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Abstract

The gut microbiota and its metabolites � namely short chain fatty acids (SCFAs) � interact
with the digestive, immune, and nervous systems. Microbiota with disrupted composition are
highly associated with obesity, gastrointestinal symptoms, and chronic in�ammation. Levels
of SCFAs in the feces can represent dynamics of the microbiota and represent one mechanism
by which the microbiota interacts with its host. This study aimed to further our understand-
ing of associations between microbiota bacterial diversity and SCFAs, immune markers, BMI,
and GI symptoms and to identify bacteria that are di�erentially abundant in di�erent BMI
groups and with synbiotic supplementation. Data (SCFAs, immunoglobulins, body mass in-
dex, fecal �ber, fecal protein, measures of GI symptoms, and 16s RNA sequences, n=11) was
extracted from a randomized control trial investigating the e�ects of synbiotic supplementation
in non-celiac gluten-sensitive participants. QIIME2 was used to process 16s RNA data, analyze
quantitative, qualitative, phylogenetic quantitative, and phylogenetic qualitative measures of
alpha and beta diversity and to perform an analysis of composition of microbiomes (ANCOM)
for identi�cation of di�erential abundances. Multiple metrics of alpha diversity were found
to signi�cantly correlate with IgG4, IgM, IL-2, acetate, propionate, isobutyrate, valerate, iso-
valerate, caproate, heartburn, urgent need to defecate, and feelings of incomplete evacuation.
Multiple metrics of beta diversity were signi�cantly di�erent between normal and overweight,
normal and obese, and overweight and obese BMI classi�cation groups. Beta diversity was
also found to signi�cantly correlate with IgG1, IgG3, IgG4, IgA, IL-6, IL-8, fecal �ber pro-
pionate, butyrate, heartburn, acid regurgitation, nausea and vomiting, bloating, abdominal
distension, increased gas, and eructation. The synbiotic intervention did not signi�cantly al-
ter alpha or beta diversity. An ANCOM identi�ed bacterial taxa di�erentially abundant with
BMI shifts and synbiotic supplementation, though these taxa were not those included in the
synbiotic. Findings demonstrate alpha and beta diversity associations with various SCFAs,
GI symptoms, immune markers, and BMI, and the results of the placebo-controlled interven-
tion suggest careful consideration of placebo contents moving forward. This research supports
plans to apply analysis to larger sample sizes to elucidate changes microbial pro�les that are
associated with clinically relevant biomarkers and symptoms.

1 Background

1.1 Microbial Communities

Most locations on earth harbor communities of microbes referred to as microbiomes [1]. The

organisms that make up microbiomes are referred to as the "microbiota", though the terms

"microbiome" and "microbiota" are generally used interchangeably [2, 3]. Microbiomes are by no

means new, as the fossil record shows evidence of microbial communities existing over 3.4 billion

years ago [4]. Though much research is primarily focused on microbe-metazoan reactions,

microbial communities started with simply microbe-microbe interactions that are still persistent

today. Some examples include competition for nutrient uptake, secretion of extracellular enzymes,
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secretion of antimicrobial peptides, horizontal gene transfer, parasite transfer, quorum sensing,

and cross-feeding [5]. These interactions create a dynamic yet homeostatic local community

ecosystem, or a 'supra-organism' as some have termed it, and successful microbiomes are resilient

to disturbances, such as colonization from invasive pathogens [6, 5].

Microbiomes are resilient as a result of functional diversity and functional redundancy [5].

Whereas diversity can generally be measured by the number of di�erent phyla or genes present,

functional diversity involves the range of traits encompassed by the organisms present in an

ecosystem, such as the abilities to �x nitrogen, change the local pH, or produce antimicrobial

peptides [7]. Functional redundancy, on the other hand, is the redundancy of species able to

perform those certain tasks, so if the environment changes and one species su�ers trauma or

becomes extinct, another can take its job to maintain the health of the ecosystem [5]. Due to the

co-dependence of resilience on both functional diversity and redundancy, a balance between the

orthogonal qualia evenness and richness bene�t community stability [8]. Evenness is a measure of

how evenly species are distributed, independent of how many species are present, such that having

10 organisms of species A and 2 organisms of species B would be less even than 5 organisms of

species A and 5 organisms of species B, and richness is a measure of how many taxa are present,

where having 5 organisms of species A and 5 organisms of species B would be less rich than

having 1 organism of species A, B, C, D, and E [7]. Functional evenness, or the evenness of

species able to perform certain functions in microbiomes, is positively correlated with community

stability, it yields functional redundancy to stabilize the community in the case of trauma [7].

Likewise, functional richness increases the functional diversity of a community [7]. Though the

relationship between richness and evenness on a spatial scale has not been fully elucidated in

commensal microbiomes, ecological research suggests that on a small spatial scale, richness and

evenness are inversely correlated, but when the spatial scale increases the negative relationship

vanishes [9]. This is likely related to the functionality of taxa interacting with environmental

conditions, as the abundance of certain resources or lack of antagonist factors (such as predators)

in one area may lead to increased proliferation of certain taxa over others [9]. Despite the lack of

research on the relationship between evenness and richness in commensal microbiomes, research
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does demonstrate di�erences in the alpha diversity in di�erent locations of murine colon [10].

Just as individual microbes in communities interacted with each other via the release and

detection of signaling molecules, evolving eukaryotes also interacted with the preexisting microbes

in their communities [11]. One main example of this is the incorporation of Alphaproteobacteria as

mitochondria in almost all known eukaryotic cells [12]. Another is the theory that the innate

immune systems of vertebrates evolved as a response to microbiomes [13]. Additionally,

interactions between microbial communities and eukaryotes were crucial to the evolution of early

vertebrates, and physiological responses to microbiota have been evolutionarily conserved such

that all species of vertebrate today exist with multiple microbiomes [14]. Homo sapiens, for

example, have microbiota identi�ed in locations primarily including but not limited to the skin,

vagina, and gastrointestinal tract [15]. These microbiomes, like others found in nature, are

dynamically homeostatic: inter-microbiome variation is greater than temporal variation within a

single microbiome [16]. Microbiomes in di�erent locations, such as the ear, skin, vagina, and feces,

have their own unique signatures, and most microbiomes from the same location are dominated

by the same groups of bacteria [17]. However, high inter-microbiome diversity is not limited to

microbiomes in di�erent locations on the body, as the variance between in the same location of the

microbiome between individuals (e.g. two gut microbiomes in di�erent individuals) is greater than

the temporal variance within each of those microbiomes [16]. Due to the consistent and generally

temporally undeviating nature of these microbiota, vertebrate physiology has evolved to rely on

certain functions of the microbiota. This can be largely evidenced by the signi�cant physiological

disruptions - such as altered metabolism, dysfunctional immune systems, increased in�ammation,

vascular remodeling, and neurological issues - experienced by germ-free vertebrates [18, 19].

1.2 The Human Gut Microbiota

The largest microbiota of Homo sapiens, the gastrointestinal, or 'gut', microbiota has a mass

equivalent to roughly 2% of the adult body mass, and there are 150 times more unique bacterial

genes present in a standard human host microbiota than there are genes present in the human

genome [20, 21, 22]. This gut microbiome contains an estimated 1014 microbial cells and at least
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1015 viruses [23, 24]. Like other vertebrates, the human gut microbiota has a very important role

in regulating health and disease, and it has been the focus of a large body of research [17]. The

gut microbiota is provided resources by undigested food (largely plant �ber) that makes it to the

colon, and the microbes break down or alter these �bers to produce metabolites by which they

can interact with the host body [25]. A primary metabolite that will be discussed is short chain

fatty acids (SCFA).

1.2.1 Development of the Human Gut Microbiota

Though there is controversy around evidence for the subject, a developing human is believed

to be exposed to microbes starting as early as fertilization, when egg may be exposed to microbes

from the uterine cervix, from the vagina, or from semen, even in the case of in-vitro fertilization

[26, 27]. Early microbial exposure from the endometrial microbiome is also believed to a�ect

implantation via the immune system, as in�ammatory responses to microbiota will compromise

the success of implantation [28, 29, 30]. In theory, the prevention of implantation of a fertilized

egg in the case of an in�ammatory uterine microbiota may prevent the development of

maladapted immune system [27]. Despite the stigma of the sterile womb dogma, evidence that the

implanted embryo is exposed to microbes through the placenta and amniotic �uid dates back to

1927 and has been replicated multiple times through both metagenomics-based and

non-metagenomics-based methods [27, 31, 32, 33]. The microbiome of the placenta, which ideally

contains non-pathogenic microbes, is low in abundance but rich in metabolic diversity, and it

exhibits a pro�le more similar to that of the oral microbiome than to the vaginal microbiome [33].

Other than direct transmission from the vaginal microbiota, there are multiple proposed methods

as to how microbes translocate to the placenta, including migration from the gastrointestinal tract

and migration from the oral microbiota. Mouse models have shown translocation of bacteria from

the gut microbiota to the placenta, and there are mechanisms by which oral microbes and

periodontal pathogens may enter the bloodstream and spread to the placenta [34, 35, 36].

Hematogenous spread (through blood) of oral microbes to the placental microbiota may be a

potential mechanism by which of periodontitis can impact preterm birth [37]. The e�ect of
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periodontal pathogen translocation does not appear to occur by directly changing the composition

of the placental microbiome but by altering the behavior of typically benign microbes to become

more pathogen-like [37]. Interestingly, the placental microbiome correlates less with obesity and

metabolic factors of the mother than it does with frequency of antenatal infections including lower

urinary tract infections, pyelonephritis, and sexually transmitted infections such as Neisseria

gonorrhea and Chlamydia trachomatis, which could be a result both of treatment with antibiotics

and the resilience of pathogens [33]. For example, Escherichia coli, which is common in both lower

urinary tract infections and pyelonephritis, can bind to uroplakins to evade immune detection and

therefore remain present within the host body until opportune chances to recolonize arise [38].

Maternal environmental microbial exposure, including exposure to farmland during pregnancy,

also modulates the placental microbiome and is recognized as a predictor of health throughout the

lifespan [39]. Though research supports a positive correlation infection by pathogenic bacteria

with preterm birth, it has been di�cult thus far to characterize what a 'healthy' pregnant uterine

microbiota should contain due to the existing (yet changing) dogma of the sterile womb and

technical and ethical issues of sample collection during pregnancy [27, 40]. Despite the

controversy surrounding the concept, it can be concluded that bacteria are present in amniotic

�uid without cases of infection or adverse outcomes, and colonization by non-pathogenic bacteria

in the placenta can program the fetus's metabolic pathways and immune system through stepwise

microbial exposure, making it more resilient against pathogenic microbes that may contribute to

adverse outcomes before or shortly after birth and even throughout the lifespan [41].

The �rst two years of life comprise an incredibly important window of opportunity for

colonization and immune modulation, and primarily starting when the newborn is exposed to a

large abundance of microbes from the mother's vaginal canal and the environment at birth [36].

Despite theories that lasting colonization of the gut microbiota begins at birth, analyses of

microbiota from the meconium, placental, amniotic �uid, and colostrum in mother-infant pairs

provide evidence that colonization begins before birth and that placental microbiota may be more

in�uential on the development of the meconium microbiota than the delivery method [39, 42].

However, as a newborn matures, microbial exposure from the vaginal canal, from the
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environment, and from food has a larger e�ect on the gut microbiota than pre-delivery exposure,

and the structure of the gut microbiota shifts toward representing that of a fully developed human

[41, 43]. At 6 days post-delivery, gut microbiota di�erences between vaginal and caesarian-section

delivery methods are evident. The gut microbiota of vaginally delivered infants resembles that of

the mothers vagina, as it was the �rst exposure to microbes at birth, whereas the gut microbiota

of caesarian-section delivered babies more closely resembles the microbiota of the mother's skin

and environment [44, 43]. In a newborn's early life, breast milk - especially colostrum - which is

rich in diverse oligosaccharides, provides support for bacterial growth within the colon [34].

Human milk oligosaccharides (HMOs) are not degraded by the infant, and their structures are

speci�c to degradation abilities of certain bacteria regarded as being immunoregulatory, such as

Bi�dobacterium longus subsp. infantis [34, 45]. Immunoregulatory bacteria can improve stress

resilience through the brain-immune axis during the highly stressful period of time around birth

via multiple mechanisms including normalization of the interleukin-6 (IL-6) response to stress and

increase in regulatory T cell levels [46, 47]. Prebiotics in breast milk also serve an antimicrobial

role against certain pathogens such as group B Streptococcus and Candida albicans, and they

protect against pathogen colonization by supporting the development of high levels of microbial

richness in a child's microbiota [34]. As the composition of breast milk changes and a child is

exposed to new pathogens, the diversity of the gut microbiota increases, yet it retains high

abundances of certain colonizing bacteria [43, 34]. Around 2 to 3 years of age, an individual's

unique microbial phenotype becomes relatively established, and sequencing methods show that

the gut microbiota of healthy children tends to have higher levels of Bi�dobacterium, certain

strains of Escherichia coli, Faeacalibacterium prazsnitzii, and Lactobacillus than the gut

microbiota of children with diseases such as infection, necrotizing enterocolitis, diabetes, and

in�ammatory bowel diseases [34, 48].

As an individual matures and the gut microbiota becomes established, multiple studies have

demonstrated that the dominant bacterial species shift from Actinobacteria and Proteobacteria to

Firmicutes and Bacteroidetes in individuals with low disease burdens [49]. In adulthood,

individuals have highly variable microbiota dependent on diet, travel, illness, hormone cycles, and
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genetics, though genetics are a lesser in�uence than the other aforementioned factors, as

evidenced by studies demonstrating that identical twins share only 50% of their microbiota

[49, 50, 51]. Though a healthy adult microbiota is rich in Firmicutes and Bacteroidetes, acute and

chronic trauma to the microbiota via antibiotic use, poor diet, or chronic stress can alter this

balance [51, 52]. This altered balance can include decreasing the abundance of Bacteroidetes and

Firmicutes, decreasing the Firmicutes to Bacteroidetes ratio, increasing the abundance of

Proteobacteria, and decreasing the richness of the microbiota [51, 52]. All of the aforementioned

changed tend to be associated with chronic in�ammatory diseases. Unfortunately, altered gut

microbiota associated with poor health, referred to as dysbiosis, creates shifts in host physiology,

such as hyperactive stress responses, that perpetuate the dysbiotic state [52]. Dysbiosis, however,

should not be characterized using any speci�c de�nition based on microbiota diversity or

abundances nor as the binary opposite of eubiosis: variability in microbiota are not such that

certain characteristics make the host more or less healthy in all areas of the world, disease states,

or ages [53]. Thus, referring to dysbiosis as a speci�c microbial signature detached from speci�cs

such as host health metrics, demographics, and age is misleading, and more appropriate means of

alluding to dysbiosis include referring to the microbiota as trending toward known dysbiotic

factors (given known host health factors), referring to the microbiota compared to a control (not

'healthy') group with similar characteristics, or a combination of both. Though much research

exists regarding dysbiotic states, one must consider its limitations and not overreach into

attempting to de�ne globally healthy and unhealthy microbiota or hosts solely based on

microbiome data. A key example cited by Brussow is that bottle-fed infants have greater gut

microbiota alpha diversity than breast-fed infants, yet this does not translate to greater health

outcomes [53, 54].

1.2.2 Host-Microbiota Interactions

Through mechanisms outlined in the Layered Hygiene Hypothesis and the Old Friends

Hypothesis, stepwise exposure to microbes throughout the �rst few years of life a�ects disease risk

throughout the lifespan via exposure to immunoregulatory microbes and establishment of certain
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microbial phenotypes that a�ect pathogen colonization and stress resilience [55, 56, 57].

In�ammation associated with the immune activation that can be triggered by the gut microbiota

plays multiple roles in various diseases including but not limited to in�ammatory bowel disorders,

metabolic syndrome, and psychiatric disorders [58, 59, 60, 61]. There are multiple mechanisms by

which this occur, such as through antigen exposure, gene exposure, and peptide production, but

one primary mechanism is the fermentation of dietary �bers to produce short chain fatty acids

(SCFAs) ranging from 2 to 6 carbons in length [62].

1.2.2.1 Fibers: from the host to the microbiota

Since the human digestive system only produces roughly 17 gastrointestinal enzymes, and

carbohydrates can only be absorbed as monosaccharides at the brush border of the small intestine

through SGLT1 and GLUT5 transporters, many plant �bers and lignins with complex structures

completely or partially escape digestion [63, 64, 65]. These complex plant �bers are de�ned as

dietary �bers by the CODEX Alimentarius Commission as carbohydrates with lengths over 10

monomeric units that are not hydrolyzed by the enzymes endogenously present in the small

intestines of humans. Some de�nitions of dietary �bers, such as those by the Australian,

Canadian, and New Zealand food standards and public health groups include carbohydrates as

short as 3 monomers in length [65, 66]. The overarching concept of dietary �bers is that they are

not digested by the endogenously produced human enzymes by the time they leave the small

intestine, and there are many types of dietary �bers that vary based on the species of plant from

which they originate [67, 65]. Most dietary �bers are prebiotics, or particles that are resistant to

gastric acid in the stomach and hydrolysis in the small intestine and that are fermented by the

gut microbiota, stimulating the growth of non-pathogenic bacteria; however, not all dietary �bers

are prebiotics, and not all prebiotics are dietary �bers [65]. Dietary �bers can be categorized into

soluble and insoluble �bers based on their solubility in water, and these �bers can have laxative or

constipating e�ects based on their structures and viscosity (if soluble) [67]. Di�erent ratios and

abundances of each type of dietary �ber can e�ect the composition of the microbiota by

modulating the amount of time that resources are available in the colon and the frequency by
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which microbes are removed from the colon during luminal washout [67, 68, 69]. Insoluble �bers

with large, course particle sizes irritate the gut mucosa, causing a laxative e�ect, whereas viscous

soluble �bers slow gut transit and help to normalize stool consistency [67]. Fast colonic transit is

associated with higher abundances of bacterial species such as F. prausnitzii that are associated

with a healthy mucosal barrier and decreased low-grade in�ammation, and slow colonic transit is

associated with a more methanogenic pro�le, higher bacterial protein catabolism, increased

mucosal degradation by bacteria, and other factors trending toward dysbiotic factors [69].

However, stool transit being too fast will result in increased �ushing of microbes and potential

disruption of the microbial environment, insoluble �bers are poorly fermented by the microbiota,

and viscous soluble �bers have non-microbiota-mediated health bene�ts, such as trapping bile,

which lowers cholesterol levels, so it is important to have a balance of soluble and insoluble �bers

[67, 70, 71]. Non-viscous soluble �bers, such as resistant starches, which are long strains of

amylose-like digestible carbohydrate that cannot be fully degraded in the small intestine due to a

lack of time rather than a lack of enzyme functionality, function as rapidly fermentable prebiotics

for the microbiota [67].

1.2.2.2 Short chain fatty acids: from the microbiota to the host

Once dietary �bers and resistant starches reach the colon, they are fermented by bacteria to

produce SCFAs including acetic acid, propionic acid, butyric acid, valeric acid, and caproic acid

[72]. Branch-chain isomers of SCFA (BSCFA) including isobutyric acid, 2-methyl butyric acid,

and isocaproic acid are not produced by �ber fermentation. Instead, they are products of

bacterial metabolism of valine, leucine, and isoleucine [72]. These acids are assumed to be in the

deprotonated form in the colon and are therefore referred to with the -ate su�x (e.g. butyrate).

In healthy individuals, acetate, propionate, and butyrate constitute 95% of the SCFAs produced,

and they are produced in a ratio of 60:20:20, respectively [62, 73]. The general stoichiometry for

the fermentation of carbohydrate to produce SCFA is 59 C6H12O6 + 38 H2O → 60 CH3COOH +

22 CH3CH2COOH + 18CH3CH2CH2COOH + 96 CO2 + 268 H+ + heat + additional bacteria

[74]. Roughly 95% of SCFAs produced are absorbed, and they make up almost 10% of the energy
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requirements of humans [62]. Though only about 5% of the SCFA produced are excreted, SCFA

research has focused on fecal SCFAs due to the impracticality of measuring colonic SCFAs [76].

Findings suggest that fecal SCFA ratios - but not the amounts passed in the feces due to varying

SCFA absorption rates between individuals - are representative of colonic production, and ratios

between the SCFAs correlate with health and disease states [75, 76]. SCFAs decrease the luminal

pH of the colon, decreasing the solubility of bile salts, increasing mineral absorption, and altering

the microbiota, inhibiting pathogen growth [77, 78].

As acetate is able to escape metabolism in the liver, it makes up the highest proportion of

SCFA in systemic circulation, though there are multiple factors confounding this data, such as the

endogenous production of acetate [72, 77]. Outside of microbiota research, acetate is known as a

source for central carbohydrate metabolism when nutrients are limited, and it is used as a parallel

pathway for acetyl CoA production [79]. Additionally, emerging research suggests that the de

novo source of acetate in mammals is from conversion of pyruvate via coupling to reactive oxygen

species and via the activity of alpha-keto dehydrogenases [79]. Acetate is produced from the

fermentation of acetogenic �bers such as inulin and galacto-ligosaccharides primarily in the

proximal colon, but it can also be produced by fermentation of peptides and fats in the distal

colon [80]. Due to acetate's ability to be produced by the fermentation of fats and nitrogenous

compounds, fecal and serum acetate percentages are increased by high fat diets (HFDs) [80].

Higher acetate production is associated with an increased Firmicutes/Bacteroidetes ratio, which

tends to correlate with a dysbiotic state and negative health outcomes [80, 81]. Through increased

parasympathetic activity mediated by the vagus nerve, acetate increases glucose-stimulated

insulin secretion via the microbiota-β-cell axis, and it triggers the release of ghrelin, a peptide

that regulates appetite (among other roles) and is commonly referred to as the 'hunger hormone'

[81, 82]. The combination of these two promotes metabolic syndrome by promoting hyperphagia

(increased hunger from ghrelin), hypertriglyceridemia, and increased fat storage [81, 82]. Long

term upregulation of insulin secretion due to acetate is thought to contribute to insulin resistance

and metabolic syndrome [77]. Due to its ability to be converted to Acetyl-CoA, acetate can

promote cholesterol synthesis and lipogenesis [77, 83]. 50-70% of acetate is metabolized in the
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liver, where it can contribute to non-alcoholic fatty liver disease (NALFD) in the case of elevated

acetate levels, and the rest is oxidized by muscle tissue [77, 84, 85]. Acetate is also produced by

acetogens that can consume H2 for energy and release methane, acetate, and H2S as end

products, increasing the ability of NADH to be reoxidized to NAD+ [86]. Primary fermentation is

generally limited by the buildup of H2 and reducing equivalents inhibiting reoxidation of NADH,

so acetogens increase the e�ciency of fermentation by consuming H2 [87]. Decreased inhibition of

primary fermentation leads to increased SCFA production and therefore increased energy

contribution to the host, promoting obesity [86].

Unlike acetate, propionate is unable to bypass the liver, so it thus makes up a lower proportion

of the SCFA in circulation [72]. Propionate in the liver is used for gluconeogenesis, and it inhibits

hepatic lipogenesis and cholesterol synthesis via inhibiting HMG CoA reductase [77, 72, 88].

Propionate can trigger intestinal gluconeogenesis through a mechanism dependent on G

protein-coupled receptor GRP41 and through the gut-brain axis [89, 90]. Propionate is produced

through the �xation of CO2 to form succinate and from lactate and acrylate via the acrylate

pathway, and it it incredibly important for gluconeogenesis in ruminants [77]. On the grounds of

immunomodulation, propionate can trigger increased extra-thymic de novo production and

di�erentiation of Treg cells, which has an anti-in�ammatory and anti-metabolic syndrome e�ect

via regulating the TH1/TH2 ratio in the body and other immunosuppressive measures

[91, 92, 93]. Treg cells play an important role in staving the pathogenesis of autoimmune disorders

and allergies in addition to gut disorders, such as in�ammatory bowel disease, Crohn's disease,

and ulcerative colitis, suggesting a role of propionate in preventing gastrointestinal disorders,

especially those linked to eosinophilic and autoimmune reactions [94, 95]. Another suspected

mechanism for immunosuppression by propionate (as well as butyrate) is its ability to bind to

GPR41 and GPR43 which are common in mammalian immune cells, but speci�c anti- or

pro-in�ammatory e�ects of these receptors are not well understood [96, 97]. Propionate, in a pH

under 5, can kill pathogenic E. coli and Salmonella, protecting the epithelium from colonization

[98]. Another means by which propionate protects the gut epithelial border is by supporting

apoptosis of colonocytes [75].
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Butyrate serves as the major substrate for energy production in the ceco-colonic epithelium,

and a lack of butyrate leads to autophagy due to increased intermediary metabolism, not solely

due to its role as a histone deacetylase (HDAC) inhibitor as previously thought [77, 85, 99]. The

colonic epithelium is highly in�uenced by butyrate, as its absence triggers rapid and overactive

autophagy, and abundance triggers apoptosis of tumor cell lines [75]. Additionally, butyrate

inhibits tumor necrosis factor-α and interleukin 13 to a�ect the expression of proteins that

regulate structure of colonocyte tight junctions [100]. Poor tight junction structural integrity is

thought to lead to intestinal permeability, immune hyperactivation, chronic in�ammation, and

risk of metabolic diseases [101]. The mammalian gut exists in a state of relative hypoxia, and the

microbial production of butyrate decreases colonocyte oxygen consumption, stabilizing the

transcription factor hypoxia-induced factor-1 (HIF-1), which performs epithelial barrier-enhancing

functions, again protecting against colitis and chronic diseases [102]. Butyrate inhibits the

production of nuclear factor kappa-B (NF-kB), which is highly active in regulating systemic

production of in�ammatory cytokines that are active in the immune-brain axis and the

development of major depressive disorder [103, 104].

Other SCFA are not as well studied as acetate, propionate, and butyrate, but they are still

relevant to health maintenance. Valerate (also referred to as pentanoate), like butyrate,

suppresses autoimmune pathologies by inhibiting HDAC and therefore downregulating IL-17

production in CD4+T lymphocytes [105]. Valerate, unlike butyrate, does not alter the production

of Treg cells, demonstrating di�erent mechanisms of action in immunosuppression between them

[105]. In mouse studies, valerate has shown to mediate regulatory B cells protecting against

autoimmune disorders [105]. Valerate has also demonstrated ability to impair growth of

Clostridioides di�cile and E. coli in the gut [106, 107]. Increased valerate and caproate levels are

associated with increased richness and high abundances of Prevotella and Coprococcus [108].

1.3 Microbiome Analysis

Since a large fraction of bacteria present in the microbiota have yet to be reliably cultured

successfully, microbiomes are primarily analyzed via sequencing of the RNA present in the feces
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[109]. The 16S ribosomal RNA subunit appears to be conserved across most bacterial species, so

it has become useful tool to analyze a representation a microbiota sample's structure [110, 111].

However, the so 16S rRNA subunit is too long (1400 base pairs) to be sequenced in one read with

the current technology available in a cost-e�cient manner, but it can be broken into

hyperconserved and hypervariable regions that are short enough to be read by systems such as

Illumina's HiSeq and MiSeq (capable of less than 250 base pairs at a time) [112, 113]. The

conserved regions can be used as 'anchors' to denote the loci of 8 variable regions, allowing for

sequencing of variable regions to create identi�ers for di�erent taxa present in the sample[112].

Polymerase chain reaction primers can be designed based on the conserved regions to sequence

speci�c variable regions via next-generation sequencing [112]. However, based on di�erent

variability seen in certain variable regions of speci�c microbiomes, some variable regions are better

suited for analyzing certain microbiomes, such as gut or soil though using these variable regions

may promote speci�c biases, shifting the observed taxa to misrepresent what is actually present

[114, 113]. More variable regions can be sequenced to provide higher accuracy, but the cost, time,

and computational resources increase with the number of base pairs sequenced, so one must

acknowledge the trade o� made between cost and accuracy (including the inherent biases present

based on variable region sequenced) [115, 116]. Though researchers with more resources may use

more variable regions, sequencing the V4 variable region via 515f/806r primers per the Earth

Microbiome Project 16s Illumina Amplicon Protocol has emerged as a popular and standardized

approach across various projects including the American Gut Project, the Human Microbiome

Project, the Flemish Gut Flora Project, and the Sponge Microbiome Project

[17, 117, 118, 119, 120].

1.3.1 Using QIIME2 for Microbiome Analysis

Data generated from 16s sequencing is large and complex, and it must be analyzed using

computational methods. One program used to do so is Quantitative Insights Into Microbial

Ecology 2 (QIIME2), a decentralized and open-source microbiome analysis software package that

allows for transparency via data provenance tracking [121]. A typical work�ow in QIIME2
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involves demultiplexing sequences, removing likely misreads (or 'noisy' sequences), and

dereplicating sequence reads (while maintaining a count of sequences present) to decrease the

amount of data that must be to processed [121, 122]. The QIIME2 denoising plugins DADA2 and

Deblur check for chimeras, such as mitochondrial rRNA sequences that might pollute samples,

and they cluster similar sequences into operational taxonomic units (OTUs) with their frequencies

stored in feature tables [122, 123, 121]. Once OTUs are generated, they can be assigned taxonomy

by a machine learning classi�er (such as a Naïve Bayes classi�er) trained on 16s databases, such

as SILVA or GreenGenes [124]. Naïve Bayes classi�ers have shown reliable e�cacy for assigning

taxonomy, and they are based o� Bayes' Theorem for conditional probability stating the following:

P(A|B) =
P(B|A) × PA

PB

In this equation, PA represents the probability of a certain taxonomic classi�cation being true,

and PB represents the probability of the sequence data being true. A Naïve Bayes classi�er will

identify the most likely taxonomic classi�cation, given the sequence data and database provided.

Additionally, QIIME2 plugins create a pipeline for aligning sequences and for generating rooted

and unrooted phylogenetic trees that can be visualized or used for diversity analyses [125].

Diversity analyses in QIIME2 can be run individually through a core diversity pipeline, and

multiple measures of alpha and beta diversity can be tested, and emperor plots can be generated

to demonstrate di�erences in microbial communities [121]. QIIME2 also includes a variety of

other more specialized plugins such as supervised and unsupervised machine learning sample

classi�ers that have successfully predicted cancer and wine quality [126, 127].

1.3.2 Diversity Measures

Understanding the diversity measures clari�es the information provided to the researchers and

the limitations of each measurement. Alpha diversity, or the diversity within a sample, is

commonly measured using Shannon's diversity, observed OTUs, Faith's Phylogenetic diversity,

and Pielou's Evenness. Common measures of beta diversity, which is the diversity between
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samples, include Jaccard, Bray-Curtis, unweighted UniFrac, and weighted UniFrac. Diversity

measures can be classi�ed as phylogenetic/nonphylogenetic and qualitative/quantitative.

Qualitative measures of diversity simply focus on the number of di�erent taxa focused, whereas

quantitative measures place weight on the number of each taxa present.

1.3.3 Alpha Diversity

Observed OTUs is the easiest to calculate, as it, a nonphylogenetic, qualitative measure, is

simply a total of the number of OTUs present in a sample. Shannon's diversity index (H), which

is quantitative and nonphylogenetic, is calculated as:

H = −
S∑

i=1

piln(pi)

Here, pi is the proportion of population the population constituted by OTU i, and S is the total

number of OTUs present [128]. Faith's phylogenetic diversity is phylogenetic and qualitative, and

it is the sum of all the lengths of the branches of the phylogenetic tree for a community [129].

Pielou's evenness (J ′) is not a measure of richness but a measure of evenness [130]. It can be

calculated as:

J ′ =
H ′

H ′max

Here, H ′max is the max possible value of Shannon's diversity index for the given population (which

assumes only one organism per species S, so Pi =
1
S ) and can be calculated as:

H ′max = −
S∑

i=1

1

S
ln

(
1

S

)
(1)

H ′max = −S
(
1

S
ln

(
1

S

))
(2)

H ′max = −ln(S−1) (3)

H ′max = ln(S) (4)
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Thus:

J ′ =
H ′

ln(S)

1.3.4 Beta Diversity

Jaccard distance is a nonphylogenetic qualitative measure of community similarity, and it can

be written as:

JA,B = (A ∩B)/(A ∪B)

Here, A is one sampled community, and B is another sampled community, such that the Jaccard

distance is the number common OTUs divided by the total number of OTUs in observed in the

two samples [131]. Bray-Curtis distance is a nonphylogenetic quantitative measure of community

dissimilarity, where the dissimilarity D between samples A and B is:

DA,B =

∑S
i=1 |nAi − nBi|
nA+ + nB+

Here, nAi is the abundance of OTU i in sample A, and nA+ is the total of all species abundances

in sample A [132, 133]. As Bray-Curtis is the di�erence in species abundances divided by the total

abundances, it is limited by the assumption that both samples contain a similar abundance and

occupy a similar physical area or volume [132]. UniFrac distances are used to analyze phylogenetic

di�erences between two samples [134]. Unweighted UniFrac is qualitative and thus does not place

'weight' on the abundance of each taxa present, and it (u) for communities A and B can be

calculated as:

uA,B =

S∑
i=1

bi
bt
3 i = A4B, t = A ∪B

In this equation, bi is the length of branch i that is not shared in communities A and B, and bt is

the length of all branches in A and B individually [134]. To calculate a raw weighted UniFrac
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value (w) for communities A and B:

wA,B =

S∑
i

bi ×
∣∣∣∣Ai

At
− Bi

Bt

∣∣∣∣
In this equation, n represents the number of branches, and bi is the length of branch i. Ai

represents the abundance of OTUs descending from each branch i in community A, and it is

divided by At,the total abundance of sequences in community A in order to balance out unequal

sampling [135]. In cases with rapidly evolving taxa, where branch lengths might be highly

variable, branch length is replaced with the sum of the length of the branches from the root to

further normalize branch length values [135].

2 Methods

2.1 Patient Recruitment

Patients (n=20) were recruited through the process outlined in Webb 2019 [136]. Inclusion

criteria for patients included the presence of prede�ned gastrointestinal symptoms at least three

times per week, self-identi�cation as healthy, and age over 18 years. Exclusion criteria included

diagnosis of celiac disease, irritable bowel disorder, in�ammatory bowel disease (including Crohn's

disease and ulcerative colitis); current consumption of prebiotics, probiotics, enzymes,

non-steroidal anti-in�ammatory drugs (NSAIDs), �sh oil, and/or �ber supplementation unless

willing to cease supplementation 2 weeks prior to the study; prescribed use of any NSAID; and

pregnancy or intent to become pregnant within 60 days. Before commencing the study, all

participants were administered an informed consent document. A subset of the participants

(n=11) was used for microbiome analysis. This study was fully approved by the ETSU

Institutional Review Board on December 5, 2017; study number 1117.22f.
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2.2 Study Design

This study was split, partially blinded, and placebo-controlled. Participants were split into two

groups, A and B, by a random number generator. Both groups went through a two-week washout

period, and for the second four weeks (28 days) group A was assigned to take the Glutenshield

supplement 3x daily with meals while group B was assigned to take a placebo 3x daily with meals.

Participants were not informed whether they were given the placebo or control supplement.

Following the two week washout, on day 0 of the active portion of the study, participants arrived

with a stool sample collected 'at home', and two tubes of whole blood were drawn. Participants

completed a survey of gastrointestinal symptoms, and they were given a bottle of 84 Glutenshield

or Placebo pills, dependent upon their assigned group. On day 28 of the active study, participants

returned with a stool sample collected 'at home', gave another blood sample of equal volume, and

�lled out the gastrointestinal symptoms questionnaire.

2.3 Supplement Contents

The placebo supplement was a 1:1 mixture (by mass) of microcrystalline cellulose (Avicel) and

bentonite powder. Glutenshield is a synbiotic supplement developed by Shield Nutraceuticals. It

contains the probiotics Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus,

Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus salivarius, Lactobacillus coagulans,

Bi�dobacterium lactis, Streptococcus thermophilus, Bi�dobacterium bi�dum, Saccharomyces

bouldarii ; the prebiotics chitosan oligosaccharide, fructooligosaccharide, alfalfa, Emblica o�cinalis

extract, papaya juice powder, fulvic acid, and ionic minerals; and the enzymes dipeptidyl

peptidase IV, lactase, cellulase, hemicellulase, xylanase, phytase, serrapeptase, and plant-based

lipase, protease, and amylase. Both supplements were encapsulated by Vcaps Enteric capsules.

2.4 GI Symptom Questionnaire

The GI symptom questionnaire completed on days 0 and 29 included a Likert numerical scale

that ranged from 1 to 7, with 1 being no symptoms and 7 being constant/severe symptoms, and
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participants were instructed to �ll it out based on their symptoms over the past week. The

symptoms indicated on the questionnaire included abdominal pain/ discomfort, heartburn, acid

regurgitation, bloating, nausea and vomiting, abdominal distension, eructation (burping),

increased gas, decreased passage of stools, increased passage of stools (rapid transit), loose stools,

hard stools, urgent need for defecation, and feeling of incomplete evacuation.

2.5 Blood Sample Collection and Analysis

On day 0 and day 29, 10mL blood samples were collected in two 8.5 mL Becton Dickinson

vacutainers. Following collection, the samples were put on ice and brought to ETSU's health

science laboratory, where they were allowed to clot at room temperature for 30 minutes and then

centrifuged at 3000 x g for 10 minutes. After centrifugation, 1 mL of serum supernatant was

transferred to a 1.5 mL polypropylene Fisherbrand micro-centrifuge tube via Eppendorf pipette,

and 2 mL of serum supernatant was transferred to a Fisher Scienti�c amber vial via Eppendorf

pipette, and the transferred serum was stored at -80◦C until needed for analysis. Analysis of serum

was performed using commercially available ELISA plates from Aviscera Bioscience. ELISAs were

performed to test for IgG1, IgG2, IgG3, IgG4, IgA, IgM, IL-2, IL-6, IL-8, and TNF-α.

2.6 Fecal Sample Collection and Analysis

Upon completion of the informed consent, participants were given multiple sets of supplies and

instructed on how to collect the stool sample using saran wrap placed under the toilet seat.

Samples were to be collected within 24 hours of sample submission (days 0 and 24) and stored in

a freezer in a self-sealing plastic bag. Stool samples were stored on ice in biohazard containers and

transported to ETSU's Nutrition and Dietetics Research Laboratory on the Valleybrook campus.

1 gram of fresh sample was separated and stored at -80◦C for microbiome analysis, and the

remainder was freeze-dried and ground to be used for nutrient and SCFA analysis. Freeze-drying

was performed at 0.077mBar and -50◦C for 48-72 hours until samples were thoroughly dry.
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2.6.1 Kjeldahl Digestion

Total nitrogen was determined for freeze-dried and ground samples using kjeldahl digestion.

For the procedure, 100 mg of the sample was weighed (weight was recorded) into a 100 mL

kjeldahl �ask along with 1.9 grams of potassium sulfate (K2SO4), 80 mg of mercuric oxide (HgO),

2 mL of concentrated (10N) sulfuric acid, and 2 porous boiling chips. The sample was placed on

LABCONCO heat mantle. The air was turned on and the mantle was turned to heat setting 3.

The sample re�uxed for 8-12 hours, the heat mantle was then turned o�, and the sample was

cooled to room temperature. 15 mL of deionized distilled water (DDW) was added to the kjeldahl

�ask. The sample was brought to a boil and was �ltered while hot into a 150 mL Erlenmeyer �ask

using P5 grade Fisher brand qualitative grade plain �lter paper circles. Following digestion of the

samples, distillation was performed to determine total nitrogen per sample. The LABCONCO

rapid distillation unit was turned on, set to heat setting of 6-7, and was allowed to heat up. 5mL

of 4% Boric acid and a few drops of kjeldahl indicator were added to a new 150 mL Erlenmeyer

�ask. The �ask was placed at the bottom of the distillation unit. The distillate (�ltered sample)

was added to the top of the unit and the Erlenmeyer �ask was rinsed with DDW. The material

was emptied into the reaction tube. 10 mL of sodium thiosulfate (NaOH/ Na2O3S2) was added to

the top of the apparatus and was slowly emptied into the reaction tube. The sample was allowed

to distill for 15-20 minutes until the total volume of the boric acid and ammonium solution

reached 25-30 mL. During the distillation process, ammonium (NH+
4 ) was converted to ammonia

gas (NH+
3 ). NH

+
3 condensed into the boric acid solution to form ammonium borate. The

ammonium borate was then titrated with 0.1 N HCl until a color change was observed (blue →

red; base → acid). The mL of HCl needed to titrate the solution back to an acid was recorded.

Nitrogen per kilogram of sample and percent total protein were then calculated. Samples were run

in duplicate per participant fecal sample provided.

2.6.2 Fiber Analysis

Total dietary �ber (TDF), soluble dietary �ber (SDF), and insoluble dietary �ber (IDF) was

assessed on freeze-dried, ground stool samples using the automated ANKOM Dietary Fiber
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Analyzer method AOAC 991.43. Reagants included 78% Ethanol by volume, α-amylase

(5mL/25mL DDW), protease (5mL/25mL DDW), amyloglucosidase (5mL/25mL DDW),

MES-TRIS bu�er, and 0.561N HCl. The MES-TRIS solution was prepared by dissolving 9.76 g of

2-(N-Morpholino)ethanosulfonic acid (MES) and 6.1 g of Tris(hydroxymethyl)aminomethane

(TRIS) in 850 mL of DDW and adjusting the pH to 8.2 using 6N NaOH and dilute to 1 L with

DDW.

ANKOM IDF and SDF �lter bags were labeled with a permanent marker. Each bag was

weighed using the Bag Weigh Holder and an AL54 Mettler Toledo analytical balance. The tare

bag weight was recorded onto a Dietary Fiber Data Spreadsheet (DFDS). One gram of

Diatomaceous Earth was weighed into two separate dishes. The weight of each was recorded onto

the DFDS. 0.5±0.05 g of the freeze dried, ground stool sample was weighed in duplicate into two

dishes. The weight of each was recorded onto the DFDS. All �uid levels were checked on the DF

analyzer. The instrument and Nitrogen gas were turned on. SDF bags and Clamp Bar D were

installed on the instrument. Clamp Bar D was closed and the pre-weighed DE was added to each

SDF bag and was rinsed with 2-3mL of DI water. IDF bags and Clamp Bars B and C were

installed onto the instrument. Clamp Bar B was closed, pinching o� the bags, and the pre-weighed

samples were transferred to the IDF bags. SDF bags were hooked to Clamp Bar C. Clamp Bar A

was installed. The instrument was started, beginning the automated process of digesting the

sample. After the amylase and protease phases, the pH of the samples was checked and adjusted

to 4.0-4.7 as needed with 0.561N HCl. After the automated process was complete, IDF and SDF

bags were rinsed with Acetone using the ANKOM Acetone Rinse Stand. After drying, the bags

were sealed at a heat setting of 3 using the ANKOM Heat Sealer. Samples were placed on a

drying rack and were placed in a Fisher Scienti�c Isotemp oven at 100◦C for 90 minutes. Samples

were removed from the oven and immediately placed in an ANKOM MoistureStop weigh pouch

(desiccant pouch) to cool. Bags were removed one at a time from the desiccant pouch and were

weighed on an analytical scale using the Bag Weigh Holder. Bag weights were recorded on the

DFDS. A protein correction was performed using kjeldahl digestion and distillation, as described

above. An ash correction was also performed by burning the samples as 700◦C for 5 hours and
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recording the weight after ashing. All ashing and protein values were recorded on the DFDS.

Percent IDF, SDF and TDF were then calculated using the following equations:

%IDF or %SDF =
Total residue− (protein residue + bag)− (ash residue + bag)

original sample weight× 100%

TDF = %IDF+%SDF

2.6.3 SCFA Extraction and Analysis

SCFA extractions were performed using a procedure developed by Schwiertz et al. that was

modi�ed [137]. One mL of the SCFA extraction solution, containing Oxalic acid (0.1 mol/L),

Sodium Azide (40 mmol/L), and Caproic acid (0.1 mmol/L )(internal standard) was added to 80

mg of a freeze-dried stool sample in a 16 x 100 mm disposable culture tube. The tube was capped

and vortexed for 30 seconds. The tube was placed on a horizontal shaker for 1 hour. The tube

was centrifuged at 4000 rpm for 20 minutes. After centrifuging, the supernatant was removed and

placed in a 1.5mL polypropylene Fisherbrand micro-centrifuge tube. The solution was

re-centrifuged at 12,000 rpm for 15 minutes. Again, the supernatant was removed and placed in a

new 1.5 mL micro-centrifuge tube. The solution was re-centrifuged at 12,000 rpm for 15 minutes.

Finally, the supernatant was removed, placed in a 2 mL amber vial, and was stored at -80◦C until

being analyzed using a Shimadzu GC2010 gas chromatograph with SigmaAldrich ZB-Wax Plus

capillary column. Samples were run using a method adapted from Schaefer et al [138]. The

method included injecting 1 µL of solution with an SPL1 temperature of 250◦C. The initial

column temperature was 50◦C, held for 2 minutes, which rose at a rate of 15 degrees/minute until

reaching 140◦C with a hold of 5 minutes, followed by a rise at rate of 10 degrees/minute until

reaching 160◦C with a hold of 3 minutes and a rise of 10 degrees/minute until reaching 175◦C

with a hold of 3 minutes. The �ame ionization detector temperature was 180◦C, and the end time

of the run was 24 minutes. Samples were run in duplicate, and values for each participant were

averaged.
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2.7 Microbiome Analysis

2.7.1 16s RNA Isolation and Sequencing

Microbiome analysis was performed on 11 participants in duplicate before and after

intervention for a total of 44 samples sequenced and analyzed. Powersoil DNA isolation kit was

used to isolate DNA from the portion of the fecal samples stored at -80◦C. 250 mg of the sample

was added to the Qiagen-supplied PowerBead tube and vortexed. 60 µL of solution C1 (Qiagen

lysing agent) was added, the tube was brie�y vortexed manually, and then the tubes were secured

to an adapter to be vortexed at maximum speed for 10 minutes. The tubes were then centrifuged

at 1000 x g for 30 seconds, and the supernatant was transferred to a 2 mL collection tube. 250 µL

of solution C2 (Qiagen precipitating agent) was added to the collection tubes, which were then

vortexed for 5 seconds and then incubated on ice for 5 minutes. Tubes were then centrifuged for

60 seconds at 10,000 x g, and 750 µL of supernatant was transferred to clean 2 mL collection

tubes. 200 µL of solution C3 (Qiagen precipitating agent) was added, and the tubes were brie�y

vortexed manually and incubated on ice for 5 minutes again. Following incubation, the tubes were

centrifuged at 10,000 x g for 60 seconds, 750 mL of supernatant was added to 2 mL collection

tubes, 1200 µL solution C4 was added, and tubes were vortexed for 5 seconds. 675 µL of this

solution was loaded into a Qiagen kit spin column and centrifuged at 10,000 x g for one minute

three times with �ow through being discarded between centrifugations. 500 µL of solution C5 was

added to the spin column, which was centrifuged at 10,000 x g for 30 seconds and one minute with

�ow through discarded between centrifugations. The spin columns were placed into clean 2 mL

collection tubes, 100 µL nuclease-free water was added to the center of the spin column's white

�lter membranes, and the samples were allowed to incubate at room temp for 5 minutes. Tubes

were centrifuged for 30 seconds at 10,000 x g to elute the DNA, spin columns were discarded, and

samples were checked for DNA quanti�cation with a Qubit �uorometric quanti�cation meter on

the broad range detection setting. DNA was fragmented and tagged with a 615f/806r adapted

sequence before polymerase chain reaction ampli�cation. Samples were sequenced using Nextera

MiSeq, and sequences were obtained from Illumina and Swift Biosciences.
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2.7.2 Microbiome Analysis

Microbiome bioinformatics analysis was performed with QIIME2 2020.2 [121]. Sequences were

imported and demultiplexed utilizing the Import as Casava option of q2-demux. The resulting

sequences were denoised, chimera-sorted via consensus chimera sorting, and clutered into OTUs at

97% similarity using q2-DADA2 [139]. Sequences were aligned, and a phylogeny was created using

q2-phylogeny [140, 141, 142]. Alpha and beta diversity analyses were performed using the core

diversity pipeline of q2-diversity after samples were rare�ed to 23,600 sequences per sample

[143, 144, 145, 146, 147, 148]. Alpha diversity statistical signi�cance was tested via Spearman's

correlation for numerical metadata and Kruskal-Wallis ANOVA for categorical data

[129, 149, 150, 151, 152, 130, 128]. A mantel test was used to analyze beta diversity di�erences

between samples' distance matrices, and statistical signi�cance was tested via Spearman's

correlation for numerical metadata and PERMANOVA for categorical data

[153, 154, 155, 156, 134, 135, 131, 133]. Visualizations and Principle Coordinate Analysis plots

were generated via the q2-diversity plugin [157, 158, 159, 160]. Taxonomy was assigned via the

q2-feature-classi�er plugin using a naïve Bayes classi�er trained on the Silva 132 99% OTUs

515F/806R supplied by QIIME2 [161, 162, 163, 164, 165]. q2-composition plugin was used to

collapse the feature table for an analysis of community of microbiomes (ANCOM) test to detect

di�erential abundances in di�erent BMI categories and the treatment groups before and after

supplementation [166, 167].

3 Results

3.1 Alpha Diversity

3.1.1 BMI

Alpha diversity metrics di�erences were not statistically signi�cant (p > 0.05) between BMI

classi�cation groups normal vs overweight, normal vs obese, normal vs overweight + obese (Figure

1).
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(a) (b)

(c) (d)

Figure 1: BMI Classi�cation (x-axes) plotted against y-axes Shannon's diversity (a), Observed
OTUs (b), Faith's phylogenetic diversity (c), and Pielou's evenness (d). Full-size �gures can be
found in Figures 21-24 of the appendix.

3.1.2 Intervention

Alpha diversity did not signi�cantly change over the course of the study for both the placebo

and experimental groups. Interestingly, there were signi�cant di�erences in alpha diversity metrics

between the placebo and experimental groups, independent of the e�ects of Glutenshield

supplementation (Faith p=0.000032, Observed OTUs p=0.0000018, Shannon p=0.000094).

Pielou's Evenness was not signi�cantly di�erent between any groups (p > 0.05) (Figure 2-5).
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Figure 2: Observed OTUs (y-axis) for experimental and control groups before and after
Glutenshield supplementation. Dots represent statistical outliers.

Figure 3: Shannon's diversity index (y-axis) for experimental and control groups before and after
Glutenshield supplementation. Dots represent statistical outliers.
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Figure 4: Faith's phylogenetic diversity (y-axis) for experimental and control groups before after
Glutenshield supplementation.

Figure 5: Pielou's Evenness (y-axis) for experimental and control groups before and after
Glutenshield supplementation. Dots represent statistical outliers.
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3.1.3 Immune Markers

Richness and evenness metrics were negatively correlated with serum IgG4 levels (Shannon

rs=-0.46, p=0.0022; OTUs rs=-0.38 p=0.014; Faith rs=-0.32, p=0.042; Pielou rs=-0.41,

p=0.0067) (Figure 6). Shannon's diversity (rs=0.37, p=0.0477) and Pielou's evenness correlated

with serum IgM (rs=0.34, p=0.028) (Figure 7). IL-2 correlated with the number of observed

OTUs per sample (rs=0.314, p=0.0426). IgG1, IgG2, IgG3, IgA, IL-6, IL-8, and TNF-α did not

correlate with any alpha diversity metrics (p>0.05) (Figures 6, 7).

(a) (b)

(c) (d)

Figure 6: IgG4 (x-axes) plotted against y-axes of Shannon's diversity index (a), Observed OTUs
(b), Faith's phylogenetic diversity (c), and Pielou's evenness (d). One dot represents one
sequencing sample, with two sequencing samples per fecal sample.
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(a) (b)

Figure 7: IgM (x-axes) plotted against y-axes Shannon's diversity index (a) and Pielou's evenness
(b). One dot represents one sequencing sample, with two sequencing samples per fecal sample.

3.1.4 Fecal Fiber and Protein

Faith's phylogenetic diversity positively correlated with total dietary �ber present in the fecal

matter (rs=0.304, p=0.05). Fecal crude protein correlated with Pielou's evenness (rs=0.321,

p=0.043) (Figure 8).

(a) (b)

Figure 8: Total dietary �ber present in feces (x-axis) plotted against y-axis Faith's phylogenetic
diversity (a); crude protein present in feces (x-axis) plotted against y-axis Pielou's Evenness (b).
One dot represents one sequencing sample, with two sequencing samples per fecal sample.
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3.1.5 Fecal SCFA

The percent of the area under the curve (%AUC) of acetate correlated with Pielou's evenness

(rs=0.3530, p=0.0218). Propionate %AUC was strongly negatively correlated with richness and

evenness (Shannon rs=-0.6137, p=0.0000; OTUs rs=-0.6298; Faith rs=-0.5704, p=0.0001; Pielou

rs=-0.4038, p=0.008) (Figure 9). Isobutyrate %AUC correlated with qualitative measures of

richness (OTUs rs=0.3660, p=0.0171; Faith rs=0.3449, p=0.0253) (Figure 10). Valerate %AUC

correlated with observed OTUs (rs=0.3475, p=0.021), and isovalerate %AUC correlated with

Faith's phylogenetic diversity (rs=0.3066, p=0.0483) (Figure 10). Caproate %AUC strongly

correlated with richness but not evenness (Shannon's diversity rs=0.5117, p=0.0005; OTUs

rs=0.6679, p<0.0001; Faith rs=0.5142, p=0.0005; Pielou p>0.05) (Figure 11).

(a) (b)

(c) (d)

Figure 9: Propionate %AUC (x-axes) vs y-axes Shannon's diversity (a), Observed OTUs (b),
Faith's phylogenetic diversity (c), and Pielou's evenness (d). One dot represents one sequencing
sample, with two sequencing samples per fecal sample.
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(a) (b)

(c) (d)

Figure 10: Valerate %AUC (x-axis) plotted against y-axis observed OTUs (a); isobutyrate %AUC
(x-axis) plotted against y-axes observed OTUs (b) and Faith's phylogenetic diversity (c);
isovalerate %AUC (x-axis) plotted against y-axis Faith's phylogenetic diversity (d). One dot
represents one sequencing sample, with two sequencing samples per fecal sample.

Concentrations of fecal SCFA did not correlate as strongly as %AUC, as evidenced by fewer

signi�cant correlations and lower Spearman's rho values. Propionate and isobutyrate

concentrations negatively correlated with evenness (rs=-0.3058, p=0.0489; rs=-0.3178, p=0.0403).

Caproate concentrations, like AUC, did correlate with richness but not with evenness (Shannon

rs=0.4684, p=0.0018; OTUs rs=0.6355, p<0.0001; Faith rs=0.515, p=0.0005).
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(a) (b)

(c) (d)

Figure 11: Caproate %AUC (x-axes) plotted against y-axes Shannon's diversity (a), Observed
OTUs (b), Faith's phylogenetic diversity (c); Acetate %AUC (x-axis) plotted against y axis
Pielou's Evenness (d). One dot represents one sequencing sample, with two sequencing samples
per fecal sample.

(a) (b)

Figure 12: Propionate concentration (a) plotted against y-axis Pielou's Evenness (a); isobutyrate
concentration (x-axis) plotted against Pielou's Evenness (b). One dot represents one sequencing
sample, with two sequencing samples per fecal sample.

3.1.6 Gastrointestinal Symptoms

Richness and evenness were negatively correlated with heartburn (Shannon rs=-0.504,

p=0.0007; OTUs rs=-0.4494, p=0.0028; Faith rs=-0.4016; Pielou rs=-0.4216, p=0.0054). Urgent

35



need for defecation negatively correlated with Shannon's diversity index (rs=-0.3672, p=0.0167)

and Faith's phylogenetic diversity (rs=-0.3317, p=0.0319). Feelings of incomplete evacuation

positively correlated with all metrics of richness (Shannon rs=0.5668, p=0.0001; OTUs rs=0.5298,

p=0.0003; Faith rs=0.6026, p<0.0001). Eructation positively correlated with observed OTUs

(rs=0.3103, p=0.0455). No alpha diversity metrics correlated with acid regurgitation, bloating,

nausea and vomiting, abdominal distension, increased gas, passage of stools, loose/hard stools, or

the sum of all GI symptoms (p>0.05).

(a) (b)

(c) (d)

Figure 13: Heartburn (x-axes) plotted against y-axes Shannon's diversity (a), Observed OTUs (b),
Faith's phylogenetic diversity (c); Acetate %AUC (x-axis) plotted against y-axis Pielou's Evenness
(d). One dot represents one sequencing sample, with two sequencing samples per fecal sample.

36



(a) (b)

Figure 14: Urgent need for defecation (x-axes) plotted against y-axes Shannon's diversity index
(a) and Faith's phylogenetic diversity (b). One dot represents one sequencing sample, with two
sequencing samples per fecal sample.

(a) (b)

(c) (d)

Figure 15: Feelings of incomplete evacuation (x-axes) plotted against y-axes Shannon's diversity
(a), Observed OTUs (b), and Faith's phylogenetic diversity (c); eructation (x-axis) plotted against
y-axis observed OTUs (d). One dot represents one sequencing sample, with two sequencing
samples per fecal sample.
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(a)
(b)

Figure 16: Principle Coordinate Analysis (PCoA) plots based on Jaccard (a) and Bray-Curtis (b)
generated distance matrices. Black points represent obese participants, grey represent overweight,
and white represent normal BMI. Axes were chosen to represent as much variation as possible,
and distances between points represent Euclidean distance. One point represents one sequencing
sample, with two sequencing samples per fecal sample.

3.2 Beta Diversity

3.2.1 BMI

Signi�cant di�erences were seen between BMI Classi�cation groups for Jaccard distance,

Bray-Curtis distance, and unweighted UniFrac but not for weighted Unifrac. Signi�cant

di�erences were seen from normal to overweight BMI groups (Jaccard p=0.001; Bray-Curtis

p=0.001; unweighted UniFrac p=0.013), normal to obese (Jaccard p=0.001; Bray-Curtis p=0.001;

unweighted UniFrac p=0.005), overweight to obese (Jaccard p=0.001; Bray-Curtis p=0.002;

unweighted UniFrac p=0.016), and normal to overweight and obese combined (Jaccard p=0.001;

Bray-Curtis p=0.001; unweighted UniFrac p=0.011).

3.2.2 Intervention

No metrics of beta diversity showed signi�cant changes with Glutenshield or placebo

supplementation (p>0.05).
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3.2.3 Immune Markers

IgG1 correlated with Jaccard distance (rs=0.17, p=0.012), and IgG3 correlated with

unweighted UniFrac distance (rs=0.156, p=0.047). IgG4 correlated with Jaccard distance

(rs=0.1878, p=0.013) and unweighted UniFrac distance (rs=0.1368, p=0.032). IgA correlated

with weighted UniFrac distance (rs=0.2637, p=0.001), as did IL-8 (rs=0.3064, p=0.001). IL-6

correlated with Bray-Curtis distance (rs=0.1764, p=0.002).

3.2.4 Fecal Fiber and Protein

Insoluble dietary �ber content in the feces correlated with unweighted UniFrac distance

(rs=0.1482, p=0.04). Soluble and total dietary �ber content in feces correlated with weighted

UniFrac distance (rs=0.3526, p=0.001; rs=0.1463, p=0.015). Protein did not correlate with any

beta diversity metrics (p>0.05)

3.2.5 Fecal SCFA

Acetate %AUC correlated with qualitative beta diversity metrics Bray-Curtis (rs=0.1389,

p=0.025) and weighted UniFrac (rs=0.2949, p=0.001). Propionate %AUC correlated with all

metrics of beta diversity (Jaccard rs=0.141, p=0.013; Bray-Curtis rs=0.4910, p=0.001;

unweighted UniFrac rs=0.4016, p=0.001; weighted UniFrac rs=0.2104, p=0.001). Butyrate

%AUC correlated with multiple measures of beta diversity (Jaccard rs=0.1656, p=0.003;

Bray-Curtis rs=0.1413, p=0.007; weighted UniFrac rs=0.1521, p=0.007). Weighted UniFrac

correlated with caproate %AUC (rs=0.1241, p=0.044).

Propionate concentration correlated with Jaccard distance (rs=0.1411, p=0.013), Bray-Curtis

(rs=0.1892, p=0.004), and weighted UniFrac (rs=0.2649, p=0.002). Weighted UniFrac also

correlated with butyrate (rs=0.1707, p=0.003), isobutyrate (rs=0.3475, p=0.001), valerate

(rs=0.4015, p=0.001), and isovalerate (rs=0.3338, p=0.001) concentrations.
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Figure 17: Rotated views of the same weighted UniFrac distance matrix PCoA plot. Darker
points represent higher %AUC propionate. Axes were chosen to represent as much variation as
possible, and distances between points represent Euclidean distance. One point represents one
sequencing sample, with two sequencing samples per fecal sample.

3.2.6 Gastrointestinal Symptoms

Multiple gastrointestinal symptoms correlated with beta diversity metrics. Quantitative

metrics Bray-Curtis and weighted UniFrac distance correlated with Heartburn (rs=0.3192,

p=0.002; rs=0.1272, p=0.044). Phylogenetic metrics correlated with acid regurgitation

(unweighted UniFrac rs=0.2364, p=0.01; weighted UniFrac rs=0.1799, p=0.02). Jaccard,

Bray-Curtis, and unweighted UniFrac correlated with bloating (rs=0.3098, p=0.001; rs=0.2328,

p=0.005; rs=0.2763, p=0.001). Bray-Curtis correlated with nausea and vomiting (rs=0.2494,

p=0.012). All metrics correlated with abdominal distension(Jaccard rs=0.2030, p=0.006;

Bray-Curtis rs=0.2045, p=0.007; unweighted UniFrac rs=0.2056, p=0.003; weighted UniFrac

rs=0.1250, p=0.016) Quantitative metrics correlated with eructation (Bray-Curtis rs=0.1615,

p=0.026; weighted UniFrac rs=0.2750, p=0.002). All metrics correlated with increased gas

(Jaccard rs=0.3130, p=0.001; Bray-Curtis rs=0.2512, p=0.003; unweighted UniFrac rs=0.2884,

p=0.001; weighted UniFrac rs=0.1563, p=0.015)

3.3 Taxonomy

The following taxonomy bar plots were generated using QIIME2:
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Figure 18: Taxonomic classi�cation at the phylum level

Figure 19: Taxonomic classi�cation at the class level
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Figure 20: Taxonomic classi�cation at the order level

3.4 Di�erential Abundances

Feaecalibacterium prausnitzii was found to be di�erentially abundant between BMI

classi�cation groups, with the highest abundance in the normal group and lowest abundance in

the obese group (F=19.23, W=376). No other di�erentially abundant taxa showed trended from

normal to obese BMI. At the species level, two members of the genus Ruminoclostridium were

found to be di�erentially abundant, increasing more in the Glutenshield group than the placebo

group (F=19.02, W=321; F=17.91, W=275). Members of the genus Bi�dobacterium were also

found to be di�erentially abundant, increasing more in the placebo supplementation group

(F=12.21, W=176).
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4 Discussion

4.1 BMI

The lack of di�erence in alpha diversity between BMI groups contrasts portions of the

literature showing a negative correlation between alpha diversity and BMI [168, 169, 170].

However, studies demonstrating that link have had a much larger sample size than this one, or

they have been performed with more controlling factors, such as using obese and lean twins [169].

This should serve as a reminder that though obesity is associated with chronic in�ammation,

metabolic disorders, and a microbiota trending toward dysbiosis, it is most directly a result of

caloric imbalance [171]. However, the di�erences in beta diversity show evidence that di�erent

BMI groups have separate microbiome pro�les, which does coincide with much of the literature

[168, 169, 170]. The increased abundance of Faecalibacterium prausnitzii as BMI trended toward

the normal group supports an association between F prausnitzii and a healthy weigh, but other

studies have not shown consistent results. Results from other studies have demonstrated increased

F. prausnitzii in obese children, no relationship between F. prausnitzii and obesity in adults, and

decreased F. prausnitzii in obese individuals, so there is not a common consensus of the

connections between F. prausnitzii and obesity [172, 173, 174] . The lack of F. prausnitzii in the

microbiota of overweight and obese participants could suggest a potential mechanism for increased

in�ammation in obese individuals, as F. prausnitzii is a butyrate producer with anti-in�ammatory

properties [175, 176].

4.2 Intervention

Synbiotic supplementation did not yield signi�cant changes to alpha or beta diversity, which

could - at surface level - potentially cause one to believe it was an ine�ective. However, other

probiotic supplementation trials have shown supplementation to modify certain taxa without

modifying the large-scale diversity of the microbiota [177]. The results of Webb et al 2019

demonstrated e�ectiveness of Glutenshield in this study for reducing IgG2 and bloating,

suggesting that these results can be achieved without signi�cantly modifying the microbiota
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diversity, potentially by mechanisms such as antigen exposure without colonization. There is the

possibility that due to manufacturing or structural issues with the probiotic, strains may not have

been alive by the time the reached the colon, and these issues should be brought into question. It

is known that even attenuated microbes of certain taxa can trigger physiological responses,

especially members of the Lactobacillus and Bi�dobacterium genera, which were included in

Glutenshield [178, 179, 180]. Per the ANCOM results, Glutenshield supplementation did increase

the abundance of Ruminoclostridium in the experimental group but not the control group. Higher

abundances of Ruminoclostridium are found in patients without in�ammatory bowel disease

(IBD) compared to patients with IBD. Ruminoclostridium is in the family Ruminocaccae, which is

a family containing obligate anaerobes including Faecalibacterium, which tends to be positively

associated with health status [184].

One important factor that should be considered in future trials is the �ller of the placebo

supplement, as this likely had an e�ect on the microbiota of the control group, based on the

di�erential abundance results of the ANCOM. It was found that Bi�dobacterium were greatly

increased upon supplementation of micro-crystalline cellulose, a dietary �ber, in the placebo

group but not the Glutenshield group. Cellulose and cellodextrins (products of incomplete

degradation of cellulose by other microbes) can be broken down by Bi�dobacterium, and high

cellulose diets have been shown to increase the abundance of Bi�dobacterium in the gut

microbiota [181, 182, 183]. It is possible that the e�ects of the placebo supplement on

Bi�dobacterium could have attentuated signi�cant di�erences in changes in immune markers and

symptoms between the control and experimental groups in Webb et al 2019 [136].

4.3 Immune Markers

The negative correlation between IgG4 and richness that was consistent across all metrics of

alpha diversity suggests a strong relationship between the diversity of taxa present and IgG4

levels. IgG4 plays a role in the etiology of autoimmune diseases, and it has been found to be

elevated in subsets of IBD patients [185]. Additionally, elevated IgG4 is associated with

microbiota trending toward dysbiosis [185]. The results of this study also showed that IgG4 levels

44



correlated with qualitative metrics of beta diversity, suggesting that IgG4 elevation could be in

response to the presence of di�erent microbial pro�les more dependent on presence and not as

dependent on abundance of the di�erentially abundant taxa. Mechanistic links between

microbiome diversity and IL-2 and IgM are yet to be elucidated, and associations with one metric

of richness may not imply any causal relationship. The correlation of IgG1, IgG3, IgA, IL-6, and

IL-8 suggest that participants with increased immune activation have di�erent microbial

communities compared to those with lower immune cytokine levels.

4.4 Fecal Fiber and Protein

Though the American Gut project found an association between the diversity of dietary �ber

intake and alpha diversity, this study found a relationship between the total �ber present in the

feces and Faith's phylogenetic diversity [17]. This relationship could exist due to increased total

�ber intake potentially increasing the amount passed in the stool, and consumed �ber diversity

may increase with increased total �ber consumed. The beta diversity correlation with soluble,

insoluble, and total dietary �ber shows evidence for di�erent communities in the microbiota of

those with di�ering levels of �ber in the feces. This could be a result of multiple factors, such as

recently altered �ber intake, high �ber intake, the lack of colonization by certain �ber-degrading

species, or even faster transit time. It is known that dietary �ber plays an important role in

shaping the gut microbiota, but this study did not control the many dimensions by which �ber

intake can change [17].

Unfortunately, the relationship between fecal crude protein and evenness is not currently

understood. Though certain taxa can utilize amino acids that escape digestion in the small

intestine, microbial dynamics are complex, and more research is necessary to understand how the

amount of fecal protein that passes through the stool is associated with evenness of the

microbiome.
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4.5 Fecal SCFA

The portion of the total SCFA that were propionate was strongly shown to decrease as

richness decreased, suggesting that increased richness is associated with taxa that produce more

complex SCFA. Similarly, as richness increased, the production of more complex SCFA, such as

valerate, isovalerate, and caproate also increased, with caproate showing the strongest positive

correlation with alpha diversity. Caproate concentration also correlated with alpha diversity,

suggesting a potential application of caproate levels as a biomarker for alpha diversity in cases

where it may be more applicable to measure SCFA ratios or concentrations than to sequence the

microbiome. These results also supported another study showing that caproate and valerate levels

are associated with increased richness [108]. Beta diversity correlations suggest that unique

community structures are associated with varying amounts of each SCFA, which is supported by

the fact that speci�c bacterial taxa harbor unique enzymes that degrade certain �bers to produce

speci�c metabolites. Di�erent bacterial communities will contain varying abundances of taxa that

are capable of producing certain SCFA.

4.6 GI Symptoms

Many metrics of alpha and beta diversity were associated with gastrointestinal symptoms,

reinforcing the role of microbial communities in�ammatory bowel disease etiology. The inverse

relationship between heartburn and richness supports a microbiota trending toward dysbiosis

associating with the heartburn symptom presentation, which coincides with the high cooccurrence

of IBD, functional dyspepsia, and gastroesophageal re�ux disease [186].. It has been found that

esophageal microbiota changes are associated with heartburn and esophageal re�ux [187, 188].

However, since the gut microbiota and esophagus are separated by roughly 20 meters of small

intestine with frequent peristaltic contractions and a stomach with pH around 3.5, it is unlikely

that bacteria migrate from the gut microbiota to modulate the esophageal microbiome [189, 190].

There are multiple potential links between the gut microbiota and heartburn. One potential

mechanistic link between the gut microbiota and heartburn could be the gut-vagus nerve axis,
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which is a bidirectional (80% a�erent) pathway that can be activated by speci�c microbial

metabolites or by gut endocrine cells [191]. The vagal pathway is one of the most prevalent

gut-brain axis pathways, and it also innervates the stomach and upper GI tract [192, 193].

Increased vagal activity is associated with esophageal acid re�ux, which can trigger

esophageal-cardiac re�ex arcs that contribute to both cardiac and non-cardiac related angina-like

chest pain [194, 193]. Another mechanism by which this could take place is by proton pump

inhibitors (PPI), a common type of medication to reduce heartburn symptoms, altering the gut

microbiota [195]. This study did not document the use of PPI by participants, which could have

caused the observed microbiome changes associated in participants with heartburn. The

correlation of beta diversity metrics with acid regurgitation and heartburn also suggest the

association of di�ering microbial communities with upper GI symptoms, which could be the result

of the aforementioned mechanisms.

Bloating and abdominal distension are symptoms of increased gas production in the small and

large intestines, predominantly CO2, H2, and CH4 [196]. The major source of intestinal gas is

bacterial fermentation of undigested particles such as �bers and protein, and certain taxa are

more likely to produce these gases, whereas other taxa are more likely to consume them [196].

Thus, it follows that this study found di�erences in the communities present with bloating,

abdominal distension, and increased gas. Future testing will utilize numerical metadata

di�erential abundance analyses to further elucidate what bacterial communities are more

associated with gas and bloating.

The negative correlation between richness and urgent need to defecate and the positive

correlation between richness and feelings of incomplete evacuation coincide with the literature

characterizing the microbiota of constipated IBS patients (IBS-C). Though IBS patients generally

experience a dysbiosis that is associated with low richness, IBS-C patients tend to have higher

microbial richness and abundances [197, 198]. This is supported by studies demonstrating

decreased richness in individuals with fast transit time and increased richness in individuals with

slow transit time [199, 200].
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4.7 Limitations

This study was limited by a small sample size. Though Webb 2019 had 20 participants, only

the microbiomes of 11 participants (before and after) were able to be sequenced due to funding

[136]. Also, the nature of most of the variables measured was observational and not causal, other

than the e�ects of the placebo-controlled intervention. Limitations of the 16s microbiome analysis

should also be considered. Despite the evolution of high-throughput sequencing and analysis

techniques over the past 10 years, these methods do not fully reconstruct the microbiota of an

individual - they only provide a representation [201]. Though denoising and chimera sorting were

performed, these processes may not be perfect and may allow misreads and biases in the OTUs

identi�ed or excluded [202].

4.8 Future Directions

Future directions for this research include performing Songbird analysis to identify

di�erentially abundant taxa for numerical metadata that correlated with beta-diversity in an e�ort

to identify more speci�c di�erences in the communities present. Doing so may help to elucidate

the microbiota changes associated with disease states, especially those of the gastrointestinal tract.

5 Conclusion

Overall, signi�cant di�erences were found in community structure in participants with varying

BMI classi�cation and certain immune markers, fecal �ber, protein, and SCFA, and GI symptoms.

Metrics of richness and evenness were found to signi�cantly correlate with IgG4, IgM, IL-2,

acetate, propionate, isobutyrate, valerate, isovalerate, caproate, heartburn, urgent need to

defecate, and feelings of incomplete evacuation. Metrics of beta diversity distance between

samples demonstrated signi�cantly di�erent community structure between normal and overweight,

normal and obese, and overweight and obese BMI classi�cation groups. Additionally, signi�cant

di�erences in community structure correlate with IgG1, IgG3, IgG4, IgA, IL-6, IL-8, fecal �ber,

propionate, butyrate, heartburn, acid regurgitation, nausea and vomiting, bloating, abdominal
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distension, increased gas, and eructation. Though metrics of alpha and beta diversity were not

signi�cantly altered by synbiotic intervention, an ANCOM identi�ed di�erentially abundant

bacterial taxa di�erentially abundant after supplementation. Bi�dobacterium were increased in

the placebo group, which could be a result of the placebo pill contents. The ANCOM also

identi�ed taxa associated with BMI. Findings demonstrate alpha and beta diversity associations

with various SCFAs, GI symptoms, immune markers, and BMI. The results of the

placebo-controlled intervention suggest careful consideration of placebo contents moving forward.
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7 Appendix

Figure 21: BMI classi�cation (x-axis) plotted against Shannon's diversity index (y-axis).

Figure 22: BMI classi�cation (x-axis) plotted against observed OTUs (y-axis).
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Figure 23: BMI classi�cation (x-axis) plotted against Faith's phylogenetic diversity (y-axis).

Figure 24: BMI classi�cation (x-axis) plotted against Pielou's evenness (y-axis).
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