
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2020

Virtual Reality Environment Recreation Virtual Reality Environment Recreation

Ryan Douglas
rwd22@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Douglas, Ryan, "Virtual Reality Environment Recreation" (2020). Williams Honors College, Honors
Research Projects. 1028.
https://ideaexchange.uakron.edu/honors_research_projects/1028

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1028
https://ideaexchange.uakron.edu/honors_research_projects/1028?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Virtual Reality Environment Recreation

Ryan Douglas

Williams Honors College

ii

ABSTRACT

This project will consist of a virtual reality based program that is capable of

showing the user both the modern day state of a site of historic or archaeological

significance, along with a recreation of what said site or area may have looked like in the

past, primarily during the time that gave the site its historical significance. The virtual

reality program itself is to be run on modern day Windows hardware and used with the

VIVE virtual reality head-mounted display and controllers. Alongside the completed

program, the creation of the environments themselves will be documented, resulting in an

organized method to create more environments in the future allowing for the application

itself to be added to and greatly increasing its versatility in future educational or

recreational use.

The project itself has resulted in the creation of the initial program made to

showcase the environment switching capabilities of the project along with a toolset made

for the Unity engine. This toolset allows for a simple method to import a three-

dimensional scan of an environment into the Unity editor, and for that scan to be made

into an environment that can be explored using the project.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ……………………………………………………………………..iv

CHAPTER

I. INTRODUCTION ……………………………………………………………………...1

II. BACKGROUND ………………………………………………………………………2

III. DESIGN ………………………………………………………………………………4

 User Interactions ………………………………………………………………….5

 Environments ……………………………………………………………..6

IV. IMPLEMENTATION ………………………………………………………………...9

 User Movements ………………………………………………………………….9

 Environment Handling …………………………………………………..13

 Environment Toolset …………………………………………….18

V. CONCLUSION ………………………………………………………………………23

VI. FUTURE WORK ……………………………………………………………………24

BIBLIOGRAPHY ……………………………………………………………………….25

iv

LIST OF FIGURES

Figure Page

1 SteamVR object within Unity ……………………………………………………5

2 Teleporting logic diagram ………………………………………………………..6

3 Past environment variation ……………………………………………………….7

4 Future environment variation …………………………………………………….8

5 SteamVR controller bindings ……………………………………………………10

6 Simple testing environment ……………………………………………………..11

7 Teleportation and laser casting code …………………………………………….12

8 Menu instantiation and destruction code ………………………………………..14

9 Environment loading code ………………………………………………………15

10 User object creation code ………………………………………………………..16

11 Unity billboard render settings …………………………………………………..18

12 Wireframe base scene …………………………………………………………...19

13 Initial menu settings ……………………………………………………………..21

14 Entered scene name text …………………………………………………………21

15 Prefabs provided with the toolset ………………………………………………..22

1

CHAPTER I

INTRODUCTION

This project aims to create a set of tools for use within the Unity3D editor that

will allow for a user to take a 3D scan of an environment and a recreation of what it may

have looked like in the past, and insert it into the engine. The environment and its past

variation will then be able to be explored by the user, with the ability to swap back and

forth between the two environments. This will not only allow for the environments to be

viewed and explored with their appropriate scale, but this will also allow for the

differences between the two variations of the environment to be more easily examined as

if the user was at the scene in person. This will also allow a user that is incapable of

exploring the environment in question, either due to their location or due to the real world

equivalent of the environment being off limits to the public, to experience the

environment as if they were there.

2

CHAPTER II

BACKGROUND

The initial idea for this project started with a conversation between me and Dr.

Xiao. I had just finished my final project for one of his classes and had expressed my

interest to pursue working with Virtual Reality equipment further in my academic career.

He then mentioned to me that I could explore Virtual Reality based development further

through my honors project. Over time this eventually evolved into the Virtual Reality

Environment Recreation project that I’ve worked on for my honors project.

 A key part of archeology is examining an environment or an object and

determining its appearance before the passage of time caused it to become damaged or

weathered. This was typically accomplished and shown to others using a sketch, but the

advancements of computer technology allowed for these assessments to be shown using

three dimensional computer generated graphics, albeit, on a screen. This method, while

much more substantial than a simple two dimensional sketch, still results in what is

essentially an object that can only be viewed two dimensionally due to the nature of

viewing an object on a simple computer screen. Along with this, the object or

environment can only be manipulated using the computer’s controls which are commonly

limited to a simple keyboard and mouse. This results in the impressive recreation of an

object or environment with archeological significance lacking the ability to truly express

its scale and being unable to be closely examined.

3

 For this project, I wished to utilize Virtual Reality equipment to help to remedy

these issues. With the rapidly increasing rate of advancements being made in Virtual

Reality hardware and software, it seems that Virtual Reality is becoming a standard way

to consume media in a way that was not previously possible. One clear advantage of

Virtual Reality over using a standard computer monitor is its ability to convey scale to its

users. By essentially placing the user into the same world as an object or environment,

the size and scale of it is shown to the user purely due to the fact that their own height

acts as their reference point. By combining this with the fact that a Virtual Reality

headset shows the user the displayed graphics in stereoscopic 3D, not only can size and

scale be more accurately conveyed, but the depth of details on an object or environment

can be easily shown to a user purely through them examining the given entity themselves.

Along with this, Virtual Reality in its current state allows users to manipulate objects

using their hands, usually through a controller. This means that, rather than using a

keyboard or mouse to interact with an object and examine it, they are given the simulated

experience of picking up and handling the object as they please. This further drives home

a realism and natural feeling that simply cannot be portrayed using a standard monitor

and method of interaction. This idea seems to be mostly untapped, especially in regards

to a method that allows for a relatively inexperienced user to add their environment and

that allows for the use of consumer grade Virtual Reality hardware to view said

environment, rather than using more expensive hardware.

4

CHAPTER III

DESIGN

In terms of the environment that this project was created with, the most obvious

choice given my previous experience was the Unity3D engine. I’ve had a significant

amount of experience using both this engine and the programming language that it uses,

that being C#, over my academic career, along with some sparse experience with

implementing Virtual Reality using this engine. Specifically, the version of Unity3D used

for this project was Unity 2018.3.2f1, as this was the most recent release at the time of

the project’s initial development period.

 In regards to the hardware the project uses for its Virtual Reality implementation,

I used the highest quality consumer grade Virtual Reality headset that I had access to,

being the HTC VIVE Virtual Reality headset and its controllers. This headset is

compatible with the Unity3D engine through the SteamVR SDK which is available

through the Unity Asset Store. This allows for Unity to correctly receive inputs from

controllers and headsets that are compatible with SteamVR along with their tracking data,

thus allowing Unity to correctly process their positions within the virtual space. Thus, at

this point I was able to have rudimentary Virtual Reality implementation within a Unity

project, but there was no form of interaction that the user was able to perform, which

essentially rendered the user as nothing but a camera where their head was located.

Below is an example of the Unity3D editor with the SteamVR object loaded into the

scene, which is used by the Unity engine to track the positions and actions of the

controllers and headset.

5

Figure 1. SteamVR object within Unity.

User Interactions

 In order to give the user some form of control, a method for the user to interact

with the environment had to be devised. The most basic interaction that the user must be

able to perform in this project is movement, so as part of the initial research for this

project several examples of movement methods in Virtual Reality were studied.

The most logical place to look for examples of different methods of locomotion in

virtual reality would be in the form of virtual reality games quite simply because they are

easy for me to access and many games employ various forms of locomotion and

interaction. Using several sources I was able to narrow down a few of the methods of

locomotion that I believed would possibly be well suited for the project and which

resulted in my decision to create a teleporting method where the user would point to a

location within the environment using the VIVE controller while pressing a button and

6

then, upon releasing the button, the user’s position would be changed to that of where

they were pointing. The following diagram shows the basic logic for the teleporting

interaction in this project.

Figure 2. Teleporting logic diagram.

This logic is similar to the basic teleporting actions seen in several modern virtual reality

games, and will help to prevent the motion sickness related with a “free-moving” method

of locomotion in Virtual Reality.

Environments

 Within this project there are several environments that were created as proof of

concepts to show the result of using the assets created for this project in their intended

fashion. The variations of said environments where created through a mixture of original

7

assets and freely available assets obtained using the Unity Asset Store. Unity handles

these separate variations of the environments as separate “scenes”. Simply put a scene is

akin to a self-contained environment within the engine which needs to be marked to be

added to the final release. If several scenes are added to be included in the build for the

project, there must be a method to access each of them, otherwise the first scene listed in

the build options will be loaded by default, which essentially limits the user to only being

able to access that single scene. Below is an example of one of the environments created

to showcase this project’s capabilities. Both the “past” and “present” variations can be

seen as being viewed within the Unity editor to provide an aerial view of the

environment.

Figure 3. Past environment variation.

8

Figure 4. Future environment variation.

A key part of this project is the ability to switch between an environment’s “past” and

“present” variations. In order to allow the user to select from several environments and

their variations a simple menu had to be created that could function in the virtual

environment. Due to the nature of Virtual Reality, this menu would need to load into the

environment as an object which the user could physically interact with using their

equipment rather than a simple text based menu. In order to accomplish this, a menu

object was created as a prefab object that the project could load into the environments

and their variations.

 Once these basic elements are fully implemented, a toolset was designed to allow

for a user to drop a three-dimensional scan of a real world environment into the Unity

editor. This scan can then be made into an environment compatible with the project’s

implemented methods using the toolset provided by the project.

9

CHAPTER IV

IMPLEMENTATION

User Movements

The first thing to be fully implemented into the project was the movement

capabilities regarding the user when in Virtual Reality. Much of the process of obtaining

the controller’s actions is handled by the SteamVR SDK. The controller’s actions are

defined through the SDK, and the actions are assigned to the buttons on the controllers

through SteamVR’s Controller Binding UI. These are then used to generate a JSON file

that the Unity Project uses to keep track of what actions the controller is performing.

Below is an example of the SteamVR controller bindings UI. This is used to create

actions and assign them to the buttons on the controllers to be transmitted to and

recognized by the Unity engine.

10

Figure 5. SteamVR controller bindings.

Along with the basic logic for the teleporting action, a method must be used to

allow the user to know where they are pointing to. This was achieved by making a “laser”

object that stretches between the user’s controller and the point determined by raycasting

when the user presses the teleport action, along with a reticle that shows on the ground at

the determined point. After this was completed, a small test environment was created to

ensure that the movement system was completed with light testing, which can be seen

below.

11

Figure 6. Simple testing environment.

Once I had finished working on the basics of this movement system, I noticed an

issue with the way it handled objects between the user and the location that the user is

pointing at. Objects that had collision allowed the user to teleport onto the side of the

object, as if the user were climbing it. If the object has no collision and the user points to

it, the teleport location would be on the other side of the object. These are issues,

especially if the object is meant to be solid or even used as a boundary to the space where

the user should be allowed to teleport within the environment. This was solved by

creating a tag for said objects in Unity to label them as “NoTel” and if the raycast for

where the user is pointing comes into contact with an object with said tag, the laser object

is deactivated and the point for the user to teleport to is not set. The code snippet

regarding the teleportation action along with stopping the registration of the raycast’s

hitpoint and deactivating the laser indicator are shown below.

12

Figure 7. Teleportation and laser casting code.

This method works well, but due to the way that unity treats raycasting in regards

to collision and the way that basic SteamVR compatibility works, if a user forces their

way into the collider of a boundary, they can bypass the boundary, but the boundaries

13

still will function as essentially “handrails” to keep the player within the suggested area.

In later user testing, if this becomes an issue, a solution could be made to decrease the

user’s visibility when outside of the boundaries as a visible indicator that the user is

outside of the bounds.

Environment Handling

As each of the environment’s variants are treated as scenes by Unity, a script was

created that checks to see if the controller is being given an input that is defined by

SteamVR as the menu action. The script then checks to see if the menu has already been

instantiated into the scene as an object. If the menu has not been instantiated into the

scene the menu prefab is loaded into the scene in a manner that places it in front of the

camera object, which in this case is essentially the user’s face, thus placing it in front of

the user. If the menu is found to have been instantiated into the current scene already then

the menu object within the scene is destroyed. This script is then placed onto the HTC

VIVE controller causing it to act as a “watcher” looking to see if the correct action is

performed. This allows the user to open and close the menu using the button on the

controller, which for this project was defined to be the HTC VIVE Controller’s menu

button. The following is the code used to load the menu object into a scene.

14

Figure 8. Menu instantiation and destruction code.

 For the menu’s interactions themselves, each of the parts of the menu are labeled

with the name of the corresponding environment variation. These separate parts of the

menu are then given scripts that look for collisions with another object. If the object

attached to the collider that the menu option has come into contact with has been tagged

in the Unity editor with a “Controller” tag, the object representing the user’s Virtual

Reality equipment is destroyed and the scene corresponding to the menu option is loaded

using a string of the scene name for the corresponding environment. The objects

representing the HTC VIVE Controllers were then given a collider and tagged

appropriately using the Unity editor. This allows the user to touch a menu option and then

the environment variation they have selected is loaded, providing the user with a menu

selection method that works well within Virtual Reality as if it were a physical

interaction. The following is an example of this code.

15

Figure 9. Environment loading code.

 Initially the environment loading method caused an interesting issue regarding the

object that Unity uses to access SteamVR’s positional and controller inputs. Due to the

scenes’ requiring this object in order to correctly place the user within the scene and

display the environment through the Virtual Reality headset rather than a default Unity

camera object, the user would essentially be loaded into an environment a second time

upon switching scenes with the menu. This would result in the user, while still seeing the

environment through their headset, being represented within the scene by a second object

as well. Thus the user could turn to see a second set of their hands floating in the air and

mimicking their movements in the environment’s intended spawn location for the user.

This issue was remedied by changing how the user object was loaded into scenes.

Rather than having the user object in the scene from the start, an object was created that

is placed in the environment within the scene. This object was then given a script that

spawns the user into the scene using the positional data of the object. Upon the

initialization of the scene’s objects, the script first checks to see if the user object already

exists within the scene using the “Player” tag to find the user object. If the user object

does exist within the scene, the user object is moved to the position of the object that the

16

spawning script is attached to. If the user object does not exist, it is instantiated into the

scene at the correct position and scale. The object containing this script was then set to

not render its mesh or collider within the scene, resulting in an invisible object that the

user is unaware of as to not distract them. This allows for the initial scene in the project

to instantiate the user object into the scene and any scene that the user changes to from

then on will move the user object to the correct location rather than attempting to create

the user a second time or having a user object already within the scene. This remedies the

“duplicate user” issue and will easily allow the creator of an environment to define the

location that the user will be loaded into with a physical object. Below is the code used

by the project to create the user object properly.

Figure 10. User object creation code.

 Due to the method that the environments were created with, an issue began to

arise regarding the scenery that was rendered using billboards. Billboards are essentially

two dimensional graphics placed within the scene that rotate to face the camera rather

than a three dimensional object. This saves resources by eliminating the need for a mesh

17

to be rendered for the object while still giving the illusion that the two dimensional

graphic is a legitimate object within the environment. When creating several of the

example environments, billboards were used to make “background” objects near the outer

edges of the environment that did not require fully detailed objects due to their distance

from the player. This method was primarily chosen due to the fact that the Unity engine’s

terrain objects allowed for both the terrain manipulation required to make the example

environments more than a flat plane and the terrain object supported easily “painting”

these billboard objects onto the terrain to be used as either trees or grass within the

environment. Interestingly, the Unity engine seems to treat these objects somewhat

differently when being viewed using the Virtual Reality headset as the scene’s camera

rather than a standard Unity camera object. When these objects are at a certain distance

from the camera in a scene they are either reduced in detail or unloaded entirely to further

save on resources. Through a standard camera object, the distances at which the

billboards are no longer rendered are reasonable, with the object being far enough that it

could not be seen by the user realistically. This seemingly did not scale well with the

Virtual Reality headset’s camera, as the objects would vanish at a distance where they

should have been easily visible from. This completely breaks any sense of immersion for

the user in the environment as objects would simply stop existing if the user barely

backed away from them. I believe that this was caused due to the object representing the

user being at a different scale to the standard camera object. Luckily this was easily

solved through an increase made to the detail distance that the Unity editor used to

choose what level of detail to render the billboards at in an environment. Through this

increase, trees would correctly render for the user, allowing the environment to be

18

correctly detailed as to not break user immersion. Below is the settings method used to

correctly render the billboards in this project, resulting in the correct rending of trees.

Figure 11. Unity billboard render settings.

Environment Toolset

 Although the environments that were created to showcase this project were fully

functional in regards to what was created for their handling and interactions, the main

focus of this project was to provide a toolset of sorts for someone in the archeology field

to create their own environment and its variations using a three dimensional scan of an

area with a limited knowledge of the inner workings of the Unity engine. For this

purpose, the project contains several prefabs and scenes to allow for ease of use.

 The first tool provided is a simple scene created for the user to drop their

environment scan into. This scene contains the bare essentials for the environment to

work properly within the stipulations created by the project, these being a spawn point for

the user’s Virtual Reality object and a plane that the user is able to move around on. Note

19

though that this plane has been rendered invisible so that it does not interfere visually

with the environment scan that will be provided by the user. Along with these, four

boundary prefabs are also placed into the scene that the user can simply move to restrict

the area that can be explored within the environment. With these provided prefabs and

the base scene itself, the user should be able to easily drop their environment scan into

the scene, size it appropriately using Unity’s resize tool, and have their environment be

easily navigable in Virtual Reality. The following is an image of the base scene that will

be provided with the project that shows the plane and boundaries’ colliders.

Figure 12. Wireframe base scene.

 By duplicating the base scene, the user should be able to create two versions of

their environment, one as a “past” variation of what the environment looked like during

the period of history that is of interest and one as a “present” variation that is

representative of how the environment looks currently. Once these two variation have

been created they must be added to the scenes listed in Unity’s build menu by opening

each and clicking “add open scenes” within the build settings. If this is not done, the

20

Unity engine will hang on attempting to swap between either of the scenes when running

the project within the editor and the scenes will not be included when building the project

for a standalone release. Along with this, the scenes must be added to the menu prefab for

the project so that the user may switch between the environment’s variations when in

Virtual Reality. To make this significantly simpler for the user, the code used to switch

between environments has been created in such a way that the code itself does not need to

be modified to take in the correct scene’s name. Rather than requiring for the code itself

to be edited, the string meant to contain the name of the scene to be loaded upon touching

the related menu option has been made public. Due to this, the desired scene’s name can

be entered into a field on the menu prefab when selecting the section of the menu meant

to represent that scene within the Unity editor. To do this, simply open the menu prefab

from within the Unity editor, click on the menu option meant to represent the scene, and

look at the object’s script component. This has the appropriate field where the file name

of the scene must be entered. After entering the correct file name, save the prefab and the

scene should be loaded upon selection of that option on the menu from within Virtual

Reality. If this is performed for each of the two variations made for the environment, the

two scenes will both be easily swappable within the project. Below is an example of the

menu prefab being edited to support a scene in the manner stated above.

21

Figure 13. Initial menu settings.

Figure 14. Entered scene name text.

 Through these basic tools the user should be able to create an environment or a set

of environments that can be explored within Virtual Reality to provide a better sense of

scale. If the user wishes to do more than a simple environment though, say an

environment that has objects within it as the example scenes that were created for this

project do, more prefabs have been provided. These consist of a few basic colliders that

have been tagged using the “NoTel” tag so that the user will not be able to teleport onto

the object in question. These can be resized appropriately to give an object within the

22

scene, such as a statue, collision to prevent the user from teleporting onto it. These are

provided in the “Prefabs” folder within the project. All of the toolset prefabs and base

scenes are cataloged in the images below for documentation purposes.

Figure 15. Prefabs provided with the toolset.

23

CHAPTER V

CONCLUSION

 This project has provided for an extremely interesting way to blend my major in

Computer Science with my interest in developing a Virtual Reality application. The

project itself has turned out quite well and I believe that the toolset I have created would

be incredibly useful to anyone who wishes to implement their environment in a way that

provides the user with a method to explore its variations and truly show the scale and

depth of the environment. The basic assets for this toolset have been uploaded to GitHub

at https://github.com/rwd22/VR-Environment-Toolset/ and the SteamVR SDK is

available for download in the Unity Asset Store. Along with this, I believe that through

the creation of this project I have gained valuable experience regarding the development

of a Virtual Reality application, especially seeing as the industry for Virtual Reality is

continuing to grow in both the professional and consumer spaces.

https://github.com/rwd22/VR-Environment-Toolset/

24

CHAPTER VI

FUTURE WORK

In regards to what may be done to improve this project in the future, a different

method of restricting the user’s movements may be beneficial. As stated previously, due

to the way that Unity handles collisions, the user is able to force their way past the

boundaries if solid ground exists beyond them. This is primarily to prevent the user from

becoming stuck within a collider if they manage to break into one, but I believe that a

visual cue may be added to guide the user back to the intended space if they do break out,

such as darkening the user’s view when in this area when they are not facing the intended

space. The menu could also be expanded upon in the future to allow for more spaces to

add environment variations while keeping the interface compact and manageable.

Overall, I am extremely pleased with the progress that I have made on this project and

with the amount of experience I have gained regarding Virtual Reality over the course of

its development.

25

BIBLIOGRAPHY

Kerckhove, E. V. de, & Kerckhove, E. V. de. (n.d.). HTC Vive Tutorial for Unity.

Retrieved from http://www.raywenderlich.com/9189-htc-vive-tutorial-for-unity

Technologies, U. (n.d.). MonoBehaviour.Awake(). Retrieved from

https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html

Technologies, U. (n.d.). Terrain settings. Retrieved from

https://docs.unity3d.com/Manual/terrain-OtherSettings.html

Technologies, U. (n.d.). LayerMask. Retrieved from

https://docs.unity3d.com/ScriptReference/LayerMask.html

Technologies, U. (n.d.). SceneManager.LoadScene. Retrieved from

https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.Load

Scene.html

Technologies, U. (n.d.). Physics.Raycast. Retrieved from

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

Technologies, U. (n.d.). Object.Instantiate. Retrieved from

https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

Technologies, U. (n.d.). Collider.OnTriggerEnter(Collider). Retrieved from

docs.unity3d.com/ScriptReference/Collider.OnTriggerEnter.html

http://www.raywenderlich.com/9189-htc-vive-tutorial-for-unity
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Awake.html
https://docs.unity3d.com/Manual/terrain-OtherSettings.html
https://docs.unity3d.com/ScriptReference/LayerMask.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.LoadScene.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.LoadScene.html
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

	Virtual Reality Environment Recreation
	Recommended Citation

	tmp.1583536028.pdf.IlFMf

