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Abstract 

This honors project details the design and development of an internal orthopedic implant that surgically 

corrects the midfoot fracture and subsequent arch collapse in patients with Charcot arthropathy. The client of 

the project is Dr. David Kay, an orthopedic surgeon with the Crystal Clinic in Akron, Ohio. He presented a 

problem surrounding surgical implants meant to repair Charcot arthropathy. Implants that repair the midfoot 

fracture failed at a rate of about 60%. A team of senior biomedical engineering students attending the University 

of Akron developed a goal to design a new surgical implant that would reduce the failure rate of reconstruction 

of the midfoot in patients with Charcot Fracture. To meet this goal, the team implemented a methodical design 

approach consisting of 5 stages. Each stage had specific objectives or outputs that were evaluated for successful 

completion in relation to the scope of the project. The result of this project is an implant design and alpha 

prototype that meets customer requirements, engineering requirements, and solves the clinical problem initially 

presented by Dr. Kay. In addition, a Design History File was developed that documents the entire design 

process. 

Background 

Charcot arthropathy is a condition first described by French neurologist, Jean-Martin Charcot, in 1860. [1] 

Dr. Mahir Jani, an orthopedic surgeon affiliated with Frederick Regional Hospital in Frederick, Maryland and 

Dr. Jeffery Johnson, an associate professor and chief of the Foot & Ankle Service, Department of Orthopaedic 

Surgery at Barnes-Jewish Hospital at Washington University School of Medicine in St. Louis, Missouri, 

explains Charcot arthropathy as: 

"… a progressive destruction of bone and joints, which is usually caused by unrecognized injury and occurs 

in people who have peripheral neuropathy." [1] 

Peripheral neuropathy is a condition resulting from damage to the peripheral nerves and is classified into 

three types: sensory, autonomic, and motor. Muscle weakness, numbness, lack of coordination, and pain are 

some of the clinical symptoms that can occur with Charcot arthropathy. [2] Within the foot, high-pressure 

concentrations can occur due to abnormal loading via the change in gate and protrusions from misaligned 

bones. If left untreated, these pressure concentrations can result in ulcerations, infections, and subsequent loss 

of the limb. [3] [4]  

There are four main types of products that provide a solution to Charcot fracture currently. One of the 

solutions is called the Ilizarov method. The Taylor Spatial Frame, produced by Smith and Nephew, is a good 

example of this method. [5] The Taylor Spatial frame uses an external metal frame with rings and telescopic 

struts that can be independently lengthened or shortened to correct foot deformities. The second solution is 

external fixation. The Salvation 2 system, produced by Wright Medical, is a limb salvage system that utilizes a 

system of plates, external fixation, fusion bolts and beams, and mid-foot nails. [6] This system was of particular 

interest due to the interchangeability of the components based on surgeon preference. For example, if a surgeon 

preferred not to use external fixation in the system, they didn’t have to. The third solution consists of a truss 

system that fixates in sturdier bone and aids in the distribution of weight from the patient on the injured area. 

Web4Medical, produces the Osteotomy Truss System. [7] The osteotomy truss system is a 3-D printed implant 

that is used as a wedge replacement for the small piece of bone in the correction surgery. This implant is of 

particular interest to the team because it can be customized to the patient. Web4Medical receives scans of the 

patient and then prints the implant that can implant for that specific patient. The fourth solution is an 



4 
 

 

   
 

intramedullary rod that runs through the foot and holds the shape of the reformed arch in place so that the bone 

can heal around it. Orthofix produces the G-Beam, an intramedullary rod that runs through the first metatarsal 

in the Charcot fracture. [8] 

Project Scope  

In specialized foot clinics, the prevalence of Charcot arthropathy in patients can vary between 0.1% to 

13% [9]. Of these cases, Dr. Kay noted a 60% failure rate of the current surgical implants used to correct the 

midfoot arch fracture in patients with Charcot arthropathy. He indicated that implants fail due to either the 

implant breaking, wearing through the bone, or dislodging from the original placement. Dr. Kay presented to 

our team of four biomedical engineering undergraduates a need for a new implant that would reduce or 

eliminate the occurrence of failure due to the above three causative factors. 

Methodology  

To accomplish the objectives of this project, the team utilized a methodology that followed guidelines 

set forth by the Food and Drug Administration (FDA) for the design and development of medical devices. This 

process (Figure 1) is a waterfall-like diagram that details each step to be taken in the design and development of 

a medical device.  

 

Figure 1: FDA Waterfall Diagram of Design Controls for Medical Devices [10] 

The purpose of the user needs stage was to define and understand the clinical problem in addition to 

understanding customers’ requirements. Preliminary research into Charcot fracture, its causes, severity, and 

different types allowed the team members to build background in the topic. This research created a basis on 

which fruitful, intelligent discussion was facilitated more smoothly with experts in the field. From this point, 

surveys and interviews were conducted with our client and other medical professionals such as Dr. Brodsky, Dr. 

Richter, a professor at Case Western Reserve University, and 7 other podiatrist and orthopedic surgeons that 

work at the University of California-San Francisco. The surveys asked for opinions on current surgical methods, 

details on the surgical process, including less obvious body parts involved in the surgery, and healing 
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time/experience of patients’ post-surgery. Based on the information collected during this process the team was 

able to formulate a set of customer requirements that further refined the scope of the project.  

Once the customer requirements were established and approved by the teams’ sponsor and project 

readers, the project moved into the next stage, the Design Inputs. During this stage, the team generated a 

Quality Function Deployment (QFD) that produced correlated ratings between engineering and customer 

requirements. In addition, a concept Failure Mode and Effects Analysis (FMEA) document was generated by 

evaluating the common failure modes of the most common products on the market.  This evaluation gave a 

basis for future concepts to be evaluated against. 

Next, during the Design Process stage, we brainstormed design concepts and shared ideas for the 

implant. Each individual concept was broken down into components, and the components were evaluated and 

compared against the engineering requirements previously made. Selection charts aided in this evaluation 

process, and components that met requirements were incorporated into the finalized design. The material 

selection for the plates, rods, and screws was based on the ultimate tensile strength of the material compared to 

the applied load and ultimate tensile strength of bone. The goal was to choose a material that has an ultimate 

tensile strength higher than the expected load but lower than the ultimate tensile strength of bone, allowing the 

implant to withstand the applied load and not fracture, but not be so strong as to wear through the bone. These 

designs were modeled in Solidworks and evaluated with a QFD and FMEA similar to the evaluation of the 

competitor products in the previous stage gait. 

When moving into the Design Output stage, the team’s design went through a few more design 

iterations. Communication with the sponsor ensured that the design was in line with his expectations. The QFD, 

FMEA, and Solidworks documents were updated to follow the finalized design. After this, preparations for a 

prototype were made. An alpha prototype was 3D printed in polylactic acid filament to verify the shape and size 

of the prototype (Appendix A). In addition, a design package including specifications, drawings, vendors, and 

assemblies was constructed. At this point, the project scope changed greatly due to the COVID-19 pandemic 

and subsequent quarantine. The team was no longer able to meet physically but we were able to complete an 

FEA analysis of the implant. Further validation and verification testing was not completed.  

Project Requirements  

Customer Requirements 

To understand the scope of the project, our team consulted with Dr. Kay to formulate his expectations and 

solidify them into a list. The following user needs were identified by combining the aforementioned list with the 

data from the survey:  

1. A smaller surgical incision is necessary to reduce the risk of infection.  

2. To accommodate the varying surgical techniques and preferences, an easily repeatable procedure is 

essential for the product to be successful. 

3. In line with reducing the risk of infections, a 100% Internal Device is a necessity. 

4. The product must be able to withstand cyclic loading that it will experience in the neuropathic foot for it 

to be a successful solution. 



6 
 

 

   
 

5. The goal of the product is to stabilize the midfoot arch 

6. An FEA model that displays the ability of the product is necessary to ensure that it’s capable of repairing 

Charcot fractures and withstanding the experienced loads.  

7. A new product, unlike the options available, is beneficial since the current designs are not working. 

8. Having a device that can fit multiple body types and bone structures will allow for the treatment of 

extreme cases. 

9. The device must be biocompatible such that it does not induce a negative immune response. 

Objectives 

To align with the scope of the project, the team generated requirements to follow the expectations of our 

sponsor. To achieve the scope of the project, our team designed and developed a novel surgical implant that will 

correct the fracture of the midfoot arch utilizing the following objectives: 

1. Implement a system that utilizes a methodical and systematic implant design approach. 

2. Understand the pathophysiology, current treatments, and methods of Charcot arthropathy midfoot 

fracture reconstruction. 

3. Identify customer requirements and develop a clinical needs statement for the development of a new 

implant that reduces the failure rate. 

4. Develop a set of design specifications based on customer requirements, industry standards, and risk 

assessment results. 

5. Generate and select an initial implant design concept based on customer requirements and design 

specifications. 

6. Develop initial and subsequent prototypes of the implant design concepts utilizing 3D modeling 

software 

7. Conduct testing and risk assessment to ensure the selected design satisfies both the design 

specifications and customer requirements and adjust the design accordingly. 

Engineering Requirements 

There were six engineering requirements identified through the customer requirements established by our 

sponsor. These requirements were used for the verification of the implant design. 

1. The implant must withstand 107 cycles of fatigue testing 

2. The implant must weigh less than 2 lbs 

3. The implant material must be durable and non-corrosive in the human body 

4. The implant must be biocompatible and not cause any adverse effects to the patient 

5. The implant must be able to withstand an applied force of about 1.2 * bodyweight 

6. The implant must have an ultimate tensile stress no more than about 150 MPa 
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Results 

Design Concepts 

Initial Concepts 

All of the images, generated by team members, were based on different aspects of the load-sharing 

system and Charcot fracture fixation. Important aspects that came from these initial ideas that were incorporated 

in the concept creation process were: an under-arch support to prevent the medial arch from re-collapsing, a 

triangular load-bearing system to better transverse loads, adjustable pieces on the implant, and materials that 

were more “springy” to help transverse loads better and withstand cyclic loading.  

Concepts A and B 

 

 

 

 

 

 

 

Concept A (Figure 2) consisted of a plate-rod system that utilized a top rod and a bottom plate. The 

bottom plate would be located under the arch, and the rod would run through the first metatarsal. The plate-

system would be connected with a y-joint. The connection point would utilize o-ring bushings to better 

transverse loads. This system was meant to be able to transverse loads and withstand cyclic loading much more 

effectively than previous implants. As an alternative to the y-joint, Concept B (Figure 3) used screws with o-

ring bushings to anchor each piece in place. 

 

 

 

 

 

 

 

Figure 3a: Side View of Concept A 
Figure 3b: Angled View of Concept A 

Figure 2: Illustration of Concept A 
Figure 3c: Angled View 2 of Concept A 

Figure 3: Illustration of Concept B Figure 4a: Angled View of Concept B Figure 4b: Side View of Concept B 
Figure 4c: Angled View 2 of Concept B 

Figure 2: 3D Model of Concept A 

Figure 3: 3D Model of Concept B 
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Risk Assessment 

The first set of risk assessment was conducted on four existing products, Salvation 2, G-Beam, 

Osteotomy Truss System, and the Taylor Spatial Frame. The most common failures identified from the FMEA 

across all four products were that (a) the screws backed out; (b) the beams fractured; (c) the rods burrow 

through the bone; (d) the plates dislodged; (e) bacterial infections occur from external implant. We identified 

design considerations to mitigate these risks including (a) better thread design; (b) better anchoring of the entire 

implant, (c) utilizing an internal device to minimize infection; (d) ensuring use of a biocompatible material that 

does not cause adverse reactions for the patient 

A second risk assessment was conducted to determine the superior design concept in terms of patient 

risk. After analyzing the results of the FMEA risk assessment, high-risk features were identified in both 

Concept A and Concept B. For Concept A, the Top Rod, Y-Joint, and Toe Rod contained high-level risks. All 

three features contained the high-level risks of (a) wearing through the bone; (b) fracturing, (c) dislodging. The 

Y-Joint had an additional risk of difficulty mating with other implant components due to its complex design. 

Both Concepts A and B utilized the same mitigation strategies to minimize the identified risks. These 

mitigations include: (a) design changes and (b) ensuring correct material selection. These mitigations could be 

verified by: (a) mechanical testing; (b) engineering calculations; (c) FEA analysis 

After the complete assessment, Concept B contained fewer high-risk components and high-level risks. Ergo, in 

terms of patient risk, Concept B is the superior concept. Although Concept B satisfied more engineering and 

customer requirements, three areas for potential improvement were identified for future design iterations. These 

improvements included: durability of bushings made of PEEK (ensure they are non-corrosive), no protrusions 

from the plate-rod system that could cause rubbing on the bone, and the ability to anchor plate-rod system to the 

bone that would withstand the forces experienced in a neuropathic gait (up to 1.2*bodyweight).  

A final risk assessment was conducted for an iterated design in the form of an FMEA. No high-level risks 

were detected. Moderate level risks included: (a) components fracturing and (b) components backing out.  

Lower-level risks were identified, but these low-level risks were deemed acceptable to move forward. 

Suggested mitigations to minimize the moderate risks identified in this design include: (a) FEA analysis; (b) 

engineering calculations; (c) mechanical testing. Compared to all other concepts presented in this project, this 

current design is the superior design in terms of patient risk.  

Final Design: Concept C 

Our final concept, Concept C, utilized the idea of a suspension bridge. Concept C comprised a plate 

system and rod. This plate system has a series of 3 plates attached with sutures. The three plates would cover 

the first metatarsal, the talus, and the calcaneus and attach to each bone through two screws and a PEEK o-ring. 

The purpose of the screws is to fix the plates to the bone to restrict the plates from moving. The plates are 

anchored to the bone in areas of better bone quality, such as the calcaneus and the talus, through suture anchors. 

A hollow threaded rod would be inserted into the first metatarsal and anchor into the talus. Since this 

component is 3D printed, the angulation of the rod would be created utilizing the patient's anatomy. Figures 4a, 

and 4b illustrate this new design concept. A major advantage of this new design is that because the implant is 

3D printed, it can be customized to the individual patient. Currently, the implants used in the surgery to correct 

Charcot fracture don’t have the customizable option to surgeons to have implants made for each patient.   
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Material Selection 

To calculate the experienced stress, the team derived a mathematical model to determine the load 

experienced on each implant component. The actual implant was to be placed at a 60-degree angle from the 

vertical axis, toward the medial side of the foot. Because a force value loaded in a uniaxial direction is larger 

than a force value loaded in an angular direction, the team determined the worst-case load to be the force loaded 

in the vertical uniaxial direction. Figure 5 illustrates this description.  

 

Figure 5: Illustration of the load experienced on the Implant System (1.2 * Body Weight) 

There were two assumptions made to derive this math model:  

1. The implant system (rod and plates) experienced the load equally.  

2. The 3-plate system experienced the load equally.  

The first assumption allowed the team to state that the load experienced on the rod was half of the 

applied force, and the load experienced on the 3-plate system was half the applied load. The second assumption 

allowed the team to state that the load experienced on each plate was ⅓ of the load experienced by the 3-plate 

system (which is ½ of the total load). The applied load is based on the value described by Davis et al. that states 

that the ground reactive force experienced in a neuropathic patient is about 1.2 * bodyweight. [11] The body 

Figure 4b: 3D Solidworks Model of the Entire Implant System 

 

Figure 5b: Original Sketch of Concept C 

Figure 4a: Sketch of Final Design Concept on 

the Foot 

 

Figure 4b: 3D Model of the Final Design Concept 

 



10 
 

 

   
 

weight value was chosen from our client Dr. David Kay, based on the typical patient weight he experienced in 

his clinic. The weight was chosen at 400 lbs.  

The following equations were used to calculate the applied force experienced by each component: 

𝐹𝑡𝑜𝑡𝑎𝑙  = 𝐹𝑃𝑙𝑎𝑡𝑒 + 𝐹𝑅𝑜𝑑 = 2𝐹                                              (1) 

From equation 1 and assumption 1, it was shown that the rod and plate-system experience 240 lbs of 

force.  

𝐹𝑃𝑙𝑎𝑡𝑒 =  𝐹𝑀−𝑃𝑙𝑎𝑡𝑒 + 𝐹𝐶−𝑃𝑙𝑎𝑡𝑒 +  𝐹𝑇−𝑃𝑙𝑎𝑡𝑒 = 3𝐹               (2) 

From equation 2 and assumption 2, it was found that each plate experiences 80 lbs of force.  

 The team then used these values to calculate the ultimate stress each component will experience. The 

calculation of the ultimate stress for the plates was done at worst case, which would be the smallest cross-

sectional area of the plate to the applied force. The smallest cross-sectional area of the three plates was located 

in the T-plate. Figure 6 illustrates the T-Plate cross-sectional area with dimensions: 0.05 in x 0.13 in. 

 

Figure 6: Cross-Sectional Area of the T-Plate with Dimensions 

The experienced ultimate strength was calculated by dividing the applied load by the cross-sectional 

area: 

𝐴 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑤𝑖𝑑𝑡ℎ)                           (3) 

𝜏 =  
𝐹

𝐴
                                     (4) 

From equation 2,1, the cross-sectional area is 6.5 𝑥 10−3 𝑖𝑛2. Utilizing equations 3 and 4, the ultimate 

stress that the plates experience is 12 kilo pounds per square inch (ksi). A carbon fiber-PEEK composite 

material has an ultimate strength of 15.23 ksi, which is greater than the ultimate strength of human bone (21 

ksi). Ergo, a carbon fiber - PEEK composite was chosen for the material of our plates. Additionally, utilizing 

carbon fiber-PEEK composite will transverse loads through the implant more effectively than traditional metal 
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such as Ti-6Al-4V. Similar calculations were conducted for the rod. Since there is only one rod in this system, 

the calculations were conducted using dimensions of the rod. The rod had a radius of 0.29 in.  

The experienced ultimate strength was calculated by dividing the applied load by the cross-sectional 

area, utilizing the equations shown below.  

𝐴 = 𝜋𝑟2                           (5) 

𝜏 =  
𝐹

𝐴
                     (6) 

From equation 5, the cross-sectional area is 0.26 𝑖𝑛2. Utilizing equations 5 and 6, the experienced 

ultimate stress of the rod was 0.91 ksi. 

Similar derivations used for the rod and plate-system were used for the screws. However, instead of a 

uniaxial force that the rod and plate-system experience, the screws experience a torsional force. That torsional 

force (𝜏) was used to calculate the experienced torsional strength. This calculation required the applied torque 

(T) (assumed to be 6lbf from industry standard), the distance from the center to the stressed surface (𝑟0) (the 

outer diameter of the screw threads), and the second moment of inertia (I). The second moment of inertia was 

used since that is a measure of resistance to torque.  

The outer diameter of the screws is 4.05 mm, with an outer radius of 2.05 mm or 7.97x10-2 in. The inner 

diameter is 3.10 mm, with an inner radius is 1.55 mm. The length of the screw is 24.81 mm or 0.977 in. The 

equations used to calculate the applied torsional stress are as follows: 

𝐼 =  
𝜋

2
(𝑟0

4 − 𝑟𝑖
4)                                (7) 

𝜏 =  
𝑇𝑟0

𝐼
                                           (8) 

From equations 7 and 8, the torsional strength experienced by the screws is 194 ksi. The material 

strength of 316 S12 stainless steel has a material strength of 15.28 ksi and thus was chosen as the material for 

our implant screws.  

FEA Analysis 

The analysis illustrations are contained in Appendix B. For the rod portion of the implant system, an 

applied load of 240 pounds of force or 1067 N was tested. It was found that the maximum deformation the rod 

experienced was 3.5 mm in the center of the rod.  

For the 3-plate system, each plate was tested individually. Each plate had an angularly applied force of 

80 pounds of force or 355 N. This replicates the angular placement of the plate on the foot in vitro. The C-Plate 

experienced a maximum deformation of 0.000809 mm at the top portion of the plate. The M-Plate experienced 

a maximum deformation of 0.000879 mm at the top portion of the plate. The T-Plate experienced a maximum 

deformation of 2.529 x 10-5 mm.  

The plate system essentially had a deformation of about 0 mm. This indicates that the material 

distributes the load evenly enough to withstand the applied load experienced in a neuropathic gait and not fail. 
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However, because the rod displaced at a maximum of 3.5 mm and without further testing, our team cannot 

definitively state that the rod will not fail 

Conclusions and Future Work 

From the results of the FEA analysis, we believe our plate system will satisfy our user and engineering 

design requirements and prove successful in correcting Charcot fracture. However, we believe that further 

testing and design iterations should be completed for the rod before moving forward with this design concept. 

We initially made the rod hollow because of the documented failures of rods that are solid wearing through the 

bone and fracturing. Yet, we think that the hollowness of the rod contributed to its extreme deformation.  

Additionally, the material may not be as strong as we calculated it to be. We utilized a 20/80 composite 

of carbon fiber - PEEK. Future design changes could include utilizing a different composite ratio such as 40/60 

of carbon fiber - PEEK, a different material, or even a solid rod might improve the performance of this implant 

component upon further testing.Additional testing also needs to be conducted to ensure this product will 

withstand the expected life cycle of the implant. Furthermore, tasks such as manufacturing processes still need 

to be developed, and a 510K needs to be submitted to the FDA to be able to put our implant into the market.  

Our client showed in interest in allowing the rod and contour of the plate system to be created based on 

the patient’s own anatomy since the implant will be 3D printed. This idea should be investigated further as this 

would allow our implant system to further differentiate ourselves from the competitors. Having an implant that 

is designed to the patient adds more customization options for the surgeon and better outcomes for the implant 

and patient. In order to provide a patient-fit implant, additional software would need to be created or purchased 

that could analyze the contours of patient scans and relate them to the implant. This model of providing on a 

case-by-case basis would cause the product to have a significantly higher price than competitor products on the 

market. A cost-benefit analysis should be completed to analyze the benefits and drawbacks of a case-by-case 

production model in comparison to mass production.  

Lessons Learned 

The team worked together with experts in the field to understand Charcot fracture and how it affected 

patients and medical personnel. The team learned the importance of initial research and how it enhances the 

conversation and level of understanding. The team also learned about the process of creating a new product and 

the importance of translating customer requirements into engineering requirements properly. The ability to 

discuss with other engineers technically while understanding the medical terminology of those personnel aided 

in the process of creating the implant. Additionally, communication under tight schedules and unforeseen events 

was a key factor in bringing the product to a conclusion that suits everyone's needs.   
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Appendix A: Alpha Prototype 
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Appendix B: FEA Analysis Total Deformation 
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