The University of Akron

IdeaExchange@UAkron

Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors
Projects College
Spring 2020

BitBilliards

Grant Reinbolt
gar20@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

6‘ Part of the Electrical and Electronics Commons, and the Signal Processing Commons
Please take a moment to share how this work helps you through this survey. Your feedback will
be important as we plan further development of our repository.

Recommended Citation
Reinbolt, Grant, "BitBilliards" (2020). Williams Honors College, Honors Research Projects. 1027.
https://ideaexchange.uakron.edu/honors_research_projects/1027

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.


https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1027
https://ideaexchange.uakron.edu/honors_research_projects/1027?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1027&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Bit Billiards

Senior Design Project Final Report

Design Team #08
David Milostan (CpE)
Grant Reinbolt (EE)
Kyle Stevenson (EE)

Rodney Morgan (CpE)

Faculty Advisor: Osama Alkhateeb

Date Submitted: April 24th, 2020



Table of Contents

e o1 (ot (1 PSSR 6
1. ProbIem STAIEMENT ..ottt bbbt 6
1.2: NEEA (GRIRIMY) .ttt bbbt e st et be bt e neabe e enenne s 6
A @ o) [=Tod (Y= I (1Y ISP 7
IR O = - Uod (o {1 o o SR 7
1.4: Marketing RequIremMent (DIM) .....c.oiiiiiiiiiie ettt et nreas 12
2. Design Requirements Specifications (ALL) .......ccooiiiiiiiiieiiiie e 12
3. Accepted TEChNICAI DESION ....cooviiiiiieieee ettt ettt sbe e nreas 14
3.1. Hardware Design (GRIKS):.....iiiiiieiiiie ettt sttt sreas 14
3.2. Software Design (DIM/RIM): .....c.ui ittt sttt neesbe e nreas 46
4. FINANCIal BUAGEL (GR) ...uviiiiiiiieieee ettt bbbt nr et enes 89
7. Project SChedule (GR) ..ottt st ettt bt nbe e nreas 90
8. TeaM INFOIMELION ...ttt sttt sb et b e be et e beenbeeneenreas 96
9. Conclusions and Recommendations (GR) .........cooiieriiieiieiiiie et 96
10, RETEIBINCES ...ttt sttt b et e sttt et e s e e s be et e e st e nbe e beenbeebeebeeneenreas 98



List of Figures

Figure 3.1.1: Level 0 Hardware BIOCK Diagram..........ccccvveieeieieeresieseesesee e seesee e nee e 14
Figure 3.1.2: Level 1 Hardware BIOCK Diagram..........ccccviveieiieneeiesieseesie e e see e e see e 15
Figure 3.1.3: Level 2 Hardware BIOCK Diagram..........ccccvveieeienieiesie e esiesee e see s e 18
Figure 3.1.4: Stepper Motor Driver SCNEMALIC..........cccoveiieeiecieseece e 22
Figure 3.1.5: Chopping Current EQUation [10]........cccveveiiieiieiieriere e 23
Figure 3.1.6: PIC Adapter Board SChematiC ...........ccccooeiieieiieieece e 25
Figure 3.1.7: Adapter BOArd PCBi..........ccoiieiiiiesie ettt ste e neenne e 26
Figure 3.1.8: Adapter Board Stepper Motor SCheMALIC ........cccvevveiviiieieee e, 27
Figure 3.1.9: Adapter Board Servo SChEMALIC ........ccvvveieeieiieieee e 29
Figure 3.1.10: Adapter Board Solenoid SChematiC ..........ccccveieiveriiiieieeie e 30
Figure 3.1.11: Adapter Board Limit Switch SchematiC...........cccccveviiiiiieciic e, 32
Figure 3.1.12: POOI Table TOP VIBW ....oouiiiiiiiiieciee et e 34
Figure 3.1.13: Pool Table UNderside VIBW .........cccooiiiiiiiienieseeie et 35
Figure 3.1.14: Pocket Gate TSt StANG.........coieiieiieiiiie e e 36
Figure 3.1.15: Pocket Gate Implementation ...........ooviiiiienieseee e 37
Figure 3.1.16: SErvo MOtOr MOUNES .........ooiiiiiiiiiieiccie et 38
Figure 3.1.17: Gantry System COMPIEte VIBW ........ccviiiiiiiiiieieee e 39
Figure 3.1.18: Side View 0f Re-racking SYStem .........cccoiiiiiiiiiiiiice e 41
Figure 3.1.19: Y-AXIS LIMIt SWITCN .....ooiiiiiiiiiii e 42
Figure 3.1.20: Re-rack Gantry CONSIIUCTION.........cuoiuiiiiiieiesie e e 44
Figure 3.1.21: Assembled Adapter BOard............cocoiiiiiiiieniesee e 45
Figure 3.2.1: Gate System Software FIOWChart ..o 48
Figure 3.2.2: Racking System Software FIOWChart ............ccccoovvieiiiii i 49
Figure 3.2.3: Serial Communication Software Python - Opening Serial Port..............cccccevvenen. 50
Figure 3.2.4: Serial Communication Software Python - Transmitting Byte.............ccccoveveivenenn. 50
Figure 3.2.5: Serial Communication Software C - Setting Registers for UART ..........cccccccvenenn. 50
Figure 3.2.6: Serial Communication Software C - Receiving BytesS........ccccccvvvevviieiveresiennnn, 51
Figure 3.2.7: Gate SYStEM SOFIWAIE .........cciveiieiieiiece e 51
Figure 3.2.8: Gate System Software - Set SErvo Degree.........ccovvevveieeieeresieseese e e, 53



Figure 3.2.9: Racking System Software - Move Stepper to Coordinate............ccccceeververesienenn, 53

Figure 3.2.10: Code Snippet for Detecting the Pool Table............cccoovevieieiieiiece e, 55
Figure 3.2.11: Detecting POCKet BOUNAAIIES .........c.ccuviieiieieeieieese e 56
Figure 3.2.12.1: Creating Each Ball to be Tracked...........ccccceeeiieiiiiiece e, 58
Figure 3.2.12.2: Ball ODJECT.......icieiieiece et te e nne e 59
Figure 3.2.13.1: Masking Each Ball ...........c.ccooieiiiii e 62
Figure 3.2.13.2: Masking CONLINUEA ..........ccoriiiiiieiiiie et 63
Figure 3.2.14.1: Tracking AlGOrithm ........coiiiiieiee e e 64
Figure 3.2.14.2: Tracking MOVEMENT .......ccuiiiiiiiieie et s 65
Figure 3.2.14.2: DeCiSION MaKING .....couiiiiiiiiiiiieiiee et 66
Figure 3.2.15: Implementation of Python to Firebase Communication.............cccccvvveiveneninnnnnn, 67
Figure 3.2.16: FUIl PYTNON COUE.......couiiie it 68
Figure 3.2.17: Implementation of React Native to Firebase Communication ..............cccccccoeenen. 78
Figure 3.2.18: React Native Listening for Pocketed Balls.............cccooiiiiiiiiniie e, 78
Figure 3.2.19: Ball Coordinate RENUEING .......cccueiiiiiiie i 79
Figure 3.2.20: BItBIllIardS APD ...eooeeiie et 80
Figure 3.2.21: Full BitBilliards React Native COUE..........c.coeriereeriiie e 81
Figure 7.1.1: Design Gantt Chart Part 1 ..........cccevveiiiieiieeie e 90
Figure 7.1.2: Design Gantt Chart Part 2 ...........cccoviveiiiieieese e 91
Figure 7.1.3: Implementation Gantt Chart.............ccocveieiieie s 92
Figure 7.1.4: Actual Gantt Chart............ccoiueieiiieieecs et re e nne e 94



List of Table

Table 2.1.1: ENQINEering REQUITEMENTS.......ccvciieieeieiiesie et ste et e s sra e e ans 12
Table 3.1.1: System Fundamental Requirement Table...........ccocoveieiiieii e 14
Table 3.1.2: Camera Fundamental Requirement Table ..........cccccooviiieii v 15
Table 3.1.3: PC Fundamental Requirement Table...........cooevieiiiieiieeie e 15
Table 3.1.4: Microcontroller Fundamental Requirement Table ..........ccccocovevviieiecc e 15
Table 3.1.5: Adapter Board Fundamental Requirement Table..........ccccceveveieiieiiece e 16
Table 3.1.6: Racking Motors Fundamental Requirement Table..........ccccooceviveviiieiecc e 16
Table 3.1.7: Gate Motors Fundamental Requirement Table..........ccccoiiiiiiiniiii e 17
Table 3.1.8: Gantry Preparation Fundamental Requirement Table ..........cccooeveieiiiiiin e, 17
Table 3.1.9: Power Supply Fundamental Requirement Table ... 17
Table 3.1.10: PIC24 Fundamental Requirement Table ..........ccoooiiiiiiiiinnieeeee e 18
Table 3.1.11: Power Supply Fundamental Requirement Table...........cccooeviiininincn e 18
Table 3.1.12: Stepper Drivers Fundamental Requirement Table ..........cccccoiiiniiinniiin e 19
Table 3.1.13: Servo Control Fundamental Requirement Table ... 19
Table 3.1.14: Solenoid Driver Fundamental Requirement Table ... 20
Table 3.1.15: Limit Switch Interface Fundamental Requirement Table ..........cccccveviiiniieniene 20
Table 3.1.16: Stepper Motors Fundamental Requirement Table...........ccoccoiiiiininiin e 20
Table 3.1.17: Servo Motors Fundamental Requirement Table..........ccccooiiiieniiinnc e 20
Table 3.1.18: Solenoids Fundamental Requirement Table..........cccoovveviiii i 21
Table 3.1.19: Limit Switches Fundamental Requirement Table ...........c.cccoveveiieieci e 21
Table 3.1.20: Stepper Motor Driver Parts Table..........ccccovoiiiiieiee e 21
Table 3.1.21: PIC Adapter Board Parts Table ...........ccceiieiiiieii s 24
Table 3.2.1: Microcontroller Fundamental Requirement Table ..........ccccoocovveveiieiccce e 46
Table 3.2.2: Server Fundamental Requirement Table ..........ccoovvieiieeii e 46
Table 3.2.3: Mobile App Fundamental Requirement Table ..........c.cccoovvvievieie s 47
Table 4.1.1: Original BUAQEL ........ccviieiiece et e e anes 89
Table 4.1.2: ACLUAL BUAQEL .......ccvieieeiecie ettt e e nreeneenes 89



Abstract (RM)
The goal of the project is to create a billiards table capable of keeping track of the score

while simultaneously racking the sunk balls under the table. To achieve this, image processing
will be utilized to detect and determine which balls are above and below the table. Upon leaving
the table, the balls will be held by gates to prevent the cue ball from entering the reracking track.
The balls will then enter the track and form a queue to be placed back into the triangle
underneath the table. A gantry system consisting of an x and y axis will place the waiting billiard
balls into their corresponding positions in the triangle. Throughout this process, data will be sent
to a remote server which will provide the live game updates to the app. The app will be capable
of showing the current score and status of the game, including images of the table. All of these
improvements will help bring more viewers to the competitive pool scene while decreasing the

delay between games.

1. Problem Statement
1.1: Need (GR/RM)

The American Poolplayers Association has over 250,000 members across 300 APA
leagues in the US, Canada and Japan. These tournaments range from junior leagues to
professional world championships with monetary payouts of over $2 million. However, the game
of pool has not changed since its creation. This means there is no way to automatically display
the score of each pool game to the viewers. Viewers of the tournament have no way to know the
score of any game besides the game they are currently watching. Each table also must re-rack
their own balls, slowing down the speed of the game. By taking advantage of current technology,
the game of pool can be more interactive with its audience while speeding up the pace of the

game.



1.2: Objective (RM)

The objective of this project is to design and prototype a modified billiards table that re-
racks pool balls during tournament play and allows pool fans to receive live updates of each
game from an app. To accomplish automated re-racking, a mounted camera will send live video
to a microcontroller that will use image processing to determine when balls are sunk, and make a
decision on whether or not they should be re-racked. If balls are determined legally out of play,
they will be sent to a queue to be racked for the next game. By knowing the order of the balls in
the queue, they can be re-racked properly. The rack will be placed on a motorized bed similar to
an X-Y cartesian 3D printer, so it can accurately reposition itself under the hopper for each ball
that gets re-racked. The images sent to the microcontroller will also determine the game’s status
in real time. As the game progresses, the positions of the balls will be sent from the
microcontroller to a server, so pool followers can use an app to view an animated pool table that
updates as the game progresses.

1.3: Background

(RM) One objective of this project is to use image processing to keep track of the balls
that have been sunk and record the position of the balls currently on the table during each move.
To accomplish this, a camera must be placed above the table and a live video feed will be sent to
an embedded system that implements OpenCV, an image recognition API, to understand the
placement of all balls. According to OpenCV’s API, the service must run on either Linux,
MacOS, or Windows. There’s an example of this being completed with an ARM9 Processor
using the OpenCV C++ API in a facial recognition environment [1]. Using the ARM9 processor
provides the benefit of high frequency rates and a five-stage pipeline, allowing for fast and

reliable image processing. One limitation may be the frame rate of the video feed. The document



did not include information about the number of video frames sent to the embedded system each
second, so the time to receive and process each frame may exceed the time that it takes to stream
each frame. Also, this implementation did not discuss sending the data to a database. As a result,
the embedded system must have a Wi-fi module to stream data to the database.

(DM) Another implementation of image recognition and video analysis in a billiards
environment is seen in Billiards Wizard [2]. This proof of concept uses image recognition and
video analysis to teach people how to play pool based on videos of professionals playing the
game. Similar to Billiards Wizard, the proposed billiards table outlined in this document will also
use a camera to determine the position of the balls based on color and coordinates. In contrast,
Billiards Wizard is limited in how it uses the video feed sent to it. There is no way to broadcast
or analyze live gameplay, which limits its functionality.

(GR) Currently there is no way to automatically count score for those playing billiards.
All score is kept track manually by the participants. This slows down the game because it takes
the participants focus away from the game. Several projects have been attempted to alleviate this
such as the project by Tang and Wang [3]. These different methods include: RFID readers,
manually toggling LED scoreboards, and magnetic tracks which automatically track score.
However, each of these methods has its own flaws. RFID readers are accurate, but the big issue
is how the RFID chips are implemented in the balls. In the document by Wang and Tang, the
billiards balls are simulated with Ping-Pong balls. This does not accurately represent the
implementation because the RFID tags used would not fit in the balls. Any other form of tag or
chip would require modifying the balls in a way that could affect how they affect play. Manually
toggling an LED scoreboard still requires manual operation, defeating the purpose of automatic

score tracking. Designing magnetic tracks to keep score would require many hours of design and



deliberation, assuming the design even functions in the end. Using a camera to track score
eliminates the need to modify the balls or create a mechanical system that tracks score. This is
the most efficient way to track score while adding little distraction to the participants.

(GR/DM) A third objective of this project is to design an automatic ball re-racking
system. This solves the issue of manually emptying the pockets and re-racking the balls. The
closest thing to an automated re-racking system is the commonly seen coin-operated tables
located in bars and pool halls. This mechanism locks the sunk balls in a hopper underneath the
table. If the cue ball is sunk, a magnet inside the ball allows the it to bypass the normal collection
method. Another example of automatically re-racking billiards balls was introduced in 1917 [4].
The concept suggested by Russell is like the modern coin-operated tables. In this concept, tubes
are ran from each pocket to a hopper at the end of the table, where sunken balls collect. The
limitation of this technology is that there is no method to place the balls into the racking device.
The balls would just be dropped into a bucket or some other collection device. This patent is
similar to what is being proposed, however the goal is to re-rack the balls before the next game.
This adds one more step to the process. Due to this, a solution will be designed that takes the
collected balls and accurately places them into a billiards rack underneath the table. The most
difficult part of this is to figure out how to get the balls in the proper spot in the rack, as there are
requirements for how the balls are to be racked depending on the game being played. The
solution to this would be a cartesian motion system for the bed that the rack will be sitting on. 3-
D printers currently use this system to move designs on the two-dimensional plane, while the
extruder moves vertically. In the publication “Dynamic Modeling and Characterization of the
Core-XY Cartesian Motion System” it can be seen exactly how this system works and why it is

one of the most accurate systems to use for positioning [5]. While this project is not to create a 3-



D printer, the cartesian system is relevant to the design of the re-racking system because it will
allow a billiards rack to move under a hopper in a way that each dropped ball will land in the
desired position for the next game.

(KS) A fourth objective of this project is to use a motorized gate to release billiard balls
from the pocket to the track. Motorized gate systems are able to be used in many different types
of scenarios. Automatic doors and gate systems are used in everyday life from handicap doors to
garage doors. In a project by Hao Wang in 2015, Wang designed a scale model of a door system
used in the Spartan Superway automated transit network [6]. The way this gate system will work
in this design project is that the system will stay normally closed and when billiard balls are
pocketed, a motor will open the door and release the balls below into the track, then into the
automatic re-racking system. In the case that the cue ball is pocketed, the door system will
remain closed so the cue ball may be removed by a player. There will be many similarities and
differences between the design by Wang and the design implemented into this proposed design
project. A design similarity to Wang’s is that “Basic dimensions of door opening need to meet
requirements for easy accessing for passengers with disability, emergency egress, and rescue
access.” [6]. This similarity comes into play such that the door must be located deep enough into
the pocket in order to allow at least three balls to fall into any pocket at any point in time. The
case where three balls would be in a pocket at one certain time would come when a player makes
a combination shot and pockets the cue ball. In Wang’s design, there are many requirements that
would be unnecessary in the design of a modified billiards table. In the design of Wang’s door
system, there are standards for gap space between doors, platforms, and door frames in order to
prevent crushing hazards. In the design of a door system for a billiards table, the only

precautionary gap would come between the gate and the track. A factor that will need to be

10



calculated in this design project is the force being exerted onto the door in the system. The
design of an automatic door system by Wang accounts for an external pressure force being
applied between the roller and base plate. In this design project, there will be a pressure force
exerted directly onto the door due to the balls that were pocketed. The gate will be controlled by
a spring that will allow the billiard balls to fall into the racking system and then return back to
level after the balls have been released.

(KS) Another objective of this project is monitoring gameplay, a useful tool for coaches
or anyone viewing the game at play. There is currently a patent from James W. and James V
Bacus for an LED light fixture that is mounted above the pool table that may support one or
more cameras [7]. The main concept behind monitoring the game is that the recordings may be
reviewed in order to achieve a higher level of play. This device records game play, offers replay,
review, analysis of stored video, and light dimming controls. This device would be very similar
to the recording device used in this design project. A difference is that the device used in the
design project will not be required to be mounted from the ceiling. The device created for the
design project will be freestanding around the table. Having lighting and the monitoring device
mounted above the table restricts the table from use in an open room. With the freestanding
device, the table can essentially be located anywhere as long as there is an electrical source
readily available and there is enough clearance for the freestanding aperture. The device created
by James W. and James V Bacus uses a grid system that aids in locating and determining the
position of each ball. This grid system will also be used by the freestanding device as well so the
balls can be easily located and tracked.

(RM) A final project objective is viewing live game data from an app. For this project,

React Native has been selected as the programming language of choice, because it can be written

11



in one language, and function on both Android and iOS operating systems instead of writing two
separate apps. For real time applications, Firebase is an appropriate database to implement in this
project due to its real-time capabilities. Game data will be streamed to the Firebase Cloud after
the software interprets the game’s progress on the embedded system. The mobile app will listen
for changes on the Firebase database and update the mobile app when it’s found. An example of
an embedded system streaming data to Firebase for a mobile app to interpret can be found in the
publishing by Li, Yen, Lin, Tung, and Huang [8]. In both implementations, embedded systems
interpret data and send it to Firebase storage. Then, a mobile app analyzes the data in real-time.
This article discusses the different methods of streaming data to Firebase from the
microprocessor. The authors of this publication utilized a REST API for sending data, and a
JavaScript SDK to read data. In the modified billiards table, these concepts will be the same.
Data will stream from the embedded system via REST API and read via the JavaScript SDK. In
this implementation, data is sent from an Arduino (a microprocessor without internet
capabilities) to an “intelligence server” before sending data to Firebase Storage. For this
implementation, server integration could be eliminated by adding internet capabilities to the
embedded system so data can be streamed straight to Firebase.

1.4: Marketing Requirement (DM)

This product should automatically rack the balls, give fans live updates of tournament
play, identify which balls are on the table, individually identify which ball has been pocketed,
and determine the score and winner of each game.

2. Design Requirements Specifications (ALL)

Table 2.1.1: Engineering Requirements

Marketing Engineering Requirements Justification
Requirement

12



2,3,4 The system will be able to The algorithm will be able to
differentiate each of the balls | successfully detect each of the
on the table from one another | pool balls on the table, and
other. determine which ones have

been pocketed by each player.

6 The system will be able to The algorithm will create an
remotely display the position | (X,Y) coordinate for each of
of each ball on the table. the balls on the table, and

send a JSON

1,3,4,5 The system will be able to The program will determine
determine which balls are in | which balls are in the table so
the pockets or no longer on that re-racking commands can
the table. be sent to the microcontroller

below.

45 The gate system will be able | The microcontroller will send
to be delayed a maximum of | a signal to the servo motor
10 seconds until the ball in telling the motor to open or
the pocket is identified. close depending on which ball

was pocketed.

1,45 The racking system will be The racking system will be
able to place the 8-ball and told by the microcontroller
one solid and one stripe in which ball was pocketed and
their desired positions within | determine which position in
the rack. the rack to place the ball in.

2,3,4,5,6,7 The application will be able The server will send live
to offer a live look into the updates out to a mobile
game being played. application that will track ball

movement and location, score
and winner of each game.

1,45 The racking system will be The stepper motors used to
able to place a ball into its drive the system will move
desired spot within 30 the position arm quickly into
seconds of the ball being place upon receiving a ball.
placed in the start position.

2,3 The live game play will not High speed camera will be

be affected by the system in
any way.

mounted above table to
provide a clear view of table
with constant light applied.

13




complete within 2 minutes of
game completion.

6,7 The system will be able to The camera will determine
determine which player’s turn | which player is up based on
it is therefore, determining ball placement and by the
which balls should be being amount of time delay,7
aimed for. between shots.

1 The re-racking system will be | The racking system is used to

help speed up the process and
decrease the time in between
games.

Marketing Requirements

NogakowhE

The system will automatically re-rack the pool balls
The system will provide live updates

The system will identify balls on the table

The system will identify balls in the pockets

The system will track the status of the balls

The system will determine the score of each game
The system will determine the winner of each game

3. Accepted Technical Design

3.1. Hardware Design (GR/KS):
Figure 3.1.1: Level 0 Hardware Block Diagram

Live Video

Power

Y

-
Ball Commands -

b

Table 3.1.1: System Fundamental Requirement Table

System
.5 J

o

Module System

Inputs Power
Live video from the table

Outputs Ball command signals

Description ] o ]
The system will analyze live images from the table to determine what ball
commands to be executed.

14




Figure 3.1.2: Level 1 Hardware Block Diagram

Power/Data_| Racking

h

Motors
Serial Output
Data —  Commands
Live Video > * Power/Data
PC _[Microcantroller| Adapter Board » Gate Motors
Power g N Tnpul Data T
Power
| Power/Data_
" Gantry
Power Supply Preparation
Data —_—
120VAC

Table 3.1.2: Camera Fundamental Requirement Table

Module Camera

Inputs Power over USB

Visual input from table

Outputs Live video to the PC

Description |The camera will send live video to the PC for processing.

Table 3.1.3: PC Fundamental Requirement Table

Module PC
Inputs Live video from camera
Outputs Serial commands to microcontroller

Power over USB to the microcontroller

Description | The PC will use image processing to determine ball positions on the table and
inside the pockets. The PC will then send this data over serial to the
microcontroller. The PC will also power the microcontroller over USB.

Table 3.1.4: Microcontroller Fundamental Requirement Table

Module Microcontroller

Inputs Power over USB from the PC

15



Serial commands from the PC

Input data from the Adapter Board

Outputs

Output commands to the Adapter Board

Description

The microprocessor will receive serial commands from the PC telling the
microprocessor which balls are in the pockets.

The microprocessor will receive serial commands from the PC telling the
microprocessor which balls need re-racked under the table.

The microprocessor will then send output commands to the Adapter Board.

Table 3.1.5: Adapter Board Fundamental Requirement Table

Module

Adapter Board

Inputs

Power from the Power Supply

Output commands from the Microcontroller

Data from the Gantry Preparation

Outputs

Output any received input data from the stages

Output power and data to the Racking Motors

Output power and data to the Gate Motors

Output power and data to the Gantry Preparation

Description

The Adapter Board serves as an interface between the Microcontroller and the
sensors and actuators in the system.

The Adapter Board receives data and power while also outputting data and power
to various stages under the table.

Table 3.1.6: Racking Motors Fundamental Requirement Table

Module Racking Motors

Inputs Power and data from the Adapter Board

Outputs Mechanical movement

Description |The racking motors will be used to move a gantry to re-rack pocketed balls into a

triangle.

This system will be located under the table to allow the pockets to feed into the
racking solution.

16




Table 3.1.7: Gate Motors Fundamental Requirement Table

Module Gate Motors

Inputs Power and data from the Adapter Board

Outputs Mechanical movement

Description |The gate motors will be used to hold the sunk balls in each pocket to check and

see if the cue ball was pocketed.

The gate motors will then release the sunk balls into the re-racking solution under
the table.

Table 3.1.8: Gantry Preparation Fundamental Requirement Table

Module Gantry Preparation
Inputs Power and data from the Adapter Board
Outputs Mechanical movement
Input data from sensors in the track
Description | The gantry preparation tube will be used to index and hold the balls in the track

before the gantry system.

This system will allow for one ball at a time to be released and indexed into the
gantry to be re-racked.

Table 3.1.9: Power Supply Fundamental Requirement Table

Module Power Supply

Inputs Power: 120VAC

Outputs Power: 12VDC, 6VDC, 5VDC

Description | The power supply will provide the necessary voltages and currents to each

component of the system.

17




Figure 3.1.3: Level 2 Hardware Block Diagram

Adapter Board
PWM Signal i PWM Signal
> Stepper T7v—%| Stepper
» Dirivers Maotors
Ik—.-‘l | ——
SR ! i
PWM Sighal ———— PWM Signal
*| Servo Control SV—» Servo Motaors
I\—p‘l | —
FIC24 i i
Enable Sigpal *'.a—w.' Enable Signal ———————————,
*  Solenoid )
> Driver .y Solenoids
] ]
] ]
i i
$ Feedbick Sjgnal 'f—"* Feedback Signal ,——
| Limit Switch e
*| T nterface SV———»|Limit Switches
12V BV 5V bememmmeemee- i

Power Supply

120WAC

Table 3.1.10: PIC24 Fundamental Requirement Table

Module PI1C24
Inputs Feedback signal from Limit Switch Interface
Outputs PWM signal to Stepper Drivers
PWM signal to Servo Control
Enable signal to Solenoid Drivers
Description |The PIC24 will output various signals to different driver/controller circuits on the

adapter board to activate the corresponding devices.

The P1C24 will receive a feedback signal from the Limit Switch Interface when

the limit switches have been triggered.

Table 3.1.11: Power Supply Fundamental Requirement Table

Module

Power Supply

18




Inputs 120VAC
Outputs 12V to Stepper Drivers

6V to Solenoid Drivers

5V to Stepper Drivers, Servo Control, Solenoid Driver, Limit Switch Interface
Description |The Power Supply

Table 3.1.12: Stepper Drivers Fundamental Requirement Table

Module Stepper Drivers
Inputs 12V from Power Supply
5V from Power Supply
PWM Signal from PIC24
Outputs 12V to Stepper Motors
PWM Signal to Stepper Motors
Description |The Stepper Drivers are used to provide the necessary power and signal to the

Stepper Motors.

The PWM Signal will be converted into a modified PWM to move the Stepper
Motors.

The Drivers will pass 12V to power the Stepper Motors. The 5V is used to select
and enable options built into the Driver chips.

Table 3.1.13: Servo Control Fundamental Requirement Table

Module Servo Control
Inputs 5V from the Power Supply
PWM signal from the PIC24
Outputs 5V to the Servo Motors
PWM signal to the Servo Motors
Description |The Servo Control will be used to open and close the Servo Motors in the pocket

gates. Depending on the PWM signal received from the PIC24, the gates will
open or close. The 5V is used to power the Servo Motors.

19




Table 3.1.14: Solenoid Driver Fundamental Requirement Table

Module Solenoid Driver
Inputs 6V from the Power Supply
5V from the Power Supply
Enable signal from the PIC24
Outputs 6V to Solenoids
Enable signal to Solenoids
Description |The Solenoid Driver is used to engage and disengage the solenoids via a signal

from the PIC24. However, this Driver is needed because the PIC24 cannot power
or control the solenoids on its own.

Table 3.1.15: Limit Switch Interface Fundamental Requirement Table

Module Limit Switch Interface
Inputs 5V from Power Supply
Feedback Signal from Limit Switches
Outputs 5V to Limit Switches
Feedback Signal to P1C24
Description |The Limit Switch Interface is used to power the attached Limit Switches. The

Interface will also limit the feedback signal to protect the PIC24 from damage.

Table 3.1.16: Stepper Motors Fundamental Requirement Table

Module Stepper Motors
Inputs 12V from Stepper Drivers
PWM signal from Stepper Drivers
Outputs Mechanical movement
Description |The Stepper Motors are used to move the rerack gantry. The motors will move the

x and y axis of the gantry. The 12V is used to power the motors and the signal
determines the speed of the motors.

Table 3.1.17: Servo Motors Fundamental Requirement Table

20




Module

Servo Motors

Inputs 5V from Servo Control
PWM signal from Servo Control
Outputs Mechanical movement
Description |The Servo Motors are used to control the gates in the pockets. These gates hold

balls temporarily before releasing them into the track below. The 5V is used to
power the motors and the PWM determines the motors position.

Table 3.1.18: Solenoids Fundamental Requirement Table

Module Solenoids
Inputs 6V from Solenoid Driver
Enable signal from Solenoid Driver
Outputs Mechanical movement
Description |The Solenoids are used to stop and index balls in the gantry preparation track.

These solenoids allow one ball at a time to be released and control the flow of
balls. The 6V is used to power the solenoids while the enable signal engages or
disengages the solenoids.

Table 3.1.19: Limit Switches Fundamental Requirement Table

Module Limit Switches
Inputs 5V from Limit Switch Interface
Outputs Mechanical movement
Feedback Signal
Description |The Limit Switches are used to determine the position of a ball in the gantry

preparation track and the position of the re-rack gantry. The limit switches are

powered by 5V. When the limit switch is activated, a feedback signal is sent to the

Limit Switch Interface to tell the PIC24 the limit switch has been tripped.

Table 3.1.20: Stepper Motor Driver Parts Table

Reference Designator

Part Description

Ul

DRV8825 Stepper Motor Chip

21




C1 10nF Capacitor

C2 0.1uF 16V Capacitor
C3,C4 0.1uF Capacitor

C5 100uF Capacitor

C6 0.47uF Capacitor

R1 1M ohm resistor

R2, R3 0.2 ohm resistors
UNLABELED 10k ohm potentiometer

Figure 3.1.4: Stepper Motor Driver Schematic

—

Al
/1

22



Shown in Figure 3.1.4 is the schematic created to build the stepper motor drivers. These
stepper motor drivers are necessary to move the attached stepper motors, as stepper motors are
not operated the same way as traditional brushless motors. The Texas Instruments DRV8825 was
selected to be used as the driver chip. The DRV8825 can output 2.5A per phase, more than
enough to power the 2A per phase stepper motors selected. The DRV8825 is capable of 1/32
micro stepping, which can be used to reduce the 1.8 degree step into a smaller, more precise
movement. The schematic shown above was designed using the typical application selection on
page 18 of the DRV8825 datasheet [10]. VMA and VMB are the Bridge A and Bridge B power
supplies [10]. These are connected to the motor supply voltage of 12 Volts and bypassed to GND
with a 0.1uF capacitor. The 100uF capacitor also tied to VMA/VMB is used to safely block any
parasitic from the attached power supply. VMA/VMB are also connected to VCP via a 1M ohm
resistor and 0.1uF capacitor. VCP is the high-side gate drive voltage [10]. DIR is connected to
pin RAO of the PIC24 microcontroller. This pin changes the direction of the stepper motor
depending on if the pin is set high or low. STEP is connected to OC5 of the PIC24
microcontroller. This pin is used to move the indexer one step every time a rising edge signal
occurs. CP1 and CP2 are listed as charge pump flying capacitors [10]. These pins are tied
together using a 0.01uF capacitor. ISENA and ISENB are Bridge A and Bridge B current sensing
resistors [10]. These resistors are chosen such that the denominator in Figure 5.1.5 is set equal to
1. This means that the values for the current sensing resistors needs to be 0.2 ohms.

Figure 3.1.5: Chopping Current Equation [10]
V(xREFJ

I p—
CHOP
3 X RISENSE

The other variable used in Figure 3.1.5 is AVREF and BVREF. These pins are used to

obtain a reference voltage for Bridge A and Bridge B. They are connected to a 10k ohm

23



potentiometer connected to 3.3V. The center tap is then connected to both AVREF and BVREF.
This reference voltage is then used as the numerator for Figure 3.1.5. The value of the voltage
determines the chopping current because the denominator is set to 1. This chopping current is the
limit on the current for each bridge. By varying the chopping current, more or less current can be
used to drive the stepper motors. For the stepper motors selected, the VREF values are set to 2V
so that 2A of chopping current is set as the limit. V3P30OUT is the internal 3.3V regulator on the
chip. However, it will not be used so it is bypassed to GND with a 0.47uF capacitor. AOUT1,
AOUT?2, BOUTL1, and BOUT2 are connected to the four wires of the stepper motor. The color
connection is shown in the schematic. Each set of outputs, AOUT/BOUT, are connected to a
single phase of the stepper motor. The remaining unconnected pins are used to select different
features such as the micro stepping, sleep, home, or reset. These pins all contain internal
pulldown resistors so if no voltage is applied, they are logic level 0’s.

Table 3.1.21: PIC Adapter Board Parts Table

Reference Designator Part Description

5V, 6V, 12V Screw-Terminal Connector
C1,C2,C3,C4 100uF 50V Capacitor
22-23-2021 Molex 2-Pin Connector
22-23-2031 Molex 3-Pin Connector
22-23-2041 Molex 4-Pin Connector
22-23-2051 Molex 5-Pin Connector
22-23-2061 Molex 6-Pin Connector

JP1, JP2 2 Row 6-Pin Header
UNLABELED 8 Position Connector Receptacle
U1, U2 IC Gate AND 4 Channel 2 Input

24



S1, S2, S3, S4 MOSFET N-CH 60V 200MA TO-92
D1, D2, D3, D4 Diode General Purpose 1000V 1A
Q1,Q2,Q3, Q4 MOSFET, 50V, 30A, TO-220 pkg
R1, R2, R3, R4, R5, R6, R13, R14, R15, R16, | 10k€ Resistor

R17, R18

R7, R8, R9, R10, R11, R12 20k€ Resistor

F1,F2, F3

FUSE BLOCK BLADE 500V 30A PCB

F1, F2, F3

FUSE AUTOMOTIVE 7.5A 32vDC BLADE

Figure 3.1.6: PIC Adapter Board Schematic

I 5 5 7 g

——l e
o o | = .-h_‘
=
T o —
— I T = | = |
e = e
U B -
:I: =
l 5 — 1 H—=
e - H=
= —
I . =
T — 1

=]

25




Figure 3.1.7: Adapter Board PCB

STPMTR-1

STP-MTR-2

STPMTR-3

PICLIM-SW

| (BRI
STP-MT -4

soosee

© JLCILCILCILE g Eﬁ ; ‘

Figure 3.1.6 shows the designed PIC Adapter Board for the project. The goal of this PCB
was to create a PCB that housed all the necessary components to be an interface between the
P1C24 controller and the billiards table. The PCB layout is shown in Figure 3.1.7. The stepper

drivers, solenoid drivers, PWM servo control, and limit switch interface were all designed and

26



placed on the Adapter Board. This allows for the signals of the PIC24 to be sent to the adapter,
and then for the adapter to send the signals to the billiards table to trigger the corresponding
components. The schematic and PCB layout are broken into four sections: Stepper Driver, Servo
Control, Solenoid Driver, and Limit Switch interface. 5V, 6V, 12V, and GND are all provided to

the Adapter Board. Each different voltage was fused separately. The Adapter Board is a 2-layer

Figure 3.1.8: Adapter Board Stepper Motor Schematic
F1 O
- S 1 .
veesy 2 1 [, — il
e, B STEPPER DRIVER ADAPTERS i
m
JP1 _ _
1o 2 ENABLE_L[ 8 vCC
(_{ MO 2 7 GND-12V
6 M1 6 p2
&8 M2 4 5 BI
Sl RESET__ 5 4 A1
) O SIFFP 6 3 A2
- TEP 7 )2 EANT
STP/DIR-1-1 ‘ DIRECTION 8 -]l GHND w
STP/DIR-1-2 ‘ o E— ~ S
22-23-2021 aRs
EnaBLE [0 [_]e  vcc "|
MO 2 7 GND-12V
M1 6 B2
M2 4 5 PRI
RESET 2 Al
|EEP 3 A2
Fp__ 7 = FanT
DIRECTION 8 -% GND w
JpZ - 01 /S
1 2 ENABLE_L[o 8 VCC
it MO 2 7 GND-12V
ol M1 6 B2
o8 M2 4 5 B1
95 Ol RESET 4 Al
/ CLZ | FEP 6 3 AD
_ STER 7 =12 FAULT
STP/DIR-2-1 | s B w
STP/DIR-2-2 ‘ — — H
22-23-2021 <0 8
EnaBLE L[ ] ]z vcc %’
- e
i 5 R - 22.23-2041
M2 4 5 Bl
RESFT 5 4 Al
LEEP 3 A2
TER 7 =z FaulT
DIRECTION 8 -% GND

The Stepper Motor section of the Adapter Board shown in Figure 3.1.8 was designed to
allow plug and run functionality while also allowing options to be selected. The four stepper
driver boards plug into two sets each of eight pin receptacles. The pins are all labeled with their

corresponding functions as seen in Figure 3.1.8. These functions include providing 12V,
27



connecting to the motor outputs, and selecting the desired options on the stepper drivers. The
12V and 5V rails are both fused to protect all components. A 100uF capacitor is then connected
across the 12V rail to protect each stepper driver from any irregularities from the power supply.
The four motor outputs from the steppers are connected each to a Molex 4-Pin header. Each set
of two steppers have their additional options and step/direction signal wired together. This is
because each set of two stepper drivers corresponds to either the X or Y axis of the gantry re-
racking system. One motor was used to drive each side of each axis, allowing the load to be
distributed evenly across the motors. By being wired together, each axis of motors is always
receiving the same options and the same step/direction signal. This prevents the two motors on
the same axis from becoming out of sync. The additional option pins are routed to a 2 Row 8-Pin
header (shown as JP1 & JP2) which allows for a jumper to be placed across the pins to set the
desired pin high. 5V is connected to the other side of the jumper headers JP1 and JP2. Some of
the additional selectable options include micro stepping mode, sleep mode, enabling of the
steppers, and reset. The SLEEP and RESET jumpers were connected to enable the steppers to
operate. The step/direction pins are routed to a Molex 2-Pin header, which directly connects to

the output from the PIC24 controller.

28



0T T

Ul
o L4 vcesy
22-23-2051 ; . S
AR PKTSIG 1 SUTA 3 0O
e e |4—ouT2>.
8 . — ! 0
- ute |2 QUI3
- uTp |LOQUT4.
£
_lig;
L =L =l
] — —— o SS 7
02 52 5T 338 — ]
e L e L
GND GND GND GND U2
oo |14 vce-sv
PKTSIG . 1 uta |3 0QUTS
o e e > 2 outs
_ . 22-23-2051 T—n UTB 0 0uT?
FeRe T e [T _ouTs
> ITC
_li;;
S§ :é S§ S X 55 L
&y =y @y =y

00

Figure 3.1.9: Adapter Board Servo Schematic

SERVO PWM ICs

3

GND GND GND GND

Figure 3.1.9 shows the schematic design of the servo control on the adapter board. The

servo control had to be planned out because the servos operate on PWM signals. The PIC24 has

a limited number of PWM outputs, and with the stepper drivers also using PWM the remaining

number of PWM outputs were limited. To get around this issue, two AND IC chips, labeled Ul

and U2 in Figure 3.1.9, are utilized. The AND ICs used added very little delay to the response

time of the signals. An AND gate outputs a HIGH signal when both inputs are toggled HIGH.

So, for this situation, one input on each gate was tied to a PWM output from the PIC24. The

other inputs were then tied to a normal output pin on the PIC24. This allowed for one PWM to

drive up to six servos. These six servos would each be used in the pockets of the tables to act as

29



gates. If servo one was required to be opened, the second AND input, 2A in this situation, was
set HIGH. By setting 1A to the PWM, and 2A to a constant HIGH signal, the resulting output
would be the desired PWM signal. The six pocket gate servos were connected to the 3-Pin
Molex Headers labeled Servo 1 to Servo 6. 3-Pin Molex Headers were used to connect all eight
servos to the adapter board. The remaining two available AND gate inputs were connected to a
second PWM output from the P1C24. This allows for these two servos to be controlled separately
from the pocket gate servos. One of these servos, Servo 7, was used to release the balls into their
final positions in the gantry re-rack system. The other servo output, Servo 8, was unused. A
10kQ resistor was connected to each non-PWM input and then to ground. This prevented the
enable pins from floating, as the resistors acted as pull-down resistors. 5V and GND were
provided to all servos and the AND IC chips.

Figure 3.1.10: Adapter Board Solenoid Schematic

1 SOLENOID DRIVERS

VUR1100ER

o

7
C T

Figure 3.1.10 shows the circuit used to drive the solenoids in the project. Four solenoid
driver circuits were constructed, with two being used for the gantry staging track and the other

two free to be used as desired. The solenoids could be operated at 5V or 6V, however at 5V it

30



was observed that the solenoid would occasionally fail to fully retract, so 6V was used to operate
the solenoids. A power MOSFET was required because at 6V the solenoid pulled 1.2 amps of
current. The power MOSFET chosen, the BUZ11, could operate at 50V and pull 30A of current
[11]. The BUZ11 MOSFETS are indicated in Figure 3.1.10 by Q1, Q2, Q3, and Q4. A major
issue that occurred was that the PIC24 voltage output was too low to surpass the gate threshold
voltage of the BUZ11 MOSFET. The PIC24 output pins are capable of outputting 3.3V. The gate
threshold voltage of the BUZ11 is 4V [11]. To fix this issue, a N-Channel MOSFET was used to
trigger the required voltage to control the BUZ11 MOSFET. This N-Channel MOSFET used was
the 2N7000. The 2N7000 has a gate threshold voltage of 3V [12]. The 2N7000 is designated as
S1, S2, S3 and S4 in Figure 3.1.10. 5V was connected to a 10kQ resistor, which is connected to
the gate of the BUZ11 and the drain of the 2N7000. When the gate of S1 was set HIGH by the
PIC24, 5V was set to the gate of Q1. When this occurred, current was pulled through the
attached solenoid. The solenoid had one lead connected to 6V and the other lead connected to the
drain of Q1. A diode was wired across the solenoid to prevent and protect against any back EMF
generated by the inductor in the solenoid. When tested, the circuit operated exactly as expected

with no issues occurring. The 6V source was fused and connected to the correct power supply.

31



Figure 3.1.11: Adapter Board Limit Switch Schematic
VCC-5V

22-23-2031
s _ —am | |M-5W-1-1
LIMIT SWITCHES e oo

- | |M-5W-1-3

22-23-2031
———=» | |M-SWW-2-
o—am | [M-SW-2-;

=

%2

22-23- 4031 - | IM-SW-2-3

PIC-LIM-SW-1 == RAN—5E
PIC-LIM-SW-2 ea——RE AN 20k 22-23-2031
F'uLHHJB-—F#O—ﬁNsz [ = | IM-SW-3-1
PIC-LIM-SW-4 s—FR 10 AAMA—20k— — = | |M-SW-3-2
PIC-LIM-SW-5 ss——B11T- AMA-—20K - | IM-SW-3-3

PIC-LIM-SW-6 s——R12 AMA- 20K
2-23-2031

¢ = livSwa1
$——= LIM-SW-4-2
- L IM-SW-4-3

2-23-2031
l——- LIM-SW-5-
—m= | [}]-5W

- | [M-SW

l..n_'l |"_'l I—

I'
-5-

I
-5-

22-23-2031
- | |M-5SW-B-
—am | [M-SWW-B-
= | |M-5SW-B-

l..n_'l |"_'l =

GND
Figure 3.1.11 shows how the limit switches were connected to the adapter board. The
limit switches were used in various instances such as: gantry system end of arm travel for both
the X and Y axis, ball present in gantry, ball present in preparation tube, and ball index position

present. The circuit itself is the simplest of the four sections on the adapter board. The limit

switches each contained three pins, one for each of the following: power, signal, ground. A 3-Pin

32



Molex Header was used to connect each limit switch to the adapter board. The limit switches
operated on +5V. +5V and GND were connected to the supplies on the adapter board. A 20kQ
resistor was connected in series with the signal output of the limit switch. This is due to how the
limit switches operated. When connected to the normally open contact, depressing the limit
switch actuator will complete the circuit. When the power is connected to +5V and the signal
output to the PIC24, this results in connecting +5V directly to a PIC24 input. The 20kQ resistor
in series prevents the current from damaging the PIC. The current becomes 0.25mA, enough for
the PIC24 to detect a signal but low enough to prevent damage. The six output signals were

connected to a 6-Pin Molex Header which was then wired to the corresponding PIC24 pins.

33



Figure 3.1.12: Pool Table Top View

34



Figure 3.1.13: Pool Table Underside View

As shown in Figure 3.1.12 and 3.1.13, the track system was made of 3-inch PVC pipe
that was cut in half in order for the balls to fall from the pockets directly into the track system.
The track was then hung underneath the table and angled so that the ball was able to roll
continuously without gaining too much speed.

One main problem that we ran into when integrating the pocket gates and track system
together was how the balls were falling out of the pockets when the servo motor was triggered.
It was determined that the pocket gates needed a way to allow the balls to fall the same way each
time into the track, or essentially aim the ball. To fix the problem, a funnel was attached inside
of the pvc pocket such that only one ball would fall straight down at a time rather than have the

balls off-centered in the pocket and release at the same time.

35



Figure 3.1.14: Pocket Gate Test Stand

The implementation of the pocket gates became rather tough. In the final design for the
pocket gates, as seen in Figure 3.1.14, a steel plate was attached to a small piece of wood with a
hinge that allowed the plate to move freely. Attached to the side of the pvc pocket was a cup
hook which then, a rubber band was hooked onto the cup hook and the metal plate. This rubber
band was implemented in order for the plate to return back to level so that the servo motor,

which acted as a latch, would be able to lock the plate back into place.

36



Figure 3.1.15: Pocket Gate Implementation

37



Figure 3.1.16: Servo Motor Mounts

Shown in Figure 3.1.15, each servo was then mounted next to the pvc pocket such that
the servo could act as a latching mechanism. Each servo motor was mounted using a 3D printed
motor mount, as shown in Figure 3.1.16, that was made through the 3D printing services offered
by the university. Attached to each servo was a steel arm that would extend under the steel plate
to take stress off of the motor itself. From here, as a ball was pocketed, there was a delay by the
microcontroller in order to determine whether the ball was a solid, stripe or the cue ball. Once
the ball was determined to be solid or stripe, the servo motor would rotate 180°, releasing the

balls into the track that runs to the gantry system.

38



Figure 3.1.17: Gantry System Complete View

39



Figure 3.1.17 shows the completed construction of the gantry re-racking system. The
gantry, the device with the funnel, rides on the x and y axis to move to the desired positions. The
axis are ball screws driven by the stepper motors. The balls screws are 25 inches long, but due to
the design of the re-rack system, only 18 inches of length are utilized in the x and y direction.
The pool table triangle measures 14 inches wide by 12 % inches tall so 18 inches is more than
enough room to re-rack the billiard balls. The x-axis arm was cut to a longer length to account
for the extra space needed to mount the stepper motors. This also helped balance the load on the
ball screws below by allowing the arm to position the motors directly above the ball screws. End
and motor mounts were utilized to secure the stepper motors and the ball screws to the wooden
frame. A flexible coupler was used to attach the ball screw to the stepper motors. Limit switches

are located on one side of each axis, with one limit switch at the start and stop position.

40



Figure 3.1.18: Side View of Re-racking System

Figure 3.1.18 shows a side view of the re-racking system. The x-axis home limit switch is
shown. This prevents the stepper motors from binding by stopping the gantry from coming into
contact with the coupler. The x-axis was mounted on 2-inch spacers so that the y-axis could

return back to its starting position without colliding with the x-axis.

41



Figure 3.1.19: Y-Axis Limit Switch

Sy

* t o ;*4;' W -\'.-\v\A\A-MM.w-\a\T'\nM\w\Oth\!b|!h‘lbhh‘hh‘i\ihbhﬁ‘llhll“h“i\“i““\t\"&

42



Figure 3.1.19 shows the y-axis stop limit switch. The limit switches were mounted on
standoff screws which were then drilled and glued into the wooden frame. Also pictured is one
of the end mounts which secures the ball screw in place. The end mount needed to be attached to
a spacer to help keep the ball screw level with the stepper motor. This helped reduce the wear

and stress on the motor.

43



Figure 3.1.20: Re-rack Gantry Construction

Figure 3.1.20 shows the constructed gantry for the re-racking system. This consisted of a
funnel cut to allow a ball to pass through attached to a wooden plate that is moved on the x-axis.

A servo motor is mounted under the plate, and a limit switch is built into the funnel. This allows

44



for the funnel to detect when a ball is placed inside, and the servo is then used to release the
contained ball into the pool triangle below. A piece of metal tube is attached to the servo arm to
provide the necessary reinforcement to hold a billiard ball.

Figure 3.1.21: Assembled Adapter Board

B )
= :
& )

BitBilliards

45



3.2. Software Design (DM/RM):
Table 3.2.1: Microcontroller Fundamental Requirement Table

Byte array Servo Position

Module

Designer

Inputs

Outputs

Description

Stepper Motor X and Y |
Position

Microcontroller

Microcontroller

David Milostan

Byte array
Servo Position, Stepper Motor X and Y Position

Send servo motor position to go to based on which pocket a ball has been made in
and send the stepper motor an x and y coordinate to move to based on which ball
has been made.

Table 3.2.2: Server Fundamental Requirement Table

Power App Data Signal
Microprocessor
App Data Request Se rver
Module Server
Designer David Milostan, Rodney Morgan
Inputs Power: 120VAC
Data from microprocessor
App Data request signal
Outputs Data signal to microprocessor
Description |The camera will be used to send live video of the pool table to a microprocessor.
The video will contain ball placement and movement on the table.

46



Table 3.2.3: Mobile App Fundamental Requirement Table

Server Server

Mobile App

Module Mobile Application
Designer David Milostan, Rodney Morgan

Inputs Server data signal

Outputs Server data signal

Description  The mobile app will take the data received from the server and display it on an
infographic to show the status of games in progress.

47



Figure 3.2.1: Gate System Software Flowchart

v

Detect ball position

Position Changed?

Yes

Send new
position to DB

Balls Pocketed?

No

Yes

Y

Send gate and racking
commands

Game over?

No

Yes

Y

Send end of game
commands

48



Figure 3.2.2: Racking System Software Flowchart

¥

Detect pocketed ball

Was cue ball pocketed?

Yes
No >»

Wait until cue ball
is back on table

Trigger pocket
and release ball

8-Ball Pocketed?

Solid Pocketed?

Y

Stripe Pocketed?

Y

Move rack to (x3,y3)

Move rack to (x1,y1) ¥ Move rack to (x2,y2)

Determine
player at table

Player 1 at table?

No [ Increment
“|Player 2s score

Yes

Increment
Player 1s score

49



Figure 3.2.3: Serial Communication Software Python - Opening Serial Port

def open_serial port():
ser = serial.Serial(port='COM3', timeout=0, rtscts=0)

print("Connected to ", ser.name)

The first thing that needs to be done to communicate from the PC to the PIC24 via serial
communication is to open the communication port that the data is going to be sent through. This
is done in the python code by assigning the port COM3 and setting the flow control to RTSCTS
(Ready To Send and Clear To Send). After that has been set up the last thing to do is send the

data. This is done as follows.

Figure 3.2.4: Serial Communication Software Python - Transmitting Byte

def sendSerialData(ID, Pocket):
data = hex(Pocket | ID)[2:]
ser.write(data.encode())

Figure 3.2.5: Serial Communication Software C - Setting Registers for UART
vold Tnitll (void) {
UlBRG = 103;

TIMODE = 0x3000;

ULSTA = 0x0400; Bg

On the microcontroller side UART communication needs to be set up to receive data.
To first enable UART only bit 15 is set to high in ULMODE and everything else is set low
giving the hexadecimal value 0x8000. Then the UART has to be set up to receive that data which

is setting the receive enabled bit in ULSTA which is bit 12 giving the value of 0x1000. Finally,

50



the baud rate has to be set which is how many bits can be transferred per second. A baud rate of
9600 is good for this application. ULBRG is the baud rate generator. Setting this to 103 will give
a baud rate of 9600. U1BRG can be calculated with the formula
U1BRG = ((FCY/Desired Baud Rate)/16) — 1.

Figure 3.2.6: Serial Communication Software C - Receiving Bytes

while (1)
{
data = getUl().;

char getUl (void) {
while (!'UlSTAbits . URXDA):;

return UlRXREG;

In the main loop getU1 is called and the program sits in this function until a byte is
received in the receive register, ULRXREG, and then that byte is returned to the character
variable data.

Figure 3.2.7: Gate System Software

while (1)

{
data = getUl ()
moveServo (data)

o1



void moveServo (char cmd)
{ ' i
if(cmd == '0") S
{
PocketlOpen() :
ms_delay (1000); o e T e
ms_delay (1000); L
PocketlClose () ;
moveStepperFWD (5) »

ms_delay(500); o ‘men Pocket
moveStepperREV(S5) ;

else if(data = '1'") - 3.
{ Open Pocket
PocketlOpen():; )
ms_delay(1000);

ms_delay(1000): case 4:
PocketlClose () : men Pocket 4-
moveStepperFWD(2) ;

ms_delay(500);
moveStepperREV(2) ; case 5:

else if(data == '2"'") 3 :v%;:,
{
Pocket20pen() case 6:
ms delay(1000):; Open Pocket

ms_delay(1000); break
Pocket2Close () ;

moveStepperFWD(5) ; default:
ms delay(500); break:
moveStepperREV(5) ;

Once the data is received and stored in the data variable it is sent to the moveServo
function. Depending on the data sent different scenarios will take place. For an example if a ‘0’
is received then Pocket1Open will be called to turn the servo motor on pocket one 180 degrees
and stay there for two seconds to let the balls drop into the racking system. Then Pocket1Close
will be called to turn the servo motor back to degree 0 which will stop any balls from moving
further than the pocket. Moving the servo to different positions is done by setting the duty
through the output compare register which is shown below in figure 3.2.8. The code shown

52



below is exactly the same for pocket one and two except a different output compare module is
used so the signals can be triggered separately.
Figure 3.2.8: Gate System Software - Set Servo Degree

void PocketlOpen (void)
{

C2R = 5000;
}

void PocketlClose (void)

Figure 3.2.9: Racking System Software - Move Stepper to Coordinate
void moveServo (char cmd)
{

if(cmd == '0')

{
PocketlOpen();
ms_delay(1000):
ms_delay(1000);
PocketlClose ()
moveStepperFWD(5)
ms_delay(500);
moveStepperREV(5) ;

}

else if(data == '1")

{
PocketlOpen()
ms_delay(1000);
ms_delay(1000);
PocketlClose ()
moveStepperFWD(2) ;
ms_delay(500);
moveStepperREV (2) ;

}

else if(data = '2")

{
Pocket20pen|() :
ms delay(1000);
ms_delay(1000);
Pocket2Close():
moveStepperFWD(5) ;
ms_delay(500);
moveStepperREV (5) »

53



vold moveStepperFWD xaxis (int Count)
{

int i:
PORTAbits.RRD = 1;
for(i = 0; i < Count; i++4)

DCZRS5 = 14400;
ms_delay (1000} ;

vold moveStepperBEV xaxis (int Count)

{

int i:
BCRTAbits.EROD = 0;
for{i = 0; i « Count; i++)

JCZRES = 14400;
ms delay (1000);

Moving the stepper motor happens after the ball is released from the pocket and is in the
racking tube that will move to the proper position in the rack to drop the ball. The function called
to do this is moveStepperFWD which sets RAO which is connected to the direction pin. This will
spin clockwise if high and counterclockwise if low. The output compare register will trigger a
rising edge to move the stepper as many times as the value passed into the function along with a
one second delay for each trigger so the stepper will move for five seconds if the value five is
passed into the function. The moveStepperREV works the same exact way except in the opposite

direction. It will run for the same amount of time so the stepper motor will go back to the home

position to go and pick up the next ball.

54



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Figure 3.2.10:

Code Snippet for Detecting the Pool Table

def calibrate_table():
#Grab the HSV threshold of table perimeter
MIN_HSV = np.array([@, @, 8],np.uint8)
MAX_HSV = np.array([255, 255, 284],np.uint8)

while 1:

#Capture a frame from camera
ret, calibrate = cap.read()

if calibrate is not None:
#Blurr image to get rid of imperfections
#and convert to hsv so image can be masked

blurred

= cv2.GaussianBlur(calibrate, (11, 11), @)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, MIN_HSV, MAX_HSV)

#Find the contours in the masked image

cnts =
cnts =

cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
imutils.grab_contours(cnts)

if len(cnts) > @:
#Get only the biggest contours from the image

c =

max(cnts, key=cv2.contourArea)

if len(c) > 4:

return{approx)

#Get the approximation of the tables edges

#and resize the frame to those edges

epsilon = 8.81 * cv2.arclLength(c, True)

approx = cv2.approxPolyDP(c, epsilon, True)
cv2.drawContours(calibrate, [approx], @, (8,255,), 2)

if approx[2,0,8] < approx[©,8,0]:

calibrate = calibrate[approx[@,8,1]:approx[2,8,1],approx[2,0,8]:approx[@,e,8]]
else:

calibrate = calibrate[approx[©,e,1]:approx[2,8,1],approx[e,e,8]:approx[2,e,8]]

cv2.imshow("Calibration”, calibrate)

#Calculate the standard deviation of pixels in grayscaled image

#the lower the standard deviation means the pixels are blurred together
#and the image is not focused

temp = cv2.cvtColor(calibrate, cv2.COLOR_BGR2GRAY)

lap = cv2.lLaplacian(temp, cv2.CV_16S)

mean, stddev = cv2.meanStdDev(lap)

#Call this function again to get camera in focus
#when the standard deviation is below a certain threshold
#else return the coordinates for the approximation of the tables edges
k = cv2.waitkey(320) & @xff
if stddev[@,0] < 9:
print('cam not focused')
elif stddev[@,8] >= 9 and k == 27:
break

For this implementation, a Logitech C920 will be used as a video input device. When the

55



program is started, the program will verify that the pool table can be recognized. This can be
accomplished by masking out the pool table’s perimeter, finding its area, and verifying that it
matches the dimensions of the table area. To do this, the HSV (hue saturation value) threshold
for the table’s perimeter must be found and entered in line 26-27 in Figure 3.2.10. The
approxPolyDP function will then get the area of the table based on the HSV threshold. The x and
y values can then be used from this to resize the image coming from the video feed, so the main
area of focus is around only the pool table. This will make processing the images quicker and
also prevent false readings later on from outside sources around the pool table. The standard
deviation of the pixels is also calculated on line 66 to make sure the camera is in focus. This will
continuously run until the user presses enter verifying that they are happy with the calibration of
the table.

Figure 3.2.11: Detecting Pocket Boundaries

78 def pocket_boundaries coord :

749 POCKET_MIN_HSV = np.array [83, 153, @],np.uint8
i1} POCKET_MAX_HSV = np.array [255, 255, 255],np.uint8
81
82 ret, calibrate = cap.read
83 # only proceed if at least one contour was fTound
84 if calibrate is not Mone:
85 calibrate = calibrate coord(9,8,1:coord(2,6,1], coord 2,0,8 ):(coord|(0,0,0
86 #calibrate = calibrate[coord[@,0,1]:coord[2,0,1], (coord([@,@,08]):(coord[2,8,@8]1)]
7 height, width = calibrate.shape :2
88 blurred = cv2.GaussianBlur calibrate, (11, 11), @
89 hsv = cv2.cvtColor blurred, cv2.COLOR_BGRZHSV
90 mask = cvZ.inRange hsv, POCKET_MIM_HSV, POCKET_MAX_HSV
91
92 cnts = cv2.findContours mask.copy( !, cv2,RETR_EXTERMAL, cv2.CHAIN_APPROX_SIMPLE
93 cnts = imutils.grab_contours cnts
94
95 for ¢ in cnts:
96 # draw the contour and show it
7 cv2.drawContours calibrate, [c!, =1, (@, 255, @), 2
98 cv2.imshow "Image", calibrate
99 return cnts

The coordinates of the pocket boundaries can be found by masking out the HSV values

for everything but the table border. These coordinates are used to crop the frame and understand

56



when balls have been pocketed. The code in Figure 3.2.11 shows the process of grabbing the
coordinates of the border, storing the coordinates in local variables, and drawing the border of

the table to the program’s live output.

57



Figure 3.2.12.1: Creating Each Ball to be Tracked
156 #Initialize each ball that is supposed to be on the table
157 #and store them all in an array
158 cue ball Ball("cue”
159 one_ball = Ball("one"
160 two_ball = Ball("two")
161 three_ball = Ball("three")
162 four_ball = Ball("four")
163 five _ball = Ball("five")
164 six_ball = Ball("six"
165 seven_ball = Ball("seven"
166 eight ball = Ball("eight")

1277 manma hall - D11/ MnamaAa"N

\david\Documents\School\Spring: 2020\Senior Design Project I\bitBilliardsRunners_Final\hsvFin
1635 ten_vali = Bali( tem )

169 eleven_ball = Ball("eleven")
170 twelve ball = Ball("twelve")
171 thirteen ball = Ball("thirteen")
172 fourteen_ball Ball("fourteen")
173 fifteen_ball = Ball("fifteen")

174

175 ball objs = [cue_ball,one_ball,two_ball,

176 three ball,four ball,five ball,

177 six_ball,seven ball,eight ball,

178 nine_ball,ten_ball,eleven_ball,

179 twelve ball,thirteen_ball,fourteen_ball,
180 fifteen ball

181 ]

Each ball on the table has a ball object created for them that way each one can have
properties of its own. This is important for not only being able to see each ball and track it, but

also later on being able to determine which ball is moving or has been pocketed during the game.

58



7
8
9

10

11

12

13

14

15

16

17

18

19

20

a1

School\Spring 2020\Senior De5|qn Project II\b|tB|II|ardsRurmers Fina[\extr 1ctHSV py
Far

Figure 3.2.12.2: Ball Object
class Ball:

def

__init_ (self, ballNumber):

MIN_HSV = {
"cue": np.array([@, @, 200]),
"one": np.array([28, 28, 230],np.uint8),
"two": np.array([107, 220, 178], np.uintg8),
"three": np.array([137, 98, 125],np.uint8), #

“four": np.array([120, 166, 178], np.uint8), # tweak this value

"six": np.array([74, 118, @], np.uint8),
"seven": np.array([171, 62, 16], np.uint8),
"eight": np.array([97, 98, @], np.uint8),
"nine": np.array([©, @, @],np.uint8),
"ten": np.array([@, @, @], np.uint8),
"eleven": np.array([@, @, ©],np.uint8),

Vi imaTrsm s smsm sl [ o oW | R R ]

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

LIrITrLeern o Tnp. k] 2 2

"fourteen": np.array([e, @ @], np.uintg),
"fifteen": np.array([@, @, @], np.uint8)

MAX_HSV = {
"cue": np.array([11, 9, 255]),

one": np.array([3@, 77, 255], np.uint8),
"two": np.array([121, 251, 255], np.uint8),

"three": np.array([186, 255, 255], np.uint8), # 186, 255, 255
"four": np.array([132, 142, 206], np.uint8), # tweak this value

"six": np.array([1©2, 208, 164], np.uintg8),
"seven": np.array([211, 178, 211], np.uint8),
"eight": np.array([134, 255, 111], np.uint8),
"nine": np.array([©, @, @],np.uint8),

"ten": np.array([@, @, @], np.uint8),
"eleven": np.array([@, ©, ©],np.uint8),
"twelve": np.array([@, @, @], np.uint8),
"thirteen": np.array([@, @, @], np.uint8),
"fourteen": np.array([@, ©, @], np.uint8),

"fifteen": np.array([@, ©, @], np.uint8)

59



45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

{

"cue": 0x00,
"one": @x01,
"two": Ox02,
"three": 0x03,
"four": Ox04,
"five": Ox05,
"six": Oxe6,
"seven": Ox01,
"eight": oxes8,
"nine": ©x09,
"ten": OX0A,
"eleven": ©@x0B,
"twelve": @x0C,
"thirteen": ©x@D,
"fourteen": OXOE,
"fifteen": OxOF

= {
"cue": "cueball”,
"one": "oneball",

"two": "twoball",
"three": "threeball",

"four": "fourball”,

"five": "fiveball",

"six": "sixball",

"seven": "sevenball",
"eight": "eightball”,
"nine": "nineball",

"ten": "tenball",

"eleven": "elevenball",
"twelve": "twelveball”,
"thirteen": "thirteenball”,
"fourteen": "fourteenball",

"fifteen": "fifteenball"

60



83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

POCKETED = {

self

self.
self.
self.
self.
self.
self.

self

self.
self.

self

self.

cue": False,
"one": False,
"two": False,
"three": False,
"four": False,
"five": False,
"six": False,
"seven": False,
"eight": False,
"nine": False,
"ten": False,
"eleven": False,
"twelve": False,
"thirteen": False,
"fourteen": False,

"fifteen": False

.MIN_HSV = MIN_HSV.get(ballNumber, None)
MAX_ HSV = MAX_ HSV.get(ballNumber, None)
ID = ID.get(ballNumber, None)

NAME = NAME.get(ballNumber, None)
POCKETED = POCKETED.get(ballNumber, None)
mask = None

dbUpdated = False

.ballMoving = False

ballPocketed
buffer = deque(maxlen=64)

False

.center = (0,0)
rad = @

61



The Ball class shown above in figure 3.2.12.2 shows each of the properties that each
individual ball will have. The main property is the MIN_HSV and MAX_HSV values. These are
used to mask out everything in the image except for that particular ball. So, for each ball that
should be the only thing seen in the image at that moment. The next properties ID and NAME
are for identification purposes. The ID is a hex value that will later be combined with the hex
value for the pocket the ball was made in. For example, pocket 1 (Hex value 0x10) and the three
ball (Hex value 0x03) will combine to be 0x13. The hex values work out really well since they
can represent sixteen 0-15 as 0-F and there are only six pockets and exactly sixteen balls. The
NAME property is for naming purposes in the database. The final property is the deque which
keeps track of the 64 most recent coordinates of the ball.

Figure 3.2.13.1: Masking Each Ball

223 #Construct a mask for each ball on the table
224 masks =[]

225 for ball in ball objs:

226 ball.setMask(hsv, boundaries)

227 masks.append(ball.getMask())

The mask for each ball is made with the MIN_HSV and MAX_HSV values in the ball
class shown in figure 3.2.12.2 so each ball can individually be identified. The pocket boundaries
are passed to the setMask function for later use. Each individual mask is then stored in an array

for processing.

62



Figure 3.2.13.2: Masking Continued

299 def setMask(self, hsv, bounds):

300 mask = cv2.inRange(hsv, self.MIN HSV, self.MAX_ HSV)
301 kernel = np.ones((11,11),np.uint8)

302 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
303 self.mask = mask

304 self.updateBuffer(bounds)

The setMask function is called in figure 3.2.13.1 and is shown in detail here. After the
mask is applied the pocket bounds are passed to the updateBuffer function where the main

tracking is done.

63



Figure 3.2.14.1: Tracking Algorithm

116
117
118
119
120
121
122
123
124
125
126
127
128
129
13e
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
15@
151
152
153
154
155
156
157
158

# analyzes the lastFrame ORIGINAL

def updateBuffer(self, bounds):
ball_cnts = cv2.findContours(self.mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
ball_cnts = imutils.grab_contours(ball_cnts)
ball_center = None

if len(ball_cnts) > @:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
¢ = max(ball_cnts, key=cv2.contourfrea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)

# epsilon = 8.81*cv2.arcLength(c, True)

# approx = cv2.approxPolyDP(c, epsilon, True)

if M["mee"] != @.0:
ball_center = (int(M["m1e"] / M["mee"]), int(M["me1"] / M["mee"]))
self.center = ball_center
self.rad = radius

top = self.center[1] - self.rad

bottom = self.center[1] + self.rad
left = self.center[@] - self.rad

right = self.center[®] - self.rad
testPoints = [top, bottom, left, right]
overCount = @

for ¢ in bounds:
for j in range(@, 3, 1)
if j == 0 or j == 1:
overBoundary = cv2.pointPolygonTest(c, (self.center[@], testPoints[j]), False)
else:
overBoundary = cv2.pointPolygonTest(c, (testPoints[j], self.center[1]), False)
if overBoundary == -1.8:
overCount += 1

if overCount »>= 3:
self.ballPocketed = True
else:
self.ballPocketed = False
self.isBallMoving()
self.buffer.appendleft(ball_center)

With the mask that was just applied to the image the contours of the ball can be found

with the findContours function that is able to determine the shape of the object based on the hsv

threshold previously applied. The next step is to find the largest contour or the value that is

closest to an exact match of the HSV values and pass that contour to the minEnclosingCircle

function to get a perfect circle with an x and y coordinate as well as a radius. Next an image

moment is captured which gets a weighted average of the pixels which are used to calculate the

center of the ball. Now that there is a center and a radius the top, bottom, left, and right edge of

64



the ball need to be calculated. Each edge of the ball can then be passed to the pointPolygonTest.

This function will take a point and determine if it is inside, on, or outside of a polygon shape.

The polygon shape in question is the boundary for the pockets. If it has been determined that 3 or

more of the edges or out of the boundaries, then it is safe to say the ball has been pocketed.

Figure 3.2.14.2: Tracking Movement

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

def isBallMoving(self):
if len(self.buffer) >= 10 and not None in self.buffer:
std = np.std(self.buffer, axis=0)
#print(std)
if std[@] <= 0.7 or std[1] <= 0.7:
if not self.dbUpdated:
print(str(self.ID) + "-ball is not moving")
self.ballMoving = False
self.dbUpdated = True
else:
if self.dbUpdated:
print(str(self.ID) + "-BALL IS MOVING!!!™)
self.ballMoving = True
self.dbUpdated = False
elif all(elem == None for elem in list(self.buffer)[:10]):
self.ballMoving = False
self.dbUpdated = True

To determine if a ball has moved all the stored points in the buffer are passed to a

standard deviation function. If the standard deviation of those coordinates varies by more than

0.7 pixels then it is safe to say that the ball is moving. Once all of the balls have stopped moving

then it will tell us that the database has to be updated with the new coordinates.

65



Figure 3.2.14.2: Decision Making

237
238
239
246
241
242
243
244
245
246
247
248
249
256
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
276
271
272

for ball in ball_objs:

pts = ball.getBuffer()

if ball.getBallMoving():
ballsMoving[ball.getID()] = True
dbUpdated = False
else:
if pts[@] is not None:
bottom, left = ball.getToplLeft()
positionDictionary[ 'coordinates’].update({ball.getName():{
"xPos": ((10@ - (bottom/height)*100)),
"yPos": ((left/width)*108)
)
ballsMoving[ball.getID()] = False

if ball.getBallPocketed() and not pocketedDictionary[ball.getName()]:
if(len(pts) > 11):
if pts[11] is not None:
xPos = ((180 - (pts[11l][1]/height)*168))
yPos ((pts[11][@]/width)*10@)
pocket = getPocket(xPos, yPos)
sendSerialData(ball.getID(), pocket)
pocketedDictionary[ball.getName()] = True
elif not ball.getBallPocketed():
pocketedDictionary.update({ball.getName(): False})

for i in range(1l, len(pts)):
if pts[i-1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(len(pts) / float(i+l)) * 2.5)
cv2.line(frame, pts[i-1], pts[i], (@, @, 255), thickness)

if not any(ballsMoving) and not dbUpdated:

data = json.loads(json.dumps(positionDictionary))
db.update(data)
dbUpdated = True

This is the main loop that makes decisions on whether or not the database needs to be

updated and if serial data needs to be sent to the microcontroller. The first condition is if a ball is

moving. If this is the case, then nothing happens because all balls have to stop before updates are

sent out. If that ball is not moving, then its coordinates are stored in a dictionary that contains the

coordinates of all the balls which will be sent to the database as an object for a bulk update. Then

if the ball has been pocketed the most recent x and y coordinate are sent to the getPocket

66



function that returns the hex value of the pocket the ball was made into. The serial data with the
ball id and pocket is then sent to the microcontroller and the ball is set as pocketed in the
dictionary to send as a bulk update to the database.

Figure 3.2.15: Implementation of Python to Firebase Communication

132 #5et up database connection
133 config =

134 "apikKey": "FIREBASE_API_KEY",

135 "authDomain": "bitbilliards.firebaseapp.com",

136 “"databaseURL": "https://bitbilliards.firebaseio.com/",
137 "storageBucket": "bitbilliards.appspot.com"

138

139 firebase = pyrebase.initialize_app config
148 db = firebase.database

272 db.update data

Once new position data is found, or a ball has been pocketed, the Python application will
bundle the data into a JSON format and send it to a Firebase database via POST request. Firebase
has been chosen for this project, because React Native built Mobile Apps can re-render its Ul
when Firebase synchronizes the application state. This makes it easy to program the live changes
on the app, since React Native has functions that listen for database updates. React Native will
use a GET request to retrieve the grid information of the balls and display it on a virtual pool
table by comparing the grid to the pixels on the phone. To accomplish this, set up a real-time
database from firebase.google.com, and use the credentials to configure the config information in
Figure 3.2.15. Also note that Pyrebase is used as a helper class in this implementation for data

management in Firebase.

67



Figure 3.2.16: Full Python Code

4/23/2020 Ball py

1 import numpy as np

2 from cv2 import cv2

3 from collections import deque
4 import imutils

5 import math
6
7
8
9

class Ball:
def __init_ (self, ballNumber):

MIN_HSV = {
10 "cue": np.array([0, @, 200]),
11 "one": np.array([28, 28, 230],np.uint8),
12 "two": np.array([107, 220, 178], np.uint8),
13 "three": np.array([137, 98, 125],np.uint8), #
14 “four": np.array([120, 100, 178], np.uint8), # tweak this value
15 "six": np.array([74, 118, 0], np.uint8),
16 “seven": np.array([171, 62, 16], np.uint8),
17 "eight": np.array([97, 98, @], np.uint8),
18 “"nine": np.array([0, @, 0],np.uint8),
19 "ten": np.array([0, @, 0], np.uint8),
20 "eleven": np.array([@, 0, @],np.uint8),
21 "twelve": np.array([0, @, @], np.uint8),
22 "thirteen": np.array([6, @, @], np.uint8),
23 "fourteen": np.array([6, @, @], np.uint8),
24 "fifteen": np.array([0, @, @], np.uint8)
25 }
26
27 MAX_HSV = {
28 “cue": np.array([11, 9, 255]),
29 "one": np.array([30, 77, 255], np.uint8),
30 "two": np.array([121, 251, 255], np.uint8),
31 "three": np.array([186, 255, 255], np.uint8), # 186, 255, 255
32 “"four": np.array([132, 142, 206], np.uint8), # tweak this value
33 "six": np.array([102, 208, 164], np.uint8),
34 “seven": np.array([211, 178, 211], np.uint8),
35 "eight": np.array([134, 255, 111], np.uint8),
36 “nine": np.array([e, @, @],np.uint8),
37 "ten": np.array([0, @, 0], np.uint8),
38 "eleven": np.array([@, 0, @],np.uint8),
39 "twelve": np.array([@, @, @], np.uint8),
40 “"thirteen": np.array([6, @, @], np.uint8),
41 "fourteen": np.array([6, @, @], np.uint8),
42 "fifteen": np.array([0, @, @], np.uint8)
43 }
44
45 = {
46 "cue": 0x00,
47 "one": @Ox01,
48 "two": 0x02,
49 "three": 0x03,
50 "four": @xo4,
51 "five": @x05,
52 "six": 0x06,
53 "seven": 0x01,
54 "eight": ©@x@8,
55 "nine": @x09,
56 "ten": @x0A,
57 "eleven": 0x0B,
58 "twelve": 0x0C,
59 "thirteen": @x@D,
60 "fourteen": @x0E,

localhost: 4649/ Tmode=python

68

1/5



4/23/2020

61
62
63
64
65
66
67
68
69
70

114
115
116
117
118
119
120

"fifteen": OxOF
}

NAME = {
"cue": "cueball",
"one": "oneball",
"two": "twoball",
"three": "threeball",
"four": "fourball",
"five": "fiveball",
“six": "sixball",
"'seven": "sevenball",
"eight": “eightball",
"nine": "nineball",
"ten": "tenball",
"eleven": "elevenball”,
"twelve": "twelveball",
“"thirteen": "thirteenball",
"fourteen": "fourteenball",
"fifteen": "fifteenball"

T

POCKETED = {
"cue": False,
"one": False,
"two": False,
"three": False,
"four": False,
"five": False,
"six": False,
seven": False,
"eight": False,
“nine": False,
"ten": False,
"eleven": False,
"twelve": False,
“thirteen": False,
"fourteen": False,
"fifteen": False

self.MIN_HSV
self.MAX_HSV

Ball.py

MIN_HSV.get(ballNumber, None)
MAX_HSV.get(ballNumber, None)

self.ID = ID.get(ballNumber, None)
self.NAME = NAME.get(ballNumber, None)

self.POCKETED = POCKETED.get(ballNumber, None)

self.mask = None
self.dbUpdated = False
self.ballMoving = False
self.ballPocketed = False
self.buffer = deque(maxlen=64)

self.center = (0,0)
self.rad = @

self.shape = []
self.cum_area = []

# analyzes the lastFrame ORIGINAL

localhost: 4649/ 'mode=python

Vv

25



4/23/2020 Ball py

121 def updateBuffer(self, bounds):

122 ball_cnts = cv2.findContours(self.mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

123 ball_cnts = imutils.grab_contours(ball_cnts)

124 ball_center = None

125

126 if len(ball_cnts) > @:

127 # find the largest contour in the mask, then use

128 # it to compute the minimum enclosing circle and

129 # centroid

130 ¢ = max(ball_cnts, key=cv2.contourArea)

131 ((x, y), radius) = cv2.minEnclosingCircle(c)

132 M = cv2.moments(c)

133

134 # epsilon = 0.01%cv2.arclLength(c, True)

135 # approx = cv2.approxPolyDP(c, epsilon, True)

136 if M["me@"] != 0.0:

137 ball_center = (int(M["m10"] / M["m@@"]), int(M["m@1"] /
M["m@o"]))

138 self.center = ball_center

139 self.rad = radius

140

141 top = self.center[1] - self.rad

142 bottom = self.center[1l] + self.rad

143 left = self.center[@] - self.rad

144 right = self.center[0] - self.rad

145 testPoints = [top, bottom, left, right]

146 overCount = @

147

148 for ¢ in bounds:

149 for j in range(@, 3, 1):

150 if j == 0 or j == 1:

151 overBoundary = cv2.pointPolygonTest(c,
(self.center[0], testPoints[j]), False)

152 else:

153 overBoundary = cv2.pointPolygonTest(c,
(testPoints[j], self.center[1]), False)

154 if overBoundary == -1.0:

155 overCount += 1

156

157 if overCount >= 3:

158 self.ballPocketed = True

159 else:

160 self.ballPocketed = False

161 self.isBallMoving()

162 self.buffer.appendleft(ball_center)

163

164 def setMask(self, hsv, bounds):

165 mask = cv2.inRange(hsv, self.MIN_HSV, self.MAX_HSV)

166 kernel = np.ones((11,11),np.uint8)

167 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

168 #mask = cv2.dilate(mask,None, iterations=4)

169 #mask = cv2.erode(mask, None, iterations=1)

170 self.mask = mask

171 self.updateBuffer(bounds)

172

173 def getMask(self):

174 return(self.mask)

175

176 def getBuffer(self):

localhost: 4649/ 'mode=python

v



4/23/2020 Ball py

177 return(self.buffer)

178

179 def getID(self):

180 return(self.ID)

181

182 def getName(self):

183 return(self.NAME)

184

185 def getDbUpdated(self):

186 return(self.dbUpdated)

187

188 def setDbUpdated(self, value):

189 self.dbUpdated = value

190

191 def getBallMoving(self):

192 return(self.ballMoving)

193

194 def getPocketedStatus(self):

195 return(self.POCKETED)

196

197 def getBallPocketed(self):

198 return(self.ballPocketed)

199

200 def setBallPocketed(self):

201 ball_cnts = cv2.findContours(self.mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

202 ball_cnts = imutils.grab_contours(ball_cnts)

203

204 if len(ball_cnts) > 0:

205 # find the largest contour in the mask

206 c = max(ball_cnts, key=cv2.contourArea)

207

208 epsilon = 0.01xcv2.arcLength(c, True)

209 approx = cv2.approxPolyDP(c, epsilon, True)

210

211 if len(approx) <= 9:

212 print(self.ballPocketed)

213 self.ballPocketed = True

214 else:

215 self.ballPocketed = False

216

217 def getTopLeft(self):

218 bottom = self.center[1] + self.rad

219 left = self.center[@] - self.rad

220 return(bottom, left)

221

222 def isBallMoving(self):

223 if len(self.buffer) >= 10 and not None in self.buffer:

224 std = np.std(self.buffer, axis=0)

225 #print(std)

226 if std[@] <= 0.7 or std[1] <= 0.7:

227 if not self.dbUpdated:

228 print(str(self.ID) + "-ball is not moving")

229 self.ballWMoving = False

230 self.dbUpdated = True

231 else:

232 if self.dbUpdated:

233 print(str(self.ID) + "-BALL IS MOVING!!'!™)

234 self.ballWMoving = True

235 self.dbUpdated = False

localhost: 4649/ 'mode=python



4/23/2020 Ball py

236 elif all(elem == None for elem in list(self.buffer)[:10]):
237 self.ballMoving = False

238 self.dbUpdated = True

239

localhost: 4649/ 'mode=python



4/23/2020 testTracking py

1 #! python3

from cv2 import cv2

from imutils.video import VideoStream
import imutils

import time

import numpy as np

from collections import deque
import pyrebase

import json

10 import serial

11 from Ball import Ball

WO~ s wN

12

13 def combine_images(array_of_images):

14 #As long as there is more than one image in array combine first image
with last

15 #and pop last image from the array then recursivly call this function
until

16 f#fonly one image is left

17 if len(array_of_images) > 1:

18 array_of_images[0] = cv2.addWeighted(array_of_images[0], 1.0,
array_of_images[len(array_of_images)-1], 1.0, 0)

19 array_of_images.pop()

20 return(combine_images(array_of_images))

21 else:

22 return(array_of_images [0])

23

24 def calibrate_table():

25 #Grab the HSV threshold of table perimeter

26 MIN_HSV = np.array([0, @, @],np.uint8)

27 MAX_HSV = np.array([255, 255, 204],np.uint8)

28

29 while 1:

30 #Capture a frame from camera

31 ret, calibrate = cap.read()

32

33 if calibrate is not None:

34 #Blurr image to get rid of imperfections

35 #and convert to hsv so image can be masked

36 blurred = cv2.GaussianBlur(calibrate, (11, 11), @)

37 hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

38 mask = cv2.inRange(hsv, MIN_HSV, MAX_HSV)

39

40 #Find the contours in the masked image

41 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

42 cnts = imutils.grab_contours(cnts)

43

44 if len(cnts) > 0:

45 #Get only the biggest contours from the image

46 c = max(cnts, key=cv2.contourArea)

47 if len(c) = 4:

48 #Get the approximation of the tables edges

49 #and resize the frame to those edges

50 epsilon = @.01 * cv2.arcLength(c, True)

51 approx = cv2.approxPolyDP(c, epsilon, True)

52 cv2.drawContours(calibrate, [approx], @, (@,255,), 2)

53

54 if approx[2,0,0] < approx[0,0,0]:

55 calibrate =

calibrate[approx[@,@,1]:approx[2,0,1],approx[2,0,0]:approx[0,0,0]]
localhost: 4649/ 'mode=python

v

115



4/23/2020

56
57

58
59
60
61

62

102
103
104
105
106
107
108

testTracking py

else:
calibrate =
calibrate[approx[0,@,1]:approx([2,0,1],approx[0,0,0] :approx[2,0,0]]
cv2.imshow("Calibration", calibrate)
#Calculate the standard deviation of pixels in grayscaled
image
#the lower the standard deviation means the pixels are

blurred together

#and the image is not focused

temp = cv2.cvtColor(calibrate, cv2.COLOR_BGR2GRAY)
lap = cv2.Laplacian(temp, cv2.CV_16S)

mean, stddev = cv2.meanStdDev(lap)

#Call this function again to get camera in focus
#when the standard deviation is below a certain threshold
#else return the coordinates for the approximation of the

tables edges
k = cv2.waitKey(30) & Oxff
if stddev[0,0] < 9:
print('cam not focused')
elif stddev([0,0] >= 9 and k == 27:
break
return(approx)

def pocket_boundaries(coord):
POCKET_MIN_HSV = np.array([83, 153, 0],np.uint8)
POCKET_MAX_HSV = np.array([255, 255, 255],np.uint8)

ret, calibrate = cap.read()
# only proceed if at least one contour was found
if calibrate is not None:

calibrate = calibrate[coord[0,0,1]:coord[2,0,1], (coord[2,0,0]):

(coord[0,0,01)]

#calibrate = calibrate([coord[0,0,1]:coord[2,0,1],(coord[0,0,0]):

(coord[2,0,0])]
height, width = calibrate.shape[:2]
blurred = cv2.GaussianBlur(calibrate, (11, 11), @)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGRZHSV)
mask = cv2.inRange(hsv, POCKET_MIN_HSV, POCKET_MAX_HSV)

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

for ¢ in cnts:
# draw the contour and show it
cv2.drawContours(calibrate, [c], -1, (@, 255, @), 2)
cv2.imshow("Image", calibrate)

return cnts

def getPocket(x, y):
Pocket = 0x00
if x = 75:
if y > 85:
Pocket = 0x10
print("Pocket 1")
elif y < 12:
Pocket = 0x50

localhost: 4649/ 'mode=python

5



4/23/2020

109
110 elif
111
112
113 elif x <
114 if y
115
116
117 elif
118
119
120 elif
121
122
123 return(P
124
125 def sendSeri
126 data = h
127 print(da
128 # data =
129 #print(d
130 ser.writ
131

132 #Set up data
133 config = {
134  "apiKey":
135 "authDomai
136 '"databaselU
137 "storageBu
138 }

139 firebase = p
140 db = firebas
141 print("Conne

143 ser = serial
144 print("Conne

146 #Set up came
147 cap = cv2.Vi
148 cap.set(cv2.
149 cap.set(cv2.
150 cap.set(cv2.
151 cap.read()
152 print('cam i
153 print('calib
154 coordinate =
155 print('calib
156 boundaries =
157

158 #Initialize
159 #and store t
160 #cue_ball =
161 one_ball =
162 two_ball =
163 three_ball
164 #four_ball
165 #five_ball
166 #six_ball =
167 #seven_ball
168 #eight_ball

B
B

localhost: 4649/ 'mode=python

testTracking py

print("Pocket 5")

y > 40 and y < 55:
Pocket = 0x60
print("Pocket 6")

15:

> 85:

Pocket = 0x20
print("Pocket 2")

y < 12:

Pocket = 0x40
print("Pocket 4")

y > 40 and y < 55:
Pocket = 0x30
print("Pocket 3")
ocket)

alData(ID, Pocket):
ex(Pocket | ID)[2:]
ta)

bytes. fromhex(data)
ata)
e(data.encode())

base connection

"AIzaSyBdS5j900x02WghwEo1K6sLFGr7 lulQNeu”,
n": "bitbilliards.firebaseapp.com",

RL": "https://bitbilliards.firebaseio.com/",
cket": "bitbilliards.appspot.com"

yrebase.initialize_app(config)
e.database()
cted to firebase")

.Serial(port="'COM3', timeout=0, rtscts=0)
cted to ", ser.name)

ra to capture images

deoCapture(®, cv2.CAP_DSHOW)

CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
CAP_PROP_FRAME_WIDTH, 1280)
CAP_PROP_FRAME_HEIGHT, 720)

nitialized')

rating cam')

calibrate_table()

ration succesful!")
pocket_boundaries(coordinate)

each ball that is supposed to be on the table

hem all in an array

Ball("cue")

all("one")

all("two")
Ball("three")
Ball("four")

= Ball("five")

Ball("six")

= Ball("seven")

= Ball("eight")

v

315



4/23/2020 testTracking.py

169 #ball_objs = [one_ball, two_ball, three_ball, four_ball, six_ball,
seven_ball, eight_ball]

170 ball_objs = [one_ball, two_ball, three_ball]

171

172 ballsMoving = [False] * 16

173 dbUpdated = False

174 postionDeleted = False

175 positionDictionary = {'coordinates': {}}

176 pocketedDictionary = {

177 ‘oneball': one_ball.getPocketedStatus(),
178 "twoball': two_ball.getPocketedStatus(),
179 "threeball': three_ball.getPocketedStatus(),
180 'fourball': True,

181 'fiveball': True,

182 'sixball': True,

183 'sevenball': True,

184 ‘eightball': True,

185 ‘nineball': True,

186 'tenball': True,

187 'elevenball': True,

188 'twelveball': True,

189 'thirteenball': True,

190 'fourteenball': True,

191 'fifteenball': True

192 }

193

194 data = json.loads(json.dumps(pocketedDictionary))
195 db.child('pocketedballs').update(data)

196

197 while 1:

198 #Grab the current frame

199 ret, frame = cap.read()

200 tempDict = dict(pocketedDictionary)

201

202 if frame is not None:

203 #Resize the frame, blur it, and convert it to the HSV

204 #color space

205 frame = frame[coordinate([0,0,1]:coordinate([2,0,1],
(coordinatel2,0,0]1): (coordinatel@,@,01)]

206 height, width = frame.shape[:2]

207 blurred = cv2.GaussianBlur(frame, (11 ,11), @)

208 hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

209

210 #Construct a mask for each ball on the table

211 masks =[]

212 for ball in ball_objs:

213 ball.setMask(hsv, boundaries)

214 masks.append(ball.getMask())

215

216 #Combine each seperate mask into a single masked image

217 if len(masks) = 1:

218 mask = combine_images(masks)

219 cv2.imshow("Mask", mask)

220 elif len(masks) ==

221 mask = masks[0]

222 cv2. imshow("Mask", mask)

223

224 for ball in ball_objs:

225 pts = ball.getBuffer()

226

localhost: 4649/ 'mode=python

v



4/23/2020

227
228
229
230
231
232
233

234
235
236
237
238
239

testTracking py
if ball.getBallMoving():
ballsMoving[ball.getID()] = True
dbUpdated = False
else:
if pts[@] is not None:
bottom, left = ball.getTopLeft()

positionDictionary['coordinates'].update({ball.getName():

"xPos": ((100 - (bottom/height)*100)),
"yPos": ((left/width)=100)
)
ballsMoving[ball.getID()] = False

if ball.getBallPocketed() and not

pocketedDictionary[ball.getName()]:

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
278

if(len(pts) = 11):
if pts[11] is not None:
xPos = ((100 - (pts[11][1]1/height)*10@))
yPos = ((pts[11][0]/width)*100)
pocket = getPocket(xPos, yPos)
sendSerialData(ball.getID(), pocket)
pocketedDictionary[ball.getName()] = True
elif not ball.getBallPocketed():
pocketedDictionary.update({ball.getName(): False})

for i in range(1, len{pts)):
if pts[i-1] is None or pts[i] is None:
continue
thickness = int(np.sgrt(len(pts) / float(i+l)) * 2.5)
cv2.line(frame, pts[i-1], pts[il, (@, @, 255), thickness)

if not any(ballsMoving) and not dbUpdated:
data = json.loads(json.dumps(positionDictionary))
db.update(data)
dbUpdated = True

for k2, v2 in pocketedDictionary.items():
if k2 in tempDict:
if v2 !'= tempDict[k2]:
positionDictionary['coordinates'].pop(k2, Naone)
postionDeleted = True

if postionDeleted:
data = json.loads(json.dumps(pocketedDictionary))
db.child('pocketedballs').update(data)
data = json.loads(json.dumps(positionDictionary))

db.update(data)
postionDeleted = False

cv2.imshow('Frame', frame)
k = cv2.waitKey(30) & Oxff
if k == 27:

break

279 cap.release()
280 cv2.destroyAllWindows()
281 #ser.close()

localhost: 4649/ 'mode=python

55



Figure 3.2.17: Implementation of React Native to Firebase Communication
B const firebaseConfig =

9 “"apiKey": "FIREBASE_API_KEY",
18 “"authDomain": "bitbilliards.firebaseapp.com",
11 "databaseURL": "https://bitbilliards.firebaseio.com/",
2 "storageBucket": "bitbilliards.appspot.com”
13
22 async componentDidMount
23 awalt Font.loadAsync
24 Buldano: reguire("./assets/fonts/buldano.otf"
25 H
26 awalt firebase.initializeApp firebaseConfig ;
27 this.setState! renderedFont: true |;
28

For the React Native implementation, Expo is the framework of choice for this project.
To set up Expo, the following steps should be taken:

Download NodeJS

Run “npm install expo-cli -global”

Type the command “expo init bitBilliards”
“cd bitBilliards”

“expo start”

Figure 3.2.17 shows the initial connection from the app to Firebase.

Figure 3.2.18: React Native Listening for Pocketed Balls

15 async componentDidMount

16 firebase.database | .ref! ‘pocketedballs’ .on! 'value', 'snapshot ==
7 this.setStatel ballStatusObject: snapshot.val , hasMounted: true
18

19

When the Python application detects that balls are pocketed, the “pocketedballs” children
are updated with new data. Each billiard ball is assigned a value of true or false based on its
pocketed status. Figure 3.2.18 shows React Native asynchronously listening for these updates.
The scoring markers on the screen are rendered as opaque if the ball is playable and translucent

if the ball is pocketed.

78



Figure 3.2.19: Ball Coordinate Rendering

20 function getCoordinates

21 firebase.database! |.ref! ‘coordinates’  .on! "value', snapshot =>
22 setCoordinates(snapshot. tolSON H

23

24

Figure 3.2.19 shows the implementation of React Native listening for changes to the children of
the “coordinates” database reference. When the database is updated from the Python application,

the new pool table coordinates are stored in the React Native app and displayed on the screen.

79



Figure 3.2.20: BitBilliards App

BITBHILLIARDS

Each sprite seen on the screen was created in Adobe Illustrator and saved as .SVG file for

icon scalability. The app listens for changes to the Firebase database and displays the results.

80



Figure 3.2.21: Full BitBilliards React Native Code

412312020 App.s
1 import React from 'react'
2 import * as Font from 'expo-font';
3 import * as firebase from 'firebase';
4 import { StyleSheet, Text, View } from 'react-native';
5 import PocketedBallsIndicator from

'./components/PocketedBallsIndicator/PocketedBallsIndicator';

6 import LiveTable from './components/LiveTable/LiveTable';

7 const firebaseConfig = {

8 "apiKey": "FIREBASE_API_KEY",

9 "authDomain": "bitbilliards.firebaseapp.com”,
10  "databaseURL": "https://bitbilliards.firebaseio.com/",
11 "storageBucket": "bitbilliards.appspot.com"
12 }
13 export default class App extends React.Component{
14 constructor(props){

15 super(props);

16 this.state = {

17 renderedFont: false,

18 ballStatus: {}

19 }

20 }

21 async componentDidMount() {

22 await Font.loadAsync({

23 Buldano: require("./assets/fonts/buldano.otf")
24 13N

25 await firebase.initializeApp(firebaseConfig);
26 this.setState({renderedFont: true});

27 }

28 render(){

29 if(this.state.renderedFont){

30 return (

31 <View style={styles.container}>

32 <View style={styles.titleContainer}>
33 <Text style={styles.title}>BitBilliards</Text>
34 </View=>

35 <View style={styles.bodyContainer}>
36 <PocketedBallsIndicator />

37 <LiveTable />

38 </View>

39

40 </View=

41 );

42 }

43 else{

44 return (

45 <View style={styles.container}>

46 </View>

47 );

48 }

49 ¥

50 }

51

52 const styles = StyleSheet.create({
53 container: {

54 flex: 1,
55 backgroundColor: '#@abc@3',
56 alignItems: 'center',
57 justifyContent: 'center’',
58
59 h

4649/7mode=j ipt

81



41232020
60 titleContainer: {

61 flex: 1,

62 justifyContent: 'center',
63 alignItems: 'center'

64 },

65 title: {

66 fontSize: 56,

67 fontFamily: 'Buldano’,

68 color: "#fff'

69 },

70  bodyContainer: {

71 flex: 3,

72 alignItems: ‘center',

73 justifyContent: 'flex-start',

74 width: '100%',

75 height: '100%',

76 3},

77  scoringView: {

78 flex: 1

79 3,

80 gameStats: {

81 backgroundColor:
}

83 });

localhost: 4649 Tmode=javascript

‘#d2a’

v

App.js



4/23/2020 LiveTable js

1 import React, { useEffect, useRef, useState } from 'react'

2 import { View, Text, StyleSheet, Dimensions} from 'react-native'
3 import PoolTable from '../../assets/sprites/PoolTable.svg';

4 import PoolBall from '../PoolBall/PoolBall';

5 import * as firebase from 'firebase';
6
7
8
9

const LiveTable = () => {

const loadedCoordinates = useRef(false);

10 const [coordinates, setCoordinates] = useState({});

11

12 useEffect(() => {

13 getCoordinates();

14

15 return () => {

16 loadedCoordinates.current = true;

17 };

18 Foo 11

19

20 function getCoordinates(){

21 firebase.database().ref('coordinates').on('value', (snapshot) => {

22 setCoordinates(snapshot.toJSON());

23 )

24 }

25

26 let ballsToRender = Object.keys(coordinates).map((ballName) => {

27 return <PoolBall key={ballName} ball={ballName} coordinates=
{coordinates[ballNamel} /=

28 1)

29

30 if(loadedCoordinates){

31 console. log(coordinates);

32 return (

33 <View style={styles.poolTable}>

34 <PoolTable width={"100%"} height={"100%"} />

35 {ballsToRender}

36 </View=

37 )

38 ¥

39 else{

40 return(

41 <View style={styles.poolTable}>

42 <PoolTable width={"100%"} height={"100%"} />

43 </View=

44 )

45 }

46 }

47

48 const styles = StyleSheet.create({
49  poolTable: {

50 flex: 1,

51 width: '65.5%',

52 position: 'relative',

53 backgroundColor: 'white'

54 }

55 })

57 export default LiveTable

localhost: 4649/ 'mode=javascript

vv



4/23/2020 PocketedBallsIndicator js

1 import React, { Component } from 'react’

2 import { Text, View, Image, Dimensions, StyleSheet} from 'react-native'
3 import * as firebase from 'firebase';

4 const {width, height} = Dimensions.get('window');

5 export default class PocketedBallsIndicator extends Component {

6

7

8

9

constructor(props){
super(props);
this.state = {

10 hasMounted: false,

11 ballStatusObject: {}

12 }

13 }

14

15 async componentDidMount() {

16 firebase.database().ref('pocketedballs').on('value', (snapshot) => {

17 this.setState({ballStatusObject: snapshot.val(), hasMounted: true})

18 1)

19 }

20

21 getStyle(ballNumber){

22 obj = this.state.ballStatusObject;

23 if(this.state.ballStatusObject[ballNumber] == false){

24 return ({

25 width: width* 0.1,

26 height: width * 0.1,

27 margin: width * 0.005

28 1)

29 ¥

30 else{

31 return({

32 width: widthx 0.1,

33 height: width % 0.1,

34 margin: width * 0.005,

35 opacity: 0.4

36 s

37 }

38 }

39

40 render() {

41 if(this.state.hasMounted){

42 console.log(this.state.ballStatusObject);

43 return (

44 <View style={{display: 'flex', flexDirection: 'row',
justifyContent: 'space-between', position: 'absolute', width: '100%'}}>

45 <View style={styles.solidContainer}>

46 <Image style={this.getStyle("oneball")} source=
{require('../../Sprites/OneBall.png')} /=

47 <Image style={this.getStyle('twoball')} source=
{require('../../Sprites/TwoBall.png')} />

48 <Image style={this.getStyle('threeball')} source=
{require('../../Sprites/ThreeBall.png')} />

49 <Image style={this.getStyle('fourball')} source=
{require('../../Sprites/FourBall.png')} />

50 <Image style={this.getStyle('fiveball')} source=
{require('../../Sprites/FiveBall.png')} />

51 <Image style={this.getStyle('sixball')} source=
{require('../../Sprites/SixBall.png')} /=

52 <Image style={this.getStyle('sevenball')} source=

{require('../../Sprites/SevenBall.png')} /=
localhost: 4649 Tmode=javascript

vsT

172



4/23/2020 PocketedBallsIndicator js

53 <Image style={this.getStyle('eightball')} source=
{require('../../Sprites/EightBall.png')} />

54 </View=

55 <View style={styles.stripeContainer}>

56 <Image style={this.getStyle('nineball')} source=
{require('../../Sprites/NineBall.png')} /=

57 <Image style={this.getStyle('tenball')} source=
{require('../../Sprites/TenBall.png')} /=

58 <Image style={this.getStyle('elevenball')} source=
{require('../../Sprites/ElevenBall.png')} /=

59 <Image style={this.getStyle('twelveball')} source=
{require('../../Sprites/TwelveBall.png')} />

60 <Image style={this.getStyle('thirteenball')} source=
{require('../../Sprites/ThirteenBall.png')} />

61 <Image style={this.getStyle('fourteenball')} source=
{require('../../Sprites/FourteenBall.png')} />

62 <Image style={this.getStyle('fifteenball')} source=
{require('../../Sprites/FifteenBall.png')} /=

63 <Image style={this.getStyle('eightball')} source=
{require('../../Sprites/EightBall.png')} />

64 </View=

65 </View=>

66

67 )

68 }

69 else{

70 return(<Views</View=)

71 }

72

73 }

74 }

75

76 const styles = StyleSheet.create({

77 solidContainer:{

78 left: width * 0.02

79 +,

80 stripeContainer: {

81 right: width * 0.02

82 ¥

83 })

localhost: 4649/ 'mode=javascript

vv



4/23/2020 PoolBall js

1 import React from 'react'

2 import { View, Dimensions } from 'react-native'

3 import OneBall from '../../assets/sprites/OneBall.svg';

4 import TwoBall from '../../assets/sprites/TwoBall.svg';

5 import ThreeBall from '../../assets/sprites/ThreeBall.svg';
6 import FourBall from '../../assets/sprites/FourBall.svg';

7 import FiveBall from '../../assets/sprites/FiveBall.svg';

8 import SixBall from '
9 import SevenBall from '../../assets/sprites/SevenBall.svg';

10 import EightBall from '../../assets/sprites/EightBall.svg';

11 import NineBall from '../../assets/sprites/NineBall.svg';

12 import TenBall from '../../assets/sprites/TenBall.svg';

13 import ElevenBall from '../../assets/sprites/ElevenBall.svg';

14 import TwelveBall from '../../assets/sprites/TwelveBall.svg';

15 import ThirteenBall from '../../assets/sprites/ThirteenBall.svg';
16 import FourteenBall from '../../assets/sprites/FourteenBall.svg';
17 import FifteenBall from '../../assets/sprites/FifteenBall.svg';
18 import CueBall from '../../assets/sprites/CueBall.svg';

../../assets/sprites/SixBall.svg';

20 const {width, height} = Dimensions.get('window');

22

23 const PoolBall = (props) => {

24

25 function getBallPosition(){

26 if(props.coordinates != undefined){
27 return({

28 position: 'absolute’,
29 height: '5.61798%"',
30 width: '5.61798%',

31 left: getLeftPadding(props.coordinates['xPos']),
32 top: getTopPadding(props.coordinates['yPos'l]),
33

34 }

35 T

36 }

37

38 function getLeftPadding(xPos){

39 if(xPos < 7.5){

40 return('7.5%');

41 }

42 else if(xPos > 87){

43 return('87%"');

44 }

45 else{

46 return{xPos + '%');

47 }

48 }

49

50 function getTopPadding(yPos){

51 if(yPos < 2.5){

52 return('2.5%');

53 T

54 else if(yPos > 92){

55 return('92%');

56 ¥

57 else{

58 return{yPos + '%');

59 }

60 by

localhost: 4649/ Tmode=javascript

vv



4/23/2020

PoolBall js

61

62 function getBall(){

63 switch(props.ball){

64 case('oneball'):

65 return( <View style={getBallPosition()}>

66 <0OneBall width={"100%"} height={"100%"} />
67 </View=>

68 )

69 case('twoball'):

70 return( <View style={getBallPosition()}>

71 <TwoBall width={"100%"} height={"100%"} />
72 </View=

73 )

74 case('threeball'):

75 return( <View style={getBallPosition()}=

76 <ThreeBall width={"100%"} height={"100%"} />
77 </View=>

78 )

79 case('fourball'):

80 return( <View style={getBallPosition()}>

81 <FourBall width={"100%"} height={"100%"} />
82 </View>

83 )

84 case('fiveball'):

85 return( <View style={getBallPosition()}>

86 <FiveBall width={"100%"} height={"100%"} />
87 </View=

88 )

89 case('sixball'):

90 return( <View style={getBallPosition()}>

91 <SixBall width={"100%"} height={"100%"} />
92 </View>

93 )

94 case('sevenball'):

95 return( <View style={getBallPosition()}>

96 <SevenBall width={"100%"} height={"100%"} />
97 </View>

98 )

99 case('eightball'):

100 return( <View style={getBallPosition()}>

101 <EightBall width={"100%"} height={"100%"} />
102 </View=

103 )

104 case('nineball’):

105 return( <View style={getBallPosition()}>

106 <NineBall width={"100%"} height={"100%"} />
107 </View=

108 )

109 case('tenball'):

110 return( <View style={getBallPosition()}=>

111 <TenBall width={"100%"} height={"100%"} />
112 </View=>

113

114 case('elevenball'):

115 return( <View style={getBallPosition()}>

116 <ElevenBall width={"100%"} height={"100%"} />
117 </View=>

118 )

119 case('twelveball'):

120 return( <View style={getBallPosition()}>

localhost: 4649/ Tmode=javascript

i

23



4/23/2020

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144 }
145 }
146

PoolBall js

<TwelveBall width={"100%"} height={"100%"} />
</View>
)
case('thirteenball'):
return( <View style={getBallPosition()}>
<ThirteenBall width={"100%"} height={"100%"} />
</View=>
)
case('fourteenball'):
return( <View style={getBallPosition()}=>
<FourteenBall width={"100%"} height={"100%"} />
</View>
)
case('fifteenball'):
return( <View style={getBallPosition()}=
<FifteenBall width={"100%"} height={"100%"} />
</View>
)
case('cueball'):
return( <View style={getBallPosition()}>
<CueBall width={"100%"} height={"100%"} />
</View=>

147 if(!'props.coordinates){
148 return(null)

149 }
150 return (

151 getBall()

152 )
153 }

154

155

156 export default PoolBall

157
158

localhost: 4649/ 'mode=javascript

vuv

313



4. Financial Budget (GR)

Table 4.1.1: Original Budget

Supplies for table construction $200

Electrical components $200

Miscellaneous supplies $200

The original budget for the project was a very simple 3-way split among table supplies,
electrical components, and misc. supplies. The cost of PVC and other plywood was estimated
and used to estimate the $200 need for the general track construction, gantry and repair of the
table. The PCB design was still in progress so a rough estimate of $200 was used for the PCB
cost, and then the PCB components. The remaining $200 would be used on the camera for image
recognition and any other cables or etc. needed.

Table 4.1.2: Actual Budget

Qty. Refdes Part Num. i Vendor ‘Vendor Part Num. Catalog #/Page #/Hyperlink | Cost | Total Cost |
Cc920 Camera for image il Amazon BO06JHETIS hitps:/h $63
Full HD Webcam Amazon BO7925CYPS hitp:
000151black |USB to RS-232 Amazon B0753HBT12 hitp:
USB to TTL Serial Cable Adafruit [954 htp.
Stepper motor Amazon 17HS19-200451 D. ]
Stepper Motor Driver Digikey 206-29503-1-ND ps:/www.digikey.comipro.
1 Nema 17 Stepper Motor Mount Amazon 43237-2 hitps:/awww 3mazon.comiAni
4 Ball Screw Kit Amazon [ THSL-500-8D [nttps: mazon com/Sc
Shaft coupler Amazon 7.50441E+11 hitps:/fwww. amazon.com/y0
Pillow Block Bearing Amazon 6.11982E+11 D on.com/Eo:
Digikey 1528-2797-ND D w digikey comipro
Limit Switch Digikey P108705-ND D! w.digikey.comipro:
Limit Switch Digikey P11151SCT-ND D! w.digikey.comipro
| Adapter board for Stepper Driver Sparkfun BOB-00500 D! parkfun.comipr{
4Pcs SG90 9g Micro Servos Amazon BOTMLR1498 D! amazon.com/i
SG90 Servos 5§ Pes Amazon 07QEJGWN hitps:/iwww.smazon.com/Do|
0db1db7bdE5(T3 Felt Amazon db1db7 bdEBM3fa77 248 1 D! mazon.com/Tol
"x10° PVC pipe Lowes lem # 23834 Model # PVC 04300 0600 p owes.comipd/C|
"x2' PVC pipe Lowes e # 234919 Model # PYVC 04400 0200 fo} owe: mipd/C|
" 90deg PVC elbows Home Depat Model # C4807LTHD3 D; depot com
VC Glue Lowes Itern # 23467 Model # 31018L (o}
5V, 6V, 12V Screw-terminal Connector Digikey A113320-ND
5|C1,C2,C3.C4 100uF 50V Cap Digikey P15369CT-ND
8 Molex 2-pin connector STOCK 22-23-2021 LOCATION: H17
16 olex 3-pin connector STOCK 22-23-203 LOCATION: H18
7 olex 4-pin connector STOCK 22-23-204 LOCATION: 101
3 olex 5-pin connector Digik 22-23-205 hitps:/hwww.digikey.comiproc
2 olex 6-pin connector TOC 22-23-206 LOCATIO 1
8 olex 2-pin housing oC 22-01-202 LOCATION. H17
16 olex 3-pin housing oC 22-01-2037 LOCATION. H18
7 olex 4-pin housing ocC 22-01-2047 LOCATIO 1
0lex 5-pin housing Digike 22-01-2057 httosAwww digikev.comiprod  $0.23 50.69
olex 6-pin housing STOCK 22-01-2087 LOCATION: 102
130|N/A olex pins STOCK 08-50-0114 LOCATION. H1
JP1, P2 7997-212HLF |2 row 6 pin header Digike: 609-3237-ND 1.64]
10|N/A 15297-8 CONN RCPT 8P0OS 0.1 GOLD PCB Digike: A106654-ND $17.15
3[u1, U2 IC14081BDG |IC GATE AND 4CH 2-INP 1430IC Digike: MC14081BDGOS-ND 153
5[31,82 33,54 N7000 MOSFET N-CH 60V 200MA T0-92 STOCK, Digikey 2NT000FS-ND 180
5|D1,D2,D3,D4 MUR1100ERLG|Diode Gen Purpose 1000V 1A STOCK, Digikey MUR1100ERLGOSCT-ND $2.05
5/Q1,02,Q3,Q04 BUZ11 MOSFET, 50V, 304, TO-220 pkg STOCK, Digikey BUZ11-NR4941-ND $5.65
15[R1.R2 R3 R4 R5 R6 R13 R14 R15 R16, R17 R18 10k-ohm resistor STOCK
8|R7 R8 RY, R10. R11, R12 20k-ohm resistor STOCK
4|F1.F2 F 3557-2 FUSE BLOCK BLADE 500V 30APCB Digikey 36-3557-2-ND hitps:/fwww digikey comiproc $1.03 $4.12
4[F1.F2 F: 028707 5FXCN [FUSE AUTOMOTIVE 7 54 32VDC BLADE Digikey F4198-ND hittps:/fwww.digikey.comipro. $0.28 5112
I
Total $484.59

The purchased parts are shown in Figure 4.1.2. The total price was $484.59. The biggest
costs of the project were the cameras purchased, one at the beginning and then another camera to

replace the initial faulty camera, and the PVC to construct the re-racking track under the table.

89



Another major cost was the re-racking system. It was underestimated how much it would cost to
build from scratch. The motors and ball screws combined were over $100. This is not factoring
in the motor mounts, end pieces, or limit switches. Most of the budget was spent on mechanical
systems that were needed to be constructed. The adapter board PCB and components was the
cheapest subsystem to build. It was assumed that components and PCBs cost much more, but due
to the simplicity of the final design no expensive components were needed. The only component
not purchased was the power supply to power the system. This point was not reached in the
project.

7. Project Schedule (GR)
Figure 7.1.1: Design Gantt Chart Part 1

o t;\k |'.ntmm- r.ll.rdm ';l.m rmm ||ha-|||n=um [— |u.L=np-|-
0

1 L] SDP 12019 05y
] - Project Design 3 days Frig/30/13 Wed 11/27/19 ELY
[] Mideerm Report 400 dawys BRSNS Wed I0JE11S 108
¥ T P 40 dawys FEB/3019  Wed 108715 Evisiyoine [

Bl ] TalC,LadT, LA F 40 days FEB/30/19  Wed 10915 Eviiyoie o8l
L) Problem S bement (USE PRELING 40 days FRE/0/19  Wed 10919 Ewveryorse %
] el 40 daws FEB/30/19  Wed 10y915 o8
L O e thi 40 darys Fill 820719 Wed 10,915 oy
9 Background 40 darys Fill 830719 Wed 10,915 o8y
] MarbEting Risipuif e vis 40 daws FEB/30/19  Wed 10915 o8
1 Engineering Requinements Sgecification 40 davys Fri 8/30,19 Wed 10/9/15 [
12 f Enginesring Anabygsis 40 days Frigf30/19 Wed 10/3/15 Eveeryoist: [
4 Greuits (DT, AL, Powes, ) 3338 days  Fridf30713 Tue LE 1S L
4 " Fower Supply Kyle Soeveson, Gran Beinboelt 3y
1 Elsrironics lanalog ard digital) 3338davs  Fil B/30/19 Tuis 104B/15 i
¥ Sigmal Processing I days FriB/30/19  Tue lE19 0%
? Image Processing Tue 104B/13 Rdney Morgan i
] Comnenunications |anabeg aed dighal] 333 days  FriEf30/19  Tue 10/E/13 i
L oty Camera to PC Tue 104B/13 Rodney Morgan i
20 Lo PC o Controller Tue 104E/15 Darwid Mlostan 1.
Fil e mEchanics 193 deys  FABSINA9  Tue 10519 0%
F Rk SyStsmn Tue 10/E/19 Grant Reinbol o8l
T Gt Sysusm Tuié 104B/19 Kt SEisviion o8
24 Coviglier REtworks 40 days FRE/0/19  Wed 10919 %
2% * Server Dutabadis wed 109119 Ry Margan o8
26 s Ao Wed 10/9/15 Rurdney Maorgan [
2 Embedded Sysiems 40 darys Frig/30f19 Wed 10/3/13 L
Fi g Ly Microcontroller Grant Reinboh, Kyle Steveson [
F- ] Accepted Technical Design 40 days Frigf30/19 Wed 10/3/15 [
EElL ] Hardwane Design: Phase 1 I3 deys FrBf3V19  Tueld/&f19 Grant Reinbol, Kyle Stevison %
i Hardware Block Disgrams Levels OiFeu N (w)' FR tables) 40 days Frll B/30/19 Wed 10915 (1]
i 1 Salftware Design: Phase 1 3538 days  Fri8/30/19 Tue 10/8/19 Darwid Milostan Rodniy Morgan [
i3 Softweare Bebavior Models Livels O theu N (TR tables) 40 days Fiil B/30/19 Wed 10/9/15 i
Mg echanical Sketch 3338 days Fridf3y19  Tue lV&/19 Gram Reisboh, Kyle Stevesan %
35 Pool Table Tue 10/E/15 08y
36 Team information 40 darys Fril B/30/19 Wed 10/9/15 i
Ay - Project Schedules 3538 days  FABSI19  Tue 10/E13 S0
B |y Tirnie Chart D3gdays  Won 10719  Tue IYE1S D MiGSLan 100%)
| Mt Ditign Gantt Chart 3938days  FHEE019 Tue IYES Grant Rginbah 0%
) Belerences 40 dawys P B/301S Wed 108115 o8
a Midtere Fans Reguest Form 40 dawys PR30S Wed A0JE11S [
az Polimingsy Design Priseatalion 0 days Thu8/19/19  ThuS/19/19 o8
43 [Projiect Poster 13 datys Thu 10,1019 o8y
H Final Design Repon 45 darps Thu 10/10719  Wed 11,27/13 o3y
45 Absrract 4E days Thu 10/10/19 Wed 11,/33/15 [
£ Hardware Design: Phase 2 42 days The $0/10/15 Wed 11/27/19 [

Fage 1

90



Figure 7.1.2: Design Gantt Chart Part 2

o ln k‘n: Tk Fume r.unum nant inish |Iha1l|n:l.r.| haamen I'hl_-mnru
xim
a # Modules 4Edays  The10/10/19 Wed 10/27/19 [Z"
45 +* Sierdaticns 45 days Thu 103019 Wed 11277159 o8y
i # Schematics dEdays  Thei0/10/19 Wed 10/27/19 o
w g |4 Gate Sysiem 4Z38cays  The I0/10/18 Wed 1172719 Kyl Steveson o3
Gl Pt SuUpply 4238 daye  The 10/10/19 Wed 19/27/19 Kb SevEioe i
s * # Gaery System 4E38cdays  The I0/10/18 Wed 112719 Grant Reinbai o
5 * * IBCr e Tk 4238 dae  Tha 1010719 ‘Wed 1137719 (Grant Reinbolh i
# Sofvware Design: Phis 2 4% days Tha 10/10/19 Wed 13/27/19 o
* Madules 4E darys The 10/10/18 Wed 11727/139 i
# Moo RolET OO Cathon 4738 dayE  Thi 10/10/19 Tué LL/26/19 Dl Miastan oy
g Image Procedding 4738 days  Thu 1071019 Tue L1/26/15 Rodney Morgan sy
* Pasrts Lins. 4E days Thes 10/10/19 \Wed 18727799 i
+* Parts | istis) for Schematics 4738 days Thu 10/I0F19 Tue LL'26/15 Grant Reinbol, Rodniey Morgan o8y
ol Maneriak Budge Est 43 days Thu 101019 Wed 11/27/1% o8y
+* Progeded Implementation Gantt Chan 45 days Thu 103019 Wed 11277159 o8y
& Conclusions and Recomeesdations 4% days The 10/I0/15  Wed 1177715 o
# Final Pats Request Fam 13 days Tue 10/15/15  Mon 10/2B/19 %
# Finad Deign Fresentations Fan 1 0 days Thi 11734519 Thu 13/14/19 o
# Finad Deign Fresentations Fan 2 0 days This 121619 Thu 13/21/19 %
# Parts Reguest Ferm for Spring 5 days wed 13,/27/19 Frl 13/5/18 %

91




Figure 7.1.3: Implementation Gantt Chart

o T [ asior. Tnkey [erre—
o= T =

i o+ 0P impdemartaior. 2220 1003 dayu Wion L1028 e 42420

2 * Raviam Gants Chart 14 dwp Wion 11328 e LT

] * Imptement Profect Deakn 5 dap Wion Lf13/28 41720

4 * Mg Implemsntation 9 duyn Wion 11328 Sun3fifas

s |§ |+ Finalize PCB. Dwsign Ezmys Sun LiT670 e 23020 Grant

 |§ |+ Finalze Be-racking panty delgn E gy Sam 220 e 2/830 Grant

Ty |F Pkt comtrusSon of re-rackong pirey B2 w20 Sum 215510 Grand

O e Finish smsmizly =f PO & Sun 21620 Sun 22350 Grant

4 | - MICTIRRS: D montrate Mardwors [ Sun 27T70 Tl 2/I0/30 Grant

i |y " Comect sy haues from FO3a B Zmy Fri 2{30/10 FrifB0 Grant

noy | Finisks ancl Sk andencid/ImE wwiich mde B doys San IR0 e 3150 Grant

12 * o+ Fint ans e degper moe [ Sun 150 e 37200 Grand

u |§ |# Finsh mnd et ambedded mdn Ezm Sun T2 S 3790 Grant

TN ES Tent wred cetug tabie BZmvy Sun 1190 EET ] Grard

L[ e Temt ard cabug tabis Ezmy Sum 4520 S 412510 Grant

1% * Project and| Dy Slon 41120 Slon 4120720

EN ES Finisk mosnng PVC frack Tam Won 1117720 S 2/3f20 Tyl

N e Franlze 2eign of pocket gy B2my Sum 22730 Sur 2820 iyl

TR Finish coratrucSon of pocket grie E gy Sam 2020 e 2116/ Tyl

n * * Finish moundng of aodennica1ime wwtcheu B o Sun 216,710 S 2100 iyl

F1] MADTIRAS: Demortrate Mardworr E2m Sun 2T LFTr T iyl

EH Finish moundng gartny 1yven [ =Y Frl 23030 FriAfE0 iyl

1 Routw and calzke marage sverything erder B Zays Sun R0 e 31550 Tyl
thes tabis

u |§ | Firvists meschanical s with Stk & Sun 31520 Sun I3 iyl

= |f | Fraist s Set e coda B Sy T T Sun 3750 iyla

w |f |+ Firuiss il St v cocle Ezmys Sun 17970 S 45020 Tyl

w |§ |+ Temt ard cabug tabis E gy Sun 4550 S 411250 Tyl

fT] * Project and | D2 Mon 411020 Mon &'20/20

El * Sathears Implemsntrtion 0 duyn Wion 11328 Sunlf1fas

o |§ | Splicing the pocl table oot of sech fmme 14 dey Mon 11730 Sun /820 Raocresy, Dweid
srd st xy coordinet of each ball 1o
wend i Firetase 0

oy |F Db bequercy of duts collecSion i B Sy un 20 un 218510 Banrueey, Dareicd
frwbase arcd BEBker-ds App

EENT e DpEmbr detection aigorthm ek & Sun 21620 Sun 22350 Radney, Daeid
mxtemal i cerce and wpante Sclics from
Sripe

u |§ |+ Ramcwe fahs ponFves/regetves bom B2y Sun 27T70 Tl 2T Rscirey, Darwicd
turfar nigorithrmically

Wy | MPCTIRRS: Do myorn rate Saffesre = Sy Mo 37430 Fei 20 Banrueey, Dareicd

= g |+ Syrc bulh with taizie in real Hese Ezmys Sun 1120 S IR0 Rscirey, Darwicd

IS Syrc balh with taksie in real Hese E gy San IR0 e 3150 Rsiray, Dareicd

7§ |F Sync tulh with tabie in reai time E2mn Sun 115/10 Sun 3 T30 Rocresy, Dweid

n ' * Implemecting sore tacking cnappand K Sun 1I270 Sum 377950 Boreey, Dweid
with Pythar spplication

TR ES Temt ard cebug tabis K2 Sum 17910 Sun 4530 Raocresy, Dweid

a |f Temt ard cabug tabis Ezmy Sum 4520 S 412510 Rscirey, Darwicd

4 * Project and| L Slon &1y Slon 4120720

4 * Dawsiop Final Bsport 1003 dayn Wion 11328 Tl 42420

a1 * "Wirite Fizal Report 1003 days on 11320 Tl 42430

] - Submi Fnal Aspart DO zmys LEE T T ] LEE T T

[H o+ Sprimgface TEmy Mion 1IN0 TR To T

5 * Praject and 0&mn on 420/ Mo 430730

92




The goal of the Gantt Chart shown in Figure 7.1.3 was to have all major systems built
and implemented by April 5th. This would allow for several weeks of using the table to work out
and squash any bugs or issues in gameplay. The image recognition was also planned to be
finished before any else, so that the embedded code could be tested without interfering with any
image recognition issues. The schedule was fairly aggressive in terms of completion dates so that

extra time to fix issues was available.

93



Figure 7.1.4: Actual Gantt Chart

F o |

W O N O ol
# 0P implamartation 2220 10 e Won 11020 Tel 4/2420 ]
* Rarvine Garts Chart 14 daypn Mon L1028 Sun LT85T ol
# Implamant Project Cealn =5 dwn won L1322 Pl 417120 EI%
o+ ‘e sssurs mplemsmriian &3 darys Wion L1028 Sun3f1f2e EL 2
| Fraslse O3 Denign B2my Sun LT8O Sur 22520 Gram 10
AF Frule Beracking guriy dengn Edm Tun 22710 Sun 29730 Grard 10
AF ik comirucion of reracking panery B S Tun 25710 Sun 218510 Grard 10
W | Pk srmsmisky of PO B2 ur 216/ Sun 21050 Grard 107
W - MDTIRAS Dr morumrate Mardwors Eim e 2110 R T Grars 10
W[ F Coverct w7y hases from POBG Eam Tl /78T T /520 Grars 10
| ey Fraib ans S wienoidf ImE vafich mds B 2o Suw R0 Sum 3715510 Grand [
¥ |F Frit o2 ek denper mde Edm Sun 31570 un 32500 Grare =
¥ |# Fsh o2 ek snbedied moe [ Sun T2 Sun 31950 Grare sl
| IE Temt wred detug tabie B2my Sun 37910 Sur Af520 Gram ol
* o+ Test wnd debug tabis [ Sun 445730 Sun 812400 Grand [
# Poobeer - [Lr— ion 4V Sion &/ 20V 2D o)
¥ |+ Finiih mosnting PYC rack Tamn Won 137 Sum 22720 iyl [t
| Fruallee 2mign of pocket grae Ezmy Sur 23730 um 2920 iyl 10|
¥ |* Finih comibrussion of pocket geie [ EST T um 218510 Tyl sl
¥ |* Finih macndng o acler ok limE weEchn B 2 Sun 21670 un 2T Tyl 1]
W - MDTIRAS Dr morumrate Mardwors Eimv ETF T fr] (SR T o] iyl
[t Frish maunsng gartny nden LEE Fri 2/78/10 B0 iyl urs]
§ ¥ Rocte ard mezke marage sventhing crder B 2oy Suw R0 Sum 3715510 (Y i
tha tabis
| BE Frint meschon ical musy wits 2ntkn By Sun 3515750 S 1 T2530 iyl =l
¥ |# Frait s St wea code B2my Sun 3I210 Sur 37950 iyl sl
¥ |# Frait s St wea code B2my Sun 37910 Sur Af520 iyl sl
| IE Temt wred detug tabie B2my Sum 450 Sur 412510 iyl ol
# Poobeer - [Lr— ion 4V Sion &/ 20V 2D o)
* Satheurs Implsmenarton 4 day Wion 11328 Sunififam T
W | splicing the poci tnbie oot of sech imme 14 day Won 1375 Sun 220 Fairey, Dueicd BT
ared s x,p coordinaie of sach hall iz
o o Firstmus
W | DpEmire frequency of dets collsction - K2 Sun 280 Sum 216510 Ry, Dweid 10r
firmbans and B0 Rerss App
| IE Cpmbe 2etectior aigorthen to recid B2my Sun 21610 Sum 2150 Rz ey, Do =)
Fxtpralird ceres ard usca e Sobics fram
Siripes
' * Ramowe fahus pon Fves) regasyes fom B 2wy Sur 242030 FriZfmyan Pz rasey, Dareid L
turPar nigoritrmicaly
W | MPCTIRRS: Do morurate Saffwere Ly Mo 20430 Fri2fT0/10 sray, Dureid 10
W | Syrr balh with talis in el e EZmn Sun 110 Sum /520 Ry, Dweid 10r
W | Syrr balh with talis in el e EZmn Sun R0 Sum 11510 Ry, Dweid 10r
W | syrc balh wish baizie In real Hee BZmvy Sun 31550 Sun 31250 Firasy, Dueicd 100
¥ |# implamesting aore tacing cnappard B dmn Sun /2210 um 319410 Rorery, David Lt
with Python spplication
* o+ Test wnd debug tabis [ Sue 37900 Sur & 30 i ey, Darwic [
| IE Temt wred cetug tabie B2my Sum 4530 Sur 412500 Rz ey, Dol ol
> Poobecr nd - on 4V Mion 4/ XV o)

94



Figure 7.1.4 shows what was accomplished before the project was put on hold. For the
electrical side of the project, all major systems were completed and built with some minor issues.
The gantry construction was finished, but it was never implemented under the table. The PVC
track under the table and pocket gates had all been mounted minus the preparation piece. The
gantry prep piece of PVC was not constructed as progress was stopped before a method of
attaching the solenoids was developed. Small issues in the pocket gates and PVC track were
being fixed also. The PCB worked as intended. The embedded code phase had been started but
not too much progress was made as classes were moved online right around that time. Most
concepts and major parts of the code had been written; however they were not assembled into the
final step by step process needed to re-rack the balls. The stepper motors, solenoids, limit
switches, and servo motors all functioned separately, they were just never put together besides
the sample code created and used for the midterm demo. Functions such as stepper movement to
fixed positions were never finished. Small bugs and issues were present in the solenoid and limit
switch code. A few servo motors could open and close, the remaining were not configured in the
code to operate.

For the software side of the project, the Python application detected the position of the
balls, determined when balls were pocketed, and tracked the score of a game in real time. The
React Native application displayed live scores and the positions of the balls. At the time, this
worked very well for solid colored balls, but struggled to distinguish striped balls. Also, the

game was unable to determine whose turn it was at a given point.

95



8. Team Information
David Milostan (CpE), Archivist

Grant Reinbolt (EE), Team Leader
Kyle Stevenson (EE), Hardware Lead

Rodney Morgan (CpE), Software Lead

9. Conclusions and Recommendations (GR)

Unfortunately, the project was not able to be completed due to COVID-19. This was
disappointing to the group as it was believed that the project was on track to be completed and be
successful. Lots of time and effort went into this project so it is disappointing to not be able to
finish it. When the project was originally proposed to the advisors, it was stated that the project
was too mechanical in design. At the time the group disagreed with this statement and went
ahead as planned. Looking back on the project, it is now understood why this project was
believed to be too mechanical. The first two months of the implementation phase were spent
solely on mechanical design and working out mechanical issues such as track mount, gate
mounting, pocket mounting, and gantry construction. While this may seem counterintuitive to
the purpose of the design project, it is believed this helped expand the ability and skills of the
group. It helped expand cross discipline knowledge and skills by having to come up with
solutions for non-electrical issues. This encouraged creativity and can be seen in several designs
including the gate pockets using rubber bands. From the software side, it is always
underestimated how much code or time goes into a program. Most of the time spent on the
embedded side was spent trying to get components to be functional, as making a motor move
seemed like an impossible task for the three weeks it took to make happen. The image

recognition also took a lot more time and effort than expected. It was assumed to have some

96



degree of difficulty, but that difficulty was much higher than expected. Overall the team dynamic
was very good and healthy, all parties worked together very well and would work together in the
future. Our recommendation for future students is that just because a project may seem simple,
doesn't mean it will be. A simple project is not a bad idea, as it allows for the project to be

completed and for the concepts in the project to be fully mastered.

97



10. References
[1] V. Singh, “An ARM Based Hardware Architecture for Image Processing,”

International Journal of Scientific & Engineering Research, VVolume 4, Issue 10, pp 1266-
1274, Oct. 2013

[2] Chen-Wei Chou, Ming-Chun Tien, Ja-Ling Wu “Billiards wizard: A tutoring
system for broadcasting nine-ball billiards videos,” 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 1921-1924, Apr. 2009.

[3] J. Tang, P.K. Wang, “An Auto-scoring billiards system,” In Proc. Eighth
International Conference on Machine Learning and Cybernetics, Baoding, 2009, pp.
3305-3309.

[4] J.B. Russell, “Automatic Ball-Racking Device for Billiard-Tables,” U. S. Patent
1,227,833, 14 May., 1917.

[5] Mingzhou Yin, Yue Chen, Kit-Hang Lee, Denny K.C. Fu, Zion Tsz Ho Tse, and
Ka-Wai Kwok, “Dynamic Modeling and Characterization of the Core- XyCartesian
Motion System,” 2018 IEEE International Conference on Real-time Computing and
Robotics (RCAR), pp. 206-211, Aug. 2018.

[6] Wang, Hao, “Design of an Automatic Door System for an Automated Transit
Network Vehicle,” Dec. 2015, pp. 1-105

[7] Bacus, James W. and Bacus, James V., “Billiard Table lighting and Game Play
Monitoring” U. S. Patent 9.485,399 B2, 1 Nov. 2016.

[8] W. Li, C. Yen, Y. Lin, S. Tung, and S. Huang, “JustloT Internet of Things based
on the Firebase real-time database,” 2018 IEEE International Conference on Smart

Manufacturing, Industrial & Logistics Engineering (SMILE), pp. 43-47, 2018.

98



[9] Motor Sizing Calculations, ORIENTAL MOTOR USA CORP, accessed 6
October, 2018,

https://www.orientalmotor.com/technology/motor-sizing-calculations.html

[10] Texas Instruments, “DRV8825 Stepper Motor Controller IC”

DRV8825 datasheet, Apr. 2010 [Revised July. 2014].

[11] Semiconductor Components Industries, “BUZ11 N-Channel Power MOSFET
50V, 30A, 40 mQ” BUZ11 Datasheet, September 2013 [Revised October 2017]

[12] Semiconductor Components Industries, “2N7000 / 2N7002 / NDS7002A N-
Channel Enhancement Mode Field Effect Transistor” 2N7000 Datasheet, 1998 [Revised

October 2017]

99


https://www.orientalmotor.com/technology/motor-sizing-calculations.html

	BitBilliards
	Recommended Citation

	Abstract (RM)
	1. Problem Statement
	1.1: Need (GR/RM)
	1.2: Objective (RM)
	1.3: Background
	1.4: Marketing Requirement (DM)

	2. Design Requirements Specifications (ALL)
	Table 2.1.1: Engineering Requirements

	3. Accepted Technical Design
	3.1. Hardware Design (GR/KS):
	Figure 3.1.1: Level 0 Hardware Block Diagram
	Table 3.1.1: System Fundamental Requirement Table

	Figure 3.1.2: Level 1 Hardware Block Diagram
	Table 3.1.2: Camera Fundamental Requirement Table
	Table 3.1.3: PC Fundamental Requirement Table
	Table 3.1.4: Microcontroller Fundamental Requirement Table
	Table 3.1.5: Adapter Board Fundamental Requirement Table
	Table 3.1.6: Racking Motors Fundamental Requirement Table
	Table 3.1.7: Gate Motors Fundamental Requirement Table
	Table 3.1.8: Gantry Preparation Fundamental Requirement Table
	Table 3.1.9: Power Supply Fundamental Requirement Table

	Figure 3.1.3: Level 2 Hardware Block Diagram
	Table 3.1.10: PIC24 Fundamental Requirement Table
	Table 3.1.11: Power Supply Fundamental Requirement Table
	Table 3.1.12: Stepper Drivers Fundamental Requirement Table
	Table 3.1.13: Servo Control Fundamental Requirement Table
	Table 3.1.14: Solenoid Driver Fundamental Requirement Table
	Table 3.1.15: Limit Switch Interface Fundamental Requirement Table
	Table 3.1.16: Stepper Motors Fundamental Requirement Table
	Table 3.1.17: Servo Motors Fundamental Requirement Table
	Table 3.1.18: Solenoids Fundamental Requirement Table
	Table 3.1.19: Limit Switches Fundamental Requirement Table
	Table 3.1.20: Stepper Motor Driver Parts Table

	Figure 3.1.4: Stepper Motor Driver Schematic
	Figure 3.1.5: Chopping Current Equation [10]
	Table 3.1.21: PIC Adapter Board Parts Table

	Figure 3.1.6: PIC Adapter Board Schematic
	Figure 3.1.7: Adapter Board PCB
	Figure 3.1.8: Adapter Board Stepper Motor Schematic
	Figure 3.1.9: Adapter Board Servo Schematic
	Figure 3.1.10: Adapter Board Solenoid Schematic
	Figure 3.1.11: Adapter Board Limit Switch Schematic
	Figure 3.1.12: Pool Table Top View
	Figure 3.1.13: Pool Table Underside View
	Figure 3.1.14: Pocket Gate Test Stand
	Figure 3.1.15: Pocket Gate Implementation
	Figure 3.1.16: Servo Motor Mounts
	Figure 3.1.17: Gantry System Complete View
	Figure 3.1.18: Side View of Re-racking System
	Figure 3.1.19: Y-Axis Limit Switch
	Figure 3.1.20: Re-rack Gantry Construction
	Figure 3.1.21: Assembled Adapter Board

	3.2. Software Design (DM/RM):
	Table 3.2.1: Microcontroller Fundamental Requirement Table
	Table 3.2.2: Server Fundamental Requirement Table
	Table 3.2.3: Mobile App Fundamental Requirement Table
	Figure 3.2.1: Gate System Software Flowchart
	Figure 3.2.2: Racking System Software Flowchart
	Figure 3.2.3: Serial Communication Software Python - Opening Serial Port
	Figure 3.2.4: Serial Communication Software Python - Transmitting Byte
	Figure 3.2.5: Serial Communication Software C - Setting Registers for UART
	Figure 3.2.6: Serial Communication Software C - Receiving Bytes
	Figure 3.2.7: Gate System Software
	Figure 3.2.8: Gate System Software - Set Servo Degree
	Figure 3.2.9: Racking System Software - Move Stepper to Coordinate
	Figure 3.2.10: Code Snippet for Detecting the Pool Table
	Figure 3.2.11: Detecting Pocket Boundaries
	Figure 3.2.12.1: Creating Each Ball to be Tracked
	Figure 3.2.12.2: Ball Object
	Figure 3.2.13.1: Masking Each Ball
	Figure 3.2.13.2: Masking Continued
	Figure 3.2.14.1: Tracking Algorithm
	Figure 3.2.14.2: Tracking Movement
	Figure 3.2.14.2: Decision Making
	Figure 3.2.15: Implementation of Python to Firebase Communication
	Figure 3.2.16: Full Python Code
	Figure 3.2.17: Implementation of React Native to Firebase Communication
	Figure 3.2.18: React Native Listening for Pocketed Balls
	Figure 3.2.19: Ball Coordinate Rendering
	Figure 3.2.20: BitBilliards App
	Figure 3.2.21: Full BitBilliards React Native Code


	4. Financial Budget (GR)
	Table 4.1.1: Original Budget
	Table 4.1.2: Actual Budget

	7. Project Schedule (GR)
	Figure 7.1.1: Design Gantt Chart Part 1
	Figure 7.1.2: Design Gantt Chart Part 2
	Figure 7.1.3: Implementation Gantt Chart
	Figure 7.1.4: Actual Gantt Chart

	8. Team Information
	9. Conclusions and Recommendations (GR)
	10. References

