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Abstract. Biological sequence comparison programs have revolutionized the 
practice of biochemistry, and molecular and evolutionary biology. Pairwise 
comparison of genomic sequences is a popular method of choice for analyzing 
genetic sequence data. However the quality of results from most sequence 
comparison methods are significantly affected by small perturbations in the 
data and furthermore, there is a dearth of computational tools to compare 
sequences beyond a certain length. In this paper, we describe a parallel 
algorithm for comparing genetic sequences using an alignment free-method 
based on computing the Longest Common Subsequence (LCS) between 
genetic sequences. We validate the quality of our results by comparing the 
phylogenetic tress obtained from ClustalW and LCS. We also show through  
complexity analysis of the isoefficiency and by empirical measurement of the 
running time that our algorithm is very scalable. 

1.  Introduction 
A fundamental operation in bioinformatics involves the comparison of genetic (DNA) sequences.  
Similarity between genetic sequences is a strong indicator of evolutionarily preserved characteristics. 
This property has been successfully used in determining pathologically important bacteria, viruses and 
fungi [1-3]. 

Among the many sequence comparison tools for mining genetic information, one extremely 
common technique includes the alignment-based methods.  These involve aligning the entire (global 
alignment, Needleman-Wunsch[4]) or smaller sections (local alignment, Smith-Waterman [5]) of the 
genetic sequences. The choice of global or local alignment is based on the type of analysis desired. 
However, both these methods are heavily dependent on the quality of sequence data. Even slight 
discrepancies resulting from experimental or technical limitations, can significantly affect the 
comparison results.   

Although the fine granularity of comparative analysis is desirable when analyzing specific 
biological properties such as the single nucleotide polymorphism (SNP), alternative approaches of 
sequence analysis are becoming increasingly important in dealing with the exponential growth of 
genetic sequence data, and the classification and the grouping of organisms based on these sequences. 
Such alternative approaches include the alignment-free methods, which match the relative (as opposed 
to the exact) order of the base pairs in the sequence [6-9]. 

Advancements in sequencing technology have provided a deluge of genetic data. The Genbank, a 
public repository of genetic sequence data, reported 120604423 sequence records in its 178th release 
in June 15, 2010. Analyzing such large datasets, including the 3 billion bases of the human reference 
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genome, on uniprocessor machines is an extremely time consuming process. It is imperative therefore, 
to harness the power of high performance computing to facilitate our understanding of this high 
throughput data. 

In this paper, we present an efficient parallel non-alignment method for sequence comparison, 
based on finding the longest common subsequence (LCS), across genetic sequences.  Our preliminary 
results demonstrate that this technique can be used to identify “signature-sequences” across multiple 
strains within different species of mycobacterium.  

2.  Sequence Comparison Using LCS 
The longest common subsequence algorithm finds the longest subsequence between two strings. In 
contrast to the substring, the subsequence denotes a series of letters from the string which while being 
in order, need not be consecutive. For example, between ATCG and CTCAG, the longest common 
substring is TC, while the longest common subsequence is TCG.  

LCS can help identify the key nucleotides across genetic sequences and is considerably less 
affected by the occasional sequencing error. This method is also useful for identifying potential 
regions of small mutations by analyzing the portions of the string not present in the LCS. 

2.1.  Computing the LCS  
Our algorithm for computing LCS is inspired by the FAST_LCS method described in [10]. The 
algorithm involves creating position pairs of identical letters in the sequence and combining them to 
potential LCS strings as long as their relative order is maintained across the pairs.  Given two position 
pairs (i,j) and (l,m), the corresponding letters would be a potential candidate for LCS only if i<l and 
j<m. 

 
In the sequences given above; the position pairs are; A:(0,3); C:(2,0) and (2,2); T:(1,1) and G: 

(3,4).  Some strings preserving the relative order are: (i) AG :(0,3)->(3,4); (ii) TG: (1,1)->(3,4); and 
(iii) TCG: (1,1)->(2,2)->(3,4) 

0,32,0

2,2

1,1

3,4

A T C G
0 1  2 3

C T C A G
0  1 2  3 4

AT

C

G

C 0,32,0

2,2

1,1

3,4

0,32,02,0

2,22,2

1,11,1

3,43,4

A T C G
0 1  2 3

C T C A G
0  1 2  3 4

AT

C

G

C

 
Figure 1.  An example of computing LCS using position pairs. The position pairs of the two 
strings ATCG and CTCAG are represented as vertices of the graph. An edge connects vertex 
(i,j) to (l,k) if (i<l) and (j<k). The diameter of the tree gives the longest common subsequence. 
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The algorithm consists of obtaining these position pairs and then creating a tree where the vertices 
represent the position pairs and the edges, their order in the subsequences. The diameter of the tree 
provides the LCS, as shown in the Figure1.  

In order to improve the time to traverse the tree, [10] suggested pruning techniques, whereby some 
vertices can be deleted from their original positions and later added at a new position. This helps 
remove redundant edges that do not contribute to the LCS. For example though both TG and TCG are 
subsequences, the vertex representing the position pair of G can be later reconnected to the position 
pair of C, instead of being connected to T. 

However, pruning is a computationally expensive algorithm since (i) it does not eliminate the 
initial redundant additions, (ii) deletion of edges requires more operations than additions and (iii) 
identifying the position of the redundant vertices requires periodic tree traversals.  

To avoid these excess operations, we order the pairs such that a vertex appearing later in a string is 
not visited earlier. In the above example the ordered position pairs will be A:(0,3), T:(1,1), C:(2,0), 
C:(2,2), and G:(3,4). Therefore, TG will not be connected before TC. Furthermore, we ensure that a 
new letter is connected only to the longest candidate string, thereby reducing the number of edges to 
traverse. 

Let the length of a string with L different symbols be given by; 
  

M = im
i=1:L
∑

, 

where  im  is the number of occurrences of the symbol i.  The complexity of computing LCS, for 
two strings of length  

 
M = im

i=1:l
∑

 
and  

N = in
i=1:L
∑

 , 
is proportional to the number of  vertices and is given by 
 

O( ( im
i=1:L
∑ × in )

. 

2.2.  Parallel Implementation of LCS  
One of the simplest methods to utilize multiple processors for sequence comparison is to execute 
different sets of comparisons in each processor in parallel. Though such embarrassingly parallel 
algorithm, as described in [10] can improve the performance, the method is not very scalable. That is, 
the effectiveness of the parallel algorithm is dependent on having a large number of sequence 
comparisons rather than being adaptable as the number of comparisons and processors change. 
Furthermore, the lengths of the sequences to be compared are limited by the memory in one processor. 

We present a domain decomposition based parallel algorithm, which divides each sequence across 
the processors and performs per sequence comparison in parallel co-ordination. The algorithm, 
outlined in Figure 2, is as follow; Each sequence is divided across P processors.  Then the partial LCS 
between the sequences in each processor is computed in parallel (Step 1 of Figure 2).  Once this is 
completed, we compute the “unused” portions, which are portions of the sequences before (after) the 
first (last) positions included in the LCS.  These areas are marked as grey in Figure 2.    

These “unused” portions can potentially contain parts of the LCS that fall across processors. 
Therefore the appropriate unused portions are exchanged between processors that contain consecutive 
portions of the sequences. The pattern of exchange between two processors is given in Step 2 of 
Figure 2. Note that for each sequence comparison a processor communicates with at most two other 
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processors, therefore the communication pattern is scalable and independent of the total number of 
processors used. 

After the exchange, the LCS of the appropriate unused sequences are computed, Step 3 of Figure 2 
and then finally the partial LCS portions are combined using a reduction operation. Based on the 
partial sequences that are compared, several overlapping LCS can be observed. We combine these 
portions to find the non-overlapping LCS strings of maximum length (Step 4 of Figure 2). 

2.3.  Complexity of the Parallel Algorithm 
 
Given two sequences with L symbols of length 

M = mi
i=1:L
∑

   
and  

N = ni
i=1:L
∑

, 
the complexity of the sequential algorithm is  

O mi × ni( )
i=1:L
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
. 

In the parallel version each sequence is divided across P processors. Therefore the length of the 
sequences in each processor is approximately M/P and N/P.  Based on this partition, the time to 
compute the partial LCS in each processor is 

O (mi /P) × (ni /P)( )
i=1:L
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

. 
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Figure 2.  A Schematic Diagram of the Parallel LCS Algorithm 
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 We assume that the unused portions form approximately x% of the total length of the strings.  The 
communication per processor is therefore for the exchange step,  

O x
100

(mi + ni)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
 

and for the combination step, 
O log P( ).  

 
The total communication volume across all processors, when x represents a very small percentage, is 
therefore 

O Px
100

(m i + n i ) + P log P
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≈ O ( P log P )

. 
Without loss of generality, we assume that M> N. Therefore the maximum execution time of the 
sequential algorithm is  O(M 2)and the maximum memory required to store the sequences is O(2M). 
Therefore the memory required per processor to maintain isoefficiency should be at least 

O( P ×1/2(log P) /P) = O log P / P( ). 

Therefore the scalability of the algorithm is 
O logP / P( ). 

Thus our parallel implementation is highly scalable.  

3.  Experimental Results 
We conducted two sets of experiments. In the first experiments we focused on clustering different 
species of mycobacteria based on their genetic sequences and using multiple sequence alignment. The 
results showed that LCS clustering (sequential) indeed mimics the clustering obtained by multiple 
sequence alignment. In our second set of experiments we applied the parallel LCS algorithm to 
compare long sequences of Mycobacterium tuberculosis genome and compared the execution and 
change in results as more processors were used. 

 
 

 
Figure 3a. Clustering of sequences using multiple sequence alignment. The different 
colors indicate the different species of mycobacterium 
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3.1.  Comparison of LCS and MSA Clustering  
In our first set of experiments we computed the LCS of a portion of the genomic sequences (average 
length 200 base pairs) of five species of Mycobacterium on a sequential program.  We observed that 
the number of distinct LCS produced per sequence pair is proportional to their variance in their base 
pair composition.   It is observed that the sequence with low variance in composition (avium, kansasii, 
gordone) show a single LCS while divergent sequences (fortuitum, intercellulare) show multiple-LCS 
fragments. 

We compared the phylogenetic clustering of the Mycobacterium using only the LCS sequence 
(Figure 3b) from each group of species with that obtained through multiple sequence alignment 
(MSA), using ClustalW[11] (Figure 3a) of all sequences across all the species. Our results indicate 
that the LCS clustering follows the MSA clustering very closely.  

 
 

Table 1. The length of the LCS (over 16 to 128) for pairwise comparison of Genome Sequences 
from Mycobacterium tuberculosis. 

Processors LCS of 
Sequence 1 
Sequence 2 

LCS of 
Sequence 1 
Sequence 3 

LCS of 
Sequence 1 
Sequence 4 

LCS of 
Sequence 2 
Sequence 3 

LCS of 
Sequence 2 
Sequence 4 

LCS of 
Sequence 3 
Sequence 4 

16 1161 1118 926 1161 850 833 

32 1128 1100 914 1087 843 830 

64 1103 1098 914 1025 846 817 

128 1111 1105 971 1008 894 857 

 
Figure 3b.  Clustering of sequences using longest common subsequences across 
species. The different colors indicate the different species of mycobacterium. The 
species intercellulare and fouruitum have multiple LCS due to internal mutations. 
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3.2.  Parallel Implementation of LCS 
We implemented LCS based on the parallel algorithm sketched in Figure 2. Our parallel experiments 
were conducted on the Firefly a 1,151 node linux cluster with distributed memory architecture 
connected through inifiniband [12]. We used MPI to implement the parallel program. 

We performed a pairwise comparison over portions of four  genome sequences of  Mycobacterium 
tubercolosis, with an average length of 4000 base pairs. The genome sequences used for this study 
were from  Mycobacterium_tuberculosis_CDC1551, Mycobacterium_tuberculosis_F11, 
Mycobacterium_tuberculosis_H37Ra and Mycobacterium_tuberculosis_H37Rv. 

Each pair of sequences (total six pairs) was divided into a set of processors ranging from 16 to 128. In 
the first step we compared portions of the sequence that were allocated to the same processor (Step 1 
in Figure 2).  During Step 2 we observed that the LCS for the 16 and 32 processors started from at 
most the third position in the partial sequences, that is we miss only 3-4 base pairs from the left end of 
each sequence due to the domain decomposition. This indicates that there are only miniscule unused 
portions in each string that have not been compared. The total fraction of base pairs not computed by 
forgoing the exchange step per processor is at most 4XP/4000=.001xP. Therefore for 16 and 32 
processors the maximum loss is at most 1.6% and 3.2% respectively. Given that this value is less than 
the percentage of errors in generating the genetic sequences [13], we decided that the comparison 
results would not be significantly affected by eliminating the exchange step. The cutoff portions were 
even smaller for the 64 and 128 processors (1-2 sequences from the left) resulting in similar 
percentage of potential errors. 

The total length of the LCS was obtained by adding the partial LCS (which are of course non-
overlapping) obtained from each processor.  Table 1 shows the length of the LCS across the six 
sequence pairs. Since we are not computing the LCS across processors (Step 2 in Figure 2) the values 
differ as the number of processors change. However note that there is only a slight variation in the 
values for each sequence pair, indicating that they can be reliably used for clustering. This is in 
accordance to the spirit of using alignment-free methods, where the focus is on obtaining the relative 
rather than the absolute values. 

These results lead us to conjecture that, if the unused regions are small, as in this case, we can 
obtain an accurate clustering of genome sequences by just obtaining this partial value of the LCS. 
Figure 4, gives the lower bound on the execution time of the parallel LCS. As can be seen from the 
results, the current version of the algorithm (implementing only Step 1) is highly scalable.  

Note that due to the availability of over a thousand nodes and the mutual independence between the 
LCS computations of any two pairs of sequences, we could potentially execute the parallel 

 

Figure  4. The execution time of parallel LCS algorithm as the number of processors are 
increased. 
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experiments for pair-wise comparison simultaneously. That is, when the LCS of one pair of sequences 
is being computed over n processors, the LCS of another pair can be computed at the same time over 
other n processors.  Thus, we are employing a two level parallelism. In the first level we use the 
embarrassingly parallel nature of pair wise comparison to allocate each pair over a group of 
processors. In the second level we use a more tightly coupled distributed memory paradigm to 
compute the actual LCS. 

4.  Conclusions 
We have developed a scalable parallel algorithm for computing LCS between strings.  Our results 
demonstrate that longest common subsequence can be used as an effective non-alignment based 
technique for genetic sequence comparisons.  Our parallel experiments show that LCS is indeed very 
scalable and can be used to long genomic sequences. In future, we intend to investigate between 
occurrences of multiple LCS across entire genome sequences of the same species and their relation to 
intra-species mutations. 
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