
x� vtq
1� v2

c2

. (3.4)

In the train frame, the lasers (actually 4 if one includes each corner) are fired simultaneously, as
observed from Einstein synchronized clocks in the frame where the lasers-clocks are at rest relative to
each other. This means the time between the clocks fired as observed from this frame must be t = 0. When

9One could argue that acceleration will a↵ect the result here and deform the rod that underwent acceleration. We will
not discuss this in depth, but if that should be considered an issue there are other ways to make a meter stick in both
frames without having to think about acceleration. As the speed of light is constant in each frame when using Einstein

synchronized clocks, and the one meter must be how long the light travels in 1 meter
c = 1/299792458 seconds, one can

alternatively make the one meter rod on the train after the acceleration is finished and the train is traveling in a uniform
motion against the embankment frame.

10Equation 3.1 is well known from the literature, (see for example [Com], [Car], [Din], [Boh] and [Kra]). The formula
follows directly from the Lorentz transformation.
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the relative speed between the two frames as measured with Einstein synchronized clocks is v = c
q
1� 1

⇡2 ,

we get the following length transformation:

x̂ =
x� c

q
1� 1

⇡2 ⇥ 0
r

1�
⇣
c
q

1� 1
⇡2

⌘2

c2

= x⇡ (3.5)

where x is the distance between two events in the rest frame. In this case, the distance between the
lasers on the straightedge on the train, that is x = L. Further, x̂ is the distance between these points
plus the distance the train traveled in the time di↵erence between these two lasers firing, as measured
from the other frame. The length transformation takes into account length contraction and relativity of
simultaneity.

We could also have Squared the Circle using other relativity theories, such as the ether theory of
Joseph Larmor [Lar] from 1900. One of the main di↵erences would be that the Squaring of the Circle
would not be reciprocal between the frames then, see [Hau] for detailed discussion on this topic. In this
article, we will limit ourselves to Squaring the Circle under Einstein’s special relativity theory, which
involves Einstein synchronization of clocks.

4 Summary of procedure

In this section, we shortly summarize the procedure for Squaring the Circle:

Solution one:

1. We are drawing a unit circle on the embankment (reference frame one) with a compass.

2. Without changing the compass, we construct a square where each side has a radius equal to the
radius of the circle. The square could be drawn on the floor of the train. The train is currently at
rest relative to the embankment.

3. Accelerate the train to a speed relative to the embankment of v = c
q
1� 1

⇡2 as measured from both

the embankment and the train.11 The relative speed between the reference frames is reciprocal in
Einstein’s special relativity theory.

4. The circle on the embankment will now be observed as an ellipse with the same area as the square
from the train. In this case, both the ellipse (that was drawn as a circle) and the square would have
area 1 (rather than ⇡) as observed from the train. In other words, we have Squared the Circle.

Solution two:

1. Draw a circle on the embankment (reference frame one) with a compass. Choose any radius and
call this radius one (one meter, one foot, one cm, or any other length). The radius is the distance
between the two points of the compass.

2. Without changing the compass, construct a square where each side has a radius equal to the radius
of the circle. The square should be made of a robust material so we can move the square.

3. Move the square on board a train that is currently at rest relative to the embankment; alternatively,
we could have constructed the square directly on board the train while the train is standing still or
while it is moving (but not during acceleration).

4. Accelerate the train to a velocity relative to the embankment of v = c
q
1� 1

⇡2 , as measured from

both the embankment and the train.12 The relative speed between the reference frames is reciprocal
in Einstein’s special relativity theory.

11This speed is as measured with Einstein synchronized clocks.
12This speed is as measured with Einstein synchronized clocks.
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5. Mount a clock to each corner of the square. Synchronize these clocks using Einstein-Poincaré

synchronization while the train is moving at velocity v = c
q
1� 1

⇡2 relative to the embankment.

6. Simultaneously, as measured by the clocks in each corner of the perfect square on the train, fire the
lasers. These laser signals will burn four dots on the ground. These dots will mark the corners of
a rectangle, as observed from the embankment. The length of the sides of the rectangle parallel to
the railroad will be related to length transformation rather than length contraction. If the signals
arrived simultaneously as observed from the embankment, then it would be length contraction
rather than length transformation. The square on the train is indeed observed as length-contracted
from the embankment, but not the transferred square (rectangle)

7. Measure the area of the circle and the square and they will have the same area. From the train, the
circle is observed to have an elliptical shape and the square is a unit square. From the embankment,
the circle is a circle and the square is a rectangle. The areas of the circle and the square, both
as observed from the train, are the same, namely one. The area of the circle and the transferred
square (the rectangle on the embankment) have area ⇡, as observed from the embankment. In other
words, we have Squared the Circle.

Solution two also contains solution one. Solution one is the simplest, as it does not need the clocks
and the lasers in each corner of the square. We could also have done this the other way around. That is,
to draw the unit circle onboard the train and to draw the unit square on the embankment. The result
would be the same as above.

5 More general solution

The solution above only holds between a unit circle and a unit square. Here we will see if there is a more
general solution. Again, assume that we have drawn a unit circle, then what is the limitation we have on
the length of the sides of the square and what is the velocity we need to travel at when transferring this
square to the other frame? By transferring I mean when using the square that we move to fire the lasers
simultaneously to mark the embankment. We get the following equation to solve,

L2

⇡
=

r
1� v2

c2

L4

⇡2
= 1� v2

c2

v = c

r
1� L4

⇡2
(5.1)

Further, in equation 5.1 we must have L4

⇡2 < 1. Solved with respect to L, this gives us

L4

⇡2
< 1

L4 < ⇡2

L <
p
⇡ (5.2)

when L =
p
⇡ then v = 0 and then it is not possible to Square the Circle, as we already know. In other

words, it is not possible to Square the Circle from only one reference frame, we need to use two reference
frames to Square the Circle. The general solution is that we can draw any square with sides shorter thanp
⇡. I assume all lengths 0 < L <

p
⇡ that are not transcendental can be used to square a unit circle. A

square with length L is constructed on the ground or in the train and then moved onto the train. Then

the train is accelerated to the following velocity: v = c
q

1� L4

⇡2 . Or we could have accelerated the train

first and then constructed the square on the train while it was moving relative to the embankment, this
makes no di↵erence. Next accurate clocks in each corner of the square are synchronized while traveling
and the lasers are fired simultaneously, as observed from the train, to mark the embankment. The area



Haug, p. 68

of the square, as measured from the embankment or the train, will have the same area as the circle.
Again, the square on the embankment drawn from the train will be observed as a rectangle from the
embankment, but it was initially drawn as a square.

As the general solution holds for any velocity between 0 < v < c, we do not need a super-fast futuristic
train or space-rocket to Square the Circle. When the sides of the square are very close to

p
⇡, we do not

need all the digits of ⇡ in the sides of the square, as long as v > 0. For example, we could theoretically
construct a printer where the printer head moves at speed v relative to the paper. The printer head
consist of a square with the length of each sides being very close to

p
⇡, as observed from the printer

head. Simply think of the paper as the embankment and the printer head, as the train in the example
above. The printer head is a perfect square with sides L, as observed from the printer head. In each
corner of the printer head is a clock that is Einstein synchronized while the printer head moves at velocity
v relative to the paper. The corners of the square are simultaneously firing a laser as measured from
the printer head clocks. The laser marks on the paper as observed from the paper will not be a perfect
square, but a rectangle. The circle is drawn to be a perfect circle as observed from the rest frame of the
paper. Again, this is just a parallel to the train example, which is much more realistic in the way that the
printer head just needs to move at a speed v > 0 and not at a speed close to that of light. Still, we like
the first non-general solution the best from a mathematical point of view. It is almost like magic to draw
a unit circle and a unit square that both end up having area 1, or alternatively ⇡ from the embankment.

6 Additional solution

Here we mention an additional solution.13 Assume a train travels at velocity of v = c
q
1� 1

⇡ relative to

the embankment. The train has a unit rod hanging out on the side. On each end of the rod we mount

a clock with a laser. The clocks are Einstein synchronized while traveling at velocity v = c
q
1� 1

⇡ . At

a given point in time, both of the lasers are fired simultaneously down towards the ground. That is,
simultaneously as observed from the train. The distance between the laser marks on the embankment we
get from the Lorentz length contraction, and it must be:

x̂ =
x� c

q
1� 1

⇡ ⇥ 0
r

1�
⇣
c
p

1� 1
⇡

⌘2

c2

= x
p
⇡

Again, x = L and if we gave L = 1 then we have a length on the ground equal to
p
⇡. We make a

straightedge out of this and construct a square. Next we draw a circle with area ⇡ on the embankment
using a compass. We now have a perfect circle and a perfect square, both with area ⇡ on the embankment
as observed from the embankment. This is also reciprocal when using Einstein synchronized clocks. We
could just as well have started out with the rod on the embankment and made the marks on the train.
This solution is very nice since we then have a perfect circle and a perfect square in the same reference
frame both with area ⇡.

7 Doubling the Cube

Doubling the Cube is another geometrical problem closely connected to Squaring the Circle. The quest
of Doubling the Cube consists of making a cube with double the volume of another cube simply by using
a compass and straightedge. The impossibility of Doubling the Cube in Euclidean space was proven by
Wantzel [Wan] in 1837. For example, if we have a unit cube with volume one then we need a line segment
of L = 3

p
2. The impossibility of Doubling the Cube is equivalent to the fact that 3

p
2 is not a constructible

figure using just a compass and straightedge. Still, this impossibility only holds in Euclidean space; in
space-time we can Double the Cube using a compass and straightedge and Einstein synchronized clocks.
We get the following equation to solve,

13This solution was suggested by Mandark Astronominov on Twitter after I put a link to an earlier working paper version
there.
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r
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1� v2
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1
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s
1� 1

( 3
p
2)2

(7.1)

and we have

1 = 3
p
2⇥

vuuut
1�

✓
c
q

1� 1
( 3p2)2

◆2

c2

1 = 3
p
2

1
3
p
2

(7.2)

So, to Double the Cube we make a unit rod. We then make a unit cube with this rod. We next
bring a unit rod to a train at rest relative to the embankment. We accelerate the train to velocity

v = c
q
1� 1

( 3p2)2
. Next we mount a clock with a time-release laser at each end of each rod. The clocks

are Einstein synchronized, while the train is traveling. We hang the rod out on the side of the train
parallel to the embankment. Next we fire both lasers simultaneously, as observed from the train. This
gives two marks on the embankment with distance 3

p
2 apart. We can use this to make another rod and

then construct a new cubes with side length 3
p
2 and volume ( 3

p
2)3 = 2. We have Doubled the Cube.

8 Boxing the Sphere

The volume of a sphere is V = 4
3⇡r

3. If we set the radius to r = 1, we have a unit sphere. The volume of
a unit sphere is V = 4

3⇡. To make a cube with the same volume as the sphere (Boxing the Sphere), we

would need a cube with side length 3

q
4⇡
3 . We cannot construct such a cube (just in space) with just a

compass and a straightedge in a finite number of steps. However, we can Box the Sphere in space-time.
At the embankment, one first rotates the compass to construct a circle, then one rotates that circle

to construct the sphere. A sphere can, in this way, be seen as meta-construction by a compass.14 At
the embankment, we will use the compass to make a rod with a length equal to the radius of the circle.
Next we bring this rod on board of a train. We mount a clock on each side of the rod. Each clock has a
time-release laser. Next we accelerate the train to a velocity of

v = c

vuut1� 1
⇣

3

q
4⇡
3

⌘2 (8.1)

While we are traveling at this velocity, we are Einstein synchronizing the clocks. The rod with the
clocks is hanging out of the train in the parallel direction to the train track. Next we fire both the lasers
simultaneously, as observed from the train. This will make two marks on the embankment; from the

embankment they will be 3

q
4⇡
3 apart. We will use this distance to make a new rod. We will use this rod

to make a cube. The volume of the cube (box) is
⇣

3

q
4⇡
3

⌘3

= 4
3⇡. We have Boxed the Sphere! We could

also have extended this solution to hold for any sphere.

14Thanks to Traden4Alpha at the www.wilmott.com forum for pointing out to me how to make a sphere with just a
compass.
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8.1 Platonic Solids and the Sphere

We have already Boxed the Sphere and the box that forms the cube is one of the five Platonic Solids.
Here we will provide the solutions for the other Platonic Solids in relation to the Sphere.

Tetrahedron the Sphere

The next Platonic solid is the tetrahedron. The volume of a tetrahedron is V = a3

6
p
2
. To Tetrahedron

the Sphere, we need to have a =
3
p

⇡8
p
2 and we need to travel at a velocity of

v = c

vuut1� 1
⇣

3
p

⇡8
p
2
⌘2 (8.2)

After this, we will follow the same procedures as we did for Boxing the Sphere. We have Tetrahedroned
the Sphere.

Octahedron the Sphere

The volume of an octahedron is V =
p
2
3 a3. To Octahedron the Sphere, we need to have a = 3

q
4⇡p
2
and

need to travel between the two frames at a velocity of

v = c

vuut1� 1
⇣

3

q
4⇡p
2

⌘2 (8.3)

Once again, we will follow the same procedures as we did for Boxing the Sphere. We have Octahe-
droned the Sphere.

Icosahedron the Sphere

The volume of an icosahedron is V = 5
12 (3 +

p
5)a3. To Icosahedron the Sphere, we need the side length

of the icosahedron to be a = 3

q
16⇡

5(3+
p
5)

and we need to travel at a velocity of

v = c

vuut1� 1
⇣

3

q
16⇡

5(3+
p
5)

⌘2 (8.4)

Then we follow the same procedures as for Boxing the Sphere. We have Icosahedroned the Sphere.

Dodecahedron the Sphere

The volume of a dodecahedron is V = 1
4 (15 + 7

p
5)a3. To Dodecahedron the Sphere we need the side

length in the dodecahedron to be a = 3

q
16⇡

3(15+7
p
5)

and we need to travel at a velocity of

v = c

vuut1� 1
⇣

3

q
16⇡

3(15+7
p
5)

⌘2 (8.5)

However, this time we cannot send the signals from the rod simultaneously as measured from the
train. Instead, we will need a length a shorter than the unit rod. We need to rely on length contrac-
tion rather than length transformation to construct it. To get length contraction, we have to send the
signal simultaneously from the train as measured from the embankment. We can do this by Einstein
synchronizing the two clocks on each end of the unit rod while the train is still at rest relative to the
embankment. Next we move the rod with the clocks on board the train and accelerate the train to the
velocity given in equation 8.5. Then both of the lasers on the train will fire simultaneously, but this will
be simultaneously as observed from the embankment, not simultaneously as observed from the train. The
mark between the two lasers on the embankment will be related to the length contraction of the rod l.
The unit rod L = 1 has turned into a length of
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From this new rod on the embankment, we will build a dodecahedron. We have Dodecahedroned the
Sphere.

9 Equilateral Triangling the Circle

The area of a unit circle is A = ⇡r2 = ⇡. The area of an equilateral triangle is A =
p
3
4 a2, where a is the

length of the side of the triangle. To make an equilateral triangle with the same area as the unit circle

(Equilateral Triangling the Circle), we would need a triangle with side length a =
q

4⇡p
3
. We cannot

construct such an equilateral triangle in space alone with only a compass and a straightedge in a finite
number of steps. However, we can construct such a triangle in space-time.

At the embankment, one first rotates the compass to construct a circle. Staying at the embankment,
we will use the compass to make a rod with a length equal to the radius of the circle. Next we will bring
this rod on board the train. We mount a clock on each side of the rod. Each clock has a time-release
laser. Next we will accelerate the train to a velocity of

v = c

s

1�
p
3

4⇡
(9.1)

While we are traveling at this velocity, we will Einstein synchronize the clocks. Then we will hang
the rod with the clocks out of the train in the direction parallel to the train track. Then we fire both
of the lasers simultaneously, as observed from the train. This will make two marks on the embankment;

from the embankment they will be
q

4⇡p
3
apart. We will take this distance to make a new rod that we

will use to construct the equilateral triangle. The area of the triangle is A =
p
3
4

⇣q
4⇡p
3

⌘2
= ⇡ . We have

Equilateral Triangled the Circle!

10 Table summary of solutions and further discussion

Below are two tables summarizing the solutions we have provided:

Table 1: This table shows the length of the sides needed to Platonic Solid the Sphere and the relative
velocity needed to do that.

Various solutions: Length needed a v

Squaring the Circle solution 1 ⇡ c
q

1� 1
⇡2

Squaring the Circle solution 2
p
⇡ c

q
1� 1

⇡

Triangle the Sphere
q

4⇡p
3

c
q

1�
p
3

4⇡

Doubling the Cube 3
p
2 c

q
1� 1

( 3p2)2

So, we actually have two very general solutions. If we need to utilize length transformation to create
the length a, then we have the following general solution for the velocity

v = c

r
1� 1

a2
(10.1)
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Table 2: This table shows the length of the sides needed to Platonic Solid the Sphere and the relative
velocity needed to do that.

Platonic Solids Volume Length needed a v

Boxing the Sphere a3 3

q
4⇡
3 c

q
1� 1

( 3
p

4⇡
3 )2

Tetrahedron the Sphere a3

6
p
2

3
p
⇡8

p
2 c

r
1� 1⇣

3
p

⇡8
p
2
⌘2

Octahedron the Sphere
p
2
3 a3 3

q
4⇡p
2

c
r

1� 1⇣
3
q

4⇡p
2

⌘2

Dodecahedron the Sphere 1
4 (15 + 7

p
5)a3 3

q
16⇡

3(15+7
p
5)

c
s
1� 1✓

3
q

16⇡
3(15+7

p
5)

◆2

Icosahedron the Sphere 5
12 (3 +

p
5)a3 3

q
16⇡

5(3+
p
5)

c
s
1� 1✓

3
q

16⇡
5(3+

p
5)

◆2

If we need a rod longer than our unit rod (the initial rod), then we need to mount two clocks on this
rod and synchronize the clocks on board of the train.

On the other hand, if we need to utilize length contraction15 to create the needed length a, then we
have the following general solution for the velocity

v = c
p
1� a2 (10.2)

If we need length contraction, we need to Einstein synchronize the two clocks while the rod (train) is
at rest relative to the embankment. So, if we need a length a, we must first find out if this length is shorter
or longer than our unit rod. If it is longer than the rod, then we need to utilize length transformation
and if it is shorter, then we need to utilize length contraction. We can move any troublesome constants
out of space and into the velocity, and use the velocity to make our needed troublesome length in the
other reference frame. As we soon will explain, when the troublesome constant is first moved into the
velocity we can decide if we want to move it into time or space.

11 A critical look at the solution

Have I really Squared the Circle? It is not the first time someone has claimed to have Squared the Circle.
One of the longest and most intense intellectual disputes of all time was between philosopher Thomas
Hobbes, who claimed that he had Squared the Circle and the mathematician John Wallis, who claimed
Hobbes not had Squared the Circle, see [Jes]. The conclusion was that Hobbes not had Squared the
Circle.

One could claim the solution to Squaring the Circle in this paper simply has moved the problem
into the velocity between the two reference frames. The velocity needed to Square the Circle is indeed a
function of ⇡. Still, there was never any mention of a restriction on the velocity of the observer in the
quest for Squaring the Circle. One could also argue that I am bending the rules by using clocks in addition
to a compass and a straightedge. Even in solution one, where we simply draw a circle in one frame and
a square in another frame, we would need two Einstein-Poincaré synchronized clocks to measure the
one-way velocity of the train. So, any solution requires clocks, as we are working in space-time rather
than just space, that is we take into account motion. Or one could naturally try to argue that we could

be traveling at velocity v = c
q
1� L4

⇡2 or v = c
q

1� 1
⇡ simply by coincidence and therefore would not

need clocks to find this velocity.
There are indeed several reasons to claim I have bent the rules of Squaring the Circle slightly. Still,

one could just as well argue that the claimed impossibility of Squaring the Circle is rooted historically in
the fact that the quest premises were outlined before we had developed good space-time theories. In my
defense, one has to keep track of time when working in space-time, and again we do not only live in space,
we live in both space and time. Previous solution attempts have not taken time into account, nor have
they considered that time and space are a↵ected by motion. Furthermore, previous solution attempts

15Among our solutions only the dodecahedron needs this solution; this is because we need an a < L.
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have not been clear on which reference frame the circle and square are drawn from and which reference
frame they are observed from. It is indeed possible to Square the Circle if one takes into account space
and time and acknowledges how space and time measurements are a↵ected by motion.

In practice it would be close to impossible to get a velocity of exactly v = c
q

1� L4

⇡2 or v = c
q
1� 1

⇡ .

Or at least this would require infinite precision in our measuring devices. However, this is more of
a measuring problem than a Squaring the Circle quest problem. One could argue that Squaring the
Circle in space-time is a question of clock accuracy. The more accurate the clocks, the more precisely
we can measure the velocity. Ultimately, we would need continuous time clocks to Square the Circle in
space-time.

12 Moving problems from space to time

One of the main results (and possibly the very essence of the paper) is that we can move the necessary

space measurements related to challenging constants like ⇡, 3
p
2 and 3

q
4⇡
3 out from space and into time or

out from time and back into space. This should not be misunderstood as saying that space and time are
the same thing. We cannot replace space with time or time with space. We cannot lay a measuring rod
along the time axis, so we need both space and time. However, space and time are still connected within
special relativity theory in a 4-dimensional metric geometry in space-time, better known as Minikowski
space-time [Min], which we have been working in here. This means some challenges in space can be
moved to time, but while still using both time and space.

To illustrate how we can move the challenge from space to time, let’s revisit our initial Squaring the

Circle solution. To Square the Circle in our first solution, we needed an exact velocity of v = c
q
1� 1

⇡2 .

This velocity contains ⇡ and some people may argue that we have simply moved the problem of Squaring
the Circle into the velocity between the frames. This is true. However, velocity consists of a measure
or given distance divided by the measured time interval it took to travel that distance. Because of this
structure, we can decide if we want to move ⇡ into its distance component (space measurement), or into
its time component (time measurement).

In the quest to Square the Circle, the standard length unit we decided to use was the radius of the
circle that we first drew with the compass on the embankment. This radius is what we used to make a
rod and the rod became our unit length. This is our fixed measure unit in space; it is known, and it is
simply the rod in its rest frame. We did not need to know anything about ⇡ to construct this rod.

Next we brought the rod on board the train. Next we mount a laser receiver clock on each end of
the rod. Assume further that we would have a light source on the embankment going in the transverse
direction o↵ the train track towards the train. To get the velocity needed to Square the Circle, we need
to measure the time interval it takes for the rod on board the train to pass the light source on the ground.
This time interval we must get exactly to

t =
L

c
q
1� 1

⇡2

(12.1)

Since this time interval contains ⇡, we would need clocks with infinite precision, as well as an infinite
number of measurements and adjustments in the velocity, to reach this velocity exactly. Further, the
two clocks on the rod must be Einstein synchronized every time we change the velocity of the train.
Indeed, it would require, an infinite number of time measurements to get to the time interval in equation
12.1. So, this means that we have basically moved the problem from space (measurements) to time
(measurements).

Certainly one can claim that we have not Squared the Circle. However, our method has changed the
quest completely. The original Square the Circle quest is about the impossibility of constructing certain
measurements like

p
⇡ in space, while we have moved the quest into the measurement of a time interval

that is connected to ⇡. This is, in our view, quite remarkable. Challenges in space measurements and
spatial constructions can be transformed into challenges in time measurements.

We have not seen the possibility of moving troublesome constants from a space framework to a time
framework discussed in this way in the literature before. With an optimistic view, this can potentially
open up new possibilities in geometry and other scientific fields, at least from an interpretation standpoint.
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The challenge of measuring something in space can be shifted to a challenge of measuring something in
time and vice versa. We can swap space challenges with time challenges and see where that leads us,
particularly with regard to some classic “impossible” problems.

Squaring the Circle, and Doubling the Cube have parallels to the Gordian Knot. The Gordian Knot
is an ‘impossible’ knot that can only be solved by thinking outside the box (I mean outside the sphere).
An oracle once prophesied that the one who untied the Gordian Knot would become the king of Asia.
According to one fable, Alexander the Great sliced the knot with a sword stroke and thereby ‘solved”
the problem. Possibly some would claim that I have not Squared the Circle, but using the sword of time
I have sliced the Squaring of the Circle, the Doubling of the Cube, the Boxing of the Sphere, and the
Equilateral Triangling of the Circle. If the prophecy is true, then I should become the King of the Circle!

13 Is length contraction for real?

A question that often comes up when someone mentions length contraction is if length contraction is for
real. This is an important question that we not will resolve here, but that we will mention briefly. In
short, we have to be very careful with what we mean about “real.” We will claim that Einstein length
contraction is real in the sense that this is what we will observe with Einstein synchronized clocks. Both
length contraction and length transformation require a minimum of two clocks in the cases discussed
here.

We need two clocks, as we also need to know the relative speed between the frames. Part of the
length contraction and length transformation has to do with the synchronization of clocks and relativity
of simultaneity. After studying the subject carefully for years, we are convinced that our conclusion above
holds, as long as we use Einstein synchronized clocks and special relativity theory is based on Einstein
synchronized clocks.

One should think this question was fully resolved, and possibly it is, but reading through a series of
university text books covering special relativity theory, one can at least see there are still slightly di↵erent
views among physicists on whether length contraction is real or not. For example, Shadowitz [Sha] claims

If the measurements are optical then, to avoid an incorrect result, the light photons must
leave the two points at the same time, as measured by the observers: they must leave simul-
taneously. It is clear that the process of length measurement is di↵erent from the process of
seeing. Amazingly, this distinction was not noticed until 1959, when it was first pointed out
by James Terrell.16

In the same year (1959), Penrose [Pen] published a paper where he points out that

This a photograph of a rapidly moving sphere has the same outline as that of a stationary
sphere.

Further, he shows that this holds in general because the light, which appears to the observer to be
coming from the leading part of the sphere, leaves the sphere at a later time, in the observer’s frame,
than that which appears to come from the trailing part of that sphere. In other words we must be careful
about understanding there is a di↵erence between what one see and what one observe with Einstein
synchronized clocks. Further, Lawden [Law] in 1975 claims

The contraction is not to be thought of as the physical reaction of the rod to its motion and
as belonging to the same category of physical e↵ects as the contraction of a metal rod when
cooled. It is due to changed relationship between the rod and the instruments measuring its
length.17

While, for example, Rindler [Rin] in 2001 claims

This length contraction is no illusion, no mere accident of measurement or convention. It
is real in every sense. A moving rod is really short! It could really be pushed into a hole at
rest in the lab into which it would not fit if it were moving and shrunk.18

16See [Sha] page 61.
17See [Law] page 12.
18See [Rin] page 62.
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and Freeman and Young [FY] claim

Length contraction is real! This is not an optical illusion! The ruler really is shorter in
the reference frame S than it is in S‘.19

and Harris [Har] claims

It is a grave mistake to dismiss length contraction as an optical illusion caused by delays
in light traveling to the observer from a moving object. This e↵ect is real.20

On the other hand, Krane [Kra] seems to claim something somewhat di↵erent

Length contraction suggests that the objects in motion are measured to have shorter length
than they do at rest. The objects do not actually shrink; there is merely a di↵erence in the
length measured by di↵erent observers. For example, to observers on Earth a high-speed rocket
ship would appear to be contracted along its direction of motion, but to an observer on the
ship it is the passing Earth that appears to be contracted.21

Einstein length contraction will be observed as described also in this paper as long as we use Einstein
synchronized clocks. Einstein length contraction is reciprocal between frames, while, for example, the
FitzGerald and Larmor use of length contraction is not reciprocal, because in ether theories one has a
preferred reference frame. In special relativity theory, any frame observing an object in another frame will
appear contracted. A frame making marks in the other frame will, on the other hand, seem expanded.
However, this length expansion is due to length transformation as well as length contraction. Length
contraction and length transformations are linked, but they are not the same.22

In our case, we are actually making a circle in the rest frame of the circle, so here there should be
no disputes. The square we are first making on the train, but we are transferring it to the embankment
by lasers in solution two. These laser pens are fired simultaneously, as observed from the pen. The pen

is the train or even a printer head that travels at speed c
q

1� L4

⇡2 relative to the paper. The lasers are

not fired simultaneously as observed from the embankment and this is the reason that we get a rectangle
on the embankment. Our theory is fully consistent with Einstein’s special relativity theory, and could at
least hypothetically be performed in practice with the expected result we have described above.

14 Conclusion

It is possible to Square the Circle by constructing the circle and the square from two di↵erent reference

frames traveling at speed v = c
q

1� L4

⇡2 or v = c
q

1� 1
⇡ relative to each other.23 More precisely, it

is not possible to Square the Circle in Euclidean space using only a compass and straightedge, but it
is possible to Square the Circle in space-time using compass, straightedge, and Einstein synchronized
clocks. We could argue that this is bending the rules and moving the problem of transcendental ⇡ into
a transcendental velocity between the reference frames, rather than directly into the construction of the
Circle and the Square. Still, one could just as well argue that the previous attempts to Square the Circle
have not taken into account that observations of space and time are a↵ected by motion, and that space
and time are closely connected.

Have I really Squared the Circle? Have I made the Impossible Possible? Only space-time can tell
if this paper leads to celebration, silence, death, or an intellectual War similar to that between Hobbes
and Wallis. Before you shoot the messenger, make sure you have studied length contraction, length
transformation, and relativity of simultaneity rigorously.

More important than whether we have Squared the Circle or not is that we have shown that any
troublesome constant like ⇡,

p
⇡,

p
2 can be moved from the space dimension into the time dimension.

The very essence of the paper is that space challenges can be replaced by time challenges and vice versa.

19[FY] page 1229.
20[Har] page 11.
21[Kra] page 35.
22See also [Hau].
23As measured with Einstein synchronized clocks.
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