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ABSTRACT  

Predictive modeling can inform natural resource management by representing stressor-response 

pathways in a logical way and quantifying the effects on selected endpoints. This study 

demonstrates a risk assessment model using the Bayesian network-relative risk model (BN-

RRM) approach to predict water quality and; for the first time, eukaryote environmental DNA 

(eDNA) data as a measure of benthic community structure. Environmental DNA sampling is a 

technique for biodiversity measurements that involves extracting DNA from environmental 

samples, amplicon sequencing a targeted gene, in this case the 18s rDNA gene which targets 

eukaryotes, and matching the sequences to organisms. Using a network of probability 

distributions, the BN-RRM model predicts risk to water quality objectives and the relative 

richness of benthic taxa groups in the Noosa, Pine, and Logan estuaries in South East 

Queensland (SEQ), Australia. The model predicts Dissolved Oxygen more accurately than the 

Chlorophyll-a water quality endpoint, and photosynthesizing benthos more accurately than 

heterotrophs. Results of BN-RRM modeling given current inputs indicate that the water quality 

and benthic assemblages of the Noosa are relatively homogenous across all sub risk regions, and 

that the Noosa has a 73 – 92 percent probability of achieving water quality objectives, indicating 

a low relative risk. Conversely, the Middle Logan, Middle Pine, and Lower Pine regions are 

much less likely to meet objectives (15 – 55 percent probability), indicating a relatively higher 

risk to water quality in those regions. The benthic community richness patterns associated with 

risk in the Noosa are high Diatom relative richness and low Green Algae relative richness. The 

only benthic pattern consistently associated with the relatively higher risk to water quality is high 

richness of fungi species. The BN-RRM model provides a basis for future predictions and 

adaptive management at the direction of resource managers. 
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Key Points  

1. We demonstrated that it is possible to use case learning to build a Bayesian network 

using the Bayesian network relative risk model to predict the probability of meeting 

water quality objectives for estuarine regions.  

2. It is also possible to use the case learning to predict the patterns of occurrence of key 

eukaryotic taxonomic groups using environmental DNA (eDNA) as the identifier.  

3. Once the Bayesian network has been built and the predictions cross validated, it is 

possible to input the desired endpoint state and then calculate the required environmental 

conditions. 

4. New eDNA data combined with environmental monitoring datasets of sufficient size and 

quality can be used to predict the probability of the future structure of ecological 

communities. 
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Note to Readers: There are a number of tables and models called out in the text that can be 

found in the Supplemental Information. The Models are listed described in the text and represent 

each of the study areas. 1, Figures as Figure S1, and the Tables as Table S1, etc.  References only 

cited in the Supplemental Information section are listed separately from those in the body of the 

paper.  Examples of the Bayesian network models in NeticaTM have also been uploaded as part of 

the Supplemental Information, and notes on how to view them are included in the body of this 

text.  

 

Node Terminology:  The names of nodes are capitalized to differentiate them from the 

organisms or other variables.  For example; the node that represents the class of organisms 

collectively called fungi and represents the diversity of this community is “Fungi”.  Similarly, 

the node that represents the salinity of the surface water is Surface Water Salinity (ppt).  The 

nodes are broken down into two to five discrete states as described in the methods.   
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INTRODUCTION 

Scientists can contribute to natural resource management by developing predictive models 

and assessments that link climatic and anthropogenic stressors to environmental and biologic 

response. Once developed, the models can inform decision-making by estimating risk to valued 

endpoints and predicting the effects of management actions on valued ecological resources 

(Barton et al. 2012). A variety of new tools are available to build such models. 

Baird et al. (2016) called for the use of the information in large ecological datasets to derive 

patterns and build causal models to predict environmental effects and manage the environment.  

Ecological risk assessment, Bayesian networks (BNs) and other tools were recognized by van 

den Brink et al. (2016) as a means to achieve this goal. Recent advances in sequencing 

technology and bioinformatics provide an exciting opportunity to collect large datasets of benthic 

fauna that were previously limited by specialized taxonomy and statistical power (Chariton et al. 

2010; Creer et al. 2010; Baird and Hajibabaei 2012). A wide range of benthos are known to 

respond to environmental gradients and environmental DNA (eDNA) sampling can provide 

information for further understanding of taxa sensitivities to natural and anthropogenic stressors. 

For example, in estuaries the photosynthesizing protists are expected to increase as nutrient loads 

increase (Cloern 2001). Fungi and other organisms associated with the breakdown of organic 

matter are also expected to increase with nutrient loading and eutrophication, while oxygen-

consuming organisms like meiofauna are expected to decrease (Cloern 2001). Environmental 

DNA sampling can test these hypotheses in a quick and accurate fashion that assesses the entire 

benthic community, not just those organisms observable by traditional taxonomy (Chariton et al. 

2010; Creer et al. 2010; Baird and Hajibabaei 2012). Putting environmental DNA into context 
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with management goals and other more conventional information about the ecosystem is the goal 

of this project. 

 

Bayesian networks 

Bayesian networks are graphical models that use conditional probabilities to describe 

relationships between model variables (Marcot 2012; Norsys 2014). They are comprised of 

nodes and linkages, which represent the variables and cause-effect relationships respectively. 

Using prior knowledge and data, BNs can calculate the probability of a specific response 

occurring as well as the associated uncertainty. They are particularly useful for ecosystem scale 

modeling because they easily integrate many different types of information from different 

research efforts into a single integrated model (Varis et al. 1994; Borsuk et al. 2004). 

Bayesian networks are tools that are often used in ecological modeling and more recently in 

risk assessment to inform natural resource decision-making (Marcot et al. 2006; McCann et al. 

2006; Barton et al. 2012). Havron et al. (2017) demonstrates how BNs can be used in the 

determination and the portrayal of uncertainty in mapping marine habitat suitability.  The 

visualization of the probability of habitat suitability is presented as a series of maps particularly 

useful for a resource manager. 

 

Ecological Risk Assessment and the Relative Risk Model (RRM) 

Ecological risk assessment provides a useful conceptual framework to organize relationships 

between environmental variables in context of management goals. In a risk assessment, the 

management goals are used to define the endpoints and ultimately drive the assessment (Landis 



	 8 

and Wiegers 2005; Suter 2007) The size of the South East Queensland (SEQ) region warrants a 

framework that can incorporate multiple stressor interactions across habitats, space and time.  

The RRM has been used for 20 years for landscape scale risk assessments to quantify the 

relative risk for multiple endpoints across sub regions of a site (Wiegers et al. 1998; Landis and 

Wiegers 2005; Ayre and Landis 2012; Hines and Landis 2014; Herring et al. 2015). The RRM 

framework connects sources, stressors, habitats and impacts and emphasizes the importance of 

location (Landis and Wiegers 2005).  

Most recently, the RRM has been calculated using BNs because of the flexibility of the 

modeling approach, the probabilistic nature of the calculations, and the inherent representation of 

uncertainty (Ayre and Landis 2012). The combination of BNs and the RRM is referred to as a 

BN-RRM model. The BN-RRM has been used in variety of ecological contexts including to 

examine the risk of storm water runoff to Coho salmon in the Puget Sound (Hines and Landis 

2014), risk to nonindigenous species introduction to Padilla Bay, Washington (Herring et al. 

2015), and risk to ecological and human health at a legacy mercury site in the South River, 

Virginia (Landis et al. 2017, Johns et al. 2017). Landis et al. (2017a, 2017b), and Harris et al. 

(2017) have demonstrated the usefulness of the BN-RRM in describing the risks to ecosystem 

services and how these approaches apply to adaptive management. 

 

Environmental DNA (eDNA) 

Cordier et al. (2017) demonstrated how eDNA (metabarcoding) and supervised machine 

learning (SML) can be applied to evaluate the status of marine environments.  A key conclusion 

is that it is possible to use eDNA to evaluate species diversity in marine environments and to 

assess impacts.  They concluded that the combination of eDNA and SML can be equal to or even 
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surpass current methods that rely on typical taxonomic approaches to determine marine impacts. 

In our study machine learning and eDNA are integrated into ecological risk assessment using the 

Bayesian network derivative of the relative risk model.  

For the present study, 18S eukaryotic eDNA molecular taxonomy data were used to describe 

the benthic community endpoints. Researchers at the Commonwealth Scientific and Industrial 

Research Organization (CSIRO), Australia's national science agency, have been collecting and 

sequencing eDNA from estuarine sediments to assess changes to eukaryotic biotic communities 

(Chariton et al. 2010; Chariton et al. 2014; Chariton et al. 2015). This en mass sampling method 

allows for identification of thousands of unique sequences per sample, and those sequences can 

be matched to organisms via online databases. Benthic eukaryote eDNA data collected from 

SEQ estuarine sediments in 2010 and 2012 were used for this project. 

 

Introduction to the South East Queensland Study Sites 

Human populations in coastal areas are changing the water quality and biota of the world’s 

estuaries. In Australia, more than 81% of the 22 million people live within 50 km of the coast 

(ABS 2003), and the Australian Bureau of Statistics (2003) predicts that the coastal population 

will increase faster than other regions adding another 1 million people in the next 15 years. 

Intensive land use for development and associated stressors to water resources are also 

increasing in coastal areas. Southeast Queensland is Australia’s fastest growing region and the 

combination of heavy rainfall and intensive land uses causes increased loading of non-point 

source nutrients, organic matter, and suspended sediment to waterways (Ryan et al. 2003; Bunn 

et al. 2005; Moss et al. 2006). As a result, eutrophication symptoms of depressed oxygen levels 

and algal blooms are observed in estuaries (Bunn et al. 2005; EHMP 2007). Looking ahead, 
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models predict that the climate in SEQ is shifting towards higher temperatures and increased 

frequency of extreme wet and dry events (EHMP 2007; Smith et al. 2013). Climate change may 

reinforce eutrophication processes by increasing nutrient loading and temperatures (Moss 2011). 

Thus, given a growing population and a changing climate, using modeling tools like the BN-

RRM to predict the changes to estuarine water quality and biota provides valuable information 

for management of the region (Bunn et al. 2005; Moss et al. 2006).  

 

Study Objectives 

The objectives of this research were to: 

1) Develop an integrated ecological risk assessment model that predicts both water quality 

risk and benthic taxa (eDNA data) in SEQ estuaries;  

2) Compare the model predictions for water quality and benthic communities between 

estuaries and sub regions of the estuaries;  

3) Evaluate the relevance of incorporating eDNA into a risk assessment framework for the 

purposes of natural resource management.  

We used the BN-RRM approach to quantify the risk of meeting water quality objectives and to 

predict benthic communities for three estuaries in SEQ; the Noosa, the Pine, and the Logan.  

 

Summary of Findings 

We successfully applied the BN-RRM to an integrated assessment of water quality and 

benthic community structure in three estuaries of SEQ, Australia. Risk to achieving regional 

water quality objectives was calculated using site-specific monitoring data to quantify 

relationships between climate, land use, water quality, and benthic communities. To build the 
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model, we used a large monitoring dataset and machine learning algorithms within Netica 

(Norsys 2014), the Bayesian network (BN) software, to define conditional probabilities between 

variables in the model. Monitoring data included water quality, land use, rainfall and benthic 

environmental DNA (eDNA) data from sediments. The application of eDNA to risk assessment 

is largely unexplored; and this is the first attempt to synthesize DNA-derived measurements of 

biological composition into an ecological risk assessment framework. 

The three major findings of this work are: 

1) We demonstrated the use of the BN-RRM approach to develop models that describe the 

relationships between stressors, water quality, and benthic endpoints in SEQ estuaries. Case 

learning was used to parameterize relationships in the BN model between land use, water 

quality, and biota. The structure of the model can be used to test future land use management 

scenarios and to predict risk to additional endpoints in SEQ estuaries.  

2) Model results predict that the lower sub regions of the estuaries (nearest the mouth) are more 

likely to meet water quality objectives than the middle or upper sub regions of the estuaries. 

The BN-RRM predicted Dissolved oxygen (DO) saturations more accurately than 

Chlorophyll-a (Chl-a) concentrations. Photosynthesizing benthic taxa groups, like Diatoms 

and Green Algae, were predicted more accurately than non-photosynthesizing organisms like 

Fungi or Meiofauna. 

3) Environmental DNA data were incorporated into the BN-RRM risk assessment framework as 

the relative richness of six benthic taxa groups. This approach models the patterns of benthic 

fauna response to water quality stressors. Future work to determine management goals for 

benthic fauna and to incorporate other measures of community assemblage and function 

would enhance this assessment.   
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The BN-RRM models created for this study provide a basis for managers to understand current 

conditions, predict future states of endpoints, and ultimately use for decision-making. 

METHODS 

This section first provides a summary of the BN-RRM methodologies and then explains how 

they were applied to this risk assessment for SEQ estuaries. A detailed description of eDNA 

sampling, sequencing, and analysis of the eDNA data is provided the Supplemental Information 

Section 2. 

 

Description of the South East Queensland (SEQ) study sites 

The SEQ region centers around the Queensland state capital of Brisbane and Moreton Bay 

(Figure 1). The Noosa catchment forms the northern border, and the Queensland-New South 

Wales state border is to the south (Bunn et al. 2005). The waterways of the SEQ include 14 

major river catchments, which flow from west to east discharging into either Moreton Bay or the 

Pacific Ocean. 

 

Figure-1. Overview map of the Southeast Queensland region, study sites (Noosa, Pine and Logan 
catchments), and land use classifications.  

 

 

Moreton Bay is a large shallow embayment, separated from the ocean by sand islands, and it 

accumulates sediment, nutrients, and pollutants from the catchments that drain into it (Bunn et al. 

2005; SEQHWP 2007a). The bay is a designated marine park and includes a wetland of 

international significance under the Ramsar Convention for protection of wetland habitats and 

migratory birds (Abal et al. 2005). Compared with other large embayments around the world, 
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Moreton Bay is relatively quickly flushed (50-55 day residence time in the central bay), though 

in the southern and western zones, flushing times are longer (66-75 day residence time for the 

Logan River) (Dennison and Abal 1999; SEQHWP 2007a). 

The BN-RRM model in this study focuses on two classes of stressors to SEQ estuaries: 

climate and land use. These are two of the largest stressors influencing the environmental 

condition in SEQ estuaries. In terms of management changes, land use is the major factor that 

can be managed. 

Climate. The SEQ climate is subtropical with mild dry winters (June – August) and hot, 

humid, and rainy summers (December – February). Rainfall varies widely between the seasons 

and from year to year, with rainfall during dry years less than half that of wet years (SEQHWP 

2007a). In the summer and autumn months, heavy rainfalls result in high seasonal flows often 

with flooding in SEQ waterways. Future climate change projections predict that rainfall 

variability is likely to increase yet total rainfall is likely to decrease by 10 to 30 percent 

(SEQHWP 2007a).  

Record rainfall fell from December 2010 through January 2011 during a strong La Niña 

cycle, causing the second highest flooding in Brisbane and surrounding areas since the beginning 

of the 20th century (van den Honert and McAneney 2011). Rainfall in the 600 to 1,200 mm range 

was widespread along most of the Queensland coast (van den Honert and McAneney 2011). One 

of the impacts of this flooding event was a temporary increase in suspended sediment from 

erosion, which resulted in the extensive deposition of fine mud in Moreton Bay and the 

surrounding estuaries (O’Brien et al. 2012). 

Land use. The SEQ region supports a rapidly growing population of 2.7 million people who 

use the waterways for drinking water supply, commercial and recreational fisheries, and other 
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recreational activities (SEQHWP 2007a). Human activity since European settlement has 

significantly changed the landscape with only one quarter of the remnant vegetation remaining 

intact (Bunn et al. 2005).  

According to the Australian Land Use and Management Classification scheme, the SEQ 

region is predominately classified as production from relatively natural environments, which 

includes grazing (56%) and conservation land (16%) secondary land use types. Areas of 

production from relatively natural environments predominates in upper to mid catchment areas. 

In the lower catchment nearest the estuaries and coast, intensive uses (shown in red in Figure 1) 

predominate. Intensive land uses are known to highly inhibit natural processes, and are 

associated with complete or nearly complete removal of remnant vegetation (Queensland 

Goverment 2010). Examples include intensive horticulture, animal husbandry, industrial, 

residential and farm infrastructure, utilities, mining, and waste treatment and disposal (State of 

Queensland 2014). Since 1999, the intensive uses have increased by 9% as more land is being 

developed to meet the needs of a growing population (State of Queensland 2014). 

Run-off events from intensive land use areas tend to be larger in volume and carry with them 

larger amounts of non-point source pollutants including sediment, nitrogen and phosphorus 

(Cottingham et al. 2010). The estimated loadings of pollutants per unit area of urban land use 

significantly higher than from rural sources (twice as much for sediment and up to seven times as 

much for nitrogen) (Abal et al. 2005). Previous studies have used percent intensive land use as 

predictors of sediment and nutrient loading to waterways in a risk assessment context (Moss et 

al. 2006; Scheltinga and Moss 2007). Thus, we are also using percent intensive use in our model. 
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Management of SEQ waterways 

Management of the SEQ waterways is a joint effort between the Queensland Government, 

local governments, and the South-East Queensland Healthy Waterways Partnership (SEQHWP), 

a non-profit organization formed in the 1990s between government, industry, universities, and 

community stakeholders. The Healthy Waterways Partnership focuses on the conservation of the 

region’s water resources and is concerned with future water security (in terms of both quality and 

quantity) in the face of a changing climate and a growing population (Bunn et al. 2005). The 

partnership manages the Ecosystem Health Monitoring Program (EHMP), a comprehensive 

ambient monitoring program, on behalf of its member organizations. Through the EHMP, water 

quality and biologic monitoring data have been collected routinely from freshwater, estuarine 

and marine sites for the past 15 years. Using an index calculated with the EHMP data, the 

Healthy Waterways Partnership produces an annual report card for the freshwater and estuarine 

portions of each of the 14 SEQ catchments. The report card grades (A through F) are meant to 

communicate the current condition of each catchment and can be compared from year to year 

(Bunn et al. 2005).  

The three SEQ estuaries evaluated in this risk assessment, the Noosa, Pine and Logan 

(Figure 1), represent a range of land use impact, water quality, and morphology in the SEQ. We 

considered only the estuarine portion of each waterway, which extends from the marine limit 

(either Moreton Bay or the Pacific Ocean in SEQ) to the tidal limit in the rivers. Estuary 

boundaries, as well as the lower, middle and upper reaches with the estuaries, were delineated by 

the State of Queensland and made available via GIS shapefiles.  This research relies heavily on 

EHMP monitoring and spatial data provided by the State of Queensland. A brief summary of the 
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environmental conditions of each estuary is provided in Table 1 and a description of each estuary 

follows. 

 

Table 1. Environmental Description of each Estuary. 
 

 

Noosa. The Noosa catchment is located on the northern border of the SEQ region with 

headwaters and much of the upper catchment in the Great Sandy National Park (Figure S1). The 

catchment forms a coastal lagoon system of five lakes and discharges directly into the Pacific 

Ocean at Noosa Heads, which is a popular beach for surfing, fishing and tourism (Sunshine 

Coast Council and Queensland Government 2012). There are no point sources discharging 

directly to estuarine waters. The Healthy Waterways Partnership regularly gives the Noosa 

highest grades (Table 1) and considers the overall environmental condition of the Noosa 

excellent (SEQHWP 2015).  

Pine. While the Pine catchment is similar in overall area to the Noosa, the estuarine section is 

smaller than the Noosa (Table 1, Figure 1). The Pine includes two tributaries, the North and 

South Pine Rivers (Figure S2), which are located to the north of the city of Brisbane. Both rivers 

originate from undeveloped regions of protected forest land and flow east through rural 

residential areas before entering a highly urbanized area near the estuary mouth and discharging 

into Moreton Bay (SEQHWP 2015). The North Pine River has been dammed, forming Lake 

Samsonvale, which provides drinking water and is also a recreational resource (Pine Rivers 

Catchment Association Inc. 2002). The Murrumba Downs Sewage Treatment Plant (STP) 

discharges into the North Pine River approximately 10 km from the estuary mouth and has not 

been upgraded since 2000 when EHMP monitoring began. The estuary flows into Hayes Inlet 
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that contains mangrove and seagrass habitat that is important to recreational and commercial 

fisheries, as well as migrating birds. The Healthy Waterways Partnership gave the Pine a C grade 

in 2015, which is consistent with previous years, and considers the environmental conditions to 

be fair (SEQHWP 2015). 

Logan. The Logan is located just south of the city of Brisbane is the second largest catchment 

in the SEQ (Figure S3). The mouth of the Logan estuary lies at the southern end of the Moreton 

Bay, and is not as well flushed as the Noosa or Pine estuaries, which impacts nutrient levels and 

oxygen renewal in estuaries. The catchment supports a diverse array of land use including 

agriculture, grazing and dairying in the upper catchment and residential urban areas in the lower 

catchment along the estuary. In addition, several aquaculture facilities are located along the 

banks of the Lower Logan risk region near the mouth, and discharge periodically into the 

waterway (SEQHWP 2015). The Middle Logan risk region receives treated sewage and waste 

water directly from the Loganholme Wastewater Treatment Plant (last upgraded in 2014; located 

~17km from estuary mouth), and indirectly from the Beenleigh Water Reclamation Facility 

(~14km from estuary mouth), which discharges into the Albert River before it confluences with 

Logan. The Healthy Waterways Partnership gave the Logan a D grade in 2015, although 

historically scores an F, and considers the environmental conditions to be poor (SEQHWP 2015). 

 

Formulation of the BN-Relative Risk Model 

The RRM methodology described in Landis and Wiegers (2005) was used for selecting risk 

assessment endpoints and developing the conceptual model. Additional methods outlined in Ayre 

and Landis (2012) describe the use of BNs within the RRM framework for modeling and risk 

calculations. 



	 18 

The first step in the RRM is to solicit ecological values from stakeholders and collaboratively 

decide on endpoints for the risk assessment. The selected endpoints should have management 

goals associated with them so the risk assessor can develop the model as specifically as possible. 

Next, all possible stressors to the endpoints and the sources of those stressors are identified 

through further solicitation and research (Landis and Wiegers 2005). Ultimately, only the most 

important stressors and sources relating to the endpoint are retained for the risk assessment. The 

RRM uses a multiple stressor approach that considers both anthropogenic and 

natural/environmental stressors (Landis and Wiegers 2005). Location is very important to the 

assessment; stressors, habitats, and endpoints are mapped as information is gathered about the 

site(s). Spatial analysis is also used to delineate the site into sub risk regions based on similar 

environmental attributes or environmental resource management objectives (Landis and Wiegers 

2005). 

A conceptual model linking sources of stressors to endpoints is then constructed based on 

causal relationships between the variables in the system (Landis and Wiegers 2005). All 

variables are defined with an appropriate measurement attribute (% DO saturation or mm of 

rainfall per 30-day period). The variables are then discretized into ranked states and risk is 

calculated as the probability distribution of achieving a given state. Evaluation of the model 

includes a sensitivity analysis and comparison to observed conditions if available. Finally, model 

results are communicated in a fashion that portrays the relative risk to endpoints in the context of 

management goals (Landis and Wiegers 2005). 
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Selection of Endpoints  

Ideally, risk assessors and environmental modelers host multiple stakeholder meetings to 

identify management goals, select valued ecological endpoints, and receive feedback while 

developing the conceptual model (Borsuk et al. 2004; Landis and Wiegers 2005). Given the 

currently available information, limitations in funding, time, and the location of the study sites; 

we relied on a less formal process that included a literature review and one-on-one meetings with 

CSIRO, SEQ Healthy Waterways Partnership, and Queensland government scientists. 

Stakeholder values had been previously solicited through other research efforts, and the results of 

those surveys were publicly available (Abal et al. 2005; SEQHWP 2007a; SEQHWP 2007b; 

Healthy Waters, EHP 2013). Based on that information, we chose to focus on water quality and 

benthic biota as endpoints for this risk assessment. Given the flexibility of BN modeling, future 

SEQ risk assessments can easily incorporate additional endpoints such as macro fauna, human 

health, or ecosystem services into the models that we have developed for this study. 

Water resources are very important to SEQ, and the Healthy Waterways Partnership has 

hosted workshops with stakeholders to classify the ecological value of waterways (SEQHWP 

2007a; Healthy Waters, EHP 2013). The Noosa estuary, as a tourist destination that abuts a 

national park, is designated as High Ecological Value by stakeholders, while the urbanized Pine 

and Logan estuaries are designated as Slightly to Moderately Disturbed. Highly Disturbed is the 

lowest possible value designation, though no estuaries in the SEQ are designated as such. 

Estuaries with higher ecological value have different water quality objectives than those with a 

lower designation, and the relative risk calculations will reflect these differences.  

In a risk assessment framework, endpoints are defined as entities and attributes, where 

attributes describe the valued qualities of the entity (USEPA 1998). In SEQ, the regional Water 
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Quality Objectives are the entity and DO and Chl-a are the attributes. For the biotic endpoint, the 

entity is the benthic community assemblage as measured by the eukaryotic eDNA, and the 

attribute is the relative richness of a suite taxa groups including Diatoms, Dinoflagellates, Fungi, 

Meiofauna, Protozoans, and Green Algae. 

Dissolved oxygen and Chl-a were selected as endpoints for this risk assessment because they 

are the two most common water quality responses to increased nutrient loading, are symptoms of 

eutrophication, and can negatively affect other estuarine biota and human health (Cloern 2001). 

Increases in phytoplankton growth, as measured by Chl-a, is a primary symptom of 

eutrophication and increases in Chl-a cascade into secondary symptoms like DO depletion from 

microbial degradation. When phytoplankton blooms are too dense, they cause a range of effects 

from further reducing DO levels to producing toxins to decreasing water clarity. Water that 

appears murky or is closed for swimming or recreating due to toxic algal blooms has negative 

effects on recreation and public perception (ANZECC/ARMCANZ 2000). Aquatic animals, 

including fish and benthic invertebrates, require oxygen to breathe, and depleted DO levels 

reduce abundance by forcing organisms to relocate, causing direct mortality, or toxic inhibition 

of submerged aquatic vegetation (Cloern 2001; Nezlin et al. 2009). 

The benthic eukaryote community, as identified by eDNA sequencing techniques, is the 

biotic endpoint in this risk assessment. Benthic communities are commonly monitored in 

waterways, and many studies demonstrate their responsiveness to changes in environmental 

conditions (Johnston and Roberts 2009). Benthos including eukaryotes (nematodes, protists, 

fungi, etc.) and prokaryotes (bacteria) inherently underpin all trophic levels, and their 

biodiversity as well as functional attributes can inform managers about the state of an ecosystem 

(Kennedy and Jacoby 1999). There are currently no regional objectives to assess risk of 
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achieving for these endpoints, so instead the results reflect the patterns of benthic assemblages as 

a result of stressors to each estuary. The eDNA eukaryotic benthic dataset includes over 8,000 

unique molecular operational taxonomic units (MOTU) sequence reads. All of the taxa 

associated with the MOTU cannot be represented in a BN efficiently and effectively with one 

node for each taxa. To overcome this challenge, the richness of the most common and frequent 

taxa groups were chosen to represent the benthic community assemblage. 

 

Identification of Stressors and Sources of Stressors  

The SEQ Healthy Waterways Partnership has identified sediment and nutrient loading and 

reduced environmental (natural) freshwater flows as the major impacts affecting the SEQ 

waterways (SEQHWP 2007a; SEQHWP 2007a; State of Queensland 2009). To a lesser extent, 

toxicants including pesticides and heavy metals have also been identified as a source of 

anthropogenic stress to the region’s waterways (Bunn et al. 2005). However, after review of 

2012 surface sediment data collected by CSIRO, pesticides and heavy metals were not detected 

or detected at concentrations below management goals, so they were not included as major 

stressors to water quality and biota in this assessment. The low contaminant loadings were likely 

due to the extensive flushing caused by an extensive flood event in early 2011. Excess sediment 

and nutrient in waterways were retained as stressors for the BN-RRM. 

Currently, the major source of nutrient and sediment loading is diffuse runoff from intensive 

land uses, which include agriculture and exposed hill slopes used for grazing, horticulture, and 

intensive animal production (SEQHWP 2007a; SEQHWP 2007a; State of Queensland 2009; 

Cottingham et al. 2010). Point sources including poorly functioning sewage treatment plants and 

aquaculture discharges have been managed in the last 15 years, and contribute nutrient loading to 
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a lesser extent than non-point source land uses (Cottingham et al. 2010).  The major natural 

sources contributing nutrients and suspended sediments in estuarine waters are climate (rainfall 

and temperature) and ocean water influence (measured by salinity). These three environmental 

sources (rainfall, salinity, and season) plus the anthropogenic source (intensive land use) have 

been included as inputs to the BN-RRM model. The inputs for each risk region were based on 

site-specific data. 

Risk Region Delineation  

Only the estuarine reaches of each of the three catchments are considered in this study, and 

the estuarine boundaries were delineated based on tidal limits by the State of Queensland. We 

divided the estuaries into sub risk regions to capture the differences within each catchment. This 

regionalization process took many attributes of the estuaries into account including (in order of 

importance): 

• management goals (i.e. water quality objectives for Lower Noosa estuary versus the 
Middle Noosa estuary based SEQ documentation); 

• relationships between variables in the estuary; 
• salinity gradients;   
• land use; and 
• location of point sources.  

 
For example, in the Noosa and Pine estuaries, the State of Queensland sets different water 

quality objectives for the lower (more saline) versus middle (fresher water) sections of the 

estuaries, so those regions were delineated based on management goals and salinity gradients. 

The Logan estuary, on the other hand, only has one set of water quality objectives for the entire 

estuary so other factors were used for regionalization. Figures S1-S3 present the different risk 

regions of the estuaries, 2012 land use designations, point sources, and EHMP and eDNA sample 

locations. The eDNA and EHMP locations are co-located in most instances. 
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Model Structure 

The structure of the BN-RRM model for this study (Figure 2) was developed based on the 

original RRM framework (Landis and Wiegers 1997, 2005) with sources of stressors linking to 

habitats, and habitats linking to effects on endpoints. The pathways flow from left to right and 

variables in the BN-RRM are called nodes (Figure 2). The linkages between the nodes indicate a 

causal or correlative relationship between variables (Marcot 2012). These relationships were 

determined using a variety of information including a literature review of estuarine water quality 

science, regional reports for South East Queensland estuaries, EHMP data, sediment eDNA data, 

and feedback from CSIRO scientists. 

 

Figure 2. Bayesian network relative risk conceptual model method model and Bayesian network 
for the Logan estuary with the Middle Logan risk region stressors selected. 

 

 

Stressors and sources of those stressors are the input nodes and start the pathway on the left 

side of the model (Figure 2). The input nodes predict the intermediate water quality nodes (Total 

Nitrogen [TN], Total Phosphorous [TP], Turbidity, and Temperature). The intermediate nodes 

link to the endpoint nodes, which describe the predicted impact to the attributes of the valued 

ecological entity.  

A BN-RRM model strives to balance accuracy, parsimony and relevance to management and 

risk assessment, and therefore does not include all possible variables that affect the endpoints. 

The BN-RRM model constructed for this risk assessment includes the most important 

measurable variables that predict water quality endpoints (DO and Chl-a) and benthic 

community endpoint in a single integrated model. The model was built in Netica (Norsys 2014). 
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A total of seven BN models were constructed, one for each risk region: Lower Noosa, Middle 

Noosa, Upper Noosa, Lower Pine, Middle Pine, Lower Logan and Middle Logan (Figure 2). 

 

Model Assumptions 

All estuary models for this study have exactly the same physical BN structure, meaning that 

we assume the flow of cause-effect relationships between variables in the SEQ estuaries are the 

same. This works because the models were built based on the breadth of information about 

chemical and biological relationships in estuaries. Further, the models must have the same 

structure (and discretization of variables) to make the model results comparable between sub risk 

regions and estuaries.  

 

Data, Discretization and Construction of the Conditional Probability Tables  

The BN-RRM method uses many types of data to discretize variables, parameterize the 

conditional probability tables (CPTs), and define the inputs for each risk region. Data used in the 

model, as related to these three categories, are described below.  

Discretizing the Nodes. 

Each node in the model was discretized into discrete states (Table 2). The goal of 

discretizing was to represent the influences of the variables on the endpoint with the fewest 

discrete states necessary. In most cases, we created four states corresponding to the zero, low, 

med, high risk ranking scheme described by Landis and Wiegers (2005), and used by many other 

BN-RRMs (Ayre and Landis 2012; Herring et al. 2015; Landis et al. 2016 Jan). For some nodes, 

three or five states were preferable to four states to more accurately reflect the data and to 

compare between regions. Where possible, discrete states were established using classifications 
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recognized by estuary science or local SEQ management objectives and justifications are 

provided in Table 2. For water quality variables that have a local management objective (TN, TP, 

Turbidity, Chl-a, DO), the lowest possible risk states achieves the objective, and all other states 

exceed the objective. Dissolved oxygen is slightly different because it is possible to exceed and 

fall below the objective percent saturation (Table 2).  

 

Table 2.  Methodology used to discretize model variables, and the states of these variables 

 

The discrete states of all input, intermediate, and benthic community nodes are exactly the 

same for all models and estuaries. However, the two water quality endpoint nodes (DO and Chl-

a) vary slightly between regions based on differences in regional management objectives. We 

used a wide variety of information sources to discretize the nodes, including peer-reviewed 

literature, governmental reports, water quality objectives, natural breaks in the data, or a 

combination of each (Table 2).  

 

Derivation of the conditional probability table (CPT).  

The relationship between two or more parent nodes connected to a child node is defined by a 

CPT. Conditional probability tables are represented as a matrix of probabilities of a child node 

state occurring state given the state of its input nodes (Norsys 2014). Conditional probability 

tables can be parameterized using a variety of methods. These methods can be broken down into 

four categories: expert judgment, empirical evidence, mathematical or biological equations, and 

case file learning (Marcot et al. 2006; Pollino et al. 2007; Chen and Pollino 2012). In a single 
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model, CPTs for different nodes may be completed using different methods (Chen and Pollino 

2012) or combination of methods may be used within a single CPT (Pollino et al. 2007).  

The CPTs in the SEQ BN-RRMs were parameterized using one method: case files and the 

expectation-maximization (EM-learning) algorithm, an automated function available in Netica 

(Norsys 2014). We chose this method based on Lucena-Moya et al. (2015), who also used case 

learning to parameterize predictor nodes for benthic endpoints. A case file is a compilation of a 

set of data that go together to provide information about the variables (nodes) in the model. For 

example, water quality data combined with weather data collected on the same day. The EM-

learning algorithm iteratively calculates the maximum likelihood estimates for the node states in 

the model given the case file data and the model structure. Expectation-maximum learning has 

been routinely used for other environmental BN modelling (Pollino et al. 2007; Lucena-Moya et 

al. 2015), and was selected over other algorithms because it deals well with missing data.  

We used a unique case file for each estuary model and to parameterize the CPTs. The three 

case files (one for each estuary) consisted of SEQ EHMP monitoring data that had been collected 

on a monthly basis from 1999-2014 at regular locations within the estuary (Figures S1-S3). Each 

record (or case) in the case file was matched to the corresponding previous 30-day rainfall total 

and % Intensive land use (n = 5,032, n = 6,204, n = 3,621 cases for the Noosa, Logan, and Pine 

respectively). These case files were used to parameterize the CPTs between all nodes except for 

the benthic richness endpoints.  

The benthic endpoint nodes of the model were parameterized using a single separate benthic 

data case file for all estuaries (n = 287). A single file was used because the eDNA dataset for 

individual estuaries was relatively small. Using benthic samples from different estuaries to 
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parameterize CPTs is consistent with Lucena-Moya et al. (2015) who also used BNs and case-

learning to predict ecological assemblages. 

Setting the estuary specific input (stressor) distributions. 

The input distributions for the Salinity and Intensive Landuse nodes were set using risk-

region specific data based on the sub region of estuary (lower, mid or upper). Salinity was 

determined based on EHMP monitoring data collected from 1999-2014, and the Intensive Land 

use was calculated from the 2012-2013 Queensland land use data. Rainfall input data were only 

specified as an estuary specific, not down to the sub-region and based on observations by the 

Queensland Bureau of Meteorology from 1985-2015 for the nearest weather station to the 

estuary.  

Benthic eDNA data 

Scientists from CSIRO, Australia’s National Science Agency, collected the sediment samples 

and sequenced the eDNA data used in this risk assessment. The surface sediment eDNA samples 

were collected by CSIRO during two sampling events (Summer 2010 and Fall 2012) from five 

estuaries in SEQ: the Noosa, Maroochydore, Pine, Logan and Currumbin. While only three 

estuaries (the Noosa, Pine, and Logan) were evaluated in the risk assessment presented in this 

manuscript, eDNA from all five sampled estuaries were used for determining the water quality 

predictors in the model and for parameterizing the CPTs. A summary CSIRO’s methods and our 

analyses used to determine predictors is provided in the Supplemental Information section 2 

Benthic environmental sampling and analysis. 
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Model Evaluation  

We evaluated the BN-RRM models using three methods. These methods were used both 

during the model development process and to evaluate the final models. The results of these 

model tests can be used to further guide BN development (Marcot et al. 2006; Marcot 2012). 

Predicted Versus Observed 

A simple first test is to determine whether trends in model predictions are consistent with 

field observations (Pollino et al. 2007). One of the outputs of a BN model is the mean or 

expected value for a given node. For each risk region, we compared the BN mean value to the 

observed average value from the EHMP or eDNA data for the water quality and benthic 

endpoints respectively.  

Cross Validation 

Bayesian network model cross validation was performed for each estuary and endpoint with 

the Netica feature Test with Cases (Norsys 2014). The purpose of this feature is to grade a BN 

using a set of real cases to see how well the predictions match the actual. We used 80% of the 

case file data for a given estuary to build or train the model and the remaining 20% to test the 

model (Pollino et al. 2007; Chen and Pollino 2012). The error rates were compared across 

endpoints and between estuaries and are presented in the results section under cross validation. 

An example of a cross validation file (PINE_LOWER_CROSSVALIDATION.neta) can be 

found in the supplemental information for this publication. 

Sensitivity analysis 

Sensitivity analysis quantifies how much the distribution of an endpoint node is influenced 

by the probability distributions of the other nodes (Pollino et al. 2007; Marcot 2012). This 

analysis can be used during model development to identify errors in CPTs or model structure 
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(Pollino et al. 2007). The variables that the model is most sensitive to should be supported by the 

primary literature about the system or by empirical evidence. Once the model is completed, 

sensitivity results can provide guidance for future data collection by identifying which variables 

are most prediction of changes to the endpoint. A sensitivity analysis was performed for each 

endpoint in each risk region using the Sensitivity to Findings feature in Netica (Norsys 2014). 

Because the variables are discretized into states, sensitivity was measured as mutual information, 

or reduction in variable entropy (Marcot 2012).  

RESULTS  

Bayesian Network Relative Risk Method (BN-RRM) models 

The BN-RRM model for each estuary has two layers of predictions (Figure 2). The first layer 

uses climate stressors (Season, Monthly Rainfall, and Salinity) and the Intensive Land use 

stressor to predict four intermediate water quality effects (TN, TP, Turbidity, and Temperature). 

The second layer of the model uses the four water quality effects to predict the response of the 

eight risk assessment endpoints (DO, Chl-a, Diatom, Dinoflagellates, Green Algae, Fungi, 

Meiofauna, and Protozoans). The intermediate water quality variables are the effects of the 

stressors on the surface water habitat, and this pathway reflects the RRM framework.  

The BN model results for the endpoints are summarized in three ways. First there are the 

predicted probabilities of the endpoint states occurring (i.e. 74% likelihood that the Lower Noosa 

will meet water quality objectives for DO). These probabilities sum to 100% and are called the 

posterior probability distributions (PPDs). The PPD communicates the most likely state for the 

endpoint and the uncertainty for that prediction. Uncertainty, in this context, pertains to the 

dispersion of the probability values among the endpoint states, that is, the spread of the possible 

predictions (Marcot et al. 2006). In Netica, the PPDs are shown as horizontal bar charts, and we 
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have summarized the PPDs for all endpoint nodes (Figures 3, S4). A second model result is the 

probability that the water quality objective is achieved in a given risk region or estuary (Table 3). 

A high probability of achieving the objectives (≥ 75%) is associated with low relative risk and 

conversely low probabilities (< 50%) are associated with high relative risk. Third, there is an 

expected value associated with each node, which is the predicted mean value weighted by the 

probability of occurrence (Norsys 2014). For the endpoint nodes, the expected values are either 

the mean concentration of the water quality endpoint or the mean richness for the benthic 

endpoint. The mean values are useful for comparing between risk regions. To check the accuracy 

of the model, we have compared the expected value to the observed mean value for each risk 

region as part of the model evaluation process. The following sections describe BN-RRM results 

for the water quality and benthic endpoints, as well as model evaluation results including 

sensitivity analysis and cross validation. 

 

Table 3. BN model results for the probability of achieving regional water quality objectives for 
each risk region. 

 

 

Water Quality Endpoints – Posterior Probability Distributions 

For both the DO and Chl-a endpoints, the % probability of achieving water quality objectives 

is higher in the Noosa estuary than in the Pine and Logan estuaries (Table 3). Within the Noosa 

estuary, the Lower, Middle and Upper sub regions have very similar PPDs and high certainty of 

achieving the objective risk states) (between 73-91% probability of achieving the Objective risk 

states for both DO and Chl-a) (Table 3). In the Logan and Pine estuaries, however, the sub 

regions have different PPDs and there is greater uncertainty of achieving a particular state (i.e. 
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the spread of the PPD is larger). In general, the Lower Logan and Lower Pine sub regions are 

more likely to achieve Objectives for DO and Chl-a than the Middle sub regions (Table 3). In the 

Middle Logan and Middle Pine regions, the Chl-a distributions are skewed toward higher Chl-a 

concentrations, while the DO distributions are skewed toward lower DO % sat. (Figure 3).   

 

Figure 3- Examples of the output distributions from the BN-RRM calculation: Water quality and 
Primary Producers. The state on the Y-axis labeled “Objective” indicates achieving the regional 
water quality objective. The objectives and states differ slightly between regions.  Also shown 
are the Primary producer (mostly photosynthetic) posterior probability distributions for each 
region and estuary. No objectives had been set at the time of this study. 

 

 

In the Lower Logan risk region, the probability of achieving water quality objectives for DO 

was surprisingly high (69% probability), given that the Logan estuary is regularly given the 

lowest grades (given a D in 2015) by the SEQ Healthy Waterways Partnership report cards. The 

Lower Logan has a very wide central basin at the mouth of the estuary, that can contribute to 

greater renewal of DO in the surface waters via wind and tidal mixing (Ryan et al. 2003; Nezlin 

et al. 2009). 

 

Benthic Endpoints – Posterior Probability Distributions 

For this report, we have organized the benthic eukaryotic taxa groups into two classes based 

on their trophic level and function: 	

• Primary Producers (photosynthetic): Diatoms, Dinoflagellates and Green Algae. 
• Primary Consumers and Decomposers (mostly non-photosynthetic): Protozoans, 

Meiofauna, and Fungi. 

Comparisons of benthic richness can be made 1) between estuaries (e.g. which estuary has the 

highest overall Diatom richness?) and 2) between risk regions (e.g. does Diatom richness change 
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between the Lower and Middle sub regions of an estuary?). The patterns of richness between 

estuaries reflect differences in stressors in the estuaries.  The Lower risk regions represent 

marine regions and the Middle/Upper region represent less saline regions.  

 

Comparison between estuaries: Primary Producers  

The primary producer taxa groups have different PPDs between estuaries, with the Diatoms 

and Green Algae having the largest differences (Figure 3). In the Noosa estuary, Diatom relative 

richness is likely to be high (in the 15-30% relative richness state), and Green Algae and 

Dinoflagellate richness are likely to be low (in the 0-2.5 % and 2.5-5% states, respectively). 

Diatoms were identified as an indicator species for the Noosa estuary by Chariton et al. (2015) 

based on Threshold Indicator Taxa Analysis (TITAN). Thus, the BN modeling results are 

consistent with the indicator analysis results. 

The Pine and Logan estuaries are more similar to each other. Diatom richness is lower, and 

Green Algae and Dinoflagellate richness is higher compared to the Noosa (Figure 3). These 

differences are most prominent in the Middle sub regions of the Pine and Logan. The PPDs for 

the Pine and Logan are spread across multiple states reflecting a high uncertainty of a particular 

state occurring.  

 

Comparison between sub regions: Primary Producers  

The Noosa benthic taxa PPDs are similar for all sub regions, meaning there are not many 

differences along the salinity gradient from the Lower to the Upper risk regions (Figure 3). This 

same trend was observed in the water quality, with similar high probability of meeting objectives 

in all sub regions. The Logan and Pine PPDs, however, are different between risk regions, with 
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Diatom richness decreasing from marine to fresh waters, while Green Algae and Dinoflagellate 

increases from marine to fresh waters. 

 

Comparison between estuaries: Primary Consumers and Decomposers  

For the non-photosynthesing taxa groups, only the Fungi taxa have markedly different 

patterns between estuaries. In the Noosa estuary, Fungi relative richness is predicted to be low 

(in the 0-2.5% richness state) and that prediction is fairly certain (≥60% probability of the low 

state occurring) (Figure S4).  In the Pine and Logan estuaries, the PPDs show overall higher 

Fungi richness compared to the Noosa, but PPDs are spread across the multiple risk states 

reflecting high uncertainty of a given state occurring (Figure S4).  

The Meiofauna and Protozoan richness patterns are similar between all regions and all 

estuaries. In addition, the probability of any one state occurring is often less than 50% (Figure 

S4), reflecting uncertainty about which richness state may occur and also reflecting the high 

variability of Meiofauna and Protozoan richness between samples in the estuaries.  

 

Comparisons between sub regions: Primary Consumers and Decomposers 

Only the Fungi taxa richness reveals patterns between sub regions. Along the salinity 

gradient, Fungi richness increases from marine (Lower sub regions) to fresher waters 

(Middle/Upper sub regions). This pattern is very evident in the Logan and Pine estuaries, with 

the Middle Logan distributions shifting to a moderate richness state (2.5-5% richness) being the 

most likely to occur. In the Noosa, the pattern of Fungi richness increasing from marine to 

freshwater is also present but to much a lesser extent. Overall, the Noosa PPDs are rather 
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homogenous between risk regions. This result is similar to patterns observed for the water 

quality endpoints and photosynthetic benthic taxa groups, and is a major finding in this work. 

 

Model Evaluation 

Predicted versus Observed  

Observed water quality data for each risk region was plotted against expected mean 

predictions from the BN-RRM model (Figure 4). Comparisons indicate that the trends between 

monitoring data and predictions are generally consistent. However, the model predicts slightly 

higher Chl-a concentrations than what is observed (Figure 4). The higher predictions are likely a 

result of the discretized states for Chl-a and the method by which Netica calculates the expected 

mean value (weighting it by the probability of occurrence). The highest state, ranging from 20 – 

65 µg/L (Table 2), is likely skewing the expected mean high. 

 

Figure 4. Model results for water quality endpoints compared to actual observed average 
concentrations for each risk region. Abbreviations for the regions are shown in Table 3. The 
shading of the bars corresponds to the three estuaries: white = Noosa, gray = Pine, and black = 
Logan. 

 

 

Observed benthic data for each risk region were plotted against the expected mean richness 

predictions from the BN-RRM (Figure S5). The BN model predictions match the actual observed 

richness trends more accurately for the photosynthetic groups (Diatoms, Dinoflagellates, and 

Green Algae) than the non-photosynthetic groups (Protozoan, Meiofauna, and Fungi; Figure S5). 

Of the non-photosynthetic groups, the BN model predicts Fungi richness trends the best. 
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Cross Validation 

Cross validation error rates for the water quality endpoints ranged from 33 to 50% (Table 

S1), and error rates were lowest in the Logan estuary models and for the DO endpoint.  The Chl-

a error rates are high for the Pine and Logan and may be  because we chose a higher resolution 

for the lower concentrations in the discretization of the Chl-a variable (see Table 2) and the 

model is not able to predict the difference between 0-2 µg/L and 2-4 µg/L for the more eutrophic 

estuaries. The Noosa has consistently very low Chl-a concentrations, so the model predicts Chl-a 

better in the Noosa and that is reflected in the lower error rates.  Error rates for the benthic 

endpoints were comparable to the water quality endpoints and ranged between 28 and 40%. All 

of the estuaries have the same error rates for the benthic endpoint because the benthic CPTs were 

parameterized with the same case file. 

The high average error rates across all models and endpoints (>28%) likely reflects the large 

amount of variability within both the water quality and benthic eDNA data. It is likely that the 

sequencing of deceased organisms, an artefact of eDNA sampling, was a major contributor to the 

variability in the benthic eDNA data (Chariton et al., 2015). These error rates are consistent with 

other BN models that predicted benthic taxa using case-learning to parameterize the CPTs 

(Lucena-Moya et al. 2015).  

 

Sensitivity Analysis 

Sensitivity analysis is used to identify which variables are most influential with respect to 

endpoint variables. Nodes that are physically closer in the network to the endpoint node will 

have a greater influence on the endpoints (higher % mutual information) based purely on the 

structure of the model. Sensitivity analysis was run multiple times throughout the model 
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development process to evaluate both the structure and discretization of variables in the model. 

These results are based on the final model configuration. we have divided the sensitivity results 

into two categories: sensitivity to inputs/stressors (Figure S6), and sensitivity to intermediate 

water quality variables (Figure S7). 

Sensitivity to Inputs/Stressors. The Salinity stressor was clearly the most influential input for 

all endpoints except for Chl-a, where Season was more influential (Figure S6). Sensitivities to 

the Land Use and Rainfall stressors varied between the endpoints, but in general had lower 

mutual info compared to Salinity (Figure S7). Outcomes of the sensitivity analysis concur with 

estuarine science that the horizontal salinity gradient and estuarine circulation drives nutrients 

and DO levels as well as biotic assemblages. 

Sensitivity to Intermediate Variables. The most influential intermediate water quality 

variables for all endpoints were the nutrients TN and TP, as these two variables are linked to 

each endpoint. Total nitrogen had slightly higher mutual information than TP for all endpoints 

(Figure S7). This is consistent with the finding that nitrogen is the limiting nutrient to primary 

production in SEQ estuary and marine waters where light is not limiting, (Cottingham et al. 

2010).  

 

Interactive Capability of Netica Models as Research Product 

This modeling effort has produced seven highly interactive BN models that can be provided 

to resource managers to understand and communicate the response of endpoints to stressors 

present in the regions. Netica files (.neta) are also available for download. The ability to test 

stressor scenarios and predict quantitative changes in the endpoint states can be informative to 

decision makers. For example, using Netica you can select % Intensive Landuse to be in the 65 
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to 80 % state for the Middle Logan risk region, and all of the other nodes will automatically 

update their probability distributions based on that input. The result of higher % Intensive Land 

use is lower DO, higher Chl-a, lower Diatoms, and higher Fungi.  

There are limitations to which stressor scenarios you can test. Currently, it is not possible to 

make predictions with stressor states where there was no observed data in the case-files. For 

example, none of the risk regions currently have the highest state of Intensive Land Use (80 to 

100%), so the model cannot learn how that state would affect intermediate water quality 

parameters like TN or TP. With the case-learning method used for parameterizing the CPTs, the 

results of unknown states are given an even distribution, with all resultant states equally likely to 

occur. The unknown parts of the CPT can be parameterized in future iterations of these BN-

RRM models with other sources of information including primary literature, other model 

predictions, or expert elicitation. 

 

 

DISCUSSION 

The objectives of this study were to demonstrate a methodology for integrating eDNA into an 

ecological risk assessment framework and to then evaluate the results and the usefulness of the 

method. The SEQ estuary BN-RRM models relatively are simple, but they accurately predict the 

current patterns of water quality and relative richness of a number of benthic taxa groups. 

Looking ahead, the variables and relationships in the model can be added to or updated as more 

information becomes available or specific management questions are asked. Further, while these 

BN-RRM provide a demonstration of integrating eDNA results into a risk assessment, the 
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richness metric has a few drawbacks which are discussed below. Future models should try to 

improve upon these ones. 

 

Water quality and benthic endpoint results 

Risk of not achieving water quality objectives is higher in the Pine and Logan estuaries 

compared to the Noosa, with the highest risk of not achieving the objectives occurring in the 

middle estuary sub regions. The Noosa has low risk of not achieving objectives in all sub 

regions, and the endpoint expected values and PPDs do not differ between sub regions. The 

homogeneity of the water quality of the Noosa is also reflected in the eDNA benthic richness 

patterns.  The Pine and Logan however, have different water quality risk and different benthic 

richness patterns between the sub regions. The differences between sub regions of the Logan and 

Pine are due to two variables; 1) salinity and 2) nitrogen levels.  Sensitivity analysis identified 

these two variables as being important in the BN-RRMs. 

There are consistent trends in benthic taxa richness for regions that have greater than a 50% 

chance of achieving water quality objectives for at least one variable (Table 3). These regions 

include the Noosa and Lower Pine and Logan regions. Trends among the risk regions include:  

• Diatoms have high richness and  
• Green Algae has low richness. 

 
Thus, these biotic signals in these models predict a high probability of achieving water quality 

objectives, and subsequently low risk to not achieving objectives.  

The Fungi richness patterns also correlate to water quality, but tend to reflect the 

intermediate water quality variables (nutrients and turbidity) more than the DO and Chl-a 

endpoints. For example, the Noosa estuary, which has the lowest nutrient and turbidity levels, 

has the lowest Fungi richness. Similarly, the Pine and Logan estuaries, which have much higher 
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nutrients and turbidity, have higher Fungi relative richness. Fungi taxa are major decomposers of 

woody and herbaceous substrates in marine and estuarine ecosystems (McGuire and Treseder, 

2010). Higher levels of Intense land use in the Pine and Logan estuary catchments are the cause 

of the higher nutrients, and consequently more organic matter entering the waterways. Thus, 

Fungi richness is higher in the Pine and Logan because they have a larger supply of material to 

decompose as a food source.  

Relative richness, used as the attribute of the benthic taxa groups in this assessment, has 

some drawbacks; and BN models and risk assessments that incorporate traditional or DNA-

derived biotic data can use other attributes that may better reflect the structure of the community. 

The first drawback to a richness metric is that there are no established management goals in SEQ 

for estuarine benthic communities. Management goals are policy choices and should be 

developed by resource managers and stakeholders. Risk assessors can play a role in the process 

by developing quantitative integrated risk assessments like the one presented in this study to 

provide analysis and information to formulate those goals. The second drawback is that a 

richness metric reduces the community assemblage response into a single value. Some studies 

have incorporated multiple community metrics into one model (e.g. richness and evenness, 

diversity, filterer and grazer abundance) (Allan et al. 2012; Leigh et al. 2012). Still, modeling the 

response of the entire assemblage would provide a more comprehensive understanding of 

estuarine condition (Lucena-Moya et al. 2015). Moving forward, we propose using 

environmental distance measurements of communities, similar to those utilized in non-

indigenous species risk assessments (Bradie et al. 2015). In the present study, an example would 

be to evaluate communities based on their distance measure to the Noosa estuary which gets A 

grades in the EHMP program. 
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Uncertainty and data needs 

BNs explicitly express uncertainty by representing all variables as distributions. The BN-

RRM model development process can reveal the current state of knowledge of the system, and 

call attention to data gaps that should be filled to make management decisions. 

One of the largest sources of uncertainty in the model is the eDNA richness. This uncertainty is 

due to three factors: 1) data were collected from only two sampling events; 2) there is high 

natural variability of benthic eukaryote communities; and 3) the amplification of deceased 

organisms, residual fragments of organisms, spores, eggs etc.  The latter may be attenuated by 

examining RNA instead of DNA (Laroche et al. 2017), however, this would greatly increase the 

costs of obtaining the data.  The eDNA data used in this study were collected from two events 

over the course of three years (February/Summer 2010 and May/Fall 2012) with no replication of 

seasons. Given that these organisms are ephemeral and sensitive to changes in water quality and 

labile inputs, more years and seasons of data would further inform the model.  Furthermore, 

because all eDNA data was combined into a single case file to construct the CPTs for the model, 

model validation results for the eDNA richness were not estuary specific. 

 

On the other hand, there is no paucity of sampling data for water quality or rainfall in SEQ (> 

10 years worth), and the relationships between these variables (rainfall, temperature, salinity, 

TN, TP, turbidity, DO, and Chl-a) are likely the strongest in the model. The most likely state of 

these variables is still uncertain for given inputs, especially in regions other than the lower 

estuary. This uncertainty is due primarily to the natural variability in water quality itself, not due 

to a lack of data. The endpoints, DO and Chl-a, are known to be highly variable in estuaries and 

dependent on seasonal variation and even the time of day sampling occurred. Given that the 
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models were parameterized with over 3,000 cases per estuary, we are confident that the model 

appropriately captures the variability of intermediate water quality nodes as well as DO and Chl-

a endpoint responses.  

There is less information available for Intensive Land Use because that measure has been 

sampled only once every 5-6 years in Queensland. Refining the relationship between land use 

and water column nutrients (TN and TP) and turbidity would be very useful to managers because 

land use is a variable that can be managed via policy and engineering measures. Once these 

relationships are further refined, managers could easily quantify how much management would 

have to occur to achieve desirable endpoint results. 

 

Integrating environmental DNA into a risk assessment 

While there is still much work to be done to measure the benthic community assemblages, 

reduce uncertainty, and further refine relationships in the BN-RRM, this study demonstrates that 

integration of eDNA into risk assessment framework is possible. By using case-learning, the 

relationships between the eDNA and predictor variables can be quickly determined.  

Bayesian network modeling is meant to be an iterative process where information can be 

added as it becomes known or new data is collected. As new EHMP data is collected each year, 

more evidence can inform the model. In addition, new endpoints can be assessed using the model 

because BNs are easily updated with new information. Further, BN models can be used 

interactively to demonstrate the quantitative changes that cascade from stressors to endpoints. 
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Tables 
 
Table 1. Environmental Description of each Estuary. 
	

Estuary Estuary 
Catchme
nt Area 
(in km2) 

Estuary 
Type1 

Major 
Energy 

Influence1 

2015 
EHMP 
Grade2 

Land use and Sources of 
Anthropogenic Stressors2 

Noosa 250 Wave-
dominated 

Estuary 

Wave 
Energy 

A- Includes mostly natural areas 
including a National Park. Urban 
areas occupy < 3% of catchment 
and are concentrated around 
lower estuarine reaches. No point 
sources. 

Pine 67 Tide-
dominated 

Estuary 

Tide 
Energy 

C Estuarine reaches area highly 
urbanized; 2 impoundments 
forming lakes on North Pine 
River. Point sources include a 
WWTP. 

Logan 300 Tide-
dominated 

Delta 

Tide 
Energy 

D Estuarine reaches flow through 
rural residential, urban and 
industrial areas. Point sources 
include aquaculture facilities and 
two WWTP. 

      
Notes      
1. Estuary Type determined by Geoscience Australia (Ryan et al. 2003). 
2. Catchment area and land use information summarized from www.health-e-waterways.org. 
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Table 2.  Methodology used to discretize model variables, and the states of these variables 

Variable Discretization Methodology and Justification States 

Stressor 
Nodes 

  

Land Use (% 
Intensive 
Uses) 

States were determined by Moss et al. (2006) to predict 
sediment and nutrients in SEQ waterways based on the 
intensive land use designation. The Moss et al. (2006) 
work was done as part of another SEQ estuary 
assessment framework. 

< 30 % 

  30 - 50 % 
  50 - 65 % 
  65 - 80 % 
  ≥ 80 % 

Total Monthly 
Rainfall 

States were determined using natural breaks (Jenks 
optimization) of 30-day rainfall totals from 1985-2015, 
and rounded to the nearest 10. Totals were calculated 
from Queensland BOM stations in each estuary: Logan 
WWTP (station #40854), Noosa Tewatin (#40908), and 
Pine Petrie Mill (#40171).   

0 - 50 mm 

  50 - 100 mm 

  100 - 200 mm 

  200 - 600 mm 

Season Austral Seasons Autumn (Sept-Nov) 

  Winter (Dec-Feb) 

  Spring (Mar-May) 

  Summer (June-
Aug) 

Salinity Venice System for Classification of Marine Waters 
(Venice system, 1958). 

0 - 0.5 ppt 

  0.5 - 5 ppt 
  5 - 18 ppt 
  18 - 30 ppt 
  30 - 37 ppt 
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Intermediate Nodes  
Total Nitrogen 
Concentration 

The lowest state ( 0.3 mg/L) meets default trigger values 
for the SEQ region (ANZECC/ARMCANZ 2000). The 
highest state (1-3.5 mg/L) is classified as a high in a 
survey in Bricker et al. (2003). The middle states were 
discretized based on natural breaks (Jenks optimization) 
of EHMP monitoring data. 

< 0.3 mg/L 
(Objective) 

  0.3 - 0.6 mg/L 

  0.6 - 1 mg/L 

  1 - 3.5 mg/L 

Total 
Phosphorous 
Concentration 

The lowest state (0-0.03 mg/L) meets default trigger 
values for the SEQ region (ANZECC/ARMCANZ 
2000). The next state (0.03-0.1 mg/L) is classified as 
high in a survey in Bricker et al. 2003, and was set taking 
into account site-specifc EHMP data (TP is higher in 
SEQ estuaries).  

< 0.03 mg/L 
(Objective) 

  0.03 - 0.1 mg/L 

  0.1 - 0.5 mg/L 

  0.5 - 1.6 mg/L 

Water 
Temperature 

The states were discretized based on natural breaks 
(Jenks optimization) of the EHMP monitoring data. 

13 - 19 °C 

  19 - 23 °C 
  23 - 26 °C 
  26 - 31 °C 

Turbidity The lowest state (< 8 NTU) meets default trigger values 
for SEQ (ANZECC/ARMCANZ 2000). The highest state 
(>100 NTU) is known to limit phytoplankton growth, 
and cause fish avoidance (Bisson and Bilby 1982). The 
(40 - 100 NTU) state was based on Moss et al. 2006. 

< 8 NTU 
(Objective) 

  8 - 40 NTU 
  40 - 100 NTU 

  100 - 1000 NTU 

Endpoint Nodes - Water Quality  
Dissolved 
Oxygen 
Saturation 

The Lower Pine and Lower Noosa Objective states were 
set to 90-105% sat. and the rest were set to 85-105% sat. 
based on SEQ regional water quality objectives (State of 
Queensland 2010). The lowest state (<50% sat.) is 

< 50 % sat. 
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considered hypoxic (Breitburg 2002). The remaining 
states were set based on natural breaks (Jenks 
optimization) that were rounded. 

  50 - 70 % sat. 

  70 - 85 % sat. 

  85 - 105 % sat. 
(Objective) 

  105 - 167 % sat. 

Chlorophyll-a 
Concentration 

Based on region-specific objectives, the Objective states 
varies between risk region in the Noosa and Pine 
estuaries. The states >4 µg/L were set based on low, 
medium, high and hypereutrophic ranges reported in a 
survey in Bricker et al. 2003. 

< 2 µg/L 
(Objective) 

  2 - 4 µg/L 
(Objective) 

  4 - 10 µg/L 
  10 - 20 µg/L 

  20 - 65 µg/L 

Endpoint Nodes - Benthic Relative Richness  
Diatom, 
Meiofauna, 
and Protozoan 

Benthic endpoints states were discretized based on P. 
Lucena-Moya et al. (2015) to maximize the detection of 
community change in response. The Diatom, 
Dinoflagellate, Meiofauna, and Protozoan have the same 
four states.   

0 - 5 % 

  5 - 10 % 
  10 - 15 % 
  15 - 30 % 

Dinoflagellate, 
Green Algae 
and Fungi 

Dinoflagellate, Fungi and Green Algae were detected at 
lower relative richnesses, so two very low states (0 - 2.5 
% and 2.5% - 5%) were added to replace the highest state 
(15 - 30%) to more accurately represent the biota 
richness. 

0 - 2.5 % 

  2.5 - 5 % 
  5 - 10 % 
  10 - 15 % 
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Table 3. BN model results for the probability of achieving regional water quality objectives for 
each risk region. 
 

Risk Regions 

Dissolved Oxygen Chlorophyll-a 

Objective 
(% saturation) 

% Probability to 
achieve objective 

Objective 
(µg/L) 

% Probability 
to achieve 
objective 

Noosa Lower (NL) 90 - 105% 74% < 1.8 µg/L 73% 
Noosa Middle(NM) 85 - 105% 82% < 2.2 µg/L 77% 
Noosa Upper (NU) 85 - 105% 75% < 5 µg/L 92% 
Pine Lower (PL) 90 - 105% 55% < 2 µg/L 26% 
Pine Middle (PM) 85 - 105% 26% < 4 µg/L 40% 
Logan Lower (LL) 85 - 105% 69% < 4 µg/L 61% 
Logan Middle (LM) 85 - 105% 15% < 4 µg/L 49% 

 
Figures 
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Figure-1. Overview map of the Southeast Queensland region, study sites (Noosa, Pine and Logan 
catchments), and land use classifications.  
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Figure 2. Bayesian network relative risk conceptual model method model and Bayesian network 
for the Logan estuary with the Middle Logan risk region stressors selected 
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Figure 3- Examples of the output distributions from the BN-RRM calculation: Water 
quality and Primary Producers. The state on the Y-axis labeled “Objective” indicates 
achieving the regional water quality objective. The objectives and states differ slightly between 
regions.  Also shown are the Primary producer (mostly photosynthetic) posterior probability 
distributions for each region and estuary. No objectives had been set at the time of this study. 
 

Water Quality Endpoints

Primary Producer Endpoints
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Figure 4. Model results for water quality endpoints compared to actual observed average 
concentrations for each risk region. Abbreviations for the regions are shown in Table 4. The 
shading of the bars corresponds to the three estuaries: white = Noosa, gray = Pine, and black = 
Logan. 
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1. Supplemental Tables and Figures 

Table S1. Validation results for the water quality and benthic taxa endpoints are shown. 
  Cross-validated error rate (%)   
Water Quality Endpoints Noosa Pine Logan 
Dissolved oxygen 32.47 42.27 31.18 
Chlorophyll-a 32.66 56.13 59.13 
Mean error rate across all 

32.6 (0.1) 49.2 (6.9) 43.2 (14) 
     models (standard error) 
    
Benthic Taxa Endpoints All estuaries     
Diatom 28.07   
Dinoflagellates 40.35   
Green Algae 40.35   
Meiofauna 35.09   
Fungi 29.82   
Protozoan 33.33   
Mean error rate across all 

34.5 (2.1)   
  models (standard error) 
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FIGURES  

 

 

Figure S1: Noosa estuary sub risk regions: Lower Noosa, Middle Noosa and Upper Noosa. 
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Figure S2: Pine estuary sub risk regions: Lower Pine and Middle Pine. 
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Figure S3: Logan estuary sub risk regions: Lower Logan and Middle Logan 
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Figure S4. Primary consumers and decomposer (non-photosynthetic) posterior probability 

distributions for each risk region. 

	

Primary Producer Endpoints

Primary consumers and decomposer (non-photosynthetic)
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Figure S5: Model results for relative richness of benthic taxa groups compared to actual 

observed richness patterns for each risk region. Abbreviations for the region are shown in 

Table 4. The shading of the bars corresponds to the three estuaries: white = Noosa, gray = 

Pine, and black = Logan.  
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Figure S6. Mutual info percent from sensitivity analysis for the endpoints to the four input 
variables (Season, Salinity, Rainfall and Landuse). Results are shown for all regions. Please 
note different x-axis scale for each endpoint.  
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Figure S7. Mutual	info	percent	from	sensitivity	analysis	for	the	endpoints	to	the	four	intermediate	
water	quality	variables	(Water	Temperature,	Turbidity,	Total	Phosphorus	and	Total	Nitrogen)	.	
Results	are	shown	for	all	regions.	Please	note	different	x-axis	scale	for	each	endpoint.		
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2. Benthic environmental DNA sampling and analyses 
 
Introduction 
 

Scientists from CSIRO, Australia’s National Science Agency, collected the field samples 

and sequenced the benthic eDNA data used in this risk assessment. The estuarine surface 

sediment benthic eDNA samples were collected by CSIRO during two sampling events 

(Summer 2010 and Fall 2012) from five estuaries in SEQ: the Noosa, Maroochydore, Pine, 

Logan and Currumbin (Figure S1). While only three estuaries (the Noosa, Pine, and Logan) 

were evaluated in the risk assessment presented in this thesis, eDNA from all five sampled 

estuaries were used for determining the water quality predictors in the model and for 

parameterizing the CPTs. 

This section summarizes CSIRO’s field collection and laboratory analysis, and my data 

analysis used to make decisions to incorporate eDNA into the BN-RRM model. The 

objectives for my analysis of the eDNA data were threefold: 1) to understand patterns in the 

eDNA benthic communities; 2) to organize the eDNA data into endpoints useful for a risk 

assessment; and 3) determine linkages in the model between eutrophication water quality 

variables (TN, TP, Turbidity), Salinity, and benthic community richness.  

 
CSIRO field sampling and eDNA analysis 
 

The methods and results of the 2010 benthic community eDNA investigation have been 

reported by Chariton et al. (2015), and should be referenced for specific details of the field 

and analytical methods. This is the first time data from the 2012 sampling event has been 

presented. The methods of the 2012 sampling event and lab analysis were nearly identical 

to the 2010 event, as described below.  

During field collection, surface sediment grab samples were collected from non-sandy 

substrates at estuarine sites that were co-located with the EHMP long-term water quality 

monitoring sites (Table 2.1). Between five to eight sediment grabs were collected from each 
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estuary per sample event. Sub samples were collected from the grabs for eDNA 

sequencing, grain size, and total organic carbon analysis. The physio-chemical properties of 

the water column were measured at each sampling site at a depth of approximately 0.5m 

above the sediment surface. In addition, surface water grab samples were collected from 

the same depth as the physio-chemical measurements and analyzed in the laboratory for 

nutrients (TP, filterable reactive phosphorus, TN, organic nitrogen, inorganic nitrates and 

ammonia) and Chl-a (Chariton et al. 2015). As noted previously, the 2010 and 2012 field 

and laboratory methods were comparable, however, in 2012, additional sites near the mouth 

of each estuary were sampled (see Figures S1-S3).  
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Table 2.1: Lookup table for the co-located EHMP water quality sites and eDNA sample sites 
in the Logan, Pine, and Noosa estuary risk regions. 

Risk 
Region 

EHMP 
estuary 

sites 

2010 
eDNA 
sites 

2012 
eDNA 
sites 

Lower 
Logan 

200   LL1 
201  LL2 
211   
212 L1 LL3 

Middle 
Logan 

202 L2 LL4 
203   
204 L3  
205 L4 LL5 
206 L5 LL6 
207   LL7 

Lower 
Pine 

800   PP1 
801 P1 PP2 
802 P2 PP3 

Middle 
Pine 

803 P4 PP5 
804 P5 PP6 
811 P3 PP4 
812   
814     

Lower 
Noosa 

1601   NN1 
1603   NN2 

Middle 
Noosa 

1604     
1611   
1613   
1614 N2  
1616   
1617   
1624   
1625   
1626   
1636 N1 NN3 

Upper 
Noosa 

1608 N3 NN5 
1609 N5  
1610   
1615 N4 NN6 
1618     
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During laboratory analyses, the eDNA was extracted and purified from five replicates of 

the sediment samples (Chariton et al. 2015). Three internal reference samples containing 

clones from multiple eukaryotic taxa groups were also processed.  Polymerase chain 

reaction (PCR) amplification of a 200-500-bp fragment of the 18S rRNA gene was carried 

out with the universal primers All18SF-TGGTGCATGGCCGTTCTTAGT and All18SR-

CATCTAAGGGCATCACAGACC (Chariton et al. 2015). Pyrosequencing was performed by 

the Australian Genome Research Facility (St Lucia, Queensland) using a single plate of the 

Roche 454 GFLX Titanium. Cleanup of the sequences including removal of potential PCR 

artifacts, analogs or multiples of a sequence, errors and chimeras sequences was 

performed using the Amplicon Pyrosequence Denoising Program (APDP) 20 (Chariton et al. 

2015). Taxon identification of the unique sequences, which are referred to as a Molecular 

Operational Taxonomic Units (MOTU), was inferred using the RDP classifier with the SILVA 

18S rRNA database (release 113) (www.arb-silva.de/) (Chariton et al. 2015). 

 

Data analysis: big picture patterns in eDNA -Ordination	

All MOTU data was transformed to presence/absence prior to computation and analysis 

(Chariton et al. 2014; Chariton et al. 2015), because there is a weak statistical relationship 

between the number of sequence reads and organism biomass (Egge et al. 2013).  After the 

transformation, we performed multivariate analyses of the 2010 and 2012 MOTUs datasets 

separately to understand similarities and differences between estuaries during the two 

sampling events. Analyses included non-metric multidimensional scaling (NDMS) of the 

MOTUs using the R package Vegan.  

 

Incorporating eDNA into the BN-RRM model as endpoints 

To incorporate eDNA information in the BN model, we normalized the 2010 and 2012 

samples into a single dataset by classifying the MOTUs into 14 taxa groups based on their 
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phylum classification (Table 2.2). The taxa group with the highest relative richness for both 

the 2010 and 2012 samples was the Unclassified organisms, followed by the Protozoans, 

Diatoms and Meiofauna. For the benthic endpoints, we selected the six taxa groups with the 

highest richness in both 2010 and 2012, excluding the Unclassified group. Definitions of how 

these six groups were sorted based on taxonomic information from the SILVA database are 

provided in Table 2.3. Correlations were performed between relative richness of these 

groups and water quality variables to further determine predictors in the model. 

 

Table 2.2: Summary of average relative richness for taxa groups. Groups shown in bold and 

with a * were used in the risk assessment because they had the highest richness across 

both sampling events.Error! Not a valid link. 
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Table 2.3: Taxonomic definitions of the six most taxa groups used in the risk 

assessment.Error! Not a valid link. 

 

Determining water quality predictors for the eDNA endpoints 

A combination of methods and information was used to determine the predictors and 

linkages in the BN-RRM model including vector fitting, the BEST test, simple correlations, 

and via trial and error of comparing predicted richness to observed richness in all risk 

regions. 

CSIRO water quality measurements of TN, TP, Turbidity and pH were compared to 

EHMP measurements matched based on the closest sampling dates. The EHMP data was 

comparable to the CSIRO data, and was ultimately used in determining predictor variables 

for the BN model, and also for CPT parameterization. While the CSIRO nutrient data is more 

representative of the concentrations experienced by the benthic organisms, the EHMP data 

is preferred for the model because it was collected in the same manner as the rest of data 

used in the model. All of the nutrient samples from the EHMP data were collected and 

analyzed via the same method and same depth (0.2m below the water surface). The CSIRO 

samples on the other hand were collected at variables depths (approximately 0.5m above 

the sediment surface). In addition, there were some missing samples in the CSIRO data, so 

using the more complete EHMP dataset made for more complete case-files for the CPT 

parameterization. One final reason for use of the EHMP water quality data was that the 

CSIRO samples did not include salinity measurements which were needed for the model. 

For vector fitting, the centroids of the five benthic sample replicates per site were used to 

fit the water quality variables. Chariton et al. (2015) also calculated centroids to handle the 

replicates when fitting to environmental variables. Vector fitting was performed with the 

envfit function also in the R package, Vegan, and related NMDS patterns based on the 

centroids to the water quality variables. We only looked at the water quality variables that 
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were included in the BN-RRM model (TN, TP, Turbidity, Salinity, DO, Chl-a, and 

Temperature) because these were previously determined to be the most important direct 

and indirect effects of eutrophication in SEQ. 

The BEST test was performed using the bioenv function from the Vegan package. The 

BEST test compares the biotic richness of one of the taxa groups with an array of abiotic 

matrices formed by the water quality predictor variables (Clarke et al. 2008; Lucena-Moya et 

al. 2015). From this, the variables that best explained the taxa group richness were 

identified and evaluated for inclusion as predictors in the final BN-RRM. The variables TN, 

TP, Turbidity, and Salinity were evaluated using the BEST test. Temperature was initially 

included and results indicated that it was a good predictor of some groups. However, when 

we included it as a predictor in the BN-RRM model, it did not accurately predict the benthic 

endpoint richness. So in this case, we re-ran the BEST test looking at only the four variables 

mentioned above. Furthermore, temperature was not identified by the vector fitting as a 

good predictor of the MOTUs (results discussed in more detail below). 

Simple correlations were also performed between EHMP matched monitoring data and 

taxa group richness to help determine which predictors would be best for the BN-RRM 

model. The R2 of the correlations were summarized and used to help determine the 

predictors in the BN-RRM model. 

 

Big Picture eDNA analysis – NMDS Ordination 

NMDS ordination was conducted using the Jaccard similarly metric for the Summer 2010 

and Fall 2012 MOTU data (Figure 2.1). For the 2010 samples, the Noosa and Logan 

samples separate from the other estuaries in the NMDS plots, indicating that they have 

different benthic community composition than the other estuaries (Figure 2.1a). The 

remaining three estuaries (Pine, Currumbin, and Maroochydore) form a third separate group 

of points, indicating that they are not different from each other.  For the 2012 samples, the 
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samples from the different estuaries do clearly separate via ordination (Figure 2.1b). 

However, sample points reflecting the same estuary do plot next to each other on the NMDS 

figures, with the Noosa and Logan again forming the clearest groups. In 2012, the samples 

from the marine portion of the estuaries with higher salinities generally clustered together on 

the left side of the plot irrespective of estuary, indicating these samples are similar to each 

other. The 2010 and 2012 datasets together represent snapshots of the condition of the 

benthic community composition and reflect the inherent variability of benthic taxa.  
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Figure 2.1. NMDS plots illustrating the similarities and differences in the benthic eukaryote 
communities from the five SEQ estuaries for the a) 2010 and b) 2012 sampling events. The 
shading of the site markers indicates their position from marine (light) to freshwater (dark).  
Generally, an NMDS plot with stress < 0.2 is considered a good representation of the data. 
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Vector fitting to NMDS ordination 

Vector fitting to the NMDS plots was used to visually explain the benthic ordination with 

the water quality variables, and to begin to understand which variables are consistently most 

predictive of the benthic taxa (Figure 2.2). In 2010, the water quality variables TN, TP, 

Turbidity, Salinity, and DO were the best predictors (p< 0.001) (Figure 2.2a). The labeled 

arrows in the vector fitting plots point to the direction of most rapid change in water quality 

variable, or the direction of the gradient. The length of the arrow is proportional to the 

correlation between ordination and variable, otherwise known as the strength of the 

gradient. According to the vector fitting, the TN, TP, and Turbidity gradient is strongest in the 

Logan, which explains why that estuary clearly separates from the others. The Salinity and 

DO arrows do not clearly point in the direction of a single estuary, but they do point away 

from the Logan, indicating the Salinity and DO gradient are most important in the other 

estuaries compared to the Logan (Figure 2.2a). 

In 2012, the water quality variables TN, TP, Chla, and Salinity were the best predictors 

(p < 0.05) (Figure 2.2b). Again, the TN and TP gradient was strongest in the direction of the 

Logan. The Chl-a endpoint also appears to be predictive of the Logan. The Salinity gradient, 

again, does not points in the direction of a specific estuary (Figure 2.2b).  
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Figure 2.2. NMDS plots illustrating the similarities and differences in the benthic eukaryote 
communities from the five SEQ estuaries for the a) 2010 and b) 2012 sampling events. 
Water quality variables that are used as predictors in the BN model have been fit to the plot.  
Generally, an NMDS plot with stress < 0.2 is considered a good representation of the data. 
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BEST test and correlations results 

The results of the correlation coefficients and R2 from the BEST test and correlations, 

respectively, are provided in Table S4. Based on these results, different predictors were 

tried in the BN-RRM model. The water quality variables ultimately selected (Table S4, 

column on the far right) were identified in multiple tests and were confirmed in the BN-RRM 

model by comparing observed richness to predicted richness. If no variables or only one 

variable was identified by the different analysis/testing methods, then TN and TP were used 

as predictors. In the end, TN and TP were used as predictors for all benthic groups. In some 

cases, prior knowledge from the literature was also used to determine the predictors, and 

Salinity was selected as a predictor for Diatoms, Meiofauna, and Fungi. Turbidity was not 

selected as a predictor for any groups. 
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Table 2.4: Summary of analysis used to determine predictors for the BN-RRM model and 
the final predictors selected.  
 

Taxa Group Vector 
Fitting  

(for 
MOTUs) 

Best Test 
Results (for taxa 
group richness) 

Correlation Results 
(for taxa group 

richness) 

Priors from 
Literature 
(for taxa 

group 
richness) 

Predictors used 
in the BN-RRM 

model 
 

Diatom 2010 
MOTUs:  
TN,  
TP, 
Turbidity, 
Salinity  
 
 
 
 
2012 
MOTUs:  
TN, 
TP,  
Salinity 

Salinity, Turbidity 
(cor = 0.35) 

TN (R2 = 0.25)* 
TP (R2 = 0.27)* 
Turbidity (R2 = 0.16) 
Salinity (R2 = 0.35)* 

Salinity  TN, TP, and 
Salinity 

Dinoflagellate Salinity (cor = 
0.07) 

TN (R2 = 0.006) 
TP (R2 = 0.0004) 
Turbidity (R2 = 
0.001) 
Salinity (R2 = 0.002) 

  TN, TP   

Green Algae TN, Salinity (cor 
= 0.17) 

TN (R2 = 0.19)* 
TP (R2 = 0.032) 
Turbidity (R2= 0.022) 
Salinity (R2 = 0.1) 

  TN, TP 

Fungi Salinity (cor = 
0.3) 

TN (R2 = 0.15) 
TP (R2 = 0.23)* 
Turbidity (R2 = 0.14) 
Salinity (R2 = 0.29)* 

  TN, TP, and 
Salinity 

Meiofauna TN (cor = 0.11) TN (R2 = 0.04) 
TP (R2 = 0.07) 
Turbidity (R2 = 0.05) 
Salinity (R2 = 0.06) 

Salinity  TN, TP, and 
Salinity 

Protozoan Salinity (cor = 
0.08) 

TN (R2 = 0) 
TP (R2 = 0.0008) 
Turbidity (R2 = 0.01) 
Salinity (R2 = 0.002) 

  TN, TP 
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3. Sources of information for case learning files 

Land Use Data: The land use data for South East Queensland was downloaded free of 

charge through the Queensland Government GIS dataset webpage.  

https://data.qld.gov.au/dataset/land-use-mapping-series 

 

Precipitation Data: Precipitation data was downloaded from Queensland BOM weather 

stations free of charge. 

 

Water Quality Monitoring Data: The water quality data was provided free of charge through 

data requests to the South East Queensland Health-e-waterways 

program.http://hlw.org.au/report-card/monitoring-program. 

 

eDNA Data: The benthic eDNA dataset was provided by CSIRO as described in Section 2 of 

this Supplement Section. (www.arb-silva.de/)   
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4.	Images	of	the	Netica-BN-RRM	networks	

The names of the models correspond to the Netica file names also included as 
supplemental information. 
 
Lower Logan 

 

Figure 4.1: Bayesian network relative risk method model (BN-RRM) as shown in Netica 
(Norsys 2014) for the Logan estuary with the Lower Logan risk region stressors selected. 
See the LOGAN.neta for the Netica model file. 
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Lower Noosa 

 
 
Figure 4.2: Bayesian network relative risk method model (BN-RRM) as shown in Netica 
(Norsys 2014) for the Logan estuary with the Lower Noosa risk region stressors selected. 
See the NOOSA_LOWER.neta for the Netica model file. 
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Middle Noosa 

 
 
Figure 4.3: Bayesian network relative risk method model (BN-RRM) as shown in Netica 
(Norsys 2014) for the Logan estuary with the Middle Noosa risk region stressors selected. 
See NOOSA_MIDDLE.neta for the Netica model file. 
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Upper Noosa 
 

 
Figure 4.4: Bayesian network relative risk method model (BN-RRM) as shown in Netica (Norsys 
2014) for the Logan estuary with the Upper Noosa risk region stressors selected. See the 
NOOSA_UPPER.neta for the Netica model file. 
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Lower Pine

 
 
Figure 4.5: Bayesian network relative risk method model (BN-RRM) as shown in Netica 
(Norsys 2014) for the Logan estuary with the Lower Pine risk region stressors selected. See 
PINE_LOWER.neta for the Netica model file. 
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Middle Pine 

 
Figure 4.6: Bayesian network relative risk method model (BN-RRM) as shown in Netica 
(Norsys 2014) for the Logan estuary with the Middle Pine risk region stressors selected.  
See PINE_MIDDLE.neta for the Netica model file. 
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