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Presentation outline:

A) Preface

• Quick introduction to graph theory

• What is a Hamilton cycle?

- Maximum uniquely Hamiltonian Graphs

B) A look at Maximum uniquely Hamiltonian graphs

• Verifying Hamiltonicity in Polynomial time

C) Extending the maximum uniquely Hamiltonian graph

• Adding cycles to a max unique Ham graph

• Proof of maximal edge case for 2-unique Hamiltonian

graphs



Preface:

1) Graph theory developed by Leonhard Euler (1707 – 1783)
- Konigsberg bridge problem (represented Konigsberg as a graph) (1736)
- Simple representation of groups of objects sharing some relationship
- Found that counting node degrees (number of edges incident on a node) determines the existence

of an Euler tour.

Travelling Salesman Problem (1930)
- Euler circuits are not efficient for a travelling salesman



1) Introducing Hamilton cycles​
- Touch every node just once and return to the node from which you started.
- Analogous to Euler circuits, but concerned with nodes instead of edges.

2) Unfortunately for our salesman, Hamilton cycles are very hard to find​
- NP-complete problem​
- Arbitrary graphs hard to solve
- Easier for graphs with fewer cycles?

3) Maximum uniquely Hamiltonian graphs​
- As many edges as we can fit into a graph and maintaining a single Hamilton cycle.​



A look at maximum uniquely Hamiltonian graphs (MUHG's)

1) Sheehan , Entringer, and Barefoot's work
- Sheehan identified maximal edge case for graphs with a single cycle (1977)
- Entringer and Barefoot discovered family of MUHG's of size 2([n/2] - 4) (1981)
- The configuration of these graphs permits a polynomial computational solving-time

2) AAAlgorithm (AAAlg):

while (any_deg > 2){

find(maxDegreeNode);

if (maxDegreeNode isAdjacentTo 2 Deg2Nodes){

delete(all_other_edges);

update(degree_values);

} end if;

} end loop;



Proof of correctness by induction:

Take the 7-node base case graph from the previous slide, we've seen that our algorithm works for this graph. 
It works similarly for the 8-node base case.

Now consider the n-2 case for graph G of order n > 8:
Step 1: Locate global max degree node

Step 2: remove all edges not connecting degree 2 nodes

Step 3: Retract edges connecting previous global max node and nodes of degree 2.

We have reduced our graph to the (n-2) MUHG, and the proof is complete.



Extending the MUHG:

What about other graphs with few Hamilton cycles?
- Can we modify the MUHG to obtain a graph 

with 2 cycles?

Adding edge A (carefully) adds an additional 
cycle to our graph:

Actually: the new number of edges, N + 1, is extremal for 2 cycles
where N is the number of edges in a MUHG: N = ([n2/4] + 1).

Proof for lower bound: 
Take a look at the MUHG of size n = 8.

Now notice we can add one particular edge (edge A) to an extremal
G1 graph to produce a graph with exactly 2 Ham cycles.

Therefore: Max( E(G2) ) ≥ N + 1



Proof for upper bound:
Take the graph G2 with exactly 2 Ham cycles H1 & H2.
Remove an edge e from G2 that's in H1 but not H2

We get: E(G2) ≤ N + 1.

We've proved both the upper bound: E(G2) ≤ N + 1, 
as well as the lower bound: Max( E(G2) ) ≥ N + 1.
Therefore E(G2) = N + 1 and our proof is complete.

An interesting discovery for graphs containing 2 cycles:
- Configuration for the n case carries up to n + 2 case!
- This fact lends these graphs to a polynomial time 

algorithm. But we won't cover that today.

H1 uses the red edges

G2 : Blue and Red edges 
introduce 2 cycles.

H2 follows grey dotted line 
using blue edges.
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