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Abstract 

 

 The CAN protocol has been a standard of electronic communication networks of 

automotive vehicles since the early 2000s due to its robust reliability in harsh environments. For 

the 2020 competition year, the Zips Racing Electric design team will be building an entirely new, 

fully-electric vehicle with CAN communication implemented rather than communicating via 

pure analog signals. Hardware and software can be utilized to read analog electrical signals from 

a source, such as accelerator and brake sensors, and encode them into a digital message that 

meets the CAN 2.0B communication protocol standard. Likewise, software can be used to 

extract data from CAN 2.0B messages, such as accumulator state of charge, which can then be 

sent to other subsystems, such as a dashboard display. 

(AJ, SK, AL, RN) 

1. Introduction 

1.1. Need 

The Zips Racing Electric team is building a brand new car for the 2020 competition 

season. In one year, the team designed and built a fully electric race car and competed against 

other universities for competitions in summer 2019. 

 Robust communication between electrical systems on the car is essential for reliable 

control. The 2019 vehicle used analog signaling to send the driver torque demand information 

from the pedals to the electronic control unit (ECU), which communicated with the motor 

controller. Electrical noise from the switching of the motor controller and the motor itself caused 

interference and disrupted the accelerator pedal signal. Signals such as brake pressure and battery 

cell temperatures were also impacted by noise. In addition, information such as the battery state 

of charge, motor temperature, and motor speed are monitored by independent electrical systems 
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and were not communicated with the ECU, due to the limitations of discrete analog 

communication and wire harnessing. A digital communication scheme is needed on the new 

vehicle in order to facilitate data interfacing. 

 In addition, the 2019 vehicle had a rudimentary dashboard with no way for the driver to 

know the remaining state of charge in the traction battery. Feedback to the driver by including a 

display to indicate the battery state of charge will enable the driver to make full use of the battery 

during races and improve performance during a race. 

(AJ, SK, AL, RN) 

1.2. Objective 

With a digital communication system based on the Controller Area Network (CAN) bus, 

data can be more easily shared between independent electrical systems and each system can 

make decisions based upon the data. This task includes a system to convert analog sensor data, 

such as the accelerator and brake pedal information, into CAN messages for other electronic 

modules on the vehicle to interpret. 

 Additionally, a dashboard with a display to indicate the high voltage battery state of 

charge will be included for driver feedback. The system will read and interpret CAN information 

about the state of charge and display the data. 

(AJ, SK, AL, RN) 

1.3. Background 

Each year, the Society of Automotive Engineers (SAE) challenges students from 

universities around the world to “conceive, design, fabricate, develop, and compete” with small 

formula-style vehicles. Formula SAE cars are judged in a series of static and dynamic events, 

including technical inspection, cost analysis, engineering design, acceleration, autocross, and 
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endurance. In 2012, SAE created a new class for electric only vehicles and the first competition 

was held in 2013 in Lincoln, Nebraska (FSAEOnline, 2019). 

A team at the University of Akron built its first competitive electric car in the 2018-2019 

academic year, with the stated goals of the team being to build a functioning car that passed the 

technical scrutineering by safety judges at the competition. Vehicles that do not pass technical 

inspection at competition are not allowed to race, and historically, the pass rate for electric teams 

is one third to one half, with pass rates near zero for first year teams. The newly-formed Zips 

Racing Electric team set out to build their first vehicle as a “rolling rulebook.” Safety, simplicity, 

and reliability were the main objectives for the team. 

Nine months later, in April 2019, the Zips Racing Electric car was unveiled. With a 

custom 300 V lithium ion battery weighing 92 pounds, a liquid-cooled 80 kW motor and a three-

phase inverter, the original electric race car from the University of Akron placed 6th out of 13 

teams at its first competition in Ontario, Canada and placed 5th out of 25 teams two weeks later 

at competition in Lincoln, Nebraska (Formula SAE® Awards & Results, 2019). 

 The controls of the vehicle were communicated between electrical systems via analog 

signal levels. Electrical noise from the motor and inverter caused interference on the torque 

demand path and caused the torque output of the motor to be uneven. This effect was clearly 

visible from watching the car as it visibly and audibly jerked when driven. This interference was 

also seen in torque output as well, characterized by abrupt stops and starts at slow speeds. Along 

with noise, this lead to accelerated fatigue of parts on the car such as the axle, differential, and 

motor mounting points. A digital communication path along the vehicle, with proper shielding, is 

necessary to carry sensitive information and will improve performance overall. 
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A Controller Area Network (CAN) is a robust vehicle bus and communication protocol 

made for devices and microcontrollers to communicate without a host. Developed by Bosch in 

the 1980s, CAN is a message-based scheme, intended to reduce wiring inside of automobiles 

(Hartwich, F, 2014). 

Unlike other buses, CAN is not a point-to-point electrical link, but instead is a multi-

master bus. Standardized by ISO 11898, CAN is specified with a maximum bitrate of 1 Mbps for 

distances up to 40 m, dropping to 10 kpbs at the maximum specified bus length of 1 km. CAN is 

ideal for short broadcast type messages, limited to 8 bytes of data per packet, with data directed 

at no device in particular. Instead, any device on the bus can read any message transmission. 

(Horowitz, P., & Hill, W, 2015). 

Electrically, CAN is a differential open-collector scheme, specified up to ±12 V common 

mode, allowing for noise robustness in the automotive environment (Road vehicles - Controller 

area network, 2016). CAN bus prescribes several error-detection mechanisms, including at the 

bit level and at the message level (Kvaser, Ed). 

With a CAN communication bus, the Zips Racing Electric team will be well equipped to 

perform at future competitions with a more reliable race car. 

(AJ, SK, AL, RN) 

1.4. Marketing Requirements 

1. Brake and acceleration pedal analog sensor values shall be converted to CAN messages 

and be outputted onto the CAN bus. 

2. The software shall be capable of reading messages from the CAN bus. 

3. The state of charge (SOC) reading from the battery management system (BMS) shall be 

displayed on the dashboard of the vehicle. 
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4. The product system should be power-efficient. 

5. The product should provide redundancy in case of a single failure. 

(AJ, SK, AL, RN) 

2. Engineering Analysis 

2.1. Circuits 

For analog to CAN conversion of the dual accelerator and brake sensors, circuit design is 

necessary. Hardware signal processing from the sensors includes scaling, offsetting, and filtering 

before the signal can be read properly by an analog-to-digital converter. In addition, detection for 

failure of the wiring for open and short circuit conditions must be included. For instance, the 

signal may have a typical output of 0.5 V-4.5 V and any reading outside of that range is 

considered to be erroneous and must be detectable. 

As two independent redundant accelerator pedal position sensors are used, each sensor 

must have a different transfer function of pedal position to output voltage per FSAE 2020 rules. 

The sensors are to be used are linear potentiometers connected to the +5 V and GND rails, but an 

additional resistor between the rails is used for one of the sensors, thereby reducing the voltage 

across the sensor and causing the device to have a different transfer function. With different 

sensor outputs for the same pedal position allows for simple detection of wiring faults for any 

downstream devices. 
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Figure 1: Accelerator pedal position sensor transfer function 

For the dashboard, display driver hardware is needed to display information to the driver 

of the vehicle. The display should be easily visible, in direct sunlight, to the driver of the vehicle. 

Both projects require stable power supply rails despite being powered from a varying 

battery voltage as the battery discharges. A power conversion circuit must provide a reliable 

output for accurate measurements. 

Electrically, CAN bus is a differential open collector bus where the signals float 

nominally at 2.5 V. In order to successfully connect a microcontroller to the CAN bus to receive 

and transmit messages, a CAN transceiver is needed. The device should perform level shifting 

from the microcontroller outputs and inputs to the physical CAN bus. In addition, power output 

stages are needed in the driver in order to control the signals in the CAN bus, which may have 

lengthy wiring. The device will also require a stable power supply to operate. 

(AJ, SK, AL, RN) 

2.2. Communications 

The CAN 2.0B protocol is a robust and reliable communication method widely used in 
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the automotive industry defined by the International Standardization Organization. CAN is a 

broadcast, multi-master protocol with error detection. The protocol uses a twisted pair, 

differential sensing wires for its physical layer providing high resistance to EMI. Furthermore, 

the protocol transmits Cyclic Redundancy Check (CRC) bits with every message allowing for 

simple verification of data validity. The CAN protocol utilizes a 15-bit CRC polynomial (x15 + 

x14 + x10 + x8 + x7 + x4 + x3 + x0) division to calculate the CRC bits. The same algorithm is used 

by both the transmitter and receiver to verify that the message is error-free. In the event of a 

CRC mismatch/failure, the message is deemed corrupt and is thrown out. 

CAN offers two message framing formats, a Standard Frame and an Extended Frame. 

The standard frame contains an 11-bit field for prioritization while the extended frame contains 

22 bits for prioritization. Since this project will only transmit 3 message frames, the extra 11 

priority bits available in the extended frame will not be needed, so the standard frame will be 

utilized for the design of the CAN bus in the electric vehicle. The IDE bit of the message will 

therefore be set to dominant (0) to indicate that this is a standard CAN message. 

CAN allows for the identification of frame type, and also allows for prioritization of data 

on the bus based on a “Remote Transmission Request (RTR)” field. This is a single bit that is set 

to 0 for a dominant data frame, and 1 for a recessive remote data frame. As such, for the safety 

critical and time sensitive frames (the accelerator and brake position frames), the RTR value 

shall be set to a 0. Thus these critical frames will win arbitration on the CAN bus allowing their 

messages to go through. The data frame containing the BMS charge value will receive a 1 for its 

RTR value, as it is a non-critical sensor that outputs its value on a given interval. This is not 

necessary for the scope of this project, as there will only be 3 CAN messages and arbitration over 

the bus utilizing the RTR value will not occur in this small of a scale, but it is good engineering 
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practice. 

The 11-bit identifier serves dual purpose in the fact that it contains the priority of the 

message on the bus (for arbitration purposes) and identifies the messages for listening devices. 

Within the scope of this project, there will only be three messages on the bus. In the event that a 

frame has the same identifier (equal priority), the frame with a dominant (binary 0) RTR frame 

will win arbitration for the bus (Note for this design, no two messages will share the same 

identifier). The highest priority will be the CAN message containing the values of the accelerator 

sensor. The message with the second priority shall be the message containing the brake sensor 

values. Finally, the BMS sensor will output non-critical data on a given time interval, and thus 

will be assigned the lowest priority.  

It should be noted that, the frames containing the accelerator and brake position will 

never require arbitration for priority, as they are sent out by the same microcontroller and it will 

only transmit messages when the bus is available. 

For the frames containing the accelerator and brake position, the DLC (Data length field) 

will indicate that the message contains 4 bytes. Each sensor outputs 2 bytes worth of 

information, thus putting the information of both sensors onto one frame will require 4 bytes. 

Note that the accelerator and brake message frames are separate. Hence, 1 message will contain 

the values for both accelerator sensors, and another message will contain the values of both brake 

sensors. This architecture has been chosen to facilitate speed and safety. While both the 

accelerator and brake position could be placed into a single CAN message, in the event of a CRC 

failure, the entire message is thrown out and the ECU will not have values for either the 

accelerator or brake sensor. By splitting up the accelerator and brake position into two messages, 

this provides redundancy as a CRC failure for either the brake or accelerator sensor will only 
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throw out the data for that respective message. Splitting the information up into 4 messages (1 

sensor per message), is not practical either for this purpose as it adds complexity, creating more 

room for error, which is to be avoided in a safety-critical system. The frames will be transmitted 

by the microcontroller on a 10ms timing interval provided by the internal clock of the 

microcontroller. The packaging of the CAN message along with application layer encoding is 

handled by the CAN module on the microcontroller. 

On transmission, the SOF (start of frame) bit will indicate to all devices on the CAN bus 

that the bus is in use and no longer idle. This “wake-up” feature will be utilized by the dashboard 

microcontroller to trigger an interrupt service routine (ISR), to scan the CAN message on the 

bus. All messages on the bus are placed into a buffer on the dashboard microcontroller. The 

software then scans the identifier bits for the identifier associated with the BMS. CAN messages 

that do not have this identifier are thrown out of the buffer. After receiving a frame from the 

BMS, the software will perform a CRC calculation on the frame, and look for a CRC mismatch. 

In the event of a mismatch, the message is thrown out. The software will then go to the first 

character of the data field. Normally for variable length messages (messages with the same 

identifier that may have different data lengths every transmission) the software should read the 

DLC character to identify how many data bits are contained in the message and then read that 

many bits from the data. However, since the BMS will always output the same number of bits for 

the battery charge percentage, the DLC bit does not need to be read and the data length can be 

hard-coded since it is constant. This saves on read cycles, the need to use vectors (a static array 

can be used instead), and saves iteration cycles and memory, thus optimizing the efficiency of 

the code. 
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Figure 2: Standard CAN Message, (Corrigan, S) 

In order to function properly, CAN bus requires termination resistors at each end of the 

bus. Due to the nature of the bus, a transmission line is created. These resistors prevent 

reflections on the line and allow the signals to be clearly read. A resistance of 120 Ω on each end 

of the CAN network is sufficient for successful operation. (AJ) 

(AJ, SK, AL, RN) 

2.3. Electromechanics 

 Measuring accelerator pedal position requires electrical sensors with moving parts. These 

sensors interface with the pedal assembly and must be mechanically robust to avoid damage. 

Common sensor types include rotary position sensors and linear potentiometer sensors as 

potentiometers. 

 Transducers for monitoring brake pressure are mounted on the brake lines. These sensors 

should be rated for the maximum anticipated pressure in the system during hard braking. 

Pressure in the brake lines is directly related to the force exerted on the brake pedal and the 

diameter of the master cylinder. The hydraulic pressure during hard braking will reach 

approximately 1500 psi, but the pressure can peak at 2000 psi. Therefore, any brake pressure 

transducer must be rated to read at least 1500 psi with a burst pressure specification of 2000 psi 

or more. Sensors that read pressure are strongly affected by the ambient temperature. Therefore, 

any sensor monitoring the brake pressure should include temperature compensation. 

(AJ, SK, AL, RN) 
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2.4. Embedded Systems 

For the purposes of analog to digital signal conversion and digital to CAN signal 

conversion, a microcontroller will be used. This microcontroller will be a 16-bit processor that 

contains an onboard analog-to-digital converter that can be used to more easily perform signal 

conditioning and conversion. The processor will support up to 36 analog inputs to allow 

scalability of the system, as more sensors are added onto the vehicle. The software architecture 

supports the use of high-level C code through the Microchip MPLAB IDE. This allows greater 

focus on algorithm development and enables structured programming. This enables the code to 

be more “modular” for the purposes of sensory input and data output. Furthermore, the XC16 

compiler used for the microprocessor and MPLAB IDE are free to use, thus this cost factor also 

weighed into the decision to select this processor. 

The microcontroller also features a CAN module with 32 buffers for data transmission. 

This is to allow for the output and input data to be synchronized to ensure that information is 

coherent with each other. Additionally, the CAN module allows for straightforward management 

and encoding of CAN messages per the CAN2.0 standards.  

The design of the analog to CAN signal conversion system requires the use of one or 

more microcontrollers to handle the bulk of the signal conversion process. Once analog signals 

are received, ADC hardware and specialized software algorithms will interpret those signals and 

convert them into CAN 2.0B messages. These messages will then need to be broadcast to the 

CAN bus.  

The dashboard display system will use also utilize a microcontroller in order to interface 

to an LCD 7-segment display to the CAN network. The CAN 2.0B message from the 

accumulator is broadcast to the CAN bus. Once this message is received by the microcontroller 
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in the dashboard system, the message will be decoded by software to receive the state of charge. 

The microcontroller then needs to send HI/LO encoded signals to hardware addresses on the 7-

segment display to show the accumulator state of charge. 

(AJ, SK, AL, RN) 

3. Engineering Requirements Specifications 

Table 1: Engineering Requirements 

Marketing 

Requirement 

Engineering Requirement Justification 

1 The analog to CAN signal 

conversion system will accept 

signals in the range of 0 V to 5 V 

DC. 

Most sensors today typically have 

outputs in the range of 0 V to 5 V 

DC. 

4 The analog to CAN signal 

conversion system will operate 

from a battery supply voltage in 

the range of 9 V to 15 V. 

Battery voltage in the range of 9 V 

to 15 V is the voltage supplied to 

the conversion system by the car. 

1 The analog to CAN signal 

conversion system will convert 

signals to digital messages that 

meet the CAN 2.0B 

communication protocol 

standards. 

CAN is the standard system for 

automotive vehicles.  CAN 2.0B 

allows the needs of the car to be 

met without adding unnecessary 

complication. 

2 The dashboard display system 

will accept a CAN 2.0B message 

from the electric car’s 

accumulator. 

A CAN 2.0B message will be 

supplied from the ECU to the 

conversion system, so the 

conversion system must be able to 

read it. 

3 The dashboard display system 

will display the accumulator state 

of charge, as a percentage 

ranging from 0% to 99%.  

The accumulator state of charge is 

vital information to the driver and 

displaying it as a percentage is 

easy to read quickly. 

5 The accelerator pedal will have 

two separate position sensors 

with different transfer functions 

Required by 2020 SAE rules for 

safety purposes. 



  

18 

for their circuits. 

5 The system will be able to detect 

open or short circuit readings 

from the accelerator pedal and 

brake pedal sensor circuits. 

Required by 2020 SAE rules for 

safety purposes. 

1 The analog to CAN signal 

conversion system will output 

CAN messages onto the CAN 

bus which must be readable by 

the ECU. 

These signals will go to the ECU 

which will tell the car to ‘go’ and 

therefore must be readable for the 

car to work as intended. 

3 The dashboard display system’s 

display will be readable in bright 

sunlight and visible to a driver 

sitting approximately three feet 

away. 

Car driving will only occur during 

the day, so the display will need to 

be visible in bright sunlight. 

4 The CAN conversion and 

dashboard display systems will 

each consume less than 1 ampere 

of current. 

The system should not consume 

excess power from the battery. 

Lower power will also keep 

component temperatures within 

reasonable limits. 

1 The dual accelerator sensors and 

brake pressure sensors will be 

sampled at an iteration rate of at 

least 10 Hz (100 ms). 

The ECU will be configured per 

SAE rules to fault and shut the car 

off if it does not receive CAN 

messages after a specific amount 

of time. 

Marketing Requirements:  

1. Brake and acceleration pedal analog sensor values shall be converted to CAN 

messages and be outputted onto the CAN bus. 

2. The software shall be capable of reading messages from the CAN bus 

3. The state of change reading from the battery management system (BMS) shall 

be displayed on the dashboard of the vehicle. 

4. The product system should be power-efficient. 

5. The product should provide redundancy in case of a single failure. 
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4. Engineering Standards Specification 

Table 2: Engineering Standards Applied 

Application Standard Use 

Safety Formula SAE 

2020 Version 

2.0 

FSAE 2020 Rules from SAE dictate how the race 

competition operates and gives safety requirements 

about the vehicle, such as have dual accelerator 

sensors and fault detection in the event of lost 

CAN messages. 

Communications ISO 11898-1, 

ISO 11898-2 

ISO 11898 describes the CAN 2.0B bus protocol 

and physical layer. The standard is used to 

determine the voltages used in communication and 

the structure of the data frames sent in the bus to 

ensure compatibility between all devices connected 

on the vehicle. 

Programming 

Languages 

ANSI 

x3.159-1989 

ANSI C or C89 details how the C programming 

language should behave. Using a standard for the 

programming language ensures the firmware will 

compile successfully and function in a known 

manner. 

Ingress Protection ANSI/IEC 

60529 

The IP Code outlines how components or products 

should tolerate dust and water. Having adequate 

protection from the environment is necessary in the 

automotive industry. 
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5. Accepted Technical Design 

5.1. Hardware Design 

 
Figure 3: Hardware Level 0 Diagram 

 

Table 3: A/D CAN Converter Hardware Functional requirements - Level 0 

Module Analog-to-CAN Converter 

Inputs Dual redundant accelerator pedal position sensors 

Dual brake pressure transducers for front and rear hydraulic circuits 

Outputs Direct connection to physical CAN bus 

Converted CAN messages 

Functionality The A/CAN Converter will accept analog electrical signals from 

dual accelerator sensors and dual brake sensors and convert them 

into digital CAN signals. These signals can later be used by other 

components of the vehicle. 

 

Table 4: Dashboard Display Hardware Functional requirements - Level 0 

Module CAN-enabled Dashboard Display 

Inputs CAN bus data (accumulator) 

Outputs Display high-voltage battery’s state of charge 
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Functionality The dashboard will accept CAN data messages from the 

accumulator and display the remaining charge left on the battery. 

The charge will be displayed as a percentage between 0% and 99%. 

 

 
Figure 4: Hardware Level 1 Diagram 

 

Table 5: Sensor - Hardware Functional Requirements - Level 1 

Module Sensor 

Inputs 5 V input, power on voltage 

Outputs Dual redundant accelerator pedal position sensors output 0 - 5 V 

Dual brake pressure transducers for front and rear hydraulic circuits 

output 0 - 5 V 

Functionality The accelerator pedal sensors will report a voltage proportional to 

the pedal position.  The brake pressure sensors will report a voltage 

proportional to the pressure in the brake lines. 

 

Table 6: Hardware Processing - Hardware Functional Requirements - Level 1 

Module Hardware Processing 

Inputs 0 - 5 V from accelerator pedal and brake pressure sensors  

Outputs 0 - 5 V signal  

Functionality Reduces noise on the 0 - 5 V signals coming from the sensors by 

filtering. 
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Table 7: Microcontroller (A/CAN System) - Hardware Functional Requirements - Level 1 

Module Microcontroller (ADC and D2CAN) 

Inputs 5 V input, power on voltage 

0 - 5V analog signals from sensors 

Outputs CAN signal containing reported sensor information 

Functionality Performs analog-to-digital and digital-to-CAN conversion. 

 

Table 8: Physical Layer - Hardware Functional Requirements - Level 1 

Module Physical Layer 

Inputs CAN signal containing sensor information 

Outputs CAN physical message containing sensor information 

Functionality Configures CAN signal to appropriate levels for transmitting and 

puts the message on the CAN Bus. 

 

Table 9: Battery CAN Message - Hardware Functional Requirements - Level 1 

Module Battery CAN Message 

Inputs N/A 

Outputs CAN message, from accumulator, containing SOC 

Functionality Connector for accumulator message to transfer to the PCB 

 

Table 10: Microcontroller (Dashboard System) - Hardware Functional requirements - Level 1 

Module Microcontroller (CAN2D, Microprocessor) 

Inputs 5 V input, power on voltage 

CAN signal containing accumulator SOC 

Outputs Digital signal containing accumulator SOC  

Functionality Performs CAN to digital conversion. 
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Table 11: Dashboard Display - Hardware Functional requirements - Level 1 

Module Dashboard Display 

Inputs High/Low voltage signal inputs to seven-segment display 

Outputs Accumulator voltage percentage ranging from 0 - 99% displayed on 

seven-segment display 

Functionality Displays accumulator SOC. 

 

 
Figure 5: Hardware Level 2 Diagram (Analog to CAN System) 

 

 
Figure 6: Hardware Level 2 Diagram (Dashboard Display System) 

 

Table 12: Accelerator Pedal Sensor 1 & 2 - Hardware Functional requirements - Level 2 

Module Accelerator Pedal Sensor 1 & 2 

Inputs 5 V input, power on voltage 

Outputs Dual redundant accelerator pedal position sensors output 0 - 5 V 
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Functionality The accelerator pedal sensors will report a voltage proportional to 

the pedal position. 

 

Table 13: Brake Pressure Sensor 1 & 2 - Hardware Functional requirements - Level 2 

Module Brake Pressure Sensor 1 & 2 

Inputs 5 V input, power on voltage 

Outputs Dual brake pressure transducers for front and rear hydraulic circuits 

output 0-5 V 

Functionality The brake pressure sensors will report a voltage proportional to the 

pressure in the brake lines. 

 

Table 14: Low Pass Filter - Hardware Functional requirements - Level 2 

Module Low Pass Filter 

Inputs 0 - 5 V from accelerator pedal and brake pressure sensors  

Outputs 0 - 5V signal  

Functionality Reduces noise on the 0 - 5 V signals coming from the sensors by 

filtering, constructed as an RC filter. 

 

Table 15: Microcontroller (A/CAN System) - Hardware Functional requirements - Level 2 

Module Microcontroller (ADC, D2CAN) 

Inputs 5 V input, power on voltage 

0 - 5V analog signals from sensors 

Outputs CAN signal containing reported sensor information 

Functionality Performs analog to digital and digital to CAN conversion. 

 

Table 16: CAN Transceiver (A/CAN System) - Hardware Functional requirements - Level 2 

Module CAN Transceiver 

Inputs 5 V input, power on voltage 

CAN signal containing reported sensor information 
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Outputs CAN message containing sensor information 

Functionality Configures CAN signal to appropriate levels for transmitting. 

 

Table 17: CAN Bus - Hardware Functional requirements - Level 2 

Module CAN Bus 

Inputs CAN message containing sensor information 

Outputs CAN message to the ECU from the CAN Bus 

Functionality Stores and transports car information in CAN messages. 

 

Table 18: DC/DC Converter (A/CAN and Dashboard Systems) - Hardware Functional 

requirements - Level 2 

Module DC/DC Converter 

Inputs 9 - 15 V range 

Outputs 5 V, regulated 

Functionality Convert the voltage received from the secondary car battery to a 

steady 5 V supply. 

 

Table 19: Battery CAN Message - Hardware Functional requirements - Level 2 

Module Battery CAN Message 

Inputs CAN message, from accumulator, containing SOC 

Outputs CAN message, from accumulator, containing SOC 

Functionality Connector for accumulator message to transfer to the PCB 

 

Table 20: CAN Transceiver (Dashboard System) - Hardware Functional requirements - Level 2 

Module CAN Transceiver 

Inputs 5 V input, power on voltage 

CAN message containing accumulator SOC  

Outputs CAN signal containing accumulator SOC 
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Functionality Configures CAN message to appropriate levels for reading by the 

Microcontroller. 

 

Table 21: Microcontroller (Dashboard System) - Hardware Functional requirements - Level 2 

Module Microcontroller (CAN2D, Display Converter) 

Inputs 5 V input, power on voltage 

CAN signal containing accumulator SOC 

Outputs Digital signal containing accumulator SOC  

Functionality Performs CAN to digital conversion. 

 

Table 22: Display Driver - Hardware Functional requirements - Level 2 

Module Display Driver 

Inputs 5 V input, power on voltage 

Digital signal containing accumulator SOC 

Outputs LCD signal containing accumulator SOC 

Functionality Sends signal to seven-segment LCD display to display accumulator 

SOC. 

 

Table 23: Dashboard Display - Hardware Functional requirements - Level 2 

Module Dashboard Display 

Inputs High/Low voltage signal inputs to seven-segment display 

Outputs Accumulator voltage percentage ranging from 0 - 99% displayed on 

seven-segment display 

Functionality Displays accumulator SOC. 
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Figure 7: A/CAN PCB Schematic – Full 
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Figure 8: A/CAN PCB Schematic – Power Supply 

 

Table 24: A/CAN PCB Schematic – Power Supply  

Designator & P/N U2 

R-78E5.0-1.0 

Inputs 9 – 15 V range 

Outputs 5 V regulated 

Functionality Convert the voltage received from the secondary car battery to a 

steady 5 V supply. 
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Figure 9: A/CAN PCB Schematic – CAN Transceiver 

 

Table 25: A/CAN PCB Schematic – CAN Transceiver 

Designator & P/N U1 

MCP2561-E/SN 

Inputs 5 V input, power on voltage 

CAN signal containing reported sensor information 

Outputs CAN message containing sensor information 

Functionality Configures CAN signal to appropriate levels for transmitting 
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Figure 10: A/CAN PCB Schematic – Microcontroller 

 

Table 26: A/CAN PCB Schematic – Microcontroller 

Designator & P/N U3 

DSPIC33EV256GM106-I/PT 

Inputs 5V input, power on voltage 

0-5V analog signals from sensors 

Outputs CAN signal containing reported sensor information 

Functionality Performs analog-to-digital and digital-to-CAN conversion. 
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Figure 11: A/CAN PCB Schematic – Accelerator Sensor Filter 

 

Table 27: A/CAN PCB Schematic – Accelerator Sensor Filter 

Designator & P/N R5/C7 & R6/C8 

RMCF0603FG100K & CL10F104ZB8NNNC 

Inputs 0-5V from accelerator pedal sensors  

Outputs 0-5V signal  

Functionality Reduces noise on the 0-5V signals coming from the sensors by 

filtering, constructed as an RC filter. 
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Figure 12: A/CAN PCB Schematic – Brake Sensor Filter 

 

Table 28: A/CAN PCB Schematic – Brake Sensor Filter 

Designator & P/N R11/C10 & R12/C11 

RMCF0603FT10K0 & CL10F104ZB8NNNC 

Inputs 0-5V from brake sensors  

Outputs 0-5V signal  

Functionality Reduces noise on the 0-5V signals coming from the sensors by 

filtering, constructed as an RC filter. 
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Figure 13: A/CAN PCB Schematic – PIC Programming Headers 

 

Table 29: A/CAN PCB Schematic – In Circuit Serial Programming Connectors 

Designator & P/N J3 & J4 

M20-9990646 & A-2004-1-4-N-R 

Inputs External programming connector 

Outputs Programming signals to the PIC 

Functionality Connectors to upload program and debug PIC microcontroller 
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Figure 14: A/CAN PCB Schematic – Main Connector 

 

Table 30: A/CAN PCB Schematic – Main Connector 

Designator & P/N J2 

2-1586041-2 

Inputs 0-5V from accelerator pedal and brake sensors  

9 – 15 V range  

Outputs 0-5V from accelerator pedal and brake sensors 

Functionality Connector to deliver power and sensors signal to the board 
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Figure 15: Dashboard PCB Schematic – Full 
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Figure 16: Dashboard PCB Schematic – Power Supply 

 

Table 31: Dashboard PCB Schematic – Power Supply  

Designator & P/N U2 

R-78E5.0-1.0 

Inputs 9 – 15 V range 

Outputs 5V regulated 

Functionality Convert the voltage received from the secondary car battery to a 

steady 5V supply. 
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Figure 17: Dashboard PCB Schematic – CAN Transceiver 

 

Table 32: Dashboard PCB Schematic – CAN Transceiver 

Designator & P/N U5 

MCP2561-E/SN 

Inputs 5V input, power on voltage 

CAN signal containing reported accumulator SOC information 

Outputs CAN message containing accumulator SOC information 

Functionality Configures CAN signal to appropriate levels for reading 
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Figure 18: Dashboard PCB Schematic – Microcontroller 

 

Table 33: Dashboard PCB Schematic – Microcontroller 

Designator & P/N U1 

DSPIC33EV256GM106-I/PT 

Inputs 5V input, power on voltage 

CAN signal containing accumulator SOC 

Outputs Digital signal containing accumulator SOC for LCD  

Functionality Performs CAN to digital conversion. 
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Figure 19: Dashboard PCB Schematic – LCD and Driver 

 

Table 34: Dashboard PCB Schematic – LCD 

Designator & P/N DIS1 

VI-415-DP-RC-S 

Inputs Digital signal containing accumulator SOC 

Outputs Accumulator SOC displayed in seven-segment numbers  

Functionality Displays accumulator SOC 

 

Table 35: Dashboard PCB Schematic – LCD Driver 

Designator & P/N U4 

PCF8551BTT/AJ 

Inputs 3 V and 5 V input, power on voltages 
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CAN signal containing accumulator SOC 

Outputs Signals containing accumulator SOC for LCD  

Functionality Changes digital signal to appropriate signal for LCD 

 

Table 36: Dashboard PCB Schematic – DC/DC Converter 

Designator & P/N U3 

ADP160AUJZ-3.0-R7 

Inputs 5 V input 

Outputs 3 V, regulated  

Functionality Steps 5 V down to 3 V 

  

 
 Figure 20: Dashboard PCB Schematic – PIC Programming Headers 
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Table 37: Dashboard PCB Schematic – In Circuit Serial Programming Connectors 

Designator & P/N J2 & J4 

M20-9990646 & A-2004-1-4-N-R 

Inputs External programming connector 

Outputs Programming signals to the PIC 

Functionality Connectors to upload program and debug PIC microcontroller 

 

 
Figure 21: Dashboard PCB Schematic – Main Connector 

 

Table 38: Dashboard PCB Schematic – Main Connector 

Designator & P/N J1 

1586041-8 

Inputs CAN signal containing accumulator SOC 

9 – 15 V range  

Outputs CAN signal containing accumulator SOC 

Functionality Connector to deliver power and CAN signal to the board 
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Figure 22: Dashboard PCB Schematic – Rotary Switch 

 

Table 39: Dashboard PCB Schematic – Rotary Switch 

Designator & P/N S4 

RM107772BCB 

Inputs User turning the knob 

Outputs High signals to desired microcontroller digital input 

Functionality Toggles between modes of operation and display screens on LCD 
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Figure 23: Dashboard PCB Schematic – Human Interface LEDs and Buttons 

 

Table 40: Dashboard PCB Schematic – LEDs 

Designator & P/N D1, D2 

WP154A4SEJ3VBDZGW/CA 

Inputs Microcontroller controls cathodes of LEDs 

Outputs Light emitted (red, green, or blue) 

Functionality Indicate various modes and statuses for driver 

 

Table 41: Dashboard PCB Schematic – Buttons 

Designator & P/N S1, S3 

PB6B2FM7M4CAL00 

Inputs User pressing button 

Outputs Signals from switches S1 and S3 to microcontroller 

Functionality Allows driver to control states of vehicle and start up car 
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5.2. Software Design 

 
Figure 24: Software Level 0 Diagram 

Table 42: A/D CAN Converter Functional Software Requirements - Level 0 

Module Analog-to-CAN Converter 

Inputs - Dual redundant accelerator pedal position sensors 

- Dual brake pressure transducers for front and rear hydraulic 

circuits 

Outputs - Direct connection to physical CAN bus 

- Converted CAN messages 

Functionality The A/CAN Converter will accept analog electrical signals from 

dual accelerator sensors and dual brake sensors and convert them 

into digital CAN signals. These signals can later be used by other 

components of the vehicle. 

 

Table 43: Dashboard Display Functional Software Requirements - Level 0 

Module CAN-enabled Dashboard Display 

Inputs - CAN bus data (accumulator) 

Outputs - Display high-voltage battery’s state of charge 

Functionality The dashboard will accept CAN data messages from the 

accumulator and display the remaining charge left on the battery. 
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The charge will be displayed as a percentage between 0% and 99%. 

 

 

Figure 25: Software Level 1 Diagram 

Table 44: A/D CAN Converter Functional Software Requirements - Level 1 

Module Analog-to-CAN Converter 

Inputs - Dual redundant accelerator pedal position sensors 

- Dual brake pressure transducers for front and rear hydraulic 

circuits 

Outputs - Direct connection to physical CAN bus 

- Converted CAN messages 

Functionality The A/CAN Converter will accept analog electrical signals from 

dual accelerator sensors and dual brake sensors and convert them 

into digital CAN signals. These signals can later be used by other 

components of the vehicle. 

 

Table 45: Dashboard Display Functional Software Requirements - Level 1 

Module CAN-enabled Dashboard Display 

Inputs - CAN bus data (accumulator) 

Outputs - Display high-voltage battery’s state of charge 

Functionality The dashboard will accept CAN data messages from the 

accumulator and display the remaining charge left on the battery. 

The charge will be displayed as a percentage between 0% and 99%. 
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Figure 26: Software Level 2 Diagram - Main Process Loop (RN) 
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Figure 27: Software Level 2 Diagram - CAN Transmission Loop (RN) 
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Figure 28: Software Level 2 Diagram - Dashboard MCU Output Loop (RN) 
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#define FCY 40000000UL  

#include <libpic30.h> 

#include "mcc_generated_files/system.h" 

#include "mcc_generated_files/ecan1.h" 

#include "mcc_generated_files/adc1.h" 

#include "mcc_generated_files/can1.h" 

#include "mcc_generated_files/pin_manager.h" 

 

#define CH_APPS1 0x1A  // Accelerator sensor 1 ADC channel AN26 

#define CH_APPS2 0x1F  // Accelerator sensor 2 ADC channel AN31 

#define CH_BRK_F 0x0A  // Front brake sensor ADC channel AN10 

#define CH_BRK_R 0x09  // Rear brake sensor ADC channel AN09 

 

/************ INITIAL DEMONSTRATION MAIN ************/ 

 

int main(void) 

{ 

// setup for arbitrary data 

    bool Transmit_Success = false;  // bool to test for transmission success 

     

    SYSTEM_Initialize();            // initialize dsPIC33 system 

    CAN1_TransmitEnable();          // enable CAN transmission  

     

    uCAN_MSG TestMessage;           // declare CAN message variable 

     

// Transmit arbitrary message 

    // pack CAN message with arbitrary data 

    TestMessage.frame.dlc = 0x04;              // data length code (bytes) 

    TestMessage.frame.idType = CAN1_FRAME_STD; // CAN1_FRAME_STD = 0x04 = 4 

    TestMessage.frame.id = 0x0A;               // unique identifier 

    TestMessage.frame.data0 = 0xFF;            // data 

    TestMessage.frame.data1 = 0xFF; 

    TestMessage.frame.data2 = 0xFF; 

    TestMessage.frame.data3 = 0xFF;         

    TestMessage.frame.data4 = 0xFF;         

    TestMessage.frame.data5 = 0xFF; 

    TestMessage.frame.data6 = 0xFF; 

    TestMessage.frame.data7 = 0xFF; 

     

// Test to see if CAN message transmission was successful 

    while(1) 

    { 

       // transmit CAN message and assign status to bool 

        Transmit_Success = CAN1_transmit(CAN_PRIORITY_HIGH, &TestMessage); 

        if(Transmit_Success)   

        { 

            // if the transmission was successful, turn on LED2 

            LED2_Toggle();      // XOR with value to determine if LED is on/off 

        } 

        __delay_ms(500);    // delay 500 ms = 0.5 s 

    } 

    return 1; 

} 

 

Figure 29: Basic CAN message data packing and transmission (main loop)  
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#ifndef _CAN1_H 

#define _CAN1_H 

 

#include "can_types.h" 

 

#ifdef __cplusplus  // Provide C++ Compatibility 

 

    extern "C" { 

 

#endif 

 

void CAN1_Initialize(void); 

 

bool CAN1_receive(uCAN_MSG *recCanMsg); 

 

bool CAN1_transmit(CAN_TX_PRIOIRTY priority,  

                                    uCAN_MSG *sendCanMsg); 

 

bool CAN1_isBusOff(); 

 

bool CAN1_isRXErrorPassive(); 

 

bool CAN1_isTXErrorPassive(); 

 

uint8_t CAN1_messagesInBuffer(); 

 

void CAN1_sleep(); 

 

void CAN1_TransmitEnable(); 

 

void CAN1_ReceiveEnable(); 

 

#ifdef __cplusplus  // Provide C++ Compatibility 

 

    } 

 

#endif 

 

#endif  //_CAN1_H 

 

Figure 30: can1.h Header File 
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#include "can1.h" 

#include "ecan1.h" 

#include "dma.h" 

 

#define CAN1_TX_DMA_CHANNEL DMA_CHANNEL_0 

#define CAN1_RX_DMA_CHANNEL DMA_CHANNEL_2 

 

/* Valid options are 4, 6, 8, 12, 16, 24, or 32. */ 

#define CAN1_MESSAGE_BUFFERS         32 

 

#define CAN1_TX_BUFFER_COUNT 1 

 

typedef struct __attribute__((packed)) 

{ 

    unsigned priority                   :2; 

    unsigned remote_transmit_enable     :1; 

    unsigned send_request               :1; 

    unsigned error                      :1; 

    unsigned lost_arbitration           :1; 

    unsigned message_aborted            :1; 

    unsigned transmit_enabled           :1; 

} CAN1_TX_CONTROLS; 

 

static unsigned int can1msgBuf [CAN1_MESSAGE_BUFFERS][8] __attribute__((aligned(32 * 8 * 2))); 

 

static void CAN1_DMACopy(uint8_t buffer_number, uCAN_MSG *message); 

static void CAN1_MessageToBuffer(uint16_t* buffer, uCAN_MSG* message); 

 

/* Null weak implementations of callback functions. */ 

void __attribute__((weak, deprecate("This callback ECAN1_CallbackBusOff() call will removed 

later"))) CAN1_CallbackBusOff(void) 

{  

    ECAN1_CallbackBusOff();     

} 

 

void __attribute__((weak, deprecate("This callback ECAN1_CallbackTxErrorPassive() call will 

removed later"))) CAN1_CallbackTxErrorPassive(void) 

{ 

    ECAN1_CallbackTxErrorPassive(); 

} 

 

void __attribute__((weak, deprecate("This callback ECAN1_CallbackRxErrorPassive() call will 

removed later"))) CAN1_CallbackRxErrorPassive(void) 

{ 

    ECAN1_CallbackRxErrorPassive(); 

} 

 

void __attribute__((weak, deprecate("This callback ECAN1_CallbackMessageReceived() call will 

removed later"))) CAN1_CallbackMessageReceived(void) 

{ 

    ECAN1_CallbackMessageReceived(); 

} 

 

 

void __attribute__((__interrupt__, no_auto_psv)) _C1Interrupt(void)   

{    

 

    if (C1INTFbits.ERRIF) 

    { 

         

        if (C1INTFbits.TXBO == 1) 

        { 

            CAN1_CallbackBusOff(); 

            C1INTFbits.TXBO = 0; 

        } 

         

        if (C1INTFbits.TXBP == 1) 

        { 

            CAN1_CallbackTxErrorPassive(); 

            C1INTFbits.TXBP = 0; 

        } 
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        if (C1INTFbits.RXBP == 1) 

        { 

            CAN1_CallbackRxErrorPassive(); 

            C1INTFbits.RXBP = 0; 

        } 

 

        /* Call error notification function */ 

        C1INTFbits.ERRIF = 0;   

         

    } 

     

    if(C1INTFbits.RBIF) 

    { 

        C1INTFbits.RBIF = 0;   

         

        /* Notification function */ 

        CAN1_CallbackMessageReceived();   

    }  

     

    if(C1INTFbits.WAKIF) 

    { 

        C1INTFbits.WAKIF = 0; 

    } 

    

    IFS2bits.C1IF = 0; 

} 

 

void CAN1_Initialize(void) 

{ 

    // Disable interrupts before the Initialization 

    IEC2bits.C1IE = 0; 

    C1INTE = 0; 

 

    // set the CAN{instance}_initialize module to the options selected in the User Interface 

 

    /* put the module in configuration mode */ 

    C1CTRL1bits.REQOP = CAN_CONFIGURATION_MODE; 

    while(C1CTRL1bits.OPMODE != CAN_CONFIGURATION_MODE); 

 

    /* Set up the baud rate*/  

    C1CFG1 = 0x03; //BRP TQ = (2 x 4)/FCAN; SJW 1 x TQ;  

    C1CFG2 = 0x41A8; //WAKFIL enabled; SEG2PHTS Freely programmable; SEG2PH 2 x TQ; SEG1PH 6 x 

TQ; PRSEG 1 x TQ; SAM Once at the sample point;  

    C1FCTRL = 0xC001; //FSA Transmit/Receive Buffer TRB1; DMABS 32;  

    C1FEN1 = 0x01; //FLTEN8 disabled; FLTEN7 disabled; FLTEN9 disabled; FLTEN0 enabled; 

FLTEN2 disabled; FLTEN10 disabled; FLTEN1 disabled; FLTEN11 disabled; FLTEN4 disabled; FLTEN3 

disabled; FLTEN6 disabled; FLTEN5 disabled; FLTEN12 disabled; FLTEN13 disabled; FLTEN14 disabled; 

FLTEN15 disabled;  

    C1CTRL1 = 0x00; //CANCKS FOSC/2; CSIDL disabled; ABAT disabled; REQOP Sets Normal 

Operation Mode; WIN Uses buffer window; CANCAP disabled;  

 

    /* Filter configuration */ 

    /* enable window to access the filter configuration registers */ 

    /* use filter window*/ 

    C1CTRL1bits.WIN=1; 

     

    /* select acceptance masks for filters */ 

    C1FMSKSEL1bits.F0MSK = 0x0; //Select Mask 0 for Filter 0 

 

    /* Configure the masks */ 

    C1RXM0SIDbits.SID = 0x7ff;  

    C1RXM1SIDbits.SID = 0x0;  

    C1RXM2SIDbits.SID = 0x0;  

 

    C1RXM0SIDbits.EID = 0x0;  

    C1RXM1SIDbits.EID = 0x0;  

    C1RXM2SIDbits.EID = 0x0;  

      

    C1RXM0EID = 0x00;       

    C1RXM1EID = 0x00;       



  

53 

    C1RXM2EID = 0x00;       

 

    C1RXM0SIDbits.MIDE = 0x0;  

    C1RXM1SIDbits.MIDE = 0x0;  

    C1RXM2SIDbits.MIDE = 0x0;  

     

    /* Configure the filters */ 

    C1RXF0SIDbits.SID = 0x123;  

 

    C1RXF0SIDbits.EID = 0x0;  

     

    C1RXF0EID = 0x00;  

 

    C1RXF0SIDbits.EXIDE = 0x0;  

 

    /* Non FIFO Mode */ 

    C1BUFPNT1bits.F0BP = 0x1; //Filter 0 uses Buffer1 

 

    /* clear window bit to access ECAN control registers */ 

    C1CTRL1bits.WIN=0;     

 

    /* CAN1, Buffer 0 is a Transmit Buffer */ 

    C1TR01CONbits.TXEN0 = 0x1; // Buffer 0 is a Transmit Buffer  

    C1TR01CONbits.TXEN1 = 0x0; // Buffer 1 is a Receive Buffer  

    C1TR23CONbits.TXEN2 = 0x0; // Buffer 2 is a Receive Buffer  

    C1TR23CONbits.TXEN3 = 0x0; // Buffer 3 is a Receive Buffer  

    C1TR45CONbits.TXEN4 = 0x0; // Buffer 4 is a Receive Buffer  

    C1TR45CONbits.TXEN5 = 0x0; // Buffer 5 is a Receive Buffer  

    C1TR67CONbits.TXEN6 = 0x0; // Buffer 6 is a Receive Buffer  

    C1TR67CONbits.TXEN7 = 0x0; // Buffer 7 is a Receive Buffer  

 

    C1TR01CONbits.TX0PRI = 0x0; // Message Buffer 0 Priority Level 

    C1TR01CONbits.TX1PRI = 0x0; // Message Buffer 1 Priority Level 

    C1TR23CONbits.TX2PRI = 0x0; // Message Buffer 2 Priority Level 

    C1TR23CONbits.TX3PRI = 0x0; // Message Buffer 3 Priority Level 

    C1TR45CONbits.TX4PRI = 0x0; // Message Buffer 4 Priority Level 

    C1TR45CONbits.TX5PRI = 0x0; // Message Buffer 5 Priority Level 

    C1TR67CONbits.TX6PRI = 0x0; // Message Buffer 6 Priority Level 

    C1TR67CONbits.TX7PRI = 0x0; // Message Buffer 7 Priority Level 

 

    /* clear the buffer and overflow flags */    

    C1RXFUL1 = 0x0000; 

    C1RXFUL2 = 0x0000; 

    C1RXOVF1 = 0x0000; 

    C1RXOVF2 = 0x0000;  

 

    /* configure the device to interrupt on the receive buffer full flag */ 

    /* clear the buffer full flags */   

    C1INTFbits.RBIF = 0;   

 

    /* put the module in normal mode */ 

    C1CTRL1bits.REQOP = CAN_NORMAL_OPERATION_MODE; 

    while(C1CTRL1bits.OPMODE != CAN_NORMAL_OPERATION_MODE);  

  

    /* Enable CAN1 Interrupt */ 

    IEC2bits.C1IE = 1; 

 

    /* Enable Receive interrupt */ 

    C1INTEbits.RBIE = 1; 

  

    /* Enable Error interrupt*/ 

    C1INTEbits.ERRIE = 1; 

 

     

} 

 

void CAN1_TransmitEnable() 

{ 

    /* setup channel 0 for peripheral indirect addressing mode  

    normal operation, word operation and select as Tx to peripheral */ 
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    /* DMA_PeripheralIrqNumberSet and DMA_TransferCountSet would be done in the  

    DMA */ 

     

    /* setup the address of the peripheral CAN1 (C1TXD) */  

    DMA_PeripheralAddressSet(CAN1_TX_DMA_CHANNEL, &C1TXD); 

 

    /* DPSRAM start address offset value */  

    DMA_StartAddressASet(CAN1_TX_DMA_CHANNEL, (uint16_t)(&can1msgBuf)); 

 

    /* enable the channel */ 

    DMA_ChannelEnable(CAN1_TX_DMA_CHANNEL); 

} 

 

void CAN1_ReceiveEnable() 

{ 

    /* setup DMA channel for peripheral indirect addressing mode  

    normal operation, word operation and select as Rx to peripheral */ 

     

    /* setup the address of the peripheral CAN1 (C1RXD) */      

    /* DMA_TransferCountSet and DMA_PeripheralIrqNumberSet would be set in  

    the DMA_Initialize function */ 

 

    DMA_PeripheralAddressSet(CAN1_RX_DMA_CHANNEL, &C1RXD); 

 

    /* DPSRAM start address offset value */  

    DMA_StartAddressASet(CAN1_RX_DMA_CHANNEL, (uint16_t)(&can1msgBuf) );   

 

    /* enable the channel */ 

    DMA_ChannelEnable(CAN1_RX_DMA_CHANNEL); 

} 

 

bool CAN1_transmit(CAN_TX_PRIOIRTY priority, uCAN_MSG *sendCanMsg)  

{ 

    CAN1_TX_CONTROLS * pTxControls = (CAN1_TX_CONTROLS*)&C1TR01CON; 

    uint_fast8_t i; 

    bool messageSent = false; 

 

    if(CAN1_TX_BUFFER_COUNT > 0) 

    { 

        for(i=0; i<CAN1_TX_BUFFER_COUNT; i++) 

        { 

            if(pTxControls->transmit_enabled == 1) 

            { 

                if (pTxControls->send_request == 0) 

                { 

                    CAN1_MessageToBuffer( &can1msgBuf[i][0], sendCanMsg ); 

 

                    pTxControls->priority = priority; 

 

                    /* set the message for transmission */ 

                    pTxControls->send_request = 1;  

 

                    messageSent = true; 

                    break; 

                } 

            } 

 

            pTxControls++; 

        } 

    } 

    return messageSent; 

} 

 

bool CAN1_receive(uCAN_MSG *recCanMsg)  

{    

    /* We use a static buffer counter so we don't always check buffer 0 first 

     * resulting in potential starvation of later buffers. 

     */ 

    static uint_fast8_t currentDedicatedBuffer = 0; 

    uint_fast8_t i; 

    bool messageReceived = false; 
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    uint16_t receptionFlags; 

 

    receptionFlags = C1RXFUL1; 

  

    if (receptionFlags != 0)   

    { 

        /* check which message buffer is free */   

        for (i=0 ; i < 16; i++) 

        { 

            if (((receptionFlags >> currentDedicatedBuffer ) & 0x1) == 0x1) 

            {            

               CAN1_DMACopy(currentDedicatedBuffer, recCanMsg); 

            

               C1RXFUL1 &= ~(1 << currentDedicatedBuffer); 

   

               messageReceived = true; 

            } 

             

            currentDedicatedBuffer++; 

             

            if(currentDedicatedBuffer >= 16) 

            { 

                currentDedicatedBuffer = 0; 

            } 

             

            if(messageReceived == true) 

            { 

                break; 

            } 

        } 

    } 

         

    return (messageReceived); 

} 

 

bool CAN1_isBusOff()  

{ 

    return C1INTFbits.TXBO;  

} 

 

bool CAN1_isRXErrorPassive() 

{ 

    return C1INTFbits.RXBP;    

} 

 

bool CAN1_isTXErrorPassive() 

{ 

    return (C1INTFbits.TXBP); 

} 

 

uint8_t CAN1_messagesInBuffer()  

{ 

    uint_fast8_t messageCount; 

    uint_fast8_t currentBuffer; 

    uint16_t receptionFlags; 

    

    messageCount = 0; 

 

    /* Check any message in buffer 0 to buffer 15*/ 

    receptionFlags = C1RXFUL1; 

    if (receptionFlags != 0)  

    { 

        /* check whether a message is received */   

        for (currentBuffer=0 ; currentBuffer < 16; currentBuffer++) 

        { 

            if (((receptionFlags >> currentBuffer ) & 0x1) == 0x1) 

            { 

                messageCount++; 

            } 

        } 

    } 



  

56 

             

    return (messageCount); 

} 

 

void CAN1_sleep(void)  

{ 

    C1INTFbits.WAKIF = 0; 

    C1INTEbits.WAKIE = 1; 

 

    /* put the module in disable mode */ 

    C1CTRL1bits.REQOP = CAN_DISABLE_MODE; 

    while(C1CTRL1bits.OPMODE != CAN_DISABLE_MODE); 

     

    //Wake up from sleep should set the CAN module straight into Normal mode 

} 

 

static void CAN1_DMACopy(uint8_t buffer_number, uCAN_MSG *message) 

{ 

    uint16_t ide=0; 

    uint16_t rtr=0; 

    uint32_t id=0; 

 

    /* read word 0 to see the message type */ 

    ide=can1msgBuf[buffer_number][0] & 0x0001U;    

 

    /* check to see what type of message it is */ 

    /* message is standard identifier */ 

    if(ide==0U) 

    { 

        message->frame.id=(can1msgBuf[buffer_number][0] & 0x1FFCU) >> 2U;   

        message->frame.idType = CAN_FRAME_STD; 

        rtr=can1msgBuf[buffer_number][0] & 0x0002U; 

    } 

    /* message is extended identifier */ 

    else 

    { 

        id=can1msgBuf[buffer_number][0] & 0x1FFCU;   

        message->frame.id = id << 16U; 

        message->frame.id += ( ((uint32_t)can1msgBuf[buffer_number][1] & (uint32_t)0x0FFF) << 6U 

); 

        message->frame.id += ( ((uint32_t)can1msgBuf[buffer_number][2] & (uint32_t)0xFC00U) >> 

10U );   

        message->frame.idType = CAN_FRAME_EXT; 

        rtr=can1msgBuf[buffer_number][2] & 0x0200; 

    } 

    /* check to see what type of message it is */ 

    /* RTR message */ 

    if(rtr != 0U) 

    { 

        /* to be defined ?*/ 

        message->frame.msgtype = CAN_MSG_RTR;  

    } 

    /* normal message */ 

    else 

    { 

        message->frame.msgtype = CAN_MSG_DATA; 

        message->frame.data0 =(unsigned char)can1msgBuf[buffer_number][3]; 

        message->frame.data1 =(unsigned char)((can1msgBuf[buffer_number][3] & 0xFF00U) >> 8U); 

        message->frame.data2 =(unsigned char)can1msgBuf[buffer_number][4]; 

        message->frame.data3 =(unsigned char)((can1msgBuf[buffer_number][4] & 0xFF00U) >> 8U); 

        message->frame.data4 =(unsigned char)can1msgBuf[buffer_number][5]; 

        message->frame.data5 =(unsigned char)((can1msgBuf[buffer_number][5] & 0xFF00U) >> 8U); 

        message->frame.data6 =(unsigned char)can1msgBuf[buffer_number][6]; 

        message->frame.data7 =(unsigned char)((can1msgBuf[buffer_number][6] & 0xFF00U) >> 8U); 

        message->frame.dlc =(unsigned char)(can1msgBuf[buffer_number][2] & 0x000FU); 

    } 

} 

 

static void CAN1_MessageToBuffer(uint16_t* buffer, uCAN_MSG* message) 

{    

    if(message->frame.idType == CAN_FRAME_STD) 
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    { 

        buffer[0]= (message->frame.id & 0x000007FF) << 2; 

        buffer[1]= 0; 

        buffer[2]= message->frame.dlc & 0x0F; 

    } 

    else 

    { 

        buffer[0]= ( ( (uint16_t)(message->frame.id >> 16 ) & 0x1FFC ) ) | 0b1; 

        buffer[1]= (uint16_t)(message->frame.id >> 6) & 0x0FFF; 

        buffer[2]= (message->frame.dlc & 0x0F) + ( (uint16_t)(message->frame.id << 10) & 0xFC00); 

    } 

 

    buffer[3]= ((message->frame.data1)<<8) + message->frame.data0; 

    buffer[4]= ((message->frame.data3)<<8) + message->frame.data2; 

    buffer[5]= ((message->frame.data5)<<8) + message->frame.data4; 

    buffer[6]= ((message->frame.data7)<<8) + message->frame.data6; 

} 

 

Figure 31: can1.c Source File 
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#ifndef _ECAN1_H 

#define _ECAN1_H 

 

#include "can_types.h" 

 

#warning deprecate ("\nThis will be removed in future MCC releases. \nUse can_types.h 

file CAN message type identifiers instead. ") 

/* ECAN message type identifiers */ 

#define CAN1_MSG_DATA    0x01 

#define CAN1_MSG_RTR     0x02 

#define CAN1_FRAME_EXT 0x03 

#define CAN1_FRAME_STD 0x04 

#define CAN1_BUF_FULL 0x05 

#define CAN1_BUF_EMPTY 0x06 

 

typedef union { 

    struct { 

        uint32_t id; 

        uint8_t idType; 

        uint8_t msgtype; 

        uint8_t dlc; 

        uint8_t data0; 

        uint8_t data1; 

        uint8_t data2; 

        uint8_t data3; 

        uint8_t data4; 

        uint8_t data5; 

        uint8_t data6; 

        uint8_t data7; 

    } frame; 

    unsigned char array[16]; 

} uCAN1_MSG __attribute__((deprecate ("\nThis will be removed in future MCC releases. 

\nUse can_types.h file uCAN_MSG instead. "))); 

 

/* Operation modes */ 

typedef enum 

{ 

 CAN1_NORMAL_OPERATION_MODE = 0, 

 CAN1_DISABLE_MODE = 1, 

 CAN1_LOOPBACK_MODE = 2, 

 CAN1_LISTEN_ONLY_MODE = 3, 

 CAN1_CONFIGURATION_MODE = 4, 

 CAN1_LISTEN_ALL_MESSAGES_MODE = 7 

}ECAN1_OP_MODES __attribute__((deprecated ("\nThis will be removed in future MCC 

releases. \nUse can_types.h file CAN_OP_MODES instead. "))); 

 

typedef enum{ 

    ECAN1_PRIORITY_HIGH = 0b11, 

    ECAN1_PRIORITY_MEDIUM = 0b10, 

    ECAN1_PRIORITY_LOW = 0b01, 

    ECAN1_PRIORITY_NONE = 0b00 

} ECAN1_TX_PRIOIRTY __attribute__((deprecated ("\nThis will be removed in future MCC 

releases. \nUse can_types.h file CAN_TX_PRIOIRTY instead. "))); 

 

#ifdef __cplusplus  // Provide C++ Compatibility 

 

    extern "C" { 

 

#endif 

         

void ECAN1_Initialize(void) __attribute__((deprecate ("\nThis will be removed in future 

MCC releases. \nUse CAN1_Initialize instead. "))); 

 

bool ECAN1_receive(uCAN1_MSG *recCanMsg) __attribute__((deprecate ("\nThis will be 

removed in future MCC releases. \nUse CAN1_receive instead. ")));  

 

bool ECAN1_transmit(ECAN1_TX_PRIOIRTY priority,  

                                    uCAN1_MSG *sendCanMsg) __attribute__((deprecate 

("\nThis will be removed in future MCC releases. \nUse CAN1_transmit instead. ")));  

 

bool ECAN1_isBusOff() __attribute__((deprecate ("\nThis will be removed in future MCC 
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releases. \nUse CAN1_isBusOff instead. ")));  

 

bool ECAN1_isRXErrorPassive() __attribute__((deprecate ("\nThis will be removed in future 

MCC releases. \nUse CAN1_isRXErrorPassive instead. "))); 

 

bool ECAN1_isTXErrorPassive() __attribute__((deprecate ("\nThis will be removed in future 

MCC releases. \nUse CAN1_isTXErrorPassive instead. "))); 

 

uint8_t ECAN1_messagesInBuffer() __attribute__((deprecate ("\nThis will be removed in 

future MCC releases. \nUse CAN1_messagesInBuffer instead. "))); 

 

void ECAN1_sleep() __attribute__((deprecate ("\nThis will be removed in future MCC 

releases. \nUse CAN1_sleep instead. "))); 

 

void ECAN1_TransmitEnable() __attribute__((deprecate ("\nThis will be removed in future 

MCC releases. \nUse CAN1_TransmitEnable instead. "))); 

 

void ECAN1_ReceiveEnable() __attribute__((deprecate ("\nThis will be removed in future 

MCC releases. \nUse CAN1_ReceiveEnable instead. "))); 

 

/* Null weak implementations of callback functions. */ 

void ECAN1_CallbackBusOff(void) __attribute__((deprecate("\nThis will be removed in 

future MCC releases. \nUse CAN1_CallbackBusOff instead. "))); 

void ECAN1_CallbackTxErrorPassive(void) __attribute__((deprecate("\nThis will be removed 

in future MCC releases. \nUse CAN1_CallbackTxErrorPassive instead. "))); 

void ECAN1_CallbackRxErrorPassive(void) __attribute__((deprecate("\nThis will be removed 

in future MCC releases. \nUse CAN1_CallbackRxErrorPassive instead. "))); 

void ECAN1_CallbackMessageReceived(void) __attribute__((deprecate("\nThis will be removed 

in future MCC releases. \nUse CAN1_CallbackMessageReceived instead. "))); 

 

#ifdef __cplusplus  // Provide C++ Compatibility 

 

    } 

 

#endif 

 

#endif  //_ECAN1_H 

 

Figure 32: ecan.h Header File  
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#include "ecan1.h" 

#include "can1.h" 

#include "dma.h" 

 

/* Null weak implementations of callback functions. */ 

void __attribute__((weak, deprecate("\nThis will be removed in future MCC releases. \nUse 

CAN1_CallbackBusOff instead. "))) ECAN1_CallbackBusOff(void){} 

void __attribute__((weak, deprecate("\nThis will be removed in future MCC releases. \nUse 

CAN1_CallbackTxErrorPassive instead. "))) ECAN1_CallbackTxErrorPassive(void){} 

void __attribute__((weak, deprecate("\nThis will be removed in future MCC releases. \nUse 

CAN1_CallbackRxErrorPassive instead. "))) ECAN1_CallbackRxErrorPassive(void){} 

void __attribute__((weak, deprecate("\nThis will be removed in future MCC releases. \nUse 

CAN1_CallbackMessageReceived instead. "))) ECAN1_CallbackMessageReceived(void){} 

 

void ECAN1_Initialize(void) 

{ 

    CAN1_Initialize(); 

} 

 

void ECAN1_TransmitEnable() 

{ 

    CAN1_TransmitEnable(); 

} 

 

void ECAN1_ReceiveEnable() 

{ 

    CAN1_ReceiveEnable(); 

} 

 

bool ECAN1_transmit(ECAN1_TX_PRIOIRTY priority, uCAN1_MSG *sendCanMsg)  

{ 

    return CAN1_transmit((CAN_TX_PRIOIRTY) priority, (uCAN_MSG *) sendCanMsg); 

} 

 

bool ECAN1_receive(uCAN1_MSG *recCanMsg)  

{    

    return CAN1_receive((uCAN_MSG *) recCanMsg); 

} 

 

bool ECAN1_isBusOff()  

{ 

    return CAN1_isBusOff();  

} 

 

bool ECAN1_isRXErrorPassive() 

{ 

    return CAN1_isRXErrorPassive();    

} 

 

bool ECAN1_isTXErrorPassive() 

{ 

    return CAN1_isTXErrorPassive(); 

} 

 

uint8_t ECAN1_messagesInBuffer()  

{  

    return CAN1_messagesInBuffer(); 

} 

 

void ECAN1_sleep(void)  

{ 

    CAN1_sleep(); 

} 

Figure 33: ecan.c Source File 
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6. Design Demonstration 

Due to the unexpected closure of the university for the COVID-19 pandemic, the final 

demonstration of this project was cancelled. However, the team gave a midterm demonstration 

and showed that the engineering requirements had been met. 

6.1. A/CAN Demonstration 

For the A/CAN system, two of the primary requirements is that the board must convert 

analog signals into digital values. These values must be broadcast over the CAN bus. As the 

actual linear position sensors for the accelerator pedal and the brake pressure sensors had not yet 

been installed on the vehicle, the team verified this requirement by using two dual gang 

potentiometers to generate analog voltage levels. A CAN-USB converter allowed the received 

data to be displayed on a computer terminal. Using a CAN database file (*.dbc), the team could 

decode the messages in real time. Values were shown on the screen corresponding to the 

measured position of the potentiometers. 

 

Figure 34: CAN database file editor for decoding ACAN messages 

BO_ 5 ACAN: 8 ACAN 

SG_ APPS1 : 0|16@1+ (1,0) [0|0] "bits (min 50, start 100, max 410)"  ECU 

SG_ APPS2_scaled : 16|16@1+ (0.5,0) [0|0] "bits (scaled)"  ECU 

SG_ APPS2 : 16|16@1+ (1,0) [0|0] "bits"  ECU 

SG_ BRK1 : 32|16@1+ (1,0) [0|0] "bits (100 braking, 500 braking hard)"  ECU 

SG_ BRK2 : 48|16@1+ (1,0) [0|0] "bits"  ECU 

SG_ BRK1PSI : 32|16@1+ (3.0518,-312.5) [0|0] "psi"  ECU 

SG_ BRK2PSI : 48|16@1+ (3.0518,-312.5) [0|0] "psi"  ECU 

Figure 35: CAN database file code for decoding ACAN messages 
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As many automotive sensors have analog outputs up to 5 V, the team demonstrated that 

the ACAN system could tolerate and read signals up to 5 V by turning the potentiometers fully in 

one direction and viewing the output on the computer monitor. 

 Another engineering requirement for the ACAN system is that open circuit in the sensor 

lines would be detected. The pedals are always preloaded by torsion springs and have 

mechanical stops before the end of the sensor range, so the sensors should never read below 

approximately 0.5 V, and any result lower than that threshold can be considered erroneous by the 

ECU. Pull down resistors of 1 MΩ bring the sensor output to zero volts in open circuit 

conditions, such as damage to a wire in the vehicle harness. The resistor value was selected 

larger enough not to significantly load the upstream RC lowpass filter. During the demonstration, 

the senior design coordinator cut one sense wire to the ACAN board and the subsequent CAN 

messages for that sensor reported 0 bits, as expected. 

 

Figure 36: Location of sensor pull down resistor 

 FSAE rules require that both accelerator pedal position sensors must have unique transfer 

functions. This means for the same pedal position, the sensors report different outputs, such as 

having different output voltages. The team accomplished this by including a 1 kΩ resistor, R4, in 
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the path for one of the sensors. For the same position of the dual gang potentiometer, the 

measured output voltages were different. The following figure shows a portion of the output 

recorded during the demonstration as the potentiometer shaft was rotated. The potentiometer 

used was 1 kΩ, so with R4, the value of APPS1 was expected to be half that of APPS2, as 

shown. 

 

Figure 37: ACAN system output during demonstration 
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Figure 38: APPS1 and APPS2 reading plotted against each other 

 For quick response to driver action, the ACAN system must record and output data at a 

high rate. The requirement was that the system would output the reading of the sensors at a rate 

of at least 10 Hz. The team met this goal with an approximate rate of 50 Hz, depending on the 

CAN bus load due to message arbitration. 

 

Figure 39: ACAN readings showing timing between messages 
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Table 46: Timing between ACAN system messages 

Time (s) APPS1 (bits) APPS2 (bits) 

0.601 199 392 

0.621 219 431 

0.641 235 463 

0.661 249 491 

0.681 261 515 

0.701 276 548 

 

The systems on the vehicle are powered by nominally 12 V LiFePO4 battery. This 

battery can vary over the course of a race from 15 V fully charged to about 9 V fully discharged. 

Therefore, one requirement of the system is to operate with any input voltage in this range. The 

board is powered with regulated 5 V from U2, R-78E5.0-1.0, a buck DC/DC converter with an 

input range 8 - 22 V. The team showed this requirement was met by powering the ACAN board 

from a lab power supply and adjusting the output voltage while the board was operating. CAN 

messages were still sent during the test and the message data was unaffected. 

6.2. Dashboard Demonstration 

The dashboard on the electric race car was designed to accept CAN messages from the 

BMS in about the accumulator SOC. The dashboard then decodes these messages and displays 

the information to the driver via a 7-segment display. As the BMS was not yet ready during the 

demonstration, the dashboard was programmed to accept the ID of the CAN message for the 

ACAN system. The dashboard then extracted and displayed the data for the first accelerator 

pedal position sensor. 

In the following figure, the second two digits in the figure were configured to report 

linear speed of the vehicle. The LEDs above the display include two RGB LEDs controlled by 

the dashboard microcontroller. These include various states and statuses for the driver. The ECU 

sends various CAN messages telling the dashboard which LEDs and colors to illuminate. 



  

66 

 

Figure 40: Dashboard configured to display ACAN result 

 The last requirement our team established for the dashboard is that the display must be 

legible from a distance of 3’ and in bright sunlight. During the demonstration, the team used a 4’ 

measuring ruler and a flashlight and showed that the display was easily readable from greater 

than 3’. Each character on the display is nearly ¾” tall and the VI-415-DP-RC-S liquid crystal 

display features a rear polarizer, reflecting incoming light, for clear viewing in bright light. 
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Figure 41: Dashboard display internal construction (dimensions are mm)  

6.3. Current Consumption 

Any battery-powered system has a limited amount of energy available. A requirement of 

for the project was that each PCB would draw less than 1 A of current at 12 V input. Both 

devices powered together during the demonstration required 49 mA, successfully meeting the 

goal. 
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7. Mechanical Sketch 

 

Figure 42: Accelerator pedal and dual sensor assembly 
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Figure 43: A/CAN converter system PCB sketch 

 

Figure 44: A/CAN converter PCB assembly 
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Figure 45: A/CAN converter CAD model in 3D-printed enclosure 

 

Figure 46: Dashboard PCB sketch 
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Figure 47: Dashboard PCB assembly, front side 

 

Figure 48: Dashboard PCB assembly, back side 
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Figure 49: Dashboard CAD model mounted to 3D-printed cover 

 

Figure 50: Dashboard CAD model installed on chassis 
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Figure 51: Dashboard powered up displaying test data 

 

Figure 52: Car progress showing dashboard illuminated and other components installed 
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9. Parts List 

9.1. A/CAN Bill of Materials 

Table 47: A/CAN BOM 

Manufacturer Part Number 

Reference 

Designator Qty Description 

CL21A226MOCLRNC C1 1 CAP CER 22UF 16V X5R 0805 

GRT31CR61H106ME01L C12, C17 2 CAP CER 10UF 50V X5R 1206 

CL32A106KATLNNE C2, C5 2 CAP CER 10UF 25V X5R 1210 

CL21B105KAFNNNE C3 1 CAP CER 1UF 25V X7R 0805 

CL10F104ZB8NNNC 

C4, C7, C8, C10, 

C11, C13, C14, 

C15, C16 9 CAP CER 0.1UF 50V Y5V 0603 

CC0603JRNPO9BN270 C6, C9 2 

CAP CER 27PF 50V C0G/NPO 

0603 

SMBJ15A D1 1 

TVS DIODE 15V 24.4V 

DO214AA 

PESD1CAN,215 D2 1 TVS DIODE 24V 70V SOT23 

LTST-C190KGKT D3, D4, D5, D8 4 

LED GREEN CLEAR CHIP 

SMD 

LTST-C190KRKT D6 1 LED RED CLEAR CHIP SMD 

LTST-C191KFKT D7 1 LED ORANGE CLEAR SMD 

M20-9990246 J1 1 

CONN HEADER VERT 2POS 

2.54MM 

2-1586041-2 J2 1 

CONN HEADER R/A 22POS 

4.2MM 

M20-9990646 J3 1 

CONN HEADER VERT 6POS 

2.54MM 

A-2004-1-4-N-R J4 1 

CONN MOD JACK 6P6C R/A 

UNSHLD 

RMCF1206FT120R R1 1 RES 120 OHM 1% 1/4W 1206 

RMCF0603FG100R R10 1 RES 100 OHM 1% 1/10W 0603 

CR0603-J/-000ELF R15 1 

RES SMD 0 OHM JUMPER 

1/10W 0603 

RMCF0603FT2K20 R2 1 RES 2.2K OHM 1% 1/10W 0603 
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RMCF0603FT1K00 

R3, R4, R16, 

R17, R18, R19 6 RES 1K OHM 1% 1/10W 0603 

RMCF0603FG100K R5, R6 2 RES 100K OHM 1% 1/10W 0603 

RMCF0603FT1M00 R7, R8, R13, R14 4 RES 1M OHM 1% 1/10W 0603 

RMCF0603FT10K0 R9, R11, R12 3 RES 10K OHM 1% 1/10W 0603 

1825910-6 S1 1 

SWITCH TACTILE SPST-NO 

0.05A 24V 

5015 

TP1, TP2, TP3, 

TP4, TP5, TP6, 

TP7, TP8, TP9, 

TP10, TP11, 

TP12, TP13, 

TP14, TP15, 

TP16 16 PC TEST POINT MINIATURE 

MCP2561-E/SN U1 1 

IC TRANSCEIVER HALF 1/1 

8SOIC 

R-78E5.0-1.0 U2 1 DC DC CONVERTER 5V 5W 

DSPIC33EV256GM106-I/PT U3 1 

IC MCU 16BIT 256KB FLASH 

64TQFP 

ECS-80-18-5P-TR Y1 1 

CRYSTAL 8.0000MHZ 18PF 

SMD 

 

9.2. Dashboard Display Bill of Materials 

Table 48: Dashboard BOM 

Part Number Reference 

Designator 

Qty Description 

XLM2CRK20W BMS, BSPD, 

IMD 

3 LED RED CLEAR 5MM OVAL 

T/H 

GRT31CR61H106ME01L C1, C6, C11, C12 4 CAP CER 10UF 50V X5R 1206 

CL21B105KAFNNNE C10, C13, C14 3 CAP CER 1UF 25V X7R 0805 

CL10F104ZB8NNNC C2, C3, C4, C5, 

C15, C16, C17 

7 CAP CER 0.1UF 50V Y5V 0603 

CC0603JRNPO9BN270 C7, C8 2 CAP CER 27PF 50V C0G/NPO 

0603 

CL21A226MOCLRNC C9 1 CAP CER 22UF 16V X5R 0805 

WP154A4SEJ3VBDZGW/CA D1, D2 2 LED RGB DIFFUSED T-1 3/4 

T/H 

PESD1CAN,215 D11 1 TVS DIODE 24V 70V SOT23 

LTST-C190KGKT D3, D8, D9, D10 4 LED GREEN CLEAR CHIP 

SMD 

LTST-C190KRKT D4 1 LED RED CLEAR CHIP SMD 

LTST-C191KFKT D5 1 LED ORANGE CLEAR SMD 

LTST-C190TBKT D6 1 LED BLUE CLEAR CHIP SMD 
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SMBJ15A D7 1 TVS DIODE 15V 24.4V 

DO214AA 

VI-415-DP-RC-S DIS1 1 LCD MOD 4 DIG 4 X 1 

REFLECTIVE 

1586038-8 J1 1 CONN HEADER VERT 8POS 

4.2MM 

M20-9990646 J2 1 CONN HEADER VERT 6POS 

2.54MM 

M20-9990246 J3 1 CONN HEADER VERT 2POS 

2.54MM 

A-2004-1-4-N-R J4 1 CONN MOD JACK 6P6C R/A 

UNSHLD 

RMCF0603FT10K0 R1, R2, R3, R18, 

R20, R21, R23, 

R24, R25, R26 

10 RES 10K OHM 1% 1/10W 0603 

RMCF0603FT1K00 R12, R13, R14, 

R15, R17, R19 

6 RES 1K OHM 1% 1/10W 0603 

RMCF0603FT2K20 R16 1 RES 2.2K OHM 1% 1/10W 0603 

RMCF1206FT120R R22 1 RES 120 OHM 1% 1/4W 1206 

CR0603-J/-000ELF R4 1 RES SMD 0 OHM JUMPER 

1/10W 0603 

RMCF0603FG100R R5 1 RES 100 OHM 1% 1/10W 0603 

RMCF0603FT470R R6, R7, R8, R9, 

R10, R11 

6 RES 470 OHM 1% 1/10W 0603 

PB6B2FM7M4CAL00 S1, S3 2 PB OFF/ON FC BLU M4 TERM. 

IP68 

1825910-6 S2 1 SWITCH TACTILE SPST-NO 

0.05A 24V 

RM107772BCB S4 1 SWITCH ROTARY 7POS 

500MA 24V 

5015 TP1, TP2, TP3, 

TP4, TP5, TP6, 

TP7, TP8, TP9, 

TP10, TP11, 

TP12, TP13, 

TP14, TP15, 

TP16, TP17, 

TP18, TP19, 

TP20 

20 PC TEST POINT MINIATURE 

DSPIC33EV256GM106-I/PT U1 1 IC MCU 16BIT 256KB FLASH 

64TQFP 

R-78E5.0-1.0 U2 1 DC DC CONVERTER 5V 5W 

ADP160AUJZ-3.0-R7 U3 1 IC REG LINEAR 3V 150MA 

TSOT5 
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PCF8551BTT/AJ U4 1 IC DRVR 7 SEGMENT 

48TSSOP 

MCP2561-E/SN U5 1 IC TRANSCEIVER HALF 1/1 

8SOIC 

ECS-80-18-5P-TR Y1 1 CRYSTAL 8.0000MHZ 18PF 

SMD 

 

 

10. Budget 

The original budget of the team was $600. The items purchased by the team, from the team fund, 

and their associated costs are shown in the following table. The Zips Racing Electric team also 

had money available for the electrical system of the car, so some of the project items were 

purchased by the ZRE team.  The team accomplished the project with $29.12 remaining in the 

design team fund, and stayed under the amount allowed from the ZRE team. 

Table 49: Material Budget Information  

Qty. Part Num. Description Unit 

Cost 

Total 

Cost 

4 9605R1.7KL2.0 Resistive Sensor Linear Position Shaft 

Solder Lug 

29.01 116.04 

4 M3031-000005-2K5PG Pressure Sensor 2500PSI 

(17236.89kPa) Vented Gauge Male - 

1/4" (6.35mm) NPT 0.5 V ~ 4.5 V 

Cylinder 

71.06 284.24 

5 DSPIC33EV256GM106

-I/PT 

dsPIC dsPIC™ 33EV Microcontroller 

IC 16-Bit 70 MIPs 256KB (85.5K x 

24) FLASH 64-TQFP (10x10) 

4.26 21.30 

5 MCP2561-E/SN 1/1 Transceiver Half CANbus 8-SOIC 0.90 4.50 

5 PESD1CAN,215 70V Clamp 3A (8/20µs) Ipp Tvs 

Diode Surface Mount TO-236AB 

0.47 2.35 

5 SMBJ15A-E3/52 24.4V Clamp 24.6A Ipp Tvs Diode 

Surface Mount DO-214AA (SMBJ) 

0.35 1.75 

5 ECS-80-18-5P-TR 8MHz ±30ppm Crystal 18pF 60 Ohms 

HC-49/US 

0.77 3.85 

4 MRJR-3360-01 Jack Modular Connector 6p6c (RJ11, 

RJ12, RJ14, RJ25) 90° Angle (Right) 

Unshielded 

10.09 40.36 

1 967-009-CAP IP67 9 POS CONNECTOR COVER 8.96 8.96 

1 160-000-209R002 DUST CAP 9POS FEMALE 

W/LANYARD 

36.45 36.45 
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1 PN-1322-C BOX PLSTC GRAY/CLR 

4.53"LX2.56"W 

2.13 2.13 

1 G1301/8 OR007 SELF WRAP 1/8" X 50' ORANGE 18.19 18.19 

1 PX0842/B ADAPTER USB B RCPT TO USB A 

RCPT 

12.00 12.00 

1 1656356 INSERT 6P6C JACK COUPLER 6.43 6.43 

1 PX0733 CONN SEALING COVER BLACK 10.14 10.14 

3 956-009-010R011 CONN BACKSHELL 9POS 180DEG 

BLACK 

0.73 2.19 

   
Total $570.88 
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11. Project Schedule 

11.1. Fall 2019 

 
Figure 53: Fall 2019 Team Schedule 
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11.2. Spring 2020 

 
Figure 54: Spring 2020 Team Schedule 
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12. Conclusions and Recommendations 

With a CAN communication bus, the Zips Racing Electric team will be well equipped to 

perform at future competitions with a more reliable race car.  With a digital communication 

system based on the Controller Area Network (CAN) bus, data can be more easily shared 

between independent electrical systems and each system can make decisions based upon the 

data. This data will be more reliable than last year due to the upgrade from analog 

communication, to noise resistant CAN communication. This will be a more robust system to 

accurately measure sensor data, which in turn will provide for smoother operation of the car. The 

system will also be replicable so that more sensors can be added to the CAN network, without 

hassle, in the future. All of this will improve car operation this year and help to set up Zips 

Racing Electric for success. 

(AJ, SK, AL, RN) 
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14. Appendices 

14.1. Glossary 

A/CAN – Analog to CAN 

Accumulator – High voltage, lithium ion battery pack that provides tractive power to the vehicle 

A/D – Analog to Digital 

APPS – Accelerator Pedal Position Sensor 

BMS – Battery Management System 

CAD – Computer-Aided Design 

CAN – Control Area Network 

ECU – Electronic Control Unit 

FSAE – Formula Society of Automotive Engineers 

IDE – Integrated Development Environment 

IDE bit – Identifier Extended bit, indicates whether CAN message will have standard (11 bit) or   

extended (29 bit) identifier 

SOC – State of Charge 

ZRE – Zips Racing Electric 

https://www.kvaser.com/can-protocol-tutorial/#/tab-1398106847865-4-6
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
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