
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2020

Home Sales as a Time Series Model Home Sales as a Time Series Model

Noah R. Hellenthal
The University of Akron, nrh38@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Longitudinal Data Analysis and Time Series Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Hellenthal, Noah R., "Home Sales as a Time Series Model" (2020). Williams Honors College, Honors
Research Projects. 1103.
https://ideaexchange.uakron.edu/honors_research_projects/1103

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Akron

https://core.ac.uk/display/323028468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/822?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1103
https://ideaexchange.uakron.edu/honors_research_projects/1103?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Time Series Analysis on Monthly Home Sales

Noah Hellenthal

1

Introduction

 When the Great Recession began in 2008, the prices of homes decreased greatly after

enjoying around a decade of continuously rising prices. Between the years 2007 and 2008,

median home sales fell about $25,000 and median home price fell around $20,000 (CNN

Money). At the same time, foreclosures were skyrocketing and suddenly the number of houses

on the market were overwhelming. Due to the collapse of subprime mortgages causing radical

increases in monthly payments for homes, the quick turn in home prices and sales led to the

numerous consequences of the Great Recession (Investopedia). Given the COVID-19 pandemic,

we may be in the middle of our next “Great Recession” today. Once we use the history of home

sales in order to craft a model of best fit, maybe we will see a downward trend in home sales like

we did in 2008. With this model, we should be able to forecast a few years into the future and be

able to get a rough estimation of monthly home sales.

 Using data from the U.S. Census Bureau, I was able to obtain monthly home sales from

January 1963 to August 2019. This data is formatted as a time series dataset where there are two

variables: “Date” which is our Month/Year information for each instance and “Sales” which

contains the monthly home sales across the USA in thousands. The “Date” variable is our

independent index variable while “Sales” is the dependent response variable for the time series

model. As an additional note, “Sales” specifies only the number of homes sold and does not

include the number of homes put onto the market and not sold in the same month. Since the data

is coming from the Census Bureau, I enjoyed the benefit of having no missing months or sales

values within my dataset.

 Throughout this report, I will be referencing results I obtained by using Python. With

Python, I am able to conclude if my data has a strong seasonal component, confirm constant

2

variance throughout the dataset, ensure stationarity, fit ARIMA or sARIMA time series models

(whichever is appropriate), and forecast for future monthly sales in the housing market. First, I

will begin with plotting the totality of my dataset.

 Just by looking at the plotted dataset, we can already notice trends in home sales

including the steady incline and quick decline with the 2008 Recession. In addition, there seems

to be some sense of seasonality in the plot. Patterns of increases and decreases are present as

each year in the plot looks like it has the same basic shape. If seasonality is a major factor in our

data, the sARIMA modeling approach will be preferred over conventional ARIMA modeling. To

set the data up for modeling, it must be split into training and testing samples. Therefore, I split

the last two years of the dataset off (September 2017 to August 2019) to create the testing sample

and left the remainder to build the model.

Seasonal Decomposition

 Before any model building, I created a plot of decomposition in Python. This plot is a

great visual that shows the breakdown of aspects like trend, seasonality, and error within my

main dataset before I begin any analysis or model building. The plot below includes each of

3

these aspects as well as a copy of the plot of observed values. As an additional note, each of

these plots are made from the training sample.

Immediately, it is easier to identify the periods where home sales increased and decreased

due to the “Trend” line. With the seasonality and error removed, the trend line yields a smoother

image of the dataset. Once again, the Great Recession is obvious. The “Seasonality” line

reinforces the previous inclination that sARIMA modeling is more appropriate for this dataset.

Each year seems to be giving the same shape where each month appears to plot the same value.

Lastly, I can look at the “Residual” (error) line in order to determine if my data has an issue with

nonconstant variance. This needs to be addressed before any model building so a more accurate

model is obtained. To fix this issue, a logarithm could be applied to the dependent home sales

variable. The residual plot does not lead me to believe that my variance is nonconstant. Despite

some changes in variance due to recession, the variance stays pretty uniform throughout the

dataset. Even though, I am sure that I should not apply a logarithm to my data, I will anyways

just to get a plot of how the logarithm affects my data. Doing this gives the graph of the overall

dataset below:

4

 The plot of the logarithmic data gives a similar looking graph to the main dataset.

However, now all of the data extremely pinched into a range of 3 to 4.75. This compression will

eventually make my forecasts inaccurate because it will be difficult for the model built on this

logarithmic data to make estimations for home sales in the thousands (when the transformation is

removed). For now, I will continue with model building with non-logarithmic data and return to

this step later if the diagnosis plots of the final model indicate that additional transformations are

needed.

Stationarity

 Applying the logarithm earlier was also an attempt to make the dataset stationary on

variance. However, I determined that the data was already stationary on variance and concluded

that the logarithm was not needed. With the concept of stationarity, we want a constant variance

as well as a constant mean throughout the dataset. Looking back at the main plot, if the data can

be marked as stationary on mean, then we would see a somewhat flat overall trend. Of course,

the trend has its increases and decreases throughout including the dramatic drop in 2008, but the

data looks like it may stay somewhat consistent and hover around a constant mean of 50.

5

However, inference can only get us so far. Earlier, I had indicated that I would be taking

the sARIMA modeling approach. These sARIMA models are compiled as sARIMA(p, d, q)(P,

D, Q, m). Therefore, if I believe that my data is not already stationary on mean, then I will have

to adjust the “d” parameter by increasing it one step at a time. Increasing this parameter

“differences” the data and attempts to remove any trend that my exist within the main plot. There

are statistical tests out there such as the ADF, KPSS, and PP tests that estimate the values of

these parameter. However, I received rather inconclusive results from performing these types of

tests in Python. The three tests suggested the value of “d” to be either zero or one.

Another differencing parameter within the sARIMA model is “D.” While D doesn’t aim

to make the dataset stationary on mean or variance, it will difference the data in order to remove

seasonality if it is not equal to zero. While increasing “d” by one will difference the data by one,

increasing “D” will difference the data by “m” which is included in the sARIMA model. I will be

describing how to find this “m” parameter in the next section. Due to the inconclusive outcomes

of this section, I am planning to craft four types of models. These types include d = 0 and D = 0,

d = 1 and D = 0, d = 0 and D = 1, and lastly d = 1 and D = 1. The naming of the model variables

will be specified in the “Model Building” section.

Seasonality Parameter

 Beyond worrying about differencing, sARIMA models contain a seasonality parameter

denoted by “m” which indicates the number of periods within a single season. Here, a single

season would be a year. Since our data is monthly, I believe m will equal 12. Plotting the

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) can give us two

more visuals to confirm that m equals 12. These plots consist of bars called “lags” as well as a

6

shaded confidence interval. Below are the ACF and PACF of the differenced dataset to show

significant lags:

 We always ignore lag zero in these graphs, so the next largest identifiable lag is on

twelve. Further down the X-axis we see another lag spike at twenty-four in both graphs. Before

concluding that m should be 12, I also noticed how the lags seem large at 3, 4, 6, 8, and 9 in each

plot. These spikes also make sense because there may be some quarterly or trimester seasonality

in the data as well. However, I will conclude that m should be 12 because the lags that represent

7

the multiples of three and four are quickly muted the lag span of thirteen to twenty-four. Because

these quarterly and trimester influences decrease significantly overtime while large spikes at

multiples of twelve remain, I will not consider other values of m during my model fitting.

Model Building

 In Python, I worked with two time series model building functions in order to craft my

final model. First, I used “auto_arima” which builds multiple possible models for my training

dataset and returns the best one it made. After using this function, I used a plain “ARIMA”

function which allows me to specify every parameter in an sARIMA(p, d, q)x(P, D, Q, m)

model. With the result of the auto_arima, I adjusted the parameters with this second function to

see if I could build an even better model than auto_arima which uses stepwise procedures to

obtain its result. While I adjusted the parameters, I would never increase them more than two

steps because I would risk overfitting my data. If I allowed myself to overfit the data, I may get

better values for model comparison criteria including AIC and BIC. However, my model would

become more complex and may not be able to make accurate predictions when the testing dataset

is applied.

 When using auto_arima, you must specify the values of d, D, and m. Due to the iteration

through d and D values I mentioned in the “Stationarity” section, I named my models, “Fit##”

where the first “#” would be replaced with the value assigned for d and the second for D. To start

model building, I created Fit00 with the auto_arima function where d and D both equal zero.

8

Fit00

 While this summary window, we are able to see that an sARIMA(2, 0, 2)x(2, 0, 1, 12)

model was built. However, even though this was the best model that auto_arima built with d and

D both equal to zero, it may not be the best overall model. Looking at the table, the p-values

(denoted P>|z|) for each parameter must be less than an alpha value of 0.05. Knowing this, it is

easy to identify that AR(p=2) and MA(q=2) are insignificant. With this, I ran a few adjustments

of this model to see if I could get anything better with the help of Python’s ARIMA function. I

ended up finding that an sARIMA(1, 0, 1)x(2, 0, 1, 12) model had all significant parameters.

This adjustment is named “Fit00b” and the summary window of this model is posted below.

9

Fit00b – Adjustment made to auto_arima result

 While the parameter situation improved in this model shown above, the model

comparison criteria of AIC and BIC do not lead me to believe that this is a much better model.

The AIC and BIC values of the model of best fit should be the lowest compared to all models

being compared. Between these two models, the BIC decreases but the AIC does not. Instead of

creating additional models where d = 0 and D = 0, I changed d to equal one and ran another

auto_arima.

10

Fit10

 By changing the differencing parameter, I(d), to equal one, I am working with the

assumption that the data was not already stationary on mean. In addition, this model has a lower

AIC and BIC that the earlier fit where d equaled zero. Once again, every parameter is significant

in the new sARIMA(1, 1, 1)x(2, 0, 1, 12) model. I did build several other models off of this build

with the ARIMA function, but each parameter increase or decrease I made led to insignificant

parameters and a higher AIC and BIC.

 Also, I made two other fits of Fit01 and Fit11. For both cases, I made the seasonal

differencing parameter, D, equal to one while d could be zero or one. My model for Fit01 looks

to be an improvement over Fit10 above.

11

Fit01

By changing D to equal 1 instead of d, I was able to build a model where the AIC and BIC saw a

serious drop. My AIC here is 3782.165 where it was 3848.643 in Fit01. Fit11 models were also

created; however, I saw no serious improvement in AIC and BIC and I worried that this “double

differencing” was too extreme for my dataset and would lead to overfitting. Due to this extensive

model building and changing parameters, I will conclude that Fit01 is the best possible model I

can create off of my training dataset for Home Sales.

 After building Fit01 for the training dataset, it is useful to plot certain diagnostic plots

including a “Standardized Residual Plot” and a “Q-Q Plot” in order to see if the model fits

certain assumptions made during model building. In Python, I was able to plot the residual

diagnostics below:

12

 The Standardized Residual plot in the top left of the image above pairs errors with time.

Here, we are supposed to see random residual placements around the zero mark on the Y-axis.

The plot above does seem to show this image; therefore, we can conclude that no trends exist

within our errors. The histogram and the Q-Q plots are similar to each other in the way that they

both show that our data does indeed have normal errors. The histogram shows this by having the

shape of a Normal Distribution while the Q-Q plot shows it by having the large majority of its

blue points line up along the diagonal red line. Lastly, the Correlogram shows us that the errors

are uncorrelated because every lag (besides lag zero which is defaulted at one) stays within the

bounds of the shaded confidence interval. Since each of the model building assumptions are met

here, I can conclude that my Fit01 model is useful and I can now attempt forecasting.

13

 Fit01 is indeed sARIMA(1, 0, 2)(1, 1, 1, 12), but this doesn’t include the coefficients that

is specific for forecasting Home Sales. Using the coefficients provided in the model summary for

Fit01, I can build the following model:

𝛻12𝑌𝑡 = 𝑋𝑡

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝛷1𝑋𝑡−1 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − 𝛩1𝑒𝑡−1

In the equations above, the coefficients are:

𝜙1 𝛷1 𝜃1 𝜃2 𝛩1

0.9781 0.2082 -0.2047 -0.0823 -0.9447

The seasonal difference of

the overall dataset (Yt) with

m = 12

The stationary dataset

Term for AR(P=1) Error Constant Terms for MA(q=1,2)

Term for MA(Q=1) Term for AR(p=1)

14

Forecasting

 Before forecasting for the future, I will forecast the two years that span my testing

dataset. Once this is done, I will be able to compare how well my model performed by graphing

the output of the forecast with the testing data.

 In the plot above, the red line represents the testing dataset while the blue line represents

what my sARIMA model is predicting from September 2017 to August 2019. While the forecast

does not follow in line with the actual testing dataset with great accuracy, it does follow the

seasonal trends pretty well. For both the forecast and the testing dataset, the lowest home sales

are typically during November and December while the highest sales tend to be in March. The

forecast seems to shift between being inaccurate to pretty close to the actual data. The two tables

below give the actual values of the testing dataset versus the model results.

15

 The two tables above show the actual testing data that I obtained through the U.S. Census

Bureau (left) and the forecasting dataset that was generated with the sARIMA model (right). The

biggest difference looks to be in November 2017 where the actual data is over 12,000 sales

higher that what the model predicted. However, towards the end of 2018, the model predicts

more accurately. In October 2018, the model predicted only about 655 more sales than what the

testing dataset shows. Perhaps, the model would have been more accurate in this forecast if the

U.S. Census Bureau had not rounded their data.

 Now that I have compared how the model performed alongside the testing data, it will be

interesting to see how well the model will predict for the next five years in the future (September

16

2019 to August 2024 for this dataset). In Python, I was able to create the graph below which

shows this five-year forecast:

In the graph above, the blue line represents the entire dataset (training and testing

combined) while the red line is the five-year forecast. While the prediction doesn’t reflect any of

the wild jumps or drops that occurred in the past, it does show a slight downward trend. The

seasonality is pretty consistent throughout each year, but the differences between the higher

performing month of March and the lower performing month of December are predicted to

decrease over time.

Conclusion

 After testing for stationarity and seasonality, I was able to build an sARIMA model for

Monthly Home Sales from data provided by the U.S. Census Bureau. I ran tests for stationarity

17

on variance, mean, and seasonality and I determined the appropriate seasonal factor for my

model. With Python, I was able to build several different sARIMA models to test different

parameters and compare AIC and BIC. In the end, I was able to create an sARIMA(1, 0, 2)x(1, 1,

1, 12) model which fulfilled all of the general assumptions a Statistician must make when

building a Time Series model. While the forecasting of the last two years in the dataset did not

adequately fit the actual data in the testing dataset, I still came pretty close at points and followed

the same seasonality that the testing dataset exhibited. The Python code that I used to complete

this analysis will be included below in an appendix. The model can only improve overtime as

more data of Monthly Home Sales is made public. When predicting for future data, the model

did in fact predict a slight downward trend in home sales. It will be interesting to compare this

prediction to actual home sales over the next five years to determine if the market will indeed

decline especially in light of the general economic downturn we have seen from COVID-19

affecting our current markets and lives.

18

References

6 October 2019. “Business and Industry.” United States Census Bureau. Retrieved October 6,

2019 from

https://www.census.gov/econ/currentdata/dbsearch?program=RESSALES&startYear=1963&

endYear=2019&categories=SOLD&dataType=TOTAL&geoLevel=US¬Adjusted=1&su

bmit=GET+DATA&releaseScheduleId=

Boykin, Ryan. 25 October 2019. “The Great Recession’s Impact on the Housing Market.”

Investopedia. Retrieved March 2, 2020 from https://www.investopedia.com/investing/great-

recessions-impact-housing-market/

Christie, Les. 12 February 2009. “Home prices in record plunge.” CNN Money. Retrieved March

2, 2020 from https://money.cnn.com/2009/02/12/real_estate/Latest_median_prices/

https://www.census.gov/econ/currentdata/dbsearch?program=RESSALES&startYear=1963&endYear=2019&categories=SOLD&dataType=TOTAL&geoLevel=US¬Adjusted=1&submit=GET+DATA&releaseScheduleId=
https://www.census.gov/econ/currentdata/dbsearch?program=RESSALES&startYear=1963&endYear=2019&categories=SOLD&dataType=TOTAL&geoLevel=US¬Adjusted=1&submit=GET+DATA&releaseScheduleId=
https://www.census.gov/econ/currentdata/dbsearch?program=RESSALES&startYear=1963&endYear=2019&categories=SOLD&dataType=TOTAL&geoLevel=US¬Adjusted=1&submit=GET+DATA&releaseScheduleId=
https://www.investopedia.com/investing/great-recessions-impact-housing-market/
https://www.investopedia.com/investing/great-recessions-impact-housing-market/
https://money.cnn.com/2009/02/12/real_estate/Latest_median_prices/

19

Appendix

-*- coding: utf-8 -*-

"""

Created on Tue Feb 11 16:42:38 2020

@author: Noah Hellenthal

"""

import os #Used to change directory

import numpy as np #Needed for pmdarima

import pandas as pd #Needed for reading dataframe and for pmdarima

import pmdarima as pm #Needed for time series preliminaries and auto_arima

from pmdarima.arima import ARIMA #fits specific ARIMA models

import statsmodels.api as sm #Used for Data Decomposition

from pandas.tseries.offsets import DateOffset #Used to add 24 more months for forecasting

from sklearn.model_selection import train_test_split #Train/Test Split of Time Series Data

#General figure settings

import matplotlib

import matplotlib.pyplot as plt

#These global guidelines aren't required for anything, but they help with some visuals

plt.style.use("fivethirtyeight")

matplotlib.rcParams["axes.labelsize"] = 14

matplotlib.rcParams["xtick.labelsize"] = 12

matplotlib.rcParams["ytick.labelsize"] = 12

#These two lines make the seasonal decompose plot larger

20

from pylab import rcParams

rcParams["figure.figsize"] = 18,8

#Change Directory to open Home Sales Data

os.getcwd()

os.chdir("E:\\Honors Project\\New Home Sales")

#Load Dataset

df_plot = pd.read_excel("Home Data.xlsx") #Keep this one to reference plot

df = pd.read_excel("Home Data.xlsx") #Use this one through the changes

df.head()

df.index

#Plot Dataset (Use DataFrame)

df_plot.columns = ["Month", "Home Sales"]

df_plot = df_plot.set_index("Month")

ax = df_plot.plot(figsize=(15,6), title="Monthly Home Sales (JAN 1963 - AUG 2019)") #Run

these 2 lines together

ax.set_ylabel("Sales (In Thousands)")

#Make Usable for Split and Decomposition

df.reset_index(inplace=True)

df["Period"] = pd.to_datetime(df["Period"])

df=df.set_index("Period")

#Make Train-Test Split

trainSales, testSales = train_test_split(df, test_size = 24, shuffle=False) #Test set is last 2 years

trainSales.drop(["index"], axis=1, inplace=True)

21

trainSales

testSales.drop(["index"], axis=1, inplace=True)

testSales

trainSales.plot(figsize=(15,6))

testSales.plot(figsize=(15,6))

#Decomposition Plot

decomp_add = sm.tsa.seasonal_decompose(trainSales, model="additive")

decomp_add.plot()

#General ACF and PACF

pm.utils.plot_acf(trainSales, alpha=0.05)

pm.utils.plot_pacf(trainSales, alpha=0.05)

#Stationary on Variance NOT REQUIRED

trainSales["Value"]

df_log = np.log(trainSales["Value"])

df_log.plot(figsize=(15,6), title = "Logarithmic Monthly Home Sales")

#This made the jumps a little more symmetric so we will keep it

decomp_log = sm.tsa.seasonal_decompose(trainSales, model="additive")

decomp_log.plot()

#In order to achieve stationary on mean, we could subtract the rolling average

#However, ARIMA does this for us through the d parameter

22

#Stationarizing (Differencing) the data

pm.arima.ndiffs(trainSales, alpha=0.05, test="adf", max_d=2) #Second and fourth parameters are

defaults

pm.arima.ndiffs(trainSales, test="pp")

pm.arima.ndiffs(trainSales, test="kpss") #Default

#1, 0, 1 for d

#Seasonal Difference of the data

pm.arima.nsdiffs(trainSales, m=12, test="ocsb")

pm.arima.nsdiffs(trainSales, m=12, test="ch")

#0, 0 for D

#Differencing on d

df_stat_d = pm.utils.diff(trainSales, differences=1) #1 is the default

#ACF and PACF to predict seasonality (m)

pm.utils.plot_acf(df_stat_d, alpha=0.05)

pm.utils.plot_pacf(df_stat_d, alpha=0.05)

#Large spikes at lag 12 so there is likely a monthly seasonal trend

#ACF and PACF of D = 1

df_stat_D = pm.utils.diff(trainSales, differences=12) #D = 1

pm.utils.plot_acf(df_stat_D, alpha=0.05)

pm.utils.plot_pacf(df_stat_D, alpha=0.05)

23

#-------------------Model Building--

#Run a Auto-Arima with d=0, D=0

Fit00 = pm.auto_arima(trainSales, d=0, D=0, stepwise=True, error_action="ignore",

suppress_warnings=True, seasonal=True, m=12) #With d=0, D=0

Fit00.summary()

#sARIMA(2,0,2)(2,0,1,12) AIC = 3856.332 AR(p=2), MA(q=2) insignificant

#WARNING: This function may provide different results on different runs

#Now use the ARIMA function to tweek this

Fit00b = ARIMA(order=(1,0,1), seasonal_order=(2,0,1,12)).fit(trainSales)

Fit00b.summary() #AIC = 3857.503

#ACF and PACF of residuals

resid = Fit00b.resid()

pm.utils.plot_acf(resid, alpha=0.05)

pm.utils.plot_pacf(resid, alpha=0.05) #Both good

Fit10 = pm.auto_arima(trainSales, d=1, D=0, stepwise=True, error_action="ignore",

suppress_warnings=True, seasonal=True, m=12) #With d=1, D=0

Fit10.summary() #sARIMA(1,1,1)(2,0,1,12) AIC = 3848.643 All good

Fit10b = ARIMA(order=(1,1,1), seasonal_order=(2,0,1,12)).fit(trainSales)

Fit10b.summary() #Copy of above Summary good

#ACF and PACF of residuals

resid = Fit10b.resid()

pm.utils.plot_acf(resid, alpha=0.05)

pm.utils.plot_pacf(resid, alpha=0.05) #Both good (better than above)

24

Fit01 = pm.auto_arima(trainSales, d=0, D=1, stepwise=True, error_action="ignore",

suppress_warnings=True, seasonal=True, m=12) #With d=0, D=1

Fit01.summary()#sARIMA(1,0,4)(1,1,1,12) AIC = 3778.046 MA(q=2,3) insignificant

Fit01b = ARIMA(order=(1,0,2), seasonal_order=(1,1,1,12)).fit(trainSales)

Fit01b.summary() #AIC = 3782.165 Summary good

#ACF and PACF of residuals

resid = Fit01b.resid()

pm.utils.plot_acf(resid, alpha=0.05)

pm.utils.plot_pacf(resid, alpha=0.05) #Both good (ish?)

Fit11 = pm.auto_arima(trainSales, d=1, D=1, stepwise=True, error_action="ignore",

suppress_warnings=True, seasonal=True, m=12) #With d=1, D=1

Fit11.summary()#sARIMA(1,1,1)(1,1,1,12) AIC = 3777.107

Fit11b = ARIMA(order=(1,1,1), seasonal_order=(1,1,1,12)).fit(trainSales)

Fit11b.summary() #AIC = 3777.107 Summary good

#ACF and PACF of residuals

resid = Fit11b.resid()

pm.utils.plot_acf(resid, alpha=0.05)

pm.utils.plot_pacf(resid, alpha=0.05) #Both Good

#--

#Refit ARIMA model with different package for forcasting

final = sm.tsa.statespace.SARIMAX(trainSales["Value"], order=(1,0,2),

seasonal_order=(1,1,1,12))

final_fit = final.fit()

print(final_fit.summary())

25

#Four in One plot

final_fit.plot_diagnostics(figsize=(12,8))

#Forecasting

future = [trainSales.index[-1]+ DateOffset(months=x)for x in range(0,25)]

future_df = pd.DataFrame(index=future[1:], columns=trainSales.columns)

future_df

future_total_df=pd.concat([trainSales, future_df])

future_total_df.tail(30)

future_total_df["Forecast"] = final_fit.predict(start=len(trainSales), end=(len(trainSales)+24),

dynamic=True) #Exponential need since log was used

future_total_df[["Value", "Forecast"]].plot(figsize=(12,8))

#Get all forecasted values

forecast_df = future_total_df.Forecast.tail(24)

forecast_df

#Run below lines together

ax = forecast_df.plot()

testSales.plot(ax=ax)

plt.legend()

plt.ylabel("Monthly Home Sales (In Thousands)")

plt.title("Test DF Compared to Forecast");

#Fit final model to full dataset

total = sm.tsa.statespace.SARIMAX(df["Value"], order=(1,0,2), seasonal_order=(1,1,1,12))

total_fit = total.fit()

26

total_fit.summary()

#Forecasting Next Five Years (Future)

NextFive = [df.index[-1]+ DateOffset(months=x)for x in range(0,60)]

NextFive_df = pd.DataFrame(index=NextFive[1:], columns=df.columns)

NextFive_df

NextFive_total_df=pd.concat([df, NextFive_df])

NextFive_total_df.tail(70)

NextFive_total_df["Forecast"] = total_fit.predict(start=len(df), end=(len(df)+60), dynamic=True)

NextFive_total_df[["Value", "Forecast"]].plot(figsize=(12,8))

	Home Sales as a Time Series Model
	Recommended Citation

	tmp.1587565280.pdf.Q_hhG

