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A formal justification of the Ancient Chinese Method of Computing Square
Roots

Edilberto Nájera

Universidad Juárez Autónoma de Tabasco, México

Leslie Cristina Nájera-Beńıtez

Secretaŕıa de Educación Pública y Cultura, Sinaloa, México

ABSTRACT: In this paper a formal justification of the ancient Chinese method for computing square
roots is given. As a result, some already known properties of the square root which is computed with this
method are deduced. If any other number base is used, the justification given shows that the method
is applied in the same way and that the deduced properties are still being fulfilled, facts that highlight
the importance of positional number systems. It also shows how to generalize the method to compute
high orders roots. Although with this elementary method you can compute the square root of any real
number, with the exact number of decimal places that you want, the mathematicians of ancient China
were not able to generalize it for the purpose of computing irrational roots, because they did not know
a positional number system. Finally, in order for high school students gain a better understanding of
number systems, the examples given in this paper show how they can use the square root calculus with
this method to practice elementary operations with positional number systems with different bases, and
also to explore some relationships between them.
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Introduction

The method that for many years was taught in elementary education to extract the square root of a
number, was created in ancient China, and was also extended to the case of the extraction of the cube
root of a number. The mathematicians of ancient China also found formulas to approximate irrational
roots; however, the approximations obtained were far from satisfactory (see [Jos], pp. 219-228; [YS], pp.
93-112). This method was also known by the mathematicians of Islam, who extended it to the case of
extraction of square roots of fractions, isolated or joined to units (see [Sai], pp. 76-81). Perhaps the
mathematicians of Islam were the ones who made it known in Europe through Spain.

Although for many years the ancient Chinese method for computing square roots was taught in
elementary education, only heuristic explanations have been given to justify why it works (see [Wik]).
With this method the square root of m = 3589769.743 is computed as shown in Figure 1:

  3589769.7430  1894.66 

 -1                       28 

   258                  369         

  -224                  3784 

     3497              37886 

    -3321              378926 

       17669  

      -15136     

         253374 

        -227316 

           2605830 

          -2273556 

             332274 

Figure 1: Square root of 3589769.743.

Thus the square root of m, with an error less than 10−2, is 1894.66. In order to increase the precision
we simply add pairs of zeros to the right of the decimal part as many times as necessary, and continue
to apply the method.

In this paper an algebraic proof is given of why the method works. This algebraic proof is not given
in the mainstream literature on this subject. As a consequence, it is proved that if the square root is
computed with n decimal places, n ≥ 0, then the error committed is less than 10−n, from which it is
possible to show that all the digits of the computed root match with the corresponding ones of the true
root. Thus, given the positive rational number m, written in positional notation, with a finite number
of decimal places, with this method what is being done is to determine the greatest rational q with n
decimal places such that q2 ≤ m.

Additionally, from the given proof it is seen that the method is applied in the same way independently
of the number base that is used.

It is also shown how this method and its proof are generalized for the cases of cube roots, fourth
roots, etc., although from the cube root the number of arithmetic operations that must be carried out to
apply it begins to grow considerably, such that it becomes impractical.

Finally, it is also shown how this method and its proof are generalized for the cases of cube roots,
fourth roots, etc., although from the cube root the number of arithmetic operations that must be carried
out to apply it begins to grow considerably, such that it becomes impractical.

1 Justification of the method

1.1 Notation

(a) If u and v are real numbers, the multiplication of u and v will be denoted by uxv, (u)(v), u(v) o
(u)v.
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(b) If m is a positive rational such that

m = m1x10k−1 + ... + mk−1x10 + mk + mk+1x10−1 + ... + mk+sx10−s,

where m1,m2, ...,mk+s are no negative integers such that 1 ≤ m1 ≤ 9 and 0 ≤ mi ≤ 9, i =
2, 3, ..., k + s, m will be denoted by m = m1m2...mk.mk+1...mk+s. For example,

9076.023 = 9x103 + 0x102 + 7x10 + 6 + 0x10−1 + 2x10−2 + 3x10−3.

Here m1 = 9,m2 = 0,m3 = 7,m4 = 6,m5 = 0,m6 = 2 and m7 = 3.

(c) For subscripts and exponents, multiplication will be denoted in the usual way.

1.2 Heuristic justification

The following developments provide an intuitive justification of the method (see, for example, Joseph
2011, pp. 219-223). The appearing integers m are such that 0 < m1 ≤ 9 and 0 ≤ mi ≤ 9, i = 2, 3, 4.

(10xm1 + m2)2 = 102xm2
1 + 2x10xm1xm2 + m2

2

= 102xm2
1 + (2x10xm1 + m2)m2,

(102xm1 + 10xm2 + m3)2 = (10(10xm1 + m2) + m3)
2

= 102
(
102xm2

1 + (2x10xm1 + m2)m2

)
+2x10(10xm1 + m2)m3 + m2

3

= 104xm2
1 + 102 ((2x10xm1 + m2)m2)

+2x10(m1m2)m3 + m2
3

= 104xm2
1 + 102 ((2x10xm1 + m2)m2)

+ (2x10(m1m2) + m3)m3.

In the same way it is found that

(103xm1 + 102xm2 + 10xm3 + m4)2 = 106xm2
1 + 104(2x10xm1 + m2)m2

+102 (2x10(m1m2) + m3)m3

+ (2x10(m1m2m3) + m4)m4.

It is seen that the square of any positive integer greater or equal to 10 can be written according to
the previous scheme, which gives a justification of the method. Although this justification is for positive
integers having exacts square root, when applied to any positive integer m the largest q positive integer
is obtained such that q2 ≤ m.

1.3 Formal justification

(a) Consider first the case of computing the square root of a positive integer of the form m1m2...m2k,
where 1 ≤ m1 ≤ 9 and 0 ≤ mi ≤ 9, i = 2, 3, ..., 2k. Let q1 be the largest integer n such that
n2 ≤ m1m2. Then 0 < q1 < 10 because 0 < m1m2 < 100. Let

r1 = m1m2 − q21

and

q2 = max{n ∈ Z | (2xq1x10 + n)n ≤ r1m3m4},

where max denotes the maximum, Z denotes the set of integers and r1m3m4 is the integer that is
formed putting m3 y m4, in that order, to the right of the digits of r1. The following facts are true:
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(i) (q1x10 + q2)2 ≤ m1m2m3m4, because

(2xq1x10 + q2)q2 ≤ r1m3m4

= r1x102 + m3m4

= (m1m2 − q21)x102 + m3m4

= m1m2m3m4 − q21x102.

(ii) q2 < 10, because if q2 ≥ 10, then

q1q2 = q1x10 + q2 ≥ q1x10 + 10 = 10(q1 + 1),

therefore
102(q1 + 1)2 ≤ (q1x10 + q2)2 ≤ m1m2m3m4,

hence
(q1 + 1)2 ≤ m1m2.m3m4,

but (q1 + 1)2 is an integer and 0 ≤ 0.m3m4 < 1, from which it follows that

(q1 + 1)2 ≤ m1m2,

which contradicts the choice of q1.

(iii) q1q2 = 10xq1 + q2 it is the largest integer such that (q1q2)2 ≤ m1m2m3m4, because if (10xq1 +
q2 + 1)2 ≤ m1m2m3m4, then

(10xq1 + q2 + 1)2 = 102xq21 + 2x10xq1(q2 + 1) + (q2 + 1)2,

so

2x10xq1(q2 + 1) + (q2 + 1)2 ≤ m1m2m3m4 − q21x102

= m1m2x102 + m3m4 − q21x102

= (m1m2 − q21)102 + m3m4

= r1x102 + m3m4

= r1m3m4,

that is to say,
(2x10xq1 + (q2 + 1)) (q2 + 1) ≤ r1m3m4,

which contradicts the choice of q2.

Now, let

r2 = r1m3m4 − (2x10xq1 + q2)q2

= r1x102 + m3m4 − 2x10xq1xq2 − q22

= (m1m2 − q21)102 + m3m4 − 2x10xq1q2 − q21

= m1m2m3m4 − (10xq1 + q2)2

= m1m2m3m4 − (q1q2)2

and
q3 = max{n ∈ Z | (2(q1q2)10 + n)n ≤ r2m5m6}.

For q3 are obtained similar facts to those who were in (i), (ii) and (iii) for q2. Continue in this
way until finally get qk, where the qi are such that 0 < q1 < 10, 0 ≤ qi < 10, for i = 2, 3, ...k, and
q1q2...qi is the biggest integer such that

(q1q2...qi)
2 ≤ m1m2...m2i−1m2i.

(b) To compute the square root of m1m2...m2km2k+1 it proceeds analogously, but starting with m1,
then it continues with m2 and m3, and so until finish with m2k and m2k+1.
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(c) In order to compute the square root of m = m1m2...m2k.d1d2...d2s, where the integers mi and
dj are such that 0 < m1 ≤ 9, 0 ≤ mi ≤ 9, for i = 2, ...2k and 0 ≤ dj ≤ 9, for j = 1, ..., 2s, let
q = q1...qkqk+1...qk+s be the square root of mx102s computed by the ancient Chinese method. Then

q2 ≤ mx102s < (q + 1)2,

from where
qx10−s ≤

√
m < qx10−s + 10−s,

such that
0 ≤
√
m− qx10−s < 10−s.

So,
qx10−s = q1q2...qk.qk+1...qk+s

is the square root of m with an error less than 10−s.

Remark 1.1. As a result of what has been shown, the following facts are true when the square root is
computed by the ancient Chinese method.

1. If the square root with n decimal places is computed, the committed error is less than 10−n.

2. Although it is tedious to do so, it can be shown that every one digit computed of the square root
match with the corresponding of the exact square root.

3. The method is applied in the same way when other number base is used.

2 Generalization of the method

In this section is shown how to generalize the method only for the case of the cube root (see [Jos], pp.
224-227), from which it is clear how to generalize it to higher-order roots.

Let m1,m2 and m3 be non negative integers such that 1 ≤ m1 ≤ 9 and 0 ≤ m2,m3 ≤ 9. Then

(10xm1 + m2)3 = 103xm3
1 + (3x102xm2

1 + 3x10xm1xm2 + m2
2)m2,

(m1m2m3)3 = (102xm1 + 10xm2 + m3)3

= (10(10xm1 + m2) + m3)
3

= 106xm3
1 + 103(3x102xm2

1 + 3x10xm1xm2 + m2
2)m2

+3x102(10xm1 + m2)2m3 + 3x10(10xm1 + m2)m2
3 + m3

3

= 106xm3
1 + 103(3x102xm2

1 + 3x10xm1xm2 + m2
2)m2

+
(
3x102(m1m2)2 + 3x10(m1m2)m3 + m2

3

)
m3.

It is seen that the cube of any positive integer greater or equal to 10 can be written following the pre-
vious scheme, and gives the algorithm to compute the cube root of a positive integer m = m1m2m3...m3k:

1. Separate digits of m in threes, from right to left.

2. Let q1 be the largest integer n such that n3 ≤ m1m2m3.

3. If q1, q2, ..., qs, s < k, are digits already computed of the cube root, let q = q1q2...qs and rs =
m1m2m3...m3s−2m3s−1m3s − q3. Then the next digit of the cube root, qs+1, is

qs+1 = max{n ∈ Z | (3x102xq2 + 3x10xqxn + n2)n

≤ rsm3s+1m3s+2m3(s+1)}.

4. Continue until s = k or compute the cube root with the wanted number of decimal places.

The formal justification of the method to compute cube roots is similar to that given to compute
square roots. Also are obtained the same facts seen in the remark 1.1.
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3 Examples

3.1 Example 1

Through the algorithm described above, the cube root of 47698.75987 is computed:

(a) Digits are separated into three from the decimal point, rightward and leftward, so that the separation
is as 47,698.759,870. Here m1 = 4,m2 = 7,m3 = 6,m4 = 9,m5 = 8,m6 = 7,m7 = 5,m8 = 9,m9 =
8,m10 = 7 and m11 = 0

(b) The largest integer n such that n3 ≤ 47 is 3, so that q1 = 3 and r1 = 47− 27 = 20.

(c) r1m3m4m5 = 20698,

6 = max{n ∈ Z | (3x102x32 + 3x10x3xn + n2)n ≤ 20698},

which means q2 = 6, and

r2 = 20698− (3x32x102 + 3x3x10x6 + 62)6 = 20698− 3276x6 = 1042.

(d) r2m6m7m8 = 1042759,

2 = max{n ∈ Z | (3x102x(36)2 + 3x10x36xn + n2)n ≤ 1042759},

that is q3 = 2, and

r3 = 1042759−
(
3x(36)2x102 + 3x36x10x2 + 22

)
2

= 1042759− 390964x2

= 260831.

(e) r3m9m10m11 = 260831870,

6 = max{n ∈ Z | (3x102x(362)2 + 3x10x362xn + n2)n ≤ 260831870},

that is q4 = 6, and

r4 = 260831870−
(
3x(362)2x102 + 3x362x10x6 + 62

)
6

= 260831870− 39378396x6

= 24561494.

Thus, the cube root of 47698.75987 is (q1q2q3q4)x10−2 = 36.26 with an error less than 10−2.

The previous procedure is shown in Figure 2.
 

 

                                                      3  47698.75987   36.26 

                                                       - 27                    3276 

                                                         20698              390964 

                                                       - 19656              39378396               

                                                           1042759        

                                                         -   781928 

                                                             260831870   

                                                          -  236270376    

                                                               24561494 

           

           
Figure 2: Cube root of 47698.75987.
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  2                          1.414213 

 -1                          24 

   100                     281    

  - 96                      2824 

400                 28282 

      -281                 282841 

       11900             2828423 

      -11296 

           60400     

          -56564 

             383600 

            -282841 

             10075900 

            -  8485269 

               1590631 

Figure 3: Square root of 2 in decimal system.

3.2 Example 2

In this example the square root of 2 is computed in the decimal, binary and quaternary number systems.

(a) Decimal system: From Figure 3 it is seen that the square root of 2 with six decimal places is
1.414213, with an error less than 10−6.

(b) Binary system: Figure 4 shows the procedure for computing the square root of 2 with thirteen
“binary places”. With an error less than 10−1101, the square root of 2 in the binary system is
1.0110101000001. So, in decimal system the square root of 2 is

1 +
1

22
+

1

23
+

1

25
+

1

27
+

1

213
= 1.41418457,

with an error less than 2−13 = 0.00012207.

(c) Quaternary system: From Figure 5 it is seen that with seven “quaternary places” the square root
of 2 is 1.1222002, with an error less than 10−13. Then, in decimal system the square root of 2 is

1 +
1

4
+

2

42
+

2

43
+

2

44
+

2

47
= 1.41418457,

with an error less than 4−7 = 0.0000610352.

3.3 Example 3

In this example the cube root of 2 is computed, also in the decimal, binary and quaternary systems.

(a) Decimal system: Figure 6 shows that the cube root of 2, with four decimal places, is 1.2599. The
error is less than 10−4 = 0.0001.

(b) Binary system: Figure 7 shows that the cube root of 2 with seven “binary places” is 1.0100001,
with an error less than 10−111. In decimal system the cube root of 2 is

1 +
1

22
+

1

27
= 1.2599,

with an error less than 2−7 = 0.0078125.
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10                                                          1.0110101000001 

 -  1                                                         100 

     100                                                    1001 

   -     0                                                    10101  

     10000                                                101100 

    -  1001                                                1011001 

      0011100                                           10110100 

    -     10101                                           101101001 

        00011100                                       1011010100 

      -               0                                       10110101000  

              1110000                                   101101010000 

           -  1011001                                   1011010100000          

              001011100                               10110101000000   

           -                  0                               101101010000001  

                  101110000                                 

                - 101101001 

                   00000011100 

                 -                     0                        

                               1110000 

                             -             0 

                               111000000    

                             -                 0 

                               11100000000 

                             -                     0 

                               1110000000000   

                             -                        0 

                               111000000000000 

                             - 101101010000001 

                               001010101111111                                

Figure 4: Square root of 2 in binary system.

    2                                   1.1222002 

 - 1                                  21                        

    100                             222                       

  -   21                             2302                       

    01300                         23102                        

   -  1110                         231100                        

      013000                     2311000                       

    -   11210                     23110002                       

         0113000                                        

      -    112210                                        

            00013000                                    

         -                0                                             

                  1300000                                  

               -              0                                

                  130000000                                 

                - 112220010 

                   011113330 

   

                                
Figure 5: Square root of 2 in quaternary system.
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3   2                                   1.2599 

  - 1                                  364                        

    1000                            45025                       

  -   728                            4721331                     

    0272000                      475864311                    

  -  225125                       47621196244                  

      046875000                                     

    -   42491979                                             

         04383021000                                       

      -    4282778799                                        

           0100242201000                                    

         -     95242392488                                             

                 4999808512                             

          

 

   

                                

Figure 6: Cube root of 2 in decimal system.

3   10                                               1.0100001 

  -  1                                               1100             

    1000                                          111101                       

  -       0                                          100101100                     

     1000000                                   10010110000                    

  -    111101                                   1001011000000                 

     0000011000                             100101100000000 

    -                  0                             10010110111100001 

                11000000                                       

              -               0                                       

                 11000000000                                    

              -                      0                                           

                 11000000000000 

              -                            0                          

                 11000000000000000 

               - 10010110111100001 

                 00101001000011111 

                                
Figure 7: Cube root of 2 in binary system.

3   2                                    1.10022 

 -  1                                   331         

    1000                             102300                       

  -   331                             10230000                     

    0003000                       1023202010                    

  -             0                       103001023310                 

           3000000                              

        -              0                              

            3000000000                                       

          - 2113010020                                       

             0220323320000                                    

           -  212002103220                                           

               002321210120 

             

                                
Figure 8: Cube root of 2 in quaternary system.
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(c) Quaternary system: From Figure 8 we have that with five “quaternary places” the cube root of 2
is 1.10022, with an error less than 10−11. Therefore, in decimal system the cube root of 2 is

1 +
1

4
+

2

44
+

2

45
= 1.25976563,

with an error less than 4−5 = 0.00097656.

Remark 3.1. From examples 3 (b) and 3 (c), the cube root of 2 with nine ”binary places” is 1.010000101
in binary system, with an error of less than 10−1001. Hence, in decimal system the cube root of 2 is

1 +
1

22
+

1

27
+

1

29
= 1.25976563.

Remark 3.2. From the examples 2 (b), 2 (c), 3 (b) and 3 (c) an interesting relation between the binary
and quaternary number systems is observed. That is, we can see how we can pass from the binary system
to the quaternary system and, reciprocally, from the quaternary system to the binary system.

4 Conclusions

When the square root is computed by the ancient Chinese method we have the following advantages:

1. Every one digit computed of the square root match with the corresponding of the exact square root.

2. If the square root with n decimal places is computed, then the error committed is less than 10−n.

3. The procedure is applied in the same manner, regardless of the number base used.

However, although the method can be generalized to compute roots of order n greater than two, the
procedure is impractical to implement because it is based on the expansion of a binomial power of order
n, (a + b)n.

Acknowledgment. This research has been supported by CONACYT (National Council for Science and
Technology, Mexico).
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