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Abstract (MS) 

 Measuring the impedance of the body is a process which can be correlated to 

several different aspects of the human body, more specifically, a user's hydration level. In 

order to find a user’s impedance, first a signal must be generated and then passed through 

the user’s body. In order to guarantee safety of the user, the signal is passed through 

various components, so the exact inputs are known. To send this input signal through the 

user's body, a set of electrodes will be used. Once the signal has passed through the user’s 

body, it is then processed, first through a conversion of analog to digital, followed by an 

embedded processor, and finally sent to a wireless module via Bluetooth. Once at the 

wireless module, the information is sent to a server, and stored in a database. From here a 

user can access all previous readings and keep track of their impedance levels in the form 

of a mobile application. 

1 - Problem Statement 

 

1.1 – Need (SW, RB) 

Many people put a great emphasis on personal health, but underestimate the 

importance of hydration, subjecting themselves to being either under or over-hydrated. 

While thirst is a strong indicator of a person’s hydration level – and is sufficient for most 

people – consumers have no way of easily monitoring their hydration and tracking it 

through the day or over a longer period of time. In addition to serious medical conditions 

which are exacerbated by hydration levels, the symptoms of mild dehydration (e.g. 

headaches and muscle cramps) and the less-critical effects of overhydration (e.g. 

inconvenience of frequent drinking and urination) constitute a need for achieving 
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measured and trackable hydration feedback which many consumers would find 

useful[11].  

1.2 – Objective (SW, KL, MS) 

The best solution for the consumer would be a hydration monitor which is 

compact enough for home or portable use. The user’s hydration level can be measured by 

bioelectric impedance analysis. This is done by sending a signal through the body and 

analyzing the changes to the output signal; these changes vary by a user’s hydration level. 

Once the signal is measured, the data will automatically be sent to a mobile application 

where it will be processed and displayed to the user. The data will also be uploaded and 

saved for each specific user. Similar to diet and fitness applications, the user will then be 

able to review historic hydration (BIA) levels and better-understand how to adapt their 

own fluid intake. Since the fluid intake per user is different based on factors – such as 

limb position, recent exercise, and skin temperature – it will be important to develop a 

range of hydration levels that can be clearly conveyed to the user, in addition to the user’s 

quantified bioelectric impedance. 

1.3 – Background 

 

Basic Theory Behind the Concept (MS) 

 

Bioelectrical impedance analysis (BIA) is a safe, simple, and inexpensive 

technique for the evaluation of body composition. Bioelectrical impedance analysis 

involves electrodes being placed on different parts of the body. When placed at the hands 

or the feet, it is possible to measure the impedance of the body, whereas placing the 

electrodes at a segmented part of the body allows for a more accurate reading in that 

segmented area. The impedance instrument then sends a very small and harmless AC 
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current through a set of electrodes, and then measures how the body impedes the current 

flow through the set of electrodes[5].  

The physical principle behind bioelectrical impedance analysis lies in the cells 

that are grouped up in the organs and tissues that make up the human body. Cells contain 

intracellular water and are bathed in extracellular water. Bioelectrical impedance analysis 

is based on the potential difference or voltage drop when a weak AC current is sent 

through the body tissues[5]. The intracellular and extracellular waters behave as electrical 

conductors while the cell membranes behave as imperfect reactive elements. The 

electrical conduction is then dependent on fluid and electrolyte distribution. The 

opposition to the flow of a constant alternating AC current is the impedance, which is 

composed of an electrical resistance that changes based on the amount of fluid in the 

tissue. 

In order to measure this impedance, it is important to understand what variables 

factor into the impedance. Since impedance is the opposition to the flow of an alternating 

current, it is dependent on the frequency of the applied current, defined in impedance 

magnitude (|Z|), and phase angle (). Bioimpedance is a complex quantity which is 

composed of resistance (R) and reactance (Xc). The resistance is caused by total body 

water, and the reactance is caused by the capacitance of the cells’ membrane[3]. The 

following equations relate the variables above. 
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The resistance of an object is determined by a shape defined as length (L) and surface 

area (A). Material type is defined by resistivity (ρ), and reactance (Xc) of an object is 

defined as resistance to voltage variation across the object. The reactance is inversely 

related with signal frequency (f) and capacitance (C) [3]. The following equations relate 

the variables above. 

 

Capacitance then is defined as the ability of a non-conducting object to save electrical 

charges. That is, the voltage differentiation across an object (dV/dt) and the current that is 

passed through the object (I(t)). In the following equations, the capacitance is directly 

proportional to the surface area (A), and inversely proportional to the distance (d) 

between the charged plates. Capacitance is also dependent on the permittivity of free 

space (ε0) and the dielectric permittivity (εr), which is defined based on the materials 

between the plates.  

 
Body composition estimation using bioimpedance measurements is then based on the 

body volume (Vb), which can be determined through resistance measurement.  
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All equations above play a factor in how the impedance is measured, and as a result, they 

can be combined to give an accurate reading. Looking at the human body, the human 

body is a volume that is composed fat mass (FM) and fat free mass (FFM). Fat mass is a 

non-conductor of electric charge and is equal to the difference between body weight 

(WtBody) and fat free mass[3]. However, fat free mass is the conducting volume that 

passes electric current due to the conductivity of electrodes dissolved in body water. The 

total body water (TBW) is then the major compound of fat free mass and is equal to 

roughly 73.2% for normal hydration. These variables can be related together, and as a 

result be used to determine hydration levels.  

The theory behind bioelectric impedance analysis is then that the impedance, 

which opposes the current flow will vary from tissue to tissue. In a statement from the 

Journal of Medical Engineering and Technology, “tissues containing large amounts of 

fluid and electrolytes have a high conductivity, and therefore a low impedance. On the 

contrary, fat and bones have a low conductivity, and therefore a high impedance”[5]. The 

bioelectric impedance analysis device then measures the impedance to the flow of the 

current as it passes through the body. As a result, estimates of the body composition 

parameters, such as hydration, can be obtained. 

While the device is not expected to reach a clinical-level of accuracy for body 

hydration, the device might prove useful for those with chronic health issues which are 

treated and/or exacerbated by low or over-hydration. Chronic Kidney Disease is one 

example of a condition which is best-managed by maintaining a consistently-high, but 

not over-hydrated state. Dehydration results in frequent kidney stones which must be 

passed (painful) or removed surgically (expensive and risky). Overhydration causes 
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uncontrolled swelling of the kidneys which impinges on internal organs, nerves, and 

causes discomfort; for severe cases of kidney failure, overhydration is linked to increased 

mortality[9][10]. While an “at-home” consumer device is unlikely to be as accurate as 

clinical devices for measuring hydration, it could still serve as a useful tool for those with 

hydration-centric health risks due to the convenience of frequent non-invasive 

measurements. It would be necessary to avoid making any medical claims of the device – 

due to the possible liability concerns – but this need for a “properly-balanced” hydration 

level is an example of why drinking when thirsty is not always sufficient and why Users 

may want a convenient way to measure and track their hydration.(SW, this paragraph) 

Current Uses (RB) 

There are several different ways in which hydration levels are currently being 

measured. Shanholtzer and Patterson group these techniques into direct and indirect 

methods. One direct method is using radioactive isotopes to measure the amount of water 

in the body[1]. As the name implies, these methods directly measure body water, and 

therefore are more accurate. However, these techniques are usually more complex. This 

means they take more time and are usually less convenient, for both the user and the 

person doing the analysis.  A direct method of measurement is not a realistic use-case for 

a consumer product since they require a large amount of training and human 

involvement. Indirect methods estimate body water using a measurement of a factor that 

effects hydration[1]. These methods are less accurate than direct methods, but they are 

much easier to use and interpret, therefore making them better for a consumer product. 

One of these methods is urine analysis. As most people know, urine color is an indicator 
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of hydration status. However, it is not exact and can be influenced by several other 

factors, such as food consumed and medication[1]. 

Bioelectrical impedance analysis is another indirect method of measuring 

hydration. In a statement from the National Institutes of Health, BIA is used in many 

different fields, including hospitals and clinicians’ offices [2]. According to Shanholtzer 

and Patterson, current technologies measure BIA by sending an electrical current ranging 

from 5 to 500 kHz through the body via electrodes[1]. It is important that a range of 

frequencies be used, since different frequency signals give different information about the 

water in the body. These authors state that a 200 kHz wave is ideal for measuring the 

total water in the body[1]. This is due to the reaction of the body to various frequency 

signals. At a low frequency, the signal is unable to pass through the membrane of cells, 

and therefore can measure only liquid outside of the cell. In contrast, the cell membrane 

cannot block high frequency signals and cellular water can be taken into account [2]. This 

technique is ideal for a consumer product since it requires only sensors (electrodes) to be 

placed on the skin and the analysis is fairly simple compared to direct methods. 

Shanholtzer and Patterson also conducted a study to determine the accuracy of 

BIA on measuring body water and interpreting the validity of using that data to determine 

hydration level. In this study, impedance was measured using a Multiscan 5000 

multifrequency monitor. A current of 800 microamps was send through the user’s body 

across the target frequency range of 5 to 500 kHz. This current amplitude allows the 

output signal to be read accurately and with little error, but also should not be felt by the 

user [2]. Data was collected through the use of two electrodes on the right hand and two 

electrodes on the right foot. The impedance for each of these frequencies was measured, 
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and the 5 kHz response and the 500 kHz responses were used to determine extracellular 

water and total body water, respectively. The analysis of these numbers then allowed the 

researchers to assign the participant a hydration level. 

An important aspect of bioelectrical impedance analysis is to make the data-

collection and analysis as accurate as possible since there are many variables which affect 

results, including limb position, disease/medication, gender, skin and core temperature, 

single-frequency versus multi-frequency, and age.[8] (SW - this paragraph only). 

Limitations of the Current Designs or Technology (KL) 

Some currently available BIA technologies can measure total body water (TBW) 

and extracellular body water (ECW). However, they fail to draw any meaningful 

conclusions from this information and simply output the result as percentages to the user. 

Some measurements such as body fat or lean mass are useful when displayed as 

percentages. That is because the user is more familiar with these values and has a better 

intuition about what they should be. For example, the user most likely knows that their 

body fat percentage should be around 10-20%. However, when a user is presented with 

their ECW as a percentage, they probably can’t interpret that information meaningfully. 

Especially with the minor fluctuations that occur with one’s ECW. 

What the current designs are missing is a way to process and interpret the water 

data into something more useful, such as a user’s current hydration level. The 

bioelectrical impedance data could be used to measure a user’s hydration in a couple of 

different ways. One method is to input a user’s physical stats, such as height, weight, age, 

sex, and compare the total body, intracellular and extracellular water measurements to a 

population model. A similar method is what is currently used to measure other body 

stats(3). The problem with this method is that it does not account for individual variances 
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and just looks at the population average when making calculations. One of the advantages 

of measuring hydration is the ability to calibrate for each specific user. The device could 

have a feature that allows the user to measure once when they are in a hyperhydrated and 

once when they are in a hypo-hydrated state. This would give a baseline calibration that 

on top of the population data, could be used to improve results. This is feasible since a 

user can control their hydration level by drinking a lot or abstaining from drinking water 

before the calibration. This is different from body composition measurements, since a 

user cannot easily change their body tissue makeup.  

Piccoli et al. proposes another method for detecting fluid changes using BIA. 

Their method involves breaking down the impedance into the resistance and the reactance 

components. Then comparing the ratios of the resistance and reactance with the person's 

height. They call this the RXc graph[4]. This analysis technique could also be useful for 

measuring hydration when combined with calibration. 

Relevant Existing Patents (SW) 

Patent No. US006256532B1 is an Apparatus for Analyzing Body Composition 

Based on Bioelectrical Impedance Analysis and Method Thereof, which is a larger-

format version of the consumer-scale apparatus being proposed.[6] This patent has very 

similar design to a consumer-scale version and discusses the process in great detail. 

Patent No. US2015/0148623A1 is a Hydration Monitoring Sensor and Method for 

Cell Phones, Smart Watches, Occupancy Sensors, and Wearables; this patent is relevant 

as it seeks to measure the same principle and addresses many of the same challenges.[7] 

This patent consists of a broadband LED light which is transmitted to a subject user’s 

skin which causes scattering across various wavelengths. By analyzing the reflected light, 
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the patent holder describes the ability to analyze to determine various biological 

parameters, including hydration level. The hydration level is not based on a single 

measurement, but as a comparison between fluid losses, fluid ingested, fluid balance, and 

rate of fluid loss. 

This patent utilizes a system which has some similarities with hydration 

monitoring performed by BIA, including non-invasiveness, difficulty of achieving a 

consistent method of measurement, and energy efficiency. By being a method of 

capturing data externally without gathering any type of respiratory, urinary, or 

perspiratory sample, both the photosensor and BIA methods aim to make hydration 

analysis more convenient for users. By being more convenient than current methods, the 

patent hopes to achieve a wearable scale which can be incorporated into consumer 

devices (e.g. fitness wearables and smart phones). Much like BIA, the photosensor 

analysis has the disadvantage of capturing data under uncontrolled conditions; distance 

from subject, perspiration, and part of the body being monitored are all stated as 

important factors which need to be controlled for. In the proposed “bathroom scale” 

design, the User’s own body weight serves to ensure a reliable contact through a 

consistent signal path. Similar to the low-power signal generation and capture device 

involved in BIA, the use of a typical 3 mA LED allows for an efficient device capable of 

being powered by a small battery; to achieve a marketable device which is not reliant on 

being plugged-in to AC power, it’s critical to achieve an energy efficient design. 

This system also has many differences from BIA, including the source signal, the 

breadth of data being captured, and complicating aspect of blood flow. The photosensor 

patent deals strictly with generating and capturing light, whereas BIA utilizes an 
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electrical signal being fed through the subject. While BIA only compares to input and 

output signals, the photosensor patent is concerned with a wide range of data obtained by 

the device (e.g. including heart rate, respiratory rate, distance, and motion). Unlike with 

bioelectrical impedance analysis which takes the whole current path as a single medium, 

the photosensor patent has to control for the different light-scattering properties of 

hemoglobin and water. While the differences between the two technologies don’t directly 

impact BIA, these differences inform on potential complicating factors which have to be 

controlled for or approximated when building a model to convert the impedance level to 

hydration level. 

1.4 – Marketing Requirements (SW, KL, MS, RB) 

1. Safe:  Voltage and current must be low-enough to be neither felt, nor dangerous. 

Needs to have some sort of warning label as well. 

2. Affordable:  Expense must be kept low enough for general consumers. 

3. Size:  Device must be small enough for convenient use by holding or standing 

upon. 

4. User-Friendly:  App must provide user with current and historic data in an 

intuitive way. 

5. Battery Life:  Device must have a long life on each charge or with each set of 

batteries. 

6. Accurate:  Device must deliver a consistent and accurate measure of the user’s 

Impedance level. Range of Impedance levels will need to be clear and concise, as 

well as have a responsive display time. 
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2 – Engineering Analysis 

 

2.1 – Circuits (MS, SW) 

Beginning with a generated input voltage signal, the signal will first be sent 

through a voltage controlled current source (VCCS). The VCCS will force the output 

current to be proportional to the controlled input voltage signal. An input voltage of 3V 

will proportionally produce an input current of 1mA. This will be achieved by using an 

inverting OpAmp. The purpose of the inverting OpAmp is to obtain the exact output 

current and voltages. By loading the feedback path back to the amplifier and grounding 

the noninverting terminal with a resistor back to the inverting terminal, the exact output 

current and voltage is known, and the excess current flows back to the feedback path. 

Following the inverting OpAmp are two sets of differential amplifiers, which act as 

buffers, having two inputs, two copies of the same signal that are opposite in phase are 

sent through the amplifier. Any noise that is induced will be equal and opposite and thus 

canceling out. This way the generated input signal will be equal to the output, and the 

voltage gain will be known. Following the differential amplifier will be an inverting 

amplifier. To keep the circuit safe, the signal must stay below the pain threshold, which is 

well-below the AC let-go current of 5mA for children; DC let-go current is greater than 

60 mA[12][13]. Due to the wide range of human body resistance[14], it is important to 

limit the signal voltage to keep the signal in a low-voltage range (below 30V). 

The system power supply consists of three DC voltage outputs:  +9V and ±18V. 

All three voltages are achieved through the use of standard 9 Volt DC alkaline batteries 

to reduce cost and make replacements user-friendly. ±18V are each achieved by wiring 

two batteries in series. Each battery has approximately 500mAh capacity. The limiting 
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factor for system power is the 9V circuit feeding the Explorer-16/32 board, which has an 

approximate current load of 200mA while the system is ON. With an expected uptime 

not to exceed 10seconds per measurement cycle, each measurement draws 0.56mAh 

making the expected battery life is at least 900measurements. With typical usage 

expected to be three measurements per day, the real-time battery life is at least 300days. 

Since the ±18V circuits are powering OpAmps drawing less than 1mA, the series 

batteries will last for years and likely need replaced only due to degradation from age. 

2.2 – Electronics (MS) 

An electrode is a conductor through which current enters or leaves an object, in 

this case the human body. The human body acts as a medium in which the transmitter and 

receiver make contact between the skin and the electrodes. Two electrodes will be used, 

one to pass the input current - the other for the input voltage - through the user 

(transmitter), and then pass the output current - or voltage - to the embedded processor 

(receiver).  

2.3 – Signal Processing (KL) 

 Measuring the bio-impedance will involve applying a voltage to the body and . To 

accomplish this, a periodic square wave will be generated and sent through the body. A 

square wave was chosen because it will be much easier to generate as opposed to a sine 

wave. 

 Once the square wave is sent through the body, the current going through the 

body and the voltage applied across the body will need to be sampled. This will be done 

by connecting op-amp circuits at the input and output to the AD converter. The sampling 
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rate will need to be greater than the square wave frequency in order to get an accurate 

result. 

 After the points are sampled, the signal will be converted into the frequency 

domain using the Discrete Fourier Transform. Once in the frequency domain, the 

magnitude and phase of the first harmonic sine wave will be able to be analyzed, for the 

voltage and current. From here, the phasor voltage and current can be realized. Finally, 

the impedance can be calculated by dividing the phasor voltage by the phasor current. 

 To demonstrate this process, in MATLAB we simulated placing a square voltage 

wave across an RC circuit and calculated the current at discrete samples. We then wrote 

code to perform the steps mentioned above to calculate the impedance. The calculated 

impedance was then compared with the expected impedance of the RC circuit. 

 
Figure-1:  Impedance Calculation Error 
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 Figure 1 shows the error in calculating the impedance using the square wave 

technique with varying number of sample points per period. The results were an error of 

around 3% in the magnitude and phase when 20 samples points were used, and less than 

1% when 50 samples points were used. This shows that we will be able to calculate the 

impedance to a reasonable degree of accuracy by using a square wave and the discrete 

Fourier analysis. This also suggests that our target range for sampling speed should be 

somewhere between 20 and 100 samples per period in order to get an accurate result. 

MATLAB code for error simulation: 

num_steps = 50; 

start = 1; 

offset = start-1; 

step = start:num_steps; 

  

mag_err = zeros(1, num_steps-offset); 

phase_err = zeros(1, num_steps-offset); 

  

mag_err_sin = zeros(1, num_steps-offset); 

phase_err_sin = zeros(1, num_steps-offset); 

  

for index = step 

    N = 2*index; 

    Vs = 1; 

  

    R = 1.5e3; 

    C = .1e-9; 

    T = 2e-6; 

    f = 1/T; 

    w = 2*pi*f; 

     

    k = 1; 

  

    Z_actual = R + 1/(1j*k*w*C); 

  

    v_n = zeros(1, N-1); 

    i_n = zeros(1, N-1); 

  

    for n = 1:N 

        if n < N/2 

           v_n(n) = 1; 

           i_n(n) = (Vs * exp(-((n/N)*T)/(R*C))) / R; 

        else 

           v_n(n) = 0; 

           i_n(n) = -(Vs * exp(-(((n - N/2)/N)*T)/(R*C))) / R; 

        end 
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    end 

     

    vn_sin = zeros(1, N-1); 

    in_sin = zeros(1, N-1); 

     

    for n = 1:N 

        t = (n/N)*T; 

        vn_sin(n) = sin(w*t); 

        I = 1/Z_actual; 

        in_sin(n) = abs(I)*sin(w*t + angle(I)); 

    end 

  

    V_fft = fft(v_n); 

  

    I_fft = fft(i_n); 

 

    V_k = 0; 

    for n = 0:N-1 

        V_k = V_k + v_n(n+1)*exp(-1j*2*pi*k*n/N); 

    end 

  

    I_k = 0; 

    for n = 0:N-1 

       I_k = I_k + i_n(n+1)*exp(-1j*2*pi*k*n/N);  

    end 

  

    Z_exp = V_k / I_k; 

  

    mag_err(index-offset) = (abs(Z_exp)-abs(Z_actual))/abs(Z_actual); 

    phase_err(index-offset) = (angle(Z_exp)-

angle(Z_actual))/angle(Z_actual); 

     

    V_k_sin = 0; 

    for n = 0:N-1 

        V_k_sin = V_k_sin + vn_sin(n+1)*exp(-1j*2*pi*k*n/N); 

    end 

  

    I_k_sin = 0; 

    for n = 0:N-1 

       I_k_sin = I_k_sin + in_sin(n+1)*exp(-1j*2*pi*k*n/N);  

    end 

  

    Z_exp_sin = V_k_sin / I_k_sin; 

  

    mag_err_sin(index-offset) = (abs(Z_exp_sin)-

abs(Z_actual))/abs(Z_actual); 

    phase_err_sin(index-offset) = (angle(Z_exp_sin)-

angle(Z_actual))/angle(Z_actual); 

end 

2.4 – Embedded Systems (RB) 

For our embedded controller, we are looking at using the Explorer 16/32 

Development with the dsPIC33FJ256GP710 General Purpose PIM as our processor. The 
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given PIC24FJ1024GB610 PIM could not simultaneously sample two channels, so we 

could no longer use it. 

One of the biggest roles our embedded system will play is doing the A/D 

conversion. We will be sampling waveforms of various frequencies, with a maximum of 

50 kHz. According to the data sheet listed in the Appendix, the dsPIC33FJ256GP710 can 

perform at a rate of 1.1 Msps, or 1,100,000 samples per second, which should be fast 

enough for our needs. This allows for around 20 samples at our highest frequency, which 

will keep our error under 5%. Our A/D converter will also need to potentially handle 

multiple channels so we can sample multiple waveforms simultaneously. The data sheet 

reports that the dsPIC33FJ256GP710 can handle "simultaneous sampling of up to four 

analog input pins”. We will only need two of those. The data sheet covers the A/D 

converter in detail in section 21.0.   

Another key functionality we require of our embedded system is being able to 

display our readings for the users’ purpose. The Explorer 16/32 board makes this simple 

using its “2-Line by 16-Character LCD Module” as described by the User’s Guide shown 

in the appendix. The dsPIC33FJ256GP710 chip can communicate with the LCD by 

controlling the signals of the Truly TSB1G7000-E. We will also need the embedded 

system to be able to wireless communicate. Along with a separate chip, the 

dsPIC33FJ256GP710 can use UART to communicate with a mobile phone, which will 

run our application.  

All of these features, along with processing to do calculations, can be done with 

these components and the MPLAB software.  
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3 – Engineering Requirements Specification (SW, RB, MS) 

Table 1 – Engineering Requirements 

Marketing 

Requirements 

Engineering Requirements Justification 

1 Generate & measure accurate 

Voltage across Body (1V – 

18V) ±10% 

Must be safe for all users. 

Keeping voltage within OpAmp 

rails will maintain safe power 

levels. 

1 Generate & measure accurate 

signal Current of 1mA ±10% 

Must be safe under all conditions. 

Current not to exceed 5mA. 

6 Impedance Magnitude & Phase 

measurement & calculation 

precision within 5% (data 

points in tight cluster)  

To be consistent and repeatable, 

Impedance data points must have 

little variance.  

6 Impedance Magnitude & Phase 

measurements & calculation 

accuracy within 10% 

To be useful, Impedance must be 

found to be close to known value. 

6 Frequency Steps of: 

50Hz, 500Hz, 5kHz, 50kHz 

Low-frequency for extra-cellular 

resistance, high-frequency for 

intra-cellular capacitance 

4, 6 Wireless range of up to 10m User will be close to device; low 

power saves on battery life. 

4, 6 Remote Data Storage & 

Retrieval 

Impedance calculation can be 

done locally, but hydration model 

and historic data requires database 

interaction. 

3, 5 System will be portable with an 

energy storage life of 6months 

Batteries allow compact, portable 

device with long life. 

6 AC Signal analysis will be used 

to calculate Impedance 

Magnitude & Phase 

Board limitations and to ease 

magnitude and phase calculations 

4 Impedance Magnitude & Phase 

Display at device & App 

Must show users impedance in a 

user-friendly manner. 
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Marketing Requirements: 

1. Safe:  Voltage and current must be low-enough to be neither felt, nor dangerous. 

Needs to have some sort of warning label as well.  
2. Affordable:  Expense must be kept low enough for general consumers.  
3. Size:  Device must be small enough for convenient use by holding or standing 

upon.  
4. User-Friendly:  App must provide user with current and historic data in an 

intuitive way.  
5. Battery Life:  Device must have a long life on each charge or with each set of 

batteries.  
6. Accurate:  Device must deliver a consistent and accurate measure of the user’s 

Impedance level. Range of Impedance levels will need to be clear and concise, as 

well as have a responsive display time. 

4– Engineering Standards Specifications (MS) 

Table 2 – Engineering Standards 

Specification Standard Use 

Safety NIOSH 

NEC 

Bodies reaction for 

different currents (~1mA 

desired). 

Communications USB & Bluetooth USB to program the board 

and Bluetooth to send data 

to the mobile application. 

Data Formats Decimals Magnitude & Phase. 

Design Methods LTSpice Circuit design & 

simulation. 

Programming Languages Embedded – C 

App – JavaScript, Dart, 

SQL 

C to program the 

embedded processor, 

JavaScript (Node.js) for 

AWS Lambda functions, 

Dart for mobile app and 

SQL for Postgres database 

Connector Standards USB Program and debug board. 
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5– Accepted Technical Design 

Block Diagram Level 0 (SW, RB, KL) 

 

 

 

 

 

 

 

 

 

Figure-2:  Block Diagram Level 0 

5.1 – Hardware Design – Level 1 (SW) 

 
Figure-3:  Hardware Block Diagram Level 1 

 

Table 3.1 – Functional Requirements:  Voltage-Controlled Current Source 

Module Voltage Controlled Current Source 

Designers Mitchell Sutyak & Steve Weimer 

Inputs Generated input voltage signal 

Outputs  Specified input current signal 

Description Current produced in accordance with sign and magnitude of controlled 

input voltage 

Hardware 

Design 

Stage 

Treated 

Signal User 

(Impedance) 

Stage 

Signal 

Processing 

Altered 

Signal 

Embedded 

System 

Amplified 

Altered 

Signal 

Base 

Signal 

Embedded 

System 

Impedance 

User Inputs 
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Table 3.2 – Functional Requirements:  Differential Amplifiers 

Module Differential Amplifiers 

Designers Mitchell Sutyak & Steve Weimer 

Inputs Voltages from Sense Resistor & Across Body 

Outputs  Input current and measurement voltage 

Description Differential gain control 

 

Table 3.3 – Functional Requirements:  Inverting Operational Amplifier 

Module Inverting Operational Amplifier 

Designers Mitchell Sutyak & Steve Weimer 

Inputs Digital Square-Wave from Embedded Processor 

Outputs  Inverting Output to Inverting Terminal, based on Feedback Impedance 

Description Maintains Current at desired level across Feedback Impedance (Body) 

 

Table 3.4 – Functional Requirements:  Electrodes 

Module Electrodes 

Designers Mitchell Sutyak 

Inputs Exact input current 

Outputs  Output current signal 

Description Connection between the device and the user 

Hardware Level 1 Block Diagram (MS) 

The circuit design shows the major components needed. Once the input signal has 

been generated, it will need to pass through a series of components in order to be safely 

sent through the user via two electrodes. The first component is a voltage controlled 

current source, followed by a differential amplifier, an inverting amplifier and finally sent 

through the electrodes. The purpose of these components is to first specify the current 

being sent through the circuit based off a controlled voltage input. Next, to account for 

any noise and voltage gain, a differential amplifier is used to buffer or clean the signal. 

The purpose of the inverting amplifier will be to know the exact current that will be sent 

into the electrodes.  
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An input current of 1mA will be injected into the body. The voltage is a product 

of the input current and the body resistance, which has a wide potential range. When the 

human body is perfectly dry and calluses have formed on the skin, the resistance of the 

external body can be as high as 1MΩ, however, this is not a realistic resistance for the 

average user. Considering all factors that can reduce a user’s external resistance, a 

realistic level of resistance for a user can be as low as 300Ω. Using this as our baseline, 

the 1V and 1mA values are expected to be safe for each user. The inverting amplifier will 

then send any excess current back into the feedback path of the amplifier, and finally sent 

through the electrodes. The electrodes will have two components, the transmitting 

component and the receiving component. After the signal has traveled through the user’s 

body, it will then be sent to the embedded processor where A/D conversion will take 

place. 

5.2 – Hardware Design – Level 2 (MS) 

 
Figure-4:  LTSpice Schematic with RC Ladder Network (SW) 
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Figure-5:  LTSpice Schematic with Simplified RC Network (SW) 

 

 
Figure-6:  LTSpice Simulated Voltage and Current with Frequency at 50 Hz 
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Figure-7:  LTSpice Simulated Voltage and Current with Frequency at 500 Hz 

 

 
Figure-8:  LTSpice Simulated Voltage and Current with Frequency at 5000 Hz 

 

 
Figure-9:  LTSpice Simulated Voltage and Current with Frequency at 50000 Hz 
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The spice simulations were the building blocks of the hardware design. Once we 

had a general idea of how the circuit was to be built, we then applied that knowledge to 

the LTSpice software in order to simulate the circuit. The resulting simulation waveforms 

above show the voltage and the current at each frequency. At each range of frequency, 

we were able to maintain a steady current right around 1mA which was the goal of the 

design as well as not to exceed the rail voltage of 10V. What we learned from these 

simulations are that the voltage rails are independent of the frequency. Setting an 

expected resistance of the body at 2-10k, we would push the voltage rails consistently, 

however, we maintained a steady current of 1mA. Comparing these results with the RC 

ladder network, we saw results were very similar. A major difference was that the time 

required to reach Steady-State was large, approximately 30ms or 1500 periods.  
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Figure-10:  Preliminary Breadboarded Circuit 

When designing the circuit on the board, we first started by using a Tektronix AFG3021B 

Signal/Function Generator, an Agilent Technologies MSO6012A Mixed Signal 

Oscilloscope and an Agilent #3631A Triple Output DC Power Supply. With the function 

generator, we were able to set up our 0V – 1V square wave and then vary the frequency 

from 50Hz – 50000 Hz. With the power supply, we were able to supply each rail of the 

operational amplifier with +/- 10V. Finally, with the oscilloscope, we were able to 

measure the voltage and current at different points in the circuit. The end design will 

include a battery supply consisting of two 9V batteries in series to replace the power 

supply. 
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Figure-11:  Oscilloscope Measurement at 50 Hz 

 
Figure-12:  Oscilloscope Measurement at 500 Hz 
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Figure-13:  Oscilloscope Measurement at 5000 Hz 

 
Figure-14:  Oscilloscope Measurement at 50000 Hz 

The resulting oscilloscope readings show the voltage differentials at each range of 

frequency. Maintaining a current of just below 1mA over each frequency, the voltage at 
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each frequency peaked at just under 2V. This differed from the LTSpice simulations as 

we had reached the rails consistently. Also, in LTSpice at frequencies of 5000Hz and 

50000Hz we saw voltage waveforms that only peaked slightly whereas at the same 

frequencies on the board we saw increased peak durations that more resembled the square 

wave input. The probable reason for this is due to simulation in LTSpice with a LT1079, 

and then using a UA741 on the board for the inverting operational amplifier.  

5.1.1 – Circuit Construction (SW) 

Throughout the project, many different OpAmps were tried in the Inverting, 

Differential, and Buffer stages, with mixed results. Figure-15 illustrates the difficulties 

found when using a slow OpAmp like the UA741; the low slew-rate of 500mV/µs was 

unable to achieve a proper square-wave which drastically affected results at high 

resistances and low frequencies. 

 
Figure-15:  Inverting UA741 at 50Hz 



   
 

 34  
 

In an effort to remedy the slew-rate issue, the UA741 was replaced with an 

LM318 which has a slew-rate of 50V/µs. Figures-16,17 show that – while the change 

fixed the slew rate issue – it introduced a considerable amount of noise, rendering the 

data useless. Both figures reflect the circuit buffer OpAmps in the differential stage. 

 
Figure-16:  Inverting LM318 at 50Hz (with Buffers) 

 
Figure-17:  Inverting LM318 at 50kHz (with Buffers) 
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Figures-18,19 show the same circuit with the buffers removed, demonstrating that 

the buffers were exacerbating the noise issue and needed to be addressed. 

 
Figure-18:  Inverting LM318 at 50Hz (without Buffers) 

 
Figure-19:  Inverting LM318 at 50kHz (without Buffers) 
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After performing the necessary voltage-attenuation to get within the embedded 

board’s voltage range (below 3.3V), the noise – even without buffers – was still too 

significant to yield useful data. Figures-20,21 show the inverting output signal and the 

attenuated signal at the differential output. 

 
Figure-20:  Inverting LM318 at 50Hz (Attenuated) 

 
Figure-21:  Inverting LM318 at 50kHz (Attenuated) 
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Figures-22,23 show the same circuit as above, but with a low-noise TLE2142 

used in lieu of the previous LM318 Inverting OpAmp. These waveforms show the 

desired results, an attenuated circuit with neither slew-rate or noise issues. This 

demonstrates how important it was for the circuit to use high slew-rate, low-noise 

OpAmps.  

 
Figure-22:  Inverting TLE2142 at 50Hz (Attenuated) 

 
Figure-23:  Inverting LM318 at 50kHz (Attenuated) 



   
 

 38  
 

Since the same signal is passed through the buffer and differential stages, all were 

replaced with TLE2142 OpAmps to keep the data as useful as possible. Although this 

solved the Voltage Differential measurement noise, the Current Differential measurement 

was still noisy due to its low voltage level of 1V. To remedy this, the sense resistor Rm 

was increased from 10Ω to 1kΩ, which drastically-increased the signal-to-noise-ratio. 

Preliminary integration between the breadboarded circuit and embedded processor’s 

sampling and calculations validated the circuit; impedance measurements were within 

10% of expected values.  

5.1.2 – Bench Setup (MS) 

 The following figures show the preliminary integration setup between the 

breadboarded circuit and the embedded processor, as well as the hardware setup 

including the power supplies used to power the TLE2142 op amps. 

 
Figure-24:  Breadboard Layout Without Buffers 
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Figure-25:  Embedded Processor Layout 

 
Figure-26:  Hardware and Software Integration 

 
Figure-27:  Bench Setup with Hardware and Software Integration 
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As stated above, removing the buffers was an act directed towards reducing all 

noise generated throughout the circuit. The theory was that once the components were 

soldered into the protoboard, most of, if not all noise generated would be removed and 

the buffers could be added back into the circuit. At this point in time, the hardware side 

was getting usable data which could be sent to the embedded processor, and thus 

integration between hardware and software could be introduced. Using a square wave 

generated from the embedded processor, data was sent to the embedded processor and 

impedance values were then calculated. The final design would have replaced the power 

supplies used with 9V batteries connected in series, and with the desired outputs from the 

circuit, the oscilloscopes would no longer need to be used. Although only early stages of 

integration were performed, data collected on the software end matched the waveforms 

obtained through simulation on the hardware end. As a result, impedance calculations 

were then able to be carried out and analyzed.  

 

5.2 – Software Design (RB) 

 
Figure-28:  Embedded System Block Diagram Level 1 

 

Table 4.1 – Functional Requirements:  Analog/Digital Converter 

Module A/D Converter 

Designers Ryan Byo 

Inputs Measured Vout and Iout 

Outputs  Sampled Vout and Iout 

Description Sample the voltage and current waveform to later be processed 
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Table 4.2 – Functional Requirements:  Embedded Processor 

Module Embedded Processor  

Designers Ryan Byo 

Inputs Sampled Vout and Iout 

Outputs  Impedance Value 

Description Use the sampled values to calculate the impedance. Also, generate 

control signals when needed 

 

Table 4.3 – Functional Requirements:  Wireless Module 

Module Wireless Module  

Designers Ryan Byo 

Inputs Impedance Value, Time, Data 

Outputs  Data package of inputs 

Description Transmit data to the mobile app/server  

 

The embedded controller will be running code to do several different things. The 

below chart shows the control and data flow. The A/D converter, along with the DMA, 

direct memory access, unit, will need setup and then readings can begin. After the 

reading is done, we want to store that value as quickly as possible so the next sample can 

be taken. We will have to sample many times, so that process will repeat until we have all 

the data we need. Readings will continue to be taken until we have sufficient samples, 

and then the DMA buffer will be accessed, and the sampled values are read. Then, 

processing power will calculate the impedance so it can be displayed on board and sent 

away to be used by the app. 
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Figure-29:  Embedded System Flow Chart (RB) 
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Subsystem Code (RB, KL)  

 

A/D Converter, DMA, and LCD: 

 
Figure-30:  Useful Constants 

We define a couple useful constants at the top of the file that will be used 

throughout the program.  

 
Figure-31:  Impedance Struct 

The impedance struct provides a convenient way of storing the results of the 

impedance calculation. It consists of two floating point values, one for the real part and 

one for the imaginary part of the impedance. 

 
Figure-32:  msDelay Function 
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This function is used to implement a millisecond delay in our code. During that 

time, the code is running NOPs. It is used throughout the code to allow initialization to 

occur, along with waiting an appropriate amount of time for data to be sent.  

 
Figure-33:  A Function to Setup the Embedded Clock Speed 

This function modifies the PLL (phase-lock loop) module. The PPL allows us to 

modify the base clock speed of our processor to a custom value. In our case, we bumped 

our 8 MHz clock to run at 40 MHz, which is the fastest it can run, which is ideal for fast 

sampling. 

 
Figure-34:  Part 1 of Code to Initialize the ADC 
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Figure-35:  Part 2 of Code to Initialize the ADC 

 

This function configures the ADC module of the dsPIC33. Here, we set the 

configuration registers and setup the channels we will use. The important configuration 

set is we are using 10-bit mode, using CH0 and CH1, and using the DMA buffer (from 

the beginning index) to store the data and an interrupt triggers the end of the sampling. 

We also configure AN0 and AN3 pins as analog so we can use those as our input pins. 

 
Figure-36:  Code to Initialize DMA 
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This function configures the DMA unit of the dsPIC33. We setup the DMA to use 

Channel 1 in continuous mode, meaning that the DMA will continue to be active the 

whole time we write to it, and disable ping-pong since we will only be writing to one 

buffer. We also tell the DMA that its samples will be coming from the ADC. Finally, we 

enable the DMA interrupt to tell us when sampling is done, and we can calculate a value. 

 
Figure-37:  Start and Stop Sampling 

These two functions allow us to start and stop the sampling of our input signals by 

turning the ADC off and disabling the DMA. 

 
Figure-38:  Initialization of Timer 3 

This function initializes timer 3 to run at the desired frequency. This will 

ultimately be used to time the ADC and DMA controllers to sample at the desired speed. 

It also disables the timer interrupts because they will not be needed. 
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Figure-39:  DMA Interrupt Controller  

The DMA interrupt function is where the raw data from the AD conversion gets 

processed. This function is set to trigger after 64 samples on each channel have been 

taken. The samples are then converted from 10bit integers to floating point values 

representing the actual voltage that was read. The converted values are then stored in 

temporary buffers and passed to the “calculateImpedance” function shown in figure-41. 

Finally, the last step is to clear the DMF interrupt flag to prevent the interrupt from 

immediately being trigger again. 
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Figure-40:  Initialize the PWM Module 

This function sets the OC1 module to create a periodic square wave at the value of the 

passed in frequency. This will be the input signal that ultimately gets applied over the 

body.  

 
Figure-41:  Impedance Calculation  
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This function calculates the impedance of the voltage and current array that are 

passed as arguments. The function uses the discrete Fourier transform to find the phasor 

current and voltage at the sample frequency. The magnitude and phase of the impedance 

are calculated from the voltage and current samples. The function then converts the 

magnitude and phase into a real and imaginary form, where it is then returned as a struct. 

LCD Control: 
 

 
Figure-42:  LCD Control Pins 

 

This code defines our control signals of the LCD. According to the Explorer 

16/32 User Guide, the RS bit, which selects the register to either accept data or a 

command, is tied to RB15. The RW bit, which controls the read/write process, is tied to 

RD5. The enable bit is tied to RD4. The data pins are on the eight pins of E. 

 

 

 

 

 



   
 

 50  
 

 
Figure-43:  Measure Impedance 
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This function orchestrates all the different subsystems to measure the impedance 

of the given load. It first defines the 4 different frequency ranges that will be measured, 

which are 50, 500, 5k and 50k Hz. For each frequency range, a message is output to the 

LCD telling the user which range is being currently measured. A square wave at the 

given frequency is output and AD samples are taken for both the input voltage across the 

body and the current going through the body. The sample rate is kept constant and is set 

to the max rate that could be safely achieved using two simultaneous channels. The 

number of samples used to make the impedance calculation is determined by the current 

input frequency. After the impedance is calculated, it is displayed on the LCD and sent 

over Bluetooth to the mobile device. 

 
Figure-44:  Write Data and Commands to LCD Methods 
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This code allows us to write both commands and data to the LCD by setting the 

appropriate RS bit, enabling the line to send the information, and then delaying while the 

LCD is processing the data.  

 
Figure-45:  Write String to LCD Methods 

This function using the above lcd_data method to write a string to the LCD by 

repeatedly calling the subroutine for each character.  

 
Figure-46:  Main Method 
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This function is what runs when the program starts. It begins by initializing all the 

needed modules, including PLL, Timers 1 and 3, ADC, DMA, and LCD. It then runs the 

measureImpedance() procedure to sample, convert, calculate, and display our impedance.  

Bluetooth/UART: 

 
Figure-47:  Initialize the UART 

This code initializes the UART module, in this case, U2. This allows us to send a 

byte of data at a time to the Bluetooth module so that data can be transferred. The most 

important configuration done here is setting the UART module to use 8-bits with a single 

stop bit and setting the baud rate to around 115200, which is the value the RN4870 runs 

at by default 

 
Figure-48:  UART Send and Receive 
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This code allows us to listen to the UART line, as well as write to the UART line. 

This is used to send and receive messages via Bluetooth. These methods simply wait until 

there is room to send data and sends it or if data has been received, then returns it. 

 
Figure-49:  Main Method 

This code is to test the functionality of the UART and Bluetooth modules. It 

simply initializes the U2 module and the sends the string “TEST” character-by-character 

to the RN4870, which sends it to the connected devices, i.e. a phone, where the message 

“TEST” can be received and displayed. 

Application Software – Level 1 (KL) 



   
 

 55  
 

 

Figure-50:  Application Software Block Diagram Level 1 

 

Table 5.1 – Functional Requirements:  Bluetooth Module (Phone) 

Module Bluetooth module (phone) 

Designers Kevin Libertowski 

Inputs Impedance measurements 

Outputs  Control signal 

Description This will allow the phone application to communicate with the embedded 

processor. It will be receiving impedance measurements from the 

embedded processor and sending signals to start the measurement. 

 

Table 5.2 – Functional Requirements:  Mobile App (Front End) 

Module Mobile App (front end) 

Designers Kevin Libertowski 

Inputs Impedance measurements 

Outputs  User and measurement data, control signal 

Description The mobile app front end will be running on the user’s phone or tablet. It 

will display the measurements and provide an interface for saving the 

users info and measurements to the cloud. It will provide both current 

and past measurements displayed in text and graph form. This is also 

where the post processing will be done for calculating the user’s 

hydration level. 
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Table 5.3 – Functional Requirements:  Server 

Module Server 

Designers Kevin Libertowski 

Inputs HTTP requests containing user/measurement data 

Outputs  HTTP responses containing requested data 

Description The purpose of the server is to provide an interface for our mobile app to 

save and retrieve data from the database. The server will be setup using 

AWS Lambda using the Node.JS runtime. An AWS gateway API will be 

configured to bridge the mobile application with the Lambda functions. 

 

Table 5.4 – Functional Requirements:  Database 

Module Database 

Designers Kevin Libertowski 

Inputs SQL queries from server 

Outputs  Stored measurement and user data 

Description The database will be setup using Amazon RDS for PostgreSQL. The 

database will save measurement and account data for each individual 

user. It will allow all previous readings to be retrieved anytime from any 

mobile device with the user login credentials. 

 

The application software block diagram shows the different components and data 

flow for the app. The application software will serve the main purpose of displaying the 

user’s measurements in a user-friendly manner. It will also allow the user to easily view 

past results and see them plotted over a time period of their choice. The mobile app will 

also save data to the cloud where it will be able to be accessed across multiple devices. 

To accomplish this, the application software will be distributed across several 

components. To start things off, the phone app will need access to the measurement data. 

This will happen by sending each measurement to the phone over Bluetooth. For this to 

work, there will need to be an initial pairing process between the embedded processor 

and the phone. Once this is done, the phone and embedded processor will be able to send 

and receive data when in range. 



   
 

 57  
 

The mobile app will consist of all the code running on the phone or tablet itself. It 

will be built using Flutter, which is a modern cross platform mobile framework 

developed by Google. This will allow the source code to be compiled to run on both iOS 

and Android devices. 

The mobile app will play a crucial role in the overall user experience. One of the 

primary functions will be displaying the measurement data to the user. This measurement 

will include the impedance value and the user’s estimated hydration level. The 

measurement will be displayed automatically when a new measurement is recorded and 

received by the phone. The user will also be able to view a plot of, past measurements 

over a time period of their choice. 

The server will provide an interface for the mobile app to communicate with the 

database. It will also handle authentication to ensure that a user can only access data they 

have permission to use. The server will be implemented using AWS Lambda, with a 

Node.js runtime. The API end points will be configured using the Amazon API Gateway. 

Each API endpoint will contain corresponding code and interacts with the database, 

whether it is adding or retrieving data. 

 

Table 6.1 – User Database SQL Table 

ID Username Password 

(encrypted) 

DOB Height Weight Sex 

 

Table 6.2 – Measurement Database SQL Table 

ID Impedance 

(Re) 

Impedance 

(Im) 

Frequency Date ICW ECW User 

 

The database will allow user data to be stored over time. The tables above 

describe the database scheme. The database will consist of two tables. The user table will 
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store data specific to each user such as username password and body statistics. The body 

statistics may be useful for analyzing the impedance. The other table is the measurement 

table. This has a many-to-one relationship with the user table, as a single user may have 

many measurements. This table will contain a row for every individual measurement 

taken. It will store the impedance, date taken, user it was associated with and eventually 

the approximated intra and extracellular water contents of the user. 

Subsystem Code (RB, KL) 

Mobile App (RB) 

 
Figure-51: Initiate the App 

These two methods determine what happens when the app is launched. The main() 

methods is what is first run and it tells the phone to run MyApp(), which is what contains 

the layout and controls for everything in our app.  
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Figure-52: Part 1 of Login Page 
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Figure-53: Part 2 of Login Page 

The above two figures make up the first page of the app the users’ will see. It has four 

main parts, each listed as a “container.” The first is just a title, giving the name of the 

app. The second is a picture to describe the app. The third contains a textbox, labeled 

“username” for a user to access their account. Lastly is a raised button, which would send 

the information above to the server to verify the user and gather his/her information.  
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Figure-54: Login Page 

The login page would look something like this. 
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Figure-55: Part 1 of Navigation Page 
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Figure-56: Part 2 of Navigation Page 
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Figure-57: Part 3 of Navigation Page 

 
Figure-58: Part 4 of Navigation Page 

The above for figures make up the navigation page. This creates three titles and a 

corresponding button for each. Each button leads to a corresponding page, most of which 

are not final. All three of them have a similar appearance, so I will only show the one 

with the most progress. 
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Figure-59: Navigation Page 

The overall appearance of the navigation page. More buttons would be added in 

the future. 
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Figure-60: Part 1 of Graph Page 

 

 
Figure-61: Part 2 of Graph Page 

The above two figures show the code for making the graph page. It consists of 

first making the graph widget (currently using test data). It them makes the user page, 

which has a title and the graph, and would eventually have some further information.  
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Figure-62: Graph Page 

The above figure shows that a sample graph would look like. We would 

eventually add more graphs and the ability to pick a time scale. 

Finally, I had implemented some code to connect a phone to the Bluetooth 

module on our Explorer Board, which was the RN4870 Click. This was code in progress 

and by no means finalized. 
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Figure-63: Bluetooth App Code 

The above figure shows how we would connect and read data from a phone via 

Bluetooth. This process would start of on the click of a button. The connection would 

start by scanning for all Bluetooth devices, and then connect to the target device, in this 

case, the RN4870. It would then scan that device’s services and characteristics, looking 

for the target message. This message would cause an update to the app and display the 

data on the “Bluetooth Settings” page shown in the navigation page. 

App Server (KL) 

 The app server would be implemented using AWS Lambda. This service allows 

API endpoints to be registered to handler functions call Lambda functions. This is called 

a “serverless” approach since the management of the hardware is handled by AWS and 
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the code is deployed to a virtual server when needed.  We would create and implement 

various Lambda functions to complete the needs of our application. The pseudocode for 

those functions can be found below. 

Register User Route: 

Get username, password and user’s body stats from request body 

If missing info, return a http status 400 

If all info there, hash password and insert row into database users table 

 

Login Route: 

Get username and password from http request body 

Hash password and verify that it matches what is stored in the database 

If password is incorrect, return a http status code of 403 

If password is correct, create JWT that contains user id that will be used for 

authentication purposes 

 

Get Measurements Route: 

Check request for “Authorization” http header 

If header not found, return an http status of 401 

If header found, check that JWT is valid and extract user id from JWT 

Query database for impedance measurements that belong to this user 

Return found measurements in http response body 

 

Add Measurement: 

Check for authorization (same process as get measurements route) 

Insert measurement into database table 
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6 - Mechanical Sketch of System (SW) 

 

 
Figure-64:  Mechanical Sketch (Plan View) 

 

While additional configurations are being considered, Figure-64 shows the current 

design which is of a “bathroom scale” type of device. This is preferred as it’s the most 

user-friendly and durable option. 

 
Figure-65:  Mechanical Sketch (Section View) 
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 Figure-65 shows a cross-section view of the Impedance Monitor device which 

describes the various systems in the Block Diagrams. Some segments of the system may 

be combined or separated into more-discrete modules as the design is taken to greater 

detail. 

Figure-66 shows an overall section of the device and the User. This figure shows 

the approximate scale of the device in comparison to a person, and the approximate 

signal path through which the bioelectric impedance will be calculated. 

 
Figure-66:  Mechanical Sketch (Overall View) 

7 – Design Team Information (RB) 

 

• Ryan Byo, Computer Engineering 

• Kevin Libertowski, Computer Engineering 

• Mitchell Sutyak, Electrical Engineering, No ESI 

• Steve Weimer, Electrical Engineering, No ESI 

 

8 – Parts Lists 

8.1 – Parts List (SW) 
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Table 7.1 – Parts List 

Quantity Reference Part Number Description 

1  Explorer 16/32 Embedded Processor Board 

1  dsPIC33FJ256GP710A High-Frequency Sampling Processor 

1   Bluetooth Module 

1 Rs  Supply Resistor (1kΩ) 

1 U1 TLE2142 Inverting OpAmp 

2 U2, U3 TLE2142 Differential OpAmps 

4 U4-U7 TLE2142 Buffer OpAmps 

1 Rm  Measurement Resistor (1kΩ) 

1 Rb PTV09A-4020U-B104 Body Potentiometer (1k-100kΩ) 

1 Cb 1266PH-ND Body Capacitor (200pF) 

1 Vs 9VDC Battery Power Source for Embedded 

Processor 

1 V+ (2) 9VDC Batteries Positive Rail for OpAmps 

1 V- (2) 9VDC Batteries Negative Rail for OpAmps 

8 R9-R16  Buffer-Gain Resistors (vary) 

8 R1-R8  Differential-Stage Resistors (vary) 

 

8.2 – Materials Budget List (SW) 

 

Table 7.2 – Materials Budget List 

Qty Part Number Description Unit 

Cost 

Total Cost 

1 dsPIC33FJ256GP710A High-Frequency Sampling 

Processor 

9.67 9.67 

1 TLE2142CP Inverting OpAmp 4.67 4.67 

1 RN4870 (Click Board) Bluetooth Module 33.00 33.00 

1 PTV09A-4020U-B104 Body Potentiometer (1k-

100kΩ) 

0.83 0.83 

1 1266PH-ND Body Capacitor (200pF) 0.5 0.5 

5 BA9VPC Battery Holder 2.29 11.45 

2 Prototype Board Prototype Board (Stock) n/a n/a 

2 ST SIP Single In-Line Solder 

Sockets 

n/a n/a 

6 TLE2142CP Low-Noise Diff OpAmps 4.67 28.02 

Total Cost $88.14 
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The materials budget differed from the original materials list and the final 

materials list. The chief differences from the original materials list were the High-

Frequency Sampling Processor and the OpAmps. When implementation was being done, 

it was determined the embedded processor was incapable of the sampling rate necessary 

to obtain useful data at high frequency (over 10kHz). The OpAmps were changed 

multiple times throughout implementation due to issues with low slew-rates and high-

noise. The final materials list would have also included items for the device enclosure, 

sensor pads, etc; due to the unplanned Campus closure, none of the final assembly 

occurred. 

9 – Project Schedule – Proposed Implementation Gantt Chart (MS) 
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Figure-67:  Original Gantt Chart 
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Figure-68:  Final Gantt Chart 

 The changes to the original and final Gantt Charts differ based on what was 

originally planned to be accomplished compared to what needed to be accomplished. At 

one point there was a plan to use a printed circuit board through EagleCAD, however, 

with a lack of time and availability of PCB’s to be shipped, the final design was going to 

be soldered onto a protoboard. With regards to the hardware side of the project, figuring 

out which OpAmp to use ended up being the key to making the design work. Like the 

original Gantt Chart, in the final semester the same blocks of hardware were used - 
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inverting, VCCS, differentials - in order to obtain useable data. With regards to the 

electrodes, a simpler approach was going to be used by using two plates that the user 

would step onto in order to make the connection. This differed from the original idea of 

using electrodes that would be built into a scale like device. 

10 – Conclusions and Recommendations (KL & SW) 

These past semesters we have demonstrated the theory behind this project and 

have implemented many of the subsystems it consists of. We have designed and 

simulated the circuits required to send and analyze a signal through the body. We have 

implemented algorithms to calculate the impedance based on discrete samples of the 

input and output voltage and current waveforms. We have constructed and validated a 

breadboard circuit which closely matches the simulated Bioimpedance circuit. And we 

have demonstrated the ability to be able to sample analog signals using the embedded 

processor and output to the LCD of the Explorer board. 

The next steps in this project – if the Spring Semester had not been interrupted 

due to the Campus Shutdown – would have been to finish integrating all of the 

subsystems, validate the overall combined system, and constructed an enclosure package 

for the user to interface with the device. While most subsystems were merely a matter of 

proper implementation, we recommend special attention be given to OpAmp selection; to 

construct a circuit of this type it was necessary to use fast (high slew-rate), low-noise 

OpAmps to achieve useful data. 
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12 – Appendices 

1. PIC24FJ1024GB610 Data Sheet 

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ1024GA610-

GB610-Family-Data-Sheet-DS30010074F.pdf 

2. PIC24FJ1024GB610 Data Sheet 

http://ww1.microchip.com/downloads/en/DeviceDoc/70286C.pdf 

3. Explorer 16/32 Development Board User’s Guide 

https://microchipdeveloper.com/boards:explorer1632 

4. UA741 Data Sheet 

http://www.ti.com/lit/ds/slos094g/slos094g.pdf 

5. LM318 Data Sheet 

http://www.ti.com/lit/ds/symlink/lm134.pdf 

6. TLE2142 Data Sheet 

http://www.ti.com/lit/ds/slos628/slos628.pdf 

 

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ1024GA610-GB610-Family-Data-Sheet-DS30010074F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC24FJ1024GA610-GB610-Family-Data-Sheet-DS30010074F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70286C.pdf
https://microchipdeveloper.com/boards:explorer1632
http://www.ti.com/lit/ds/slos094g/slos094g.pdf
http://www.ti.com/lit/ds/symlink/lm134.pdf
http://www.ti.com/lit/ds/slos628/slos628.pdf
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