
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2020

Visual Music Assistant Visual Music Assistant

David Klett
dgk10@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Art Education Commons, Computer Engineering Commons, and the Signal Processing

Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Klett, David, "Visual Music Assistant" (2020). Williams Honors College, Honors Research Projects.
1039.
https://ideaexchange.uakron.edu/honors_research_projects/1039

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1149?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1039
https://ideaexchange.uakron.edu/honors_research_projects/1039?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1039&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Visual Music Assistant
Final Design Report (Fall Semester)

Larry Fritz
Bridger Garman

David Klett
Kyle Vasulka

Dr. R. J. Veillette

November 27, 2019

Table of Contents

Abstract 5

1. Problem Statement 6
1.1 Need LF BG DK KV 6
1.2 Objective LF BG DK KV 7
1.3 Background LF BG DK KV 7

2. Engineering Analysis 14
2.1 Circuits BG KV 14
2.2 Electronics BG 15

2.2.1 Touch Screen BG 15
2.2.2 ADC BG KV 16
2.2.3 Mic DK 17
2.2.4 Diff amplifier BG 17

2.3 Signal Processing KV LF BG 17
2.4 Communications KV DK 30
2.5 Computer Networks KV 32
2.6 Embedded Systems DK 36
2.7 Raspberry Pi LF 37
2.8 Software Memory Usage LF KV 38
2.9 Software Speed Analysis DK KV LF 40

2.9.1 DSP DK 40
2.9.2 Raspberry Pi LF 41
2.9.3 HoloLens KV 42

2.10 Storage Capacity LF 42

3. Engineering Requirements Specification BG 44

4. Engineering Standards Specification BG, DK 46

5. Accepted Technical Design LF BG DK KV 47
5.1 Hardware Design: BG 47
5.2 Software Design: LF KV DK 55

6. Team Information DK 111

7. Parts List 111

8. Project Schedules LF BG DK KV 113

References 116

1

List of Figures ii
Figure 1: Power Block Diagram 14
Figure 2: ADC Input voltage/Output Discrete Value 16
Figure 3: Python code making a summation of sinusoids of various frequencies 19
Figure 4: Summation of sinusoids real and imaginary 20
Figure 5: Frequency real and imaginary 21
Figure 6: Frequency real and imaginary 22
Figure 7: Code for summation of random frequency sin waves 23
Figure 8: Random frequency sinusoids in the time domain 24
Figure 9: Code to output guessed frequencies 25
Figure 10: Guessed output frequencies and actual frequencies 26
Figure 11: Signal Processing Flow Diagram. 28
Figure 12: Server client network configuration 33
Figure 13: Peer to peer configuration 1 34
Figure 14: Peer to peer configuration 2 34
Figure 15: Discrete Fourier transform (Wikipedia, 2019) 40
Figure 16: Level 0 Hardware Diagram 47
Figure 17: Level 1 Diagram 47
Figure 18: Level 2 Hardware Diagram 48
Figure 19: Hardware level 3 Diagram 49
Figure 20: Operational Amplifier Circuit and Waveform 51
Figure 21: Operational Amplifier Simulated Waveform 52
Figure 22: Operational Amplifier Symbol Schematic 53
Figure 23: Voltage Regulator Circuit 54
Figure 24: Software Level 0 Diagram 55
Figure 25: Software Level 1 Diagram 56
Figure 26: DSP Software Level 2 Diagram 57
Figure 27: HoloLens Software Level 2 Diagram 59
Figure 28: HoloLens Score Loop Software Level 3 Diagram 61
Figure 29: HoloLens MIDI File Level 3 Diagram 63
Figure 30: Raspberry Pi Level 2 Diagram 64
Figure 31: config.h 66
Figure 32: Header file config.h continued 67
Figure 33: main.c 68
Figure 34: Continuation of Main Program file: main.c 69
Figure 35: Continuation of Main Program file: main.c 2 70
Figure 36: Continuation of Main Program file: main.c 3 71
Figure 37:Continuation of Main Program file: main.c 4 72
Figure 38: Continuation of Main Program file: main.c 5 73

2

Figure 39: Watch windows during program operation 74
Figure 40: Header file fft.h 75
Figure 41: C file: twiddle_factors.c 1 76
Figure 42: Continuation of C file: twiddle_factors.c 77
Figure 43: Continuation of C file: twiddle_factors.c 2 78
Figure 44: Continuation of C file: twiddle_factors.c 3 79
Figure 45: Continuation of C file: twiddle_factors.c 4 80
Figure 46: Continuation of C file: twiddle_factors.c 5 81
Figure 47: Continuation of C file: twiddle_factors.c 6 81
Figure 48: TCP index.js 82
Figure 49: Continuation of TCP index.js 83
Figure 50: Continuation of TCP index.js 2 84
Figure 51: Example Program output 85
Figure 52: VMA.py 86
Figure 53: Continuation of VMA.py 87
Figure 54: Continuation of VMA.py 88
Figure 55: Example program output 2 89
Figure 56: Midi packets formulation 90
Figure 57: client.cs 91
Figure 58: client.cs continued 92
Figure 59: client.cs continued 93
Figure 60: client.cs continued 94
Figure 61: client.cs continued 95
Figure 62: client.cs continued 96
Figure 63: DisplayMIDI.cs 97
Figure 64: DisplayMIDI.cs continued 98
Figure 65: MidiFile.cs 99
Figure 66: Continuation of MidiFile.cs 100
Figure 67: MidiTrack.cs 102
Figure 68: Continuation of MidiTrack.cs 103
Figure 69: Continuation of MidiTrack.cs 2 104
Figure 70: Continuation of MidiTrack.cs 3 105
Figure 71: Continuation of MidiTrack.cs 4 106
Figure 72: MidiNote.cs 107
Figure 73: Level 0 block diagram (entire system) 108
Figure 74: Mechanical sketch of system KV 110
Figure 75: Build of material list 111
Figure 76: Cost of Build of material list 112
Figure 77: Gantt Chart 113

3

Figure 78: Updated Gantt chart (11/26/29, put in by David) 114
List of Tables iii
Table 1: List of Marketing Requirements 13
Table 2: Frequency Spacings Given the Fourier Transform Rate 27
Table 3: Repeats Required to Keep Frequency Spacing 29
Table 4: Music Data Types and Sizes 30
Table 5: Sizes of Python Data Types 38
Table 6: Design Requirement Specifications 44,45,46
Table 6: Safety standards and protocols 46
Table 7: Functional Requirements Table 1 108
Table 8: Functional Requirements Table 2 109
Table 9: Team Information
111

4

Abstract

Visual Music Assistant’s (VMA) aim is to accelerate learning, increase accuracy of performance,

and stimulate user recollection by teaching users how to play piano through modern

technologies and techniques using augmented reality and real time feedback.

The VMA project teaches piano in a music lesson format. The VMA takes the form of a portable

box connected to a midi piano and a Microsoft HoloLens. The VMA displays to the user a visual

representation of a midi song file. A user played audio input is observed by a microphone and

an A/D converter; The keynote frequencies played are then determined using a fourier

transform algorithm and transposed into midi. The VMA streams notes that the user plays to the

hololens and is scored against the midi song file notes. The VMA generates feedback scoring

the users performance. The VMA scoring algorithm should increase the users’ learning,

accuracy, and recollection of a new music composition. By creating a new outlet to learn a

musical instrument, the Visual Music Assistant will help engage individuals who have an interest

in learning a new instrument by using the exciting field of augmented reality which adds a new

channel to experience the world. By taking advantage of AR, this system will help enable the

next generation of musicians and creatives.

Key Features:

- Augmented reality display of midi songs/notes
- Near real time scoring feedback
- Portabile box that works with midi and non midi pianos

5

1. Problem Statement

1.1 Need LF BG DK KV

For the last century, technology and music have particularly coexisted as two fields that

lead to innovation and growth. Technology has lead to new ways of experiencing music, with

also music itself acting as an incentive to develop better advances in technology, from signal

processing to data representation in CD’s.

One area in which advances are being made is the field of augmented reality,

implementations such advances can be made to address the problem of learning a musical

instrument, particularly playing piano. With growing costs of individual music lessons to

accessibility of instructors, learning a new instrument can be challenging.

Exposing children to music at an early age has proven to have positive results: from

enhancing their understanding to increasing self-esteem and motivation. Unfortunately, current

participation in music learning is on the decline (ChildTrends). Technology use is increasing at a

rapid rate. Also, there are many cases of individuals that want to learn a musical instrument but

struggle with finding instructors that are available outside normal work hours. Individuals

seeking to progress in playing a musical instrument may find it difficult when progression is not

facilitated by an instructor. A device that logs performance can help to facilitate the progression

of learning an instrument in the absence of an instructor. The cost of music lessons and the

scarcity of local instructors is increasing (Hart). There is a need for an intuitive way for

individuals to practice and explore music while increasing the understanding of what is being

practiced.

6

1.2 Objective LF BG DK KV

Learning a new instrument can be quite an undertaking. Aspiring musicians have to

navigate through music teachers that can accommodate the musician's schedule. There is a

learning curve that aspiring musicians will encounter. Utilizing the new technology of

augmented reality, this project aims to provide a gateway for learning instruments. There are

many positive additions that the proposed device can offer including intuitive UI telling the user

what notes to play, tracking individual user progress, real-time feedback that evaluates user

input, and turns the learning process into a game to increase attention span and interest. For

specified notes to play, the user interface will highlight which notes are to be played via the

augmented reality headset. The system will know which notes to highlight by initial user

calibration. The user calibration will include prompting the user to select the furthest notes on the

keyboard.

1.3 Background LF BG DK KV

With today’s technology, there is potential for an easier way to interface with musical

instruments. This project aims to utilize augmented reality (AR) to innovate the music learning

process. With the recent emergence of augmented reality technology, it has become possible to

teach musical instruments in a modern learning style. The basic theory for the project is to utilize

a signal sampling device (later denoted as music module) that converts the input of an instrument

to a MIDI signal and transmits the signal to an AR headset. The music module will record and

compare the played notes against what the user should be playing. The music module will then

provide intuitive insight into the performance of the musician. Based on the note or chord that is

played, visual cues will be created on the AR headset for the user to play along with. Examples

7

of cues that the AR system could implement would be the ability to highlight sections of a

keyboard denoting a musical key to play in, label notes on a keyboard, provide a Synthesia-like

view (Synthesia LLC), and display relevant chords for the user to choose from to play next. This

theoretical system is both a new approach for beginners/novices to learn an instrument, as well as

a new way to experiment with music theory.

Correlation between education and AR has existed throughout the technology’s

development (Rampolla, Kipper). Utilizing augmented reality while learning has been a focus for

several researchers; specifically in developing an “educational framework with gamification to

assist the learning process of children with intellectual disabilities” (Colpani/Homem). The use

case that the researchers focused on was object identification and language learning, but this can

be extended to include music learning. Another study integrated augmented reality technology

and a game-based learning model to teach children English. The group observed in the study

exhibited positive results that exceed learning without the use of AR (Chen).

Traditionally when learning a musical instrument an aspiring musician will take music

lessons. Learning a new instrument can be done by hiring an instructor, by watching YouTube

videos, by playing regularly without assistance, or by buying services like Synthesia (Synthesia

LLC). Synthesia is a music playing software that runs on a computer and tells the user what note

is pressed on a keyboard. The advancement of technology has promoted new ideas and

facilitated innovations which make learning an instrument in new ways possible.

Currently, there are applications that sample what the user is playing through a

microphone on the user's cellphone and provides feedback to the user. Yousician (Yousician)

allows the user to follow a set chord progression while the app uses the input from the

8

musician’s cell phone microphone to detect the notes that are being played. The notes that are

observed by the app are then referenced to the set chord that was determined. The notes that are

missing or played incorrectly are then visually addressed on the cellphone screen. Instant

Musician is an application that displays visual cues in the form of a Synthesia- like (Synthesia

LLC) key UI projected onto a piano through an AR phone device.

The limitations of current systems include requiring prior experience with the instrument

to be utilized effectively. This requirement is partly due to the distance between the content

displayed on the computer screen and the physical location of the instrument. A user with no

prior experience with a musical instrument may struggle to translate note symbol to the physical

one. The introduction of augmented reality to this scenario removes the requirement of prior

experience by overlaying the note symbol (in the form of a virtual note) on top of the physical

instrument. A current teaching style has the user look at the teacher and imitate the progression

of notes played by the instructor. With the proposed design, the user will see the highlighted

keyboard keys that should be pressed. The user will be able to easily follow along with the music

piece after seeing these highlighted keyboard keys. Unlike current music lessons, where the

aspiring musician meets with an instructor to learn the fundamentals of music theory, the

proposed system will provide the fundamentals of music theory and suggest what notes could

potentially be played next that are in the same key.

There are current limitations in technology surrounding chord/note recognition and the

technology surrounding displaying chord/notes. These include the inability for current

applications to provide recognition of chords/notes in a noisy environment, in scenarios where

the instrument is distorted from a clean sound, and in situations where the chord/notes produced

9

are of low volume. Displaying chords/notes is limited by the device that the application is

running on. There are already augmented reality music applications for cell phones like Instant

Musician. AR is also not considered to be widespread in usage. (Colpani/Homem).

Limitations of the system would include the data transfer speed and latency between the

headset and the frequency sampling device. These specifications would be dependent on the

WiFi implementation included in each device. The IEEE 802.11ac WiFi standard is limited to a

theoretical 500 megabits/second link. (Narayan) Another limitation of the proposed system is the

amount of reference material in regards to developing augmented reality applications. There are

very few sources to learn best practices for the development of augmented reality products.

These technologies are still in the “stage of practical exploration.” (Colpani/Homem)

For processing musical notes played on the keyboard, a Digital signal processing (DSP)

chip will be used with an Analog to Digital converter (ADC) to create a Musical Instrument

Digital Interface (MIDI) technical standard protocol. MIDI is a widely used standard across the

music and audio industry (McGuire). The module will also have MIDI pass though for MIDI out

compatible devices.

There is a similarity in how the AR headset will display musical notes in comparison to

existing systems. Both existing technologies and the proposed system can be used as a learning

tool. The market for linking new technologies to music education is a growing industry, with

applications such as Yousician (Yousician) and Synthesia (Synthesia LLC) currently being

introduced within the last ten years.

One difference of the proposed system compared to current products is the utilization of

an augmented reality headset rather than a phone user interface. Another difference to the

10

proposed systems design is to process the frequencies of the notes to MIDI, and then display

these notes on the musician’s headset superimposing the notes on the keys of the keyboard and

display the names of the keys while the musician plays. Current technologies only display

current and future progressions of notes to be played. The system will dynamically process the

notes being played to evaluate the accuracy and suggest additional ways to resolve chord/notes

being played. This will potentially enhance improvisation as the musician explores the

instrument. The proposed system will dynamically slow down the pace of hard measures in a

music composition being played to allow the user to build confidence in the piece at a slower

pace. Rather than just playing a preset video stream, the music module will adapt to a musician’s

weaknesses to improve the performance of selected music pieces. There are augmented reality

applications on phones and tablets designed for pianos that parallel the proposed system in

certain ways. These applications prompt the user to play a certain note, with the musical notes

being represented as falling boxes that are aligned with the musical notes of the keyboard. The

difference between the proposed system and these applications is that the applications force users

to view content through the screen of a mobile device. Such a method provides a limited use

case, for the user must manually hold the phone/tablet between themselves and the keyboard.

This allows only one hand free for playing the keyboard. An AR headset would provide a

hands-free user-friendly interface for viewing the notes.

There are patented technologies that utilize augmented reality and music performance,

although no technologies are currently in the market that accomplishes music learning on an AR

headset. A patent titled “Computer implemented method for providing augmented reality (AR)

function regarding music track.” goes into detail about receiving input information from a music

11

track and an instrument. The patent describes a process that determines attribute information of

the music track based on the received input information. It receives the real-time content of

audiovisual input signals using at least one capture device. It then generates visual information

corresponding to a view regarding at least one of the user’s limbs and an instrument. The data

displayed to the user is comprised of AR instructions based on the attribute information of the

music track. The patent is relevant to the proposed device because the device will also use (AR)

to display musical information to the user.

In another patent titled “System for estimating user’s skill in playing a musical

instrument and determining virtual exercises thereof” the process for determining what virtual

exercises a user should be given was discussed. This included the process concerning the

functionality of processing entities and memory entities for processing and storing data. The

system is configured to obtain musically notated data, and analyze it to assign the musical piece

to which such data pertains a number of characteristics with scalar values to express the

difficulty of a music piece. It provides the user with a number of musical pieces with known

difficulty characteristics as virtual exercises to be completed by playing an instrument. The user's

performance data is obtained for completed virtual exercises. The module will then analyze the

user's performance data to determine and assign the user with a weight pertaining to the skill

characteristics values in accordance with the difficulty values of the completed musical pieces

and can suggest a musical piece for the user as a virtual exercise. This patent is relevant because

the proposed device will also be doing live analysis on how the user is playing and

correcting/instructing in near real time.

12

1.4 List of marketing requirements LF BG DK KV

Table 1: List of marketing requirements

1. The system will identify which note and/or chords are being played while the user is
playing.

2. The system will provide an intuitive way to learn piano by showing notes and music
theory concepts.

3. The system will be able to interface with an 88 key piano.

4. The system will be small and portable.

5. The system will interpret audio output from the piano.

6. The system will implement a scoring algorithm to compare user input to a determined
musical composition

13

2. Engineering Analysis

2.1 Circuits BG KV

Power BG

To gain an understanding of the amount of power that is required for the Visual Music

Assistant the complete system module needs to be analyzed individually in terms of power

consumption. An approximation of the values for the components that make up the module has

been conservatively assumed in deciding the required power to drive the module. The below

calculations are the power requirements of each component of the visual music assistant’s

(VMA) compute module and audio possessing board components. Figure 1 shows the Power

block diagram and the necessary steps needed to properly implement power for Visual Music

Assistant module.

Figure 1: Power Block Diagram

14

The Power Supply will be a small power supply that has a power output of 1000 mW with a

voltage discharge of 5V and can supply at least 2A. The Raspberry Pi 4 needs to be sourced with

5V, and the recommended input current is 2A. The circuit board protection needs to be able to

protect against voltage spikes at/higher than 5.5V and needs to filter noise out from the

Raspberry Pi 5V rail. The Voltage regulator needs to produce 3.3V from 5V while also

introducing little to no noise to the 3.3V power rail. The differential amplifier needs to be able to

produce a signal between ~ 0V and 3.3V off of a 0 to 5v reference voltage. The ADC needs to

operate at a nominal 3.3V. The DSP needs to operate at a nominal 3.3V. The current draw of

Raspberry Pi and components on the audio processing board will be less than 3A.

The Total Power Draw from the Raspberry Pi and Digital signaling board, including the DSP,

the ADC, and the differential amplifier circuit are shown below.

● Nominal VDD input: 3.0 to 3.6V; typical voltage: 3.3V; typical current: 55µA

● ADC typical current draw: 200µA

● Typical Raspberry Pi4 current draw: 2.5A

otal current 2.5A 200µA 5µA 2.500255 AT = + + 5 =

So a power supply with 5V in supplying at less 2.6A will meet the maximum power needs.

2.2 Electronics BG

2.2.1 Touch Screen BG

The user will supply login credentials through the VMA touchscreen to connect to a wifi

network. This can be accomplished by creating a UI on the device that queries the user any

necessary information.

(this will be powered by the Raspberry Pi)

15

2.2.2 ADC BG KV

The system will require an analog to digital converter in order to read in the analog audio

signals and transform the input into the necessary digital bits for DSP calculations. The main

properties of interest that affect the scope of the system are sampling rate, resolution, power

constraints, and latency. The sampling rate should be able to cover the entire range of human

hearing (20 - 20,000 Hz), therefore it should be a value higher than the Nyquist Frequency, or

double 20,000 Hz. A common sampling rate for audio signal processing is 44.1 kHz, thus the

ADC should be capable of a sampling rate of 44.1 kHz or higher. The resolution of the ADC

(determined by the number of quantization levels) should have a minimum of 16 bits (2^16),

which is a common value for audio applications (e.g. CD quality audio uses 16-bit samples). Due

to the ADC’s reliance on power through the Raspberry Pi, the ADC needs to operate at a

nominal 3.3V. Concerning latency, the time between back-to-back samples is a common

approximation, thus the ADC’s latency will be(1/44.1 kHz) sec or less. This latency, although

small, contributes to the overall latency of the system.

Figure 2: ADC Input voltage/Output Discrete Value

16

2.2.3 Mic DK

The system needs to have the ability to interpret audio output from the piano. In order to

accomplish this, the system will need a microphone. The microphone will have to be highly

sensitive in order to detect changing frequencies of sound produced by each of the piano’s keys.

It is known that there is a direct correlation between the impedance of a microphone and the

interference associated with a microphone. Among those interferences are electromagnetic and

radio interference, which worsens the SNR (signal-to-noise ratio) of the signal, thereby

decreasing the audio signal’s quality. Therefore, in order to obtain the best input signal, the

microphone of the system should have low impedance (generally, low impedance when

pertaining to microphones is 600 Ohms and lower).

2.2.4 Diff amplifier BG

A differential amplifier stage will be used to take the difference of the microphone signal

and produce a signal with very low added distortion, low noise and with good circuit driving

capability. Needs to have an input resistance that is 10^12 Ω or high to keep the microphone

audio signal from being altered.

2.3 Signal Processing KV LF BG

A microphone will need to be used to transduce audio signals into digital representation

of the notes that the users has played on the piano. The microphone will be sampled to take the

Fourier transform and the resulting notes interrupted. The digital signal processor needs to

sample audio signals ranging in frequency from 20Hz to 20KHz in order to cover the entire

spectrum of human hearing ability. The Nyquist rate of the input signal will define how fast the

17

sampling rate needs to be in order to capture the full content of the input signal without F s

distortion.

Nyquist Rate: where B is bandwidth of input signalBF s ≥ 2

Here, the Nyquist Rate is 2*20KHz => 40KHzF s ≥ F s ≥

The Nyquist frequency is the minimum rate at which a signal can be sampled without

introducing errors, which is twice the highest frequency present in the signal.

The average sampling rate of an mp4 file is 44100hz. Matching this encompasses the 40Khz

Nyquist Rate required for human hearing. The Discrete Fourier transform is able to convert the

time signal into a list of frequencies present at any given point in time. Sensing an 8th note in a

song correlates to calculating the Fourier transform described above 8 times a second (8hz). The

number of samples needed to take the fourier transform with the following formula:

Sample Rate / FourierTransform Rate = Number of samples

 5512.5 second
44100 samples

* 1 second
8 F ourier transforms = Samples

F ourier transform

18

The discrete fourier transform will have a frequency spacing of:

 8hzF F T size
Sample Rate = 5512.5

44100hz =

Figure 3 shows fourier transform programmatic analysis:

Figure 3: Python code making a summation of sinusoids of various frequencies

19

Figure 4 shows the Program output of figure 3 outputs the summation of sinusoids and the

fourier transform plotted on real and imaginary axis.

Figure 4: Summation of sinusoids real and imaginary

20

Figure 5 shows a continuation of the plotting of the fourier transform plotted at different

frequencies on the real and imaginary axis.

Figure 5: Frequency real and imaginary

21

Figure 6 shows a continuation of the plotting of the fourier transform plotted at different

frequencies on the real and imaginary axis.

Figure 6: Frequency real and imaginary

22

Figure 7 shows python code that takes random frequencies and makes a signal that is the

summation of their sinusoids with the intent of being able to distinguish the frequencies without

knowing what they are.

Figure 7 :Code for summation of random frequency sin waves

23

Figure 8 shows a signal that is the summation of the random frequency sinusoids in the time

domain.

Figure 8: Random frequency sinusoids in the time domain

24

Figure 9 shows the fourier transform analysis as well as the quesses associated with a frequency

that is over the threshold in the fourier transform.

Figure 9: Code to output guessed frequencies

25

Figure 10 shows the guessed outputs with respect to the actual frequencies.

Figure 10: Guessed output frequencies and actual frequencies

This program creates a summation of sinusoids of random frequencies and prints them in

imaginary, and real spaces. Using this created signal, taking its fourier transform and compare

each frequency to a set threshold value. It is possible to then print any frequency that is over the

threshold value.

From this analysis it can be seen that the guesses(the printed frequencies over the threshold

values) were extremely close to the actual values of the summation of sinusoids. The fourier

transform is accurate enough for the application.

26

Table 2 shows a table of possible frequency spacings given a certain number of Fourier

transforms.

Table 2: Frequency spacings given the Fourier transform rate

Fourier transforms per sec. Samples per fft Frequency spacing

1 44100 1hz

1.6352 26969.17 1.6352hz

2 22050 2hz

3 14700 3hz

5 8820 5hz

8 5512.5 8hz

10 4410 10hz

20 2205 20hz

50 882 50hz

100 441 100hz

The data above shows that the number of Fourier transforms pers sec determines the sampling

resolution. It is also seen the shorter the time in which a Fourier transform is taken the larger the

frequency steps.

An average 88 key piano ranges from 27.5Hz to 4186hz, Looking at several changes in

frequencies() from one note to the next sequential note:fΔ

f | 27.5 9.1352| 1.6352hz Δ 1−>2 = |f 1 − f 2 = | − 2 =

f | 329.628 11.127| 18.501hz Δ 43−>44 = |f 43 − f 44 = | − 3 =

f | 3951 186| 235hzΔ 87−>88 = |f 87 − f 88 = | − 4 =

27

Note that f 1.6352hzΔ min =

An algorithm will be round the Fourier transform to the nearest note associated with a given

frequency. The discrete fourier transform will need to have a minimum frequency spacing of

.fΔ min

This means a sample size of:

ample SizeSample Rate
F requency Spacing = S

6969.1744100
1.6352 = 2 Samples

F ourier T ransform

The frequency can be padded with 0’s or repeated until the desired samples are reached.

 4.89 repeatsthe sample
desired sample = 5512.5

26929.17 =

Alternatively, the DFT of the last 26969 samples and do analysis of when notes came on vs left.

However, this will likely cause any one note to persist for 4.89 FFT’s

In summary, the sampling of the microphone is 44100hz,Taking the fourier transform of the

repeated signal 8 times/second, checking if a frequency is being played by comparing the value

to a threshold, and if so assign the frequency to the corresponding note.

Figure 11: Signal Processing Flow Diagram.

28

The fourier transform and the microphone sampling affect the latency of the system.

ttDelay = tDSP + transmit + tSBC + tnetwork + theadset

tDSP = tsample microphone + tf f t

Table 3 shows a table of possible latency added by fft given a certain number of Fourier

Transforms.

Table 3: Repeats Required to Keep Frequency Spacing

Fourier transforms
per sec.

Latency added by fft
(tsample microphone +t fft)

Frequency spacing Repeats needed to
have good spacing

1 1000ms 1hz 0

1.6352 611ms 1.6352hz 0

2 500ms 2hz 1.223

3 333.33ms 3hz 1.834

5 200ms 5hz 3.057

8 125ms 8hz 4.892

10 100ms 10hz 6.115

20 50ms 20hz 12.230

50 20ms 50hz 30.577

100 10ms 100hz 61.154

There is a tradeoff of taking the Fourier transform many times a second to detect 16th and 32nd
notes, and the spacing of the Fourier transform.

29

2.4 Communications KV DK

Music data will be sent from the DSP to the Raspberry pi SBC over UART. The main concerns

are the data transfer speed and the size of the data that is transmitting. The size of the data that

changes based on several factors. If the piano supports MIDI then it is possible to convey the

MIDI events from a piano directly to the raspberry pi through MIDI over USB.

If the piano has only sound, the VMA will sample the sound using the microphone, take the

fourier transform, and analyze what frequencies are present in a given sound sample; Also

known as music data.

Music data for this purposes is represented in either a list of frequency likelihoods, list of notes

currently being played/Change in notes being played, or midi signals. The music data will be

transmitted >= 8 times per second. The following table showcases the different file types and

sizes thereof.

Table 4: Music Data Types and Sizes

 Type Size

List of Frequency likelihoods Constant 8318 bytes

List of Frequencies above the
threshold

Variable 0 - 88 bytes

List of notes currently being
played

Variable 0 - 88 *3 bytes

List of Change in notes being
played

Variable 0 - 88 * 3 bytes

Binary Representation of
Frequencies above Threshold

Constant bitseil(Log (4186)) 13C 2 =

List of Midi Events Variable 3 bytes * 88 keys = 264 bytes

30

The size of the music data greatly changes based on the number of notes being played

The general maximum number of notes being played on a piano in a song at a given time is:

On average: 3 notes, Upper average:15 notes , Maximum: 88 notes.

In the worst case where the user plays all 88 notes simultaneously, the VMA will need to

transmit the equivalent amount of data over the wire.

List of frequencies played on a piano range from 27.5hz to 4186hz.

Number of integer frequencies stored in freqArr = ceiling(MaxPianoFreq-MinPianoFreq)

ceiling(4186-27.5) = 4159 integers

Total size of freqArr = size of integer * number of integers

2 bytes * 4159 = 8318 bytes

This is an array of 4159 integers.

Note that this contains information on how likely each frequency is currently playing. This is

 bits. Sending the midi signal equivalent of this is:eiling(log (4159))c 2

(Midi Event Size) x (Number Of Midi Events)

(3 bytes) x 88 keys = 264 bytes

Note that the average song does not involve the user pressing/releasing all of the notes

simultaneously.

Max throughput array of freq = 8318 bytes, Max throughput midi files = 264bytes

As such this communication should support the worst-case throughput.

UART baud rate for 115200 Baud (by definition), will give you 115200 * 5 = 576000 bits per

second.

31

UART Calculations:

In order to incorporate UART onto DSP Microchip products, two known factors are needed: (1)

Desired Baudrate, (2) the clock cycle speed of the device. With these given, the baud rate

generator register can be populated with the right value. The following calculation found from

Equation 3-1 in the UART chapter of the dsPIC33/PIC24 Family Reference Manual describes

this process:

For the system, the dsPIC33 microcontroller is currently running at 40 MIPS (million instructions

per second), thus = 40,000,000. For a commonly desired baud rate of 115200 (bytes/sec), F P

the UxBRG register (in this case, the VMA is using UART module 2, so U2BRG) can then be

calculated with the following:

 = = 20.7014... (round up due to register restrictions)2BRG U = F P
16 × Baud Rate − 1 40,000,000

16 × 115200 − 1 1 ≈ 2

2.5 Computer Networks KV

The networking goals include sending data in near real time from a compute module to the

augmented reality headset. Several techniques have been compared including UDP, TCP, and

HTTP with several network communication configurations. Three configurations are shown

below:

32

Figure 12: Server client network configuration

Figure 12 showcases the server-client network configuration model. Having a separate, dedicated

server that both devices talk to will always be connected to the internet. This would enable

issuing over the air updates and be connected to the internet, giving access to any api’s that the

VMA would use as well as enable cross communication with internal servers that can be used to

tweak user experience settings on the fly. A Server client network also increases the latency of

the information traveling between the visual music assistant and the AR headset.

An alternative to the server client network configuration is the peer to peer network

configuration. Due to the visual music assistant being connected to the AR headset on a local

network, the network latency is significantly reduced. One challenge introduced with the peer to

peer networking solution is it introduces IP configuration issues where the client and server do

not know where each other are on the network and will have to actively search for one another

when connecting to the network. Additionally, it can not be guaranteed that the system is

connected to the internet, making several quality of life features inaccessible.

33

Figure 13: Peer to peer configuration 1

Figure 14: Peer to peer configuration 2

Figure 13 and 14 show that the Server can be located on either the visual music assistant module

or the AR headset.

Additionally, sending information from one client to another client using UDP or TCP sockets is

possible. TCP sockets automatically have error checking and guarantees that all the packets will

arrive in order. UDP does not have error checking, and is much faster to transmit. This is

normally used in streaming applications. The project has needs in both technologies. It is also

possible to utilize HTTP requests to communicate information about state.

Network latency contributes heavily to the overall latency.

The overall latency is related to the perceived visual sound function of the human ear: An

average human can start to detect disconnect in sound when the latency of the expected sound

34

exceeds approximately 100ms. As such this is the target latency of both displaying information

to the user as well as playing sound for the user.

The total latency is

ttDelay = tDSP + transmit + tSBC + tnetwork + theadset

tRP i = tmidi conversion + tjson conversion + tencoding

ttheadset = audial/visual sync

 t t t tDelay = sample microphone + f f t + tmidi conversion + ttransmit + RP i + tnetwork + theadset

 00ms tDelay Goal ≤ 1

MIDI Message transfer protocol:

Each message sent should be a json midi object terminated by an end line character. This allows

for multiple packets to be packaged together and be sent over a network and still be

distinguishable.

35

2.6 Embedded Systems DK

The need for high throughput, ensured worst-case latency, and stability are all

characteristics of real-time systems, of which audio signal processing is a prime example. Digital

signal processors (DSP’s) are specifically designed and built to meet real-time system needs on

an embedded hardware level. The hardware of a DSP is optimized for high-speed computation in

several ways, generally including the following: multiply-accumulate hardware that is integrated

into the main data path of the DSP processor (allowing a single cycle for a multiply-accumulate

operation); two or more multiply-accumulate units (allowing several multiply-accumulate

operations to run in parallel); ability for parallel direct memory access (allowing multiple direct

accesses to memory in a single clock cycle); one or more address generation units, commonly

referred to as AGU’s (these units operate in the background, forming the addresses required for

operand accesses without using the main data path of the processor, thereby running in parallel

with the execution of arithmetic instructions); one of the address modes for an AGU generally

found is bit-reversed addressing (this increases the speed of certain FFT’s); repeat loop register

bits (bypassing the need to update a loop counter and wasting an instruction cycle, thereby

providing an increased for-next loop execution time). These hardware design optimizations make

a DSP a “great fit” (change later) for audio signal processing, which involve heavy use of the

Fast Fourier Transform and other fast operations.

The digital signal processor needs to be able to sample audio signals ranging in frequency from

20Hz to 20KHz in order to cover the entire spectrum of human hearing ability. The Nyquist rate

of the input signal will define how fast the sampling rate needs to be in order to capture the F s

full content of the input signal without distortion.

36

Nyquist Rate: where B is bandwidth of input signalBF s ≥ 2

Here, the Nyquist Rate is 2*20KHz => 40KHzF s ≥ F s ≥

The Nyquist frequency is the minimum rate at which a signal can be sampled without

introducing errors, which is twice the highest frequency present in the signal. Thus, all

calculations on the DSP need to be calculated within the timeframe of each sampling rate. In

other words, the system must be able to operate all calculations on a single sample in 0.000025

seconds (1/40k).

2.7 Raspberry Pi LF

The networking module on the Raspberry Pi will require at least three functions. The first

function polls a MIDI keyboard over USB and reads in MIDI events. This function will require

an object to represent the MIDI input stream, and an array to hold the data retrieved from the

stream. The second function converts an array containing MIDI data to a byte array containing

the JSON representation of the array with an endline character appended to it. It will require a

string to hold the JSON representation of the MIDI data, and a byte array to hold both the MIDI

data and the endline character. The third function will open up a socket connection to a server,

relay any MIDI data passed into it, and store any information received from the server. It will

require a socket object to represent the socket connection, a string to represent the server IP

address, an integer to represent the server port, an integer to represent the buffer size, and a byte

array to represent the data received from the server.

37

2.8 Software Memory Usage LF KV

Python Type Sizes

Table 5: Sizes of Python Data Types

Data Type Size (bytes)

String 49

Integer 28

1D Array 60 + (2 * Number of Elements)

2D+ Array 72 + (2 * Number of Elements)

Byte Array 56 + (2 * Number of Elements)

MIDI/Socket Object 104 bytes

Socket Received Data 1024 bytes

The memory usage of a program can be estimated by summing up the size of the

variables used in each function of the program. Below are the calculations for the sizes of

functions 1, 2 and 3 respectively (, ,)Sf1 Sf2 Sf3

1 IDI Object Size) 1 2D Array Minimum Size 2 rray Length))Sf1 = (* M + (* (+ * A

1 04 bytes) 1 72 bytes bytes))= (* 1 + (* (+ 2 * 4

= 184 bytesSf1

38

1 tring Size) 1 Byte Array Minimum Size 2 yte Array Length))Sf2 = (* S + (* (+ * B

1 9 bytes) 1 56 bytes 2 bytes))= (* 4 + (* (+ * 5

= 115 bytesSf2

1 ocket Size) 1 tring Size) 1 nteger Size)Sf3 = (* S + (* S + (* I +

1 Byte Array Minimum Size 2 yte Array Length))(* (+ * B

1 04 bytes) 1 9 bytes) 1 8 bytes)= (* 1 + (* 4 + (* 2 +

1 56 bytes 2 024 bytes))(* (+ * 1

= 2285 bytesSf3

Total memory usage of Python program = Sf1 + Sf2 + Sf1

= 184 bytes + 115 bytes + 2285 bytes

= 2584 bytes = 2.584 KB

39

2.9 Software Speed Analysis DK KV LF

2.9.1 DSP DK

 The digital signal processor needs a portion of the target latency time to collect samples

from the microphone, calculate the Fourier transform of the samples collected, calculate the

significant frequencies from the Fourier transform, and to convert the significant frequencies to

MIDI data.

tDSP = tsample microphone + tf f t

The number of operations of the Fast Fourier Transform can be estimated by , with Nlog NN 2

being the number of samples. The value of N for a 16-bit ADC (common in audio applications

would be or 65536 samples. Thus, the number of operations for an FFT algorithm operating 216

on 65536 samples is or 1.048 million instructions. In order to calculate the5536 log 655366 * 2

speed of the FFT on a DSP using 40 MIPS (million instructions per second), the execution time

formula is used:

The CPI of the Fourier Transform calculation is the average cycles per instruction. To find this,

the FFT equation from Figure 15 was analyzed:

Figure 15: Discrete Fourier transform (Wikipedia, 2019)

40

This formula includes the following operations: 1 multiply, 1 cosine, 2 divides, 1 subtraction,

and 1 sine operation. Assuming each sine and cosine operation is calculated using a 4th degree

Taylor series (Texas Instruments, 2002), a sine or cosine operation includes 4 additions, 4

divides, and 4 multiplications. Thus, there are a total of 9 multiplications, 10 divisions, and 9

additions/subtractions per FFT summation. Referencing the instruction architecture of a dSPIC33

(Microchip Technology, Inc, 2008), an addition/subtraction takes 1 clock cycle, a division takes

18 cycles, and a multiplication takes only 1 cycle (via MAC unit). The average CPI is thus:

= 7.07143 CPI (cycles per instruction). 9 + 10 + 9 instructions
9 1 + 10 18 + 9 1 cycles* * *

Plugging the average CPI calculated, the 1.048 million instructions per FFT, and a clock time of

40 MHz into the execution time formula gives a value of:

* (7.07143 CPI) * 1.048 million (instruction count) = 0.185271 secxecution time E = 40 MHz
1 second

This time exceeds the time delay goal of 100 ms, thus in order to decrease the FFT calculation

time, the digital signal processor’s clock speed must be higher than 40 MHz and/or the sampling

count must be lower.

2.9.2 Raspberry Pi LF

The Raspberry Pi needs a portion of the target latency time to convert incoming

frequency data to the MIDI format, convert MIDI data to JavaScript Object Notation (JSON),

and to convert the JSON data to a byte array that is suitable for transfer over TCP/UDP.

tRP i = tmidi conversion + tjson conversion + tencoding

To correctly pick out the frequencies being played, the program running on the Raspberry

Pi will need to iterate over an array that is at worst N, the length of the maximum playable

frequency of the piano. To map the frequencies being played to the correct musical note, the

41

program will have to do a lookup in a binary search tree that contains each musical note and its

corresponding frequency. This will take, at worst, O(log(N)) time. In most cases the time to

match all notes being played will be significantly less because the user will be playing at most 10

notes at a time. The number of operations required for picking and matching frequencies can

then be found as:

 N og(N) 4000 4000 og(4000) 18408 operationsN + * L = + * L =

The amount of time the program will take to process 88 notes being pressed can then be

calculated using the instructions per second measurement of the Raspberry Pi, which is around

4744 MIPS.

 3.8 uS tmatch = 18408 instructions
4744M instructions/second =

2.9.3 HoloLens KV

The HoloLens rendering engine should be kept to a minimum of 60 FPS as per the microsoft

documentation. This is primarily handled internally by the unity rendering engine, which can be

seen through the use of various tools provided such as the GPUView, Visual Studio Graphics

Debugger, and the profilers built into 3D engines such as the Frame Debugger in Unity.

2.10 Storage Capacity LF

The MIDI format is relatively small in terms of storage size because it is a representation

of musical notes that make up a song rather than a full audio signal. Therefore the typical size of

a MIDI file is on the order of kilobytes (KB) rather than megabytes (MB). Below is the

calculation for the storage size of a library of MIDI files, assuming a max MIDI file size of

100KB (an overestimate, as a 4 minute song is ~55KB) and a MIDI file count of 100 songs:

torage size 00 00 songs 0000KB 10GB S = 1 KB
song * 1 = 1 =

42

The required storage size for a MIDI file can potentially be reduced for this application,

as only the Note On/Note Off MIDI events and their timestamps need to be recorded. All other

events can potentially be ignored.

2.11 MIDI File Parsing LF

The MIDI file format is a sequence of bytes that is structured into a header chunk, and

then one or more track chunks following the header chunk. The header chunk of a MIDI file

contains the MIDI file format, the number of tracks following the header, and the time division

of the file; each header field is always 2 bytes long. The track chunks following the header chunk

contain a sequence of events that are either Meta, Sysex, or MIDI events. Meta events consist of

a sentinel byte “FF” followed by a meta event identifier byte, followed by a variable length field,

followed by the data for the Meta event. Meta events contain data for information like track

names, lyrics, and instruments used for each track. Sysex events consist of a sentinel byte “F0”

or “F7” followed by a variable length field, followed by the data for the Sysex event. MIDI

events can have a wide range of identifier bytes, from “8x” to “Ex.” Most MIDI messages

contain information regarding the playback of a song or the notes pressed on a keyboard. The

two that are most important to this project are the Note On and Note Off MIDI events, which are

indicated with the identifier bytes “9x” and “8x” respectively.

43

3. Engineering Requirements Specification BG

The following lists the design requirements for the Visual Music Assistant, and the marketing

requirements to which they pertain. The list calls out the marketing requirement that the design

requirement statement addresses. The design requirement statement is then given a justification

pertaining to the given marketing requirements that are intended to be met.

Table 6: Design Requirement Specifications

Marketing Requirements Design Requirements Justification

1,5 Digital Signal Processing
circuit will need to sample
audio signal at a rate above
44100hz.

Identifying the notes and
chords will require a
sampling rate above nyquist
sampling rate

2 Visual Music Assistant will
be able to teach the melody
of“Twinkle, Twinkle, Little
Star” to the user in under
5mins.

Will be able to evaluate
whether VMA can provide a
way to learn keyboard notes
and music concepts

1,3 Visual Music Assistant will
be able to detect notes played
in the range of 27.5hz to
4186hz

The frequency range of a
88key piano is 27.5 to
4186hz. VMA must be able to
detect these frequencies

4 Visual Music Assistant will
be able to fit in a backpack
and weighs less than 3lbs.

The criteria of small and
portable are constrained to
something that is easily
carried by one person

1,5 DSP needs to have a Latency
added to the system of less
than 30ms

Systems needs to provide
feedback of the interpreted
note while the user is playing

1,5 Overall latency for audio
input to user interface output
should be less than 100ms

Systems needs to provide
feedback of the interpreted
note while the user is playing

2 Visual Music Assistant will
have a user interface that

Intuitive feedback that is
relevant to the user will need

44

gives real-time feedback of
the users performance in less
than 200ms

to be provided while the user
is playing

2 Visual Music Assistant will
have a scoring algorithm that
will provide visual feedback
in Augmented Reality

Addresses the need for an
intuitive way to learn
instruments by showing notes
and music theory concepts.

2,3 Visual Music Assistant will
be able to display upto 88
augmented reality keys.

For the VMA system to
interface with the 88 keys on
a keyboard, AR keys will
need to be mapped to each
key and be distinguishable by
the user

6 Visual Music Assistant will
be able interface with midi
protocol music files and then
translate the midi music files
into a 3D interpretation.

Addresses the need for the
scoring algorithm to compare
a musical composition with
the user’s input.

1,2 Visual Music Assistant will
superimpose an audiovisual
indication if a note is
misplayed and/or played
correctly

The notes will be identified as
a correct note or incorrect
note by VMA system to
promote learning the
instrument intuitively

1,5,6 Visual Music Assistant will
be able to tranduces audio
signals into midi protocol

Addresses the need for
compatibility between user
input when compared with
the corresponding musical
composition

1. The system will identify what notes and/or chords the user is playing.

2. The system will provide an intuitive way to learn instruments by showing notes and

music theory concepts.

3. The system will be able to interface with 88 key piano.

4. The system will be small and portable.

5. The system will interpret audio output from the piano

6. The system will implement a scoring algorithm to compare user input to a determined

45

musical composition

4. Engineering Standards Specification BG, DK

Table 7: Safety standards and protocols

 Standard Use

Safety

Communications TCP, UART, WIFI (IEEE
802.11)

Networking between the
Raspberry Pi and the
Microsoft Hololens

Data Formats MIDI, JSON (IEEE-1394) Serial communication for
datafiles,and Raspberry Pi to
Hololens

Design Methods TCP standards (IEEE 802.2) Transmission Control
Protocol between
Raspberry and Hololens Pi

Programming Languages C, C#, Python, JavaScript
(ISO/IEC 9899:1999)
(ISO/IEC 23270:2003)

Used in the production of
Visual Music Assistant code

Connector Standards USB C, USB A (IEEE-1394) Use on Raspberry Pi and on
Digital signal processing
board

Table 7 shows the protocols and safety standards that are considered in the creation of Visual
Music Assistent

46

https://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237
https://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36768
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36768

5. Accepted Technical Design LF BG DK KV

5.1 Hardware Design: BG

Figure 16: Level 0 Hardware Diagram

Figure 16 shows the Level 0 Hardware Diagram. The system will receive a signal from the

musical instrument. The signal received will be processed by the Auditory processing unit. The

Auditory processing unit will send the distinguished frequency to the AR Headset. The User will

interact with the AR headset and the auditory processing unit. The user will configure the

Auditory processing unit to be able to connect to AR headset. The system will be powered via

5V USB.

Figure 17: Level 1 Diagram

47

Figure 17 shows the Level 1 Hardware Diagram. The system will receive power from an outlet

and will be rectified into 5V @ 2A power. This power will be delivered to the Raspberry Pi. The

Raspberry Pi will receive the distinguished frequency from the DSP chip. The DSP chip will

receive an analog input from the microphone circuitry. The microphone circuitry will take the

transduces audio signal from the microphone and create a signal for the DSP to use. The

distinguished frequency that is sent to the Raspberry Pi will then be made into a protectal that

will be sent to the AR headset via WIFI or Bluetooth. The user will interact with the AR headset

and the Screen. The screen will be used to configure the Music Module.

Figure 18: Level 2 Hardware Diagram

Figure 18 shows the Level 2 Hardware Diagram. The system will receive power from an outlet

and be rectified into 5V @ 2A power. This power will be delivered to the Raspberry Pi and to

the Data Processing Module. The data processing module will receive an Audio Signal from the

keyboard. The Auditory Transduction circuitry will then produce a digitized signal for the DSP

48

chip to run a fast fourier transform on. The determined frequency that was interpreted by the

DSP will then be sent to the Raspberry Pi to be converted to MIDI. The MIDI signal will be sent

over WIFI or Bluetooth wireless protocol to the AR headset. The frequencies will then be

displayed on the headset for the User to interpret and interact with. The User will interact with

the Ar headset and the screen. The screen will be used to configure the module and will be used

to display redundant information that the AR headset displays while in operation.

Figure 19: Hardware level 3 Diagram

Figure 19 shows the Level 3 Hardware Diagram. The system will receive power from an outlet

and be rectified into 5V @ 2A power using a cellphone power supply. This power will be

delivered to the Raspberry Pi 4. The data processing board will be powered via the 5V rail on the

raspberry Pi 4. The 5V rail from the Raspberry Pi 4 will go through an over voltage protection

49

circuit to protect the voltage regulator from being damaged. The voltage regulator will step the

5V voltage down to 3.3V. The 3.3V rail will then be filtered to ensure a clean and stable 3.3V

rail. The filtered 3.3V rail will then be used to drive the differential amplifier circuitry, the ADC

chip,and the DSP chip. The data processing module will receive an Audio Signal from the

keyboard. The differential amplifier circuitry will take in the microphone transduced signal and

produce a signal from 0 to 3.3. The ADC will take the biased signal and produce a digitized

signal for the DSP chip to run a fast fourier transform on. The determined frequency that was

calculated by the DSP will then be sent to the Raspberry Pi to be converted to MIDI. The MIDI

signal will be sent over WIFI wireless protocol to the AR headset. The frequencies will then be

displayed on the headset for the User to interpret and interact with. The User will interact with

the AR headset and the screen. The screen will be used to configure the Visual Music Assistant

module to connect to the WIFI router and will also be used to display redundant information that

the AR headset displays while in operation.

OpAmp Circuit

Figure 20 shows the operational amplifier circuit simulated to take an audio signal of less than

+/- 100mV and produce an output that has a positive value between 3.3 and 0 volts. Ltspice

symbol schematic was created with equivalent parts used to created a circuit prototype.

50

Figure 20: Operational Amplifier Circuit and Waveform

V1 represents an audio input after a microphone transduces an audio signal into a voltage. The
input of V1 was observed to be less than +/- 50mV in standard operation. The circuit was
designed to still work (with no climping) with an input from V1 of +/- 100mV. C1 creates a DC
buffer for the circuit. C1 also creates a pass though for the AC component of the V1 input. The
resistance values of R4 and R2 where chosen to create a gain over 20 for the circuit. R6 was
chosen to be 4.7KΩ and R1 was chosen to be 4.7KΩ. R6 and R1 were chosen to set a voltage
reference point for the input of the Op-Amp. The voltage value chosen for the reference
between the positive input terminal node of the Op-Amp was 2.5V. The negative input terminal
node of the Op-Amp is also 2.5V. When V1 excites the circuit with a voltage higher than 0mV
then current through R4 is decrease. The decrease in the current through R4 also leads to a
decrease in the current through R2. The opposite is true for a voltage lower than 0mV. The
circuit is inverting the signal. The Op-Amp chosen to represent the physical Op-Amp was
AD8571. AD8571 has zero drift, 2.7/5V operation, and RRIO capability. The actual Op-amp
used TLV2252AIP has increased output dynamic range, lower noise voltage, and lower input
offset voltage with operation from 2.7/8V and RRIO capability. C2 is a DC buffer and AC pass
through used to separate the output signal of the circuit from the AD8571 Op-Amp signal. The
AD8571 Op-Amp signal voltage generated is between 1.5V and 3.6V which exceeds the
allowable voltage input range 0 to 3V for the dsPIC33FJ256MC710A. The isolated signal
generated after passing through C2 is shifted to operate on a DC value of 1.65V. The shift of the
output signal is produced using resistors R3 and R5. R3 was chosen to be 47KΩ and R5 was
chosen to be 47KΩ.

51

Figure 21 shows the operational amplifier waveform generated by taking an audio signal of +/-
100mV and produce an output that has a positive output between 3.3 and 0 volts

Figure 21: Operational Amplifier Simulated Waveform

The small (blue) signal is the input signal from the microphone V1. The input signal is generated
using a sinusoidal wave at 4KHz between +/- 50mV. The large signal (yellow) output signal is
4KHz ranging from 600mV to 2.7V. The gain of the system as seen from the waveform is 21.

52

Figure 22 shows the operational amplifier symbol schematic modeled in Kicad to take an audio
signal of less than +/- 100mV and produce an output that has a positive value between 3.3 and 0
volts.

Figure 22: Operational Amplifier Symbol Schematic

The Symbol schematic include the actual parts that will be used to implement Visual music
assistant digital signaling board.

53

Voltage Regulator Circuit

Figure 23 shows the voltage regulator circuit used to filter noise from the Raspberry Pi 5v rail

Figure 23: Voltage Regulator Circuit

The MCP1700-3302E is a SOT23 surface mount package linear regulator that takes 5V input
and produces 3.3V output. The C7 and C10 are decoupling capacitors used by the linear
regulator for filtering. C5 values was chosen to be 10µF to filter noise from the raspberry pi 5V
rail.

54

5.2 Software Design: LF KV DK

Software Level 0 thru N block diagrams w/ Functional Requirements (FR) Tables

Figure 24: Software Level 0 Diagram

The diagram above shows the top level view of the project from a data transfer

perspective. It shows a user (the blue icon) interacting with an analog or digital piano; if the user

interacts with an analog piano, the soundwaves of the piano are passed into a microphone

connected to the digital signal processor. If the user interacts with a digital piano, the digital

music events from the piano are sent directly to a Raspberry Pi for processing. Any analog

soundwaves read by the digital signal processor are translated into frequency arrays and passed

to the Raspberry Pi. The Raspberry Pi processes the frequency arrays sent from the digital signal

processor and calculates which MIDI note the frequency arrays represent. Once the Raspberry Pi

has retrieved a MIDI note from a frequency array or directly from a digital piano, it packages the

MIDI note as a JavaScript Object Notation (JSON) string and then encodes it as a byte array to

55

be sent to the server via TCP/UDP. When the server receives the byte array containing the MIDI

data, it forwards it to the HoloLens via TCP/UDP. Once the HoloLens has received the MIDI

data from the server, it compares the “note played” from the MIDI data to the note of the song

currently being played. The HoloLens then calculates a score based on the difference in timing

between the note played and the target note, and displays to the user the note played as well as an

indicator of the score.

Figure 25: Software Level 1 Diagram

The diagram above(Figure 25) expands on the previous data flow diagram in that it

further breaks down each module. The Raspberry Pi now has three modules. The first module,

the Pi MIDI module, processes the frequency arrays sent from the digital signal processor and

calculates which MIDI note the frequency arrays represent. Once the Pi MIDI module has

retrieved a MIDI note from a frequency array or directly from a digital piano, sends the MIDI

note to the Pi Networking module. The second module, the Pi Networking module, sets up a

56

socket connection to the server based on the IP address obtained by the configuration module.

The Pi Networking module relays to the server via TCP/UDP any MIDI note passed to it. The

module converts MIDI notes to byte arrays containing JSON data before sending them. The third

module, the Pi Configuration Module, allows users to interact with a screen connected to the

Raspberry Pi. Users will enter their WiFi information using the touch screen, and the information

will be used to configure the socket connection between the Raspberry Pi and the server.

Figure 26: DSP Software Level 2 Diagram

57

The above figure 26 describes the overall digital signal processing software flow. The DSP will

be first configured in a setup block before entering the main while loop. Inside the main while

loop, values from the ADC will be read into a buffer. An FFT (Fast Fourier Transform)

algorithm will then be operated on the values inside the buffer, filtering out the relevant

frequencies. These frequencies will then be converted to their corresponding MIDI notes values

and be sent to the Raspberry Pi via the UART communication protocol.

58

Figure 27: HoloLens Software Level 2 Diagram

59

Figure 27 describes the control flow of the program that will be running on the HoloLens.

It will initially check to see if there is a configuration saved for WiFi credentials and the IP

address of the music module. If a configuration is not found, a menu will be displayed that will

retrieve the WiFi credentials and IP address of the music module. If a configuration is found, the

program will display a menu offering two different options for music learning.

If the user selects the Song Learning menu option, the program will display a list of songs

available for playback. Once the user picks a song the program will open a file stream

corresponding to the song picked by the user. After the file stream is opened, the program will

load in the 3D model that represents the piano and the notes currently being played. Once the

model is loaded the program will open a socket connection to the server. After the socket

connection is opened the program will listen on the socket for incoming note data. When note

data is received, the program will calculate a score for the note based on when it was played vs.

when it should have been played. Once the score calculation is complete, the score and the

corresponding note will be displayed on the 3D piano model.

If the user selects the Improvisation menu option, the program will load in the 3D model

that represents the piano and the notes currently being played. Once the model is loaded the

program will open a socket connection to the server. After the socket connection is opened the

program will listen on the socket for incoming note data. When note data is received, the

program will calculate relevant note/chord suggestions based on music theory. Once the

note/chord suggestion is calculated, it will be displayed along with the note played on the 3D

piano model.

60

Figure 28: HoloLens Score Loop Software Level 3 Diagram

61

The diagram above(Figure 28) describes how the program running on the HoloLens

determines the score for each note played by the user. It first checks to see if a MIDI note has

been played.

If a MIDI note has been played then it is normalized to be compared to a sliding-window

file structure containing the notes that should be played and when they should be played. Once

the comparison between the note played and the file structure has been made, the score for the

note is reflected in the user’s total score.

If a MIDI note has not been played, the program checks for any missed notes in the

sliding-window file structure. If a missed note is found, the user’s score is updated appropriately.

If no missed note is found, the program continues to check for played MIDI notes.

62

Figure 29: HoloLens MIDI File Level 3 Diagram

Figure 29 describes how the program running on the HoloLens implements the

sliding-window structure for parsing MIDI files. It checks to see if the end of the MIDI file has

been reached. If the end of the file has been reached, the file is exported. If the end of the MIDI

63

file has not been reached, the next MIDI note event is read and then normalized to be evenly

spaced with previous and subsequent notes.

Figure 30: Raspberry Pi Level 2 Diagram

64

Figure 30 describes the control flow of the program running on the Raspberry Pi. The

program first imports all libraries necessary for polling MIDI keyboards and establishing socket

connections. Once all libraries are imported the program opens up a TCP/UDP socket connection

using the IP address entered by the user into the Pi Configuration module. Once the socket

connection is opened the program begins polling for MIDI data. If MIDI data is received, it is

converted to JSON and then added to a byte array. The resulting byte array is sent via TCP/UDP

to the server (and subsequently the HoloLens)

Pseudocode for DSP frequency to MIDI:

Input: Frequency (obtained from the DSP calculations to the RPi through UART)
Output: MIDI note

Functions within the scope of determining the MIDI note:

● search_avl_tree (Lookup algorithm will be an AVL tree, self-balancing binary
search tree data structure); The function will return the MIDI note

● parse_into_midi_data_structure
● get_midi_note

get_midi_note(frequency value)
{

note = search_avl_tree(frequency value);
midi_data = parse_into_midi_data_structure(note);
return midi_data;

}

65

Microchip embedded C Demo Code (dsPIC33FJ256GP710A):

Header file config.h:

Figure 31 shows the Header file config.h code.

Figure 31: config.h

66

Figure 32 shows a continuation of Header file config.h code.

Figure 32: Header file config.h continued

67

Main Program file: main.c

Figure 33 shows Main Program file: main.c

Figure 33: main.c

68

Figure 34 shows a continuation of Main Program file: main.c

Figure 34: Continuation of Main Program file: main.c

69

Figure 35 shows a continuation of Main Program file: main.c 2

Figure 35: Continuation of Main Program file: main.c 2

70

Figure 36 shows a continuation of Main Program file: main.c 3

Figure 36: Continuation of Main Program file: main.c 3

71

Figure 37 shows a continuation of Main Program file: main.c 4

Figure 37: Continuation of Main Program file: main.c 4

72

Figure 38 shows a continuation of Main Program file: main.c 5

Figure 38:Continuation of Main Program file: main.c 5

Description of main.c:

This file is the main program of the demo code running on the dsPIC33FJ256GP710A. It

includes the following local files: “fft.h,” “config.h,”; and the following libraries: <xc.h>,

<dsp.h>, <stdio.h>, and <string.h>. The first lines after the include statements are definitions in

order to calculate the proper baudrate for UART communications. After that, lines 21-25 is the

function definition for ms_delay, which works to delay the processor for N number of

milliseconds passed into the function. The next function is defined from lines 27-49, and is

written following Microchip’s sample code for the dsPIC33FJ256GP710A. ADC_Read10bit

returns the value of the ADC from the referenced ADC channel (I pass in channel 1, which refers

to AN1 or analog pin 24). The next section of code (lines 51-74) follow the Microchip practices

for utilizing the DSP library for Fast Fourier Transform calculations. It contains defines for the

FFT buffer arrays, with fractcomplex being a struct with two entries (real and imaginary). Other

variables are initialized that will later be used for the frequency calculations. Lines 76-158

contains all of the main function. Lines 79-93 are oscillator configurations such that the internal

73

oscillator runs at 80 Mhz, or 40 MIPS (Million Instructions per Second). Lines 95-107 contain

the ADC initialization. Lines 109-124 contain the UART initialization. Lines 126-158 contain

the sampling of the ADC and the FFT calculations. This is only a first revision for a proof of

concept, and the next steps include modifying the ADC sampling to increase the sampling rate.

The following is a snapshot of the variables window during the debugging phase. During

debugging, a function generator with a 100 Hz square wave (0-3 V, peak-to-peak) is input into

analog pin 24 for the ADC to read. As you can see, the value for peakFrequency is 0x00000063

(HEX), which in decimal is 99. This corresponds closely to the input of 100 Hz. The reason why

they are not identical is due to the resolution of the FFT bins.

Figure 39 shows the watch window during program operation as well as the addresses of output

variables.

Figure 39: Watch windows during program operation

74

Header file fft.h:

Figure 40 shows Header file fft.h

Figure 40: Header file fft.h

Description of fft.h:

This file contains constants for the FFT calculations.

75

C file: twiddle_factors.c

Figure 41 shows C file: twiddle_factors.c 1

Figure 41: C file: twiddle_factors.c 1

76

Figure 42 shows a continuation of C file: twiddle_factors.c

Figure 42: Continuation of C file: twiddle_factors.c

77

Figure 43 shows a continuation of C file: twiddle_factors.c 2

Figure 43: Continuation of C file: twiddle_factors.c 2

78

Figure 44 shows a continuation of C file: twiddle_factors.c 3

Figure 44: Continuation of C file: twiddle_factors.c 3

79

Figure 45 shows a continuation of C file: twiddle_factors.c 4

Figure 45: Continuation of C file: twiddle_factors.c 4

80

Figure 46 shows a continuation of C file: twiddle_factors.c 5

Figure 46: Continuation of C file: twiddle_factors.c 5

Figure 47 shows a continuation of C file: twiddle_factors.c 6

Figure 47: Continuation of C file: twiddle_factors.c 6

Description of twiddle_factors.c:
This file contains all the hardcoded twiddle facts needed for the FFT calculations. This is stored
in memory and included in the main file.

81

TCP index.js
Figure 48 shows TCP index.js

Figure 48: TCP index.js

82

Figure 49 shows a continuation of TCP index.js

Figure 49: Continuation of TCP index.js

83

Figure 50 shows a continuation of TCP index.js 2

Figure 50: Continuation of TCP index.js 2

Description of TCP index.js:

The code above acts as 2 nodeJS servers using the express and net libraries. Clients that connect
to the server have the ability to send data, all data sent should be a midi object in json format
followed by a newline character. Once data is sent to the server, it will calculate how large the
data is and prepend the integer to the message and then sends the data to all other connected
clients. If an error occurs from a client disconnecting at an unexpended time, the server will
ignore the exception and simply stop sending the disconnected client packets.

84

Figure 51 shows Example Program output while server is running

Figure 51 : Example Program output

Server printing the incoming byte arrays and decoding messages is seen in above in figure 48

85

VMA.py
Figure 52 shows VMA.py

Figure 52: VMA.py

86

Figure 53 shows a continuation of VMA.py

Figure 53: Continuation of VMA.py

87

Figure 54 shows a continuation of VMA.py

Figure 54 : Continuation of VMA.py

88

Description of VMA.py:
This program launches a gui that will ask the user to select a midi device. After a midi device is
selected, the gui will close and connect to the nodejs server. It then will listen to the selected
midi device and send all midi packets to the server through TCP.

Figure 55 shows Example program output 2

Figure 55: Example program output 2
The user is able to select a desired plugged in midi device.

89

Figure 56 shows Midi packets formulation

Figure 56: Midi packets formulation

Once a device is selected, the program will connect to the server and start formulating midi
packets and send them over the network. The example output midi messages here.

90

Figure 57 shows client.cs, The unity runtime script for tcp connection handling

Figure 57: client.cs

91

Figure 58 shows client.cs continued

Figure 58: client.cs continued

92

Figure 59 shows client.cs continued

Figure 59: client.cs continued

93

Figure 60 shows client.cs continued

Figure 60: client.cs continued

94

Figure 61 shows client.cs continued

Figure 61: client.cs continued

95

Figure 62 shows client.cs continued

Figure 62: client.cs continued

The file above, titled client.cs, is the routine that represents the network module for the
Microsoft Hololens. It is written in the C# programming language and is intended to be used in
conjunction with Unity to allow the HoloLens to connect to a Node.JS server and subscribe to
notes played by a user. The Start() function initializes the TCP socket connection to the server
using a provided IP Address. The Update() function checks to see if data is available on the TCP
socket and if data is available, it determines the size of the message available and reads that
many bytes from the stream. The ReadNote() function takes the bytes read in and converts them
to a UTF8-encoded string that is the JSON string representing the MIDI message forwarded by
the Node.JS server. It then deserializes the JSON into a C# object type. The deserialized JSON
string is then used to play a sound representing the note received.

96

Figure 63 shows DisplayMIDI.cs

Figure 63: DisplayMIDI.cs

97

Figure 64 shows DisplayMIDI.cs continued

Figure 64: DisplayMIDI.cs continued

Description of DisplayMIDI.cs:

The file above, titled DisplayMIDI.cs, contains the code for the note visualization
module to be used on the Microsoft Hololens. It is written in the C# programming language. The
module starts by opening up a filestream to the desired MIDI file to be visualized and then
passes that filestream to the project’s MIDI parsing module in order to retrieve a C# object
representing the notes contained in the desired file. Once the MIDI file object is retrieved, the
module iterates over every note of the file, spawning Unity game objects representing each note.
The module determines the horizontal position of the game objects based on their note number,
and it determines the vertical position of the game objects based on the differences between the
notes in time. A dictionary is used to store the time at which each note has an “on” press so that
when an “off” press happens the difference in time can be calculated.

98

Figure 65 shows MidiFile.cs

Figure 65: MidiFile.cs

99

Figure 66 shows a continuation of MidiFile.cs

Figure 66: Continuation of MidiFile.cs

100

Description of MIDIFile.cs

The file above, titled MIDIFile.cs, is the code that implements the MIDI file parsing
module to be used by the Microsoft Hololens. The module initially opens up a Binary Reader to
read byte-by-byte the MIDI file passed into it. The module then reads in the various
characteristics of the file contained in its header section, including the format of the file, the
number of tracks contained in it and the time division of the tracks contained in it. Once the
header has been completely read in, the module reads in the file track-by-track and adds each
track to a track array.

101

Figure 67 shows MidiTrack.cs

Figure 67: MidiTrack.cs

102

Figure 68 shows continuation of MidiTrack.cs

Figure 68:Continuation of MidiTrack.cs

103

Figure 69 shows continuation of MidiTrack.cs 2

Figure 69: Continuation of MidiTrack.cs 2

104

Figure 70 shows continuation of MidiTrack.cs 3

Figure 70:Continuation of MidiTrack.cs 3

105

Figure 71 shows continuation of MidiTrack.cs 4

Figure 71: Continuation of MidiTrack.cs 4

Description of MidiTrack.cs

The file above, titled MIDITrack.cs, contains the code for the MIDI track parsing
module to be used by the Microsoft Hololens. It continuously reads in a delta time byte array
followed by an event identifier byte. The module uses the identifier byte to determine whether
the event following it is a Meta, Sysex, or MIDI event and then reads in the event. In any case
where the event read is not specifically a Meta “End of Track” event or a MIDI “Note On” or
“Note Off” event, the event is simply logged to the program output for debugging purposes. In
the case where the event read is a Meta “End of Track” event, the parsing of the current track is
ended and the current track object is added to the MIDI File object associated with it. When a
MIDI “Note On” or “Note Off” event is read, a MIDI Note object is added to the MIDI Note
object array attached to the current track object.

106

Figure 72 shows MidiNote.cs

Figure 72: MidiNote.cs
Description of MidiNote.cs

The file above, titled MIDINote.cs, is the C# class code representing the MIDI notes
read in by the MIDI track class. It contains a note number that corresponds to the key to be
pressed on the piano, a velocity number that represents how hard the piano key should be
pressed, a type number that identifies whether the piano key should be pressed or released, and a
delta time number representing how long to wait before the piano key is pressed.

107

Level 0 block diagram w/ functional requirements table LF BG DK KV

Figure 73: Level 0 block diagram (entire system)

Table 7: Functional Requirements Table 1

Module Music Recording Module

Designers Larry Fritz, Bridger L. Garman, David Klett,
Kyle Vasulka

Inputs Power: 120 volts AC rms, 60Hz.
Audio input signal: ?V peak.
Control digital input signal: ?V peak
Programming port: USB;
User inputs

Outputs WiFi 802.11ac OR Bluetooth 4.2: Web Server
Audio Jack: ?V peak value

Description Processes the signal from the instrument.
Once processed, an algorithm will use music
theory to suggest notes, chords, and the
general key that would sound good(as
determined by music theory).
This information will be sent to and displayed
on the AR headset.

108

Table 8: Functional Requirements Table 2

Module Alternate Reality Software

Designers Larry Fritz, David Klett, Kyle Vasulka

Inputs WiFi 802.11ac OR Bluetooth 4.2: Tracking
data
User inputs

Outputs WiFi 802.11ac OR Bluetooth 4.2: Control
signal
AR Display

Description Analyze data received from music module
and display information to the user using
software analytics.

109

Figure 74: Mechanical sketch of system KV

110

6. Team Information DK

Table 9: Team Information

Name Major Embedded?

Larry Fritz CpE Yes

Bridger Garman EE No

David Klett CpE Yes

Kyle Vasulka EE/CpE Yes

7. Parts List

Figure 75 shows the Build of materials for the Visual Music Assistant

Figure 75: Build of material list

111

Figure 76 shows the cost of the Build of materials for the Visual Music Assistant

Figure 76: Cost of Build of material list

112

8. Project Schedules LF BG DK KV

Figure 77: Gantt Chart

113

Figure 78: Updated Gantt chart (11/26/29, put in by David)

114

Conclusion KV

This product will be used by someone who wants to learn how to play a keyboard. The

user will wear an AR headset and sit in front of a keyboard. They will go through a calibration

process to tell the AR headset where the keyboard is located. The user can then take lessons from

the product with lit up keys that indicate what the user should play. Alternatively, the user can

play freely and have the product suggest notes and chords that would sound good to play as

determined by the music theory algorithm. The final demonstration will include a keyboard

setup and an AR headset.

115

References

Bryant, Sharon. (2014, June 9). How Children Benefit from Music Education in Schools.

Retrieved March 18, 2019, from

https://www.nammfoundation.org/articles/2014-06-09/how-children-benefit-mu

sic-education-schools

Chen, S. (2018). A Study on Integrating Augmented Reality Technology and

Game-based Learning Model to Improve Motivation and Effectiveness of

Learning English Vocabulary. Retrieved March 11, 2019, from

https://ieeexplore-ieee-org.ezproxy.uakron.edu:2443/stamp/stamp.jsp?tp=&arnu

mber=8567161

ChildTrends DataBank (November 2015). Participation in School Music or Other

Performing Arts. Retrieved from

https://www.childtrends.org/wp-content/uploads/2015/11/36_Participation_in_P

erforming_Arts1.pdf

Colpani, R. (2015, July 8). An innovative augmented reality educational framework with

gamification to assist the learning process of children with intellectual

116

disabilities. Retrieved March 11, 2019, from

https://ieeexplore-ieee-org.ezproxy.uakron.edu:2443/document/7387964?arnum

ber=7387964&SID=EBSCO:edseee

Eady, F. (2005, August 18). Implementing 802.11 with Microcontrollers. Retrieved

March 11, 2019, from

https://ebookcentral.proquest.com/lib/uakron/detail.action?docID=270061

Hamalainen, P. (2018). U.S. Patent No. US20180336871A1. Washington, DC: U.S.

Patent and Trademark Office.

Hart. (2016, January 12). Hart. “How Much Should I Be Charging For Lessons?”.

Retrieved March 18, 2019 from

http://www.rgt.org/blog/tuition-fees-how-much-should-i-be-charging-for-lesson

s

Huang, F. (2011, October 10). Piano AR: A Markerless Augmented Reality Based Piano

Teaching System. Retrieved March 11, 2019, from

https://ieeexplore-ieee-org.ezproxy.uakron.edu:2443/document/6038212

Kaipainen, M. (2014). U.S. Patent No. US20140041511A1. Washington, DC: U.S.

Patent and Trademark Office.

117

Klapuri, A. (2017). U.S. Patent No. US9767705B1. Washington, DC: U.S. Patent and

Trademark Office.

Klapuri, A. (2019). U.S. Patent No. US10182093B1. Washington, DC: U.S. Patent and

Trademark Office.

Meet the New Raspberry Pi 4, Model B. (n.d.). Retrieved from

https://www.hackster.io/news/meet-the-new-raspberry-pi-4-model-b-9b4698c24

.

(n.d.). Retrieved from

https://www.csie.ntu.edu.tw/~r92092/ref/midi/midi_channel_voice.html.

(n.d.). Retrieved from

https://www.csie.ntu.edu.tw/~r92092/ref/midi/midi_channel_voice.html

Narayan, S. (2015, January 8). Performance test of IEEE 802.11ac wireless devices.

Retrieved March 11, 2019, from https://ieeexplore.ieee.org/document/7218076

Synthesia LLC. (2019, January 29). Synthesia, Piano for Everyone. Retrieved March 18,

2019, from https://www.synthesiagame.com/

Yousician. (2019, March 18). Yousician | Learn to Play | Your Personal Music Teacher.

Retrieved from https://yousician.com/#

118

https://www.hackster.io/news/meet-the-new-raspberry-pi-4-model-b-9b4698c24
https://www.csie.ntu.edu.tw/~r92092/ref/midi/midi_channel_voice.html
https://yousician.com/#

Texas Instruments Inc (May 2002). Fixed Point Math Library. Retrieved from:

http://www.ece.uidaho.edu/hydrofly/OLD/Code/math/doc/math_mdl.pdf

Microchip Technology Inc (2008). dsPIC30F/33F Programmer’s Reference Manual.

Retrieved from: http://ww1.microchip.com/downloads/en/devicedoc/70157c.pdf

Wikipedia (2019). Discrete Fourier transform. Retrieved from:

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

119

http://www.ece.uidaho.edu/hydrofly/OLD/Code/math/doc/math_mdl.pdf
http://ww1.microchip.com/downloads/en/devicedoc/70157c.pdf
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

	Visual Music Assistant
	Recommended Citation

	tmp.1587328606.pdf.u5Hkv

