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Abstract 

 
Visual Music Assistant’s (VMA) aim is to accelerate learning, increase accuracy of performance, 

and stimulate user recollection by teaching users how to play piano through modern 

technologies and techniques using augmented reality and real time feedback. 

The VMA project teaches piano in a music lesson format. The VMA takes the form of a portable 

box connected to a midi piano and a Microsoft HoloLens. The VMA displays to the user a visual 

representation of a midi song file. A user played audio input is observed by a microphone and 

an A/D converter; The keynote frequencies played are then determined using a fourier 

transform algorithm and transposed into midi. The VMA streams notes that the user plays to the 

hololens and is scored against the midi song file notes. The VMA generates feedback scoring 

the users performance. The VMA scoring algorithm should increase the users’ learning, 

accuracy, and recollection of a new music composition. By creating a new outlet to learn a 

musical instrument, the Visual Music Assistant will help engage individuals who have an interest 

in learning a new instrument by using the exciting field of augmented reality which adds a new 

channel to experience the world. By taking advantage of AR, this system will help enable the 

next generation of musicians and creatives. 

 
Key Features: 

- Augmented reality display of midi songs/notes 
- Near real time scoring feedback 
- Portabile box that works with midi and non midi pianos 
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1. Problem Statement 

1.1 Need LF BG DK KV 

For the last century, technology and music have particularly coexisted as two fields that 

lead to innovation and growth. Technology has lead to new ways of experiencing music, with 

also music itself acting as an incentive to develop better advances in technology, from signal 

processing to data representation in CD’s. 

One area in which advances are being made is the field of augmented reality, 

implementations such advances can be made to address the problem of learning a musical 

instrument, particularly playing piano. With growing costs of individual music lessons to 

accessibility of instructors, learning a new instrument can be challenging. 

Exposing children to music at an early age has proven to have positive results: from 

enhancing their understanding to increasing self-esteem and motivation. Unfortunately, current 

participation in music learning is on the decline (ChildTrends). Technology use is increasing at a 

rapid rate. Also, there are many cases of individuals that want to learn a musical instrument but 

struggle with finding instructors that are available outside normal work hours. Individuals 

seeking to progress in playing a musical instrument may find it difficult when progression is not 

facilitated by an instructor. A device that logs performance can help to facilitate the progression 

of learning an instrument in the absence of an instructor. The cost of music lessons and the 

scarcity of local instructors is increasing (Hart). There is a need for an intuitive way for 

individuals to practice and explore music while increasing the understanding of what is being 

practiced. 
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1.2 Objective LF BG DK KV 

Learning a new instrument can be quite an undertaking. Aspiring musicians have to 

navigate through music teachers that can accommodate the musician's schedule. There is a 

learning curve that aspiring musicians will encounter. Utilizing the new technology of 

augmented reality, this project aims to provide a gateway for learning instruments. There are 

many positive additions that the proposed device can offer including intuitive UI telling the user 

what notes to play, tracking individual user progress, real-time feedback that evaluates user 

input, and turns the learning process into a game to increase attention span and interest. For 

specified notes to play, the user interface will highlight which notes are to be played via the 

augmented reality headset. The system will know which notes to highlight by initial user 

calibration. The user calibration will include prompting the user to select the furthest notes on the 

keyboard.  

1.3 Background LF BG DK KV 

With today’s technology, there is potential for an easier way to interface with musical 

instruments. This project aims to utilize augmented reality (AR) to innovate the music learning 

process. With the recent emergence of augmented reality technology, it has become possible to 

teach musical instruments in a modern learning style. The basic theory for the project is to utilize 

a signal sampling device (later denoted as music module) that converts the input of an instrument 

to a MIDI signal and transmits the signal to an AR headset. The music module will record and 

compare the played notes against what the user should be playing. The music module will then 

provide intuitive insight into the performance of the musician. Based on the note or chord that is 

played, visual cues will be created on the AR headset for the user to play along with. Examples 
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of cues that the AR system could implement would be the ability to highlight sections of a 

keyboard denoting a musical key to play in, label notes on a keyboard, provide a Synthesia-like 

view (Synthesia LLC), and display relevant chords for the user to choose from to play next. This 

theoretical system is both a new approach for beginners/novices to learn an instrument, as well as 

a new way to experiment with music theory. 

Correlation between education and AR has existed throughout the technology’s 

development (Rampolla, Kipper). Utilizing augmented reality while learning has been a focus for 

several researchers; specifically in developing an “educational framework with gamification to 

assist the learning process of children with intellectual disabilities” (Colpani/Homem). The use 

case that the researchers focused on was object identification and language learning, but this can 

be extended to include music learning. Another study integrated augmented reality technology 

and a game-based learning model to teach children English. The group observed in the study 

exhibited positive results that exceed learning without the use of AR (Chen). 

Traditionally when learning a musical instrument an aspiring musician will take music 

lessons. Learning a new instrument can be done by hiring an instructor, by watching YouTube 

videos, by playing regularly without assistance, or by buying services like Synthesia (Synthesia 

LLC). Synthesia is a music playing software that runs on a computer and tells the user what note 

is pressed on a keyboard. The advancement of technology has promoted new ideas and 

facilitated innovations which make learning an instrument in new ways possible.  

Currently, there are applications that sample what the user is playing through a 

microphone on the user's cellphone and provides feedback to the user. Yousician (Yousician) 

allows the user to follow a set chord progression while the app uses the input from the 
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musician’s cell phone microphone to detect the notes that are being played. The notes that are 

observed by the app are then referenced to the set chord that was determined. The notes that are 

missing or played incorrectly are then visually addressed on the cellphone screen. Instant 

Musician is an application that displays visual cues in the form of a Synthesia- like (Synthesia 

LLC) key UI projected onto a piano through an AR phone device.  

The limitations of current systems include requiring prior experience with the instrument 

to be utilized effectively. This requirement is partly due to the distance between the content 

displayed on the computer screen and the physical location of the instrument. A user with no 

prior experience with a musical instrument may struggle to translate note symbol to the physical 

one. The introduction of augmented reality to this scenario removes the requirement of prior 

experience by overlaying the note symbol (in the form of a virtual note) on top of the physical 

instrument. A current teaching style has the user look at the teacher and imitate the progression 

of notes played by the instructor. With the proposed design, the user will see the highlighted 

keyboard keys that should be pressed. The user will be able to easily follow along with the music 

piece after seeing these highlighted keyboard keys. Unlike current music lessons, where the 

aspiring musician meets with an instructor to learn the fundamentals of music theory, the 

proposed system will provide the fundamentals of music theory and suggest what notes could 

potentially be played next that are in the same key. 

There are current limitations in technology surrounding chord/note recognition and the 

technology surrounding displaying chord/notes. These include the inability for current 

applications to provide recognition of chords/notes in a noisy environment, in scenarios where 

the instrument is distorted from a clean sound, and in situations where the chord/notes produced 
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are of low volume. Displaying chords/notes is limited by the device that the application is 

running on. There are already augmented reality music applications for cell phones like Instant 

Musician. AR is also not considered to be widespread in usage. (Colpani/Homem). 

Limitations of the system would include the data transfer speed and latency between the 

headset and the frequency sampling device. These specifications would be dependent on the 

WiFi implementation included in each device. The IEEE 802.11ac WiFi standard is limited to a 

theoretical 500 megabits/second link. (Narayan) Another limitation of the proposed system is the 

amount of reference material in regards to developing augmented reality applications. There are 

very few sources to learn best practices for the development of augmented reality products. 

These technologies are still in the “stage of practical exploration.” (Colpani/Homem) 

For processing musical notes played on the keyboard, a Digital signal processing (DSP) 

chip will be used with an Analog to Digital converter (ADC) to create a Musical Instrument 

Digital Interface (MIDI) technical standard protocol. MIDI is a widely used standard across the 

music and audio industry (McGuire). The module will also have MIDI pass though for MIDI out 

compatible devices. 

There is a similarity in how the AR headset will display musical notes in comparison to 

existing systems. Both existing technologies and the proposed system can be used as a learning 

tool. The market for linking new technologies to music education is a growing industry, with 

applications such as Yousician (Yousician) and Synthesia (Synthesia LLC) currently being 

introduced within the last ten years. 

One difference of the proposed system compared to current products is the utilization of 

an augmented reality headset rather than a phone user interface. Another difference to the 
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proposed systems design is to process the frequencies of the notes to MIDI, and then display 

these notes on the musician’s headset superimposing the notes on the keys of the keyboard and 

display the names of the keys while the musician plays. Current technologies only display 

current and future progressions of notes to be played. The system will dynamically process the 

notes being played to evaluate the accuracy and suggest additional ways to resolve chord/notes 

being played. This will potentially enhance improvisation as the musician explores the 

instrument. The proposed system will dynamically slow down the pace of hard measures in a 

music composition being played to allow the user to build confidence in the piece at a slower 

pace. Rather than just playing a preset video stream, the music module will adapt to a musician’s 

weaknesses to improve the performance of selected music pieces. There are augmented reality 

applications on phones and tablets designed for pianos that parallel the proposed system in 

certain ways. These applications prompt the user to play a certain note, with the musical notes 

being represented as falling boxes that are aligned with the musical notes of the keyboard. The 

difference between the proposed system and these applications is that the applications force users 

to view content through the screen of a mobile device. Such a method provides a limited use 

case, for the user must manually hold the phone/tablet between themselves and the keyboard. 

This allows only one hand free for playing the keyboard. An AR headset would provide a 

hands-free user-friendly interface for viewing the notes. 

There are patented technologies that utilize augmented reality and music performance, 

although no technologies are currently in the market that accomplishes music learning on an AR 

headset. A patent titled “Computer implemented method for providing augmented reality (AR) 

function regarding music track.” goes into detail about receiving input information from a music 
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track and an instrument. The patent describes a process that determines attribute information of 

the music track based on the received input information. It receives the real-time content of 

audiovisual input signals using at least one capture device. It then generates visual information 

corresponding to a view regarding at least one of the user’s limbs and an instrument. The data 

displayed to the user is comprised of AR instructions based on the attribute information of the 

music track. The patent is relevant to the proposed device because the device will also use (AR) 

to display musical information to the user.  

In another patent titled “System for estimating user’s skill in playing a musical 

instrument and determining virtual exercises thereof” the process for determining what virtual 

exercises a user should be given was discussed. This included the process concerning the 

functionality of processing entities and memory entities for processing and storing data. The 

system is configured to obtain musically notated data, and analyze it to assign the musical piece 

to which such data pertains a number of characteristics with scalar values to express the 

difficulty of a music piece. It provides the user with a number of musical pieces with known 

difficulty characteristics as virtual exercises to be completed by playing an instrument. The user's 

performance data is obtained for completed virtual exercises. The module will then analyze the 

user's performance data to determine and assign the user with a weight pertaining to the skill 

characteristics values in accordance with the difficulty values of the completed musical pieces 

and can suggest a musical piece for the user as a virtual exercise. This patent is relevant because 

the proposed device will also be doing live analysis on how the user is playing and 

correcting/instructing in near real time. 
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1.4 List of marketing requirements LF BG DK KV 

Table 1: List of marketing requirements 

1. The system will identify which note and/or chords are being played while the user is 
playing. 

2. The system will provide an intuitive way to learn piano by showing notes and music 
theory concepts. 

3. The system will be able to interface with an 88 key piano. 

4. The system will be small and portable. 

5. The system will interpret audio output from the piano. 

6. The system will implement a scoring algorithm to compare user input to a determined 
musical composition  
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2. Engineering Analysis 

2.1 Circuits BG KV 

Power BG 

To gain an understanding of the amount of power that is required for the Visual Music 

Assistant the complete system module needs to be analyzed individually in terms of power 

consumption. An approximation of the values for the components that make up the module has 

been conservatively assumed in deciding the required power to drive the module. The below 

calculations are the power requirements of each component of the visual music assistant’s 

(VMA) compute module and audio possessing board components. Figure 1 shows the Power 

block diagram and the necessary steps needed to properly implement power for Visual Music 

Assistant module. 

 

Figure 1: Power Block Diagram 
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The Power Supply will be a small power supply that has a power output of 1000 mW with a 

voltage discharge of 5V and can supply at least 2A. The Raspberry Pi 4 needs to be sourced with 

5V, and the recommended input current is 2A. The circuit board protection needs to be able to 

protect against voltage spikes at/higher than 5.5V and needs to filter noise out from the 

Raspberry Pi 5V rail. The Voltage regulator needs to produce 3.3V from 5V while also 

introducing little to no noise to the 3.3V power rail. The differential amplifier needs to be able to 

produce a signal between ~ 0V and 3.3V off of a 0 to 5v reference voltage. The ADC needs to 

operate at a nominal 3.3V. The DSP needs to operate at a nominal 3.3V. The current draw of 

Raspberry Pi and components on the audio processing board will be less than 3A. 

The Total Power Draw from the Raspberry Pi and Digital signaling board, including the DSP, 

the ADC, and the differential amplifier circuit are shown below. 

● Nominal VDD input: 3.0 to 3.6V; typical voltage: 3.3V; typical current: 55µA 

● ADC typical current draw: 200µA 

● Typical Raspberry Pi4 current draw: 2.5A 

otal current 2.5A 200µA 5µA 2.500255 AT =  +  + 5 =   

So a power supply with 5V in supplying at less 2.6A will meet the maximum power needs. 

2.2 Electronics BG 

2.2.1 Touch Screen BG 

The user will supply login credentials through the VMA touchscreen to connect to a wifi 

network. This can be accomplished by creating a UI on the device that queries the user any 

necessary information. 

(this will be powered by the Raspberry Pi) 
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2.2.2 ADC BG KV 

The system will require an analog to digital converter in order to read in the analog audio 

signals and transform the input into the necessary digital bits for DSP calculations. The main 

properties of interest that affect the scope of the system are sampling rate, resolution, power 

constraints, and latency. The sampling rate should be able to cover the entire range of human 

hearing (20 - 20,000 Hz), therefore it should be a value higher than the Nyquist Frequency, or 

double 20,000 Hz. A common sampling rate for audio signal processing is 44.1 kHz, thus the 

ADC should be capable of a sampling rate of 44.1 kHz or higher. The resolution of the ADC 

(determined by the number of quantization levels) should have a minimum of 16 bits (2^16), 

which is a common value for audio applications (e.g. CD quality audio uses 16-bit samples). Due 

to the ADC’s reliance on power through the Raspberry Pi, the ADC needs to operate at a 

nominal 3.3V. Concerning latency, the time between back-to-back samples is a common 

approximation, thus the ADC’s latency will be( 1/44.1 kHz) sec or less. This latency, although 

small, contributes to the overall latency of the system.  

 

 

Figure 2: ADC Input voltage/Output Discrete Value 
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2.2.3 Mic DK 

The system needs to have the ability to interpret audio output from the piano. In order to 

accomplish this, the system will need a microphone. The microphone will have to be highly 

sensitive in order to detect changing frequencies of sound produced by each of the piano’s keys. 

It is known that there is a direct correlation between the impedance of a microphone and the 

interference associated with a microphone. Among those interferences are electromagnetic and 

radio interference, which worsens the SNR (signal-to-noise ratio) of the signal, thereby 

decreasing the audio signal’s quality. Therefore, in order to obtain the best input signal, the 

microphone of the system should have low impedance (generally, low impedance when 

pertaining to microphones is 600 Ohms and lower).  

2.2.4 Diff amplifier BG 

A differential amplifier stage will be used to take the difference of the microphone signal 

and produce a signal with very low added distortion, low noise and with good circuit driving 

capability. Needs to have an input resistance that is 10^12 Ω or high to keep the microphone 

audio signal from being altered. 

2.3 Signal Processing KV LF BG 

A microphone will need to be used to transduce audio signals into digital representation 

of the notes that the users has played on the piano. The microphone will be sampled to take the 

Fourier transform and the resulting notes interrupted. The digital signal processor needs to 

sample audio signals ranging in frequency from 20Hz to 20KHz in order to cover the entire 

spectrum of human hearing ability. The Nyquist rate of the input signal will define how fast the 
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sampling rate needs to be in order to capture the full content of the input signal without F s  

distortion. 

Nyquist Rate: where B is bandwidth of input signalBF s ≥ 2  

Here, the Nyquist Rate is  2*20KHz =>  40KHzF s ≥ F s ≥  

The Nyquist frequency is the minimum rate at which a signal can be sampled without 

introducing errors, which is twice the highest frequency present in the signal. 

The average sampling rate of an mp4 file is 44100hz. Matching this encompasses the 40Khz 

Nyquist Rate required for human hearing. The Discrete Fourier transform is able to convert the 

time signal into a list of frequencies present at any given point in time. Sensing an 8th note in a 

song correlates to calculating the Fourier transform described above 8 times a second (8hz). The 

number of samples needed to take the fourier transform with the following formula: 

Sample Rate / FourierTransform Rate = Number of samples 

 5512.5 second
44100 samples

*  1 second
8 F ourier transforms =  Samples

F ourier transform  
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The discrete fourier transform will have a frequency spacing of: 

 8hzF F T  size
Sample Rate = 5512.5

44100hz =   

Figure 3 shows fourier transform programmatic analysis: 

 

Figure 3: Python code making a summation of sinusoids of various frequencies 

  

19 



 

Figure 4 shows the Program output of figure 3 outputs the summation of sinusoids and the 

fourier transform plotted on real and imaginary axis.  

 

Figure 4: Summation of sinusoids real and imaginary 
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Figure 5 shows a continuation of the plotting of the fourier transform plotted at different 

frequencies on the real and imaginary axis. 

 

Figure 5: Frequency real and imaginary 
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Figure 6 shows a continuation of the plotting of the fourier transform plotted at different 

frequencies on the real and imaginary axis. 

 

Figure 6: Frequency real and imaginary 
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Figure 7 shows python code that takes random frequencies and makes a signal that is the 

summation of their sinusoids with the intent of being able to distinguish the frequencies without 

knowing what they are. 

 

Figure 7 :Code for summation of random frequency sin waves 
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Figure 8 shows a signal that is the summation of the random frequency sinusoids in the time 

domain. 

 

Figure 8: Random frequency sinusoids in the time domain 
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Figure 9 shows the fourier transform analysis as well as the quesses associated with a frequency 

that is over the threshold in the fourier transform. 

 

Figure 9: Code to output guessed frequencies 
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Figure 10 shows the guessed outputs with respect to the actual frequencies.  

 

Figure 10: Guessed output frequencies and actual frequencies 

This program creates a summation of sinusoids of random frequencies and prints them in 

imaginary, and real spaces. Using this created signal, taking its fourier transform and compare 

each frequency to a set threshold value. It is possible to then print any frequency that is over the 

threshold value. 

From this analysis it can be seen that the guesses(the printed frequencies over the threshold 

values) were extremely close to the actual values of the summation of sinusoids. The fourier 

transform is accurate enough for the application.  
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Table 2 shows a table of possible frequency spacings given a certain number of Fourier 

transforms. 

Table 2: Frequency spacings given the Fourier transform rate 

Fourier transforms per sec. Samples per fft Frequency spacing 

1 44100 1hz 

1.6352 26969.17 1.6352hz 

2 22050 2hz 

3 14700 3hz 

5 8820 5hz 

8 5512.5 8hz 

10 4410 10hz 

20 2205 20hz 

50 882 50hz 

100 441 100hz 

  

The data above shows that the number of Fourier transforms pers sec determines the sampling 

resolution. It is also seen the shorter the time in which a Fourier transform is taken the larger the 

frequency steps. 

An average 88 key piano ranges from 27.5Hz to 4186hz, Looking at several changes in 

frequencies( ) from one note to the next sequential note:fΔ  

f | 27.5 9.1352| 1.6352hz Δ 1−>2 = |f 1 − f 2 = | − 2 =   

f | 329.628 11.127| 18.501hz Δ 43−>44 = |f 43 − f 44 = | − 3 =   

f | 3951 186| 235hzΔ 87−>88 = |f 87 − f 88 = | − 4 =   
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Note that f  1.6352hzΔ min =   

An algorithm will be round the Fourier transform to the nearest note associated with a given 

frequency. The discrete fourier transform will need to have a minimum frequency spacing of 

.fΔ min  

This means a sample size of:  

ample SizeSample Rate
F requency Spacing = S  

6969.1744100
1.6352 = 2 Samples

F ourier T ransform   

The frequency can be padded with 0’s or repeated until the desired samples are reached. 

 4.89 repeatsthe sample
desired sample = 5512.5

26929.17 =   

Alternatively, the DFT of the last 26969 samples and do analysis of when notes came on vs left. 

However, this will likely cause any one note to persist for 4.89 FFT’s 

In summary, the sampling of the microphone is 44100hz,Taking the fourier transform of the 

repeated signal 8 times/second, checking if a frequency is being played by comparing the value 

to a threshold, and if so assign the frequency to the corresponding note.

 

Figure 11: Signal Processing Flow Diagram. 
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The fourier transform and the microphone sampling affect the latency of the system. 

 

ttDelay = tDSP +  transmit + tSBC + tnetwork + theadset  

tDSP = tsample microphone + tf f t  

Table 3 shows a table of possible latency added by fft given a certain number of Fourier 

Transforms. 

Table 3: Repeats Required to Keep Frequency Spacing 

Fourier transforms 
per sec. 

Latency added by fft 
(tsample microphone +t fft) 

Frequency spacing Repeats needed to 
have good spacing 

1 1000ms 1hz 0 

1.6352 611ms 1.6352hz 0 

2 500ms 2hz 1.223 

3 333.33ms 3hz 1.834 

5 200ms 5hz 3.057 

8 125ms 8hz 4.892 

10 100ms 10hz 6.115 

20 50ms 20hz 12.230 

50 20ms 50hz 30.577 

100 10ms 100hz 61.154 

 

There is a tradeoff of taking the Fourier transform many times a second to detect 16th and 32nd 
notes, and the spacing of the Fourier transform.   
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2.4 Communications KV DK 

Music data will be sent from the DSP to the Raspberry pi SBC over UART. The main concerns 

are the data transfer speed and the size of the data that is transmitting. The size of the data that 

changes based on several factors. If the piano supports MIDI then it is possible to convey the 

MIDI events from a piano directly to the raspberry pi through MIDI over USB. 

If the piano has only sound, the VMA will sample the sound using the microphone, take the 

fourier transform, and analyze what frequencies are present in a given sound sample; Also 

known as music data. 

Music data for this purposes is represented in either a list of frequency likelihoods, list of notes 

currently being played/Change in notes being played, or midi signals. The music data will be 

transmitted >= 8 times per second. The following table showcases the different file types and 

sizes thereof. 

Table 4: Music Data Types and Sizes 

 Type Size 

List of Frequency likelihoods Constant 8318 bytes 

List of Frequencies above the 
threshold 

Variable 0 - 88 bytes 

List of notes currently being 
played 

Variable 0 - 88 *3 bytes 

List of Change in notes being 
played 

Variable 0 - 88 * 3 bytes 

Binary Representation of 
Frequencies above Threshold 

Constant bitseil(Log (4186)) 13C 2 =   
 

List of Midi Events Variable 3 bytes * 88 keys = 264 bytes 
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The size of the music data greatly changes based on the number of notes being played 

The general maximum number of notes being played on a piano in a song at a given time is: 

On average: 3 notes, Upper average:15 notes , Maximum: 88 notes. 

In the worst case where the user plays all 88 notes simultaneously, the VMA will need to 

transmit the equivalent amount of data over the wire. 

List of frequencies played on a piano range from 27.5hz to 4186hz. 

Number of integer frequencies stored in freqArr = ceiling(MaxPianoFreq-MinPianoFreq) 

ceiling(4186-27.5) = 4159 integers 

Total size of freqArr = size of integer * number of integers 

2 bytes * 4159 = 8318 bytes 

This is an array of 4159 integers. 

Note that this contains information on how likely each frequency is currently playing. This is 

 bits. Sending the midi signal equivalent of this is:eiling(log (4159))c 2   

(Midi Event Size) x (Number Of Midi Events) 

(3 bytes) x 88 keys = 264 bytes  

Note that the average song does not involve the user pressing/releasing all of the notes 

simultaneously. 

Max throughput array of freq = 8318 bytes, Max throughput midi files = 264bytes 

As such this communication should support the worst-case throughput. 

UART baud rate for 115200 Baud (by definition), will give you 115200 * 5 = 576000 bits per 

second.  
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UART Calculations: 
 
In order to incorporate UART onto DSP Microchip products, two known factors are needed: (1) 

Desired Baudrate, (2) the clock cycle speed of the device. With these given, the baud rate 

generator register can be populated with the right value. The following calculation found from 

Equation 3-1 in the UART chapter of the dsPIC33/PIC24 Family Reference Manual describes 

this process: 

 

For the system, the dsPIC33 microcontroller is currently running at 40 MIPS (million instructions 

per second), thus = 40,000,000. For a commonly desired baud rate of 115200 (bytes/sec), F P  

the UxBRG register (in this case, the VMA is using UART module 2, so U2BRG) can then be 

calculated with the following: 

 = = 20.7014... (round up due to register restrictions)2BRG U =  F P
16 × Baud Rate − 1 40,000,000

16 × 115200 − 1 1  ≈ 2  
 

2.5 Computer Networks KV 

The networking goals include sending data in near real time from a compute module to the 

augmented reality headset. Several techniques have been compared including UDP, TCP, and 

HTTP with several network communication configurations. Three configurations are shown 

below: 
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Figure 12: Server client network configuration 

Figure 12 showcases the server-client network configuration model. Having a separate, dedicated 

server that both devices talk to will always be connected to the internet. This would enable 

issuing over the air updates and be connected to the internet, giving access to any api’s that the 

VMA would use as well as enable cross communication with internal servers that can be used to 

tweak user experience settings on the fly. A Server client network also increases the latency of 

the information traveling between the visual music assistant and the AR headset. 

 

An alternative to the server client network configuration is the peer to peer network 

configuration. Due to the visual music assistant being connected to the AR headset on a local 

network, the network latency is significantly reduced. One challenge introduced with the peer to 

peer networking solution is it introduces IP configuration issues where the client and server do 

not know where each other are on the network and will have to actively search for one another 

when connecting to the network. Additionally, it can not be guaranteed that the system is 

connected to the internet, making several quality of life features inaccessible.  
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Figure 13: Peer to peer configuration 1 

 

 

Figure 14: Peer to peer configuration 2 

Figure 13 and 14 show that the Server can be located on either the visual music assistant module 

or the AR headset.  

 

Additionally, sending information from one client to another client using UDP or TCP sockets is 

possible. TCP sockets automatically have error checking and guarantees that all the packets will 

arrive in order. UDP does not have error checking, and is much faster to transmit. This is 

normally used in streaming applications. The project has needs in both technologies. It is also 

possible to utilize HTTP requests to communicate information about state.  

Network latency contributes heavily to the overall latency. 

 

The overall latency is related to the perceived visual sound function of the human ear: An 

average human can start to detect disconnect in sound when the latency of the expected sound 
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exceeds approximately 100ms. As such this is the target latency of both displaying information 

to the user as well as playing sound for the user. 

The total latency is  

ttDelay = tDSP +  transmit + tSBC + tnetwork + theadset  

tRP i = tmidi conversion + tjson conversion + tencoding  

ttheadset =  audial/visual sync  

 t  t  t  tDelay =  sample microphone +  f f t + tmidi conversion + ttransmit +  RP i + tnetwork + theadset  

 00ms tDelay Goal ≤ 1  

MIDI Message transfer protocol: 

Each message sent should be a json midi object terminated by an end line character. This allows 

for multiple packets to be packaged together and be sent over a network and still be 

distinguishable. 
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2.6 Embedded Systems DK 

The need for high throughput, ensured worst-case latency, and stability are all 

characteristics of real-time systems, of which audio signal processing is a prime example. Digital 

signal processors (DSP’s) are specifically designed and built to meet real-time system needs on 

an embedded hardware level. The hardware of a DSP is optimized for high-speed computation in 

several ways, generally including the following: multiply-accumulate hardware that is integrated 

into the main data path of the DSP processor (allowing a single cycle for a multiply-accumulate 

operation); two or more multiply-accumulate units (allowing several multiply-accumulate 

operations to run in parallel); ability for parallel direct memory access (allowing multiple direct 

accesses to memory in a single clock cycle); one or more address generation units, commonly 

referred to as AGU’s (these units operate in the background, forming the addresses required for 

operand accesses without using the main data path of the processor, thereby running in parallel 

with the execution of arithmetic instructions); one of the address modes for an AGU generally 

found is bit-reversed addressing (this increases the speed of certain FFT’s); repeat loop register 

bits (bypassing the need to update a loop counter and wasting an instruction cycle, thereby 

providing an increased for-next loop execution time). These hardware design optimizations make 

a DSP a “great fit” (change later) for audio signal processing, which involve heavy use of the 

Fast Fourier Transform and other fast operations. 

The digital signal processor needs to be able to sample audio signals ranging in frequency from 

20Hz to 20KHz in order to cover the entire spectrum of human hearing ability. The Nyquist rate 

of the input signal will define how fast the sampling rate needs to be in order to capture the F s  

full content of the input signal without distortion. 
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Nyquist Rate: where B is bandwidth of input signalBF s ≥ 2  

Here, the Nyquist Rate is  2*20KHz =>  40KHzF s ≥ F s ≥  

The Nyquist frequency is the minimum rate at which a signal can be sampled without 

introducing errors, which is twice the highest frequency present in the signal. Thus, all 

calculations on the DSP need to be calculated within the timeframe of each sampling rate. In 

other words, the system must be able to operate all calculations on a single sample in 0.000025 

seconds (1/40k). 

 

2.7 Raspberry Pi LF 

The networking module on the Raspberry Pi will require at least three functions. The first 

function polls a MIDI keyboard over USB and reads in MIDI events. This function will require 

an object to represent the MIDI input stream, and an array to hold the data retrieved from the 

stream. The second function converts an array containing MIDI data to a byte array containing 

the JSON representation of the array with an endline character appended to it. It will require a 

string to hold the JSON representation of the MIDI data, and a byte array to hold both the MIDI 

data and the endline character. The third function will open up a socket connection to a server, 

relay any MIDI data passed into it, and store any information received from the server. It will 

require a socket object to represent the socket connection, a string to represent the server IP 

address, an integer to represent the server port, an integer to represent the buffer size, and a byte 

array to represent the data received from the server. 
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2.8 Software Memory Usage LF KV 

Python Type Sizes 

Table 5: Sizes of Python Data Types 

Data Type Size (bytes) 

String 49 

Integer 28 

1D Array 60 + (2 * Number of Elements) 

2D+ Array  72 + (2 * Number of Elements) 

Byte Array 56 + (2 * Number of Elements) 

MIDI/Socket Object 104 bytes 

Socket Received Data 1024 bytes 

 

The memory usage of a program can be estimated by summing up the size of the 

variables used in each function of the program. Below are the calculations for the sizes of 

functions 1, 2 and 3 respectively ( , , )Sf1 Sf2 Sf3  

 

1 IDI  Object Size) 1  2D Array Minimum Size 2 rray Length))Sf1 = ( * M + ( * ( +  * A  

1 04 bytes) 1 72 bytes  bytes))= ( * 1 + ( * ( + 2 * 4  

= 184 bytesSf1  
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1 tring Size) 1 Byte Array Minimum Size 2 yte Array Length))Sf2 = ( * S + ( * ( +  * B  

1 9 bytes) 1 56 bytes 2  bytes))= ( * 4 + ( * ( +  * 5  

= 115 bytesSf2  

 

1 ocket Size) 1 tring Size) 1 nteger Size)Sf3 = ( * S + ( * S + ( * I +  

1 Byte Array Minimum Size 2 yte Array Length))( * ( +  * B  

1 04 bytes) 1 9 bytes) 1 8 bytes)= ( * 1 + ( * 4 + ( * 2 +  

1 56 bytes 2 024 bytes))( * ( +  * 1  

= 2285 bytesSf3  

 

Total memory usage of Python program = Sf1 + Sf2 + Sf1  

= 184 bytes + 115 bytes + 2285 bytes  

= 2584 bytes = 2.584 KB  
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2.9 Software Speed Analysis DK KV LF 

2.9.1 DSP DK 

 The digital signal processor needs a portion of the target latency time to collect samples 

from the microphone, calculate the Fourier transform of the samples collected, calculate the 

significant frequencies from the Fourier transform, and to convert the significant frequencies to 

MIDI data. 

tDSP = tsample microphone + tf f t  

The number of operations of the Fast Fourier Transform can be estimated by , with Nlog NN 2  

being the number of samples. The value of N for a 16-bit ADC (common in audio applications 

would be or 65536 samples. Thus, the number of operations for an FFT algorithm operating 216  

on 65536 samples is  or 1.048 million instructions. In order to calculate the5536 log 655366 *  2  

speed of the FFT on a DSP using 40 MIPS (million instructions per second), the execution time 

formula is used: 

  

The CPI of the Fourier Transform calculation is the average cycles per instruction. To find this, 

the FFT equation from Figure 15 was analyzed: 

 

Figure 15: Discrete Fourier transform (Wikipedia, 2019) 
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This formula includes the following operations: 1 multiply, 1 cosine, 2 divides, 1 subtraction, 

and 1 sine operation. Assuming each sine and cosine operation is calculated using a 4th degree 

Taylor series (Texas Instruments, 2002), a sine or cosine operation includes 4 additions, 4 

divides, and 4 multiplications. Thus, there are a total of 9 multiplications, 10 divisions, and 9 

additions/subtractions per FFT summation. Referencing the instruction architecture of a dSPIC33 

(Microchip Technology, Inc, 2008), an addition/subtraction takes 1 clock cycle, a division takes 

18 cycles, and a multiplication takes only 1 cycle (via MAC unit). The average CPI is thus: 

= 7.07143 CPI (cycles per instruction).  9 + 10 + 9 instructions
9 1 + 10 18 + 9 1 cycles* * *  

Plugging the average CPI calculated, the 1.048 million instructions per FFT, and a clock time of 

40 MHz into the execution time formula gives a value of: 

* (7.07143 CPI) * 1.048 million (instruction count) = 0.185271 secxecution time E =  40 MHz
1 second  

This time exceeds the time delay goal of 100 ms, thus in order to decrease the FFT calculation 

time, the digital signal processor’s clock speed must be higher than 40 MHz and/or the sampling 

count must be lower. 

2.9.2 Raspberry Pi LF 

The Raspberry Pi needs a portion of the target latency time to convert incoming 

frequency data to the MIDI format, convert MIDI data to JavaScript Object Notation (JSON), 

and to convert the JSON data to a byte array that is suitable for transfer over TCP/UDP.  

tRP i = tmidi conversion + tjson conversion + tencoding  

To correctly pick out the frequencies being played, the program running on the Raspberry 

Pi will need to iterate over an array that is at worst N, the length of the maximum playable 

frequency of the piano. To map the frequencies being played to the correct musical note, the 
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program will have to do a lookup in a binary search tree that contains each musical note and its 

corresponding frequency. This will take, at worst, O(log(N)) time. In most cases the time to 

match all notes being played will be significantly less because the user will be playing at most 10 

notes at a time. The number of operations required for picking and matching frequencies can 

then be found as: 

  N og(N ) 4000 4000 og(4000) 18408 operationsN +  * L =  +  * L =   

The amount of time the program will take to process 88 notes being pressed can then be 

calculated using the instructions per second measurement of the Raspberry Pi, which is around 

4744 MIPS. 

 3.8 uS tmatch = 18408 instructions
4744M  instructions/second =   

2.9.3 HoloLens KV 

The HoloLens rendering engine should be kept to a minimum of 60 FPS as per the microsoft 

documentation. This is primarily handled internally by the unity rendering engine, which can be 

seen through the use of various tools provided such as the GPUView, Visual Studio Graphics 

Debugger, and the profilers built into 3D engines such as the Frame Debugger in Unity. 

2.10 Storage Capacity LF 

The MIDI format is relatively small in terms of storage size because it is a representation 

of musical notes that make up a song rather than a full audio signal. Therefore the typical size of 

a MIDI file is on the order of kilobytes (KB) rather than megabytes (MB). Below is the 

calculation for the storage size of a library of MIDI files, assuming a max MIDI file size of 

100KB (an overestimate, as a 4 minute song is ~55KB) and a MIDI file count of 100 songs: 

torage size 00 00 songs 0000KB 10GB S = 1 KB
song * 1 = 1 =   
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The required storage size for a MIDI file can potentially be reduced for this application, 

as only the Note On/Note Off MIDI events and their timestamps need to be recorded. All other 

events can potentially be ignored. 

2.11 MIDI File Parsing LF 

The MIDI file format is a sequence of bytes that is structured into a header chunk, and 

then one or more track chunks following the header chunk. The header chunk of a MIDI file 

contains the MIDI file format, the number of tracks following the header, and the time division 

of the file; each header field is always 2 bytes long. The track chunks following the header chunk 

contain a sequence of events that are either Meta, Sysex, or MIDI events. Meta events consist of 

a sentinel byte “FF” followed by a meta event identifier byte, followed by a variable length field, 

followed by the data for the Meta event. Meta events contain data for information like track 

names, lyrics, and instruments used for each track. Sysex events consist of a sentinel byte “F0” 

or “F7” followed by a variable length field, followed by the data for the Sysex event. MIDI 

events can have a wide range of identifier bytes, from “8x” to “Ex.” Most MIDI messages 

contain information regarding the playback of a song or the notes pressed on a keyboard. The 

two that are most important to this project are the Note On and Note Off MIDI events, which are 

indicated with the identifier bytes “9x” and “8x” respectively.  
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3. Engineering Requirements Specification BG 

The following lists the design requirements for the Visual Music Assistant, and the marketing 

requirements to which they pertain. The list calls out the marketing requirement that the design 

requirement statement addresses. The design requirement statement is then given a justification 

pertaining to the given marketing requirements that are intended to be met. 

Table 6: Design Requirement Specifications 

Marketing Requirements Design Requirements Justification 
 

1,5 Digital Signal Processing 
circuit will need to sample 
audio signal at a rate above 
44100hz. 

Identifying the notes and 
chords will require a 
sampling rate above nyquist 
sampling rate 

2 Visual Music Assistant will 
be able to teach the melody 
of“Twinkle, Twinkle, Little 
Star” to the user in under 
5mins. 

Will be able to evaluate 
whether VMA can provide a 
way to learn keyboard notes 
and music concepts 

1,3 Visual Music Assistant will 
be able to detect notes played 
in the range of 27.5hz to 
4186hz 

The frequency range of a 
88key piano is 27.5 to 
4186hz. VMA must be able to 
detect these frequencies 

4 Visual Music Assistant will 
be able to fit in a backpack 
and weighs less than 3lbs. 

The criteria of small and 
portable are constrained to 
something that is easily 
carried by one person 

1,5 DSP needs to have a Latency 
added to the system of less 
than 30ms 

Systems needs to provide 
feedback of the interpreted 
note while the user is playing 

1,5 Overall latency for audio 
input to user interface output 
should be less than 100ms 

Systems needs to provide 
feedback of the interpreted 
note while the user is playing 

2 Visual Music Assistant will 
have a user interface that 

Intuitive feedback that is 
relevant to the user will need 
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gives real-time feedback of 
the users performance in less 
than 200ms 

to be provided while the user 
is playing  

2 Visual Music Assistant will 
have a scoring algorithm that 
will provide visual feedback 
in Augmented Reality 

Addresses the need for an 
intuitive way to learn 
instruments by showing notes 
and music theory concepts. 

2,3 Visual Music Assistant will 
be able to display upto 88 
augmented reality keys.  

For the VMA system to 
interface with the 88 keys on 
a keyboard, AR keys will 
need to be mapped to each 
key and be distinguishable by 
the user 

6 Visual Music Assistant will 
be able interface with midi 
protocol music files and then 
translate the midi music files 
into a 3D interpretation. 

Addresses the need for the 
scoring algorithm to compare 
a musical composition with 
the user’s input. 

1,2 Visual Music Assistant will 
superimpose an audiovisual 
indication if a note is 
misplayed and/or played 
correctly 

The notes will be identified as 
a correct note or incorrect 
note by VMA system to 
promote learning the 
instrument intuitively 

1,5,6 Visual Music Assistant will 
be able to tranduces audio 
signals into midi protocol 

Addresses the need for 
compatibility between user 
input when compared with 
the corresponding musical 
composition 

1. The system will identify what notes and/or chords the user is playing. 

2. The system will provide an intuitive way to learn instruments by showing notes and 

music theory concepts. 

3. The system will be able to interface with 88 key piano. 

4. The system will be small and portable. 

5. The system will interpret audio output from the piano  

6. The system will implement a scoring algorithm to compare user input to a determined 
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musical composition  

4. Engineering Standards Specification BG, DK 

Table 7: Safety standards and protocols 

 Standard Use 

Safety   

Communications TCP, UART, WIFI (IEEE 
802.11) 

Networking between the 
Raspberry Pi and the 
Microsoft Hololens  

Data Formats MIDI, JSON (IEEE-1394) Serial communication for 
datafiles,and Raspberry Pi to 
Hololens  

Design Methods TCP standards (IEEE 802.2) Transmission Control 
Protocol between 
Raspberry and Hololens Pi 

Programming Languages C, C#, Python, JavaScript 
(ISO/IEC 9899:1999) 
(ISO/IEC 23270:2003) 

Used in the production of 
Visual Music Assistant code 

Connector Standards USB C, USB A (IEEE-1394) Use on Raspberry Pi and on 
Digital signal processing 
board 

 
Table 7 shows the protocols and safety standards that are considered in the creation of Visual 
Music Assistent 
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5. Accepted Technical Design LF BG DK KV 

5.1 Hardware Design: BG 

 

Figure 16: Level 0 Hardware Diagram 

Figure 16 shows the Level 0 Hardware Diagram. The system will receive a signal from the 

musical instrument. The signal received will be processed by the Auditory processing unit. The 

Auditory processing unit will send the distinguished frequency to the AR Headset. The User will 

interact with the AR headset and the auditory processing unit. The user will configure the 

Auditory processing unit to be able to connect to AR headset. The system will be powered via 

5V USB.  

 

Figure 17: Level 1 Diagram 
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Figure 17 shows the Level 1 Hardware Diagram. The system will receive power from an outlet 

and will be rectified into 5V @ 2A power. This power will be delivered to the Raspberry Pi. The 

Raspberry Pi will receive the distinguished frequency from the DSP chip. The DSP chip will 

receive an analog input from the microphone circuitry. The microphone circuitry will take the 

transduces audio signal from the microphone and create a signal for the DSP to use. The 

distinguished frequency that is sent to the Raspberry Pi will then be made into a protectal that 

will be sent to the AR headset via WIFI or Bluetooth. The user will interact with the AR headset 

and the Screen. The screen will be used to configure the Music Module. 

 

 

Figure 18: Level 2 Hardware Diagram 

Figure 18 shows the Level 2 Hardware Diagram. The system will receive power from an outlet 

and be rectified into 5V @ 2A power. This power will be delivered to the Raspberry Pi and to 

the Data Processing Module. The data processing module will receive an Audio Signal from the 

keyboard. The Auditory Transduction circuitry will then produce a digitized signal for the DSP 
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chip to run a fast fourier transform on. The determined frequency that was interpreted by the 

DSP will then be sent to the Raspberry Pi to be converted to MIDI. The MIDI signal will be sent 

over WIFI or Bluetooth wireless protocol to the AR headset. The frequencies will then be 

displayed on the headset for the User to interpret and interact with. The User will interact with 

the Ar headset and the screen. The screen will be used to configure the module and will be used 

to display redundant information that the AR headset displays while in operation. 

 

 

Figure 19: Hardware level 3 Diagram 

Figure 19 shows the  Level 3 Hardware Diagram. The system will receive power from an outlet 

and be rectified into 5V @ 2A power using a cellphone power supply. This power will be 

delivered to the Raspberry Pi 4. The data processing board will be powered via the 5V rail on the 

raspberry Pi 4. The 5V rail from the Raspberry Pi 4 will go through an over voltage protection 
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circuit to protect the voltage regulator from being damaged. The voltage regulator will step the 

5V voltage down to 3.3V. The 3.3V rail will then be filtered to ensure a clean and stable 3.3V 

rail. The filtered 3.3V rail will then be used to drive the differential amplifier circuitry, the ADC 

chip,and the DSP chip. The data processing module will receive an Audio Signal from the 

keyboard. The differential amplifier circuitry will take in the microphone transduced signal and 

produce a signal from 0 to 3.3. The ADC will take the biased signal and produce a digitized 

signal for the DSP chip to run a fast fourier transform on. The determined frequency that was 

calculated by the DSP will then be sent to the Raspberry Pi to be converted to MIDI. The MIDI 

signal will be sent over WIFI wireless protocol to the AR headset. The frequencies will then be 

displayed on the headset for the User to interpret and interact with. The User will interact with 

the AR headset and the screen. The screen will be used to configure the Visual Music Assistant 

module to connect to the WIFI router and will also be used to display redundant information that 

the AR headset displays while in operation. 

OpAmp Circuit 

Figure 20 shows the operational amplifier circuit simulated to take an audio signal of less than 

+/- 100mV and produce an output that has a positive value between 3.3 and 0 volts. Ltspice 

symbol schematic was created with equivalent parts used to created a circuit prototype. 
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Figure 20: Operational Amplifier Circuit and Waveform 
 
V1 represents an audio input after a microphone transduces an audio signal into a voltage. The 
input of V1 was observed to be less than +/- 50mV in standard operation. The circuit was 
designed to still work (with no climping) with an input from V1 of +/- 100mV. C1 creates a DC 
buffer for the circuit. C1 also creates a pass though for the AC component of the V1 input. The 
resistance values of R4 and R2 where chosen to create a gain over 20 for the circuit. R6 was 
chosen to be 4.7KΩ and R1 was chosen to be 4.7KΩ. R6 and R1 were chosen to set a voltage 
reference point for the input of the Op-Amp. The voltage value chosen for the reference 
between the positive input terminal node of the Op-Amp was 2.5V. The negative input terminal 
node of the Op-Amp is also 2.5V. When V1 excites the circuit with a voltage higher than 0mV 
then current through R4 is decrease. The decrease in the current through R4 also leads to a 
decrease in the current through R2. The opposite is true for a voltage lower than 0mV. The 
circuit is inverting the signal. The Op-Amp chosen to represent the physical Op-Amp was 
AD8571. AD8571 has zero drift, 2.7/5V operation, and RRIO capability. The actual Op-amp 
used TLV2252AIP has increased output dynamic range, lower noise voltage, and lower input 
offset voltage with operation from 2.7/8V and RRIO capability. C2 is a DC buffer and AC pass 
through used to separate the output signal of the circuit  from the AD8571 Op-Amp signal. The 
AD8571 Op-Amp signal voltage generated is between 1.5V and 3.6V which exceeds the 
allowable voltage input range 0 to 3V for the dsPIC33FJ256MC710A. The isolated signal 
generated after passing through C2 is shifted to operate on a DC value of 1.65V. The shift of the 
output signal is produced using resistors R3 and R5. R3 was chosen to be 47KΩ and R5 was 
chosen to be 47KΩ. 
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Figure 21 shows the operational amplifier waveform generated by taking an audio signal of  +/- 
100mV and produce an output that has a positive output between 3.3 and 0 volts 

 

Figure 21: Operational Amplifier Simulated Waveform 
 
The small (blue) signal is the input signal from the microphone V1. The input signal is generated 
using a sinusoidal wave at 4KHz between +/- 50mV. The large signal (yellow) output signal is 
4KHz ranging from 600mV to 2.7V. The gain of the system as seen from the waveform is 21. 
 
 
 
 
 
 
 
 
 
 

52 



 

Figure 22 shows the operational amplifier symbol schematic modeled in Kicad to take an audio 
signal of less than  +/- 100mV and produce an output that has a positive value between 3.3 and 0 
volts. 
 

 
Figure 22: Operational Amplifier Symbol Schematic 

 
The Symbol schematic include the actual parts that will be used to implement Visual music 
assistant digital signaling board.  
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Voltage Regulator Circuit  
 
Figure 23 shows the voltage regulator circuit used to filter noise from the Raspberry Pi 5v rail 

 
Figure 23: Voltage Regulator Circuit  

 
The MCP1700-3302E is a SOT23 surface mount package linear regulator that takes 5V input 
and produces 3.3V output. The C7 and C10 are decoupling capacitors used by the linear 
regulator for filtering. C5 values was chosen to be 10µF to filter noise from the raspberry pi 5V 
rail. 
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5.2 Software Design: LF KV DK 

Software Level 0 thru N block diagrams w/ Functional Requirements (FR) Tables 

 

 

Figure 24: Software Level 0 Diagram 

The diagram above shows the top level view of the project from a data transfer 

perspective. It shows a user (the blue icon) interacting with an analog or digital piano; if the user 

interacts with an analog piano, the soundwaves of the piano are passed into a microphone 

connected to the digital signal processor. If the user interacts with a digital piano, the digital 

music events from the piano are sent directly to a Raspberry Pi for processing. Any analog 

soundwaves read by the digital signal processor are translated into frequency arrays and passed 

to the Raspberry Pi. The Raspberry Pi processes the frequency arrays sent from the digital signal 

processor and calculates which MIDI note the frequency arrays represent. Once the Raspberry Pi 

has retrieved a MIDI note from a frequency array or directly from a digital piano, it packages the 

MIDI note as a JavaScript Object Notation (JSON) string and then encodes it as a byte array to 
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be sent to the server via TCP/UDP. When the server receives the byte array containing the MIDI 

data, it forwards it to the HoloLens via TCP/UDP. Once the HoloLens has received the MIDI 

data from the server, it compares the “note played” from the MIDI data to the note of the song 

currently being played. The HoloLens then calculates a score based on the difference in timing 

between the note played and the target note, and displays to the user the note played as well as an 

indicator of the score. 

 

Figure 25: Software Level 1 Diagram 

 

 

The diagram above(Figure 25) expands on the previous data flow diagram in that it 

further breaks down each module. The Raspberry Pi now has three modules. The first module, 

the Pi MIDI module, processes the frequency arrays sent from the digital signal processor and 

calculates which MIDI note the frequency arrays represent. Once the Pi MIDI module has 

retrieved a MIDI note from a frequency array or directly from a digital piano, sends the MIDI 

note to the Pi Networking module. The second module, the Pi Networking module, sets up a 
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socket connection to the server based on the IP address obtained by the configuration module. 

The Pi Networking module relays to the server via TCP/UDP any MIDI note passed to it. The 

module converts MIDI notes to byte arrays containing JSON data before sending them. The third 

module, the Pi Configuration Module, allows users to interact with a screen connected to the 

Raspberry Pi. Users will enter their WiFi information using the touch screen, and the information 

will be used to configure the socket connection between the Raspberry Pi and the server. 

 

 

Figure 26: DSP Software Level 2 Diagram 
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The above figure 26 describes the overall digital signal processing software flow. The DSP will 

be first configured in a setup block before entering the main while loop. Inside the main while 

loop, values from the ADC will be read into a buffer. An FFT (Fast Fourier Transform) 

algorithm will then be operated on the values inside the buffer, filtering out the relevant 

frequencies. These frequencies will then be converted to their corresponding MIDI notes values 

and be sent to the Raspberry Pi via the UART communication protocol. 
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Figure 27: HoloLens Software Level 2 Diagram 
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Figure 27 describes the control flow of the program that will be running on the HoloLens. 

It will initially check to see if there is a configuration saved for WiFi credentials and the IP 

address of the music module. If a configuration is not found, a menu will be displayed that will 

retrieve the WiFi credentials and IP address of the music module. If a configuration is found, the 

program will display a menu offering two different options for music learning.  

If the user selects the Song Learning menu option, the program will display a list of songs 

available for playback. Once the user picks a song the program will open a file stream 

corresponding to the song picked by the user. After the file stream is opened, the program will 

load in the 3D model that represents the piano and the notes currently being played. Once the 

model is loaded the program will open a socket connection to the server. After the socket 

connection is opened the program will listen on the socket for incoming note data. When note 

data is received, the program will calculate a score for the note based on when it was played vs. 

when it should have been played. Once the score calculation is complete, the score and the 

corresponding note will be displayed on the 3D piano model. 

If the user selects the Improvisation menu option, the program will load in the 3D model 

that represents the piano and the notes currently being played. Once the model is loaded the 

program will open a socket connection to the server. After the socket connection is opened the 

program will listen on the socket for incoming note data. When note data is received, the 

program will calculate relevant note/chord suggestions based on music theory. Once the 

note/chord suggestion is calculated, it will be displayed along with the note played on the 3D 

piano model. 
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Figure 28: HoloLens Score Loop Software Level 3 Diagram 
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The diagram above(Figure 28) describes how the program running on the HoloLens 

determines the score for each note played by the user. It first checks to see if a MIDI note has 

been played.  

If a MIDI note has been played then it is normalized to be compared to a sliding-window 

file structure containing the notes that should be played and when they should be played. Once 

the comparison between the note played and the file structure has been made, the score for the 

note is reflected in the user’s total score. 

If a MIDI note has not been played, the program checks for any missed notes in the 

sliding-window file structure. If a missed note is found, the user’s score is updated appropriately. 

If no missed note is found, the program continues to check for played MIDI notes.  
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Figure 29: HoloLens MIDI File Level 3 Diagram 

Figure 29 describes how the program running on the HoloLens implements the 

sliding-window structure for parsing MIDI files. It checks to see if the end of the MIDI file has 

been reached. If the end of the file has been reached, the file is exported. If the end of the MIDI 
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file has not been reached, the next MIDI note event is read and then normalized to be evenly 

spaced with previous and subsequent notes. 

  

  

Figure 30: Raspberry Pi Level 2 Diagram  
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Figure 30 describes the control flow of the program running on the Raspberry Pi. The 

program first imports all libraries necessary for polling MIDI keyboards and establishing socket 

connections. Once all libraries are imported the program opens up a TCP/UDP socket connection 

using the IP address entered by the user into the Pi Configuration module. Once the socket 

connection is opened the program begins polling for MIDI data. If MIDI data is received, it is 

converted to JSON and then added to a byte array. The resulting byte array is sent via TCP/UDP 

to the server (and subsequently the HoloLens) 

Pseudocode for DSP frequency to MIDI: 

Input: Frequency (obtained from the DSP calculations to the RPi through UART) 
Output: MIDI note 

 
Functions within the scope of determining the MIDI note: 

● search_avl_tree (Lookup algorithm will be an AVL tree, self-balancing binary 
search tree data structure); The function will return the MIDI note 

● parse_into_midi_data_structure 
● get_midi_note 

 
get_midi_note( frequency value ) 
{ 

note = search_avl_tree(frequency value); 
midi_data = parse_into_midi_data_structure(note); 
return midi_data; 

} 
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Microchip embedded C Demo Code (dsPIC33FJ256GP710A): 

Header file config.h: 

Figure 31 shows the Header file config.h code. 

 

Figure 31: config.h 
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Figure 32 shows a continuation of Header file config.h code. 

 

Figure 32: Header file config.h continued 
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Main Program file: main.c 

Figure 33 shows Main Program file: main.c 

 

Figure 33: main.c 
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Figure 34 shows a continuation of Main Program file: main.c 

 

Figure 34: Continuation of Main Program file: main.c 
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Figure 35 shows a continuation of Main Program file: main.c 2 

 

Figure 35: Continuation of Main Program file: main.c 2 
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Figure 36 shows a continuation of Main Program file: main.c 3 

 

Figure 36: Continuation of Main Program file: main.c 3 
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Figure 37 shows a continuation of Main Program file: main.c 4 

 

Figure 37: Continuation of Main Program file: main.c 4 
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Figure 38 shows a continuation of Main Program file: main.c 5 

 

Figure 38:Continuation of Main Program file: main.c 5 

Description of main.c: 

This file is the main program of the demo code running on the dsPIC33FJ256GP710A. It 

includes the following local files: “fft.h,” “config.h,”; and the following libraries: <xc.h>, 

<dsp.h>, <stdio.h>, and <string.h>. The first lines after the include statements are definitions in 

order to calculate the proper baudrate for UART communications. After that, lines 21-25 is the 

function definition for ms_delay, which works to delay the processor for N number of 

milliseconds passed into the function. The next function is defined from lines 27-49, and is 

written following Microchip’s sample code for the dsPIC33FJ256GP710A. ADC_Read10bit 

returns the value of the ADC from the referenced ADC channel (I pass in channel 1, which refers 

to AN1 or analog pin 24). The next section of code (lines 51-74) follow the Microchip practices 

for utilizing the DSP library for Fast Fourier Transform calculations. It contains defines for the 

FFT buffer arrays, with fractcomplex being a struct with two entries (real and imaginary). Other 

variables are initialized that will later be used for the frequency calculations. Lines 76-158 

contains all of the main function. Lines 79-93 are oscillator configurations such that the internal 
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oscillator runs at 80 Mhz, or 40 MIPS (Million Instructions per Second). Lines 95-107 contain 

the ADC initialization. Lines 109-124 contain the UART initialization. Lines 126-158 contain 

the sampling of the ADC and the FFT calculations. This is only a first revision for a proof of 

concept, and the next steps include modifying the ADC sampling to increase the sampling rate. 

The following is a snapshot of the variables window during the debugging phase. During 

debugging, a function generator with a 100 Hz square wave (0-3 V, peak-to-peak) is input into 

analog pin 24 for the ADC to read. As you can see, the value for peakFrequency is 0x00000063 

(HEX), which in decimal is 99. This corresponds closely to the input of 100 Hz. The reason why 

they are not identical is due to the resolution of the FFT bins.  

Figure 39 shows the watch window during program operation as well as the addresses of output 

variables. 

 

Figure 39: Watch windows during program operation 
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Header file fft.h: 

Figure 40 shows Header file fft.h 

 

Figure 40: Header file fft.h 

Description of fft.h: 

This file contains constants for the FFT calculations.  
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C file: twiddle_factors.c 
 
Figure 41 shows C file: twiddle_factors.c 1 

 

Figure 41: C file: twiddle_factors.c 1 
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Figure 42 shows a continuation of C file: twiddle_factors.c  

 

Figure 42: Continuation of C file: twiddle_factors.c   
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Figure 43 shows a continuation of C file: twiddle_factors.c 2 

 

Figure 43: Continuation of C file: twiddle_factors.c 2  
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Figure 44 shows a continuation of C file: twiddle_factors.c 3 

 

Figure 44: Continuation of C file: twiddle_factors.c 3 
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Figure 45 shows a continuation of C file: twiddle_factors.c 4 

 

Figure 45: Continuation of C file: twiddle_factors.c 4  
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Figure 46 shows a continuation of C file: twiddle_factors.c 5 

 

Figure 46: Continuation of C file: twiddle_factors.c 5 

Figure 47 shows a continuation of C file: twiddle_factors.c 6 

 

Figure 47: Continuation of C file: twiddle_factors.c 6 

Description of twiddle_factors.c: 
This file contains all the hardcoded twiddle facts needed for the FFT calculations. This is stored 
in memory and included in the main file. 
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TCP index.js  
Figure 48 shows TCP index.js 

 

Figure 48: TCP index.js 
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Figure 49 shows a continuation of TCP index.js 

 

Figure 49: Continuation of TCP index.js  
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Figure 50 shows a continuation of TCP index.js 2 

 

Figure 50: Continuation of TCP index.js 2 

Description of TCP index.js: 
 
The code above acts as 2 nodeJS servers using the express and net libraries. Clients that connect 
to the server have the ability to send data, all data sent should be a midi object in json format 
followed by a newline character. Once data is sent to the server, it will calculate how large the 
data is and prepend the integer to the message and then sends the data to all other connected 
clients. If an error occurs from a client disconnecting at an unexpended time, the server will 
ignore the exception and simply stop sending the disconnected client packets.  
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Figure 51 shows Example Program output while server is running 
 

 
Figure 51 : Example Program output  

 
Server printing the incoming byte arrays and decoding messages is seen in above in figure 48 
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VMA.py 
Figure 52 shows VMA.py 

 

Figure 52: VMA.py 
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Figure 53 shows a continuation of VMA.py 

 

Figure 53: Continuation of VMA.py  

87 



 

 

Figure 54 shows a continuation of VMA.py 

 

Figure 54 : Continuation of VMA.py 
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Description of VMA.py: 
This program launches a gui that will ask the user to select a midi device. After a midi device is 
selected, the gui will close and connect to the nodejs server. It then will listen to the selected 
midi device and send all midi packets to the server through TCP.  
 
Figure 55 shows Example program output 2 

 

 
 

Figure 55: Example program output 2 
The user is able to select a desired plugged in midi device. 
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Figure 56 shows Midi packets formulation  

 

 
Figure 56: Midi packets formulation  

Once a device is selected, the program will connect to the server and start formulating midi 
packets and send them over the network. The example output midi messages here.  
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Figure 57 shows client.cs, The unity runtime script for tcp connection handling 

 

Figure 57: client.cs  
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Figure 58 shows client.cs continued  

 

Figure 58: client.cs continued 
 
 
 

92 



 

Figure 59 shows client.cs continued 

 

Figure 59: client.cs continued 
 
 

93 



 

Figure 60 shows client.cs continued 

 

Figure 60: client.cs continued   
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Figure 61 shows client.cs continued 

 

Figure 61: client.cs continued   
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Figure 62 shows client.cs continued 

 

Figure 62: client.cs continued  
 

The file above, titled client.cs, is the routine that represents the network module for the 
Microsoft Hololens. It is written in the C# programming language and is intended to be used in 
conjunction with Unity to allow the HoloLens to connect to a Node.JS server and subscribe to 
notes played by a user. The Start() function initializes the TCP socket connection to the server 
using a provided IP Address. The Update() function checks to see if data is available on the TCP 
socket and if data is available, it determines the size of the message available and reads that 
many bytes from the stream. The ReadNote() function takes the bytes read in and converts them 
to a UTF8-encoded string that is the JSON string representing the MIDI message forwarded by 
the Node.JS server. It then deserializes the JSON into a C# object type. The deserialized JSON 
string is then used to play a sound representing the note received.  
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Figure 63 shows DisplayMIDI.cs 

 

Figure 63: DisplayMIDI.cs   
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Figure 64 shows DisplayMIDI.cs continued  

Figure 64: DisplayMIDI.cs continued  
 
Description of DisplayMIDI.cs: 
 

The file above, titled DisplayMIDI.cs, contains the code for the note visualization 
module to be used on the Microsoft Hololens. It is written in the C# programming language. The 
module starts by opening up a filestream to the desired MIDI file to be visualized and then 
passes that filestream to the project’s MIDI parsing module in order to retrieve a C# object 
representing the notes contained in the desired file. Once the MIDI file object is retrieved, the 
module iterates over every note of the file, spawning Unity game objects representing each note. 
The module determines the horizontal position of the game objects based on their note number, 
and it determines the vertical position of the game objects based on the differences between the 
notes in time. A dictionary is used to store the time at which each note has an “on” press so that 
when an “off” press happens the difference in time can be calculated.  
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Figure 65 shows MidiFile.cs 

 

Figure 65: MidiFile.cs  
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Figure 66 shows a continuation of MidiFile.cs 

Figure 66: Continuation of MidiFile.cs 
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Description of MIDIFile.cs 
 

The file above, titled MIDIFile.cs, is the code that implements the MIDI file parsing 
module to be used by the Microsoft Hololens. The module initially opens up a Binary Reader to 
read byte-by-byte the MIDI file passed into it. The module then reads in the various 
characteristics of the file contained in its header section, including the format of the file, the 
number of tracks contained in it and the time division of the tracks contained in it. Once the 
header has been completely read in, the module reads in the file track-by-track and adds each 
track to a track array.  
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Figure 67 shows MidiTrack.cs 

 

Figure 67: MidiTrack.cs  
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Figure 68 shows continuation of MidiTrack.cs 

 

Figure 68:Continuation of MidiTrack.cs  
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Figure 69 shows continuation of MidiTrack.cs 2 

 

Figure 69: Continuation of MidiTrack.cs 2  
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Figure 70 shows continuation of MidiTrack.cs 3 

 

Figure 70:Continuation of MidiTrack.cs 3  
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Figure 71 shows continuation of MidiTrack.cs 4 

Figure 71: Continuation of MidiTrack.cs 4 
 
Description of MidiTrack.cs  

The file above, titled MIDITrack.cs, contains the code for the MIDI track parsing 
module to be used by the Microsoft Hololens. It continuously reads in a delta time byte array 
followed by an event identifier byte. The module uses the identifier byte to determine whether 
the event following it is a Meta, Sysex, or MIDI event and then reads in the event. In any case 
where the event read is not specifically a Meta “End of Track” event or a MIDI “Note On” or 
“Note Off” event, the event is simply logged to the program output for debugging purposes. In 
the case where the event read is a Meta “End of Track” event, the parsing of the current track is 
ended and the current track object is added to the MIDI File object associated with it. When a 
MIDI “Note On” or “Note Off” event is read, a MIDI Note object is added to the MIDI Note 
object array attached to the current track object.  
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Figure 72 shows MidiNote.cs 

Figure 72: MidiNote.cs 
Description of MidiNote.cs 
 

The file above, titled MIDINote.cs, is the C# class code representing the MIDI notes 
read in by the MIDI track class. It contains a note number that corresponds to the key to be 
pressed on the piano, a velocity number that represents how hard the piano key should be 
pressed, a type number that identifies whether the piano key should be pressed or released, and a 
delta time number representing how long to wait before the piano key is pressed.  
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Level 0 block diagram w/ functional requirements table LF BG DK KV 
 

 
Figure 73: Level 0 block diagram (entire system) 

 
Table 7: Functional Requirements Table 1 

 

Module Music Recording Module 

Designers Larry Fritz, Bridger L. Garman, David Klett, 
Kyle Vasulka  

Inputs Power: 120 volts AC rms, 60Hz. 
Audio input signal: ?V peak. 
Control digital input signal: ?V peak 
Programming port: USB; 
User inputs 

Outputs WiFi 802.11ac OR Bluetooth 4.2: Web Server 
Audio Jack: ?V peak value 

Description Processes the signal from the instrument. 
Once processed, an algorithm will use music 
theory to suggest notes, chords, and the 
general key that would sound good(as 
determined by music theory). 
This information will be sent to and displayed 
on the AR headset. 
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Table 8: Functional Requirements Table 2 
 

Module Alternate Reality Software 

Designers Larry Fritz, David Klett, Kyle Vasulka  

Inputs WiFi 802.11ac OR Bluetooth 4.2: Tracking 
data 
User inputs 

Outputs WiFi 802.11ac OR Bluetooth 4.2: Control 
signal 
AR Display 

Description Analyze data received from music module 
and display information to the user using 
software analytics. 
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Figure 74: Mechanical sketch of system KV 
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6. Team Information DK 

Table 9: Team Information 

Name Major Embedded? 

Larry Fritz CpE Yes 

Bridger Garman EE No 

David Klett CpE Yes 

Kyle Vasulka EE/CpE Yes 
 

7. Parts List  

Figure 75 shows the Build of materials for the Visual Music Assistant 

 
Figure 75: Build of material list 
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Figure 76 shows the cost of the Build of materials for the Visual Music Assistant 

 
Figure 76: Cost of Build of material list 
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8. Project Schedules LF BG DK KV 

 

Figure 77: Gantt Chart 
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Figure 78: Updated Gantt chart (11/26/29, put in by David) 
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Conclusion KV 

This product will be used by someone who wants to learn how to play a keyboard. The 

user will wear an AR headset and sit in front of a keyboard. They will go through a calibration 

process to tell the AR headset where the keyboard is located. The user can then take lessons from 

the product with lit up keys that indicate what the user should play. Alternatively, the user can 

play freely and have the product suggest notes and chords that would sound good to play as 

determined by the music theory algorithm.  The final demonstration will include a keyboard 

setup and an AR headset. 
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