
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2020

BitBilliards BitBilliards

Grant Reinbolt
gar20@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Electrical and Electronics Commons, and the Signal Processing Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Reinbolt, Grant, "BitBilliards" (2020). Williams Honors College, Honors Research Projects. 1027.
https://ideaexchange.uakron.edu/honors_research_projects/1027

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1027
https://ideaexchange.uakron.edu/honors_research_projects/1027?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Bit Billiards

Senior Design Project Final Report

Design Team #08

David Milostan (CpE)

Grant Reinbolt (EE)

Kyle Stevenson (EE)

Rodney Morgan (CpE)

Faculty Advisor: Osama Alkhateeb

Date Submitted: April 24th, 2020

2

Table of Contents

Abstract (RM) ... 6

1. Problem Statement .. 6

1.1: Need (GR/RM) .. 6

1.2: Objective (RM) .. 7

1.3: Background .. 7

1.4: Marketing Requirement (DM) ... 12

2. Design Requirements Specifications (ALL) ... 12

3. Accepted Technical Design .. 14

3.1. Hardware Design (GR/KS): ... 14

3.2. Software Design (DM/RM): .. 46

4. Financial Budget (GR) .. 89

7. Project Schedule (GR) .. 90

8. Team Information ... 96

9. Conclusions and Recommendations (GR) .. 96

10. References ... 98

3

List of Figures

Figure 3.1.1: Level 0 Hardware Block Diagram ... 14

Figure 3.1.2: Level 1 Hardware Block Diagram ... 15

Figure 3.1.3: Level 2 Hardware Block Diagram ... 18

Figure 3.1.4: Stepper Motor Driver Schematic ... 22

Figure 3.1.5: Chopping Current Equation [10] ... 23

Figure 3.1.6: PIC Adapter Board Schematic .. 25

Figure 3.1.7: Adapter Board PCB ... 26

Figure 3.1.8: Adapter Board Stepper Motor Schematic ... 27

Figure 3.1.9: Adapter Board Servo Schematic ... 29

Figure 3.1.10: Adapter Board Solenoid Schematic .. 30

Figure 3.1.11: Adapter Board Limit Switch Schematic .. 32

Figure 3.1.12: Pool Table Top View .. 34

Figure 3.1.13: Pool Table Underside View .. 35

Figure 3.1.14: Pocket Gate Test Stand.. 36

Figure 3.1.15: Pocket Gate Implementation ... 37

Figure 3.1.16: Servo Motor Mounts ... 38

Figure 3.1.17: Gantry System Complete View ... 39

Figure 3.1.18: Side View of Re-racking System .. 41

Figure 3.1.19: Y-Axis Limit Switch ... 42

Figure 3.1.20: Re-rack Gantry Construction... 44

Figure 3.1.21: Assembled Adapter Board... 45

Figure 3.2.1: Gate System Software Flowchart .. 48

Figure 3.2.2: Racking System Software Flowchart .. 49

Figure 3.2.3: Serial Communication Software Python - Opening Serial Port 50

Figure 3.2.4: Serial Communication Software Python - Transmitting Byte................................. 50

Figure 3.2.5: Serial Communication Software C - Setting Registers for UART 50

Figure 3.2.6: Serial Communication Software C - Receiving Bytes .. 51

Figure 3.2.7: Gate System Software ... 51

Figure 3.2.8: Gate System Software - Set Servo Degree .. 53

4

Figure 3.2.9: Racking System Software - Move Stepper to Coordinate 53

Figure 3.2.10: Code Snippet for Detecting the Pool Table ... 55

Figure 3.2.11: Detecting Pocket Boundaries .. 56

Figure 3.2.12.1: Creating Each Ball to be Tracked ... 58

Figure 3.2.12.2: Ball Object .. 59

Figure 3.2.13.1: Masking Each Ball ... 62

Figure 3.2.13.2: Masking Continued .. 63

Figure 3.2.14.1: Tracking Algorithm .. 64

Figure 3.2.14.2: Tracking Movement ... 65

Figure 3.2.14.2: Decision Making .. 66

Figure 3.2.15: Implementation of Python to Firebase Communication.. 67

Figure 3.2.16: Full Python Code ... 68

Figure 3.2.17: Implementation of React Native to Firebase Communication 78

Figure 3.2.18: React Native Listening for Pocketed Balls.. 78

Figure 3.2.19: Ball Coordinate Rendering .. 79

Figure 3.2.20: BitBilliards App .. 80

Figure 3.2.21: Full BitBilliards React Native Code .. 81

Figure 7.1.1: Design Gantt Chart Part 1 ... 90

Figure 7.1.2: Design Gantt Chart Part 2 ... 91

Figure 7.1.3: Implementation Gantt Chart .. 92

Figure 7.1.4: Actual Gantt Chart... 94

5

List of Table

Table 2.1.1: Engineering Requirements .. 12

Table 3.1.1: System Fundamental Requirement Table ... 14

Table 3.1.2: Camera Fundamental Requirement Table .. 15

Table 3.1.3: PC Fundamental Requirement Table .. 15

Table 3.1.4: Microcontroller Fundamental Requirement Table ... 15

Table 3.1.5: Adapter Board Fundamental Requirement Table ... 16

Table 3.1.6: Racking Motors Fundamental Requirement Table ... 16

Table 3.1.7: Gate Motors Fundamental Requirement Table ... 17

Table 3.1.8: Gantry Preparation Fundamental Requirement Table .. 17

Table 3.1.9: Power Supply Fundamental Requirement Table .. 17

Table 3.1.10: PIC24 Fundamental Requirement Table .. 18

Table 3.1.11: Power Supply Fundamental Requirement Table .. 18

Table 3.1.12: Stepper Drivers Fundamental Requirement Table ... 19

Table 3.1.13: Servo Control Fundamental Requirement Table .. 19

Table 3.1.14: Solenoid Driver Fundamental Requirement Table ... 20

Table 3.1.15: Limit Switch Interface Fundamental Requirement Table 20

Table 3.1.16: Stepper Motors Fundamental Requirement Table .. 20

Table 3.1.17: Servo Motors Fundamental Requirement Table ... 20

Table 3.1.18: Solenoids Fundamental Requirement Table ... 21

Table 3.1.19: Limit Switches Fundamental Requirement Table .. 21

Table 3.1.20: Stepper Motor Driver Parts Table... 21

Table 3.1.21: PIC Adapter Board Parts Table .. 24

Table 3.2.1: Microcontroller Fundamental Requirement Table ... 46

Table 3.2.2: Server Fundamental Requirement Table .. 46

Table 3.2.3: Mobile App Fundamental Requirement Table ... 47

Table 4.1.1: Original Budget .. 89

Table 4.1.2: Actual Budget ... 89

6

Abstract (RM)
 The goal of the project is to create a billiards table capable of keeping track of the score

while simultaneously racking the sunk balls under the table. To achieve this, image processing

will be utilized to detect and determine which balls are above and below the table. Upon leaving

the table, the balls will be held by gates to prevent the cue ball from entering the reracking track.

The balls will then enter the track and form a queue to be placed back into the triangle

underneath the table. A gantry system consisting of an x and y axis will place the waiting billiard

balls into their corresponding positions in the triangle. Throughout this process, data will be sent

to a remote server which will provide the live game updates to the app. The app will be capable

of showing the current score and status of the game, including images of the table. All of these

improvements will help bring more viewers to the competitive pool scene while decreasing the

delay between games.

1. Problem Statement

1.1: Need (GR/RM)

The American Poolplayers Association has over 250,000 members across 300 APA

leagues in the US, Canada and Japan. These tournaments range from junior leagues to

professional world championships with monetary payouts of over $2 million. However, the game

of pool has not changed since its creation. This means there is no way to automatically display

the score of each pool game to the viewers. Viewers of the tournament have no way to know the

score of any game besides the game they are currently watching. Each table also must re-rack

their own balls, slowing down the speed of the game. By taking advantage of current technology,

the game of pool can be more interactive with its audience while speeding up the pace of the

game.

7

1.2: Objective (RM)

The objective of this project is to design and prototype a modified billiards table that re-

racks pool balls during tournament play and allows pool fans to receive live updates of each

game from an app. To accomplish automated re-racking, a mounted camera will send live video

to a microcontroller that will use image processing to determine when balls are sunk, and make a

decision on whether or not they should be re-racked. If balls are determined legally out of play,

they will be sent to a queue to be racked for the next game. By knowing the order of the balls in

the queue, they can be re-racked properly. The rack will be placed on a motorized bed similar to

an X-Y cartesian 3D printer, so it can accurately reposition itself under the hopper for each ball

that gets re-racked. The images sent to the microcontroller will also determine the game’s status

in real time. As the game progresses, the positions of the balls will be sent from the

microcontroller to a server, so pool followers can use an app to view an animated pool table that

updates as the game progresses.

1.3: Background

(RM) One objective of this project is to use image processing to keep track of the balls

that have been sunk and record the position of the balls currently on the table during each move.

To accomplish this, a camera must be placed above the table and a live video feed will be sent to

an embedded system that implements OpenCV, an image recognition API, to understand the

placement of all balls. According to OpenCV’s API, the service must run on either Linux,

MacOS, or Windows. There’s an example of this being completed with an ARM9 Processor

using the OpenCV C++ API in a facial recognition environment [1]. Using the ARM9 processor

provides the benefit of high frequency rates and a five-stage pipeline, allowing for fast and

reliable image processing. One limitation may be the frame rate of the video feed. The document

8

did not include information about the number of video frames sent to the embedded system each

second, so the time to receive and process each frame may exceed the time that it takes to stream

each frame. Also, this implementation did not discuss sending the data to a database. As a result,

the embedded system must have a Wi-fi module to stream data to the database.

(DM) Another implementation of image recognition and video analysis in a billiards

environment is seen in Billiards Wizard [2]. This proof of concept uses image recognition and

video analysis to teach people how to play pool based on videos of professionals playing the

game. Similar to Billiards Wizard, the proposed billiards table outlined in this document will also

use a camera to determine the position of the balls based on color and coordinates. In contrast,

Billiards Wizard is limited in how it uses the video feed sent to it. There is no way to broadcast

or analyze live gameplay, which limits its functionality.

(GR) Currently there is no way to automatically count score for those playing billiards.

All score is kept track manually by the participants. This slows down the game because it takes

the participants focus away from the game. Several projects have been attempted to alleviate this

such as the project by Tang and Wang [3]. These different methods include: RFID readers,

manually toggling LED scoreboards, and magnetic tracks which automatically track score.

However, each of these methods has its own flaws. RFID readers are accurate, but the big issue

is how the RFID chips are implemented in the balls. In the document by Wang and Tang, the

billiards balls are simulated with Ping-Pong balls. This does not accurately represent the

implementation because the RFID tags used would not fit in the balls. Any other form of tag or

chip would require modifying the balls in a way that could affect how they affect play. Manually

toggling an LED scoreboard still requires manual operation, defeating the purpose of automatic

score tracking. Designing magnetic tracks to keep score would require many hours of design and

9

deliberation, assuming the design even functions in the end. Using a camera to track score

eliminates the need to modify the balls or create a mechanical system that tracks score. This is

the most efficient way to track score while adding little distraction to the participants.

(GR/DM) A third objective of this project is to design an automatic ball re-racking

system. This solves the issue of manually emptying the pockets and re-racking the balls. The

closest thing to an automated re-racking system is the commonly seen coin-operated tables

located in bars and pool halls. This mechanism locks the sunk balls in a hopper underneath the

table. If the cue ball is sunk, a magnet inside the ball allows the it to bypass the normal collection

method. Another example of automatically re-racking billiards balls was introduced in 1917 [4].

The concept suggested by Russell is like the modern coin-operated tables. In this concept, tubes

are ran from each pocket to a hopper at the end of the table, where sunken balls collect. The

limitation of this technology is that there is no method to place the balls into the racking device.

The balls would just be dropped into a bucket or some other collection device. This patent is

similar to what is being proposed, however the goal is to re-rack the balls before the next game.

This adds one more step to the process. Due to this, a solution will be designed that takes the

collected balls and accurately places them into a billiards rack underneath the table. The most

difficult part of this is to figure out how to get the balls in the proper spot in the rack, as there are

requirements for how the balls are to be racked depending on the game being played. The

solution to this would be a cartesian motion system for the bed that the rack will be sitting on. 3-

D printers currently use this system to move designs on the two-dimensional plane, while the

extruder moves vertically. In the publication “Dynamic Modeling and Characterization of the

Core-XY Cartesian Motion System” it can be seen exactly how this system works and why it is

one of the most accurate systems to use for positioning [5]. While this project is not to create a 3-

10

D printer, the cartesian system is relevant to the design of the re-racking system because it will

allow a billiards rack to move under a hopper in a way that each dropped ball will land in the

desired position for the next game.

(KS) A fourth objective of this project is to use a motorized gate to release billiard balls

from the pocket to the track. Motorized gate systems are able to be used in many different types

of scenarios. Automatic doors and gate systems are used in everyday life from handicap doors to

garage doors. In a project by Hao Wang in 2015, Wang designed a scale model of a door system

used in the Spartan Superway automated transit network [6]. The way this gate system will work

in this design project is that the system will stay normally closed and when billiard balls are

pocketed, a motor will open the door and release the balls below into the track, then into the

automatic re-racking system. In the case that the cue ball is pocketed, the door system will

remain closed so the cue ball may be removed by a player. There will be many similarities and

differences between the design by Wang and the design implemented into this proposed design

project. A design similarity to Wang’s is that “Basic dimensions of door opening need to meet

requirements for easy accessing for passengers with disability, emergency egress, and rescue

access.” [6]. This similarity comes into play such that the door must be located deep enough into

the pocket in order to allow at least three balls to fall into any pocket at any point in time. The

case where three balls would be in a pocket at one certain time would come when a player makes

a combination shot and pockets the cue ball. In Wang’s design, there are many requirements that

would be unnecessary in the design of a modified billiards table. In the design of Wang’s door

system, there are standards for gap space between doors, platforms, and door frames in order to

prevent crushing hazards. In the design of a door system for a billiards table, the only

precautionary gap would come between the gate and the track. A factor that will need to be

11

calculated in this design project is the force being exerted onto the door in the system. The

design of an automatic door system by Wang accounts for an external pressure force being

applied between the roller and base plate. In this design project, there will be a pressure force

exerted directly onto the door due to the balls that were pocketed. The gate will be controlled by

a spring that will allow the billiard balls to fall into the racking system and then return back to

level after the balls have been released.

(KS) Another objective of this project is monitoring gameplay, a useful tool for coaches

or anyone viewing the game at play. There is currently a patent from James W. and James V

Bacus for an LED light fixture that is mounted above the pool table that may support one or

more cameras [7]. The main concept behind monitoring the game is that the recordings may be

reviewed in order to achieve a higher level of play. This device records game play, offers replay,

review, analysis of stored video, and light dimming controls. This device would be very similar

to the recording device used in this design project. A difference is that the device used in the

design project will not be required to be mounted from the ceiling. The device created for the

design project will be freestanding around the table. Having lighting and the monitoring device

mounted above the table restricts the table from use in an open room. With the freestanding

device, the table can essentially be located anywhere as long as there is an electrical source

readily available and there is enough clearance for the freestanding aperture. The device created

by James W. and James V Bacus uses a grid system that aids in locating and determining the

position of each ball. This grid system will also be used by the freestanding device as well so the

balls can be easily located and tracked.

(RM) A final project objective is viewing live game data from an app. For this project,

React Native has been selected as the programming language of choice, because it can be written

12

in one language, and function on both Android and iOS operating systems instead of writing two

separate apps. For real time applications, Firebase is an appropriate database to implement in this

project due to its real-time capabilities. Game data will be streamed to the Firebase Cloud after

the software interprets the game’s progress on the embedded system. The mobile app will listen

for changes on the Firebase database and update the mobile app when it’s found. An example of

an embedded system streaming data to Firebase for a mobile app to interpret can be found in the

publishing by Li, Yen, Lin, Tung, and Huang [8]. In both implementations, embedded systems

interpret data and send it to Firebase storage. Then, a mobile app analyzes the data in real-time.

This article discusses the different methods of streaming data to Firebase from the

microprocessor. The authors of this publication utilized a REST API for sending data, and a

JavaScript SDK to read data. In the modified billiards table, these concepts will be the same.

Data will stream from the embedded system via REST API and read via the JavaScript SDK. In

this implementation, data is sent from an Arduino (a microprocessor without internet

capabilities) to an “intelligence server” before sending data to Firebase Storage. For this

implementation, server integration could be eliminated by adding internet capabilities to the

embedded system so data can be streamed straight to Firebase.

1.4: Marketing Requirement (DM)

This product should automatically rack the balls, give fans live updates of tournament

play, identify which balls are on the table, individually identify which ball has been pocketed,

and determine the score and winner of each game.

2. Design Requirements Specifications (ALL)
 Table 2.1.1: Engineering Requirements

Marketing
Requirement

Engineering Requirements Justification

13

2, 3, 4 The system will be able to
differentiate each of the balls
on the table from one another
other.

The algorithm will be able to
successfully detect each of the
pool balls on the table, and
determine which ones have
been pocketed by each player.

6 The system will be able to
remotely display the position
of each ball on the table.

The algorithm will create an
(X,Y) coordinate for each of
the balls on the table, and
send a JSON

1,3,4,5 The system will be able to
determine which balls are in
the pockets or no longer on
the table.

The program will determine
which balls are in the table so
that re-racking commands can
be sent to the microcontroller
below.

4,5

The gate system will be able
to be delayed a maximum of
10 seconds until the ball in
the pocket is identified.

The microcontroller will send
a signal to the servo motor
telling the motor to open or
close depending on which ball
was pocketed.

1,4,5 The racking system will be
able to place the 8-ball and
one solid and one stripe in
their desired positions within
the rack.

The racking system will be
told by the microcontroller
which ball was pocketed and
determine which position in
the rack to place the ball in.

2,3,4,5,6,7 The application will be able
to offer a live look into the
game being played.

The server will send live
updates out to a mobile
application that will track ball
movement and location, score
and winner of each game.

1,4,5 The racking system will be
able to place a ball into its
desired spot within 30
seconds of the ball being
placed in the start position.

The stepper motors used to
drive the system will move
the position arm quickly into
place upon receiving a ball.

2,3 The live game play will not
be affected by the system in
any way.

High speed camera will be
mounted above table to
provide a clear view of table
with constant light applied.

14

6,7 The system will be able to
determine which player’s turn
it is therefore, determining
which balls should be being
aimed for.

The camera will determine
which player is up based on
ball placement and by the
amount of time delay,7
between shots.

1 The re-racking system will be
complete within 2 minutes of
game completion.

The racking system is used to
help speed up the process and
decrease the time in between
games.

Marketing Requirements
1. The system will automatically re-rack the pool balls
2. The system will provide live updates
3. The system will identify balls on the table
4. The system will identify balls in the pockets
5. The system will track the status of the balls
6. The system will determine the score of each game
7. The system will determine the winner of each game

3. Accepted Technical Design

3.1. Hardware Design (GR/KS):
Figure 3.1.1: Level 0 Hardware Block Diagram

Table 3.1.1: System Fundamental Requirement Table

Module System

Inputs Power

Live video from the table

Outputs Ball command signals

Description
The system will analyze live images from the table to determine what ball
commands to be executed.

15

Figure 3.1.2: Level 1 Hardware Block Diagram

 Table 3.1.2: Camera Fundamental Requirement Table

Module Camera

Inputs Power over USB

Visual input from table

Outputs Live video to the PC

Description The camera will send live video to the PC for processing.

Table 3.1.3: PC Fundamental Requirement Table

Module PC

Inputs Live video from camera

Outputs Serial commands to microcontroller

Power over USB to the microcontroller

Description The PC will use image processing to determine ball positions on the table and
inside the pockets. The PC will then send this data over serial to the
microcontroller. The PC will also power the microcontroller over USB.

Table 3.1.4: Microcontroller Fundamental Requirement Table

Module Microcontroller

Inputs Power over USB from the PC

16

Serial commands from the PC

Input data from the Adapter Board

Outputs Output commands to the Adapter Board

Description The microprocessor will receive serial commands from the PC telling the
microprocessor which balls are in the pockets.

The microprocessor will receive serial commands from the PC telling the
microprocessor which balls need re-racked under the table.

The microprocessor will then send output commands to the Adapter Board.

Table 3.1.5: Adapter Board Fundamental Requirement Table

Module Adapter Board

Inputs Power from the Power Supply

Output commands from the Microcontroller

Data from the Gantry Preparation

Outputs Output any received input data from the stages

Output power and data to the Racking Motors

Output power and data to the Gate Motors

Output power and data to the Gantry Preparation

Description The Adapter Board serves as an interface between the Microcontroller and the
sensors and actuators in the system.

The Adapter Board receives data and power while also outputting data and power
to various stages under the table.

Table 3.1.6: Racking Motors Fundamental Requirement Table

Module Racking Motors

Inputs Power and data from the Adapter Board

Outputs Mechanical movement

Description The racking motors will be used to move a gantry to re-rack pocketed balls into a
triangle.

This system will be located under the table to allow the pockets to feed into the
racking solution.

17

Table 3.1.7: Gate Motors Fundamental Requirement Table

Module Gate Motors

Inputs Power and data from the Adapter Board

Outputs Mechanical movement

Description The gate motors will be used to hold the sunk balls in each pocket to check and
see if the cue ball was pocketed.

The gate motors will then release the sunk balls into the re-racking solution under
the table.

Table 3.1.8: Gantry Preparation Fundamental Requirement Table

Module Gantry Preparation

Inputs Power and data from the Adapter Board

Outputs Mechanical movement

Input data from sensors in the track

Description The gantry preparation tube will be used to index and hold the balls in the track
before the gantry system.

This system will allow for one ball at a time to be released and indexed into the
gantry to be re-racked.

Table 3.1.9: Power Supply Fundamental Requirement Table

Module Power Supply

Inputs Power: 120VAC

Outputs Power: 12VDC, 6VDC, 5VDC

Description The power supply will provide the necessary voltages and currents to each
component of the system.

18

Figure 3.1.3: Level 2 Hardware Block Diagram

Table 3.1.10: PIC24 Fundamental Requirement Table

Module PIC24

Inputs Feedback signal from Limit Switch Interface

Outputs PWM signal to Stepper Drivers

PWM signal to Servo Control

Enable signal to Solenoid Drivers

Description The PIC24 will output various signals to different driver/controller circuits on the
adapter board to activate the corresponding devices.

The PIC24 will receive a feedback signal from the Limit Switch Interface when
the limit switches have been triggered.

Table 3.1.11: Power Supply Fundamental Requirement Table

Module Power Supply

19

Inputs 120VAC

Outputs 12V to Stepper Drivers

6V to Solenoid Drivers

5V to Stepper Drivers, Servo Control, Solenoid Driver, Limit Switch Interface

Description The Power Supply

Table 3.1.12: Stepper Drivers Fundamental Requirement Table

Module Stepper Drivers

Inputs 12V from Power Supply

5V from Power Supply

PWM Signal from PIC24

Outputs

12V to Stepper Motors

PWM Signal to Stepper Motors

Description The Stepper Drivers are used to provide the necessary power and signal to the
Stepper Motors.

The PWM Signal will be converted into a modified PWM to move the Stepper
Motors.

The Drivers will pass 12V to power the Stepper Motors. The 5V is used to select
and enable options built into the Driver chips.

Table 3.1.13: Servo Control Fundamental Requirement Table

Module Servo Control

Inputs 5V from the Power Supply

PWM signal from the PIC24

Outputs 5V to the Servo Motors

PWM signal to the Servo Motors

Description The Servo Control will be used to open and close the Servo Motors in the pocket
gates. Depending on the PWM signal received from the PIC24, the gates will
open or close. The 5V is used to power the Servo Motors.

20

Table 3.1.14: Solenoid Driver Fundamental Requirement Table

Module Solenoid Driver

Inputs 6V from the Power Supply

5V from the Power Supply

Enable signal from the PIC24

Outputs 6V to Solenoids

Enable signal to Solenoids

Description The Solenoid Driver is used to engage and disengage the solenoids via a signal
from the PIC24. However, this Driver is needed because the PIC24 cannot power
or control the solenoids on its own.

Table 3.1.15: Limit Switch Interface Fundamental Requirement Table

Module Limit Switch Interface

Inputs 5V from Power Supply

 Feedback Signal from Limit Switches

Outputs 5V to Limit Switches

Feedback Signal to PIC24

Description The Limit Switch Interface is used to power the attached Limit Switches. The
Interface will also limit the feedback signal to protect the PIC24 from damage.

Table 3.1.16: Stepper Motors Fundamental Requirement Table

Module Stepper Motors

Inputs 12V from Stepper Drivers

 PWM signal from Stepper Drivers

Outputs Mechanical movement

Description The Stepper Motors are used to move the rerack gantry. The motors will move the
x and y axis of the gantry. The 12V is used to power the motors and the signal
determines the speed of the motors.

Table 3.1.17: Servo Motors Fundamental Requirement Table

21

Module Servo Motors

Inputs 5V from Servo Control

 PWM signal from Servo Control

Outputs Mechanical movement

Description The Servo Motors are used to control the gates in the pockets. These gates hold
balls temporarily before releasing them into the track below. The 5V is used to
power the motors and the PWM determines the motors position.

Table 3.1.18: Solenoids Fundamental Requirement Table

Module Solenoids

Inputs 6V from Solenoid Driver

 Enable signal from Solenoid Driver

Outputs Mechanical movement

Description The Solenoids are used to stop and index balls in the gantry preparation track.
These solenoids allow one ball at a time to be released and control the flow of
balls. The 6V is used to power the solenoids while the enable signal engages or
disengages the solenoids.

Table 3.1.19: Limit Switches Fundamental Requirement Table

Module Limit Switches

Inputs 5V from Limit Switch Interface

Outputs Mechanical movement

Feedback Signal

Description The Limit Switches are used to determine the position of a ball in the gantry
preparation track and the position of the re-rack gantry. The limit switches are
powered by 5V. When the limit switch is activated, a feedback signal is sent to the
Limit Switch Interface to tell the PIC24 the limit switch has been tripped.

Table 3.1.20: Stepper Motor Driver Parts Table

Reference Designator Part Description

U1 DRV8825 Stepper Motor Chip

22

C1 10nF Capacitor

C2 0.1uF 16V Capacitor

C3, C4 0.1uF Capacitor

C5 100uF Capacitor

C6 0.47uF Capacitor

R1 1M ohm resistor

R2, R3 0.2 ohm resistors

UNLABELED 10k ohm potentiometer

Figure 3.1.4: Stepper Motor Driver Schematic

23

 Shown in Figure 3.1.4 is the schematic created to build the stepper motor drivers. These

stepper motor drivers are necessary to move the attached stepper motors, as stepper motors are

not operated the same way as traditional brushless motors. The Texas Instruments DRV8825 was

selected to be used as the driver chip. The DRV8825 can output 2.5A per phase, more than

enough to power the 2A per phase stepper motors selected. The DRV8825 is capable of 1/32

micro stepping, which can be used to reduce the 1.8 degree step into a smaller, more precise

movement. The schematic shown above was designed using the typical application selection on

page 18 of the DRV8825 datasheet [10]. VMA and VMB are the Bridge A and Bridge B power

supplies [10]. These are connected to the motor supply voltage of 12 Volts and bypassed to GND

with a 0.1uF capacitor. The 100uF capacitor also tied to VMA/VMB is used to safely block any

parasitic from the attached power supply. VMA/VMB are also connected to VCP via a 1M ohm

resistor and 0.1uF capacitor. VCP is the high-side gate drive voltage [10]. DIR is connected to

pin RA0 of the PIC24 microcontroller. This pin changes the direction of the stepper motor

depending on if the pin is set high or low. STEP is connected to OC5 of the PIC24

microcontroller. This pin is used to move the indexer one step every time a rising edge signal

occurs. CP1 and CP2 are listed as charge pump flying capacitors [10]. These pins are tied

together using a 0.01uF capacitor. ISENA and ISENB are Bridge A and Bridge B current sensing

resistors [10]. These resistors are chosen such that the denominator in Figure 5.1.5 is set equal to

1. This means that the values for the current sensing resistors needs to be 0.2 ohms.

Figure 3.1.5: Chopping Current Equation [10]

 The other variable used in Figure 3.1.5 is AVREF and BVREF. These pins are used to

obtain a reference voltage for Bridge A and Bridge B. They are connected to a 10k ohm

24

potentiometer connected to 3.3V. The center tap is then connected to both AVREF and BVREF.

This reference voltage is then used as the numerator for Figure 3.1.5. The value of the voltage

determines the chopping current because the denominator is set to 1. This chopping current is the

limit on the current for each bridge. By varying the chopping current, more or less current can be

used to drive the stepper motors. For the stepper motors selected, the VREF values are set to 2V

so that 2A of chopping current is set as the limit. V3P3OUT is the internal 3.3V regulator on the

chip. However, it will not be used so it is bypassed to GND with a 0.47uF capacitor. AOUT1,

AOUT2, BOUT1, and BOUT2 are connected to the four wires of the stepper motor. The color

connection is shown in the schematic. Each set of outputs, AOUT/BOUT, are connected to a

single phase of the stepper motor. The remaining unconnected pins are used to select different

features such as the micro stepping, sleep, home, or reset. These pins all contain internal

pulldown resistors so if no voltage is applied, they are logic level 0’s.

Table 3.1.21: PIC Adapter Board Parts Table

Reference Designator Part Description

5V, 6V, 12V Screw-Terminal Connector

C1, C2, C3, C4 100uF 50V Capacitor

22-23-2021 Molex 2-Pin Connector

22-23-2031 Molex 3-Pin Connector

22-23-2041 Molex 4-Pin Connector

22-23-2051 Molex 5-Pin Connector

22-23-2061 Molex 6-Pin Connector

JP1, JP2 2 Row 6-Pin Header

UNLABELED 8 Position Connector Receptacle

U1, U2 IC Gate AND 4 Channel 2 Input

25

S1, S2, S3, S4 MOSFET N-CH 60V 200MA TO-92

D1, D2, D3, D4 Diode General Purpose 1000V 1A

Q1, Q2, Q3, Q4 MOSFET, 50V, 30A, TO-220 pkg

R1, R2, R3, R4, R5, R6, R13, R14, R15, R16,
R17, R18

10kΩ Resistor

R7, R8, R9, R10, R11, R12 20kΩ Resistor

F1, F2, F3 FUSE BLOCK BLADE 500V 30A PCB

F1, F2, F3 FUSE AUTOMOTIVE 7.5A 32VDC BLADE

 Figure 3.1.6: PIC Adapter Board Schematic

26

 Figure 3.1.7: Adapter Board PCB

 Figure 3.1.6 shows the designed PIC Adapter Board for the project. The goal of this PCB

was to create a PCB that housed all the necessary components to be an interface between the

PIC24 controller and the billiards table. The PCB layout is shown in Figure 3.1.7. The stepper

drivers, solenoid drivers, PWM servo control, and limit switch interface were all designed and

27

placed on the Adapter Board. This allows for the signals of the PIC24 to be sent to the adapter,

and then for the adapter to send the signals to the billiards table to trigger the corresponding

components. The schematic and PCB layout are broken into four sections: Stepper Driver, Servo

Control, Solenoid Driver, and Limit Switch interface. 5V, 6V, 12V, and GND are all provided to

the Adapter Board. Each different voltage was fused separately. The Adapter Board is a 2-layer

PCB.

 Figure 3.1.8: Adapter Board Stepper Motor Schematic

 The Stepper Motor section of the Adapter Board shown in Figure 3.1.8 was designed to

allow plug and run functionality while also allowing options to be selected. The four stepper

driver boards plug into two sets each of eight pin receptacles. The pins are all labeled with their

corresponding functions as seen in Figure 3.1.8. These functions include providing 12V,

28

connecting to the motor outputs, and selecting the desired options on the stepper drivers. The

12V and 5V rails are both fused to protect all components. A 100uF capacitor is then connected

across the 12V rail to protect each stepper driver from any irregularities from the power supply.

The four motor outputs from the steppers are connected each to a Molex 4-Pin header. Each set

of two steppers have their additional options and step/direction signal wired together. This is

because each set of two stepper drivers corresponds to either the X or Y axis of the gantry re-

racking system. One motor was used to drive each side of each axis, allowing the load to be

distributed evenly across the motors. By being wired together, each axis of motors is always

receiving the same options and the same step/direction signal. This prevents the two motors on

the same axis from becoming out of sync. The additional option pins are routed to a 2 Row 8-Pin

header (shown as JP1 & JP2) which allows for a jumper to be placed across the pins to set the

desired pin high. 5V is connected to the other side of the jumper headers JP1 and JP2. Some of

the additional selectable options include micro stepping mode, sleep mode, enabling of the

steppers, and reset. The SLEEP and RESET jumpers were connected to enable the steppers to

operate. The step/direction pins are routed to a Molex 2-Pin header, which directly connects to

the output from the PIC24 controller.

29

 Figure 3.1.9: Adapter Board Servo Schematic

 Figure 3.1.9 shows the schematic design of the servo control on the adapter board. The

servo control had to be planned out because the servos operate on PWM signals. The PIC24 has

a limited number of PWM outputs, and with the stepper drivers also using PWM the remaining

number of PWM outputs were limited. To get around this issue, two AND IC chips, labeled U1

and U2 in Figure 3.1.9, are utilized. The AND ICs used added very little delay to the response

time of the signals. An AND gate outputs a HIGH signal when both inputs are toggled HIGH.

So, for this situation, one input on each gate was tied to a PWM output from the PIC24. The

other inputs were then tied to a normal output pin on the PIC24. This allowed for one PWM to

drive up to six servos. These six servos would each be used in the pockets of the tables to act as

30

gates. If servo one was required to be opened, the second AND input, 2A in this situation, was

set HIGH. By setting 1A to the PWM, and 2A to a constant HIGH signal, the resulting output

would be the desired PWM signal. The six pocket gate servos were connected to the 3-Pin

Molex Headers labeled Servo 1 to Servo 6. 3-Pin Molex Headers were used to connect all eight

servos to the adapter board. The remaining two available AND gate inputs were connected to a

second PWM output from the PIC24. This allows for these two servos to be controlled separately

from the pocket gate servos. One of these servos, Servo 7, was used to release the balls into their

final positions in the gantry re-rack system. The other servo output, Servo 8, was unused. A

10kΩ resistor was connected to each non-PWM input and then to ground. This prevented the

enable pins from floating, as the resistors acted as pull-down resistors. 5V and GND were

provided to all servos and the AND IC chips.

 Figure 3.1.10: Adapter Board Solenoid Schematic

 Figure 3.1.10 shows the circuit used to drive the solenoids in the project. Four solenoid

driver circuits were constructed, with two being used for the gantry staging track and the other

two free to be used as desired. The solenoids could be operated at 5V or 6V, however at 5V it

31

was observed that the solenoid would occasionally fail to fully retract, so 6V was used to operate

the solenoids. A power MOSFET was required because at 6V the solenoid pulled 1.2 amps of

current. The power MOSFET chosen, the BUZ11, could operate at 50V and pull 30A of current

[11]. The BUZ11 MOSFETS are indicated in Figure 3.1.10 by Q1, Q2, Q3, and Q4. A major

issue that occurred was that the PIC24 voltage output was too low to surpass the gate threshold

voltage of the BUZ11 MOSFET. The PIC24 output pins are capable of outputting 3.3V. The gate

threshold voltage of the BUZ11 is 4V [11]. To fix this issue, a N-Channel MOSFET was used to

trigger the required voltage to control the BUZ11 MOSFET. This N-Channel MOSFET used was

the 2N7000. The 2N7000 has a gate threshold voltage of 3V [12]. The 2N7000 is designated as

S1, S2, S3 and S4 in Figure 3.1.10. 5V was connected to a 10kΩ resistor, which is connected to

the gate of the BUZ11 and the drain of the 2N7000. When the gate of S1 was set HIGH by the

PIC24, 5V was set to the gate of Q1. When this occurred, current was pulled through the

attached solenoid. The solenoid had one lead connected to 6V and the other lead connected to the

drain of Q1. A diode was wired across the solenoid to prevent and protect against any back EMF

generated by the inductor in the solenoid. When tested, the circuit operated exactly as expected

with no issues occurring. The 6V source was fused and connected to the correct power supply.

32

 Figure 3.1.11: Adapter Board Limit Switch Schematic

 Figure 3.1.11 shows how the limit switches were connected to the adapter board. The

limit switches were used in various instances such as: gantry system end of arm travel for both

the X and Y axis, ball present in gantry, ball present in preparation tube, and ball index position

present. The circuit itself is the simplest of the four sections on the adapter board. The limit

switches each contained three pins, one for each of the following: power, signal, ground. A 3-Pin

33

Molex Header was used to connect each limit switch to the adapter board. The limit switches

operated on +5V. +5V and GND were connected to the supplies on the adapter board. A 20kΩ

resistor was connected in series with the signal output of the limit switch. This is due to how the

limit switches operated. When connected to the normally open contact, depressing the limit

switch actuator will complete the circuit. When the power is connected to +5V and the signal

output to the PIC24, this results in connecting +5V directly to a PIC24 input. The 20kΩ resistor

in series prevents the current from damaging the PIC. The current becomes 0.25mA, enough for

the PIC24 to detect a signal but low enough to prevent damage. The six output signals were

connected to a 6-Pin Molex Header which was then wired to the corresponding PIC24 pins.

34

 Figure 3.1.12: Pool Table Top View

35

 Figure 3.1.13: Pool Table Underside View

 As shown in Figure 3.1.12 and 3.1.13, the track system was made of 3-inch PVC pipe

that was cut in half in order for the balls to fall from the pockets directly into the track system.

The track was then hung underneath the table and angled so that the ball was able to roll

continuously without gaining too much speed.

One main problem that we ran into when integrating the pocket gates and track system

together was how the balls were falling out of the pockets when the servo motor was triggered.

It was determined that the pocket gates needed a way to allow the balls to fall the same way each

time into the track, or essentially aim the ball. To fix the problem, a funnel was attached inside

of the pvc pocket such that only one ball would fall straight down at a time rather than have the

balls off-centered in the pocket and release at the same time.

36

 Figure 3.1.14: Pocket Gate Test Stand

The implementation of the pocket gates became rather tough. In the final design for the

pocket gates, as seen in Figure 3.1.14, a steel plate was attached to a small piece of wood with a

hinge that allowed the plate to move freely. Attached to the side of the pvc pocket was a cup

hook which then, a rubber band was hooked onto the cup hook and the metal plate. This rubber

band was implemented in order for the plate to return back to level so that the servo motor,

which acted as a latch, would be able to lock the plate back into place.

37

 Figure 3.1.15: Pocket Gate Implementation

38

 Figure 3.1.16: Servo Motor Mounts

Shown in Figure 3.1.15, each servo was then mounted next to the pvc pocket such that

the servo could act as a latching mechanism. Each servo motor was mounted using a 3D printed

motor mount, as shown in Figure 3.1.16, that was made through the 3D printing services offered

by the university. Attached to each servo was a steel arm that would extend under the steel plate

to take stress off of the motor itself. From here, as a ball was pocketed, there was a delay by the

microcontroller in order to determine whether the ball was a solid, stripe or the cue ball. Once

the ball was determined to be solid or stripe, the servo motor would rotate 180°, releasing the

balls into the track that runs to the gantry system.

39

 Figure 3.1.17: Gantry System Complete View

40

Figure 3.1.17 shows the completed construction of the gantry re-racking system. The

gantry, the device with the funnel, rides on the x and y axis to move to the desired positions. The

axis are ball screws driven by the stepper motors. The balls screws are 25 inches long, but due to

the design of the re-rack system, only 18 inches of length are utilized in the x and y direction.

The pool table triangle measures 14 inches wide by 12 ¼ inches tall so 18 inches is more than

enough room to re-rack the billiard balls. The x-axis arm was cut to a longer length to account

for the extra space needed to mount the stepper motors. This also helped balance the load on the

ball screws below by allowing the arm to position the motors directly above the ball screws. End

and motor mounts were utilized to secure the stepper motors and the ball screws to the wooden

frame. A flexible coupler was used to attach the ball screw to the stepper motors. Limit switches

are located on one side of each axis, with one limit switch at the start and stop position.

41

 Figure 3.1.18: Side View of Re-racking System

Figure 3.1.18 shows a side view of the re-racking system. The x-axis home limit switch is

shown. This prevents the stepper motors from binding by stopping the gantry from coming into

contact with the coupler. The x-axis was mounted on 2-inch spacers so that the y-axis could

return back to its starting position without colliding with the x-axis.

42

 Figure 3.1.19: Y-Axis Limit Switch

43

 Figure 3.1.19 shows the y-axis stop limit switch. The limit switches were mounted on

standoff screws which were then drilled and glued into the wooden frame. Also pictured is one

of the end mounts which secures the ball screw in place. The end mount needed to be attached to

a spacer to help keep the ball screw level with the stepper motor. This helped reduce the wear

and stress on the motor.

44

 Figure 3.1.20: Re-rack Gantry Construction

 Figure 3.1.20 shows the constructed gantry for the re-racking system. This consisted of a

funnel cut to allow a ball to pass through attached to a wooden plate that is moved on the x-axis.

A servo motor is mounted under the plate, and a limit switch is built into the funnel. This allows

45

for the funnel to detect when a ball is placed inside, and the servo is then used to release the

contained ball into the pool triangle below. A piece of metal tube is attached to the servo arm to

provide the necessary reinforcement to hold a billiard ball.

 Figure 3.1.21: Assembled Adapter Board

46

3.2. Software Design (DM/RM):
Table 3.2.1: Microcontroller Fundamental Requirement Table

Byte array

Microcontroller

Servo Position

Stepper Motor X and Y

Position

Module Microcontroller

Designer David Milostan

Inputs Byte array

Outputs Servo Position, Stepper Motor X and Y Position

Description Send servo motor position to go to based on which pocket a ball has been made in
and send the stepper motor an x and y coordinate to move to based on which ball
has been made.

Table 3.2.2: Server Fundamental Requirement Table

Power

Server
App Data Signal

Microprocessor

App Data Request

Module Server

Designer David Milostan, Rodney Morgan

Inputs Power: 120VAC

Data from microprocessor

App Data request signal

Outputs Data signal to microprocessor

Description The camera will be used to send live video of the pool table to a microprocessor.

The video will contain ball placement and movement on the table.

47

Table 3.2.3: Mobile App Fundamental Requirement Table

Server

Mobile App
Server

Module Mobile Application

Designer David Milostan, Rodney Morgan

Inputs Server data signal

Outputs Server data signal

Description The mobile app will take the data received from the server and display it on an
infographic to show the status of games in progress.

48

Figure 3.2.1: Gate System Software Flowchart

49

Figure 3.2.2: Racking System Software Flowchart

50

Figure 3.2.3: Serial Communication Software Python - Opening Serial Port

The first thing that needs to be done to communicate from the PC to the PIC24 via serial

communication is to open the communication port that the data is going to be sent through. This

is done in the python code by assigning the port COM3 and setting the flow control to RTSCTS

(Ready To Send and Clear To Send). After that has been set up the last thing to do is send the

data. This is done as follows.

Figure 3.2.4: Serial Communication Software Python - Transmitting Byte

Figure 3.2.5: Serial Communication Software C - Setting Registers for UART

On the microcontroller side UART communication needs to be set up to receive data.

To first enable UART only bit 15 is set to high in U1MODE and everything else is set low

giving the hexadecimal value 0x8000. Then the UART has to be set up to receive that data which

is setting the receive enabled bit in U1STA which is bit 12 giving the value of 0x1000. Finally,

51

the baud rate has to be set which is how many bits can be transferred per second. A baud rate of

9600 is good for this application. U1BRG is the baud rate generator. Setting this to 103 will give

a baud rate of 9600. U1BRG can be calculated with the formula

U1BRG = ((FCY/Desired Baud Rate)/16) – 1.

Figure 3.2.6: Serial Communication Software C - Receiving Bytes

 In the main loop getU1 is called and the program sits in this function until a byte is

received in the receive register, U1RXREG, and then that byte is returned to the character

variable data.

Figure 3.2.7: Gate System Software

52

Once the data is received and stored in the data variable it is sent to the moveServo

function. Depending on the data sent different scenarios will take place. For an example if a ‘0’

is received then Pocket1Open will be called to turn the servo motor on pocket one 180 degrees

and stay there for two seconds to let the balls drop into the racking system. Then Pocket1Close

will be called to turn the servo motor back to degree 0 which will stop any balls from moving

further than the pocket. Moving the servo to different positions is done by setting the duty

through the output compare register which is shown below in figure 3.2.8. The code shown

53

below is exactly the same for pocket one and two except a different output compare module is

used so the signals can be triggered separately.

Figure 3.2.8: Gate System Software - Set Servo Degree

Figure 3.2.9: Racking System Software - Move Stepper to Coordinate

54

 Moving the stepper motor happens after the ball is released from the pocket and is in the

racking tube that will move to the proper position in the rack to drop the ball. The function called

to do this is moveStepperFWD which sets RA0 which is connected to the direction pin. This will

spin clockwise if high and counterclockwise if low. The output compare register will trigger a

rising edge to move the stepper as many times as the value passed into the function along with a

one second delay for each trigger so the stepper will move for five seconds if the value five is

passed into the function. The moveStepperREV works the same exact way except in the opposite

direction. It will run for the same amount of time so the stepper motor will go back to the home

position to go and pick up the next ball.

55

 Figure 3.2.10: Code Snippet for Detecting the Pool Table

For this implementation, a Logitech C920 will be used as a video input device. When the

56

program is started, the program will verify that the pool table can be recognized. This can be

accomplished by masking out the pool table’s perimeter, finding its area, and verifying that it

matches the dimensions of the table area. To do this, the HSV (hue saturation value) threshold

for the table’s perimeter must be found and entered in line 26-27 in Figure 3.2.10. The

approxPolyDP function will then get the area of the table based on the HSV threshold. The x and

y values can then be used from this to resize the image coming from the video feed, so the main

area of focus is around only the pool table. This will make processing the images quicker and

also prevent false readings later on from outside sources around the pool table. The standard

deviation of the pixels is also calculated on line 66 to make sure the camera is in focus. This will

continuously run until the user presses enter verifying that they are happy with the calibration of

the table.

 Figure 3.2.11: Detecting Pocket Boundaries

The coordinates of the pocket boundaries can be found by masking out the HSV values

for everything but the table border. These coordinates are used to crop the frame and understand

57

when balls have been pocketed. The code in Figure 3.2.11 shows the process of grabbing the

coordinates of the border, storing the coordinates in local variables, and drawing the border of

the table to the program’s live output.

58

 Figure 3.2.12.1: Creating Each Ball to be Tracked

 Each ball on the table has a ball object created for them that way each one can have

properties of its own. This is important for not only being able to see each ball and track it, but

also later on being able to determine which ball is moving or has been pocketed during the game.

59

 Figure 3.2.12.2: Ball Object

60

61

62

 The Ball class shown above in figure 3.2.12.2 shows each of the properties that each

individual ball will have. The main property is the MIN_HSV and MAX_HSV values. These are

used to mask out everything in the image except for that particular ball. So, for each ball that

should be the only thing seen in the image at that moment. The next properties ID and NAME

are for identification purposes. The ID is a hex value that will later be combined with the hex

value for the pocket the ball was made in. For example, pocket 1 (Hex value 0x10) and the three

ball (Hex value 0x03) will combine to be 0x13. The hex values work out really well since they

can represent sixteen 0-15 as 0-F and there are only six pockets and exactly sixteen balls. The

NAME property is for naming purposes in the database. The final property is the deque which

keeps track of the 64 most recent coordinates of the ball.

 Figure 3.2.13.1: Masking Each Ball

 The mask for each ball is made with the MIN_HSV and MAX_HSV values in the ball

class shown in figure 3.2.12.2 so each ball can individually be identified. The pocket boundaries

are passed to the setMask function for later use. Each individual mask is then stored in an array

for processing.

63

 Figure 3.2.13.2: Masking Continued

The setMask function is called in figure 3.2.13.1 and is shown in detail here. After the

mask is applied the pocket bounds are passed to the updateBuffer function where the main

tracking is done.

64

 Figure 3.2.14.1: Tracking Algorithm

 With the mask that was just applied to the image the contours of the ball can be found

with the findContours function that is able to determine the shape of the object based on the hsv

threshold previously applied. The next step is to find the largest contour or the value that is

closest to an exact match of the HSV values and pass that contour to the minEnclosingCircle

function to get a perfect circle with an x and y coordinate as well as a radius. Next an image

moment is captured which gets a weighted average of the pixels which are used to calculate the

center of the ball. Now that there is a center and a radius the top, bottom, left, and right edge of

65

the ball need to be calculated. Each edge of the ball can then be passed to the pointPolygonTest.

This function will take a point and determine if it is inside, on, or outside of a polygon shape.

The polygon shape in question is the boundary for the pockets. If it has been determined that 3 or

more of the edges or out of the boundaries, then it is safe to say the ball has been pocketed.

 Figure 3.2.14.2: Tracking Movement

To determine if a ball has moved all the stored points in the buffer are passed to a

standard deviation function. If the standard deviation of those coordinates varies by more than

0.7 pixels then it is safe to say that the ball is moving. Once all of the balls have stopped moving

then it will tell us that the database has to be updated with the new coordinates.

66

 Figure 3.2.14.2: Decision Making

 This is the main loop that makes decisions on whether or not the database needs to be

updated and if serial data needs to be sent to the microcontroller. The first condition is if a ball is

moving. If this is the case, then nothing happens because all balls have to stop before updates are

sent out. If that ball is not moving, then its coordinates are stored in a dictionary that contains the

coordinates of all the balls which will be sent to the database as an object for a bulk update. Then

if the ball has been pocketed the most recent x and y coordinate are sent to the getPocket

67

function that returns the hex value of the pocket the ball was made into. The serial data with the

ball id and pocket is then sent to the microcontroller and the ball is set as pocketed in the

dictionary to send as a bulk update to the database.

 Figure 3.2.15: Implementation of Python to Firebase Communication

Once new position data is found, or a ball has been pocketed, the Python application will

bundle the data into a JSON format and send it to a Firebase database via POST request. Firebase

has been chosen for this project, because React Native built Mobile Apps can re-render its UI

when Firebase synchronizes the application state. This makes it easy to program the live changes

on the app, since React Native has functions that listen for database updates. React Native will

use a GET request to retrieve the grid information of the balls and display it on a virtual pool

table by comparing the grid to the pixels on the phone. To accomplish this, set up a real-time

database from firebase.google.com, and use the credentials to configure the config information in

Figure 3.2.15. Also note that Pyrebase is used as a helper class in this implementation for data

management in Firebase.

68

 Figure 3.2.16: Full Python Code

69

70

71

72

73

74

75

76

77

78

 Figure 3.2.17: Implementation of React Native to Firebase Communication

For the React Native implementation, Expo is the framework of choice for this project.

To set up Expo, the following steps should be taken:

● Download NodeJS
● Run “npm install expo-cli –global”
● Type the command “expo init bitBilliards”
● “cd bitBilliards”
● “expo start”

Figure 3.2.17 shows the initial connection from the app to Firebase.

 Figure 3.2.18: React Native Listening for Pocketed Balls

When the Python application detects that balls are pocketed, the “pocketedballs” children

are updated with new data. Each billiard ball is assigned a value of true or false based on its

pocketed status. Figure 3.2.18 shows React Native asynchronously listening for these updates.

The scoring markers on the screen are rendered as opaque if the ball is playable and translucent

if the ball is pocketed.

79

 Figure 3.2.19: Ball Coordinate Rendering

Figure 3.2.19 shows the implementation of React Native listening for changes to the children of

the “coordinates” database reference. When the database is updated from the Python application,

the new pool table coordinates are stored in the React Native app and displayed on the screen.

80

 Figure 3.2.20: BitBilliards App

 Each sprite seen on the screen was created in Adobe Illustrator and saved as .SVG file for

icon scalability. The app listens for changes to the Firebase database and displays the results.

81

 Figure 3.2.21: Full BitBilliards React Native Code

82

83

84

85

86

87

88

89

4. Financial Budget (GR)

 Table 4.1.1: Original Budget

Supplies for table construction $200

Electrical components $200

Miscellaneous supplies $200

 The original budget for the project was a very simple 3-way split among table supplies,

electrical components, and misc. supplies. The cost of PVC and other plywood was estimated

and used to estimate the $200 need for the general track construction, gantry and repair of the

table. The PCB design was still in progress so a rough estimate of $200 was used for the PCB

cost, and then the PCB components. The remaining $200 would be used on the camera for image

recognition and any other cables or etc. needed.

 Table 4.1.2: Actual Budget

 The purchased parts are shown in Figure 4.1.2. The total price was $484.59. The biggest

costs of the project were the cameras purchased, one at the beginning and then another camera to

replace the initial faulty camera, and the PVC to construct the re-racking track under the table.

90

Another major cost was the re-racking system. It was underestimated how much it would cost to

build from scratch. The motors and ball screws combined were over $100. This is not factoring

in the motor mounts, end pieces, or limit switches. Most of the budget was spent on mechanical

systems that were needed to be constructed. The adapter board PCB and components was the

cheapest subsystem to build. It was assumed that components and PCBs cost much more, but due

to the simplicity of the final design no expensive components were needed. The only component

not purchased was the power supply to power the system. This point was not reached in the

project.

7. Project Schedule (GR)
Figure 7.1.1: Design Gantt Chart Part 1

91

Figure 7.1.2: Design Gantt Chart Part 2

92

Figure 7.1.3: Implementation Gantt Chart

93

 The goal of the Gantt Chart shown in Figure 7.1.3 was to have all major systems built

and implemented by April 5th. This would allow for several weeks of using the table to work out

and squash any bugs or issues in gameplay. The image recognition was also planned to be

finished before any else, so that the embedded code could be tested without interfering with any

image recognition issues. The schedule was fairly aggressive in terms of completion dates so that

extra time to fix issues was available.

94

Figure 7.1.4: Actual Gantt Chart

95

 Figure 7.1.4 shows what was accomplished before the project was put on hold. For the

electrical side of the project, all major systems were completed and built with some minor issues.

The gantry construction was finished, but it was never implemented under the table. The PVC

track under the table and pocket gates had all been mounted minus the preparation piece. The

gantry prep piece of PVC was not constructed as progress was stopped before a method of

attaching the solenoids was developed. Small issues in the pocket gates and PVC track were

being fixed also. The PCB worked as intended. The embedded code phase had been started but

not too much progress was made as classes were moved online right around that time. Most

concepts and major parts of the code had been written; however they were not assembled into the

final step by step process needed to re-rack the balls. The stepper motors, solenoids, limit

switches, and servo motors all functioned separately, they were just never put together besides

the sample code created and used for the midterm demo. Functions such as stepper movement to

fixed positions were never finished. Small bugs and issues were present in the solenoid and limit

switch code. A few servo motors could open and close, the remaining were not configured in the

code to operate.

 For the software side of the project, the Python application detected the position of the

balls, determined when balls were pocketed, and tracked the score of a game in real time. The

React Native application displayed live scores and the positions of the balls. At the time, this

worked very well for solid colored balls, but struggled to distinguish striped balls. Also, the

game was unable to determine whose turn it was at a given point.

96

8. Team Information
 David Milostan (CpE), Archivist

Grant Reinbolt (EE), Team Leader

Kyle Stevenson (EE), Hardware Lead

Rodney Morgan (CpE), Software Lead

9. Conclusions and Recommendations (GR)

 Unfortunately, the project was not able to be completed due to COVID-19. This was

disappointing to the group as it was believed that the project was on track to be completed and be

successful. Lots of time and effort went into this project so it is disappointing to not be able to

finish it. When the project was originally proposed to the advisors, it was stated that the project

was too mechanical in design. At the time the group disagreed with this statement and went

ahead as planned. Looking back on the project, it is now understood why this project was

believed to be too mechanical. The first two months of the implementation phase were spent

solely on mechanical design and working out mechanical issues such as track mount, gate

mounting, pocket mounting, and gantry construction. While this may seem counterintuitive to

the purpose of the design project, it is believed this helped expand the ability and skills of the

group. It helped expand cross discipline knowledge and skills by having to come up with

solutions for non-electrical issues. This encouraged creativity and can be seen in several designs

including the gate pockets using rubber bands. From the software side, it is always

underestimated how much code or time goes into a program. Most of the time spent on the

embedded side was spent trying to get components to be functional, as making a motor move

seemed like an impossible task for the three weeks it took to make happen. The image

recognition also took a lot more time and effort than expected. It was assumed to have some

97

degree of difficulty, but that difficulty was much higher than expected. Overall the team dynamic

was very good and healthy, all parties worked together very well and would work together in the

future. Our recommendation for future students is that just because a project may seem simple,

doesn't mean it will be. A simple project is not a bad idea, as it allows for the project to be

completed and for the concepts in the project to be fully mastered.

98

10. References
[1] V. Singh, “An ARM Based Hardware Architecture for Image Processing,”

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, pp 1266-

1274, Oct. 2013

[2] Chen-Wei Chou, Ming-Chun Tien, Ja-Ling Wu “Billiards wizard: A tutoring

system for broadcasting nine-ball billiards videos,” 2009 IEEE International Conference

on Acoustics, Speech and Signal Processing, pp. 1921-1924, Apr. 2009.

[3] J. Tang, P.K. Wang, “An Auto-scoring billiards system,” In Proc. Eighth

International Conference on Machine Learning and Cybernetics, Baoding, 2009, pp.

3305-3309.

 [4] J.B. Russell, “Automatic Ball-Racking Device for Billiard-Tables,” U. S. Patent

1,227,833, 14 May., 1917.

[5] Mingzhou Yin, Yue Chen, Kit-Hang Lee, Denny K.C. Fu, Zion Tsz Ho Tse, and

Ka-Wai Kwok, “Dynamic Modeling and Characterization of the Core- XyCartesian

Motion System,” 2018 IEEE International Conference on Real-time Computing and

Robotics (RCAR), pp. 206-211, Aug. 2018.

[6] Wang, Hao, “Design of an Automatic Door System for an Automated Transit

Network Vehicle,” Dec. 2015, pp. 1-105

 [7] Bacus, James W. and Bacus, James V., “Billiard Table lighting and Game Play

Monitoring” U. S. Patent 9.485,399 B2, 1 Nov. 2016.

[8] W. Li, C. Yen, Y. Lin, S. Tung, and S. Huang, “JustIoT Internet of Things based

on the Firebase real-time database,” 2018 IEEE International Conference on Smart

Manufacturing, Industrial & Logistics Engineering (SMILE), pp. 43–47, 2018.

99

 [9] Motor Sizing Calculations, ORIENTAL MOTOR USA CORP, accessed 6

 October, 2018,

https://www.orientalmotor.com/technology/motor-sizing-calculations.html

 [10] Texas Instruments, “DRV8825 Stepper Motor Controller IC”

DRV8825 datasheet, Apr. 2010 [Revised July. 2014].

 [11] Semiconductor Components Industries, “BUZ11 N-Channel Power MOSFET

 50V, 30A, 40 mΩ” BUZ11 Datasheet, September 2013 [Revised October 2017]

 [12] Semiconductor Components Industries, “2N7000 / 2N7002 / NDS7002A N-

 Channel Enhancement Mode Field Effect Transistor” 2N7000 Datasheet, 1998 [Revised

 October 2017]

https://www.orientalmotor.com/technology/motor-sizing-calculations.html

	BitBilliards
	Recommended Citation

	Abstract (RM)
	1. Problem Statement
	1.1: Need (GR/RM)
	1.2: Objective (RM)
	1.3: Background
	1.4: Marketing Requirement (DM)

	2. Design Requirements Specifications (ALL)
	Table 2.1.1: Engineering Requirements

	3. Accepted Technical Design
	3.1. Hardware Design (GR/KS):
	Figure 3.1.1: Level 0 Hardware Block Diagram
	Table 3.1.1: System Fundamental Requirement Table

	Figure 3.1.2: Level 1 Hardware Block Diagram
	Table 3.1.2: Camera Fundamental Requirement Table
	Table 3.1.3: PC Fundamental Requirement Table
	Table 3.1.4: Microcontroller Fundamental Requirement Table
	Table 3.1.5: Adapter Board Fundamental Requirement Table
	Table 3.1.6: Racking Motors Fundamental Requirement Table
	Table 3.1.7: Gate Motors Fundamental Requirement Table
	Table 3.1.8: Gantry Preparation Fundamental Requirement Table
	Table 3.1.9: Power Supply Fundamental Requirement Table

	Figure 3.1.3: Level 2 Hardware Block Diagram
	Table 3.1.10: PIC24 Fundamental Requirement Table
	Table 3.1.11: Power Supply Fundamental Requirement Table
	Table 3.1.12: Stepper Drivers Fundamental Requirement Table
	Table 3.1.13: Servo Control Fundamental Requirement Table
	Table 3.1.14: Solenoid Driver Fundamental Requirement Table
	Table 3.1.15: Limit Switch Interface Fundamental Requirement Table
	Table 3.1.16: Stepper Motors Fundamental Requirement Table
	Table 3.1.17: Servo Motors Fundamental Requirement Table
	Table 3.1.18: Solenoids Fundamental Requirement Table
	Table 3.1.19: Limit Switches Fundamental Requirement Table
	Table 3.1.20: Stepper Motor Driver Parts Table

	Figure 3.1.4: Stepper Motor Driver Schematic
	Figure 3.1.5: Chopping Current Equation [10]
	Table 3.1.21: PIC Adapter Board Parts Table

	Figure 3.1.6: PIC Adapter Board Schematic
	Figure 3.1.7: Adapter Board PCB
	Figure 3.1.8: Adapter Board Stepper Motor Schematic
	Figure 3.1.9: Adapter Board Servo Schematic
	Figure 3.1.10: Adapter Board Solenoid Schematic
	Figure 3.1.11: Adapter Board Limit Switch Schematic
	Figure 3.1.12: Pool Table Top View
	Figure 3.1.13: Pool Table Underside View
	Figure 3.1.14: Pocket Gate Test Stand
	Figure 3.1.15: Pocket Gate Implementation
	Figure 3.1.16: Servo Motor Mounts
	Figure 3.1.17: Gantry System Complete View
	Figure 3.1.18: Side View of Re-racking System
	Figure 3.1.19: Y-Axis Limit Switch
	Figure 3.1.20: Re-rack Gantry Construction
	Figure 3.1.21: Assembled Adapter Board

	3.2. Software Design (DM/RM):
	Table 3.2.1: Microcontroller Fundamental Requirement Table
	Table 3.2.2: Server Fundamental Requirement Table
	Table 3.2.3: Mobile App Fundamental Requirement Table
	Figure 3.2.1: Gate System Software Flowchart
	Figure 3.2.2: Racking System Software Flowchart
	Figure 3.2.3: Serial Communication Software Python - Opening Serial Port
	Figure 3.2.4: Serial Communication Software Python - Transmitting Byte
	Figure 3.2.5: Serial Communication Software C - Setting Registers for UART
	Figure 3.2.6: Serial Communication Software C - Receiving Bytes
	Figure 3.2.7: Gate System Software
	Figure 3.2.8: Gate System Software - Set Servo Degree
	Figure 3.2.9: Racking System Software - Move Stepper to Coordinate
	Figure 3.2.10: Code Snippet for Detecting the Pool Table
	Figure 3.2.11: Detecting Pocket Boundaries
	Figure 3.2.12.1: Creating Each Ball to be Tracked
	Figure 3.2.12.2: Ball Object
	Figure 3.2.13.1: Masking Each Ball
	Figure 3.2.13.2: Masking Continued
	Figure 3.2.14.1: Tracking Algorithm
	Figure 3.2.14.2: Tracking Movement
	Figure 3.2.14.2: Decision Making
	Figure 3.2.15: Implementation of Python to Firebase Communication
	Figure 3.2.16: Full Python Code
	Figure 3.2.17: Implementation of React Native to Firebase Communication
	Figure 3.2.18: React Native Listening for Pocketed Balls
	Figure 3.2.19: Ball Coordinate Rendering
	Figure 3.2.20: BitBilliards App
	Figure 3.2.21: Full BitBilliards React Native Code

	4. Financial Budget (GR)
	Table 4.1.1: Original Budget
	Table 4.1.2: Actual Budget

	7. Project Schedule (GR)
	Figure 7.1.1: Design Gantt Chart Part 1
	Figure 7.1.2: Design Gantt Chart Part 2
	Figure 7.1.3: Implementation Gantt Chart
	Figure 7.1.4: Actual Gantt Chart

	8. Team Information
	9. Conclusions and Recommendations (GR)
	10. References

