
Default in Payment, an Application of
Statistical Learning Techniques

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in the

DEPARTMENT OF STATISTICS

of

RHODES UNIVERSITY

by

Lulama Gcakasi

December 2019

Abstract
The ability of financial institutions to detect whether a customer will default on their credit

card payment is essential for its profitability. To that effect, financial institutions have credit

scoring systems in place to be able to estimate the credit risk associated with a customer.

Various classification models are used to develop credit scoring systems such as k-nearest

neighbours, logistic regression and classification trees. This study aims to assess the per-

formance of different classification models on the prediction of credit card payment default.

Credit data is usually of high dimension and as a result dimension reduction techniques,

namely principal component analysis and linear discriminant analysis, are used in this study

as a means to improve model performance. Two classification models are used, namely neural

networks and support vector machines. Model performance is evaluated using accuracy and

area under the curve (AUC). The neuarl network classifier performed better than the support

vector machine classifier as it produced higher accuracy rates and AUC values. Dimension

reduction techniques were not effective in improving model performance but did result in less

computationally expensive models.

Keywords: Default in Payment, Neural Networks, Support Vector Machines, Principal

Component Analysis, Linear Discriminant Analysis, Statistical Learning, Classification, Ac-

curacy, Area Under the Curve (AUC).

Contents

Abstract ii

Table of Contents iii

List of Tables vi

List of Figures viii

List of Abbreviations xi

Acknowledgments xii

1 Introduction 1

1.1 Classification . 2

1.2 Binary Classification . 3

1.3 Multiclass Classification . 3

1.4 Supervised Binary Classifier Performance and Evaluation 4

1.5 Model Validation . 10

1.5.1 Cross Validation . 10

1.5.1.1 k-Fold Cross Validation . 10

1.5.1.2 Leave-One-Out Cross Validation 11

1.5.1.3 Hold-Out Cross Validation . 12

1.5.2 The Bootstrap . 13

1.5.3 Choice of Model Validation Methodology. 14

iii

2 Principal Components and Linear Discriminant Analysis 15

2.1 The Wine Data Set . 16

2.2 Principal Component Analysis . 20

2.3 Linear Discriminant Analysis . 23

2.4 Summary: PCA and LDA . 25

2.5 PCA and LDA Applied to the Wine Data Set 26

3 Neural Networks 31

3.1 Human Nervous System . 32

3.2 Biological Neurons . 33

3.3 Artificial Neurons . 34

3.4 Artificial Neural Networks . 35

3.5 Multi-layered Artificial Neural Networks . 40

3.6 Perceptrons . 43

3.7 Adaptive Linear Neuron . 47

3.8 Multi-layered Perceptrons and Adalines . 50

3.9 Backpropagation . 53

3.10 The Wine Data Neural Network . 57

4 Support Vector Machines 59

4.1 The Iris Data Set . 59

4.2 Linear Separability . 60

4.3 Non-Linear Separability . 61

4.4 The Maximal Margin Classifier . 62

4.5 The Support Vector Classifier . 67

4.6 Support Vector Machines . 70

4.6.1 Kernel Functions and their Properties 72

4.6.2 Examples of Kernel Functions . 73

4.7 The Iris Data Support Vector Machine . 73

iv

5 Default in Payment on Credit Cards 75

5.1 Artificial Neural Networks . 79

5.2 Support Vector Machines . 83

5.3 Dimension Reduction . 85

5.4 Comparison . 90

6 Conclusion 91

6.1 Limitations of this Study . 91

6.2 Neural Networks . 91

6.3 Support Vector Machines . 92

6.4 Challenges in this Study . 92

6.5 Future Research . 93

References 94

A The Wine Data Set 101

A.1 First Ten Observations: The Wine Data . 101

A.2 Summary of these Data . 101

A.3 Variance-Covariance Matrix . 103

A.4 Principal Component Analysis Results . 104

A.5 R Code for the Wine Data Example . 104

A.6 R Output for these Models . 110

A.7 R Code for the Number of PC Investigation 121

B R Code and Output: Chapter 3 127

B.1 R Code for the Wine Data Neural Network 127

B.2 R Output for the Wine Data Neural Network 129

C R Code and Output: Chapter 4 133

C.1 First Ten Observations: The Iris Data . 133

C.2 R Code for the Iris Data Support Vector Machine 133

C.3 R Output for the Iris Data Support Vector Machine 135

v

D R Code and Output: Default in Payment Data Set 139

D.1 First Ten Observations: The Credit Data . 139

D.2 Summary of these Data . 141

D.3 Variance-Covariance Matrix . 142

D.4 Principal Component Analysis Results . 145

D.5 Neural Network: 7 Fold Cross Validation . 148

D.6 Support Vector Machine: 7 Fold Cross Validation 149

D.7 R Code for the Credit Data Set Neural Network 150

D.8 R Code for the Credit Data Set Support Vector Machine 160

D.9 R Code for the Credit Data Set 7 Fold Cross Validation 164

D.10 R Code for the Dimension Reduction Techniques 166

D.11 R Code for the Number of PC Investigation 171

List of Tables

1.1 The confusion matrix. 5

1.2 Metrics derived from the confusion matrix. 7

1.3 The 10-fold cross validation process. 11

1.4 The LOOCV cross validation process. 12

1.5 The hold-out cross validation process. 13

1.6 The bootstrap validation process. 14

2.1 Class distribution of the wine data set. 17

2.2 Classification tree results. 30

2.3 7-fold cross validation accuracy for the wine classification trees. 30

3.1 Input-output mapping of a perceptron. 43

3.2 Learning task for a perceptron with one input. 45

3.3 A learning task for a perceptron with n inputs. 46

3.4 The XOR-problem. 50

3.5 The XOR-problem using two perceptrons. 51

3.6 The XOR-problem: Two neurons. 52

3.7 Accuracy of the wine data neural network. 58

4.1 Examples of kernel functions. 73

4.2 The confusion matrix of the subsetted Iris data SVM. 74

5.1 Class distribution of credit data set. 76

5.2 NN test accuracy rates for different data partitions number of nodes. 80

5.3 90/10 split neural network results with between three and seven nodes. 81

5.4 AUC of the neural networks with between three and seven nodes. 82

vii

5.5 Summary of the SVM performance built with different kernels. 84

5.6 Performance of the SVM credit scoring classifier. 84

5.7 Performance of the SVM credit scoring classifier. 85

5.8 Performance results of the SVM and NN classifiers after dimension reduction. 88

A.1 First ten observation of the wine data set. 101

A.2 Summary statistics of the variables in the wine data set. 102

A.3 Variance-covariance matrix of the wine data set. 103

A.4 PCA results of the wine data set. 104

C.1 First ten observations of the subsetted Iris data set. 133

D.1 First ten observations of the credit data set. 140

D.2 Summary statistics of the variables in the credit data set. 141

D.3 Variance-covariance matrix of the credit data set: The first eleven variables. . 142

D.4 Variance-covariance matrix of the credit data set: Variables twelve to seventeen.143

D.5 Variance-covariance matrix of the credit data set: Variables eighteen to twenty-three.144

D.6 PCA results of the credit data set: the first eleven principal components. . . . 145

D.7 PCA results of the credit data set: variables twelve to seventeen. 146

D.8 PCA results of the credit data set: variables eighteen to twenty-three. 147

List of Figures

1.1 A ROC graph showing five classifiers (Fawcett, 2006). 7

1.2 An example of a ROC curve for n = 20 observation (Fawcett, 2006). 9

2.1 Boxplots of the feature variables in the wine data set. 18

2.2 Scatterplots of the wine feature variables. 19

2.3 Variance-covariance diagram of the wine data feature variables. 20

2.4 Tree plot of the classifier. 26

2.5 The biplot of the PCA for the wine data set. 27

2.6 Tree plot of the classifier on reduced feature space. 28

2.7 Principal components analysis results. 28

2.8 Wine data accuracy and reduced feature space. 29

3.1 The human nervous system. 33

3.2 A biological neuron. 34

3.3 The basic structure of an artificial neuron. 35

3.4 Artificial neurons (adapted from Fausett, 1994, pg 4). 35

3.5 General structure of a neuron (adapted from Jäger, 2005). 37

3.6 The hard limit activation function. 37

3.7 The neuron in example 1.1. 38

3.8 An example of a NN with two neurons. 38

3.9 An example of a NN with three neurons. 39

3.10 Simplified structure of an artificial neuron. 41

3.11 Simplified structures of artificial neural networks. 41

3.12 Examples of two-layered neural networks. 42

3.13 An example of a four-layered neural network. 42

ix

3.14 Classification by a decision boundary. 44

3.15 A graphical representation of the XOR problem. 51

3.16 The XOR problem decision boundaries. 52

3.17 A neural network for the wine data set. 57

4.1 Scatter plot of the subsetted Iris data. 60

4.2 Linear separability. 61

4.3 Non-linear separability. 61

4.4 Examples of hyperplanes. 62

4.5 Examples of hyperplanes. 63

4.6 A maximal margin hyperplane in two dimensions. 64

4.7 The linear algebra of a hyperplane. 65

4.8 A data set that can not be separated by a hyperplane. 68

4.9 A SVM using a radial kernel. 71

4.10 Plot of the SVM: training data. 74

5.1 Variance-covariance diagram of the credit data feature variables. 77

5.2 Class distribution resulting from the age and limit balance feature variables. . 78

5.3 Class distribution over all feature variables. 78

5.4 Test accuracy rates of neural networks with eight and more number of nodes. 80

5.5 ROC curves of neural network models with a different number of nodes. . . . 81

5.6 Cross validation ROC results for NN built with between three and seven nodes. 82

5.7 Performance of the NN credit scoring classifier. 83

5.8 ROC curves of the SVMs with different kernels. 84

5.9 Cross validation ROC results for the SVM classifier. 85

5.10 ROC curves for the NN and SVM classifiers. 87

5.11 The biplot of the PCA for the credit data set. 88

5.12 PCA scree plots for the credit data. 89

5.13 PCA-NN accuracy and AUC using different numbers of principal components. 89

5.14 PCA-SVM accuracy and AUC using different numbers of principal components. 90

x

List of Abbreviations

adalilne Adaptive linear neuron.

Acc Accuracy of a classifier.

AUC Area under the curve.

CNS Central nervous system.

Err Error of a classifier.

hardlim Hard limit function.

HLR Hybridizing logistic regression.

LDA Linear discriminant analysis.

logsig Log-sigmoid function.

LOOCV Leave out one cross validation.

MMC Maximal margin classifier.

NN Neural network.

ODR Orthogonal dimension reduction.

PCA Principal component analysis.

PNS Peripheral nervous system.

ROC Receiver operator curve.

SVC Support vector classifier.

SVM Support vector machine.

xi

Acknowledgments
I would like to thank my supervisor Jeremy Baxter for the support, patience and under-

standing that he has provided throughout my time as his student. Working with Jeremy

has been a pleasure and completing this thesis without his guidance and expertise would

have been impossible. To my fellow masters student, Olwethu Dlangamandla, thank you

for your encouragement and support. I could always rely on you to uplift me during tough

days. I would like to thank Thina Maqubela for her support, mentorship and inspiring words

of wisdom. I now understand that my aspirations in life are possible and achievable. The

Department of Statistics is a home away from home. To Rene Zimmerman, your hard work

at the department is truly appreciated. I would also like to thank my family and friends for

believing in me and reminding me of my capabilities. Lastly pursuing a masters degree would

not have been possible without the support and help of the Rhodes University postgraduate

funding research office and for that I am forever grateful to the team.

xii

Chapter 1

Introduction

Credit scoring is the practice of analysing a person’s background information and credit

application in order to predict the risk associated with awarding the person credit (Mester,

1997). Financial institutions are at risk of awarding credit to individuals who may have

potential issues of non-payment or default where default is defined in this thesis as the

violation of the promise to pay debt in agreed amounts and at agreed times (Islam et al.,

2018). It is not easy to foresee issues such as sudden changes in a person’s income due to job

loss, health issues or an inability to work (Islam et al., 2018). Financial institutions have to

find means to handle the risk associated with awarding credit. One way of doing this is to

put an effective credit scoring system in place (Mester, 1997). A credit scoring system can

be built using various statistical models including for example discriminant analysis, logistic

regression and a Bayes classifier (Yeh & Lien, 2009). The purpose of chapter 5 is to develop a

credit scoring system utilizing a data set generated from a bank in Taiwan which is available

on the UCI Machine Learning Repository (Yeh & Lien, 2009). Neural networks, discussed

in chapter 3, and support vector machines, discussed in chapter 4, are used to construct

classification models to predict credit card payment default.

Van Der Maaten et al. (2009) argued that real-world data usually has high dimensionality.

High dimensional data refers to data that has a large number of feature, or attribute or in-

dependent or predictor, variables and is often referred to as complex data. Several problems

occur when handling high dimensional data such as multicollinearity in the context of re-

gression. Multicollinearity occurs when two or more input variable in a regression model are

closely related to each other which may result in the reduction of the accuracy of the regres-

sion coefficient estimates (James et al., 2013, pg 99) or more specifically the variance of these

estimates (Radloff, 2014). In order to handle such real-world data adequately, its dimension

often needs to be reduced. Scientists working with large volumes of high-dimensional data,

such as global climate patterns, stellar spectra or human gene distributions, regularly confront

the problem of dimensionality reduction (Tenenbaum et al., 2000). Dimensionality reduction

is the transformation of high-dimensional data into a meaningful representation of reduced

dimension (Van Der Maaten et al., 2009). Ideally the reduced representation has a dimension

1

Chapter 1 Introduction 2

that corresponds to the intrinsic dimensionality of the data. The intrinsic dimensionality of

data is the minimum number of parameters needed to account for the observed properties of

the data (Van Der Maaten et al., 2009). In simple terms the reduced representation contains

as much information from the original data set as possible. Chapter 2 discusses principal

components and linear discriminant analysis, the data reduction techniques utilised in the

credit scoring system developed in chapter 5.

Classification, and more specifically binary classification, assessments of classifiers accuracy

and model validation are discussed in this chapter. A brief summary of the thesis, including

suggestions for improving the credit scoring system developed in this thesis can be found in

chapter 6.

1.1 Classification

Classification is a tool used in the field of statistics to predict a qualitative response (James et al.,

2013, pg 127). Suppose there exists an input vector X with a response Y. If the response

variable can not be quantified or belongs to a set of categories it is referred to as a quali-

tative response. In this context the process of modeling the relationship between X and Y

is referred to as classification. A classification model or classifier is a statistical model built

with the objective of classifying observations of a data set into classes (James et al., 2013,

pg 127). Consider observed classes labeled 1, 2, ..., L. The model classifies an observation as

belonging to one of the L classes by drawing conclusions from the observed X values. For

example each observation of a financial transaction data set, that is an instance of buying

goods and/or using services, can be classified as “fraudulent” or “non-fraudulent”. The model

is able to do so by learning the relationship between the input variables and the response

variable.

There are two approaches to machine learning: supervised and unsupervised learning. In

supervised learning, the data set which includes the correct response variable is utilised by

the model (Izenman, 2008, pg 10). This provides the model an idea of what the features

resemble, for example a “fraudulent” or “non-fraudulent” transaction. The model learns this

relationship and uses it to classify new observations. In unsupervised learning, the data set

does not include or utilise the response variable (Izenman, 2008, pg 10). To be clear in

unsupervised learning the data set may have a response variable but this variable is removed

or not utilised in the learning or model estimation phase. The model searches for similarities,

patterns or outliers within the data set and uses these attributes to classify new observations.

This thesis focuses on supervised learning since the classifiers that will be considered will

utilise the response variable in the learning phase.

A classification model is typically built by splitting a data set into a train and test data set.

Denote the full data set as D, the train set as Dtrain and the test set as Dtest. The training

Page 2 of 191.

3 1.2. Binary Classification

set, Dtrain, is used to build the model, that is establish parameters of the model that best

describe the relationship between the dependent and independent variables of the data set

(James et al., 2013, pg 15). The testing set, Dtest, is used to assess the performance of the

model. The goal is to use the model to predict the classes of future unknown observations

given the feature variables of the observations. If L > 2 the process of building a classifier is

referred to as multi-classification. If L = 2 the process of building a classifier is referred to

as binary classification.

1.2 Binary Classification

Binary classification is the task of classifying observations of a given data set into one of two

classes on the basis of a classification rule. Suppose the Rhodes University academic office

wants to predict whether students will either pass or fail at the end of the year. A data

set, X = (X1,X2,X3), consisting of n observations on a 3-dimensional feature space and an

outcome variable Y = (y1, y2, ..., yn) of past students is available. X1 represents the number

of hours each student spends studying per day, X2 represents the number of courses each

student is enrolled in and X3 represents the intelligence quotient score of each student. Y is

the outcome variable representing the final year mark of each student. The outcome variable

can be classified into one of two groups, namely pass or fail. In other words Y ∈ {pass, fail}

based on a classification rule. It is the process of classifying the observations into one of

the two classes that is referred to as binary classification. The analysis chapter, chapter 5,

of this thesis focuses on a binary classification problem. More formally, each multivariate

observation Xi, i = 1, ..., n, is mapped to one element of the set Y = {Y1, Y2} . In binary

classification problems the class of interest is typically referred to as the positive class and

the other class is referred to as the negative class. When the model has been built the test

data set,Dtest, is used to predict the classes of the observations in the set and the result is

used to determine how well the model performs. There are various methods used to evaluate

the performance of a classifier, see section 1.4 on the following page.

1.3 Multiclass Classification

Binary classification is the process of classifying observations into one of two groups. Multi-

class classification is an extension of binary classification from two to three or more classes

(Izenman, 2008, pg 260). Multiclass classification is the task of classifying observations into

one of three or more classes based on a classification rule. Consider the scenario in sec-

tion 1.2 but suppose the Rhodes University academic office also wants to predict whether

a student will drop out of university at the end of the year. The outcome variable Y can

now be classified into one of three groups, namely pass, fail or dropout. In other words

Page 3 of 191.

Chapter 1 Introduction 4

Y ∈ {pass, fail, dropout} based on a classification rule. It is the process of classifying the

observations into one of the three or more classes that is referred to as multiclass classification.

1.4 Supervised Binary Classifier Performance and Eval-

uation

After a classifier has been developed it is important to assess its performance before it is used

to classify new observations (Izenman, 2008, pg 10). Various model performance measures

can be used to evaluate the prediction accuracy of a classifier, for example specificity and

sensitivity. Consider a data set with n observations in p dimensional space and a binary

classifier. Denote the true class of an observation from the data set as yi and the feature vector

of the observation as xi ∈ R
p. Suppose a classifier, denoted as M , classifies each observation

xi to a class denoted by ŷi = M (xi). The classifier is thus the mapping M : xi 7→ ŷi = f (xi)

for some function f (·). Define an indicator function, denoted as I, that has value 1 if the

observed class of the observation is not equal to the predicted class of the observation and

has value 0 otherwise. A misclassification can be represented by the indicator function as:

I (yi 6= ŷi) =







1, yi 6= ŷi

0, yi = ŷi

for each observation (xi, yi) and corresponding predicted class label ŷi. This can be used to

formulate the error rate of the classifier defined as the proportion of misclassified observations

(Izenman, 2008, pg 12), that is

Error rate =
1

n

n
∑

i=1

I (yi 6= ŷi) .

The best classifier is the function M where the error rate is the smallest (James et al., 2013,

pg 37). Similarly a correct classification can be represented by an indicator function as:

I (yi = ŷi) =







1, yi = ŷi

0, yi 6= ŷi

for each observation (xi, yi) and corresponding predicted class label ŷi. The accuracy of the

classifier is defined as the proportion of correct predictions, that is

Accuracy =
1

n

n
∑

i=1

I (yi = ŷi) = 1− Error rate.

The higher the accuracy the better the classifier (Zaki et al., 2014, pg 602).

Page 4 of 191.

5 1.4. Supervised Binary Classifier Performance and Evaluation

When a data set is used as the input to a binary classification model for prediction there are

four possible outcomes. For a binary classifier suppose Y has outcomes one or zero where

class one is the positive class. Consider an observation that belongs to the positive class,

class one. If this observation is correctly predicted to belong to class one this outcome is

referred to as a true positive (tp). If it is incorrectly predicted to belong to class zero this

outcome is referred to as a false negative (fn). In a similar fashion consider an observation

that belongs to the negative or zero class. If it is correctly predicted to belong to class zero

this outcome is referred to as a true negative (tn) and if it is incorrectly predicted to belong

to class one this outcome is referred to as a false positive (fp). The outcomes of the classifier

applied to a data set can be represented by a two-by-two matrix, the confusion matrix, as

shown in table 1.1.

Table 1.1: The confusion matrix.

Actual

Predicted

Data class Positive Negative

Positive true positives false positives
Negative false negatives true negatives

This matrix is typically referred to as the confusion matrix. This matrix is used to calculate

several metrics that measure the performance of the classifier or model (table 1.2). The

error rate, and hence the accuracy, is one of the most common metrics used to evaluate

classification model performance (Ling et al., 2003). The error rate for a binary classifier is

given as the proportion of false predictions, that is

Error rate =
fp+ fn

n

and the accuracy is given as the proportion of correct predictions,

Accuracy =
tp + tn

n
= 1− Error rate.

These metrics are considered as global measures of classifier performance since they do not

explicitly consider the classes that contribute to the error (Zaki et al., 2014, pg 603). A

more class-specific performance measure is precision. Precision is defined as the proportion

of correct predictions over all points predicted to be in a particular class. The precision for

the positive class is the number of true positives divided by the total number of positive

labels, that is precp = tp

tp+fp
. Similarly the precision for the negative class is the number of

true negatives divided by the total number of negative labels, that is precn = tn
tn+fn

.

Additional performance measures are listed in table 1.2, for example sensitivity, the true

positive rate, and specificity, the true negative rate. Sensitivity is defined as the proportion

of correct positive predictions with respect to all observations actually in the positive class.

Specificity is defined as the proportion of correct negative predictions with respect to all

Page 5 of 191.

Chapter 1 Introduction 6

observations actually in the negative class.

Page 6 of 191.

7 1.4. Supervised Binary Classifier Performance and Evaluation

Table 1.2: Metrics derived from the confusion matrix.

Measure Formula Evaluation focus

Error rate fp+fn

n
Overall error of a classifier.

Accuracy tp+tn

n
Overall accuracy of a classifier.

Precision (precp)
tp

tp+fp

Class agreement of the data labels with the positive
labels given by the classifier.

Sensitivity tp

tp+fn
How effectively a classifier identifies positive labels.

Specificity tn
fp+tn

How effectively a classifier identifies negative labels.

F score (β2+1)tp
(β2+1)tp+β2fn+fp

Relations between data’s positive labels and those
given by a classifier.

AUC 1
2

(

tp

tp+fn
+ tn

tn+fp

)

Classifier’s ability to avoid false classification.

While accuracy may be a simple and useful tool to evaluate a model’s performance it can

sometimes provide a poor measurement of model performance especially in the case of imbal-

anced data (Fawcett, 2006). Imbalanced data occurs when one class is represented by a large

number of observations, while the other is represented by only a few (Batista et al., 2004).

Imbalanced data hinders the performance of classification techniques particularly when the

minority class is the positive class (Chawla et al., 2004). As a result alternative methods to

measure model performance should be considered. An example of such a method is a receiver

operating characteristics (ROC) graph which is a popular strategy for visualising, organising

and selecting classifiers based on their performance (Fawcett, 2006). A ROC graph is a two-

dimensional graph in which the true positive rate is plotted on the vertical or y-axis and the

false positive rate is plotted on the horizontal or x-axis, see figure 1.1. This graph demon-

strates the relative tradeoffs between the benefits and costs of a classifier (Fawcett, 2006). It is

a popular strategy for assessing model performance in binary classification (Zaki et al., 2014,

pg 610). ROC graphs have properties that make them especially useful for classifications

problems with imbalanced data sets (Fawcett, 2006).

Figure 1.1: A ROC graph showing five classifiers (Fawcett, 2006).

Page 7 of 191.

Chapter 1 Introduction 8

A binary classifier outputs a class label for each feature vector xi. Binary classifiers produce

a single point on the ROC space. Each binary classifier produces a false positive rate, true

positive rate pair for all feature vectors in the data set, typically the test data set. This

pair corresponds to a single point in ROC space. Consider five binary classifiers, denoted

by A, ..., E, which produce false positive and true positive rate pairs corresponding to a

single point in the ROC space as shown in figure 1.1. The classifier at point (0,0) assigns no

observations to the positive class which results in 0% true positive and false positive rates.

The classifier at point (1, 1) assigns all observation to the positive class which results in a

100% true positive and false positive rates. A perfect classifier lies at the point (0, 1) where

the false positive rate is 0% and the true positive rate is 100%. Generally a good classifier

lies at the point located in the upper left-hand region of the ROC graph where the true

positive rate is maximal and the false positive rate is minimal. In figure 1.1, classifier A may

be considered as the best classifier since it has the lowest false positive rate and the highest

true positive rate out of all the classifiers. The diagonal line connecting the (0, 0) and (1, 1)

coordinates is called the “chance diagonal” and represents the strategy of randomly guessing

the class of an observation, which is not a good classification strategy. In figure 1.1, classifier

E uses this strategy as it guesses the positive class 70% of the time and can therefore be

expected to get a 70% true positive rate and a 70% false positive rate. Classifiers with points

on the lower left-hand side of the graph are said to be conservative as they minimise false

positive predictions. These classifiers typically have a low true positive rate (Fawcett, 2006).

Classifiers with points on the upper right-hand side of the graph are said to be liberal as

they mostly make correct positive predictions but with a high false positive rate (Fawcett,

2006). In figure 1.1, classifier B is more conservative than classifier C. Classifier C is more

liberal than classifier B. Classifiers on the lower right-hand of the graph are not considered

as good classifiers as they perform worse than classifiers that use random guessing, that is

the classifiers on the chance diagonal, as a strategy to assign observations.

Some classifiers, for example neural networks, produce a numerical value or score, for example

a probability, as a response variable which can be used to decide which class an observation

should be assigned to. In these instances, the classifier chooses some positive score threshold,

ρ, and assigns all observations with score above ρ to the positive class while the remaining

points are classified as negative. Such a threshold is likely to be arbitrary. ROC analysis plots

the performance of the classifier over all possible values of the threshold parameter tracing

a curve through ROC space (Zaki et al., 2014, 610). Figure 1.2 (Fawcett, 2006) shows an

example of a ROC graph on a test set of 20 observations. A ROC curve generated from a finite

set of observations produces a step function (Fawcett, 2006). As the number of observations

approaches infinity, the step function begins to resemble a more curve-like structure (Fawcett,

2006). In figure 1.2 each observation produces a point in ROC space which has a score

threshold used to produce it. Varying the threshold value produces different points in ROC

space. For these data, a threshold of positive infinity produces point (0, 0). A threshold of

0.9 gives the first observation classified as positive with point (0, 0.1). As the threshold is

Page 8 of 191.

9 1.4. Supervised Binary Classifier Performance and Evaluation

lowered the shape of the curve takes form and starts to resemble a logarithmic curve. The

curve stops at point (1, 1) with threshold 0.1. At the point (0.1, 0.5), with a threshold of

0.54, the classifier produces its highest accuracy. This means a good score threshold for this

classifier is 0.54 rather than 0.5.

Figure 1.2: An example of a ROC curve for n = 20 observation (Fawcett, 2006).

The area under the ROC curve, denoted as AUC, can be used as a measure of classifier

performance. Since the total area of the plot is 1, the AUC lies in the interval [0,1] and the

higher the AUC the better the performance. The AUC value is essentially the probability

that the classifier will rank a random positive test instance higher than a random negative

test instance (Fawcett, 2006). AUC indicates how much a model is capable of distinguishing

between classes. A perfect model has an AUC of one (1) which indicates an excellent measure

of separability. The closer the AUC to 1 the better the model. When the AUC is 0.8 it

means there is an 80% chance that model will be able to distinguish between positive class

and negative class. An AUC of 0.5 indicates a model that has no capacity to distinguish

between positive class and negative class. This is the case of a model that uses the strategy

of randomly guessing the class of an observation to assign the observations into the positive

or negative class. When the AUC is 0 the model reciprocates the classes. This means the

model is assigning positive observations to the negative class and negative observations to the

positive class. The AUC makes it easy to compare the ROC curve of one model to another

and hence compare the performance of a model to another (Zaki et al., 2014, pg 611).

Page 9 of 191.

Chapter 1 Introduction 10

1.5 Model Validation

Model validation is defined as the process of determining the extent to which a model’s

predictions resembles real world outcomes as a means to decide if the model is suitable

for its intended purpose (Mayer & Butler, 1993). There are various model validation tech-

niques used across different fields of study. Choosing a model validation technique de-

pends on the complexities of the model in question and the type of data used to build the

model (Mayer & Butler, 1993). Cross validation is a common approach to model validation

(Zaki et al., 2014, pg 616).

1.5.1 Cross Validation

Cross validation is a method of assessing and comparing classifiers by dividing the data set, D,

into a training set, denoted as Dtrain, and a validation or test set, denoted as Dv (James et al.,

2013, pg 176). The two disjoint sets are independent and have the same distribution as the

original data set. The training set is used to build the model and the validation set is used

to evaluate the suitability of the model. An important trait of cross validation is that each

observation in the data set has an equal opportunity of being selected to be part of either

the training set or the validation set. In classification, the model accuracy and error rate

can be calculated using the validation set and the result can be used for model comparison

and selection. Denote the accuracy calculated using the validation set as Accv and the error

rate calculated using the validation set as Errv. The following sections discuss different

approaches to cross validation such as k-fold cross validation.

1.5.1.1 k-Fold Cross Validation

In k-fold cross validation, the data set is randomly partitioned into k disjoint equal sized

sets called folds (James et al., 2013, pg 181). One fold is used as the validation set and the

remaining folds are used to train or build the model (Zaki et al., 2014, pg 616). The process

is repeated k times such that all the folds are used as the validation set. Denote the folds

as D1, D2, · · · ,Dk and the binary classifier built from D \Dj as Mj , j = 1, 2, · · · , k where

D \ Dj denotes the data set D with the observations in Dj removed. For each iteration

classifier Mj is built using D \Dj and evaluated using the validation set Dj . The accuracy

in fold j is denoted as Accjv where Accjv = 1
nj

nj
∑

i=1

I (yi = ŷi, Xi ∈ Dj) and the error rate is

given by Errjv =
1
nj

nj
∑

i=1

I (yi 6= ŷi, Xi ∈ Dj), calculated over Dj. The overall accuracy of the

model using the k-fold cross validation method is determined by averaging the accuracy rates

Page 10 of 191.

11 1.5. Model Validation

resulting from the k iterations and is given as

Accv =
1

k

k
∑

j=1

Accjv =
1

k

k
∑

j=1

[

1

nj

nj
∑

i=1

I (yi = ŷi)

]

where Xi ∈ Dj and nj =| Dj | that is the number of observations in Dj . Similarly the overall

error rate of the model using the k-fold cross validation method is determined by averaging

the error rates resulting from the k iterations and is given as

Errv =
1

k

k
∑

j=1

Errjv =
1

k

k
∑

j=1

[

1

nj

nj
∑

i=1

I (yi 6= ŷi)

]

where Xi ∈ Dj and nj =| Dj |. Consider a 10-fold cross validation example. The data set

is partitioned into 10 folds, denoted as D1, D2, · · · ,D10. In the first iteration the training

data, Dtrain, consists of all the folds but D1, that is Dtrain = D \ D1. The accuracy, Acc1v,

and error rate, Err1v, are calculated using the validation set D1. In the second iteration the

training data consists of all the folds but D2, that is Dtrain = D \D2. The accuracy, Acc2v,

and error rate, Err2v, are calculated using the validation set D2. The process continues for

all 10 folds. Table 1.3 shows the complete process. The accuracy and error rate are given as

Accv =
1

10

10
∑

j=1

Accjv and Errv =
1

10

10
∑

j=1

Errjv.

Typically k is chosen to be between 5 and 10 (Zaki et al., 2014, pg 616). The case where

k = n is referred to as leave-one-out cross validation (James et al., 2013, pg 178).

Table 1.3: The 10-fold cross validation process.

Iteration Training set Validation set Accuracy Error rate

1 Dtrain = D \D1 D1 Acc1v Err1v
2 Dtrain = D \D2 D2 Acc2v Err2v
3 Dtrain = D \D3 D3 Acc3v Err3v
4 Dtrain = D \D4 D4 Acc4v Err4v
5 Dtrain = D \D5 D5 Acc5v Err5v
6 Dtrain = D \D6 D6 Acc6v Err6v
7 Dtrain = D \D7 D7 Acc7v Err7v
8 Dtrain = D \D8 D8 Acc8v Err8v
9 Dtrain = D \D9 D9 Acc9v Err9v
10 Dtrain = D \D10 D10 Acc10v Err10v

1.5.1.2 Leave-One-Out Cross Validation

In leave-one-out cross validation, abbreviated LOOCV, the data set is partitioned into n sets

where n is the number of observations (James et al., 2013, pg 178). This results in each

Page 11 of 191.

Chapter 1 Introduction 12

set being a single observation. Table 1.4 summarises the LOOCV process. One set, namely

Dj = (xj , yj), is used as the validation set while the remaining sets are used to train or

build the model, that is Dtrain = D \ Dj = {(x1, y1) , (x2, y2) , · · · , (xn, yn) \ (xj , yj)} . The

process is repeated n times such that each observation is used only once as the validation

set. In each iteration the classifier is evaluated using a single observation Dj = (xj, yj). The

accuracy and error rate of the classifier for fold j is given by Accjv = I (yi = ŷi, xi ∈ Dj) and

Errjv = I (yi 6= ŷi, xi ∈ Dj) respectively. The overall accuracy of the classifier is given by

Accv =
1

n

n
∑

j=1

Accjv =
1

n

n
∑

j=1

[I (yi = ŷi)]

and the overall error rate of the classifier is given by

Errv =
1

n

n
∑

j=1

Errjv =
1

n

n
∑

j=1

[I (yi 6= ŷi)]

where xi ∈ Dj.

Table 1.4: The LOOCV cross validation process.

Iteration Training set Validation set Accuracy Error rate

1 Dtrain = D \D1 D1 = (x1, y1) Acc1v Err1v
2 Dtrain = D \D2 D2 = (x2, y2) Acc2v Err2v
...

...
...

...
...

n− 1 Dtrain = D \Dn−1 Dn−1 = (xn−1, yn−1) Accn−1
v Errn−1

v

n Dtrain = D \Dn Dn = (xn, yn) Accnv Errnv

1.5.1.3 Hold-Out Cross Validation

Hold-out cross validation is a special case of k-fold cross validation where k = 2 (Kohavi,

1995). Table 1.5 summarises the hold-out cross validation process. The data set is partitioned

into two disjoint sets denoted D1 and D2. One set is used to train or build the model, that

is Dtrain = D1, while the second set, D2, is used to evaluate the model. The process is

repeated once more with the training set changing to Dtrain = D2 and the remaining set D1

is used as the validation set. The procedure has two iterations such that each set is used

only once as the validation set. The accuracy and error rate for each iteration is given by

Accjv = 1
nj

nj
∑

i=1

I (yi = ŷi) and Errjv = 1
nj

nj
∑

i=1

I (yi 6= ŷi) respectively where Xi ∈ Dj and

nj =| Dj |. The overall accuracy of the classifier is given by

Accv =
1

2

2
∑

j=1

Accjv =
1

2

2
∑

j=1

[I (yi = ŷi)]

Page 12 of 191.

13 1.5. Model Validation

and the overall error rate of the classifier is given by

Errv =
1

2

2
∑

j=1

Errjv =
1

2

2
∑

j=1

[I (yi 6= ŷi)]

where Xi ∈ Dj and nj =| Dj |.

Table 1.5: The hold-out cross validation process.

Iteration Training set Validation set Accuracy Error rate

1 Dtrain = D \D1 = D2 D1 Acc1v Err1v
2 Dtrain = D \D2 = D1 D2 Acc2v Err2v

1.5.2 The Bootstrap

Another approach to model validation is bootstrap resampling. Instead of dividing the data

set into exclusive sets or folds, the bootstrap method selects B random samples of size n with

replacement (Hastie et al., 2001, pg 217). This results in B sets, denoted as D1, D2, · · · , DB,

with several repeated points. Table 1.6 provides a summary of the bootstrap validation

approach. Note that the sets are the same size as the original data set. Each sample, Dj ,

is used to train or build the model and the resulting model is evaluated using the original

data set (Zaki et al., 2014, pg 618). This process is repeated B times such that each set

is used once as the training set. Each iteration produces a classifier Mj , j = 1, 2, · · · , B,

that is subsequently used to calculate the accuracy, AccjB = 1
n

n
∑

i=1

I (yi = ŷi), and error rate,

Err
j
B = 1

n

n
∑

i=1

I (yi 6= ŷi), of the classifier using the original data. The overall accuracy of the

model using the bootstrap method is determined by averaging the accuracy rates resulting

from the B iterations and is given as

AccB =
1

B

B
∑

j=1

Acc
j
B =

1

B

B
∑

j=1

[

1

n

n
∑

i=1

I (yi = ŷi)

]

where Xi ∈ D. Similarly the overall error rate of the model using the bootstrap method is

determined by averaging the error rates resulting from the B iterations and is given as

ErrB =
1

B

B
∑

j=1

Err
j
B =

1

B

B
∑

j=1

[

1

n

n
∑

i=1

I (yi 6= ŷi)

]

where Xi ∈ D.

Page 13 of 191.

Chapter 1 Introduction 14

Table 1.6: The bootstrap validation process.

Iteration Training set Validation set Accuracy Error rate

1 Dtrain = D1 D Acc1B Err1B
2 Dtrain = D2 D Acc2B Err2B
...

...
...

...
...

B Dtrain = DB D AccBB ErrBB

1.5.3 Choice of Model Validation Methodology.

The drawback of using cross validation to estimate the test error is that it can be highly

variable, depending on precisely which observations are included in the training set and which

observations are included in the validation set (James et al., 2013, pg 178). In this approach

only a subset of the observations, those that are included in the training set rather than in

the validation set, are used to fit the model. This suggests that the cross validation set error

may tend to overestimate the test error for the model fit on the entire data set (James et al.,

2013, pg 178). On the other hand bootstrapping tends to drastically reduce the variance but

gives more biased results (Hastie et al., 2001, pg 218). In k-fold cross validation each of the

k validation folds is distinct from the other k − 1 folds used for training, that is there is no

overlap. This plays a part in its success. To estimate prediction error using the bootstrap

the same procedure used in cross validation is considered, that is using each bootstrap data

set as the training sample and the original sample as the validation sample. The problem

is each bootstrap sample has significant overlap with the original data (Hastie et al., 2001,

pg 218). Approximately two-thirds of the original data points appear in each bootstrap

sample (Zaki et al., 2014, 618). This causes the bootstrap to seriously underestimate the true

prediction error (Kohavi, 1995). One way to solve this problem is to only consider predictions

for those observations that did not occur in the current bootstrap sample. Unfortunately

this method gets complicated, and k-fold cross validation provides a simpler, more attractive

approach for estimating prediction error (Zaki et al., 2014, pg 618).

Page 14 of 191.

Chapter 2

Principal Components and Linear

Discriminant Analysis

Van Der Maaten et al. (2009) argued that real-world data usually has high dimensionality,

that is data which has a large number of feature, or attribute or independent or predictor,

variables. High dimensionality can lead to issues when fitting statistical models, for example

multicollinearity in a regression model. Dimensionality reduction is the transformation of

high-dimensional data into a meaningful representation of the data in a reduced dimension.

Ideally the reduced representation has a dimension that corresponds to the intrinsic dimen-

sionality of the data. The intrinsic dimensionality of data is the minimum number of parame-

ters needed to account for the observed properties of the data (Van Der Maaten et al., 2009).

The reduced representation contains as much information from the original data set as possi-

ble. Dimension reduction is important in data analysis, since it mitigates the curse of dimen-

sionality and other undesired properties of high-dimensional data (Van Der Maaten et al.,

2009). The term “curse of dimensionality” describes the difficulty of dealing with statistical

problems in high dimensions (Verleysen & François, 2005).

Suppose n observations of p feature, or independent or predictor, variables are represented

by X, that is

X
n×p

=













x11 x12 ... x1p

x21 x22 ... x2p

...
...

. . .
...

xn1 xn2 ... xnp













.

The response or dependent variable, Y = (y1, y2, ..., yn)
′, is available and used to construct

the supervised classifier. The goal is to use X to predict Y. Linear regression is a commonly

used statistical method for predicting a quantitative response when given a set of quantitative

predictor variables where least squares is the typical approach to fit this model (Radloff, 2014).

James et al. (2013, pg 59) reviews some of the key ideas underlying the linear regression

model as well as the least squares approach that is commonly used to fit this model. Linear

15

Chapter 2 Principal Components and Linear Discriminant Analysis 16

regression is a statistical learning method that is widely used (Hair et al., 1998, pg 141).

However linear regression has its disadvantages, for example:

• If n is not much larger than p then there can be a lot of variability in the least squares

fit, resulting in over fitting and consequently poor predictions on future observations

not used in model training (James et al., 2013, pg 203).

• Often some of the predictor variables used in multiple regression are not associated with

the response especially when p is substantially large. Including such variables results

in complex models that are difficult to interpret (James et al., 2013, pg 203).

If the number of predictor variables can be reduced without losing information and a model

fitted to predict the response on the reduced set of predictor variables then we may ob-

tain a model that is easily interpretable, provides accurate predictions and has substantially

reduced variability. One way of accomplishing this is by using the principal component

analysis technique or the linear discriminant analysis technique as discussed in sections 2.2

and 2.3. James et al. (2013, pg 228) provides a summary of alternative dimension reduction

methods. The well known wine data set, as discussed in the following section, is used in

section 2.5 on page 26 to demonstrate these techniques.

2.1 The Wine Data Set

Wine is a popular beverage, enjoyed by a broad-range of consumers across the world (Cortez et al.,

2009). In Italy, wine is by far the predominant alcoholic beverage consumed (Franceschi et al.,

1990). In 1991 the wine data set was uploaded into the UCI repository (Cortez et al., 2009).

The data in the data set are the results of an analysis of wines grown in the same region in

Italy but coming from three different cultivars. A chemical analysis determined the quantities

of 13 physiochemical attributes found in each of the three types of wines for 178 observa-

tions (Polat, 2012). The result of the analysis is a data set with 178 observations, 13 feature

variables and 3 classes. The response, followed by the feature variables are as follows

• Type: The type of wine: one of three classes;

• Alcohol: The quantity of alcohol in the wine;

• Malic: The quantity of malic acid in the wine;

• Ash: The quantity of ash in the wine;

• Alcalinity: Alcalinity of ash in the wine;

• Magnesium: Quantity of magnesium in the wine;

Page 16 of 191.

17 2.1. The Wine Data Set

• Phenols: Total phenols in the wine;

• Flavanoids: The quantity of flavanoids in the wine;

• Nonflavanoids: The quantity of nonflavanoid phenols in the wine;

• Proanthocyanins: The quantity of proanthocyanins in the wine;

• Colour: Colour intensity of the wine;

• Hue: The quantity of hue in the wine;

• Dilution: D280/OD315 of diluted wines;

• Proline: The quantity of proline in the wine.

Table A.1 available in appendix A.1 on page 101 shows the first ten observations of the data

set. The distribution of the classes is shown in table 2.1. This indicates that there does not

exist much of a class imbalance and hence the use of metrics such as accuracy are reliable

measures of classifier performance.

Table 2.1: Class distribution of the wine data set.

Class (label) Frequency Percentage

One 59 33.14607
Two 71 39.88764

Three 48 26.96629

All of the feature variables are numeric. A summary of all variables is available in table

A.2 in appendix A.2 on page 101. Boxplots of each of the feature variables are shown in

figures 2.1a, 2.1b, 2.1c, 2.1d on the following page. Seven of the thirteen feature variables

had between one and four univariate outliers. Outliers may affect the training or learning

phase when constructing a classifier. However since this is a small data set, and for the sake

of simplicity, no outliers were removed. This follows the approach taken by Cortez et al.

(2009).

Figure 2.2a shows how the first two feature variables, alcohol and malic acid, affect the class

distribution of the data. Figure 2.2a shows that there is some separability between the classes.

Figure 2.2b on page 19 shows the bivariate scatterplots for all the feature variables, where

type 1 is displayed in red, type 2 in blue and type 3 in green. Given the groupings of the

wine types across these variables classification may be successful.

Page 17 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 18

11 12 13 14

Boxplot of Alcohol

1 2 3 4 5 6

Boxplot of Malic

1.5 2.0 2.5 3.0

Boxplot of Ash

10 15 20 25 30

Boxplot of Alcalinity

(a) Individual box plots of the first four fea-
ture variables.

80 120 160

Boxplot of Magnesium

1.0 2.0 3.0

Boxplot of Phenols

1 2 3 4 5

Boxplot of Flavanoids

0.2 0.4 0.6

Boxplot of Nonflavanoids

(b) Individual box plots of the second four
feature variables.

0.5 1.5 2.5 3.5

Boxplot of Proanthocyanins

2 4 6 8 10

Boxplot of Colour

0.6 1.0 1.4

Boxplot of Hue

1.5 2.5 3.5

Boxplot of Dilution

(c) Individual box plots of the third four
feature variables.

400 600 800 1000 1400

Boxplot of Proline

(d) Individual box plot of the last feature
variables.

Figure 2.1: Boxplots of the feature variables in the wine data set.

Page 18 of 191.

19 2.1. The Wine Data Set

(a) Class distribution resulting from the alcohol and
malic acid feature variables.

Alcohol

1
4

1
0

2
5

1
.0

3
.5

0
.2

0
.6

2
8

11

1
.5

3
.5

1 6

Malic

Ash

1.5

10

Alcalinity

Magnesium

80

1.0

Phenols

Flavanoids

1 5

0.2

Nonflavanoids

Proanthocy

0.5

2

Colour

Hue

0.6

1.5

1
1

1
4

1
.5

3
.0

8
0

1
6

0
1

4
0

.5
3

.0
0

.6
1

.6

Dilution

(b) Scatterplot of the feature variables in the wine data.

Figure 2.2: Scatterplots of the wine feature variables.

Page 19 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 20

This data set has thirteen (13) feature variables and may be considered as high dimensional

data. Dimension reduction techniques may be considered in order to successfully perform

statistical analysis on the reduced data. Sometimes data sets have highly correlated variables

which might hinder the training phase. Figure 2.3 shows the correlation of the feature

variables in the data set. The flavanoids feature variable is strongly, positively correlated

to the phenols feature variable and semi-strongly negatively correlated to the nonflavanoids

feature variable. Although there are other feature variables that have a strong correlation,

not much correlation exists between most of the feature variables. This does not mean the

existing correlation should be ignored. Dimension reduction also serves as a means to deal

with a strong existing correlation between feature variables in a data set to improve model

development. The variance-covariance matrix of these data set is available in table A.3 in

appendix A.3 on page 103.

Figure 2.3: Variance-covariance diagram of the wine data feature variables.

The following sections discuss PCA and LDA and how these techniques can be applied to

the wine data set. The R code is provided in appendix A.5 on page 104.

2.2 Principal Component Analysis

Principal component analysis (PCA) is a dimension reduction technique that can be used to

reduce a large set of correlated predictor variables to a small set of uncorrelated variables

that still contains most of the information contained in the large set (Johnson & Wichern,

1992, pg 357). Consider the n observations on a p-dimensional space where not all the

Page 20 of 191.

21 2.2. Principal Component Analysis

feature variables are of equal importance. The goal is to reduce the original dimensional

space to one that consists of sufficient dimensions that explain as much of the variation in

the original set as possible, that is the reduced data set retains all or the majority of the

information contained in the original dimensional space. The reduced dimensions are called

principal components where each of the principal components are a linear combination of the

p-predictor variables. The general aim of principal component analysis is that the first few

components will account for a substantial proportion of the variation in the original predictor

variables and can consequently be used to provide a convenient lower-dimensional summary

of these variables that might prove useful for a variety of reasons (Everitt & Hothorn, 2006,

pg 215).

The first principal component, denoted by Z1, is the normalised linear combination of the

predictor variables that has the largest variance. The second principal component, Z2, is the

normalised linear combination of the predictor variables that has the largest variance out of all

the linear combinations uncorrelated with Z1. In general the jth principal component, Zj , is

the normalised linear combination of the predictor variables that has the largest variance out

of all the linear combinations uncorrelated with the existing j−1 principal components. The

method continues until a set of principal components are derived. Algorithm 2.1 describes

how the principal components are derived.

Algorithm 2.1 Derivation of Principal Components:

1. Construct X, the data matrix.

2. Standardise X by subtracting the mean of each column from the entries in the column.
Call the resulting vector by Xstd.

3. Compute Sn−1
p×p

, an estimate of the covariance matrix, Σp×p, of Xstd.

4. Compute the eigenvalues, denoted by λ1, λ2, ..., λp, of Sn−1.

5. Compute U
p×p

, the matrix whose columns are the orthonormal eigenvectors of Sn−1,

sorted by decreasing eigenvalues.

6. Choose k < p and construct U
∗

p×k
, the matrix consisting of the first k columns of U.

7. Compute Z
n×k

, where Z
n×k

=XU
∗.

Z is a reduced dimensional space representation of X that may contain most of the informa-

tion contained in X. We can use Z to fit a linear regression model using least squares. This

is referred to as principal component regression. James et al. (2013, pg 230) gives a brief

description of the principal component regression approach.

A very important consideration is the choice k, the number of principal components. If most,

for example 80% to 90%, of the total variance for large p can be attributed to the first one,

Page 21 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 22

two or three principal components then the original p feature variables can be replaced by

these principal components without much loss of information (Johnson & Wichern, 1992, pg

359). Jolliffe (2002) provides a summary of existing approaches to determining the number

principal components.

Example 2.1. A data set, adapted from Tharwat (2016), consisting of six observations with

three feature variables is represented by X,

X =























4 21 40

3 19 59

5 19 55

5 20 61

7 22 43

6 22 42























.

The mean vector of X is x̄ =
[

5 20.25 50
]′

and after standardising, we obtain

Xstd =























−1 0.5 −10

−2 −1.5 9

0 −1.5 5

0 −0.5 11

2 1.5 −7

1 1.5 −8























.

The covariance matrix of Xstd is given by

Sn−1 =







2 1.4 −6

1.4 1.9 −10.8

−6 −10.8 88






.

The eigenvalues of Sn−1 are λ1 = 89.7617204, λ2 = 1.8929842 and λ3 = 0.2452955. The

corresponding, that is in the same order, matrix of orthonormal eigenvectors of Sn−1 is given

by

U =







−0.06964117 0.8952440 −0.44010041

−0.12279906 0.4301229 0.89437950

0.98998510 0.1163296 0.07998085






.

The columns of U are the corresponding eigenvectors sorted by decreasing eigenvalues. Let

k = 2 < p = 3, then

U
∗ =







−0.06964117 0.8952440

−0.12279906 0.4301229

0.98998510 0.1163296






.

Page 22 of 191.

23 2.3. Linear Discriminant Analysis

The new sample space is given by

Z = XU
∗ =























4 21 40

3 19 59

5 19 55

5 20 61

7 22 43

6 22 42





























−0.06964117 0.8952440

−0.12279906 0.4301229

0.98998510 0.1163296






=























36.74206 17.26674

55.86702 17.72151

51.76779 19.04668

57.58490 20.17478

39.38029 20.73158

38.45995 19.72001























which is a 6× 2 matrix and is smaller than the original 6× 3 matrix.

Now consider the same data matrix, X, but with a qualitative response Y, where Y is in the

form of class labels. The goal is to predict Y. Using the linear regression model is not ideal

since it assumes that the response Y is quantitative. Reducing the dimensional space of X

may be necessary to avoid obtaining complex models that are difficult to interpret. A typical

solution to this problem is classification. One example of a classification technique is linear

discriminant analysis as discussed in section 2.3. Chapters 3 and 4 discuss neural networks

and support vector machines. James et al. (2013, 127) provides a summary of alternative

classification techniques.

2.3 Linear Discriminant Analysis

Linear discriminant analysis (LDA) was proposed by R. Fischer in 1936 (Fisher, 1936). It is a

dimension reduction technique used to find a linear combination of features that characterises

or separates two or more classes of objects or events (Li & Wang, 2014). Consider the n

observations on a p-dimensional feature space where not all the dimensions are relevant.

The idea of LDA is to project the feature space onto a smaller subspace while maintaining

the class-discriminatory information. Suppose each observation belongs to one of L classes

labeled 1, 2, ..., L. Each class has ni observations or samples where i = 1, 2, . . . , L. The

observations from the different classes are stacked into one matrix such that each column

represents one sample. The goal is to find a transformation of X to Z by projecting the

samples in X onto a hyperplane with dimension L− 1. Of all the possible lines the desired

line is the one that maximises the separability of Z. Finding a good projection vector requires

defining a measure of separation between the projection. A solution proposed by Fisher is

to maximise a function that represents the difference between the means, normalised by a

measure of the within-class variability. The resulting function is called the Fisher linear

discriminant and is defined as the linear function Z = XU
∗ where Z is a matrix of the

resulting L − 1 discriminants. The idea is to find a projection, U∗, where examples from

the same class are projected very close to each other and, at the same time, the projected

means are as far apart as possible. Algorithm 2.2 describes how the linear discriminants are

Page 23 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 24

obtained. Each of the linear discriminants are a linear combination of the feature variables.

Algorithm 2.2 Derivation of Linear Discriminants:

1. Collect samples of data sets for the different L classes.

2. Compute the p-dimensional mean vectors for the different L classes for the data set.

3. Compute Sn−11 ,Sn−12 , ..,Sn−1L, the p× p covariance matrices for the different classes.

4. Compute the between-class scatter matrix SB
p×p

=
L
∑

i=1

ni (x̄i − x̄) (x̄i − x̄)′ and the within-

class scatter matrix SW
p×p

=
L
∑

i=1

(ni − 1)Sn−1i where x̄ is the overall mean, x̄i and ni are

the sample mean and sizes of the respective classes.

5. Compute the eigenvalue and eigenvector pairs which satisfy the following condition:
Aυi = λiυi where A = S

−1
W SB, where λi demotes the ith eigenvalue and υi denotes the

associated eigenvector.

6. Construct U
p×p

whose columns are the orthonormal eigenvectors, sorted by decreasing

eigenvalues.

7. Choose m < p and derive U
∗

p×m
by taking the first m columns of U.

8. Use U
∗ to transform the samples onto the new subspace, that is compute Z

n×m
= XU

∗.

Z is a reduced feature space representation of X that may contain most of the information

contained in X. The discriminants can be used to classify unknown objects.

Example 2.2. Consider a data set consists of five observations of two feature variables,

adapted from Elhabian & Farag (2009). The observations can be divided into two classes.

Samples of data sets for the two classes were collected. The samples for class one, denoted

by X1, and class two, denoted by X2, are

X1 =

















4 2

2 4

2 3

3 6

4 4

















, X2 =

















9 10

6 8

9 5

8 7

10 8

















.

The mean vectors for the different classes of this data set are x̄
′
1 =

[

3 3.8
]

and x̄
′
2 =

[

8.4 7.6
]

. The covariance matrix of the first class is S1 =
∑

x∈class 1

(x− x̄1) (x− x̄1)
′ =

[

1 −0.25

−0.25 2.2

]

. The covariance matrix of the second class is S2 =
∑

x∈class 2

(x− x̄2) (x− x̄2)
′ =

Page 24 of 191.

25 2.4. Summary: PCA and LDA

[

2.3 −0.05

−0.05 3.3

]

. The within-class scatter matrix is given by SW = S1+S2 =

[

3.3 −0.3

−0.3 5.5

]

.

The between-class scatter matrix is given by SB = (x̄1 − x̄2) (x̄1 − x̄2)
′ =

[

29.16 20.52

20.52 14.44

]

.

The eigenvalues are calculated by solving
∣

∣S
−1
W SB − λI

∣

∣ = 0. The eigenvalues are λ1 =

12.2007 and λ2 = 0. U is the matrix whose columns are the corresponding orthonormal eigen-

vectors sorted by decreasing eigenvalues, thus U =

[

0.9088 −0.5755

0.4173 0.8178

]

. Let m = 1 < d = 2,

then U
∗ =

[

0.9088

0.4173

]

. The new sample space is given by

Z1 = X1U
∗ =

















4 2

2 4

2 3

3 6

4 4

















[

0.9088

0.4173

]

=

















4.4698

3.4868

3.0695

5.2302

5.3044

















and

Z2 = X2U
∗ =

















9 10

6 8

9 5

8 7

10 8

















[

0.9088

0.4173

]

=

















12.3522

8.7912

10.2657

10.1915

12.4264

















which are 5× 1 matrices, smaller than the original 5× 2 matrices. The discriminant vectors,

Z1 and Z2, can be used as the input or feature variables in other classification techniques,

for example neural networks and support vector machines.

2.4 Summary: PCA and LDA

PCA and LDA are both linear transformation techniques that are commonly used in dimen-

sion reduction but are quite different. PCA can be described as an unsupervised algorithm.

An unsupervised algorithm is an algorithm that only utilises predictor variables in the train-

ing or estimation of the model (Kun et al., 2006). PCA is an unsupervised algorithm since it

ignores class labels and its goal is to find the principal components that maximise the variance

in the data set. LDA is a supervised algorithm. A supervised algorithm is an algorithm that

has both predictor variables and their response in the training data (Laskov et al., 2005).

LDA is a supervised algorithm since it uses the class labels to compute the linear discrimi-

nants that will represent the axes that maximises the separation between the classes. LDA

often assumes normally distributed data whereas PCA makes no assumptions about the data

Page 25 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 26

(James et al., 2013, pg 138).

It is difficult to know which dimension reduction technique to use in a scenario that requires

a dimension reduction technique. If the response Y is given, one is advised to use the LDA

approach otherwise the PCA approach should be used (Martínez & Kak, 2001). In most cases

using LDA when the response is given is best but there are instances where PCA outperforms

LDA even when the response is given (Martínez & Kak, 2001).

2.5 PCA and LDA Applied to the Wine Data Set

Consider the wine data set discussed in section 2.1 on page 16. A classification tree was used

as the classifier of the type of wine using the thirteen feature variables. The data set was

split into a train and test set using a 70/30 proportion, that is 70% of the data set was used

to train the model and the rest was reserved as the test set. A simple classification tree

model was fitted on the training set. The train and test accuracy of the model is shown in

table 2.2 on page 30. More detailed results of all the models developed in this chapter are

available in appendix A.6 on page 110. The classifier attained a test accuracy of 82.69%.

|
Proline>=727.5

Flavanoids>=2.35 Dilution< 2.115
one

39/0/1

two

2/2/3

three

0/30/3

two

1/2/43

Figure 2.4: Tree plot of the classifier.

Figure 2.4 provides a plot of this classifier. The plot indicates that if the proline quantity of

the wine is greater than or equal to 727.5 and the quantity of flavanoids in the wine is greater

than or equal to 2.35 it is classified as belonging to class one. If the proline quantity of the

wine is greater than or equal to 727.5 and the quantity of flavanoids in the wine is less than

2.35 it is classified as belonging to class two. On the other hand if the proline quantity of

the wine is less than 727.5 and the quantity of D280 or OD315 in diluted wines is less than

Page 26 of 191.

27 2.5. PCA and LDA Applied to the Wine Data Set

2.115 it is classified as belonging to class three. If the proline quantity of the wine is less than

727.5 and the quantity of D280 or OD315 in diluted wines is greater than or equal to 2.115

it is classified as belonging to class two. From the plot it is clear to see that the quantity of

proline and flavanoids in the wine and the quantity of D280 or OD315 in diluted wines were

at the top in terms of variable importance during the training process.

The next step is to reduce the feature space of the model and assess any differences in classifier

performance. The first reduction technique that will be utilised is PCA. The results of the

PCA, available in table A.4 in appendix A.4 on page 104, are quite difficult to interpret. The

biplot of the principal components provided in figure 2.5 is also difficult to interpret. The

table indicates that the first principal component is mostly made up of flavanoids, phenols,

dilution and nonflavanoids. The second principal component is mostly made up of colour,

alcohol, proline and ash. However it is very difficult to assess the results unless a wine expert

or chemist is consulted.

Figure 2.5: The biplot of the PCA for the wine data set.

Page 27 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 28

|
PC2>=−0.6379

PC1< 0.7938

one

41/0/3

three

0/34/0

two

1/0/47

(a) Tree plot of the classifier on reduced feature
space using PCA.

|
LD2< −14.15

LD1< −8.723

one

42/0/0

three

0/34/0

two

0/0/50

(b) Tree plot of the classifier on reduced feature
space using LDA.

Figure 2.6: Tree plot of the classifier on reduced feature space.

A classification tree model was fit on the reduced feature space. The number of principal

components used is eight. The scree plot and cumulative plot (figures 2.7a and 2.7b) were

used to determine the number of principal components that should be utilised in the classifier.

Figure 2.7a shows that as you approach eight principal components the graph starts to con-

verge and because of this eight principal components were used to fit the model. In addition

an investigation was conducted to determine the number of principal components that result

in the best model. This analysis confirmed that using eight principal components to train the

classifier resulted in the highest accuracy (see figure 2.8a). However the accuracy rates were

quite similar. The R code for the investigation is available in appendix A.7 on page 121.

(a) Scree plot. (b) Cumulative scree plot.

Figure 2.7: Principal components analysis results.

Page 28 of 191.

29 2.5. PCA and LDA Applied to the Wine Data Set

(a) Classification tree accuracy for various numbers
of principal components.

(b) Projection of the reduced feature space.

Figure 2.8: Wine data accuracy and reduced feature space.

The training and test accuracy of the optimal model is given in table 2.2 and shows that

applying PCA to the data set resulted in an improved test accuracy of 92.31%. This is

definitely an improvement and it demonstrates the power of PCA as a dimension reduction

technique and how it can result in improved model performance. Figure 2.6a provides a plot

of this model. The plot indicates that if the second principal component of the observation

is less than -0.6379 then the observation is classified as belonging to class two. If the second

principal component of the observation is greater than or equal to -0.6379 and the first

principal component of the observation is less than 0.7938 the observation is classified as

belonging to class one. If the second principal component of the observation is greater than

or equal to -0.6379 and the first principal component of the observation is greater than

or equal to 0.7938 the observation is classified as belonging to class three. The first and

second principal components were definitely important variables in this model. The full

classification tree results are available in appendix A.6 on page 110. After reducing the data

set using LDA a classification tree model was built using the reduced feature space. Figure

2.8b shows how the classes are distributed on the LDA reduced feature space made up of two

linear discriminants. Clearly LDA produces a feature space which separates the classes.

The results of the classifier using the LDA reduced feature space are given in table 2.2.

The model had a test accuracy of 98.08% which is the highest test accuracy for the three

tree classifiers. Using LDA to reduce the feature space of this data set improves model

performance. The results in table 2.2 show that LDA is the better reduction technique in

the context of this example and reduction techniques considered. As discussed in section 2.4

this could be due to the fact that classification and LDA as a reduction method are both

supervised techniques whereas PCA is an unsupervised technique. Figure 2.6b provides a

Page 29 of 191.

Chapter 2 Principal Components and Linear Discriminant Analysis 30

plot of the tree classifier constructed using the linear discriminants. If the second linear

discriminant of the observation is greater than or equal to -14.15 then it is classified as

belonging to class two. If the second linear discriminant of the observation is less than -

14.15 and the first linear discriminant of the observation is less than -8.723 the observation

is classified as belonging to class one. If the second linear discriminant of the observation is

less than -14.15 and the first linear discriminant of the observation is greater than or equal

to -8.723 the observation is classified as belonging to class three. The full classification tree

results are available in appendix A.6 on page 110.

Table 2.2: Classification tree results.

Model Train accuracy Test accuracy

Classification tree 0.9127 0.8269
Classification tree PCA 0.9683 0.9231
Classification tree LDA 1.0000 0.9808

Repeated 7-fold cross validation was used to ensure reliability of these results, the results are

provided in table 2.3. All three models had a slightly higher accuracy using repeated 7-fold

cross validation. The dimension reduction techniques were still effective in improving model

performance with LDA still being the best performing technique.

Table 2.3: 7-fold cross validation accuracy for the wine classification trees.

Model Accuracy

Classification tree 0.8600
Classification tree PCA 0.9509
Classification tree LDA 0.9944

Page 30 of 191.

Chapter 3

Neural Networks

Machines are used to carry out many tasks that used to be performed by humans and have

significantly reduced the average person’s amount of hard labour, for example people used to

hand wash clothes but since the invention of washing machines most people have completely

stopped hand washing their clothes. Machines are really fast at completing tasks but when

they were introduced they could not complete complicated tasks such as pattern recognition

in real time (Fausett, 1994, pg1). On the other hand the human brain can recognise familiar

patterns almost instantaneously (Veelenturf, 1995, pg 1). This is because the human brain

parallel processes information. Cognitive science focuses on the study of interpretation of

thought processes resulting from exposure to some type of input and learning which is the

accumulation of knowledge derived from studying examples (Izenman, 2008, pg 315). The

brain is arguably the most complex organ in the human body which makes the task of

understanding it difficult (Müller et al., 1995, pg 12). Ramón y Cajál (1911) (as cited in

Haykin (1994, pg 1)) pioneered the research on understating the human brain and introduced

the idea of neurons as the structural constituents of the brain. Neurons, or nerve cells, form

the building blocks of the nervous system (Izenman, 2008, pg 316). Neurons are typically

five to six orders slower than silicon logic, the building blocks of machines (Haykin, 1994,

pg 1). The brain has a large number of neurons with numerous interconnections between

them which makes up for the slow operation rate of a neuron compared to a silicon logic

gate (Haykin, 1994, pg 1). It is estimated that there are one hundred billion neurons in the

human brain with each neuron having ten thousand connections to other neurons (Hanif,

2015). This complex system makes the brain a tremendously efficient system. The brain can

be likened to a computer that is highly complex, nonlinear, parallel processing and has the

ability to organise neurons to perform tasks such as pattern recognition many times faster

than the fastest digital computer to date (Haykin, 1994, pg 1).

The brain owes much of its efficiency to experience. The human brain has an accelerated

development within the first two years after birth. During the early stages of development

about one million synapses are formed every second (Haykin, 1994, pg 2). Synapses are joints

which mediate the interactions between neurons. Before the 1990s man-made machines used

31

Chapter 3 Neural Networks 32

to perform their computations sequentially, step by step (Veelenturf, 1995, pg 1). Man-made

machines are made up of many silicon logic gates or building blocks that have different

and specific functions and come together to carry out the overall function of the machine.

Unfortunately when one of those building blocks fails the entire machine stops working until

the relevant building block is repaired. Neurons, the building blocks of the human brain,

have identical functions and as a result if any one of the neurons fail the system will continue

to carry out its tasks since another neuron can be trained to take over the responsibility of

the damaged neuron (Fausett, 1994, pg 7). This characteristic of the brain was used as a

criteria in the 1940s when researching the possibility of designing machines that would put

the world one step closer to having more intelligent systems (Müller et al., 1995, pg 13). The

introduction of artificial neural networks, commonly referred to as neural networks, was a

first step in this direction.

3.1 Human Nervous System

The human nervous system can be divided into two main parts: The peripheral nervous sys-

tem (PNS) and the central nervous system (CNS). The PNS carries information to and from

the CNS. The PNS consists of sensory and motor neurons. Sensory neurons are nerve cells

responsible for converting external stimuli from the organism’s environment into information

that is transported to the CNS via receptors. Motor neurons are the nerve cells responsible

for carrying messages from the CNS out to the muscles and glands via effectors. The CNS

consists of the brain and the spinal cord. Haykin (1994, pg 6) demonstrates that the human

nervous system can be split into a three-stage system as shown in figure 3.1 (adapted from

Haykin (1994, pg 6)). Central to the system is the brain or cerebral cortex represented by

the neural network block. The cerebral cortex consists of a vast network of interconnected

neurons (Izenman, 2008, pg 316) and receives information, processes it and makes suitable

decisions. In figure 3.1 the arrows going from left to right represent the incoming trans-

mission of information bearing signals through the system. The arrows going from right to

left indicate the presence of feedback in the system. The receptors convert stimuli from the

human body or the external environment into electrical impulses that convey information to

the neural network. The effectors convert the electrical impulses from the neural network

into identifiable responses as system outputs. An example of a stimuli is touching a hot

stove. Sensory nerves in the skin travel to the receptors where they are converted into a

message that is transported to the brain. The brain translates the received information as

pain and decides how the body should respond, for example pulling your hand away and that

information is sent via the effectors. The response is sent by the motor cells back to the hand

which results in someone pulling their hand away.

Page 32 of 191.

33 3.2. Biological Neurons

Figure 3.1: The human nervous system.

3.2 Biological Neurons

Understanding the structure of a biological neuron is fundamental in order to understand

the structure of an artificial neuron. Detailed investigations of neural cells, conducted using

the electron microscope, revealed that all neurons are constructed from the same basic parts

independent of their size or shape (Müller et al., 1995, pg 3). A biological neuron has four

key components that are of particular interest in understanding an artificial neuron, namely

its dendrites, cell body or soma, axon and synapses. The dendrites are a tree like structure

(see figure 3.2) which receives information or signals from other adjacent neurons and carries

the signals towards the soma. The signals are electric impulses that are transmitted across a

synaptic gap by means of a chemical process (Müller et al., 1995, pg 5). The chemical process

adjusts the incoming signals, typically by scaling the frequency of the signals received, in a

way similar to the purpose of the weights in an artificial neural network (Fausett, 1994, pg

5) as discussed in section 3.4 on page 35. The soma is the heart of the cell, contains the

nucleus and is responsible for the growth and maintenance of the neuron (Hanif, 2015). The

soma combines the incoming signals, similar to the combining method in an artificial neuron.

When sufficient input is received from the signals, the generated neural activity is carried by

the axon, a single long fibre, to other neurons across a synaptic gap referred to as a synapse

(Hanif, 2015). Synapses are joints between neurons which transmit signals from one neuron

to another.

It is often assumed that a cell either shoots a signal or does not at any particular point in

time in order to treat transmitted signals as binary (Fausett, 1994, pg 5). This is why binary

or sigmoid functions are the most common activation functions in artificial neural networks.

These activation functions are also beneficial when used in neural networks due to the simple

relationship between the value of the function at a point and the value of the derivative at

that point which reduces the computational burden during training (Fausett, 1994, pg 17).

The frequency of shooting varies and can be viewed as a signal of either greater or lesser

Page 33 of 191.

Chapter 3 Neural Networks 34

magnitude which corresponds to looking at discrete time steps and summing all activity at

a particular point in time in an artificial neuron.

Figure 3.2: A biological neuron.

3.3 Artificial Neurons

An artificial neuron, first introduced by McCulloch & Pitts (1943), is an information-processing

unit that is fundamental to the operation of an artificial neural network (Hanif, 2015). Haykin

(1994, pg 8) indicates that there are three basic components of an artificial neuron:

1. Connecting links, each of which is characterised by a weight of its own;

2. A method, typically adding, of combining input signals which are weighted by the

respective connecting links of the artificial neuron;

3. An activation function for limiting the amplitude of the output of the neuron.

Consider the basic structure of an artificial neuron as shown in figure 3.3. Like the synapses

of a biological neuron, the connecting links provide a pathway for input signals coming from

an input source or surrounding neurons to enter the neuron. The input signals are adjusted

by the weight of the connecting link they are traveling through. The adjusted input signals

travel to the accumulator. Similar to the function of the soma in the biological neuron, the

accumulator uses a method to combine the incoming input signals and the result of this is

referred to as the net input of the neuron. The net input travels to the activation function

where the activation function is applied to the net input and the resulting value is the output

of the neuron which is often referred to as the activation of the neuron.

Page 34 of 191.

35 3.4. Artificial Neural Networks

Figure 3.3: The basic structure of an artificial neuron.

A neuron sends its activation as an input signal to several other surrounding neurons. Only

one activation signal is sent at a time. Consider figure 3.4 (adapted from Fausett (1994, pg

4)). Neuron Ne4 receives input signals from neurons Ne1, Ne2 and Ne3 . The activations or

output signals of these neurons are denoted X1, X2, and X3 respectively. The weights on the

connections from Ne1, Ne2 and Ne3 to Ne4 are w1, w2 and w3 respectively. The net input

heading towards neuron Ne4 is the sum of the weighted signals from neurons Ne1, Ne2 and

Ne3, namely w1X1 + w2X2 + w3X3. The output, Y , released by Ne4 is the result of passing

the net input through the activation function of neuron Ne4.

Figure 3.4: Artificial neurons (adapted from Fausett, 1994, pg 4).

3.4 Artificial Neural Networks

Artificial neural network models, or neural networks (NN), are algorithms for cognitive tasks

which are loosely based on concepts derived from research into the nature of the brain

(Müller et al., 1995, pg 13). In general, a neural network is a machine designed to mimic how

the brain carries out certain functions. Müller et al. (1995, pg 13) defines a neural network

as a directed graph with the following properties:

1. A state variable, the net input of the ith neuron Ni, associated with each node i;

Page 35 of 191.

Chapter 3 Neural Networks 36

2. A real-valued weight, wik, associated with each connecting link (ik) between two nodes

i and k;

3. A real-valued bias, bi, associated with each node i;

4. For each node, i, a transfer or activation function, fi [Nk, wik, bi, (k 6= i)], is defined to

determine the state of the node as a function of its bias, the weights of its incoming

links and of the states of the nodes connected to it by these links.

The nodes refer to the neurons, the links refer to the synapses and the bias is known as the

activation threshold (Dongare et al., 2012). Nodes without links towards them are called

input neurons, for example the nodes Ne1, Ne2, Ne3 in figure 3.4, and nodes without links

away from them are called output neurons, for example node Ne4 in figure 3.4. Some nodes

can be input and output neurons.

Suppose there exists an input vector X =
[

X1 X2 ... Xn

]′
where Xi ∈ R, transported

through connecting links, or synapses, to an accumulator (figure 3.5). The structure of a

neuron, from the input signal received from the connecting links to the output of the neuron

Y is shown in figure 3.5. Each connecting link, k, has a synaptic weight wk attached to

it. The input signal Xk traveling through connecting link k is multiplied by the synaptic

weight wk which results in wkXk being the signal reaching the accumulator from the kth

input connection. All the signals are summed up in the accumulator and yield w1X1 +

w2X2 + ...+wnXn =
n
∑

k=1

wkXk. A bias is also transported to the accumulator represented by

an additional weight b = w0 applied to input signal X0 = 1. The net input of the neuron,

denoted by N , is

N =b(1) + w1X1 + w2X2 + ... + wnXn

=w0X0 + w1X1 + w2X2 + ...+ wnXn

=

n
∑

k=0

wkXk = W
′
X

where W =
[

b w1 w2 ... wn

]′
is the weight vector and the input vector is adjusted

to include the bias term as X =
[

1 X1 X2 ... Xn

]′
. The net input of neuron N is

transported to the activation function f which helps in finding the mapping of the neuron

denoted as Φ (N). The activation function maps the value of N to some finite interval such

as [0, 1] or [−1, 1] which is referred to as the output of the neuron. The value Y denotes

the output of the neuron and is referred to as the activation of the neuron. Figure 3.6

illustrates an example of the activation of an activation function used by a neuron where

f (x) =







1, x ≥ 0

0, x < 0
. In this instance the activation function f is called a hard limit function

(hardlim) and transforms the value of N to the finite interval [0, 1].

Page 36 of 191.

37 3.4. Artificial Neural Networks

Figure 3.5: General structure of a neuron (adapted from Jäger, 2005).

Figure 3.6: The hard limit activation function.

Example 3.1. Consider the neuron shown in figure 3.7. In this neuron f (x) = 1 if x ≥ 0

or f (x) = 0 if x < 0, w1 = −1, w2 = 1, b = −1
2
, X1 = 1

4
and X2 = 3

4
. The mapping of the

neuron is

Φ(N) =







1, w0X0 + w1X1 + w2X2 ≥ 0

0, w0X0 + w1X1 + w2X2 < 0.

The net input of the neuron N is calculated as follows

N =
n
∑

k=0

wkXk = w0X0 + w1X1 + w2X2

=−
1

2
.1− 1.

1

4
+ 1.

3

4
= 0.

The activation of the neuron y is given by Φ (N) = Φ (0) = 1.

Page 37 of 191.

Chapter 3 Neural Networks 38

Figure 3.7: The neuron in example 1.1.

In general there are more than one neurons in a NN. Consider figure 3.8, a NN with two

neurons, N1 and N2, and two inputs, X1 and X2. The weights of the connecting links

between neuron one and the inputs are w11 and w12. The weights of the connecting links

between neuron two and the inputs are w21 and w22. For every weight wij, i represents the

number of the neuron and j represents the input to that neuron. Thus wij is the weight of

the connection from input j to neuron i. The net inputs of these neurons are

N1 =w11X1 + w12X2 + b1

N2 =w21X1 + w22X2 + b2.

The net inputs can be written in matrix form as

N =

[

N1

N2

]

=

[

w11 w12

w21 w22

][

X1

X2

]

+

[

b1

b1

]

.

W =

[

w11 w12

w21 w22

]

is referred to as the weight matrix and b =

[

b1

b2

]

is referred to as the

bias vector. An activation function is applied to the net inputs.

Figure 3.8: An example of a NN with two neurons.

Page 38 of 191.

39 3.4. Artificial Neural Networks

Example 3.2. Suppose there exists a neural network with two inputs and two neurons where

the weight matrix is given by

[

1 1
2

2 −1

]

and the bias vector is given by

[

−1
2

2

]

. If the inputs

are X =

[

−1

2

]

the net inputs, N =
[

N1 N2

]′
, are

N =WX+ b
[

N1

N2

]

=

[

w11 w12

w21 w22

][

X1

X2

]

+

[

b1

b2

]

=

[

1 1
2

2 −1

][

−1

2

]

+

[

−1
2

2

]

=

[

−1
2

−2

]

.

The activation function is applied component wise to N =
[

N1 N2

]′
and yields output Y:

Y = Φ(N) = Φ

([

−1
2

−2

])

=

[

0

0

]

.

Figure 3.9: An example of a NN with three neurons.

Example 3.3. Consider the neural network with two inputs, X1 and X2, and three neurons,

N1, N2 and N3, as shown in figure 3.9. In matrix form the net inputs, N = WX+ b, of the

neurons are






N1

N2

N3






=







w11 w12

w21 w22

w31 w32







[

X1

X2

]

+







b1

b2

b3






.

The weight matrix of the neuron is W =







w11 w12

w21 w22

w31 w32






, a 3× 2 matrix, and the bias vector

is b =
[

b1 b2 b3

]′
.

Page 39 of 191.

Chapter 3 Neural Networks 40

In general a neural network with n inputs, X =
[

X1 X2 ... Xn

]′
, and m neurons has

weight matrix

W =













w11 w12 ... w1n

w21 w22 ... w2n

...
...

. . .
...

wm1 wm2 ... wmn













where wij represents the input to neuron i from input j and bias vector b =
[

b1 b2 ... bm

]′
.

The net input is given by

N = WX+ b













N1

N2

...

Nm













=













w11 w12 ... w1n

w21 w22 ... w2n

...
...

. . .
...

wm1 wm2 ... wmn

























X1

X2

...

Xn













+













b1

b2
...

bm













=













w01 w02 ... w0n

w21 w22 ... w2n

...
...

. . .
...

wm1 wm2 ... wmn

























1

X1

...

Xn













where X0 = 1 and w0k = bk. In general, the bias of each node, bi, is included in the first

column of the weight matrix.

3.5 Multi-layered Artificial Neural Networks

Outputs of a neural network can be used as inputs for another neural network. In this section,

a simplified version of the structure of an artificial neuron as shown in figure 3.10 will be used.

In figure 3.10, the circle encompasses three stages in a neural network: the accumulator, the

net input of the neuron and the application of the activation function on the net input of the

neuron.

Page 40 of 191.

41 3.5. Multi-layered Artificial Neural Networks

Figure 3.10: Simplified structure of an artificial neuron.

Consider the neural network represented in figure 3.8. Figure 3.11a shows the simplified

structure of this neural network. The output vector, Y =
[

Y1 Y2

]

, of this neural network

could be used as the inputs for another neural network which yields output vector Z =
[

Z1 Z2

]

as shown in figure 3.11b.

(a) Simplified structure of an artificial neural net-
work.

(b) Simplified structure of an artificial neural net-
work.

Figure 3.11: Simplified structures of artificial neural networks.

Combining the system from the inputs, X, in the neural network shown in figure 3.11a to

the output, Z, in the neural network shown in figure 3.11b results in a two layered neural

network shown in figure 3.12a. This neural network has two weight matrices W
1, for the

first layer represented in figure 3.11a, and W
2, for the second layers represented in figure

3.11b. The neural network has two bias vectors, b1 and b
2, for the first and second layer of

the neural network respectively which are included in the weight matrices. The output of

the first layer is given by

Y =

[

Y1

Y2

]

= f 1

(

W
1

[

X1

X2

])

where f 1 is the activation function of the first layer. The output of the second layer, the final

Page 41 of 191.

Chapter 3 Neural Networks 42

output of the two layered system, is given by

Z =

[

Z1

Z2

]

= f 2

(

W
2

[

Y1

Y2

])

where f 2 is the activation function of the second layer. The outputs in the middle of the

multi layered neural network, that is Y in figure 3.12a, are referred to as the hidden layer

and are usually not labeled in the diagram as is shown in figure 3.12b.

(a) A two-layered neural network. (b) A two-layered neural network.

Figure 3.12: Examples of two-layered neural networks.

Figure 3.13: An example of a four-layered neural network.

Figure 3.13 illustrates a multi-layered neural network with two hidden layers. The input

vector, X, is mapped to an output vector, Z. A neural network can be conceptualised as a

mapping between a n−dimensional space to a real valued vector. The input vector for the NN

shown in figure 3.13, can be thought of as objects whose features are extracted, measured

and stored in the feature vector X ∈ R
3, as numerical values in this instance, which are

classified into an output vector Z ∈ R
2 that may be in the form of classes, in this instance

two classes. If the feature vector is an element of the vector space R
n and the output vector

is an element of vector space R
l then the following lemma holds (Veelenturf, 1995, pg 10).

Lemma 3.4. A neural network with n inputs and l outputs is nothing else than a computing

machine for a mapping

Φ : Rn → R
l

Page 42 of 191.

43 3.6. Perceptrons

This mapping depends on the weights and biases of the neural network.

Thus neural networks can be used to perform classifications. This can be done by collecting

samples of feature vectors for each class, termed the training set, and training the neural

network by adapting the parameters, namely the weights and biases, of the neural network

in a way that results in the correct classification of the objects. Neural networks can be

used as a supervised learning model. When a new observation is collected its features are

extracted, measured and stored into a feature vector of the object. The feature vector is

presented to the neural network which classifies the object into the predicted class.

3.6 Perceptrons

A perceptron is a neural network that has one layer of neurons and the hardlim function as the

activation function. Example 3.2 on page 38 provides a simple illustration of a perceptron

with weight vector W
′ =

[

−1
2 −1 1

]

which includes bias b = −1
2
. In example 3.2, the

mapping of the neural network is

Φ (X) =







1, −1
2
−X1 +X2 ≥ 0

0 −1
2
−X1 +X2 < 0.

If observations with feature variables are such that Φ (X) = 0 then this obervation is assigned

to class zero. Observations with feature variables such that Φ (X) = 1 are assigned to class

one, resulting in a binary classifier.

Suppose features were extracted from ten observations which resulted in a two-dimensional

data set. Each observation belongs to one of the two classes. Table 3.1 shows how the

perceptron in example 3.2 maps the given data set where Y is the net output of the neural

network.

Table 3.1: Input-output mapping of a perceptron.

Y 0 1 0 0 1 1 0 0 0 1

X1 0 0 1 1 1 0 2 2 2 2
X2 0 1 0 1 2 3 0 1 2 3

Figure 3.14 represents the mapping graphically. Points assigned to class zero are labeled

with a circle and points assigned to class one are labeled with a square. The points can

be separated into two different classes by a decision boundary which is the straight line

−1
2
− X1 + X2 = 0. This line forms the decision boundary in that points are classified as

belonging to class zero or class one depending on which side of the line they fall. The decision

boundary has normal vector
[

−1 1
]′

which leads to the conclusion that the weight matrix

Page 43 of 191.

Chapter 3 Neural Networks 44

of a perceptron is the normal vector of the decision boundary and the bias determines the

distance between the decision boundary and the origin (Freund & Schapire, 1999).

Figure 3.14: Classification by a decision boundary.

It is possible to get another decision boundary that correctly separates these observations

into the two classes by adjusting the weights and bias accordingly. It is important to note

that the decision boundary is not unique. The perceptron can be generalised to provide a

solution for an n-dimensional data set, see figure 3.5 on page 37, assuming f is the hardlim

function. The mapping of the neural network is then given by

Φ (X) =







1, b+ w1X1 + w2X2 + ...+ wnXn ≥ 0

0 b+ w1X1 + w2X2 + ...+ wnXn < 0

which results in the decision boundary b + w1X1 + w2X2 + ... + wnXn = 0, a hyperplane in

R
n with normal vector equal to weight vector W′ = [w1, w2, ..., wn]. The perceptron can only

correctly separate the observations into the classes if the feature vectors are linearly separable.

If the the observations are linearly separable but classified incorrectly the perceptron follows

a learning procedure that involves adjusting the weights and bias of the perceptron with the

goal of correcting the classification of the misclassified observations. Given a learning task,

the neural network can learn its parameters until it reaches a state where all observations

are classified correctly. A learning task is a sample of inputs and desired outputs. Consider

the learning task represented in table 3.2 with three feature samples and t the target output

value. Suppose there exists a perceptron with one input and its decision boundary is given by

w0X0+w1X1 = 0. If the observations in the sample are linearly separable a learning procedure

can be used to train the perceptron in order for it to correctly separate the observations into

the classes.

Page 44 of 191.

45 3.6. Perceptrons

Table 3.2: Learning task for a perceptron with one input.

X0 X1 t

1 -1 0
1 0 0
1 −1

2
1

Suppose the perceptron has weight vector W
′ =

[

1
3

1
]

which includes bias b = 1
3
. The

mapping of the perceptron is

Φ1(X) = hardlim(
1

3
X0 +X1).

The perceptron starts the first round of learning by producing outputs for the given samples.

For the first sample in the data set, Φ1(X) = Φ1(1,−1) = hardlim(−2
3
) = 0 which is correct.

For the second sample in the data set, Φ1(X) = Φ1(1, 0) = hardlim(1
3
) = 1 which is incorrect

since t = 0 is the target value. This sample lies above the decision boundary when it should

be below. One way of solving this problem is to change the parameters of the perceptron such

that the decision boundary shifts in a counter clockwise direction, in other words, moving

the normal vector away from the sample vector. This can be achieved by subtracting the

sample vector from the normal vector which yields W
∗ = W −X where W

∗ =
[

−2
3

1
]′

is the new weight vector. The mapping of the updated perceptron is

Φ2(X) = hardlim(−
2

3
X0 +X1).

The perceptron starts the second round of learning by producing outputs for the given sam-

ples. For the first sample in the data set, Φ2(X) = Φ1(1,−1) = 0, which is correct. The

updated output of the second sample, Φ2(X) = Φ2(1, 0) = hardlim(−2
3
) = 0, is now cor-

rect. For the third sample in the data set, Φ2(X) = Φ2(1,
1
2
) = hardlim(−1

6
) = 0 which is

incorrect. This can be corrected by shifting the decision boundary in a clockwise direction,

that is adding the sample vector to the normal vector which yields W
∗∗ = W

∗ + X where

W
∗∗ =

[

1
3

3
2

]′
, the new weight vector. The mapping of the updated perceptron is

Φ3(X) = hardlim(
1

3
X0 +

3

2
X1).

The perceptron starts the third round of learning by producing outputs for the given samples.

For the first sample in the data set, Φ3(X) = Φ1(1,−1) = 0, which is correct but the output

of the second sample in the data set, Φ3(X) = Φ3(1, 0) = hardlim(−1
6
) = 0, is now incorrect.

Again the weights and bias of the perceptron are adjusted to solve the problem. This time,

the sample vector is subtracted from the normal vector which yields W∗∗∗ = W
∗∗−X where

W
∗∗∗ =

[

−2
3

3
2

]′
the new weight vector which includes the bias. The mapping of the

Page 45 of 191.

Chapter 3 Neural Networks 46

updated perceptron is

Φ4(X) = hardlim(−
2

3
X0 +

3

2
X1).

The perceptron starts the forth round of learning by producing outputs for the given samples.

This perceptron gives the correct target value for all three sample vectors. At this point it

is safe to stop and conclude that the perceptron has completed the learning procedure and

responds well to all samples. Φ4 (X) is the final mapping and −2
3
X0 +

3
2
X1 = 0 is the final

decision boundary.

It is difficult to visualise this decision boundary when the dimension of the feature vector is

more than two but it can be derived mathematically. The learning procedure can be adapted

for a perceptron with more than one input. Consider the learning task presented in table

3.3 for a perceptron with n inputs. The decision boundary of the perceptron is given by

w0X0 + w1X1 + w2X2 + ...+ wnXn = 0.

Table 3.3: A learning task for a perceptron with n inputs.

X0 X1 X2 · · · Xn t

1 x1
1 x1

2 · · · x1
n t1

1 x2
1 x2

2 · · · x2
n t2

1
...

...
...

...
...

Define an error term e = t − a where a = Φ (X) is the calculated output of the sample.

The learning procedure of the perceptron suggests that if the target value is t = 0 and the

calculated output is a = 1 then e = −1 and hence subtract the sample vector from the

weight vector which yields W
∗ = W − X. If the target value is t = 1 and the calculated

output is a = 0 then e = 1 and hence add the sample vector to the weight vector which yields

W
∗ = W+X. If the target value is t = a then e = 0 and hence do nothing, that is W∗ = W.

In general the new weight vector after mapping each sample is defined by W
∗ = W + eX.

This learning procedure is summarised in the following algorithm (Stephen, 1990):

Algorithm 3.1 The Learning Procedure of a Perceptron.

• For sample j calculate output aj using feature sample X
j;

• Determine the error ej = tj − aj ;

• Update the weight vector by W
∗ = W + ejX

j;

• Repeat the steps until ej = 0 for all observations or samples.

This algorithm was defined and discussed for the case where there is one neuron. However it

can be generalised for the m neurons case. This is done by training each neuron on its own

and combining the final result. Unfortunately this algorithm will only be successful if the

observations are linearly separable (Freund & Schapire, 1999).

Page 46 of 191.

47 3.7. Adaptive Linear Neuron

3.7 Adaptive Linear Neuron

An adaptive linear neuron (adaline) is a single layered neural network that only has one

neuron and uses the identity or purelin function as its activation function (Fausett, 1994,

pg 80). Like the perceptron, the adaline can be trained to separate observations into classes

given a learning task. For this perceptron ej ∈ {−1, 0, 1} since it uses the hardlim function as

its activation function. The adaline factors in the distance of the feature vector to the decision

boundary since it uses the identity function as the activation function. The error term, ej ,

is defined as ej = tj − dj where dj is the output of the mapping Φ (X). The weight vector is

updated by the rule W
∗ = W + ηejX

j where η > 0 is referred to as a learning coefficient.

This learning procedure is called the Widrow-Hoff learning algorithm (Ungar et al., 1990).

Consider the learning task shown in table 3.2 on page 37. Suppose the learning rate is given by

η = 0.3. For the first sample in the data set, d1 = Φ1(X
1) = Φ1(1,−1) = purelin(−2

3
) = −2

3

which is less than the target value. e1 = t1 − d1 = 2
3

and the weight vector is updated as

follows:

W
∗ = W + ηe1X

1 =

[

1
3

1

]

+ 0.3 ·
2

3

[

1

−1

]

=

[

0.5333

0.8

]

which results in a new mapping Φ2 (X
1) = 0.5333X0+0.8X1. Φ2 (X

1) = Φ2(1,−1) = −0.2667

which is still less than the target value but closer to it which reduces the error. For the second

sample d2 = Φ2(X
2) = Φ2(1, 0) = purelin(0.5333) = 0.5333 which is greater than the target

value and e2 = t2 − d2 = 0.5333. The weight vector is updated by

W
∗∗ = W

∗ + ηe2X
2 =

[

0.5333

0.8

]

+ 0.3 · 0.5333

[

1

0

]

=

[

0.3733

0.8

]

which results in a new mapping Φ3 (X
2) = 0.3733X0 + 0.8X1. Φ3 (X

2) = Φ3(1, 0) = 0.3733

which is still greater than the target value but closer to it which reduces the error. For the

third sample in the data set d3 = Φ3(X
3) = Φ3(1,

1
2
) = purelin(0.7733) = 0.7733 which is

less than the target value and e3 = t3 − d3 = 0.2267. The weight vector is updated by

W
∗∗∗ = W

∗∗ + ηe3X
3 =

[

0.3733

0.8

]

+ 0.3 · 0.2267

[

1
1
2

]

=

[

0.4413

0.8340

]

which results in a new mapping Φ4 (X
3) = 0.4413X0 + 0.8340X1. For the fourth sample

Φ4 (X
4) = Φ4(1,

1
2
) = 0.8583 which is still less than the target value but closer to it and

reduces the error.

The steps can be repeated until the procedure reaches a state where the actual outputs are

as close as possible to the target values and the total error over all p training samples, as

given by

E(b, w1) =

p
∑

j=1

Ej =

p
∑

j=1

(tj − dj)
2 =

p
∑

j=1

(tj − (b+ w1X
j
1))

2,

Page 47 of 191.

Chapter 3 Neural Networks 48

is minimised. This error function is referred to as the sum of squared errors and depends on

the weights and bias of the adaline. The aim is to find a weight w∗ and bias b∗ that minimises

the sum of squared errors. For p samples, the mapping of the training samples is













1 X1

1 X2

1
...

1 Xp













[

b

w1

]

=













t1

t2
...

tp













X

[

b

w1

]

= t.

Multiplying both sides by X
′ yields X

′
X

[

b

w1

]

= X
′
t

X
′
X =

[

1 1 · · · 1

X1 X2 · · · Xp

]













1 X1

1 X2

1
...

1 Xp













=









p
p
∑

j=1

Xj

p
∑

j=1

Xj
p
∑

j=1

(Xj)
2









.

In the case that X′
X is non singular, a solution to the system is given by

[

b∗

w∗
1

]

= (X′
X)

−1
X

′
t

which yields the local minimum of error function E. For the learning task given in table 3.2,

X =







1 −1

1 0

1 1
2






, t =







0

0

1






and hence

X
′
X =

[

1 1 1

−1 0 1
2

]







1 −1

1 0

1 1
2






=

[

3 −1
2

−1
2

5
4

]

and

X
′
t =

[

1 1 1

−1 0 1
2

]







0

0

1






=

[

1
1
2

]

.

The optimal w∗
1 and b∗, which give the local minimum of error function E, are then given by

[

b∗

w∗
1

]

= (X′
X)

−1
X

′
t =

[

3 −1
2

−1
2

5
4

]−1 [

1
1
2

]

=

[

0.4286

0.5714

]

.

The mapping of the adaline is Φ (X) = 0.4286X0 + 0.5714X1.

Page 48 of 191.

49 3.7. Adaptive Linear Neuron

This solution can be adapted for p training samples with an n−dimensional feature vector.

The goal is to minimise the error function, namely

E(b, w1, w2, · · · , wn) =

p
∑

j=1

ej =

p
∑

j=1

(tj − dj)
2 =

p
∑

j=1

(tj − (b+ w1X
j
1 + w2X

j
2 + · · ·+ wnX

j
n))

2

For p samples the mapping of the training samples is XW = t, that is













1 X1
1 X1

2 · · · X1
n

1 X2
1 X2

2 · · · X2
n

...
...

...
...

...

1 X
p
1 X

p
2 · · · Xp

n































b

w1

w2

...

wn



















=













t1

t2
...

tp













.

Multiplying both sides with X
′ yields X

′
XW = X

′
t where

X
′
X =



















1 1 · · · 1

X1
1 X2

1 · · · X
p
1

X1
2 X2

2 · · · X
p
2

...
...

...
...

X1
n X2

n · · · Xp
n































1 X1
1 X1

2 · · · X1
n

1 X2
1 X2

2 · · · X2
n

...
...

...
...

...

1 X
p
1 X

p
2 · · · Xp

n













=























p
p
∑

j=1

X
j
1 · · ·

p
∑

j=1

Xj
n

p
∑

j=1

X
j
1

p
∑

j=1

(

X
j
1

)2
· · ·

p
∑

j=1

X
j
1X

j
n

...
...

. . .
...

p
∑

j=1

Xj
n

p
∑

j=1

X
j
1X

j
n · · ·

p
∑

j=1

(Xj
n)

2























.

In the case where X′
X is non singular, a solution to the system is given by W

∗ = (X′
X)−1

X
′
t

which yields the local minimum of error function E.

Another way to minimise the error would be through the use of the method of steepest descent

also called the gradient descent method (Golden, 1986). Steepest descent optimisation is an

algorithm for finding the nearest local minimum of a function, assuming the gradient of the

function can be computed. The method of steepest descent starts at a point x0 and, as many

times as needed, moves from point xi to the next point xi+1 by minimising along the line

extending from point xi in the direction of the negative of the gradient at point xi. Suppose

there exists a differentiable function f : Rn → R. The direction of the steepest descent is the

vector −∇f (X0). Consider the function h (s) = f(X0 + su), where u is a unit vector. By

the chain rule

h′ (s) =
∂f

∂X1

∂X1

∂s
+ · · ·+

∂f

∂Xn

∂Xn

∂s

=
∂f

∂X1
u1 + · · ·+

∂f

∂Xn

un = ∇f
(

X
0 + su

)

· u

and hence h′ (0) = ∇f (X0) · u = ||∇f (X0) || cos θ, where θ is the angle between ∇f (X0)

and u. h′ (0) is minimised when θ = π which yields u =
∇f(X0)
||∇f(X0)|| and h′ (0) = −||∇f (X0) ||.

Page 49 of 191.

Chapter 3 Neural Networks 50

Minimising f is the same as finding the minimum of h′ (s) for this choice of u. That

is choose an input vector X
0 as a starting point. Choose a value s, s > 0, such that

f (X0 + s∇f (X0)) < f (X0) . Update the input vector by rule X
1 = X

0 + s∇f (X0) and

repeat the last step. This will result in a series of input vectors (X0,X1,X2, . . .) that satisfy

the condition f(Xj+1) < f(Xj) < . . . < f(X0). The method should stop after a certain

number of iterations or when the function values |f(Xj+1)− f(Xj)| are sufficiently small or

when ||Xj+1 −X
j|| < δ (Golden, 1986).

3.8 Multi-layered Perceptrons and Adalines

The neural networks that have been discussed thus far are referred to as feed-foward neural

networks and are restricted in their application as they can only classify linearly separable

patterns. Feed-foward means the signals are only transported in one direction (Jäger, 2005).

Consider table 3.4a which is a truth table that represents the XOR problem (adapted from

Jäger (2005)). Suppose A and B are propositions with value 1 if the proposition is true and

value 0 if the proposition is false. The XOR operation, denoted by A⊕B, is true if and only

if one proposition, either A or B, is true but not both. The goal is to build a neural network

that represents and solves the problem. Table 3.4b represents the problem in the form of a

learning task.

Table 3.4: The XOR-problem.

(a) A truth table of
the XOR prob-
lem.

A B A⊕ B

1 1 0
1 0 1
0 1 1
0 0 0

(b) Learning task
of the XOR-
problem.

X1 X2 t

1 1 0
1 0 1
0 1 1
0 0 0

Figure 3.15 indicates that it is not possible to separate the observations by a single linear

decision boundary meaning this is a non-linearly separable problem. Perceptrons can only

be used for linearly separable cases which implies it can not be used to solve this problem.

However a combination of two perceptrons, that is two decision boundaries, may solve the

problem. Let the first decision boundary separate the top right observation from the others

(figure 3.16a) and the second decision boundary separate the bottom left observation from

the others (figure 3.16b).

Page 50 of 191.

51 3.8. Multi-layered Perceptrons and Adalines

Figure 3.15: A graphical representation of the XOR problem.

Table 3.5a shows a learning task for the first perceptron which corresponds to the AND logical

operation. Denoting the two classes as class zero and class one, the top right observation is

assigned to class one and the rest of the observations are assigned to class zero. A normal

vector of the decision boundary, that is the weight vector, could for example be
[

1 1
]

which makes the distance from the origin −1. Normalising the normal vector to length one

results in W
1 =

[

1√
2

1√
2

]

. Therefore a perceptron that can form this decision boundary

has weight vector W
1 =

[

1√
2

1√
2

]

and bias b1 = −1 and produces the decision boundary

given by 1√
2
X1 +

1√
2
X2 − 1 = 0.

Table 3.5: The XOR-problem using two perceptrons.

(a) Learning task
for the first
perceptron.

X1 X2 t

1 1 1
1 0 0
0 1 0
0 0 0

(b) Learning task
for the second
perceptron.

X1 X2 t

1 1 0
1 0 1
0 1 1
0 0 1

Table 3.5b shows a learning task for the second perceptron which corresponds to the OR

logical operation. The bottom left observation is assigned to class zero and the rest of the

observations are assigned to class one. A normal vector of the decision boundary, that is

the weight vector, could for example be
[

1 1
]

which makes the distance from the origin

−1
2
. Normalising the normal vector to length one results in W

2 =
[

1√
2

1√
2

]

. Therefore a

perceptron that can form this decision boundary has weight vector W
2 =

[

1√
2

1√
2

]

and

bias b2 = −1
2

and produces the decision boundary is given by 1√
2
X1 +

1√
2
X2 −

1
2
= 0.

Page 51 of 191.

Chapter 3 Neural Networks 52

(a) XOR problem: The first decision boundary. (b) XOR problem: The second decision boundary.

Figure 3.16: The XOR problem decision boundaries.

Combining the perceptrons results in a neural network with two layers which is trained using

the learning task shown in table 3.6a. A new learning task, table 3.6b, can be formed which

uses the outputs of this neural network as inputs for a perceptron with one neuron and the

target values as solutions to the XOR logical operation which results in a linearly separable

problem.

Table 3.6: The XOR-problem: Two neurons.

(a) Learning task of the
neural network.

X1 X2 Y1 Y2

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

(b) Learning
task of the
outputs of
the neural
network.

Y1 Y2 t

1 1 0
0 1 1
0 1 1
0 0 0

A perceptron trained to learn this task could have weight vector W3 =
[

− 1√
2

1√
2

]

and bias

b3 = −1
2
. The final solution is a two layered neural network. This problem has demonstrated

that multi-layered perceptron can be used to solve non-linearly separable patterns. This

perceptrons can be trained to classify observations given a learning task. Thus suggests

that there may be a way to learn the task given in table 3.4b without having to break it

down. Consider a neural network used to solve the problem and suppose an input vector

X =
[

1 1
]

is passed which produces output Z = 1. This is an incorrect classification.

The source of the misclassification is unclear as it could be coming from the weights or the

intermediate outputs of the neural network. This is often referred to as the credit assignment

problem as the error cannot be accredited to the hidden neurons (Jäger, 2005). The reason

for this is that perceptrons use the hardlim function as the activation function. One way

to avoid this is to use the identity function as the activation function which transforms the

Page 52 of 191.

53 3.9. Backpropagation

neural network into a multi-layered adaline with mapping

[

Y1

Y2

]

=

[

w11 w12

w21 w22

][

X1

X2

]

+

[

b1

b2

]

for the hidden layer and mapping Z =
[

w31 w32

]

[

Y1

Y2

]

+ b3 for the output neuron. This

dissolves into an adaline with no hidden layer since

Z =
[

w31 w32

]

[

Y1

Y2

]

+ b3 =
[

w31 w32

]

[[

w11 w12

w21 w22

][

X1

X2

]

+

[

b1

b2

]]

+ b3

=
[

w31 w32

]

[

w11 w12

w21 w22

][

X1

X2

]

+
[

w31 w32

]

[

b1

b2

]

+ b3

=
[

w31w11 + w32w21 w31w12 + w32w22

]

[

X1

X2

]

+ [w31b1 + w32b2 + b3]

=
[

w′
31 w′

32

]

[

X1

X2

]

+ b′3

Thus a multi-layered adaline can be transformed to a single layered neuron. However adalines

can only classify linear patterns so the non-linearly separable patterns problem has not been

solved. One thing that could be done is to consider using other activation functions that

mimic the hardlim function. An example of such an activation function is the log-sigmoid

function (logsig), f (x) = 1
1+e−βx

which approximates the hardlim function as β → ∞. A

feed-foward neural network with these activation functions is referred to as a multi-layered

perceptron. Multi-layered perceptrons provide a means to approximate continuous functions

and therefore solve arbitrary learning tasks (Riedmiller, 1994).

3.9 Backpropagation

In general, the problem discussed in the previous section is of the form F : [0, 1]n → R
m. This

can be written as a vector of m real-valued component functions where for each function fi a

neural network can be found. Consider a multi-layered perceptron with one hidden layer and

no biases. The learning task of the neural network consists of p samples with n−dimensional

feature vectors and p target variables. In the forward pass an input X
j is presented to the

neural network and the output Zj is produced. The aim is to minimise the error function ej

by using the steepest-descent optimisation method as a learning rule. The error function ej

is defined by ej =
1
2
||Zj − t

j||2 = 1
2
((zj1 − t

j
1)

2 + (zj2 − t
j
2)

2 + · · ·+ (zjm − tjm)
2) for each sample

j ∈ 1, 2, . . . p. At output neuron k, Zk = g(Nk) = g(vk1Y1 + vk2Y2 + · · · + vkqYq) where Yl

denotes the output of the hidden layer. The error function E at neuron k is defined by

Page 53 of 191.

Chapter 3 Neural Networks 54

E =
1

2
||Zk − tk||

2 =
1

2
||g (Nk)− tk||

2 =
1

2
||g(v1Y1 + v2Y2 + · · ·+ vqYq)− tk||

2.

The gradient of E using the chain rule is given by

∂E

∂vki
=

∂E

∂Zk

·
∂Zk

∂Nk

·
∂Nk

∂vki
= (Zk − tk) · g

′ (Nk) · Yi.

Denote δoutk = (Zk − tk) · g
′ (Nk). The steepest descent update rule for the weights leading to

output neuron k is v∗ki = vki − ηδoutk Yi for learning coefficient η > 0 and i = 1, 2, . . . , q. This

rule is similar to the delta rule with a little adjustment (Riedmiller, 1994). At hidden neuron

l, Yl = f(Nl) = f(wl1X1 +wl2X2 + · · ·+wlnXn). The error function E at neuron l is defined

by

E =
1

2
||Yl − tl||

2 =
1

2
||f (Nl)− tl||

2 =
1

2
||f(wl1X1 + wl2X2 + · · ·+ wlnXn)− tl||

2.

The gradient of E using the chain rule is given by

∂E

∂wli

=
∂E

∂Yl

·
∂Yl

∂Nl

·
∂Nl

∂wli

.

Similar to the output neuron, ∂Yl

∂Nl
= f ′ (Nl) and ∂Nl

∂wli
= Xi. The error function, E, of the

neural network for each sample is given by

E =
1

2
||Z − t||2 =

1

2
((z1 − t1)

2 + (z2 − t2)
2 + · · ·+ (zm − tm)

2)

where each output neuron k is defined by Zk = g(Nk) = g(vk1Y1 + vk2Y2 + · · · + vkqYq).

Replace each Zk by g(Nk) = g(vk1Y1 + vk2Y2 + · · ·+ vkqYq). Computing ∂E
∂Yl

yields

∂E

∂Yl

=
∂E

∂Z1
·
∂Z1

∂N1
·
∂N1

∂Y1
+

∂E

∂Z2
·
∂Z2

∂N2
·
∂N2

∂Y2
+ · · ·+

∂E

∂Zm

·
∂Zm

∂Nm

·
∂Nm

∂Yl

= (Z1 − t1) · g
′ (N1) · v1l + (Z2 − t2) · g

′ (N2) · v2l + · · ·+ (Zm − tm) · g
′ (Nm) · vml

= δout1 · v1l + δout2 · v2l + · · ·+ δoutm · vml =

m
∑

r=1

δoutr · vrl.

The gradient of E at the hidden neurons is given by

∂E

∂wli

=

(

m
∑

r=1

δoutr · vrl

)

· f ′ (Nl) ·Xi

Denote δhiddenl as δhiddenl =

(

m
∑

r=1

δoutr · vrl

)

· f ′ (Nl). The steepest descent update rule for the

weights leading to hidden neuron l is w∗
li = wli − ηδhiddenl Xi for η > 0 and i = 1, 2, . . . , n. Let

el be the error signal at the hidden neuron l where el = δout1 ·v1l+δout2 ·v2l+ · · ·+δoutm ·vml. The

values δout1 , δout2 , . . . , δoutm are computed at the output neuron. This suggests that they somehow

Page 54 of 191.

55 3.9. Backpropagation

travel from the output neurons back to the hidden neuron l through the connecting links

where they are used to measure the size of the error at hidden neuron l thereby distributing

the error in the entire network. This strategy is called backpropagation (Riedmiller, 1994).

Backpropagation is the algorithmic way in which the outputs of a neural network are sent

back to the input recursively. The following algorithm describes how the backpropagation

strategy works for a multi-layered perception with c layers.

Algorithm 3.2 The backpropagation Algorithm.

• Initialise all the weight and biases by small random numbers;

• For each training sample:

– propagate the sample vector through the layers and calculate Y 0 = X and Y j =
fj (W

jY j−1) for j = 1, 2, . . . , c;

– calculate δck = (Y c
k − tk) · f

′
c(N

c
k), δ

j
k =

(

∑

δ
j+1
l w

j+1
lk

l

)

· f ′
j(N

j
k);

– update the weights by w
j
k = w

j
k + ηδ

j
kY

j−1.

• Repeat until the error over all training samples is sufficiently small.

Backpropagation is an algorithm used in computing to learn from errors, for example mis-

classification and improve performance. Using this tool computers can keep guessing and get

better and better at guessing like humans do at one particular task. Computers can build

a network of a lot of small tasks and are very good at each small task. This results in a

system that can do bigger things like drive a car (Riedmiller, 1994). Neural networks can

generalise to objects or data it has not seen before. The computer guesses a value and use

calculus to calculate the error via partial derivatives. The error is fixed to get a better guess

and backpropagate again to find a more fine tuned error. This method of repeatedly guessing

shows the recursiveness of backpropagation. To demonstrate the backpropagation algorithm

consider a two-layered neural network. For the first layer the neural network has weights and

biases

W
1 =

[

0.1 0.2

−0.1 0.5

]

, b1 =

[

−0.1

0.2

]

and for the second layer the neural network has weights and biases

W 2 =

[

0.2

−0.1

]

, b2 = 0.1.

Suppose input vector X =

[

1

1

]

is passed to the neural network. For the forward pass the

Page 55 of 191.

Chapter 3 Neural Networks 56

net input of the first layer, N1 = W
1
X+ b

1, is given by

[

N1

N2

]

=

[

0.1 0.2

−0.1 0.5

][

1

1

]

+

[

−0.1

0.2

]

=

[

0.2

0.6

]

and the output of the first layer is

Y =

[

Y1

Y2

]

= logsig

([

N1

N2

])

= logsig

([

0.2

0.6

])

=

[

0.5498

0.6457

]

where logsig denotes the activation function which is the log-sigmoid function. The net input

of the second layer, N2 = W
2′
Y + b

2, is given by

N2 =
[

0.2 −0.1
]

[

0.5498

0.6457

]

+ 0.1 = 0.1454

and the output of the second layer is Z = 0.1454 since the activation function is the purelin

function. For the backward pass the deltas are computed as

δout = Z − 0 = 0.1454

for the outer layer and

δhidden1 = δout · 0.2 · Y1 (1− Y1) = 0.007198,

δhidden2 = δout · −0.1 · Y2 (1− Y2) = −0.003326

for the hidden layer. Using η = 0.1 as the learning rate, the weights which include the biases

are updated as follows:

W
2 =







0.2

−0.1

0.1






− 0.1 · δout







Y1

Y2

1






=







0.1920

−0.1094

0.08546







for the outer layer and







0.1

0.2

−0.1






− 0.1 · δhidden1







1

1

1






=







0.09928

0.1993

−0.1007







for the first neuron and







−0.1

0.5

0.2






− 0.1 · δhidden2







1

1

1






=







−0.09967

0.5003

0.2003







Page 56 of 191.

57 3.10. The Wine Data Neural Network

for the second neuron. Thus W
1 =







0.09928 −0.09967

0.1993 0.5003

−0.1007 0.2003






. After updating the weights

the method is repeated until the error over all training samples is sufficiently small. The

computations become more and more tedious hence computers are used to carry out the

algorithm.

3.10 The Wine Data Neural Network

Consider the wine data set introduced in chapter 2. The goal is to build a neural network

model that will correctly classify unseen observations into classes. The R code used to build

the model is provided in appendix B.1 on page 127. The same data partition used in chapter

2, section 2.5 on page 26, was used to build and evaluate the performance of the neural

network classifier.

Figure 3.17: A neural network for the wine data set.

Figure 3.17 illustrates the neural network model built using the wine data set. Table 3.7

summarises the accuracies of this neural network. The test accuracy was 96.15%, with two

observations belonging to class two being incorrectly classified to class three by the model.

Repeated 7-fold cross validation increased the accuracy to 98.14%. The training and test

accuracy rates of the neural network classifier built using the original data set are higher

than that of the classification tree classifier built in chapter 2, section 2.5 on page 26. The

accuracy of the neural network model built using repeated 7-fold cross validation is more

than 12% higher than that of the classification tree model, see table 2.3 on page 30. For

the wine data set the neural network model performs better than the classification tree

model in correctly classifying observations. Detailed results of the model are available in

Page 57 of 191.

Chapter 3 Neural Networks 58

appendix B.2 on page 129. These results demonstrate how powerful and accurate a simple

neural network model can be when used to solve classification problems.

Table 3.7: Accuracy of the wine data neural network.

Train accuracy Test accuracy Cross validation accuracy

1.0000 0.9615 0.9814

Page 58 of 191.

Chapter 4

Support Vector Machines

Support vector machines (SVM) are a supervised learning model used mostly as an approach

to classification (James et al., 2013, pg 337). SVMs were introduced by Vapnik and colleagues

(Cortes & Vapnik, 1995) and have, since the early 1990’s, become one of the most favoured

modeling techniques because they perform well in a variety of settings (James et al., 2013,

pg 337). SVM were developed in four major steps. Initially they were introduced as a

new learning machine for two-group or binary classification problems with linearly separable

data known as maximum margin classifiers (Zhang, 2011). Secondly kernel functions were

incorporated into the maximum margin classifiers and their formulation became similar to

that of the current SVM (Zhang, 2011). Thirdly support vector classifiers were added to

the SVM family which allow some observation to be on the incorrect side of the margin to

cater for non-linearly separable training sets (Zhang, 2011). Lastly support vector classifiers

were extended to support vector machines which result from enlarging the feature space in a

specific way using kernels (James et al., 2013, 350). This chapter focuses on the development

of SVM and is introduced by way of the well known iris data set.

4.1 The Iris Data Set

The Iris data set includes the measurements in centimeters of the variables sepal length and

width and petal length and width, respectively, for 50 flowers from each of three species of

Iris. The plant species are setosa, versicolor, and virginica. For the sake of simplicity, this

example will only consider flowers of the setosa species and the versicolor species and will

only consider the measurements of the sepal length and width for those species. Table C.1

in appendix C.1 on page 133 shows the first ten observations of the subsetted data set. The

goal is predict the species of flower based on the sepal length and width. Figure 4.1 is a

scatter plot of these data. It is clear from this plot that these data are linearly separable

by, for example, the straight line from the point 2.25,4 (approximately) to the point 4.5,7

(approximately).

59

Chapter 4 Support Vector Machines 60

Figure 4.1: Scatter plot of the subsetted Iris data.

4.2 Linear Separability

Consider an input variable of n observations denoted by X. The observations of X belong to

one of two classes. The goal is to find a decision boundary that separates the observations

into their respective classes. A decision boundary is a surface that separates an input vector

space into two sets, one for each class. As an example consider the data represented in figure

4.2a. In this figure it is clear that the observations represented by △ can be separated from

the observations represented by # by a straight line for example as shown in figure 4.2b. The

fact that the observations of X can be separated into the two groups by a straight line means

that X is linearly separable. Linearly separable data refers to data that can be separated

by a linear decision surface (Zaki et al., 2014, pg 571). In this example the linear decision

surface is in the form of a straight line.

Page 60 of 191.

61 4.3. Non-Linear Separability

(a) Linearly separable data. (b) Decision boundary for linearly separable data.

Figure 4.2: Linear separability.

4.3 Non-Linear Separability

Sometimes it is not possible to separate the observations of X by a linear decision boundary.

Consider figure 4.3a. Unlike the observations in figure 4.2a, it does not seem as though the

observations of X in figure 4.3a can be separated by a single linear decision surface. Data

that can not be separated by a linear decision surface is referred to as non-linearly separable

data (Izenman, 2008, pg 376). In figure 4.3b an alternative non-linear decision boundary, the

ellipse, successfully separates the observations into the classes is shown.

(a) Non-linearly separable data. (b) Decision boundary for non-linearly separable
data.

Figure 4.3: Non-linear separability.

Page 61 of 191.

Chapter 4 Support Vector Machines 62

4.4 The Maximal Margin Classifier

Maximal margin classifiers (MMC) determine a decision rule which separates data using a

maximal margin (Franc & Hlaváč, 2003). In a p-dimensional space a hyperplane is a flat

affine linear (p− 1)-dimensional subspace (James et al., 2013, pg 338). An affine subspace is

a subspace that does not necessarily pass through the origin. In two dimensions a hyperplane

can be defined by the equation β0+β1X1+β2X2 = 0 for the parameters β0, β1 and β2, which

is the equation of a straight line. Figure 4.4a shows a hyperplane in two dimensions defined

by the equation 1 + 2X1 +X2 = 0. This means that if there exists any point X = (X1, X2)
′

such that 1+2X1+X2 = 0 holds, then the point is on the hyperplane. In three dimensions a

hyperplane can be defined by the equation β0+ β1X1 +β2X2+ β3X3 = 0, for the parameters

β0, β1, β2 and β3, which is the equation of a linear 3-dimensional surface. Figure 4.4b shows

a hyperplane in 3 dimensions. This means that if there exists any point X = (X1, X2, X3)
′

such that β0 + β1X1 + β2X2 + β3X3 = 0 holds, then the point is on the hyperplane.

(a) A hyperplane in two dimensions. (b) A hyperplane in three dimensions.

Figure 4.4: Examples of hyperplanes.

More formally a hyperplane in a p-dimensional space is defined by the equation β0 + β1X1 +

β2X2 + ... + βpXp = 0 for the parameters β0,β1, ..., βp (James et al., 2013, pg 338). If there

exists a point X = (X1, X2, ..., Xp)
′ such that the equation holds, then the point is on the

hyperplane. Suppose that X is not a point on the hyperplane, that is X is on one side

of the hyperplane. This can be represented by β0 + β1X1 + β2X2 + ... + βpXp > 0 or

β0 + β1X1 + β2X2 + ... + βpXp < 0. Thus a hyperplane can be used as a rule dividing the

p-dimensional space into two parts or components. This is illustrated in two dimensions in

figure 4.5a. The feature space X = (X1, X2)
′ consists of observations that belong to one of

two classes, denoted by triangles or circles, separated by a two dimensional hyperplane. None

of the observations are points on the hyperplane. The circles represent the instance where

β0 + β1X1 + β2X2 > 0 and the triangles represent the instance where β0 + β1X1 + β2X2 < 0.

The hyperplane has successfully separated the observations into the two classes.

Page 62 of 191.

63 4.4. The Maximal Margin Classifier

(a) Hyperplane in two dimensions. (b) Hyperplanes in two dimensions.

Figure 4.5: Examples of hyperplanes.

Consider X, n observations on a p-dimensional feature space, and suppose that the out-

come variable Y is a known qualitative response belonging to one of two classes, denoted

by y1, y2, ..., yn ∈ {−1, 1}. The goal is to develop a classifier that will use the feature

measurements X to classify the observations into the two classes. Assuming the data is lin-

early separable, a hyperplane can be used to separate the observations into the two classes

(James et al., 2013, pg 339). If there exists a separating hyperplane for the data set then

there will be an infinite number of such hyperplanes. This is because any given separating

hyperplane can be shifted a little up or down, or rotated without coming into contact with

any of the observations (James et al., 2013, pg 241). Figure 4.5b shows how shifting the

hyperplane in figure 4.5a results in a second, third and more separating hyperplanes.

A classification rule may be constructed using a separating hyperplane (Franc & Hlaváč,

2003). There is one separating hyperplane which maximises the distance between the hy-

perplane and the observations. This hyperplane is called the maximal margin hyperplane or

the optimal separating hyperplane (James et al., 2013, pg 341). The maximal margin hyper-

plane classifies all data and maximises the minimal distance, also referred to as the margin,

between the data and the hyperplane (Gentile, 2001).

The margin is constructed by calculating the euclidean distance from each observation to a

given separating hyperplane (James et al., 2013, pg 341). In figure 4.6 the maximal margin

classifier is shown. The dotted lines represent the edges of the maximal margin. New observa-

tions are classified based on which side of the maximal margin hyperplane they belong to and

this is known as the maximal margin classifier (MMC). Observations which lie on the edge of

the margin are called support vectors. In figure 4.6 the support vectors are shaded in black.

The maximal margin hyperplane depends directly on support vectors since any change, or

movement, of these vectors will result in a shift of the maximal margin hyperplane whereas

any movement of the other observations will not affect the separating hyperplane.

Page 63 of 191.

Chapter 4 Support Vector Machines 64

Figure 4.6: A maximal margin hyperplane in two dimensions.

As per Hastie et al. (2001, pg 371) and Mammone et al. (2009a), consider the construction of

a MMC using a set of n linearly separable training observations on a two dimensional space,

x1 =

(

x11

x12

)

, ..., xn =

(

xn1

xn2

)

, and associated class labels y1, ..., yn ∈ {−1, 1} . The MMC

is based on the class of hyperplanes β0 + x
′β = 0, where β =

(

β1

β2

)

, x ∈ R
2 and β0 ∈ R,

corresponding to decision the function f (x) = sign (β0 + x
′β). The points x which lie on

the hyperplane satisfy f (x) = β0 + x
′β = 0 . β defines a direction perpendicular or normal

to the hyperplane. Changing the value of β0 shifts the hyperplane parallel to itself. Figure

4.7 illustrates a two dimensional hyperplane defined by the straight line f (x) = β0+x
′β = 0

with the following properties (Hastie et al., 2001, pg 105):

1. For any two points x1 and x2 lying on the hyperplane, (x1 − x2)
′
β = 0;

2. β∗ = β

‖β‖ is the vector, of length one, which is normal to the hyperplane;

3. For any point x0 on the hyperplane, β0 + x
′
0β = 0, which is equivalent to x

′
0β = −β0;

4. The signed distance of any point x to the hyperplane is given by thelog of (x− x0)
′
β∗

where

Page 64 of 191.

65 4.4. The Maximal Margin Classifier

(x− x0)
′
β∗ = (x− x0)

′ β

‖ β ‖
sinceβ∗ =

β

‖ β ‖

= (x′β − x
′
0β)

1

‖ β ‖

= (x′β + β0)
1

‖ β ‖
since x′

0β = −β0

=f (x)
1

‖ f ′ (x) ‖
.

Thus f (x) is proportional to the signed distance from x to the hyperplane defined by f (x) =

β0 + x
′β = 0.

Figure 4.7: The linear algebra of a hyperplane.

Assume that on the edge of the margin the decision function has value ±1. Consider two

points, denoted by x+ and x−, that fall on the edge of the margin and belong to the positive

and negative class respectively, that is β0 + x
′
+β =1 and β0 + x

′
−β = −1. If an observation

is known to belong to the positive class, that is yi = +1, then β0 + x
′
+β ≥ 1 and hence

yi
(

β0 + x
′
+β
)

≥ 1. If an observation is known to belong to the negative class, that is

yi = −1, then β0 + x′
−β ≤ −1 and hence yi

(

β0 + x
′
+β
)

≥ 1. Thus the same equation

is obtained for both the positive and negative classes and hence generalising for both the

positive and negative classes for any x yields

yi (β0 + x
′β)− 1 ≥ 0. (4.1)

Page 65 of 191.

Chapter 4 Support Vector Machines 66

The observations that lie on the edge of the margin, namely those x such that

yi (β0 + x
′β)− 1 = 0

are called the support vectors. The width of the margin is the euclidean distance between

the support vectors belonging to the positive class and the support vectors belonging to the

negative class. The margin is given by

(x+ − x−)
′
β∗=

(

(1− β0)β
−1 − (−1 + β0)β

−1
) β

‖ β ‖

= ((1− β0)− (−1 + β0))β
−1 β

‖ β ‖

and hence

(x+ − x−)
′
β∗ =

2

‖ β ‖
(4.2)

Equation 4.2 shows that maximising the margin is equivalent to the maximisation of 2f
β

f

subject to equation 4.1. This can be reduced to the maximisation of 1f
β

f or equivalently the

minimisation of
f
β

f
or the minimisation of 1

2

f
β

f2 which is more mathematically convenient.

This problem can be solved using Lagrange multipliers:

L =
1

2
‖ β ‖2 −

n
∑

i=1

αi [yi (β0 + x
′
iβ)− 1] (4.3)

where αi ≥ 0, for i = 1, ..., n are the Lagrange multipliers. Differentiating equation 4.3 with

respect to β yields

∂L

∂β
= β−

n
∑

i=1

yiαixi = 0 (4.4)

Differentiating equation 4.3 with respect to β0 yields

∂L

∂β0

=
n
∑

i=1

yiαi = 0. (4.5)

Solving equations 4.4 and 4.5 yields

n
∑

i=1

yiαixi = β (4.6)

n
∑

i=1

yiαi = 0 (4.7)

Page 66 of 191.

67 4.5. The Support Vector Classifier

respectively. Substituting equations 4.6 and 4.7 back into equation 4.3 results in the following

dual optimisation problem: Maxixmise L with respect to αi subject to
n
∑

i=1

yiαi = 0, αi ≥

0, i = 1, ..., n.

L =
1

2
‖

n
∑

i=1

yiαixi ‖
2 −

n
∑

i=1

αi

[

yi

(

β0 + x
′
i

n
∑

i=1

ykαkxk

)

− 1

]

=
1

2







√

√

√

√

(

n
∑

i=1

yiαixi

)2






2

−

n
∑

i=1

αi

[(

yiβ0+

n
∑

i=1

yiykαix
′
ixk

)

− 1

]

=
1

2

(

n
∑

i=1

yiαixi

)2

−
n
∑

i=1

yiαiβ0−
n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk+

n
∑

i=1

αi

=
1

2

(

n
∑

i=1

yiαix
′
i

)(

n
∑

i=1

ykαkxk

)

− β0

n
∑

i=1

yiαi−
n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk+

n
∑

i=1

αi

=
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk

)

− β00−
n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk+

n
∑

i=1

αi

=
n
∑

i=1

αi −
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk

)

Maximising L under the given constraints is a quadratic programming problem (Hastie et al.,

2001, pg 373). A quadratic programming problem is a quadratic optimisation problem with

linear constraints (Hastie et al., 2001, pg 373). If the data is linearly separable, the global

optimal solution αi, i = 1, ..., n, exists (Hastie et al., 2001, pg 374). For quadratic program-

ming, the values of the primal and dual objective functions coincide at the optimal solutions

if they exist. This is called zero duality gap.

Observations that are associated with positive αi are support vectors for the positive class

while observations with negative αi are support vectors for the negative class. From equation

4.6 the decision function is given by f (x) = β0 +
∑

i∈S
yiαix

′
ix, where S is the set of support

vector indices.

Often a separating hyperplane does not exist and as a result there is no MMC (James et al.,

2013, pg 343). This problem required development of a hyperplane that almost separates the

classes which lead to the establishment of what is known as the support vector classifier.

4.5 The Support Vector Classifier

Sometimes the observations of X are non-linearly separable and as a result cannot be perfectly

separated by a hyperplane. It may be very difficult to find a MMC that can perfectly separate

observations into two classes and if it does exist it may have a small margin (James et al.,

Page 67 of 191.

Chapter 4 Support Vector Machines 68

2013, pg 344). Ideally the margin should be large as the margin is the euclidean distance

of an observation from the separating hyperplane which can be thought of as a measure of

confidence that the observation was correctly classified (James et al., 2013, pg 344). The

support vector classifier (SVC) was developed such that it did not necessarily perfectly sep-

arate the observations into two classes. The SVC, or the soft margin classifier, allows for a

small proportion of the observations to be on the wrong side of the margin or the incorrect

side of the hyperplane rather than finding the maximal margin such that all observations

are not only on the correct side of the hyperplane but also on the correct side of the margin

(James et al., 2013, pg 345).

Consider figure 4.8a where the observations of X belong to one of two classes denoted by

circles and triangles. It is clear that there is no hyperplane that can perfectly separate the

observations into the classes. In figure 4.8b the observations are separated by a hyperplane but

some observations are on the incorrect side of the hyperplane. In this example six observations

belonging to the class denoted by circles are on the incorrect side of the hyperplane and three

of the observations belonging to the class denoted by triangles are on the incorrect side of

the hyperplane. The two dimensional linear decision boundary in figure 4.8b is an example

of a SVC since it allows some observations to violate the classification.

(a) Non-linearly separable data set. (b) Support vector classifier.

Figure 4.8: A data set that can not be separated by a hyperplane.

Consider a set of n non-linearly separable training observations on a two dimensional space

with associated class labels y1, ..., yn. The construction of the SVC is similar to the construc-

tion of an MMC but allows some misclassifications on the training data. To obtain this, the

constraints on equation 4.1 are relaxed but only when necessary. Slack variables, denoted

by ξi, are introduced and allow individual observations to be on the incorrect side of the

hyperplane. The slack variable ξi indicates where the ith observation is located relative to

the margin and hyperplane. If ξi = 0 then the ith observation is on the correct side of the

margin and hyperplane. If 0 < ξi < 1 then the ith observation is on the correct side of the

hyperplane but on the incorrect side of the margin. If ξi > 1 then the ith observation is on the

Page 68 of 191.

69 4.5. The Support Vector Classifier

incorrect side of the hyperplane (Abe, 2005, pg 22). Introducing the slack variables changes

the constraint in equation 4.1 to

yi (β0 + x
′β) ≥ 1− ξi (4.8)

ξi ≥ 0,
n
∑

i=1

ξi < some constant ∀i.
n
∑

i=1

ξi is an upper bound on the number of training errors

that are allowed. The optimisation problem to be solved is thus

1

2
‖ β ‖2 +γ

n
∑

i=1

ξi

subject to equation 4.8 where γ is a parameter chosen to penalise misclassification errors. A

large γ corresponds to assigning a higher penalty to errors. Similar to the linearly separable

case, introducing the Lagrange multipliers αi and µi, results in

L =
1

2
‖ β ‖2 +γ

n
∑

i=1

ξi−
n
∑

i=1

αi [yi (β0 + x
′
iβ)− (1− ξi)]−

n
∑

i=1

µiξi (4.9)

where αi, µi ≥ 0, i = 1, ..., n. Differentiating equation 4.9 with respect to β, β0 and ξi yields

∂L

∂β
= β−

n
∑

i=1

yiαixi = 0 (4.10)

∂L

∂β0

=
n
∑

i=1

yiαi = 0 (4.11)

∂L

∂ξi
= γ

n
∑

i=1

−

n
∑

i=1

αi−

n
∑

i=1

µi = 0 (4.12)

respectively. Solving equations 4.10, 4.11 and 4.12 results in

n
∑

i=1

yiαixi = β (4.13)

n
∑

i=1

yiαi = 0 (4.14)

n
∑

i=1

αi = γ

n
∑

i=1

−
n
∑

i=1

µi (4.15)

respectively. Substituting 4.13 and 4.14 into equation 4.9 results in the optimisation problem

with linear constraints:

Page 69 of 191.

Chapter 4 Support Vector Machines 70

L =
1

2

n n
∑

i=1

yiαixi

2n
+γ

n
∑

i=1

ξi−
n
∑

i=1

αi

[

yi

(

β0 + x
′
i

n
∑

i=1

ykαkxk

)

− (1− ξi)

]

−
n
∑

i=1

µiξi

=
1

2







√

√

√

√

(

n
∑

i=1

yiαixi

)2






2

+ γ

n
∑

i=1

ξi−
n
∑

i=1

αi

[(

yiβ0+
n
∑

i=1

yiykαix
′
ixk

)

− (1− ξi)

]

−
n
∑

i=1

µiξi

=
1

2

(

n
∑

i=1

yiαixi

)2

+ γ

n
∑

i=1

ξi−

n
∑

i=1

yiαiβ0−

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk+

n
∑

i=1

αi (1− ξi)−

n
∑

i=1

µiξi

=
1

2

(

n
∑

i=1

yiαix
′
i

)(

n
∑

i=1

ykαkxk

)

− β0

n
∑

i=1

yiαi−

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk + γ

n
∑

i=1

ξi+

+

n
∑

i=1

αi (1− ξi)−

n
∑

i=1

µiξi

=
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk

)

− β00−
n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk+

n
∑

i=1

αi−
n
∑

i=1

αiξi+

+

(

γ

n
∑

i=1

ξi−
n
∑

i=1

µiξi

)

=
n
∑

i=1

αi −
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk

)

−
n
∑

i=1

αiξi +

(

n
∑

i=1

αiξi

)

=
n
∑

i=1

αi −
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkx
′
ixk

)

where L is maximised subject to
n
∑

i=1

yiαi = 0, 0 ≤ αi ≤ γ, i = 1, ..., n. From equation 4.13

the decision function is given by f (x) = β0+
∑

i∈S
yiαix

′
ix, where S is the set of support vector

indices.

4.6 Support Vector Machines

The SVC separates data that is not linearly separable by a linear decision boundary. It allows

for a few observations to be on the wrong side of the margin and/or on the wrong side of the

hyperplane. Sometimes the SVC results in a large number of observations on the wrong side

of the hyperplane. This defeats the goal of classification and hence other methods need to be

considered. Figure 4.3a demonstrates observations that are non-linearly separable and would

result in a relatively large number of misclassified observations if a linear decision boundary is

used to separate them. The use of decision boundaries that are not linear is the generalisation

of SVC to SVM. Figure 4.3b is an example of a non-linear decision boundary. The SVM used

to classify the observations into one of the two classes in figure 4.9 results from enlarging

Page 70 of 191.

71 4.6. Support Vector Machines

the feature space in a specific way using kernels (James et al., 2013, pg 350). In figure 4.9

a radial kernel was used and the resulting SVM successfully classified the observations into

one of the two classes.

Figure 4.9: A SVM using a radial kernel.

In order to introduce a non-linear decision boundary between the classes suppose the original

points, xi, in the feature space are mapped to points Φ(xi) in a high dimensional feature

space, denoted H , using some non-linear transformation Φ (Zaki et al., 2014, pg 583). The

transformed sample is then {Φ (xi) , yi} where yi is the class of the observation. In sections 4.4

and 4.5, the described optimisation problems are in the form of inner product 〈xi,xk〉 = x
′
ixk.

When xi is replaced by Φ (xi) in the construction of the model to accommodate non-linear

decision boundaries then the data would only enter the optimisation problem by way of the

inner product 〈Φ (xi) ,Φ (xk)〉 = Φ(xi)
′ Φ (xk) (Izenman, 2008, pg 379). Computing the inner

products in the high dimensional space, H , is very difficult and that is why Cortes & Vapnik

(1995) introduced the kernel trick. The kernel trick is a less computationally expensive

method used to compute inner products of the form 〈Φ (xi) ,Φ (xk)〉 in feature space H . The

idea behind the kernel trick is that instead of computing these inner products in H , which

would be computationally expensive because of its high dimensionality, they are computed

using a non-linear kernel function K (xi,xk) = Φ (xi)
′ Φ (xk) in the original feature space.

This trick speeds up the computations (Izenman, 2008, pg 379). In this manner a linear SVM

is computed but where the computations are carried out in some other space.

Page 71 of 191.

Chapter 4 Support Vector Machines 72

4.6.1 Kernel Functions and their Properties

A kernel is a function K such that for all xi, xk ∈ X,

K (xi,xk) = Φ (xi)
′ Φ (xk)

where Φ is the mapping Φ : xi → Φ (xi). The most important consequence of the kernel

function is that the dimension of feature space H does not affect the computations of the inner

products, in fact there is no need to know the explicit form of Φ (Mammone et al., 2009b).

The only information used about the training sample is their kernel matrix defined as the

square matrix K ∈ R
n×n such that Kik = K (xi,xk) for a set of vectors {x1,x2, . . . ,xn} ⊆ X

and some kernel function K. The following are the properties of a kernel function which

ensure it is a kernel for some feature space H :

• The function must be symmetric, that is

K (xi,xk) = Φ (xi)
′ Φ (xk) = Φ (xk)

′ Φ (xi) = K (xk,xi) .

• The function must satisfy the Cauchy-Schwarz inequality, that is

K (xi,xk)
2 =

(

Φ (xi)
′ Φ (xk)

)2

≤‖ Φ (xi) ‖
2‖ Φ (xk) ‖

2

≤
(

Φ (xi)
′Φ (xi)

) (

Φ (xk)
′ Φ (xk)

)

≤ K (xi,xi)K (xk,xk)

• The matrix Kik = K (xi,xk), i, k = 1, . . . , n, must be positive semi-definite, that is the

matrix must have non-negative eigenvalues for any set of data points xi ∈ X, where X

is a finite feature space.

The support vector classifier described in section 4.5 determines linear decision boundaries

in the original feature space. To adapt the classifier such that it computes the linear decision

boundary in feature space H using the kernel trick the optimisation problem in equation 4.9

and its solution can be adjusted such that the Lagrange function is of the form

L =
n
∑

i=1

αi −
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkΦ (xi)
′ Φ (xk)

)

(4.16)

=
n
∑

i=1

αi −
1

2

(

n
∑

i=1

n
∑

k=1

yiykαiαkK (xi,xk)

)

(4.17)

Page 72 of 191.

73 4.7. The Iris Data Support Vector Machine

The solution function, f(x), is given by

f (x) = β0 +
∑

i∈S
yiαiΦ (xi)

′Φ (x)

= β0 +
∑

i∈S
yiαiK (xi,x)

where L is maximised subject to
n
∑

i=1

yiαi = 0, 0 ≤ αi ≤ γ, i = 1, ..., n.

4.6.2 Examples of Kernel Functions

Table 4.1 provides examples of commonly used kernel functions K (xi,xk) (Karatzoglou et al.,

2006), where α > 0 is a scale parameter, γ is a parameter chosen to penalise misclassification

errors, c ≥ 0 and d is an integer. The polynomial and radial basis kernel functions provided

in table 4.1 are used in the application chapter (see chapter 5 on page 75) of this thesis to

develop support vector machine classifiers. More commonly used kernels are available in

Karatzoglou et al. (2006).

Table 4.1: Examples of kernel functions.

Kernel K (xi,xk)

Polynomial of degree d (α (x′
ixk) + c)d

Radial basis function exp (−γ ‖ xi − xk ‖2)
Sigmoid tanh (α (x′

ixk) + c)

4.7 The Iris Data Support Vector Machine

Consider the subset of the Iris data set introduced in section 4.1 on page 59. In this section

we fit a support vector machine classifier on these data and evaluate how well it classifies

unseen observations. The data set was split into a train and test set using a 70/30 proportion,

that is 70% of the data set was used to train the model and the rest was reserved as the

test set. In section 4.1 it was established that these data are linearly separable and hence a

linear kernel support vector machine was used to build the model. The term support vector

machine is used loosely as, since the classes are separable by a linear boundary, a maximal

margin classifier (see section 4.4) is used to determine the classification boundary. The R

code used to build the model is provided in appendix C.2 on page 133. Table 4.2 provides

the resulting confusion matrix for the test data after the support vector machine was trained

on the training data. The classifier had a 100% test accuracy rate as it correctly classified

all unseen observations, that is it correctly classified all observations from the test data set.

Introducing repeated 7-fold cross validation during model training resulted in a slightly lower

accuracy of 99.08%. A plot of the support vector machine classifier is shown in figure 4.10.

Page 73 of 191.

Chapter 4 Support Vector Machines 74

Points around zero are on the decision boundary. In section 4.4 support vectors are defined

as observations which lie on the edge of the margin of the decision boundary. In figure 4.10

the support vectors are shaded in black to distinguish them from the other points. The

classification resulted in nine support vectors. Detailed results of the model are available in

appendix C.3 on page 135.

Table 4.2: The confusion matrix of the subsetted Iris data SVM.

Predicted
Actual

setosa versicolor

setosa 15 0
versicolor 0 15

Train accuracy Test accuracy Cross validation accuracy

1.0000 1.0000 0.9908

Figure 4.10: Plot of the SVM: training data.

Page 74 of 191.

Chapter 5

Default in Payment on Credit Cards

Credit scoring is the practice of analysing a person’s background and credit application in

order to predict the risk associated with awarding the person credit (Mester, 1997). The pur-

pose of this chapter is to develop a credit scoring system and compare the results of several

classification models used to predict credit card payment default. Yeh & Lien (2009) utilised

discriminant analysis, logistic regression and Bayes classifier to develop a credit scoring sys-

tem. They used a data set generated from a bank in Taiwan which is available on the UCI

Machine Learning Repository. The data set has thirty thousand (30 000) observations of the

input vector, X =
[

X1 X2 · · · X23

]′
, and a binary response Y. If the client defaults on

their credit card payment Y = 1, otherwise Y = 0. The input vector has twenty-three (23)

feature variables, namely:

• X1: The amount of credit given to the client which includes both their individual credit

and their family, or supplementary, credit.

• X2: The gender of the client. X2 = 1 if the client is a male and X2 = 2 if the client is

a female.

• X3: The level of education of the client. 1 = graduate school, 2 = university, 3 = high

school and 4 = other.

• X4: The marital status of the client. 1 = married, 2 = single and 3 = other.

• X5: The age of the client in years.

• X6 to X11: The client’s history of past monthly payment records from April to Septem-

ber in 2005 where X6 = the repayment status in September, X7 = the repayment status

in August, . . ., X11 = the repayment status in April. The measurement scale for the

repayment status is: -1 = pay duly, 1 = payment delay for one month, 2 = payment

delay for two months, . . .,8 = payment delay for eight months, 9 = payment delay for

nine months and above.

75

Chapter 5 Default in Payment on Credit Cards 76

• X12 to X17: The amount of the client’s bill statement from April to September in 2005

where X12 = amount of bill statement in September, X13 = amount of bill statement

in August, . . ., X17 = amount of bill statement in April.

• X18 to X23: The amount of the client’s previous payment from April to September in

2005 where X18 = amount paid in September, X19 = amount paid in August, . . ., X23

= amount paid in April.

Table D.1 in appendix D.1 on page 139 illustrates the first ten observations of this data set.

The distribution of the classes is shown in table 5.1.

Table 5.1: Class distribution of credit data set.

Class (label) Frequency Percentage

No 23 364 77.88%
Yes 6 636 22.12%

The code for this analysis can be found in the appendix D. Out of the 30 000 observations in

the data set 6 636 belong to the positive class, that is 22.12% of the clients default on their

credit card payment. This suggest that the data set is imbalanced since the classes are not

50/50 distributed. Imbalanced data occurs when one class is represented by a large number

of examples, while the other is represented by only a few (Batista et al., 2004). Imbalanced

data hinders the performance of classification techniques particularly when the minority class

is the positive class (Chawla et al., 2004), as in this case. The most common way to assess the

performance of classifiers is using error and accuracy rates derived form the confusion matrix

which are discussed in chapter 1, section 1.4. Since the data set is imbalanced the results

given by these summaries may be unreliable because they are strongly biased to favour the

largely represented class (Basheer & Hajmeer, 2000). As a result, alternative performance

assessment techniques, namely specificity, sensitivity and AUC are reported.

There are nine (9) qualitative feature variables and fourteen (14) numeric feature variables in

the credit data set. Binary numbers could have been introduced to represent the qualitative

feature variables, for example if a feature variable is assigned to four levels then each level may

be represented by two binary numbers such as 00, 01, 10 or 11 (Basheer & Hajmeer, 2000).

The quantitative features in this data set are normalised prior to training. The qualitative fea-

ture variables are converted to numeric variables by the train function in R when fitting these

classifiers. A summary of all variables is available in table D.2 in appendix D.2 on page 141.

Most of the feature variables have outliers. As mentioned in chapter 2, section 2.1, good prac-

tice would be to remove any outliers as they might affect the training phase of the classifier.

No outliers were removed for the sake of simplicity and to allow comparison to Yeh & Lien

(2009) results. The credit data set has twenty-three (23) feature variables and as a result

may be considered as a high dimensional data set. High dimensional data sets can sometimes

have highly correlated variables and this hinders the learning phase of model development

Page 76 of 191.

77

and might affect the performance of the model. Figure 5.1 shows the correlations of the

feature variables in the data set. Feature variables X12 to X17 are all strongly, positively

correlated. These variables represent the amount of the client’s bill statement from April to

September in 2005. Not much correlation exists between most of the other feature variables.

Dimension reduction also serves as a means to deal with a strong existing correlation between

feature variables in a data set and may improve model performance.

Figure 5.1: Variance-covariance diagram of the credit data feature variables.

The variance-covariance matrix of the credit data set feature variables is available in ta-

bles D.3 on page 142, D.4 on page 143 and D.5 on page 144 in appendix D.3. Two feature

variables, age (X5) and limit balance (X1), were randomly chosen and plotted to visualise

class distribution of these data (figure 5.2). It is clear that these data are not linearly sepa-

rable over these variables. Figure 5.3 indicates that this observation would seem to hold true

over all feature variables.

Page 77 of 191.

Chapter 5 Default in Payment on Credit Cards 78

Figure 5.2: Class distribution resulting from the age and limit balance feature variables.

Red denotes “No” and blue denotes “Yes” to default payment.

Figure 5.3: Class distribution over all feature variables.

Page 78 of 191.

79 5.1. Artificial Neural Networks

After data preprocessing the data set was split into a train data set and a test data set.

An investigation was conducted to decide on suitable classifier parameters based on different

proportions of data partitions. Basheer & Hajmeer (2000) state that there are no math-

ematical rules for the determination of the required sizes of the data subsets. May et al.

(2010) discusses different data splitting approaches. The considered partitions were between

a 70/30 proportion, that is 70% of the data set is used to train the model and 30% of the

data set is used to test the performance of the model, a 80/20 proportion and lastly a 90/10

proportion. Following this repeated 7-fold cross validation was used to estimate the accuracy

of the classifiers.

5.1 Artificial Neural Networks

After importing the data, various preprocessing methods were considered. The data set

was checked to ensure that there was no missing data as neural network systems usually

handle only complete input data cases. When cases are missing, various methods need to

be employed to deal with those cases (Ennett et al., 2001). The data set in question has

no missing data. Neural networks are not easy to train and tune using a raw data set

(Jayalakshmi & Santhakumaran, 2011). An important practice is to normalise the data set

before training a neural network. Avoiding normalisation may lead to useless results or to

a very difficult training process where, in most cases, the algorithm will fail to converge

before the number of maximum iterations is reached (Basheer & Hajmeer, 2000). The two

most common methods used to scale the data sets are the z-normalisation and the min-max

normalisation techniques (Angelini et al., 2008). Alternative normalisation techniques are

discussed in Jayalakshmi & Santhakumaran (2011). The z-normalisation technique was used

to scale the credit data. This data set contains univariate outliers. Using the min-max

normalisation technique when there are outliers in the data set could result in the loss of use-

ful information and could introduce factors that hinder model performance (Angelini et al.,

2008). The scaled data set was divided into a training and test set.

For each train/test split, five neural network models were built where each neural network

had between three (3) and seven (7) nodes. Table 5.2 provides the test accuracies of the

models developed from the different train/test splits for the neural network classifiers com-

posed of different number of nodes. The table shows that the larger the training data the

higher the accuracy. In general, the accuracy results are not significantly different from each

other. Varying the split proportion does not significantly impact the resulting model accu-

racy. However the 90/10 split gave the highest accuracy for three (3) of the five (5) models

considered constructed using different data partitions.

Page 79 of 191.

Chapter 5 Default in Payment on Credit Cards 80

Table 5.2: NN test accuracy rates for different data partitions number of nodes.

Number of nodes
Accuracy

70/30 80/20 90/10

3 0.8199 0.8215 0.8183
4 0.8198 0.8236 0.8246
5 0.8203 0.8218 0.8223
6 0.8173 0.8220 0.8243
7 0.8199 0.8218 0.8193

Deciding on the number of nodes in a neural network is not an exact science, therefore the trial

and error approach plays a role in this process (Panchal & Panchal, 2014). One way to choose

the most suitable number of nodes is to compare how the accuracy of the predictions change

as the number of nodes is modified. The number of nodes considered in the credit scoring

neural networks constructed above were between three and seven nodes. Neural network

classifiers with 8,10,15,20,30 and 35 nodes were constructed using the 90/10 data partition.

The accuracy rates of these neural networks are shown in figure 5.4. These computationally

expensive neural networks do not perform significantly better than the models previously

constructed. As a result only neural networks with between three and seven nodes will be

considered for this study.

Figure 5.4: Test accuracy rates of neural networks with eight and more number of nodes.

Table 5.3 provides the results of the performance evaluation of five NNs built using a 90/10

data split. The first model was built using three nodes and yielded a test accuracy of 0.8183.

The highest test accuracy came from the classifier with four nodes in its hidden layer. This

Page 80 of 191.

81 5.1. Artificial Neural Networks

finding suggests that the number of nodes that should be used to build the model should be

four but the accuracy rates of these models are not particularly different.

Table 5.3: 90/10 split neural network results with between three and seven nodes.

Number of nodes Train accuracy Test accuracy Sensitivity Specificity

3 0.8200 0.8183 0.9521 0.3469
4 0.8219 0.8246 0.9568 0.3590
5 0.8214 0.8223 0.9478 0.3801
6 0.8210 0.8243 0.9551 0.3635
7 0.8226 0.8193 0.9478 0.3665

Imbalance of data can hinder the classifier learning process and the accuracy performance

metric of the model does not take this into consideration (see section 1.4 on page 4). To

further assess the performance of these models ROC curves were used. Figure 5.5 shows the

ROC curves of these five models and table 5.4 provides the AUC of these models. The ROC

curves of the models are quite similar as are the AUC of these models. The neural network

with seven nodes in its hidden layer was the best performing model with the highest AUC

value of 0.7866. The AUC measure is not biased by imbalance data. This suggested that the

neural network built using seven nodes should be chosen as the final model. The results of

the models built using the 70/30 split and the 80/20 split indicated that in both cases the

AUC of the neural network built using seven nodes was the highest (figure 5.4).

Figure 5.5: ROC curves of neural network models with a different number of nodes.

Page 81 of 191.

Chapter 5 Default in Payment on Credit Cards 82

Table 5.4: AUC of the neural networks with between three and seven nodes.

Number of nodes 3 4 5 6 7
AUC of model (90/10) 0.7740 0.7802 0.7796 0.7815 0.7866
AUC of model (80/20) 0.7660 0.7702 0.7710 0.7720 0.7724
AUC of model (70/30) 0.7640 0.7660 0.7650 0.7665 0.7715

Choosing a final model based on the investigation conducted above is very naive. Good prac-

tice is to use cross validation to further evaluate the performance of the model with the varying

parameter values in order to choose the optimal model. Repeated 7-fold cross validation was

utilised using the R caret package. The output can be found in section D.5 on page 148. The

nnet package used to build these models was used to construct a visualisation of this NN as

shown in figure 5.7. The AUC is summarised in figure 5.6.

Figure 5.6: Cross validation ROC results for NN built with between three and seven nodes.

The cross validation results show that the optimal model has 7 nodes in its hidden layer and

a weight decay of 0.3. Weight decay is a term added to the error function of a NN as part

of a regularisation technique (Lauret et al., 2008). It penalises large values for the weights

that are known to be responsible for excessive curvature in the model (Lauret et al., 2008).

Regularisation is a technique used in modelling to avoid overfitting (Lauret et al., 2008).

Page 82 of 191.

83 5.2. Support Vector Machines

Test accuracy AUC Sensitivity Specificity

0.8243 0.7871 0.9521 0.3741

Figure 5.7: Performance of the NN credit scoring classifier.

5.2 Support Vector Machines

The same training set used to build the NN classifiers was used to build various SVM classifiers

to enable model performance comparison. The difference between the SVM classifiers was

the type of kernel used to build the models. As discussed in chapter 4 on page 59, the kernel

determines the type of decision boundary that will be used to separate the data. The kernels

considered here were the linear, radial and polynomial kernels. A linear kernel suggests

that the data is linearly separable into classes. A radial basis kernel decision boundary is

produced by projecting the data set into a higher-dimensional space using the kernel function

K (xi,xk) = exp (−γ ‖ xi − xk ‖2). A polynomial kernel decision boundary is produced by

projecting the data set into a higher-dimensional space using the kernel function K (xi,xk) =

(α (x′
ixk) + c)d (see section 4.6 on page 70). α > 0 is a scale parameter, γ is a parameter

chosen to penalise misclassification errors, c ≥ 0 and d is an integer (Izenman, 2008, pg

381). In order to choose the best classifier the performance of the different SVM models were

evaluated. Table 5.5 provides a performance summary of these SVMs. While the SVM with

a polynomial kernel had the highest sensitivity, the SVM with a radial kernel performed best

as this SVM had the highest training and test accuracy.

Page 83 of 191.

Chapter 5 Default in Payment on Credit Cards 84

Table 5.5: Summary of the SVM performance built with different kernels.

Kernel Train accuracy Test accuracy Sensitivity Specificity

Linear 0.8101 0.8119 0.9705 0.2505
Radial 0.8230 0.8213 0.9593 0.3348

Polynomial 0.8054 0.8126 0.9713 0.2534

ROC curves were constructed for these SVMs as a means to compare their performance.

The ROC curve produced by the SVM with a radial kernel indicates that this is the best

performing classifier. Table 5.6 provides the AUC values of these SMVs. The AUC value

for the radial kernel SVM is the highest. This information combined with evaluating the

accuracy rates of these classifiers confirms that the final SVM model should be build with a

radial kernel.

Figure 5.8: ROC curves of the SVMs with different kernels.

Table 5.6: Performance of the SVM credit scoring classifier.

Kernel Linear Radial Polynomial
AUC of model 0.7041 0.7420 0.6973

Repeated 7-fold cross validation was used when training the support vector machine clas-

sifier in order to choose the optimal model. The output can be found in appendix D sec-

tion D.6 on page 149 and is summarised in figure 5.9 on the next page. The cross validation

results show that the optimal model has a cost value of 0.75 and a gamma value of 0.05. The

Page 84 of 191.

85 5.3. Dimension Reduction

cost parameter defines the weight of how much samples inside the margin contribute to the

overall error (Izenman, 2008, pg 384). Varying the value of C determines how hard or soft

the large margin classification will be (Izenman, 2008, pg 384). The gamma parameter is part

of the kernel function and defines how far the influence of a single training example reaches

(Izenman, 2008, pg 384). The performance metrics of this model are available in table 5.7.

Figure 5.9: Cross validation ROC results for the SVM classifier.

Table 5.7: Performance of the SVM credit scoring classifier.

Test accuracy AUC Sensitivity Specificity

0.8193 0.7424 0.9580 0.3303

5.3 Dimension Reduction

Dimension reduction was discussed in chapter 2 as a technique that can be utilised to im-

prove classifier performance and/or interpretability. Data sets used to build credit scoring

systems are often large and as a result may have a significant amount of correlated variables

(Giannouli & Kountzakis, 2018). This can negatively affect the training process and result in

an inefficient classifier. To address this issue dimension reduction has been used for feature

selection on data sets prior to model building. The credit data set has 23 feature variables

which can be considered as a high number of variables. To check if reducing the feature

variable space would improve classification both the neural network and the support vector

machine classifiers were rebuilt using a reduced feature space. PCA and LDA were used to

reduce the feature space. The aim of this investigation was to compare the results of the

Page 85 of 191.

Chapter 5 Default in Payment on Credit Cards 86

classifiers trained using the reduced feature space to the classifiers trained using the original

feature space.

Hamdy & Hussein (2016) conducted an investigation where they used an NN as the classifier.

They compared the accuracy, training time and the AUC of six NN classifiers. The first

NN was built using the original feature space and the following five NN where built using a

reduced feature space after PCA was conducted, varying the number of principal components

used for each NN. They found that the NN built using the original data set performed better

than the other NNs at a cost of a high training time. They found that the more principal

components used to build the NN the better the performance of the NN and the closer the

performance of these classifiers were to the original NN classifier. The most computationally

expensive classifier was the NN built using the least number of principal components as it

had the highest training time. This is because the classifier was not able to generalise quickly

with the few number of feature variables. They found that, in general, all the classifiers

were easier to train compared to the first NN built using the original data set and the more

principal components included in the model the larger the training time. They concluded

that PCA has the ability to generalise well to the credit scoring problem and its performance

reduces training time.

Çizer et al. (2017) conducted an investigation where they compared the classification per-

formance between a SVM on the original feature space and a SVM on the reduced feature

space using PCA as the dimension reduction technique. They found that the SVM built

using the principal components resulted in a 73% accuracy rate which was 3.33% higher than

the accuracy obtained from the SVM built using the original data set. They concluded that

dimension reduction can result in increased classifier accuracy rate.

Marshall et al. (2010) investigated whether a bootstrap variable selection technique can re-

sult in better classifier performance when used on a large data set from a major United

Kingdom retail bank. They discovered that the classification ability of a bootstrap feature

selection procedure was better than the classification ability of a classifier constructed using

the usual single-stepwise procedure. They concluded that bootstrap feature selection is useful

in maximising the classification ability of the model.

Han et al. (2013) investigated the benefits of using orthogonal dimension reduction (ODR)

in classification and compared the results to two common techniques, namely PCA and

hybridizing logistic regression (HLR). They used cross validation, a paired-t test and ROC

graphs to compare the performance of the dimension reduction techniques. They found that

although no classifier can be completely superior to the other classifiers, the SVM classifier

built on the feature space reduced by ODR improved prediction accuracy. They also found

that in their case PCA was not a good choice for dimension reduction for the SVM. They

concluded that ODR is a useful technique to address high dimension and has an impressive

effect on SVM for credit scoring.

In this study PCA and LDA dimension reduction techniques resulted in a slight difference

Page 86 of 191.

87 5.3. Dimension Reduction

in classifier performance between the classifiers built with the reduced feature space and the

classifiers built with the original feature space with the latter performing slightly better.

Denote the NN and SVM built with the reduced feature space using PCA as PCA-NN and

PCA-SVM. Denote the classifiers built with a reduced feature space using LDA as LDA-NN

and LDA-SVM. Figure 5.10a shows that the NN performs slightly better than the PCA-

NN where the LDA-NN is the worst performing classifier. The PCA-NN and the LDA-NN

classifiers were built using seven nodes and a weight decay of 0.3. This is similar to the result

obtained by Hamdy & Hussein (2016). The PCA-NN classifier was quicker to train than the

NN classifier. The SVM classifiers yielded similar results (figure 5.10b). The SVM classifier

performed better than the PCA-SVM and LDA-SVM classifiers. The difference between the

NN and SVM classifiers is in the accuracy of the classifiers built using the dimensionally

reduced data sets. In the case of the SVM classifiers, the LDA-SVM performed better than

the PCA-SVM.

(a) PCA LDA NN ROC. (b) PCA LDA SVM ROC.

Figure 5.10: ROC curves for the NN and SVM classifiers.

Table 5.8 shows the accuracy and the AUC of these classifiers. The accuracy of these classifiers

are very similar, the AUC of the classifiers are different. The AUC of these PCA-NN classifier

is 3.47% higher than that of the LDA-NN classifier. The AUC of the LDA-SVM classifier is

0.68% higher than that of the PCA-SVM classifier. PCA as a dimension reduction technique

outperforms LDA when neural networks are used as the classifier whereas LDA outperforms

PCA when support vector machines are used as the classifier. The expectation was for the

classifiers to perform better after applying the dimension reduction techniques but this is not

the case.

Page 87 of 191.

Chapter 5 Default in Payment on Credit Cards 88

Table 5.8: Performance results of the SVM and NN classifiers after dimension reduction.

Principal Component Analysis

Model Accuracy AUC
NN 0.8198 0.7754

SVM 0.8193 0.7253

Linear Discriminant Analysis

Model Accuracy AUC
NN 0.8141 0.7407

SVM 0.8129 0.7321

The classifiers built after applying PCA utilised fifteen (15) principal components dur-

ing model training. The results of the PCA, available in tables D.6, D.7 and D.8 in ap-

pendix D.4 on page 145, are quite difficult to interpret. The biplot of the principal compo-

nents provided in figure 5.11 is also difficult to interpret. The tables indicate that the first

principal component is mostly made up of variables X12 to X17 and the second principal

component is mostly made up of variables X6 to X11. However it is very difficult to assess

the results unless a credit data expert is consulted.

Figure 5.11: The biplot of the PCA for the credit data set.

Figures 5.12a and 5.12b show the proportion of variance explained by different numbers of

principal components. Figure 5.12b converges at fifteen (15) hence fifteen (15) principal

components were used to build the classifiers above. Fifteen variables is very similar to the

original number of variables, namely twenty-three, used when training the original models as

per sections 5.1 and 5.2. Figure 5.12a shows that the diagram elbows at three (3), five (5)

and sixteen (16) principal components.

Page 88 of 191.

89 5.3. Dimension Reduction

(a) Scree plot. (b) Cumulative scree plot.

Figure 5.12: PCA scree plots for the credit data.

An investigation to determine the number of principal components which maximises the

accuracy and AUC of these models was conducted. Figures 5.13a and 5.13b show how the

accuracy and the AUC of PCA-NN classifiers built using a different number of principal

components vary. Using twenty-two (22) principal components to build the classifier results

in the highest accuracy and using fifteen (15) principal components to build the classifier

resulted in the highest AUC. However the difference in the performance measures when

varying the number of principal components used when training is relatively small.

(a) Accuracies of NN’s built using various numbers
of principal components.

(b) AUC of NN’s built using various numbers of
principal components.

Figure 5.13: PCA-NN accuracy and AUC using different numbers of principal components.

Similar results were found for SVMs constructed using a radial kernel and various numbers of

principal components, figures 5.14a and 5.14b. Using sixteen (16) and seventeen (17) principal

components results in the highest accuracy and using twelve (12) principal components results

in the highest AUC. However the overall difference is also minimal. This confirms that in

the context of this analysis, dimension reduction does not significantly reduce the model

accuracy. An expert might be able to interpret the principal components and hence these

simpler models, with similar accuracy, may be easier to interpret.

Page 89 of 191.

Chapter 5 Default in Payment on Credit Cards 90

(a) Accuracies of SVM’s built using various num-
bers of principal components.

(b) AUC of SVM’s built using various numbers of
principal components.

Figure 5.14: PCA-SVM accuracy and AUC using different numbers of principal components.

5.4 Comparison

Yeh & Lien (2009) used six data mining techniques to estimate the probability of credit

default of customers in a bank located in Taiwan. They believed that estimating probability

of default is more meaningful than classifying the customers into risky and not risky clients.

Since the real probability of default is unknown they proposed the model “Sorting Smoothing

Method” to deduce the real probability of default and offered solutions to two questions:

• Is there a difference between classification accuracy across the data mining techniques?

• Could the estimated probability of default produced from the data mining techniques

represent the real probability of default?

In this study two data mining techniques were used to construct credit scoring systems

and their performance is compared to identify the better performing technique. Similar

to this study, Yeh & Lien (2009) noted that using accuracy/error rate to compare classifier

performance was not ideal since most of the instances in the data set are non-risky customers.

As an alternative they used area ratio of lift charts. In this study the AUC was used as the

alternative performance measure. One of the data mining techniques used in their study

is a neural network model which was one of the two classifiers used in this study. They

found that out of all the data mining techniques the neural network classifier performed the

best as its lift chart had the highest area ratio and it had the lowest error rate. The same

result was obtained in this study as the neural network classifier outperformed the support

vector classifier. The neural network classifier had a lower error rate and a higher AUC value

compared to the support vector machine classifier. An important fact to note is that similarly

to this study, they found that the difference in classification accuracy across classifiers was

minimal.

Page 90 of 191.

Chapter 6

Conclusion

Credit scoring systems help financial institutions predict potential credit default customers

and hence assist in making well informed decisions regarding awarding credit. In this study

two classification techniques were used to develop credit scoring systems, namely neural

networks and support vector machines. Principal component analysis and linear discriminant

analysis were used to reduce the dimension of the credit data set. The main aim of this

study was to compare the performance of the resulting classifiers and determine if reducing

the dimension of the data set would improve the performance of the classifiers.

6.1 Limitations of this Study

All models contructed in this study were built on desktop intel core i5 PC’s. The researcher

did not have access to cloud computing infrastructure. At the onset of this study it was

assumed that the modest size of the credit data set would not require these resources.

6.2 Neural Networks

The neural network classifier achieved the highest accuracy and AUC value. Repeated 7-fold

cross validation was used to validate the classifier. When the dimension of the data set were

reduced using PCA and LDA the neural network classifier trained using the feature space

reduced by the PCA method performed better than the neural network classifier trained using

the feature space reduced by the LDA method. Both classifiers resulting from the reduced

feature space performed as well as the neural network trained using the original data set but

they failed to perform better. The advantage of using dimension reduction techniques was

a less computationally expensive neural network classifier. The NN constructed using the

optimal number of principal components failed to perform better than the neural network

built using the original data set. This lead to the conclusion that in the context of this

91

Chapter 6 Conclusion 92

problem, the dimension reduction techniques are not effective in improving the neural network

classifier performance.

6.3 Support Vector Machines

The support vector machine classifier performed well but not better than the neural network

classifier. Repeated 7-fold cross validation was used to validate the classifier. After the

data set was reduced using PCA and LDA the support vector machine classifier built using

the LDA reduced feature space performed better than the support vector machine classifier

built using the PCA reduced feature space. Similarly to the neural network classifiers, the

classifiers trained using the reduced feature space did not perform better than the support

vector machine classifier trained on the original data set but did result in less computationally

expensive classifiers. Twelve principal components resulted in the optimal reduced feature

space support vector machine classifier. This model failed to perform better than the support

vector machine trained on the original data set. This lead to the same conclusion as that

of neural network classifiers, dimension reduction techniques are not effective in improving

support vector machine classifier performance in the context of this analysis.

6.4 Challenges in this Study

Training the support vector machine classifiers was computationally expensive. The polyno-

mial kernel support vector machine was the most computationally expensive classifier out of

all of the classifiers. The models took between two to four days to train with most initially

producing errors. The SVM classifier took a long time to train due to the relatively large

number of observations in the train data set paired with the number of iterations and the

tune grid used to train the classifier. The tune grid is a set of possible values for the pa-

rameters of a classifier from which the values that optimise model performance are chosen.

There are approximately twenty-seven thousand observations in the training data set using

the 90/10 train/test split to partition the original data. To check if the three classifiers with

the different kernels would eventually finish training a smaller subset of the data set, about

fifteen percent (15%), was used to train the classifiers. The outcome proved that the models

were in fact training and the analyst needed some patience. The results of the classifiers

trained using the smaller subset of the data were used to reduce the tune grid as a means

to lessen the number of iterations used to train the classifiers on the full train data set. As

a result all three SVM models eventually finished training hence it was possible to identify

the best performing model, namely the support vector machine with the radial kernel. For

the support vector machine with a radial kernel and trained with repeated 7-fold cross vali-

dation, the full train data set and original tune grid were used to build the model. This took

Page 92 of 191.

93 6.5. Future Research

close to a week to train. This allowed for the optimal support vector machine classifier to

be identified with confidence. Patience and investigation were key factors in completing this

part of the study.

6.5 Future Research

There are several avenues that can be considered for future research. The trained neural

network classifiers had one hidden layer. Increasing the number of hidden layers may result

in a better performing neural network classifier. Alternative dimension reduction techniques,

for example ODR and HLR, may be used to reduce the feature space of the data set. This

may result in dimension reduction being an effective tool in improving model performance.

Most feature variables in the credit data set have a number of outliers. Finding a more

suitable method to deal with the outliers may result in a better performing classifier in the

context of this application. The SVM and NN classifiers constructed in this thesis were not

easilly interpretable. The resulting classifiers are complex black-boxes and are not effective

in reducing the time taken when completing documentation by customers applying for credit.

The reduced set of feature variables used to construct the classifiers in this study did not

identify variables in the original that could be ommitted. The credit data set used in this

study has a limitted number of feature variables to construct a customer profile. The data

set unfortunately does not include detailed information about the applicant’s credit history

relative to their remunation, their cash or saving balance history, investments and assets. In

addition if the applicant is married the data for the couple are combined in one data entry

and not reflected over different variables. As a result complex customer credit profiles or

credit risk profiles (Lanzarini et al., 2017) were not considered in this study.

Page 93 of 191.

References

Abe, S. (2005). Support Vector Machines for Pattern Classification. Springer, First edition.

Angelini, E., di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk

evaluation. The Quarterly Review of Economics and Finance, 48(4), 733–755.

Basheer, I. A. & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing,

design, and application. Journal of Microbiological Methods, 43(1), 3–31.

Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several meth-

ods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter,

6(1), 20–29.

Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Special issue on learning from imbalanced

data sets. ACM Sigkdd Explorations Newsletter, 6(1), 1–6.

Çizer, E. B., Ayça, A., & Topuz, V. (2017). Credit repayment analysis using support vector

machine and principal component analysis. International Journal of Social and Economic

Sciences (IJSES) E-ISSN: 2667-4904, 7(2), 22–25.

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). Modeling wine preferences

by data mining from physicochemical properties. Decision Support Systems, 47(4), 547–

553.

Dongare, A., Kharde, R., & Kachare, A. D. (2012). Introduction to artificial neural network.

International Journal of Engineering and Innovative Technology (IJEIT), 2(1), 189–194.

Elhabian, S. & Farag, A. A. (2009). Linear Discriminant Analysis, Lecture Notes. University

of Louisville, CVIP Lab.

Ennett, C. M., Frize, M., & Walker, C. R. (2001). Influence of Missing Values on Artificial

Neural Network Performance. Medinfo, IOS Press.

Everitt, B. S. & Hothorn, T. (2006). A Handbook of Statistical Analyses using R. Chapman

& Hall/CRC.

95

References 96

Fausett, L. (1994). Fundamentals of Neural Networks. Prentice-Hall International, First

edition.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8),

861–874.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of

Human Genetics, 7(2), 179–188.

Franc, V. & Hlaváč, V. (2003). An iterative algorithm learning the maximal margin classifier.

Pattern Recognition, 36(9), 1985–1996.

Franceschi, S., Talamini, R., Barra, S., Barón, A. E., Negri, E., Bidoli, E., Serraino, D., &

La Vecchia, C. (1990). Smoking and drinking in relation to cancers of the oral cavity,

pharynx, larynx, and esophagus in Northern Italy. Cancer Research, 50(20), 6502–6507.

Freund, Y. & Schapire, R. E. (1999). Large margin classification using the perceptron algo-

rithm. Machine Learning, 37(3), 277–296.

Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of

Machine Learning Research, 2(Dec), 213–242.

Giannouli, P. & Kountzakis, C. E. (2018). The use of PCA in reduction of credit scoring

modeling variables: Evidence from Greek banking system. http://www.preprints.org,

accessed July 2019.

Golden, R. M. (1986). The “Brain-State-in-a-Box” neural model is a gradient descent algo-

rithm. Journal of Mathematical Psychology, 30(1), 73–80.

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data

Analysis. Prentice-Hall International, Fifth edition.

Hamdy, A. & Hussein, W. B. (2016). Credit risk assessment model based using principal

component analysis and artificial neural network. In MATEC Web of Conferences, volume

76(02039): EDP Sciences.

Han, L., Han, L., & Zhao, H. (2013). Orthogonal support vector machine for credit scoring.

Engineering Applications of Artificial Intelligence, 26(2), 848–862.

Hanif, M. (2015). Mathematics for human nervous system. International Journal of Mathe-

matics Trends and Technology, 27(1), 12–18.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning.

Springer.

Haykin, S. (1994). Neural Networks. Macmillan, First edition.

Page 96 of 191.

http://www.preprints.org

97 References

Islam, S. R., Eberle, W., & Ghafoor, S. K. (2018). Credit default mining using combined

machine learning and heuristic approach. arXiv preprint arXiv:1807.01176.

Izenman, A. J. (2008). Modern Multivariate Statistical Techniques. Springer, New York.

Jäger, G. (2005). Neural Networks, Lecture Notes. Rhodes University.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical

Learning. Springer.

Jayalakshmi, T. & Santhakumaran, A. (2011). Statistical normalization and back propagation

for classification. International Journal of Computer Theory and Engineering, 3(1), 1793–

8201.

Johnson, R. A. & Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. Prentice-

Hall International, Third edition.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer-Verlag, Second edition.

Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machines in R. Journal of

Statistical Software, 15(9), 1–28.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and

model selection. Ijcai, 14(2), 1137–1145.

Kun, Z., Ying-jie, T., & Nai-yang, D. (2006). Unsupervised and semi-supervised two-

class support vector machines. In Sixth IEEE International Conference on Data Mining-

Workshops (ICDMW’06) (pp. 813–817).: IEEE.

Lanzarini, L. C., Villa Monte, A., Bariviera, A. F., & Jimbo Santana, P. (2017). Simplifying

credit scoring rules using lvq+ pso. Kybernetes, 46(1), 8–16.

Laskov, P., Düssel, P., Schäfer, C., & Rieck, K. (2005). Learning intrusion detection: su-

pervised or unsupervised? In International Conference on Image Analysis and Processing

(pp. 50–57).: Springer.

Lauret, P., Fock, E., Randrianarivony, R. N., & Manicom-Ramsamy, J.-F. (2008). Bayesian

neural network approach to short time load forecasting. Energy Conversion and Manage-

ment, 49(5), 1156–1166.

Li, C. & Wang, B. (2014). Fisher Linear Discriminant Analysis. http://www.ccs.neu.edu/

home/vip/teach/MLcourse/5_features_dimensions/lecture_notes/LDA/LDA.pdf, ac-

cessed May 2018.

Ling, C. X., Huang, J., Zhang, H., et al. (2003). AUC: A statistically consistent and more

discriminating measure than accuracy. Ijcai, 3, 519–524.

Page 97 of 191.

http://www.ccs.neu.edu/home/vip/teach/MLcourse/5_features_dimensions/lecture_notes/LDA/LDA.pdf
http://www.ccs.neu.edu/home/vip/teach/MLcourse/5_features_dimensions/lecture_notes/LDA/LDA.pdf

References 98

Mammone, A., Turchi, M., & Cristianini, N. (2009a). Support vector machines. Wires

Computational Statistics, 1, 283–289.

Mammone, A., Turchi, M., & Cristianini, N. (2009b). Support vector machines. Wiley

Interdisciplinary Reviews: Computational Statistics, 1(3), 283–289.

Marshall, A., Tang, L., & Milne, A. (2010). Variable reduction, sample selection bias and

bank retail credit scoring. Journal of Empirical Finance, 17(3), 501–512.

Martínez, A. M. & Kak, A. C. (2001). PCA versus LDA. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(2), 228–233.

May, R. J., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural networks

using som-based stratified sampling. Neural Networks, 23(2), 283–294.

Mayer, D. & Butler, D. (1993). Statistical validation. Ecological Modelling, 68(1-2), 21–32.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

Mester, L. J. (1997). What is the point of credit scoring? Business Review, 3(Sep/Oct),

3–16.

Müller, B., Reinhardt, J., & Strickland, M. T. (1995). Neural Networks. Springer, Second

edition.

Panchal, F. S. & Panchal, M. (2014). Review on methods of selecting number of hidden

nodes in artificial neural network. International Journal of Computer Science and Mobile

Computing, 3(11), 455–464.

Polat, K. (2012). Classification of Parkinson’s disease using feature weighting method on

the basis of fuzzy C-means clustering. International Journal of Systems Science, 43(4),

597–609.

Radloff, S. (2014). Mathematical Statistics 301: The General Linear Model, Lecture Notes.

Rhodes University.

Ramón y Cajál, S. (1911). Histogénèse du cervelet. In Haykin (1994).

Riedmiller, M. (1994). Advanced supervised learning in multi-layer perceptrons-from back-

propagation to adaptive learning algorithms. Computer Standards & Interfaces, 16(3),

265–278.

Stephen, I. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural

Networks, 50(2), 179.

Page 98 of 191.

99 References

Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

Tharwat, A. (2016). Principal component analysis - a tutorial. International Journal of

Applied Pattern Recognition, 3, 197.

Ungar, L., Powell, B., & Kamens, S. (1990). Adaptive networks for fault diagnosis and

process control. Computers & Chemical Engineering, 14(4-5), 561–572.

Van Der Maaten, L., Postma, E., & Van den Herik, J. (2009). Dimension-

ality Reduction: A Comparative Review. Tilburg University, Tilburg, Nether-

lands. https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_

Reduction_Review_2009.pdf, accessed May 2018.

Veelenturf, L. P. J. (1995). Analysis and Application of Artificial Neural Networks. Prentice-

Hall International, First edition.

Verleysen, M. & François, D. (2005). The curse of dimensionality in data mining and time

series prediction. In International Work-Conference on Artificial Neural Networks (pp.

758–770).: Springer.

Yeh, I.-C. & Lien, C.-h. (2009). The comparisons of data mining techniques for the predictive

accuracy of probability of default of credit card clients. Expert Systems with Applications,

36(2), 2473–2480.

Zaki, M. J., Meira Jr, W., & Meira, W. (2014). Data Mining and Analysis: Fundamental

Concepts and Algorithms. Cambridge University Press.

Zhang, X. (2011). : (pp. 941–946). Springer.

Page 99 of 191.

https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf

References 100

Page 100 of 191.

Appendix A

The Wine Data Set

A.1 First Ten Observations: The Wine Data

The output of the first ten observation of the wine data set in chapter 2 is as follows

Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids
1 one 14.23 1.71 2.43 15.6 127 2.80
2 one 13.20 1.78 2.14 11.2 100 2.65
3 one 13.16 2.36 2.67 18.6 101 2.80
4 one 14.37 1.95 2.50 16.8 113 3.85
5 one 13.24 2.59 2.87 21.0 118 2.80
6 one 14.20 1.76 2.45 15.2 112 3.27
7 one 14.39 1.87 2.45 14.6 96 2.50
8 one 14.06 2.15 2.61 17.6 121 2.60
9 one 14.83 1.64 2.17 14.0 97 2.80
10 one 13.86 1.35 2.27 16.0 98 2.98

Nonflavanoids Proanthocyanins Color Hue Dilution Proline
1 0.28 2.29 5.64 1.04 3.92 1065
2 0.26 1.28 4.38 1.05 3.40 1050
3 0.30 2.81 5.68 1.03 3.17 1185
4 0.24 2.18 7.80 0.86 3.45 1480
5 0.39 1.82 4.32 1.04 2.93 735
6 0.34 1.97 6.75 1.05 2.85 1450
7 0.30 1.98 5.25 1.02 3.58 1290
8 0.31 1.25 5.05 1.06 3.58 1295
9 0.29 1.98 5.20 1.08 2.85 1045
10 0.22 1.85 7.22 1.01 3.55 1045

Table A.1: First ten observation of the wine data set.

A.2 Summary of these Data

The output of the summary for the wine data set in chapter 2 is as follows

101

Appendix A: The Wine Data Set 102

Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids
Min 11.03 0.740 1.360 10.60 70.00 0.980 0.340
Q1 12.36 1.603 2.210 17.20 88.00 1.742 1.205
x̃ 13.05 1.865 2.360 19.50 98.00 2.355 2.135
x 13.00 2.336 2.367 19.49 99.74 2.295 2.029
Q3 13.68 3.083 2.558 21.50 107.00 2.800 2.875
Max 14.83 5.800 3.230 30.00 162.00 3.880 5.080

Nonflavanoids Proanthocyanins Color Hue Dilution Proline
Min 0.1300 0.410 1.280 0.4800 1.270 278.0
Q1 0.2700 1.250 3.220 0.7825 1.938 500.5
x̃ 0.3400 1.555 4.690 0.9650 2.780 673.5
x 0.3619 1.591 5.058 0.9574 2.612 746.9
Q3 0.4375 1.950 6.200 1.1200 3.170 985.0
Max 0.6600 3.580 13.000 1.7100 4.000 1680.0

Table A.2: Summary statistics of the variables in the wine data set.

Page 102 of 191.

103 Appendix A: The Wine Data Set

A.3 Variance-Covariance Matrix

The output of the variance-covariance matrix of the wine data in chapter 2 is as follows

Alcohol Malic Ash Alcalinity Magnesium Phenols Flavanoids
Alcohol 1.0000 0.0944 0.2115 −0.3102 0.2708 0.2891 0.2368
Malic 0.0944 1.0000 0.1640 0.2885 −0.0546 −0.3352 −0.4110
Ash 0.2115 0.1640 1.0000 0.4434 0.2866 0.1290 0.1151
Alcalinity −0.3102 0.2885 0.4434 1.0000 −0.0833 −0.3211 −0.3514
Magnesium 0.2708 −0.0546 0.2866 −0.0833 1.0000 0.2144 0.1958
Phenols 0.2891 −0.3352 0.1290 −0.3211 0.2144 1.0000 0.8646
Flavanoids 0.2368 −0.4110 0.1151 −0.3514 0.1958 0.8646 1.0000
Nonflavanoids −0.1559 0.2930 0.1862 0.3619 −0.2563 −0.4499 −0.5379
Proanthocyanins 0.1367 −0.2207 0.0097 −0.1973 0.2364 0.6124 0.6527
Color 0.5464 0.2490 0.2589 0.0187 0.2000 −0.0551 −0.1724
Hue −0.0717 −0.5613 −0.0747 −0.2740 0.0554 0.4337 0.5435
Dilution 0.0723 −0.3687 0.0039 −0.2768 0.0660 0.6999 0.7872
Proline 0.6437 −0.1920 0.2236 −0.4406 0.3934 0.4981 0.4942

Nonflavanoids Proanthocyanins Color Hue Dilution Proline
Alcohol −0.1559 0.1367 0.5464 −0.0717 0.0723 0.6437
Malic 0.2930 −0.2207 0.2490 −0.5613 −0.3687 −0.1920
Ash 0.1862 0.0097 0.2589 −0.0747 0.0039 0.2236
Alcalinity 0.3619 −0.1973 0.0187 −0.2740 −0.2768 −0.4406
Magnesium −0.2563 0.2364 0.2000 0.0554 0.0660 0.3934
Phenols −0.4499 0.6124 −0.0551 0.4337 0.6999 0.4981
Flavanoids −0.5379 0.6527 −0.1724 0.5435 0.7872 0.4942
Nonflavanoids 1.0000 −0.3658 0.1391 −0.2626 −0.5033 −0.3114
Proanthocyanins −0.3658 1.0000 −0.0252 0.2955 0.5191 0.3304
Color 0.1391 −0.0252 1.0000 −0.5218 −0.4288 0.3161
Hue −0.2626 0.2955 −0.5218 1.0000 0.5655 0.2362
Dilution −0.5033 0.5191 −0.4288 0.5655 1.0000 0.3128
Proline −0.3114 0.3304 0.3161 0.2362 0.3128 1.0000

Table A.3: Variance-covariance matrix of the wine data set.

Page 103 of 191.

Appendix A: The Wine Data Set 104

A.4 Principal Component Analysis Results

The results of the PCA of the wine data in chapter 2 is as follows

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Alcohol −0.1239 0.5027 −0.1579 0.0285 −0.2219 0.2040 −0.1024
Malic 0.2526 0.1552 0.2069 0.4820 0.2708 0.5683 0.3738
Ash 0.0286 0.3538 0.5807 −0.2120 −0.2070 0.0856 −0.1609
Alcalinity 0.2432 −0.0003 0.6154 −0.1058 0.0754 −0.1468 −0.2798
Magnesium −0.1378 0.3058 0.0509 −0.5126 0.6405 −0.0816 0.3325
Phenols −0.3828 0.0727 0.1709 0.2242 −0.0700 −0.0838 −0.0635
Flavanoids −0.4271 0.0002 0.1370 0.1709 −0.0674 0.0345 −0.0758
Nonflavanoids 0.3171 0.0590 0.1280 −0.0335 −0.5232 −0.1618 0.5966
Proanthocyanins −0.2994 0.0766 0.1987 0.4221 0.1455 −0.5522 0.3426
Colour 0.1182 0.5117 −0.2025 0.1563 −0.0688 −0.3410 −0.1859
Hue −0.3100 −0.2425 0.0849 −0.3645 −0.2832 0.0436 0.3080
Dilution −0.3744 −0.1471 0.2037 0.0911 −0.0228 0.2952 −0.0603
Proline −0.2692 0.3840 −0.1421 −0.1537 −0.1695 0.2350 0.1374

PC8 PC9 PC10 PC11 PC12 PC13
Alcohol 0.4038 −0.5090 0.2297 0.1891 0.2736 0.1388
Malic 0.0961 −0.0360 −0.2569 0.0209 −0.1414 −0.0632
Ash −0.1649 0.3049 0.0790 0.4922 −0.2045 0.0725
Alcalinity 0.3254 −0.1550 −0.1369 −0.4839 0.2462 −0.0442
Magnesium −0.1720 −0.2175 0.0949 −0.0270 −0.0038 −0.0889
Phenols −0.5182 −0.3484 −0.4206 −0.0917 0.0730 0.4150
Flavanoids −0.1155 −0.0425 −0.0572 0.0971 0.2461 −0.8184
Nonflavanoids −0.2844 −0.1842 0.2223 −0.1769 0.1079 −0.1244
Proanthocyanins 0.3415 0.2257 0.1683 0.1243 0.0550 0.1703
Color 0.0073 −0.0647 −0.1615 −0.2409 −0.5943 −0.2480
Hue 0.4271 −0.1607 −0.4258 0.0730 −0.3638 −0.0265
Dilution −0.0394 −0.0852 0.5973 −0.3929 −0.4158 0.0650
Proline 0.0404 0.5744 −0.1584 −0.4521 0.2522 0.0936

Table A.4: PCA results of the wine data set.

A.5 R Code for the Wine Data Example

The R script for the wine data set example in chapter 2 is as follows

rm(l i s t=l s ())

l i b r a r y (ca r e t)

read in data

mydata <− read . csv ("wine . csv " , sep = " , " , header = FALSE)

s t r (mydata)

i s the r e any miss ing data?

apply (mydata , 2 , func t i on (x) sum(i s . na (x)))

Page 104 of 191.

105 Appendix A: The Wine Data Set

changing va r i a b l e names

colnames (mydata) <− c (’Type ’ , ’ Alcohol ’ , ’ Malic ’ , ’Ash ’ , ’ A l c a l i n i t y ’ , ’

Magnesium ’ , ’ Phenols ’ , ’ Flavanoids ’ , ’ Nonflavanoids ’ , ’ Proanthocyanins ’ , ’

Colour ’ , ’Hue ’ , ’ D i lu t i on ’ , ’ Pro l ine ’)

changing c l a s s names

indexes <− which (mydata$Type == 1)

mydata$Type [indexes] <− ’ one ’

indexes <− which (mydata$Type == 2)

mydata$Type [indexes] <− ’ two ’

indexes <− which (mydata$Type == 3)

mydata$Type [indexes] <− ’ th r e e ’

changing response va r i a b l e to f a c t o r

mydata$Type <− as . f a c t o r (mydata$Type)

d i s t r i b u t i o n o f c l a s s e s

cbind (f r e q = tab l e (mydata$Type) , percentage = prop . t a b l e (t a b l e (mydata$Type)) ∗

100)

have a look at the f i r s t ten obs e rva t i on

head (mydata , n=10)

output to l a t e x f o r t h e s i s

l i b r a r y (Hmisc)

l a t e x (head (mydata , n=10) , f i l e="wine10obs . tex ")

s imple summary s t a t i s t i c s

summary(mydata)

c r e a t e a l a t e x t ab l e

l a t e x (summary(mydata) , f i l e="winesummarystats . tex ")

var i ance cova r i ance matrix

var . cor <− cor (mydata [, 2 : 1 4])

c r e a t e a l a t e x t ab l e

l a t e x (round (var . cor , 4) , f i l e=" w in e c o r r e l a t i o n s . tex ")

diagram o f cova r i ance

ggcor r (mydata [, 2 : 1 4])

drawing box p lo t o f each f e a tu r e v a r i a b l e s

par (mfrow=c (2 ,2))

boxplot (mydata [, 2] , main=paste ("Boxplot o f " , names (mydata) [2]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 3] , main=paste ("Boxplot o f " , names (mydata) [3]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 4] , main=paste ("Boxplot o f " , names (mydata) [4]) , h o r i z on ta l=

TRUE)

Page 105 of 191.

Appendix A: The Wine Data Set 106

boxplot (mydata [, 5] , main=paste ("Boxplot o f " , names (mydata) [5]) , h o r i z on ta l=

TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e="Boxplots1 . eps ")

dev . o f f ()

par (mfrow=c (2 ,2))

boxplot (mydata [, 6] , main=paste ("Boxplot o f " , names (mydata) [6]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 7] , main=paste ("Boxplot o f " , names (mydata) [7]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 8] , main=paste ("Boxplot o f " , names (mydata) [8]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 9] , main=paste ("Boxplot o f " , names (mydata) [9]) , h o r i z on ta l=

TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e="Boxplots2 . eps ")

dev . o f f ()

par (mfrow=c (2 ,2))

boxplot (mydata [, 1 0] , main=paste ("Boxplot o f " , names (mydata) [1 0]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 1 1] , main=paste ("Boxplot o f " , names (mydata) [1 1]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 1 2] , main=paste ("Boxplot o f " , names (mydata) [1 2]) , h o r i z on ta l=

TRUE)

boxplot (mydata [, 1 3] , main=paste ("Boxplot o f " , names (mydata) [1 3]) , h o r i z on ta l=

TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e="Boxplots3 . eps ")

dev . o f f ()

par (mfrow=c (1 ,1))

boxplot (mydata [, 1 4] , main=paste ("Boxplot o f " , names (mydata) [1 4]) , h o r i z on ta l=

TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e="Boxplots4 . eps ")

dev . o f f ()

drawing boxplot o f a l l f e a tu r e v a r i a b l e s

boxplot (mydata [, 2 : 1 3])

#

p lo t (mydata [, 2 : 1 3] , c o l=c (" red " , " blue " , " green ") [mydata$Type])

dev . p r in t (dev i c e=po s t s c r i p t , f i l e=" WineScatterp lo tClas s . eps ")

check ing f o r o u t l i e r s

outva l s <− boxplot (mydata [, 2 : 8] , p l o t = FALSE) $out

check ing d i s t r i b u t i o n o f data s e t us ing s e l e c t e d f e a tu r e v a r i a b l e s

with (mydata , qp lo t (Alcohol , Malic , c o l our=Type , cex=2))

################################

Use a c l a s s i f i c a t i o n t r e e to c l a s s i f y the wine type

Page 106 of 191.

107 Appendix A: The Wine Data Set

Divide data s e t in to t r a i n and t e s t s e t : 70/30

Fit to the o r i g i n a l data

################################

tr a i n / t e s t s p l i t

indexes <− c r ea teDataPar t i t i on (mydata$Type , t imes = 1 , p = 0 . 7 , l i s t = FALSE

)

save (indexes , f i l e ="E: // Pro j e c t // Rscr ipt // indexesWine . Rdata ")

load (" indexesWine . Rdata")

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

Fit the t r e e / bu i ld the c l a s s i f i e r

l i b r a r y (rpa r t)

treeModel <− rpa r t (Type ~ . , data=t r a i n)

output : I n t e r p r e t the model

treeModel

summary(treeModel)

p lo t t r e e

par (xpd=TRUE)

p lo t (treeModel , compress=TRUE)

tex t (treeModel , use . n=TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e=" C l a s s i f i c a t i o nT r e e_o r i g i n a l d a t a . eps ")

con fus i on matrix and accuracy o f t r a i n i ng data and t e s t data :

confus ionMatr ix (p r ed i c t (treeModel , newdata=t r a i n [, −1] , type=" c l a s s ") , t r a i n

[, 1])

confus ionMatr ix (p r ed i c t (treeModel , newdata=t e s t [, −1] , type=" c l a s s ") , t e s t [, 1])

################################

Use a c l a s s i f i c a t i o n t r e e to c l a s s i f y the wine type

Divide data s e t in to t r a i n and t e s t s e t : 70/30

Fit to the reduced data : PCA

#

Conduct PCA

Fit model

################################

pr in_comp <− prcomp(mydata [, −1] , s c a l e . = T)

In t e r p r e t a t i o n

pr in_comp

l a t e x (round (pr in_comp$ ro ta t i on , 4) , f i l e="PrinCompScoresWine . l a t e x ")

pr in_comp$ r o t a t i o n

Page 107 of 191.

Appendix A: The Wine Data Set 108

Int e r p r e t a t i o n : Not ove r ly c l e a r un l e s s you are a wine exper t or chemist ?

b i p l o t (pr in_comp , s c a l e = 0)

compute standard dev ia t i on o f each p r i n c i p a l component

s td_dev <− pr in_comp$ sdev

compute va r i ance

pr_var <− s td_dev^2

check va r i ance o f f i r s t 10 components

pr_var [1 : 1 0]

propor t ion o f va r i ance expla ined

prop_varex <− pr_var/sum(pr_var)

prop_varex [1 : 1 0]

sum(prop_varex [1 : 8])

s c r e e p lo t

p lo t (prop_varex , x lab = " Pr i n c i pa l Component" , y lab = "Proport ion o f Var iance

Expla ined" , type = "b")

cumulative s c r e e p lo t

p lo t (cumsum(prop_varex) , x lab = " Pr i n c i pa l Component" , y lab = "Cumulative

Proport ion o f Var iance Expla ined" , type = "b")

add a data s e t with p r i n c i p a l components

mydataPCA <− data . frame (Type = mydata$Type , pr in_comp$x)

trainPCA <− mydataPCA[indexes ,]

testPCA <− mydataPCA[− indexes ,]

we are i n t e r e s t e d in f i r s t 8 PCAs

trainPCA1 <− trainPCA [, 1 : 9]

Fit the t r e e / bu i ld the c l a s s i f i e r

treeModelPCA = rpa r t (Type ~ . , data=trainPCA1)

output : I n t e r p r e t the model

treeModelPCA

summary(treeModelPCA)

plo t t r e e

par (xpd=TRUE)

p lo t (treeModelPCA , compress=TRUE)

tex t (treeModelPCA , use . n=TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e=" C l a s s i f i c a t i o nT r e e_PCAdata . eps ")

con fus i on matrix and accuracy o f t r a i n i ng data :

Page 108 of 191.

109 Appendix A: The Wine Data Set

confus ionMatr ix (p r ed i c t (treeModelPCA , newdata=trainPCA1 [, −1] , type=" c l a s s ") ,

t r a i n [, 1])

con fus i on matrix and accuracy o f t e s t data :

pr ed i c t us ing PCA t e s t data named testPCA .

testPCA1 <− testPCA [, 1 : 9]

confus ionMatr ix (p r ed i c t (treeModelPCA , newdata=testPCA1 [, −1] , type=" c l a s s ") ,

t e s t [, 1])

################################

Use a c l a s s i f i c a t i o n t r e e to c l a s s i f y the wine type

Divide data s e t in to t r a i n and t e s t s e t : 70/30

Fit to the reduced data : LDA

#

Conduct lda

Fit model

################################

l i b r a r y (MASS)

l i n e a rD i s = lda (Type ~ . , data = mydata)

In t e r p r e t a t i o n

pro j e c t ed_data = as . matrix (mydata [, 2 : 1 4]) %∗% l i n e a rD i s $ s c a l i n g

p lo t (p ro j e c t ed_data , c o l = mydata [, 1] , pch = 19)

add a t r a i n i ng s e t with l i n e a r d i s c r im inan t s

mydataLDA <− as . matrix (mydata [, 2 : 1 4]) %∗% l i n e a rD i s $ s c a l i n g

mydataLDA <− as . data . frame (mydataLDA)

mydataLDA <− data . frame (Type = mydata$Type , mydataLDA)

trainLDA <− mydataLDA[indexes ,]

testLDA <− mydataLDA[− indexes ,]

Fit the t r e e / bu i ld the c l a s s i f i e r

treeModelLDA = rpa r t (Type ~ . , data=trainLDA)

output : I n t e r p r e t the model

treeModelLDA

summary(treeModelLDA)

plo t t r e e

par (xpd=TRUE)

p lo t (treeModelLDA , compress=TRUE)

tex t (treeModelLDA , use . n=TRUE)

dev . p r in t (dev i c e=po s t s c r i p t , f i l e=" C l a s s i f i c a t i o nT r e e_LDAdata . eps ")

Page 109 of 191.

Appendix A: The Wine Data Set 110

con fus i on matrix and accuracy o f t r a i n i ng data :

confus ionMatr ix (p r ed i c t (treeModelLDA , newdata=trainLDA [, −1] , type=" c l a s s ") ,

t r a i n [, 1])

con fus i on matrix and accuracy o f t e s t data :

pr ed i c t us ing LDA t e s t data named testLDA .

confus ionMatr ix (p r ed i c t (treeModelLDA , newdata=testLDA [, −1] , type=" c l a s s ") ,

t e s t [, 1])

################################

7− f o l d c r o s s va l ida t i on , r epeated 10 times on the o r i g i n a l data

load ing model package

################################

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10)

Fit the t r e e / bu i ld the c l a s s i f i e r

treeModelCVorig <− t r a i n (Type ~ . , data=mydata , method=" rpa r t " , preProces s = c

(" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

################################

7− f o l d c r o s s v a l i d a t i o n , r epeated 10 times on the LDA data

################################

Fit the t r e e / bu i ld the c l a s s i f i e r

treeModelCVPCA <− t r a i n (Type ~ . , data=mydataPCA, method=" rpa r t " , t rCont ro l =

c t r l . 1)

################################

7− f o l d c r o s s v a l i d a t i o n , r epeated 10 times on the PCA data

################################

Fit the t r e e / bu i ld the c l a s s i f i e r

treeModelCVLDA <− t r a i n (Type ~ . , data=mydataLDA, method=" rpa r t " , t rCont ro l =

c t r l . 1)

################################

################################

Listing A.1: Wine Data PCA LDA R script

A.6 R Output for these Models

The R script for the output of the classification models built for wine data set example in

chapter 2 is as follows

Page 110 of 191.

111 Appendix A: The Wine Data Set

###########################

Or ig ina l data : CART

###########################

Cal l :

r pa r t (formula = Type ~ . , data = t r a i n)

n= 126

CP n s p l i t r e l e r r o r xe r r o r xstd

1 0.48684211 0 1.0000000 1.1184211 0.06919943

2 0.35526316 1 0.5131579 0.5394737 0.06919943

3 0.01315789 2 0.1578947 0.2631579 0.05397207

4 0.01000000 3 0.1447368 0.2368421 0.05168318

Var iab le importance

Flavanoids Pro l ine Di lu t i on Alcohol Colour

19 14 13 12 9

Phenols Hue Proanthocyanins A l c a l i n i t y Magnesium

8 8 5 5 5

Node number 1 : 126 observat ions , complexity param=0.4868421

pr ed i c t ed c l a s s=two expected l o s s =0.6031746 P(node) =1

c l a s s counts : 42 34 50

p r o b a b i l i t i e s : 0 .333 0 .270 0 .397

l e f t son=2 (47 obs) r i g h t son=3 (79 obs)

Primary s p l i t s :

Pro l ine < 727 .5 to the r i ght , improve =32.93511 , (0 mis s ing)

Alcohol < 12 .78 to the r i ght , improve =31.30324 , (0 mis s ing)

Colour < 3 .915 to the r i ght , improve =30.20491 , (0 mis s ing)

Di lu t i on < 2.115 to the r i ght , improve =27.63468 , (0 mis s ing)

Flavanoids < 1 .425 to the r i ght , improve =26.62373 , (0 mis s ing)

Surrogate s p l i t s :

Flavanoids < 2 .31 to the r i ght , agree =0.849 , adj =0.596 , (0 s p l i t)

Phenols < 2 .335 to the r i ght , agree =0.817 , adj =0.511 , (0 s p l i t)

Alcohol < 13 .235 to the r i ght , agree =0.770 , adj =0.383 , (0 s p l i t)

A l c a l i n i t y < 17 .45 to the l e f t , agree =0.770 , adj =0.383 , (0 s p l i t)

Magnesium < 99 .5 to the r i ght , agree =0.762 , adj =0.362 , (0 s p l i t)

Node number 2 : 47 observat ions , complexity param=0.01315789

pr ed i c t ed c l a s s=one expected l o s s =0.1276596 P(node) =0.3730159

c l a s s counts : 41 2 4

p r o b a b i l i t i e s : 0 .872 0 .043 0 .085

l e f t son=4 (40 obs) r i g h t son=5 (7 obs)

Primary s p l i t s :

Flavanoids < 2 .35 to the r i ght , improve =4.287082 , (0 mis s ing)

Di lu t i on < 2 .7 to the r i ght , improve =4.287082 , (0 mis s ing)

Colour < 3 .75 to the r i ght , improve =3.579939 , (0 mis s ing)

Alcohol < 13 .06 to the r i ght , improve =3.013639 , (0 mis s ing)

Page 111 of 191.

Appendix A: The Wine Data Set 112

Phenols < 2 .405 to the r i ght , improve =2.437082 , (0 mis s ing)

Surrogate s p l i t s :

D i lu t i on < 2.64 to the r i ght , agree =0.957 , adj =0.714 , (0 s p l i t)

Phenols < 2 .125 to the r i ght , agree =0.936 , adj =0.571 , (0 s p l i t)

Alcohol < 12 .66 to the r i ght , agree =0.915 , adj =0.429 , (0 s p l i t)

Colour < 3 .2 to the r i ght , agree =0.894 , adj =0.286 , (0 s p l i t)

Hue < 0.785 to the r i ght , agree =0.894 , adj =0.286 , (0 s p l i t)

Node number 3 : 79 observat ions , complexity param=0.3552632

pr ed i c t ed c l a s s=two expected l o s s =0.4177215 P(node) =0.6269841

c l a s s counts : 1 32 46

p r o b a b i l i t i e s : 0 .013 0 .405 0 .582

l e f t son=6 (33 obs) r i g h t son=7 (46 obs)

Primary s p l i t s :

D i lu t i on < 2.115 to the l e f t , improve =28.09031 , (0 mis s ing)

Colour < 4 .79 to the r i ght , improve =26.52762 , (0 mis s ing)

Flavanoids < 1 .425 to the l e f t , improve =23.96580 , (0 mis s ing)

Alcohol < 12 .745 to the r i ght , improve =20.42492 , (0 mis s ing)

Hue < 0.785 to the l e f t , improve =20.11866 , (0 mis s ing)

Surrogate s p l i t s :

Flavanoids < 1 .48 to the l e f t , agree =0.899 , adj =0.758 , (0 s p l i t)

Colour < 4 .79 to the r i ght , agree =0.886 , adj =0.727 , (0 s p l i t)

Hue < 0.765 to the l e f t , agree =0.835 , adj =0.606 , (0 s p l i t)

Alcohol < 12 .745 to the r i ght , agree =0.797 , adj =0.515 , (0 s p l i t)

Proanthocyanins < 1 .285 to the l e f t , agree =0.772 , adj =0.455 , (0 s p l i t)

Node number 4 : 40 obs e rva t i ons

pr ed i c t ed c l a s s=one expected l o s s =0.025 P(node) =0.3174603

c l a s s counts : 39 0 1

p r o b a b i l i t i e s : 0 .975 0 .000 0 .025

Node number 5 : 7 obs e rva t i ons

pr ed i c t ed c l a s s=two expected l o s s =0.5714286 P(node) =0.05555556

c l a s s counts : 2 2 3

p r o b a b i l i t i e s : 0 .286 0 .286 0 .429

Node number 6 : 33 obs e rva t i ons

pr ed i c t ed c l a s s=thr ee expected l o s s =0.09090909 P(node) =0.2619048

c l a s s counts : 0 30 3

p r o b a b i l i t i e s : 0 .000 0 .909 0 .091

Node number 7 : 46 obs e rva t i ons

pr ed i c t ed c l a s s=two expected l o s s =0.06521739 P(node) =0.3650794

c l a s s counts : 1 2 43

p r o b a b i l i t i e s : 0 .022 0 .043 0 .935

###########################

Confus ion Matrix and S t a t i s t i c s

Page 112 of 191.

113 Appendix A: The Wine Data Set

###########################

tr a i n data

Reference

Pred i c t i on one thr e e two

one 39 0 1

thr e e 0 30 3

two 3 4 46

Overa l l S t a t i s t i c s

Accuracy : 0 .9127

95% CI : (0 . 8492 , 0 . 9556)

No Informat ion Rate : 0 .3968

P−Value [Acc > NIR] : < 2 .2 e−16

Kappa : 0 .867

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 0 .9286 0 .8824 0 .9200

S p e c i f i c i t y 0 .9881 0 .9674 0 .9079

Pos Pred Value 0 .9750 0 .9091 0 .8679

Neg Pred Value 0 .9651 0 .9570 0 .9452

Preva lence 0 .3333 0 .2698 0 .3968

Detect ion Rate 0 .3095 0 .2381 0 .3651

Detect ion Preva lence 0 .3175 0 .2619 0 .4206

Balanced Accuracy 0 .9583 0 .9249 0 .9139

t e s t data

Reference

Pred i c t i on one thr e e two

one 17 0 0

thr e e 0 7 2

two 0 7 19

Overa l l S t a t i s t i c s

Accuracy : 0 .8269

95% CI : (0 . 6967 , 0 . 9177)

No Informat ion Rate : 0 .4038

P−Value [Acc > NIR] : 4 .728 e−10

Page 113 of 191.

Appendix A: The Wine Data Set 114

Kappa : 0 .7315

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 1 .0000 0 .5000 0 .9048

S p e c i f i c i t y 1 .0000 0 .9474 0 .7742

Pos Pred Value 1 .0000 0 .7778 0 .7308

Neg Pred Value 1 .0000 0 .8372 0 .9231

Preva lence 0 .3269 0 .2692 0 .4038

Detect ion Rate 0 .3269 0 .1346 0 .3654

Detect ion Preva lence 0 .3269 0 .1731 0 .5000

Balanced Accuracy 1 .0000 0 .7237 0 .8395

###########################

PCA: CART

###########################

Cal l :

r pa r t (formula = Type ~ . , data = trainPCA1)

n= 126

CP n s p l i t r e l e r r o r xe r r o r xstd

1 0.5000000 0 1.00000000 1.0000000 0.07225916

2 0.4473684 1 0.50000000 0.5526316 0.06962503

3 0.0100000 2 0.05263158 0.1184211 0.03803779

Var iab le importance

PC2 PC1 PC7 PC6 PC4 PC3 PC5

39 29 10 7 7 4 4

Node number 1 : 126 observat ions , complexity param=0.5

pr ed i c t ed c l a s s=two expected l o s s =0.6031746 P(node) =1

c l a s s counts : 42 34 50

p r o b a b i l i t i e s : 0 .333 0 .270 0 .397

l e f t son=2 (78 obs) r i g h t son=3 (48 obs)

Primary s p l i t s :

PC2 < −0.6379261 to the r i ght , improve =39.512970 , (0 mis s ing)

PC1 < 1.797617 to the r i ght , improve =30.065260 , (0 mis s ing)

PC7 < 1.035708 to the l e f t , improve= 4 .679042 , (0 mis s ing)

PC6 < 0.1657563 to the r i ght , improve= 3 .948413 , (0 mis s ing)

PC3 < −1.474407 to the r i ght , improve= 3 .531136 , (0 mis s ing)

Surrogate s p l i t s :

PC3 < −1.474407 to the r i ght , agree =0.675 , adj =0.146 , (0 s p l i t)

PC7 < 1.035708 to the l e f t , agree =0.667 , adj =0.125 , (0 s p l i t)

PC4 < −1.453536 to the r i ght , agree =0.643 , adj =0.063 , (0 s p l i t)

Page 114 of 191.

115 Appendix A: The Wine Data Set

PC1 < −1.057591 to the l e f t , agree =0.635 , adj =0.042 , (0 s p l i t)

PC6 < −0.8596221 to the r i ght , agree =0.635 , adj =0.042 , (0 s p l i t)

Node number 2 : 78 observat ions , complexity param=0.4473684

pr ed i c t ed c l a s s=one expected l o s s =0.474359 P(node) =0.6190476

c l a s s counts : 41 34 3

p r o b a b i l i t i e s : 0 .526 0 .436 0 .038

l e f t son=4 (44 obs) r i g h t son=5 (34 obs)

Primary s p l i t s :

PC1 < 0.7938279 to the l e f t , improve =35.921910 , (0 mis s ing)

PC2 < 1.894848 to the l e f t , improve= 5 .552999 , (0 mis s ing)

PC5 < 1.027212 to the l e f t , improve= 5 .328289 , (0 mis s ing)

PC6 < −0.8160478 to the r i ght , improve= 4 .952434 , (0 mis s ing)

PC7 < −0.899874 to the r i ght , improve= 3 .850985 , (0 mis s ing)

Surrogate s p l i t s :

PC2 < 1.894848 to the l e f t , agree =0.692 , adj =0.294 , (0 s p l i t)

PC7 < −0.687789 to the r i ght , agree =0.667 , adj =0.235 , (0 s p l i t)

PC6 < −0.8160478 to the r i ght , agree =0.654 , adj =0.206 , (0 s p l i t)

PC4 < −0.5639463 to the r i ght , agree =0.641 , adj =0.176 , (0 s p l i t)

PC5 < 1.027212 to the l e f t , agree =0.628 , adj =0.147 , (0 s p l i t)

Node number 3 : 48 obs e rva t i ons

pr ed i c t ed c l a s s=two expected l o s s =0.02083333 P(node) =0.3809524

c l a s s counts : 1 0 47

p r o b a b i l i t i e s : 0 .021 0 .000 0 .979

Node number 4 : 44 obs e rva t i ons

pr ed i c t ed c l a s s=one expected l o s s =0.06818182 P(node) =0.3492063

c l a s s counts : 41 0 3

p r o b a b i l i t i e s : 0 .932 0 .000 0 .068

Node number 5 : 34 obs e rva t i ons

pr ed i c t ed c l a s s=thr ee expected l o s s=0 P(node) =0.2698413

c l a s s counts : 0 34 0

p r o b a b i l i t i e s : 0 .000 1 .000 0 .000

###########################

Confus ion Matrix and S t a t i s t i c s

###########################

tr a i n data

Reference

Pred i c t i on one thr e e two

one 41 0 3

thr e e 0 34 0

two 1 0 47

Page 115 of 191.

Appendix A: The Wine Data Set 116

Overa l l S t a t i s t i c s

Accuracy : 0 .9683

95% CI : (0 . 9207 , 0 . 9913)

No Informat ion Rate : 0 .3968

P−Value [Acc > NIR] : < 2 .2 e−16

Kappa : 0 .9519

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 0 .9762 1 .0000 0 .9400

S p e c i f i c i t y 0 .9643 1 .0000 0 .9868

Pos Pred Value 0 .9318 1 .0000 0 .9792

Neg Pred Value 0 .9878 1 .0000 0 .9615

Preva lence 0 .3333 0 .2698 0 .3968

Detect ion Rate 0 .3254 0 .2698 0 .3730

Detect ion Preva lence 0 .3492 0 .2698 0 .3810

Balanced Accuracy 0 .9702 1 .0000 0 .9634

t e s t data

Reference

Pred i c t i on one thr e e two

one 17 0 2

thr e e 0 14 2

two 0 0 17

Overa l l S t a t i s t i c s

Accuracy : 0 .9231

95% CI : (0 . 8146 , 0 . 9786)

No Informat ion Rate : 0 .4038

P−Value [Acc > NIR] : 4 .536 e−15

Kappa : 0 .8844

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 1 .0000 1 .0000 0 .8095

S p e c i f i c i t y 0 .9429 0 .9474 1 .0000

Page 116 of 191.

117 Appendix A: The Wine Data Set

Pos Pred Value 0 .8947 0 .8750 1 .0000

Neg Pred Value 1 .0000 1 .0000 0 .8857

Preva lence 0 .3269 0 .2692 0 .4038

Detect ion Rate 0 .3269 0 .2692 0 .3269

Detect ion Preva lence 0 .3654 0 .3077 0 .3269

Balanced Accuracy 0 .9714 0 .9737 0 .9048

###########################

LDA: CART

###########################

Cal l :

r pa r t (formula = Type ~ . , data = trainLDA)

n= 126

CP n s p l i t r e l e r r o r xe r r o r xstd

1 0.5526316 0 1.0000000 1.0000000 0.07225916

2 0.4473684 1 0.4473684 0.4473684 0.06555933

3 0.0100000 2 0.0000000 0.0000000 0.00000000

Var iab le importance

LD1 LD2

50 50

Node number 1 : 126 observat ions , complexity param=0.5526316

pr ed i c t ed c l a s s=two expected l o s s =0.6031746 P(node) =1

c l a s s counts : 42 34 50

p r o b a b i l i t i e s : 0 .333 0 .270 0 .397

l e f t son=2 (76 obs) r i g h t son=3 (50 obs)

Primary s p l i t s :

LD2 < −14.14982 to the l e f t , improve =45.40518 , (0 mis s ing)

LD1 < −7.107402 to the r i ght , improve=37.33195 , (0 mis s ing)

Surrogate s p l i t s :

LD1 < −11.3388 to the l e f t , agree =0.698 , adj =0.24 , (0 s p l i t)

Node number 2 : 76 observat ions , complexity param=0.4473684

pr ed i c t ed c l a s s=one expected l o s s =0.4473684 P(node) =0.6031746

c l a s s counts : 42 34 0

p r o b a b i l i t i e s : 0 .553 0 .447 0 .000

l e f t son=4 (42 obs) r i g h t son=5 (34 obs)

Primary s p l i t s :

LD1 < −8.722805 to the l e f t , improve =37.5789500 , (0 mis s ing)

LD2 < −17.57283 to the r i ght , improve= 0 .5642415 , (0 mis s ing)

Surrogate s p l i t s :

LD2 < −17.66692 to the r i ght , agree =0.579 , adj =0.059 , (0 s p l i t)

Node number 3 : 50 obs e rva t i ons

pr ed i c t ed c l a s s=two expected l o s s=0 P(node) =0.3968254

Page 117 of 191.

Appendix A: The Wine Data Set 118

c l a s s counts : 0 0 50

p r o b a b i l i t i e s : 0 .000 0 .000 1 .000

Node number 4 : 42 obs e rva t i ons

pr ed i c t ed c l a s s=one expected l o s s=0 P(node) =0.3333333

c l a s s counts : 42 0 0

p r o b a b i l i t i e s : 1 .000 0 .000 0 .000

Node number 5 : 34 obs e rva t i ons

pr ed i c t ed c l a s s=thr ee expected l o s s=0 P(node) =0.2698413

c l a s s counts : 0 34 0

p r o b a b i l i t i e s : 0 .000 1 .000 0 .000

###########################

Confus ion Matrix and S t a t i s t i c s

###########################

tr a i n data

Reference

Pred i c t i on one thr e e two

one 42 0 0

thr e e 0 34 0

two 0 0 50

Overa l l S t a t i s t i c s

Accuracy : 1

95% CI : (0 . 9711 , 1)

No Informat ion Rate : 0 .3968

P−Value [Acc > NIR] : < 2 .2 e−16

Kappa : 1

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 1 .0000 1 .0000 1 .0000

S p e c i f i c i t y 1 .0000 1 .0000 1 .0000

Pos Pred Value 1 .0000 1 .0000 1 .0000

Neg Pred Value 1 .0000 1 .0000 1 .0000

Preva lence 0 .3333 0 .2698 0 .3968

Detect ion Rate 0 .3333 0 .2698 0 .3968

Detect ion Preva lence 0 .3333 0 .2698 0 .3968

Balanced Accuracy 1 .0000 1 .0000 1 .0000

Page 118 of 191.

119 Appendix A: The Wine Data Set

te s t data

Reference

Pred i c t i on one thr e e two

one 17 0 1

thr e e 0 14 0

two 0 0 20

Overa l l S t a t i s t i c s

Accuracy : 0 .9808

95% CI : (0 . 8974 , 0 . 9995)

No Informat ion Rate : 0 .4038

P−Value [Acc > NIR] : < 2 .2 e−16

Kappa : 0 .9708

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 1 .0000 1 .0000 0 .9524

S p e c i f i c i t y 0 .9714 1 .0000 1 .0000

Pos Pred Value 0 .9444 1 .0000 1 .0000

Neg Pred Value 1 .0000 1 .0000 0 .9687

Preva lence 0 .3269 0 .2692 0 .4038

Detect ion Rate 0 .3269 0 .2692 0 .3846

Detect ion Preva lence 0 .3462 0 .2692 0 .3846

Balanced Accuracy 0 .9857 1 .0000 0 .9762

###########################

Or ig ina l data with repeated CV: CART

###########################

CART

178 samples

13 p r ed i c t o r

3 c l a s s e s : ’ one ’ , ’ th r e e ’ , ’ two ’

Pre−p r o c e s s i n g : centered (13) , s c a l e d (13)

Resampling : Cross−Val idated (7 fo ld , r epeated 10 times)

Summary o f sample s i z e s : 152 , 152 , 153 , 153 , 153 , 152 , . . .

Resampling r e s u l t s a c r o s s tuning parameters :

cp Accuracy Kappa

0.05607477 0.8599601 0.7874144

Page 119 of 191.

Appendix A: The Wine Data Set 120

0.31775701 0.7904699 0.6769536

0.49532710 0.4844801 0.1537125

Accuracy was used to s e l e c t the optimal model us ing the l a r g e s t va lue .

The f i n a l va lue used f o r the model was cp = 0 .05607477 .

###########################

PCA with repeated CV: CART

###########################

CART

178 samples

13 p r ed i c t o r

3 c l a s s e s : ’ one ’ , ’ th r e e ’ , ’ two ’

No pre−p r o c e s s i n g

Resampling : Cross−Val idated (7 fo ld , r epeated 10 times)

Summary o f sample s i z e s : 153 , 153 , 153 , 153 , 152 , 152 , . . .

Resampling r e s u l t s a c r o s s tuning parameters :

cp Accuracy Kappa

0.0000000 0.9508602 0.9256554

0.4485981 0.8157393 0.7166421

0.4859813 0.5306054 0.2410515

Accuracy was used to s e l e c t the optimal model us ing the l a r g e s t va lue .

The f i n a l va lue used f o r the model was cp = 0 .

###########################

LDA with repeated CV: CART

###########################

CART

178 samples

2 p r ed i c t o r

3 c l a s s e s : ’ one ’ , ’ th r e e ’ , ’ two ’

No pre−p r o c e s s i n g

Resampling : Cross−Val idated (7 fo ld , r epeated 10 times)

Summary o f sample s i z e s : 153 , 152 , 152 , 153 , 152 , 153 , . . .

Resampling r e s u l t s a c r o s s tuning parameters :

cp Accuracy Kappa

0.0000000 0.9943718 0.9914876

0.4485981 0.8554487 0.7768710

0.5420561 0.5816127 0.3267775

Page 120 of 191.

121 Appendix A: The Wine Data Set

Accuracy was used to s e l e c t the optimal model us ing the l a r g e s t va lue .

The f i n a l va lue used f o r the model was cp = 0 .

###########################

###########################

Listing A.2: R Output: Wine Data

A.7 R Code for the Number of PC Investigation

The R script for the investigation conducted to find out the best number of principal com-

ponents to use to build the optimal model for the wine data set example in chapter 2 is as

follows

#get p r i n c i p a l components

mydataPCA <− data . frame (Type = mydata$Type , pr in_comp$x)

trainPCA <− mydataPCA[indexes ,]

testPCA <− mydataPCA[− indexes ,]

#c r e a t e data frame f o r r e s u l t s

NumberofPC <− 2 :13

accuracyRate <− 2 :13

WineDataPC <− data . frame (NumberofPC , accuracyRate)

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10)

################################

################################

#we are i n t e r e s t e d in f i r s t 13 PCs

trainPCA1 <− trainPCA [, 1 : 1 4]

testPCA1 <− testPCA [, 1 : 1 4]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [1 2] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 12 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 3]

testPCA1 <− testPCA1 [, 1 : 1 3]

Page 121 of 191.

Appendix A: The Wine Data Set 122

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [1 1] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 11 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 2]

testPCA1 <− testPCA1 [, 1 : 1 2]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [1 0] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 10 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 1]

testPCA1 <− testPCA1 [, 1 : 1 1]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [9] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 9 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 0]

testPCA1 <− testPCA1 [, 1 : 1 0]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [8] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

Page 122 of 191.

123 Appendix A: The Wine Data Set

#we are i n t e r e s t e d in f i r s t 8 PCs

trainPCA1 <− trainPCA1 [, 1 : 9]

testPCA1 <− testPCA1 [, 1 : 9]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [7] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 7 PCs

trainPCA1 <− trainPCA1 [, 1 : 8]

testPCA1 <− testPCA1 [, 1 : 8]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [6] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 6 PCs

trainPCA1 <− trainPCA1 [, 1 : 7]

testPCA1 <− testPCA1 [, 1 : 7]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [5] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 5 PCs

trainPCA1 <− trainPCA1 [, 1 : 6]

testPCA1 <− testPCA1 [, 1 : 6]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

Page 123 of 191.

Appendix A: The Wine Data Set 124

WineDataPC$accuracyRate [4] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 4 PCs

trainPCA1 <− trainPCA1 [, 1 : 5]

testPCA1 <− testPCA1 [, 1 : 5]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [3] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 3 PCs

trainPCA1 <− trainPCA1 [, 1 : 4]

testPCA1 <− testPCA1 [, 1 : 4]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [2] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

#we are i n t e r e s t e d in f i r s t 2 PCs

trainPCA1 <− trainPCA1 [, 1 : 3]

testPCA1 <− testPCA1 [, 1 : 3]

treeModelexp = t r a i n (Type ~ . , data=trainPCA1 , method=" rpa r t " , preProces s = c (

" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

#show r e s u l t s

WineDataPC$accuracyRate [1] <− treeModelexp $ r e s u l t s [1 , 2]

################################

################################

plo t (WineDataPC$NumberofPC , WineDataPC$accuracyRate , x lab = ’Number o f

Pr i n c i pa l Components ’ , y lab = ’ Accuracy ra te ’)

l i n e s (WineDataPC$NumberofPC , WineDataPC$accuracyRate)

Page 124 of 191.

125 Appendix A: The Wine Data Set

################################

################################

Listing A.3: Wine Data: PCA Investigation

Page 125 of 191.

Appendix A: The Wine Data Set 126

Page 126 of 191.

Appendix B

R Code and Output: Chapter 3

B.1 R Code for the Wine Data Neural Network

The R script for the neural network model built for wine data set example in chapter 3 is as

follows

rm(l i s t=l s ())

l i b r a r y (ca r e t)

read in data

mydata <− read . csv ("wine . csv " , sep = " , " , header = FALSE)

s t r (mydata)

i s the r e any miss ing data?

apply (mydata , 2 , func t i on (x) sum(i s . na (x)))

changing va r i a b l e names

colnames (mydata) <− c (’Type ’ , ’ Alcohol ’ , ’ Malic ’ , ’Ash ’ , ’ A l c a l i n i t y ’ , ’

Magnesium ’ , ’ Phenols ’ , ’ Flavanoids ’ , ’ Nonflavanoids ’ , ’ Proanthocyanins ’ , ’

Colour ’ , ’Hue ’ , ’ D i lu t i on ’ , ’ Pro l ine ’)

changing c l a s s names

indexes <− which (mydata$Type == 1)

mydata$Type [indexes] <− ’ one ’

indexes <− which (mydata$Type == 2)

mydata$Type [indexes] <− ’ two ’

indexes <− which (mydata$Type == 3)

mydata$Type [indexes] <− ’ th r e e ’

changing response va r i a b l e to f a c t o r

mydata$Type <− as . f a c t o r (mydata$Type)

################################

Use a neura l network to c l a s s i f y the wine type

127

Appendix B: R Code and Output: Chapter 3 128

Divide data s e t in to t r a i n and t e s t s e t : 70/30

Fit to the o r i g i n a l data

################################

load (" indexesWine . Rdata")

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

t r a i n the model

c t r l . 1 <− t r a inContro l (method = "none")

nnEX <− t r a i n (Type ~ . , data=tra in , method = ’ nnet ’ , metr i c = ’ Accuracy ’ ,

tuneGrid = expand . g r id (s i z e = 3 , decay = 0 . 5) , t r a c e = FALSE, preProces s =

c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

confus ionMatr ix (p r ed i c t (nnEX, newdata=t r a i n [, −1]) , t r a i n [, 1])

confus ionMatr ix (p r ed i c t (nnEX, newdata=t e s t [, −1]) , t e s t [, 1])

load package to p lo t model

l i b r a r y (dev too l s)

source_ur l (’ https : // g i s t . g i thubuse r content . com/Peque/41 a9e20d6687f2 f3108d /raw/

85 e14 f3a292e126 f1454864427e3a189c2 fe33 f3 /nnet_p lo t_update . r ’)

#p lo t model

p l o t . nnet (nnEX)

confus ionMatr ix (p r ed i c t (nnEX, newdata=t r a i n [, −1]) , t r a i n [, 1])

confus ionMatr ix (p r ed i c t (nnEX, newdata=t e s t [, −1]) , t e s t [, 1])

################################

7− f o l d c r o s s va l ida t i on , r epeated 10 times on the o r i g i n a l data

load ing model package

################################

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10)

nnEXcv <− t r a i n (Type ~ . , data=mydata , method = ’ nnet ’ , metr i c = ’ Accuracy ’ ,

tuneGrid = expand . g r id (s i z e = 3 , decay = 0 . 5) , t r a c e = FALSE, preProces s =

c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

################################

################################

Listing B.1: Wine Data NN R Script

Page 128 of 191.

129 Appendix B: R Code and Output: Chapter 3

B.2 R Output for the Wine Data Neural Network

The R script for the output of the neural network model built for wine data set example in

chapter 3 is as follows

#######################################

Or ig ina l data : CART (NEURAL NETWORK)

#######################################

Neural Network

126 samples

13 p r ed i c t o r

3 c l a s s e s : ’ one ’ , ’ th r e e ’ , ’ two ’

Pre−p r o c e s s i n g : centered (13) , s c a l e d (13)

Resampling : None

summary o f model

a 13−3−3 network with 54 we ights

opt i ons were − softmax mode l l ing decay =0.5

b−>h1 i1−>h1 i2−>h1 i3−>h1 i4−>h1 i5−>h1 i6−>h1 i7−>h1 i8−>h1 i9−>h1

−0.84 0 .36 0 .21 0 .21 0 .26 0 .14 −0.10 −0.75 0 .14 −0.27

i10−>h1 i11−>h1 i12−>h1 i13−>h1

0 .87 −0.61 −0.69 −0.09

b−>h2 i1−>h2 i2−>h2 i3−>h2 i4−>h2 i5−>h2 i6−>h2 i7−>h2 i8−>h2 i9−>h2

−0.52 −1.09 −0.30 −0.77 0 .48 −0.20 −0.20 0 .17 −0.04 0 .34

i10−>h2 i11−>h2 i12−>h2 i13−>h2

−0.92 0 .74 0 .12 −1.04

b−>h3 i1−>h3 i2−>h3 i3−>h3 i4−>h3 i5−>h3 i6−>h3 i7−>h3 i8−>h3 i9−>h3

−0.53 0 .74 0 .21 0 .60 −0.87 0 .09 0 .25 0 .62 −0.08 −0.11

i10−>h3 i11−>h3 i12−>h3 i13−>h3

0 .01 −0.05 0 .68 1 .06

b−>o1 h1−>o1 h2−>o1 h3−>o1

0 .02 −1.22 −1.37 2 .58

b−>o2 h1−>o2 h2−>o2 h3−>o2

−0.06 2 .43 −1.37 −1.26

b−>o3 h1−>o3 h2−>o3 h3−>o3

0 .05 −1.21 2 .74 −1.31

#######################################

Confus ion Matrix and S t a t i s t i c s

#######################################

tr a i n data

Confus ion Matrix and S t a t i s t i c s

Page 129 of 191.

Appendix B: R Code and Output: Chapter 3 130

Reference

Pred i c t i on one thr e e two

one 42 0 0

thr e e 0 34 0

two 0 0 50

Overa l l S t a t i s t i c s

Accuracy : 1

95% CI : (0 . 9711 , 1)

No Informat ion Rate : 0 .3968

P−Value [Acc > NIR] : < 2 .2 e−16

Kappa : 1

Mcnemar ’ s Test P−Value : NA

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 1 .0000 1 .0000 1 .0000

S p e c i f i c i t y 1 .0000 1 .0000 1 .0000

Pos Pred Value 1 .0000 1 .0000 1 .0000

Neg Pred Value 1 .0000 1 .0000 1 .0000

Preva lence 0 .3333 0 .2698 0 .3968

Detect ion Rate 0 .3333 0 .2698 0 .3968

Detect ion Preva lence 0 .3333 0 .2698 0 .3968

Balanced Accuracy 1 .0000 1 .0000 1 .0000

t e s t data

Reference

Pred i c t i on one thr e e two

one 17 0 0

thr e e 0 14 2

two 0 0 19

Overa l l S t a t i s t i c s

Accuracy : 0 .9615

95% CI : (0 . 8679 , 0 . 9953)

No Informat ion Rate : 0 .4038

P−Value [Acc > NIR] : < 2 .2 e−16

Kappa : 0 .942

Mcnemar ’ s Test P−Value : NA

Page 130 of 191.

131 Appendix B: R Code and Output: Chapter 3

S t a t i s t i c s by Class :

Clas s : one Class : th r e e Clas s : two

S e n s i t i v i t y 1 .0000 1 .0000 0 .9048

S p e c i f i c i t y 1 .0000 0 .9474 1 .0000

Pos Pred Value 1 .0000 0 .8750 1 .0000

Neg Pred Value 1 .0000 1 .0000 0 .9394

Preva lence 0 .3269 0 .2692 0 .4038

Detect ion Rate 0 .3269 0 .2692 0 .3654

Detect ion Preva lence 0 .3269 0 .3077 0 .3654

Balanced Accuracy 1 .0000 0 .9737 0 .9524

#######################################

Or ig ina l data with repeated CV: CART (NEURAL NETWORK)

#######################################

Neural Network

178 samples

13 p r ed i c t o r

3 c l a s s e s : ’ one ’ , ’ th r e e ’ , ’ two ’

Pre−p r o c e s s i n g : centered (13) , s c a l e d (13)

Resampling : Cross−Val idated (7 fo ld , r epeated 10 times)

Summary o f sample s i z e s : 153 , 152 , 153 , 152 , 152 , 153 , . . .

Resampling r e s u l t s :

Accuracy Kappa

0.9813791 0.9718137

Tuning parameter ’ s i z e ’ was held constant at a va lue o f 3

Tuning parameter

’ decay ’ was held constant at a va lue o f 0 . 5

#######################################

#######################################

Listing B.2: Wine Data: R Output

Page 131 of 191.

Appendix B: R Code and Output: Chapter 3 132

Page 132 of 191.

Appendix C

R Code and Output: Chapter 4

C.1 First Ten Observations: The Iris Data

The output of the first ten observation of the subsetted Iris data set in chapter 4 is as follows

Sepal Length Sepal Width Species

5.1 3.5 setosa
4.9 3.0 setosa
4.7 3.2 setosa
4.6 3.1 setosa
5.0 3.6 setosa
5.4 3.9 setosa
4.6 3.4 setosa
5.0 3.4 setosa
4.4 2.9 setosa
4.9 3.1 setosa

Table C.1: First ten observations of the subsetted Iris data set.

C.2 R Code for the Iris Data Support Vector Machine

The R script for the support vector machine model built for the subset of the Iris data set

example in chapter 4 is as follows

rm(l i s t=l s ())

l i b r a r y (ca r e t)

l i b r a r y (da ta s e t s)

l i b r a r y (kern lab)

################################

read in data

################################

133

Appendix C: R Code and Output: Chapter 4 134

data (i r i s)

#subset the data

mydata <− i r i s [1 : 1 0 0 , c (1 , 2 , 5)]

s t r (mydata)

I s the r e any miss ing data?

apply (mydata , 2 , func t i on (x) sum(i s . na (x)))

#have a look at the f i r s t ten obs e rva t i on

head (mydata , n = 10)

s imple summary s t a t i s t i c s

summary(mydata)

#removing unused c l a s s in response va r i a b l e

mydata$ Spec i e s <− f a c t o r (mydata$ Spec ie s , l e v e l s = c (’ s e t o s a ’ , ’ v e r s i c o l o r ’))

#d i s t r i b u t i o n o f c l a s s e s

cbind (f r e q = tab l e (mydata$ Spec i e s) , percentage = prop . t a b l e (t a b l e (mydata$

Spec i e s)) ∗ 100)

#box p lo t o f f e a tu r e v a r i a b l e s

boxplot (mydata [, 1 : 2])

################################

Use a support vec to r machine to c l a s s i f y the s p e c i e s type

Divide data s e t in to t r a i n and t e s t s e t : 70/30

Fit to the o r i g i n a l data

################################

indexes <− c r ea teDataPar t i t i on (mydata$ Spec ie s , t imes = 1 , p = 0 . 7 , l i s t =

FALSE)

save (indexes , f i l e ="E: // Pro j e c t // Rscr ipt // i n d e x e s I r i s . Rdata ")

load (" i n d e x e s I r i s . Rdata")

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

#bu i ld model us ing kern lab func t i on

svmLinEX <− ksvm(Spec i e s ~ . , data = tra in , type="C−svc " , s c a l e = TRUE, ke rne l

=" van i l l a do t ")

summary(svmLinEX)

#use model to p r ed i c t unseen obse rva t i ons

Page 134 of 191.

135 Appendix C: R Code and Output: Chapter 4

preds <− p r ed i c t (svmLinEX , t e s t [, −3])

confus ionMatr ix (preds , t e s t $ Spec i e s)

#p lo t svm us ing t r a i n data s e t

kern lab : : p l o t (svmLinEX , data = t r a i n)

plo t d e c i s i o n boundary on the data s e t . L ines not showing####

#plo t (mydata [, 1 : 2] , c o l=mydata [, 3] , pch=1, xlab="" , ylab="")

#w <− colSums (c o e f (svmLinEX) [[1]] ∗ mydata [, 1 : 2] [u n l i s t (a lphaindex (svmLinEX))

,])

#b <− b(svmLinEX)

#ab l i n e (a = b/w[1] , b = −w[2] /w[1] , c o l = ’ black ’)

#ab l i n e (a = (b+1)/w[1] , b = −w[2] /w[1] , l t y =2, c o l = ’ black ’)

#ab l i n e (a = (b−1)/w[1] , b = −w[2] /w[1] , l t y =2, c o l = ’ black ’)

################################

7− f o l d c r o s s va l ida t i on , r epeated 10 times on the o r i g i n a l data

load ing model package

################################

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10)

svmLinEXcv <− t r a i n (Spec i e s ~ . , data = mydata , method = ’ svmLinear ’ , metr i c =

’ Accuracy ’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

################################

################################

Listing C.1: SVM: Iris Data

C.3 R Output for the Iris Data Support Vector Machine

The R script for the output of the support vector machine model built for the subset of the

Iris data set example in chapter 4 is as follows

#######################################

#CART (SUPPORT VECTOR MACHINE) o r i g i n a l data s e t

#######################################

Support Vector Machine ob je c t o f c l a s s "ksvm"

SV type : C−svc (c l a s s i f i c a t i o n)

parameter : co s t C = 1

Page 135 of 191.

Appendix C: R Code and Output: Chapter 4 136

Linear (v a n i l l a) ke rne l func t i on .

Number o f Support Vectors : 9

Object ive Function Value : −5.461

Training e r r o r : 0

summary

Length Class Mode

1 ksvm S4

#######################################

Confus ion Matrix and S t a t i s t i c s

#######################################

Confus ion Matrix and S t a t i s t i c s

Re ference

Pred i c t i on s e t o s a v e r s i c o l o r

s e t o s a 15 0

v e r s i c o l o r 0 15

Accuracy : 1

95% CI : (0 . 8843 , 1)

No Informat ion Rate : 0 . 5

P−Value [Acc > NIR] : 9 .313 e−10

Kappa : 1

Mcnemar ’ s Test P−Value : NA

S e n s i t i v i t y : 1 . 0

S p e c i f i c i t y : 1 . 0

Pos Pred Value : 1 . 0

Neg Pred Value : 1 . 0

Preva lence : 0 . 5

Detect ion Rate : 0 . 5

Detect ion Preva lence : 0 . 5

Balanced Accuracy : 1 . 0

’ Po s i t i v e ’ Clas s : s e t o s a

################################

#CART (SUPPORT VECTOR MACHINE) o r i g i n a l data s e t with repeated c r o s s

v a l i d a t i o n

################################

Page 136 of 191.

137 Appendix C: R Code and Output: Chapter 4

Support Vector Machines with Linear Kernel

100 samples

2 p r ed i c t o r

2 c l a s s e s : ’ s e t o s a ’ , ’ v e r s i c o l o r ’

Pre−p r o c e s s i n g : centered (2) , s c a l e d (2)

Resampling : Cross−Val idated (7 fo ld , r epeated 10 times)

Summary o f sample s i z e s : 85 , 86 , 86 , 86 , 86 , 86 , . . .

Resampling r e s u l t s a c r o s s tuning parameters :

C Accuracy Kappa

0 .10 0.9897959 0.9795918

0 .25 0.9908163 0.9816327

0 .50 0.9897959 0.9795918

0 .75 0.9897959 0.9795918

1 .00 0.9908163 0.9816327

Accuracy was used to s e l e c t the optimal model us ing the l a r g e s t va lue .

The f i n a l va lue used f o r the model was C = 0 . 2 5 .

################################

################################

Listing C.2: Iris Data: SVM Output

Page 137 of 191.

Appendix C: R Code and Output: Chapter 4 138

Page 138 of 191.

Appendix D

R Code and Output: Default in Payment

Data Set

D.1 First Ten Observations: The Credit Data

The first ten observation of the credit data set as discussed in chapter 5 are shown on the

following page.

139

Appendix D: R Code and Output: Default in Payment Data Set 140

Obs LIMITBAL SEX EDUCATION MARRIAGE AGE PAY0 PAY2 PAY3 PAY4 PAY5 PAY6

1 20000 2 2 1 24 2 2 −1 −1 −2 −2

2 120000 2 2 2 26 −1 2 0 0 0 2

3 90000 2 2 2 34 0 0 0 0 0 0

4 50000 2 2 1 37 0 0 0 0 0 0

5 50000 1 2 1 57 −1 0 −1 0 0 0

6 50000 1 1 2 37 0 0 0 0 0 0

7 500000 1 1 2 29 0 0 0 0 0 0

8 100000 2 2 2 23 0 −1 −1 0 0 −1

9 140000 2 3 1 28 0 0 2 0 0 0

10 20000 1 3 2 35 −2 −2 −2 −2 −1 −1

Obs BILLAMT1 BILLAMT2 BILLAMT3 BILLAMT4 BILLAMT5 BILLAMT6

1 3913 3102 689 0 0 0

2 2682 1725 2682 3272 3455 3261

3 29239 14027 13559 14331 14948 15549

4 46990 48233 49291 28314 28959 29547

5 8617 5670 35835 20940 19146 19131

6 64400 57069 57608 19394 19619 20024

7 367965 412023 445007 542653 483003 473944

8 11876 380 601 221 −159 567

9 11285 14096 12108 12211 11793 3719

10 0 0 0 0 13007 13912

Obs PAYAMT1 PAYAMT2 PAYAMT3 PAYAMT4 PAYAMT5 PAYAMT6 defaultPayment

1 0 689 0 0 0 0 yes

2 0 1000 1000 1000 0 2000 yes

3 1518 1500 1000 1000 1000 5000 no

4 2000 2019 1200 1100 1069 1000 no

5 2000 36681 10000 9000 689 679 no

6 2500 1815 657 1000 1000 800 no

7 55000 40000 38000 20239 13750 13770 no

8 380 601 0 581 1687 1542 no

9 3329 0 432 1000 1000 1000 no

10 0 0 0 13007 1122 0 no

Table D.1: First ten observations of the credit data set.

Page 140 of 191.

141 Appendix D: R Code and Output: Default in Payment Data Set

D.2 Summary of these Data

Summary statistics for the credit data discussed in chapter 5 are as follows:

LIMITBAL SEX EDUCATION MARRIAGE AGE PAY0 PAY2 PAY3 PAY4 PAY5 PAY6

Min 10000 1.000 0.000 0.000 21.00 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000

Q1 50000 1.000 1.000 1.000 28.00 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

x̃ 140000 2.000 2.000 2.000 34.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

x 167484 1.604 1.853 1.552 35.49 -0.0167 -0.1338 -0.1662 -0.2207 -0.2662 -0.2911

Q3 240000 2.000 2.000 2.000 41.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Max 1000000 2.000 6.000 3.000 79.00 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

BILLAMT1 BILLAMT2 BILLAMT3 BILLAMT4 BILLAMT5 BILLAMT6

Min -165580 -69777 -157264 -170000 -81334 -339603

Q1 3559 2985 2666 2327 1763 1256

x̃ 22382 21200 20089 19052 18105 17071

x 51223 49179 47013 43263 40311 38872

Q3 67091 64006 60165 54506 50191 49198

Max 964511 983931 1664089 891586 927171 961664

PAYAMT1 PAYAMT2 PAYAMT3 PAYAMT4 PAYAMT5 PAYAMT6

Min 0 0 0 0 0.0 0.0

Q1 1000 833 390 296 252.5 117.8

x̃ 2100 2009 1800 1500 1500.0 1500.0

x 5664 5921 5226 4826 4799.4 5215.5

Q3 5006 5000 4505 4013 4031.5 4000.0

Max 873552 1684259 896040 621000 426529.0 528666.0

Table D.2: Summary statistics of the variables in the credit data set.

Page 141 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 142

D.3 Variance-Covariance Matrix

The variance-covariance matrix of the credit data discussed in chapter 5 is as follows:

LIMITBAL SEX EDUCATION MARRIAGE AGE PAY0 PAY2 PAY3 PAY4 PAY5 PAY6

LIMITBAL 1.0000 0.0248 −0.2192 −0.1081 0.1447 −0.2712 −0.2964 −0.2861 −0.2675 −0.2494 −0.2352

SEX 0.0248 1.0000 0.0142 −0.0314 −0.0909 −0.0576 −0.0708 −0.0661 −0.0602 −0.0551 −0.0440

EDUCATION −0.2192 0.0142 1.0000 −0.1435 0.1751 0.1054 0.1216 0.1140 0.1088 0.0975 0.0823

MARRIAGE −0.1081 −0.0314 −0.1435 1.0000 −0.4142 0.0199 0.0242 0.0327 0.0331 0.0356 0.0343

AGE 0.1447 −0.0909 0.1751 −0.4142 1.0000 −0.0394 −0.0501 −0.0530 −0.0497 −0.0538 −0.0488

PAY0 −0.2712 −0.0576 0.1054 0.0199 −0.0394 1.0000 0.6722 0.5742 0.5388 0.5094 0.4746

PAY2 −0.2964 −0.0708 0.1216 0.0242 −0.0501 0.6722 1.0000 0.7666 0.6621 0.6228 0.5755

PAY3 −0.2861 −0.0661 0.1140 0.0327 −0.0530 0.5742 0.7666 1.0000 0.7774 0.6868 0.6327

PAY4 −0.2675 −0.0602 0.1088 0.0331 −0.0497 0.5388 0.6621 0.7774 1.0000 0.8198 0.7164

PAY5 −0.2494 −0.0551 0.0975 0.0356 −0.0538 0.5094 0.6228 0.6868 0.8198 1.0000 0.8169

PAY6 −0.2352 −0.0440 0.0823 0.0343 −0.0488 0.4746 0.5755 0.6327 0.7164 0.8169 1.0000

BILLAMT1 0.2854 −0.0336 0.0236 −0.0235 0.0562 0.1871 0.2349 0.2085 0.2028 0.2067 0.2074

BILLAMT2 0.2783 −0.0312 0.0187 −0.0216 0.0543 0.1899 0.2353 0.2373 0.2258 0.2269 0.2269

BILLAMT3 0.2832 −0.0246 0.0130 −0.0249 0.0537 0.1798 0.2241 0.2275 0.2450 0.2433 0.2412

BILLAMT4 0.2940 −0.0219 −0.0005 −0.0233 0.0514 0.1791 0.2222 0.2272 0.2459 0.2719 0.2664

BILLAMT5 0.2956 −0.0170 −0.0076 −0.0254 0.0493 0.1806 0.2213 0.2251 0.2429 0.2698 0.2909

BILLAMT6 0.2904 −0.0167 −0.0091 −0.0212 0.0476 0.1770 0.2194 0.2223 0.2392 0.2625 0.2851

PAYAMT1 0.1952 −0.0002 −0.0375 −0.0060 0.0261 −0.0793 −0.0807 0.0013 −0.0094 −0.0061 −0.0015

PAYAMT2 0.1784 −0.0014 −0.0300 −0.0081 0.0218 −0.0701 −0.0590 −0.0668 −0.0019 −0.0032 −0.0052

PAYAMT3 0.2102 −0.0086 −0.0399 −0.0035 0.0292 −0.0706 −0.0559 −0.0533 −0.0692 0.0091 0.0058

PAYAMT4 0.2032 −0.0022 −0.0382 −0.0127 0.0214 −0.0640 −0.0469 −0.0461 −0.0435 −0.0583 0.0190

PAYAMT5 0.2172 −0.0017 −0.0404 −0.0012 0.0228 −0.0582 −0.0371 −0.0359 −0.0336 −0.0333 −0.0464

PAYAMT6 0.2196 −0.0028 −0.0372 −0.0066 0.0195 −0.0587 −0.0365 −0.0359 −0.0266 −0.0230 −0.0253

Table D.3: Variance-covariance matrix of the credit data set: The first eleven variables.

Page 142 of 191.

143 Appendix D: R Code and Output: Default in Payment Data Set

BILLAMT1 BILLAMT2 BILLAMT3 BILLAMT4 BILLAMT5 BILLAMT6

LIMITBAL 0.2854 0.2783 0.2832 0.2940 0.2956 0.2904

SEX −0.0336 −0.0312 −0.0246 −0.0219 −0.0170 −0.0167

EDUCATION 0.0236 0.0187 0.0130 −0.0005 −0.0076 −0.0091

MARRIAGE −0.0235 −0.0216 −0.0249 −0.0233 −0.0254 −0.0212

AGE 0.0562 0.0543 0.0537 0.0514 0.0493 0.0476

PAY0 0.1871 0.1899 0.1798 0.1791 0.1806 0.1770

PAY2 0.2349 0.2353 0.2241 0.2222 0.2213 0.2194

PAY3 0.2085 0.2373 0.2275 0.2272 0.2251 0.2223

PAY4 0.2028 0.2258 0.2450 0.2459 0.2429 0.2392

PAY5 0.2067 0.2269 0.2433 0.2719 0.2698 0.2625

PAY6 0.2074 0.2269 0.2412 0.2664 0.2909 0.2851

BILLAMT1 1.0000 0.9515 0.8923 0.8603 0.8298 0.8027

BILLAMT2 0.9515 1.0000 0.9283 0.8925 0.8598 0.8316

BILLAMT3 0.8923 0.9283 1.0000 0.9240 0.8839 0.8533

BILLAMT4 0.8603 0.8925 0.9240 1.0000 0.9401 0.9009

BILLAMT5 0.8298 0.8598 0.8839 0.9401 1.0000 0.9462

BILLAMT6 0.8027 0.8316 0.8533 0.9009 0.9462 1.0000

PAYAMT1 0.1403 0.2804 0.2443 0.2330 0.2170 0.2000

PAYAMT2 0.0994 0.1009 0.3169 0.2076 0.1812 0.1727

PAYAMT3 0.1569 0.1507 0.1300 0.3000 0.2523 0.2338

PAYAMT4 0.1583 0.1474 0.1434 0.1302 0.2931 0.2502

PAYAMT5 0.1670 0.1580 0.1797 0.1604 0.1416 0.3077

PAYAMT6 0.1793 0.1743 0.1823 0.1776 0.1642 0.1155

Table D.4: Variance-covariance matrix of the credit data set: Variables twelve to seventeen.

Page 143 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 144

PAYAMT1 PAYAMT2 PAYAMT3 PAYAMT4 PAYAMT5 PAYAMT6

LIMITBAL 0.1952 0.1784 0.2102 0.2032 0.2172 0.2196

SEX −0.0002 −0.0014 −0.0086 −0.0022 −0.0017 −0.0028

EDUCATION −0.0375 −0.0300 −0.0399 −0.0382 −0.0404 −0.0372

MARRIAGE −0.0060 −0.0081 −0.0035 −0.0127 −0.0012 −0.0066

AGE 0.0261 0.0218 0.0292 0.0214 0.0228 0.0195

PAY0 −0.0793 −0.0701 −0.0706 −0.0640 −0.0582 −0.0587

PAY2 −0.0807 −0.0590 −0.0559 −0.0469 −0.0371 −0.0365

PAY3 0.0013 −0.0668 −0.0533 −0.0461 −0.0359 −0.0359

PAY4 −0.0094 −0.0019 −0.0692 −0.0435 −0.0336 −0.0266

PAY5 −0.0061 −0.0032 0.0091 −0.0583 −0.0333 −0.0230

PAY6 −0.0015 −0.0052 0.0058 0.0190 −0.0464 −0.0253

BILLAMT1 0.1403 0.0994 0.1569 0.1583 0.1670 0.1793

BILLAMT2 0.2804 0.1009 0.1507 0.1474 0.1580 0.1743

BILLAMT3 0.2443 0.3169 0.1300 0.1434 0.1797 0.1823

BILLAMT4 0.2330 0.2076 0.3000 0.1302 0.1604 0.1776

BILLAMT5 0.2170 0.1812 0.2523 0.2931 0.1416 0.1642

BILLAMT6 0.2000 0.1727 0.2338 0.2502 0.3077 0.1155

PAYAMT1 1.0000 0.2856 0.2522 0.1996 0.1485 0.1857

PAYAMT2 0.2856 1.0000 0.2448 0.1801 0.1809 0.1576

PAYAMT3 0.2522 0.2448 1.0000 0.2163 0.1592 0.1627

PAYAMT4 0.1996 0.1801 0.2163 1.0000 0.1518 0.1578

PAYAMT5 0.1485 0.1809 0.1592 0.1518 1.0000 0.1549

PAYAMT6 0.1857 0.1576 0.1627 0.1578 0.1549 1.0000

Table D.5: Variance-covariance matrix of the credit data set: Variables eighteen to twenty-three.

Page 144 of 191.

145 Appendix D: R Code and Output: Default in Payment Data Set

D.4 Principal Component Analysis Results

The results of the PCA of the credit data in chapter 5 is as follows

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

LIMITBAL 0.0685 0.3163 −0.0175 −0.0700 −0.1495 −0.3757 0.1061 −0.0593 0.0215 −0.0175 0.0085

SEX −0.0217 0.0306 −0.0240 0.0782 0.8841 −0.3954 0.0651 −0.0277 0.0190 −0.0243 −0.0092

EDUCATION 0.0192 −0.0915 0.3164 −0.2466 0.3649 0.5653 −0.3998 0.0809 −0.1545 −0.0629 0.0004

MARRIAGE −0.0056 −0.0433 −0.4532 0.4446 −0.0533 0.2795 −0.1598 0.0263 −0.0557 −0.0386 −0.0113

AGE 0.0142 0.0666 0.4623 −0.4628 −0.1639 −0.0890 0.0813 −0.0129 0.0468 −0.0079 −0.0212

PAY0 0.1611 −0.2981 0.0175 −0.0160 −0.0345 −0.0399 −0.0866 0.0214 −0.0304 −0.0030 0.0466

PAY2 0.1941 −0.3348 −0.0178 −0.0499 −0.0370 −0.0611 −0.0920 0.0156 −0.0334 −0.0063 0.0293

PAY3 0.2002 −0.3439 −0.0617 −0.0843 −0.0237 −0.0701 −0.0209 −0.0265 −0.0114 0.0249 −0.1065

PAY4 0.2070 −0.3446 −0.0889 −0.1094 −0.0078 −0.0872 0.0392 −0.0562 0.0443 0.0568 −0.0077

PAY5 0.2110 −0.3316 −0.1087 −0.1156 0.0017 −0.0869 0.1038 −0.0339 0.0543 −0.0670 0.0095

PAY6 0.2064 −0.3058 −0.1109 −0.1099 0.0123 −0.0911 0.1388 0.0469 −0.0009 −0.0144 0.0223

BILLAMT1 0.3344 0.1398 0.1509 0.1680 −0.0132 0.0176 −0.0655 −0.0228 −0.0646 −0.0115 0.0103

BILLAMT2 0.3458 0.1402 0.1271 0.1493 0.0046 0.0551 −0.0145 −0.0760 −0.0457 0.0369 −0.1327

BILLAMT3 0.3498 0.1462 0.0839 0.1048 0.0299 0.0854 −0.0034 −0.1259 0.0797 0.1222 0.1000

BILLAMT4 0.3539 0.1454 0.0705 0.1006 0.0226 0.0642 0.0659 −0.0369 0.0267 −0.1235 0.0340

BILLAMT5 0.3518 0.1438 0.0566 0.0887 0.0223 0.0250 0.0802 0.1131 −0.0694 0.0055 0.0468

BILLAMT6 0.3445 0.1419 0.0475 0.0841 0.0105 −0.0215 −0.0496 0.1633 0.0808 −0.0138 −0.0061

PAYAMT1 0.0942 0.1491 −0.2819 −0.2804 0.0927 0.2385 0.2029 −0.2672 0.0363 0.2363 −0.7283

PAYAMT2 0.0787 0.1399 −0.3018 −0.3110 0.1079 0.2559 0.1041 −0.2191 0.3934 0.2790 0.5972

PAYAMT3 0.0864 0.1516 −0.2803 −0.2782 0.0362 0.1429 0.2272 0.2302 −0.0336 −0.7847 0.0252

PAYAMT4 0.0778 0.1414 −0.2374 −0.2365 0.0139 −0.0602 0.0240 0.6466 −0.4458 0.4353 0.0738

PAYAMT5 0.0754 0.1372 −0.1943 −0.1762 −0.0568 −0.2532 −0.7017 0.1972 0.4752 −0.0562 −0.1845

PAYAMT6 0.0699 0.1294 −0.2093 −0.2072 −0.0517 −0.1920 −0.3608 −0.5367 −0.5971 −0.1048 0.1610

Table D.6: PCA results of the credit data set: the first eleven principal components.

Page 145 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 146

PC12 PC13 PC14 PC15 PC16 PC17

LIMITBAL −0.0991 0.3592 −0.7541 0.0239 −0.0426 0.0249

SEX 0.0561 0.1759 0.1130 −0.0247 0.0002 −0.0212

EDUCATION −0.1850 0.0851 −0.3726 0.0361 −0.0096 0.0406

MARRIAGE −0.1411 0.6671 0.1335 −0.0056 −0.0066 0.0143

AGE −0.0472 0.5774 0.4324 −0.0235 −0.0014 −0.0006

PAY0 0.6242 0.1557 −0.0987 0.6072 0.2425 −0.0161

PAY2 0.3765 0.0810 −0.0838 −0.3216 −0.5588 0.0710

PAY3 0.0994 0.0519 −0.0852 −0.5417 0.1065 0.1572

PAY4 −0.2116 0.0182 −0.0601 −0.1709 0.5853 −0.0760

PAY5 −0.3584 −0.0232 −0.0200 0.1791 0.0772 −0.1451

PAY6 −0.4000 −0.0401 0.0406 0.3622 −0.5012 −0.0543

BILLAMT1 0.0431 −0.0081 0.0134 −0.0753 −0.0486 −0.5491

BILLAMT2 0.0410 −0.0165 0.0282 −0.0528 −0.0252 −0.3708

BILLAMT3 0.0128 −0.0196 0.0407 −0.0354 0.0118 −0.1115

BILLAMT4 −0.0133 −0.0367 0.0488 0.0097 0.0534 0.2012

BILLAMT5 −0.0419 −0.0373 0.0598 0.0557 0.0362 0.4096

BILLAMT6 −0.0590 −0.0490 0.0751 0.0751 0.0179 0.4791

PAYAMT1 0.1116 0.0004 −0.0064 0.0884 −0.0507 0.0468

PAYAMT2 0.1018 0.0299 −0.0062 −0.0417 −0.0339 −0.0317

PAYAMT3 0.1417 −0.0250 0.0196 −0.0806 0.0461 −0.1290

PAYAMT4 0.0252 0.0012 0.0419 −0.0398 0.0486 −0.1242

PAYAMT5 −0.0417 −0.0720 0.0917 0.0329 −0.0087 −0.0663

PAYAMT6 −0.0428 −0.0762 0.1426 0.0398 0.0077 0.0918

Table D.7: PCA results of the credit data set: variables twelve to seventeen.

Page 146 of 191.

147 Appendix D: R Code and Output: Default in Payment Data Set

PC18 PC19 PC20 PC21 PC22 PC23

LIMITBAL −0.0062 0.0070 −0.0099 0.0145 −0.0007 0.0028

SEX 0.0037 −0.0020 0.0018 −0.0007 −0.0008 0.0009

EDUCATION −0.0043 0.0022 −0.0027 0.0006 0.0014 0.0017

MARRIAGE 0.0056 −0.0007 −0.0025 −0.0002 0.0007 −0.0012

AGE 0.0056 −0.0058 0.0000 −0.0016 0.0000 0.0003

PAY0 −0.1351 −0.0329 −0.0051 −0.0003 −0.0028 0.0002

PAY2 0.4850 0.1387 −0.0311 0.0127 0.0032 0.0000

PAY3 −0.6067 −0.3050 0.0253 −0.0280 −0.0085 −0.0048

PAY4 0.2285 0.5673 0.0192 0.0018 0.0140 −0.0014

PAY5 0.3847 −0.6749 0.0272 0.0234 −0.0082 −0.0006

PAY6 −0.3952 0.3194 −0.0434 −0.0126 0.0001 0.0046

BILLAMT1 −0.0501 0.0129 0.4148 −0.4325 −0.1839 −0.3175

BILLAMT2 −0.0515 −0.0012 0.0399 0.3438 0.3292 0.6464

BILLAMT3 −0.0392 −0.0179 −0.4835 0.4970 −0.0857 −0.5262

BILLAMT4 0.0410 −0.0089 −0.5215 −0.4885 −0.3632 0.3457

BILLAMT5 0.0571 −0.0163 0.0683 −0.2500 0.7185 −0.2265

BILLAMT6 0.0468 0.0248 0.5139 0.3383 −0.4265 0.0715

PAYAMT1 0.0650 0.0186 0.0435 −0.0673 −0.0446 −0.0846

PAYAMT2 −0.0460 −0.0219 0.1466 −0.0707 0.0380 0.1244

PAYAMT3 −0.0281 0.0507 0.0012 0.1235 0.0264 −0.0631

PAYAMT4 0.0236 −0.0484 −0.1118 0.0026 −0.0812 0.0421

PAYAMT5 −0.0168 0.0002 −0.1004 −0.0695 0.0949 −0.0082

PAYAMT6 −0.0053 0.0004 0.0347 0.0274 −0.0172 0.0083

Table D.8: PCA results of the credit data set: variables eighteen to twenty-three.

Page 147 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 148

D.5 Neural Network: 7 Fold Cross Validation

The output of the 7 fold cross validation for the neural network discussed in chapter 5 is as

follows:

################################

Output of repeated 7 fold cross validation for neural network.

using original data

################################

Neural Network

30000 samples

23 predictor

2 classes: ’no’, ’yes’

Pre -processing: centered (23), scaled (23)

Resampling: Cross -Validated (7 fold , repeated 10 times)

Summary of sample sizes: 25714 , 25715 , 25715 , 25714 , 25714 ,

25714 , ...

Resampling results across tuning parameters:

size decay ROC Sens Spec

3 0.1 0.7688217 0.9490967 0.3600663

3 0.2 0.7682074 0.9497260 0.3590416

3 0.3 0.7685065 0.9497859 0.3582731

3 0.4 0.7688832 0.9503295 0.3554702

3 0.5 0.7695097 0.9499828 0.3567209

4 0.1 0.7719541 0.9502182 0.3579265

4 0.2 0.7721799 0.9506334 0.3575799

4 0.3 0.7716161 0.9507532 0.3561031

4 0.4 0.7715486 0.9513738 0.3545811

4 0.5 0.7720581 0.9516862 0.3541893

5 0.1 0.7723060 0.9501840 0.3570374

5 0.2 0.7730059 0.9502353 0.3578662

5 0.3 0.7737250 0.9504665 0.3562839

5 0.4 0.7729950 0.9516519 0.3541742

5 0.5 0.7733563 0.9513481 0.3555304

6 0.1 0.7734534 0.9496704 0.3611061

6 0.2 0.7738877 0.9502567 0.3574593

6 0.3 0.7740014 0.9508646 0.3579114

6 0.4 0.7735487 0.9512411 0.3559675

6 0.5 0.7737844 0.9515022 0.3563593

7 0.1 0.7734280 0.9501027 0.3585594

7 0.2 0.7739231 0.9497302 0.3579265

7 0.3 0.7740986 0.9507661 0.3583484

7 0.4 0.7739375 0.9512625 0.3564045

Page 148 of 191.

149 Appendix D: R Code and Output: Default in Payment Data Set

7 0.5 0.7740701 0.9508730 0.3556359

ROC was used to select the optimal model using the largest value.

The final values used for the model were size = 7 and decay =

0.3.

################################

################################

Listing D.1: R Script: 7-fold NN Cross Validation: Credit Data

D.6 Support Vector Machine: 7 Fold Cross Validation

The output of the 7 fold cross validation for the neural network discussed in chapter 5 is as

follows

################################

Output of repeated 7 fold cross validation for support vector

machine.

using original data

################################

Support Vector Machines with Radial Basis Function Kernel

30000 samples

23 predictor

2 classes: ’no’, ’yes’

Pre -processing: centered (23), scaled (23)

Resampling: Cross -Validated (7 fold , repeated 10 times)

Summary of sample sizes: 25714 , 25715 , 25715 , 25714 , 25714 ,

25714 , ...

Resampling results across tuning parameters:

C sigma ROC Sens Spec

0.10 0.01 0.7137509 0.9644188 0.2610882

0.10 0.03 0.7118717 0.9613359 0.2990398

0.10 0.05 0.7151410 0.9605652 0.3132144

0.25 0.01 0.7117412 0.9642903 0.2684042

0.25 0.03 0.7130931 0.9608221 0.3086420

0.25 0.05 0.7187386 0.9609505 0.3109282

0.50 0.01 0.7079385 0.9626204 0.2839506

0.50 0.03 0.7160088 0.9609505 0.3104710

0.50 0.05 0.7197640 0.9601798 0.3127572

0.75 0.01 0.7072279 0.9624920 0.2894376

0.75 0.03 0.7174663 0.9597945 0.3118427

Page 149 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 150

0.75 0.05 0.7217062 0.9606936 0.3155007

1.00 0.01 0.7070711 0.9623635 0.2949246

1.00 0.03 0.7192409 0.9597945 0.3123000

1.00 0.05 0.7213817 0.9603083 0.3155007

ROC was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.05 and C =

0.75.

################################

################################

Listing D.2: Output of the 7-fold NN Cross Validation: Credit Data

D.7 R Code for the Credit Data Set Neural Network

The R script for the neural network model built for the credit data set example in chapter 5

is as follows

rm(l i s t=l s ())

l i b r a r y (ca r e t)

################################

read in data

################################

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

#head (mydata)

#check f o r any miss ing v a r i a b l e s

apply (mydata , 2 , func t i on (x) sum(i s . na (x)))

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

Page 150 of 191.

151 Appendix D: R Code and Output: Default in Payment Data Set

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

#d i s t r i b u t i o n o f c l a s s e s

cbind (f r e q = tab l e (mydata$defaultPayment) , percentage = prop . t a b l e (t a b l e (

mydata$defaultPayment)) ∗ 100)

#have a look at the f i r s t ten obs e rva t i on

head (mydata , n=10)

output to l a t e x f o r t h e s i s :

l i b r a r y (Hmisc)

l a t e x (head (mydata , n=10) , f i l e="defaultPayment10obs . tex ")

s imple summary s t a t i s t i c s and output to l a t e x f o r t h e s i s :

summary(mydata)

l a t e x (summary(mydata) , f i l e="defaultPaymentsummarystats . tex ")

var i ance cova r i ance matrix and output to l a t e x f o r t h e s i s :

var . co r <− cor (mydata [, −24])

l a t e x (round (var . cor , 4) , f i l e=" de fau l tPaymentco r r e l a t i ons . tex ")

l i b r a r y (GGally)

diagram o f cova r i ance

ggcor r (mydata [, −24])

#drawing box p l o t s o f the f e a tu r e v a r i a b l e s

boxplot (mydata [,− c (2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 24)])

#check ing f o r o u t l i e r s

outva l s <− boxplot (mydata [,− c (2 , 3 , 4 , 6 , 7 , 8 , 9 , 10 , 11 , 24)] , p l o t = FALSE) $out

#diagram to d i s p l a y d i s t r i b u t i o n o f c l a s s e s with r e s p e c t to g iven v a r i a b l e s

with (mydata , qp lo t (AGE, LIMIT_BAL, co lour=defaultPayment , cex=2, ylab = ’LIMIT

BALANCE’))

Class d i s t r i b u t i o n : s c a t t e r p l o t

p lo t (mydata [, −24] , c o l=c (" red " , " blue ") [mydata$defaultPayment])

dev . p r in t (dev i c e=po s t s c r i p t , f i l e=" Cr ed i tS c a t t e r p l o tC l a s s . eps ")

t r a i n / t e s t s p l i t

indexes <− c r ea teDataPar t i t i on (mydata$defaultPayment , t imes = 1 , p = 0 . 7 ,

l i s t = FALSE)

save (indexes , f i l e ="E: // Pro j e c t // Rscr ipt // indexes70 . Rdata ")

load (" indexes70 . Rdata")

Page 151 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 152

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

c t r l . 1 <− t r a inContro l (method = "none")

################################

#tr a i n i ng neura l networks

#f i v e models with between 3−7 nodes in the hidden l a y e r

################################

nn3nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 3 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn3nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

nn4nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 4 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn4nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

nn5nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 5 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn5nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

nn6nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 6 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn6nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

Page 152 of 191.

153 Appendix D: R Code and Output: Default in Payment Data Set

################################

nn7nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn7nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

Listing D.3: NN Credit Data: 70/30

rm(l i s t=l s ())

l i b r a r y (ca r e t)

################################

read in data

################################

Linux :

mydata <− read . csv (" . . / . . / d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

#head (mydata)

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

t r a i n / t e s t s p l i t

indexes <− c r ea teDataPar t i t i on (mydata$defaultPayment , t imes = 1 , p = 0 . 8 ,

l i s t = FALSE)

save (indexes , f i l e ="E: // Pro j e c t // Rscr ipt // indexes80 . Rdata ")

load (" indexes80 . Rdata")

Page 153 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 154

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

c t r l . 1 <− t r a inContro l (method = "none")

################################

#tr a i n i ng neura l networks

#f i v e models with between 3−7 nodes in the hidden l a y e r

################################

nn3nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 3 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn3nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

nn4nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 4 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn4nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

nn5nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 5 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn5nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

nn6nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 6 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn6nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

Page 154 of 191.

155 Appendix D: R Code and Output: Default in Payment Data Set

################################

################################

nn7nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ Accuracy ’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 5) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l=c t r l . 1 , maxit = 100)

preds <− p r ed i c t (nn7nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

################################

################################

Listing D.4: NN Credit Data: 80/20

rm(l i s t=l s ())

l i b r a r y (ca r e t)

################################

read in data

################################

Linux :

mydata <− read . csv (" . . / . . / d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

#head (mydata)

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

t r a i n / t e s t s p l i t

indexes <− c r ea teDataPar t i t i on (mydata$defaultPayment , t imes = 1 , p = 0 . 9 ,

l i s t = FALSE)

save (indexes , f i l e ="E: // Pro j e c t // Rscr ipt // indexes90 . Rdata ")

Page 155 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 156

load (" indexes90 . Rdata")

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

#c r e a t e t r a i n c on t r o l to s e t up ROC as the per formance measure

c t r l . 1 <− t r a inContro l (method = "none")

l i b r a r y (pROC)

################################

#tr a i n i ng neura l networks

#f i v e models with between 3−7 nodes in the hidden l a y e r

################################

nn3nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 3 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

confus ionMatr ix (p r ed i c t (nn3nodes , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (nn3nodes , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (nn3nodes , newdata=t e s t [, 1 : 2 3] , type="prob")

nn3nodesROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

nn3nodesROC$auc

################################

################################

nn4nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 4 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

confus ionMatr ix (p r ed i c t (nn4nodes , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (nn4nodes , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (nn4nodes , newdata=t e s t [, 1 : 2 3] , type="prob")

nn4nodesROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

nn4nodesROC$auc

################################

################################

Page 156 of 191.

157 Appendix D: R Code and Output: Default in Payment Data Set

nn5nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 5 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

confus ionMatr ix (p r ed i c t (nn5nodes , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (nn5nodes , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (nn5nodes , newdata=t e s t [, 1 : 2 3] , type="prob")

nn5nodesROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

nn5nodesROC$auc

################################

################################

nn6nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 6 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

confus ionMatr ix (p r ed i c t (nn6nodes , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (nn6nodes , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (nn6nodes , newdata=t e s t [, 1 : 2 3] , type="prob")

nn6nodesROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

nn6nodesROC$auc

################################

################################

nn7nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

confus ionMatr ix (p r ed i c t (nn7nodes , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (nn7nodes , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (nn7nodes , newdata=t e s t [, 1 : 2 3] , type="prob")

nn7nodesROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

nn7nodesROC$auc

Page 157 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 158

################################

################################

plo t ROC curves

p lo t (nn3nodesROC , c o l = " green " , main = "ROC curve o f NN with d i f f e r e n t number

o f nodes")

Draw a legend .

l egend (0 . 6 , 0 . 35 , c (’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’) , c (’ green ’ , ’ red ’ , ’ b lue ’ , ’ b lack ’

, ’ ye l low ’))

l i n e s (nn4nodesROC , c o l = " red ")

l i n e s (nn5nodesROC , c o l = "blue ")

l i n e s (nn6nodesROC , c o l = " black")

l i n e s (nn7nodesROC , c o l = " ye l low")

################################

################################

accuracyRate <− 1 :6

AUC <− 1 :6

annNodes <− data . frame (accuracyRate , AUC)

c t r l . 1 <− t r a inContro l (method = "none" , summaryFunction=twoClassSummary ,

c l a s sProbs=TRUE)

################################

################################

nn8nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’ ,

metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 8 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nn8nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

annNodes$ accuracyRate [1] <− confus ionMatr ix (preds , t e s t $ defaultPayment) $

o v e r a l l [1]

################################

################################

nn10nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’

, metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 10 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nn10nodes , t e s t [, 1 : 2 3])

Page 158 of 191.

159 Appendix D: R Code and Output: Default in Payment Data Set

confus ionMatr ix (preds , t e s t $ defaultPayment)

annNodes$ accuracyRate [2] <− confus ionMatr ix (preds , t e s t $ defaultPayment) $

o v e r a l l [1]

################################

################################

nn15nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’

, metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 15 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nn15nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

annNodes$ accuracyRate [3] <− confus ionMatr ix (preds , t e s t $ defaultPayment) $

o v e r a l l [1]

################################

################################

nn20nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’

, metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 20 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nn20nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

annNodes$ accuracyRate [4] <− confus ionMatr ix (preds , t e s t $ defaultPayment) $

o v e r a l l [1]

################################

################################

nn30nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’

, metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 30 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nn30nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

annNodes$ accuracyRate [5] <− confus ionMatr ix (preds , t e s t $ defaultPayment) $

o v e r a l l [1]

################################

################################

Page 159 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 160

nn35nodes <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ nnet ’

, metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 35 , decay = 0 . 5) , t r a c e =

FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nn35nodes , t e s t [, 1 : 2 3])

confus ionMatr ix (preds , t e s t $ defaultPayment)

annNodes$ accuracyRate [6] <− confus ionMatr ix (preds , t e s t $ defaultPayment) $

o v e r a l l [1]

#################################

#################################

numPC <− c (8 , 10 , 15 , 20 , 30 , 35)

p lo t (numPC, annNodes$ accuracyRate , x lab = ’Number o f nodes ’ , y lab = ’ Accuracy

ra te ’)

l i n e s (numPC, annNodes$accuracyRate)

#################################

#################################

Listing D.5: NN Credit Data: 90/10

D.8 R Code for the Credit Data Set Support Vector Ma-

chine

The R script for the support vector machine model built for the credit data set example in

chapter 5 is as follows

rm(l i s t=l s ())

l i b r a r y (ca r e t)

l i b r a r y (kern lab)

l i b r a r y (pROC)

################################

read in data

################################

Linux :

mydata <− read . csv (" . . / . . / d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

Page 160 of 191.

161 Appendix D: R Code and Output: Default in Payment Data Set

#head (mydata)

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

################################

Use the same t r a i n and t e s t data used in NN (90&10 pa r t i t i o n)

Load the data s e t

################################

load (" indexes90 . Rdata")

t r a i n <− mydata [indexes ,]

t e s t <− mydata[− indexes ,]

#c r e a t e a smal l t r a i n s e t

indexe s sma l l <− c r ea teDataPar t i t i on (mydata$defaultPayment , t imes = 1 , p =

0 .15 , l i s t = FALSE)

t r a i n sma l l <− mydata [indexessma l l ,]

################################

################################

#cr ea t e t r a i n c on t r o l to s e t up ROC as the per formance measure

c t r l . 1 <− t r a inContro l (summaryFunction=twoClassSummary , c l a s sProbs=TRUE)

c t r l . 2 <− t r a inContro l (method = "none" , summaryFunction=twoClassSummary ,

c l a s sProbs=TRUE)

################################

################################

#se t up tune g r id f o r l i n e a r svm

svmGrid <− expand . g r id (C = c (0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1))

check code runs on sma l l e r subset

svmLinsmall <− t r a i n (x = t r a i n sma l l [, 1 : 2 3] , y = t r a i n sma l l $defaultPayment ,

method = ’ svmLinear ’ , metr i c = ’ Accuracy ’ , preProces s = c (" cente r " , " s c a l e "

) , tuneGrid = svmGrid , t rCont ro l = c t r l . 1)

Page 161 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 162

#ex t r a c t parameters that maximise accuracy

svmGrid <− expand . g r id (C = 1)

Run SVM on f u l l data s e t

Very slow

svmLin <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’

svmLinear ’ , metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid =

svmGrid , t rCont ro l = c t r l . 2)

confus ionMatr ix (p r ed i c t (svmLin , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (svmLin , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (svmLin , newdata=t e s t [, 1 : 2 3] , type="prob")

svmLinROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

svmLinROC$auc

################################

################################

#se t up tune g r id

svmGrid <− expand . g r id (C = c (0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1) , sigma = c (0 . 0 1 , 0 . 03 ,

0 . 0 5))

check code runs on sma l l e r subset

svmRadsmall <− t r a i n (x = t r a i n sma l l [, 1 : 2 3] , y = t r a i n sma l l $defaultPayment ,

method = ’ svmRadial ’ , metr i c = ’ Accuracy ’ , preProces s = c (" cente r " , " s c a l e "

) , tuneGrid = svmGrid , t rCont ro l = c t r l . 1)

#ex t r a c t parameters that maximise accuracy

svmGrid <− expand . g r id (C = 0 .75 , sigma = 0 . 0 5)

Run SVM on f u l l data s e t

Very slow

svmRad <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’

svmRadial ’ , metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid =

svmGrid , t rCont ro l = c t r l . 2)

confus ionMatr ix (p r ed i c t (svmRad , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (svmRad , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (svmRad , newdata=t e s t [, 1 : 2 3] , type="prob")

svmRadROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

Page 162 of 191.

163 Appendix D: R Code and Output: Default in Payment Data Set

svmRadROC$auc

################################

################################

#se t up tune g r id

svmGrid <− expand . g r id (degree = c (1 , 2 , 3) , s c a l e = c (0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1) ,

C = 1)

check code runs on sma l l e r subset

svmPolysmall <− t r a i n (x = t r a i n sma l l [, 1 : 2 3] , y = t r a i n sma l l $defaultPayment ,

method = ’ svmPoly ’ , metr i c = ’ Accuracy ’ , preProces s = c (" cente r " , " s c a l e ") ,

tuneGrid = svmGrid , t rCont ro l = c t r l . 1)

#ex t r a c t parameters that maximise accuracy

svmGrid <− expand . g r id (degree = 1 , s c a l e = 0 . 4 , C = 1)

Run SVM on f u l l data s e t

Very slow

svmPoly <− t r a i n (x = t r a i n [, 1 : 2 3] , y = t r a i n $defaultPayment , method = ’ svmPoly

’ , metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 2)

confus ionMatr ix (p r ed i c t (svmPoly , newdata=t r a i n [, −24]) , t r a i n [, 2 4])

confus ionMatr ix (p r ed i c t (svmPoly , newdata=t e s t [, −24]) , t e s t [, 2 4])

modpred<− p r ed i c t (svmPoly , newdata=t e s t [, 1 : 2 3] , type="prob")

svmPolyROC <− roc (p r ed i c t o r=modpred$no , r esponse=t e s t $defaultPayment , l e v e l s=

rev (l e v e l s (t e s t $defaultPayment)))

svmPolyROC$auc

################################

################################

plo t ROC curves

p lo t (svmLinROC, c o l = " green " , main = "ROC curve o f SVM with d i f f e r e n t k e r n e l s

")

Draw a legend .

l egend (0 . 4 , 0 . 35 , c (’ L inear ’ , ’ Radia l ’ , ’ Polynomial ’) , c (’ green ’ , ’ red ’ , ’ b lue ’

))

l i n e s (svmRadROC, c o l = " red ")

l i n e s (svmPolyROC , c o l = "blue ")

################################

Page 163 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 164

################################

Listing D.6: R Script: SWM: Credit Data

D.9 R Code for the Credit Data Set 7 Fold Cross Valida-

tion

The R script for the neural network and support vector machine models built for the credit

data set example with 7 fold cross validation in chapter 5 is as follows

#cro s s v a l i d a t i o n

rm(l i s t=l s ())

l i b r a r y (doSNOW)

l i b r a r y (ca r e t)

################################

read in data

################################

Linux :

mydata <− read . csv (" . . / . . / d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

#head (mydata)

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

s e t up t r a i n c on t r o l to do cros s−va l i d a t i o n

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10)

c t r l . 2 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10 ,

c l a s sProbs = TRUE, summaryFunction = twoClassSummary)

Page 164 of 191.

165 Appendix D: R Code and Output: Default in Payment Data Set

################################

################################

c l <− makeCluster (6 , type = ’SOCK’)

registerDoSNOW (c l)

nnetGrid <− expand . g r id (s i z e = seq (from = 3 , to = 7 , by = 1) , decay = seq (

from = 0 . 1 , to = 0 . 5 , by = 0 . 1))

svmGrid <− expand . g r id (C = c (0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 , 1) , sigma = c (0 . 0 1 , 0 . 03 ,

0 . 0 5))

NNcv <− t r a i n (defaultPayment ~ . , data=mydata , method = ’ nnet ’ , metr i c = ’ROC’

, t rCont ro l = c t r l . 2 , tuneGrid = nnetGrid , t r a c e = FALSE, preProces s = c ("

cente r " , " s c a l e ") , l i n e a r . output = FALSE)

check code runs on sma l l e r subset

SVMcv <− t r a i n (x =mydata [1 : 1 0 0 0 , 1 : 2 3] , y = mydata$defaultPayment [1 : 1 0 0 0] ,

method = "svmRadial" , metr i c = ’ROC’ , tuneGrid = svmGrid , t rCont ro l=c t r l . 2 ,

preProces s = c (" cente r " , " s c a l e "))

Run SVM on f u l l data s e t

Very slow

SVMcv <− t r a i n (defaultPayment ~ . , data=mydata , method = "svmRadial" , metr i c =

’ROC’ , tuneGrid = svmGrid , t rCont ro l=c t r l . 2 , preProces s = c (" cente r " , "

s c a l e "))

s topClus te r (c l)

################################

################################

NNcv$ r e s u l t s [3]

SVMcv$ r e s u l t s [3]

################################

################################

#import the func t i on from Github to p lo t NN model

l i b r a r y (dev too l s)

source_ur l (’ https : // g i s t . g i thubuse r content . com/Peque/41 a9e20d6687f2 f3108d /raw/

85 e14 f3a292e126 f1454864427e3a189c2 fe33 f3 /nnet_p lo t_update . r ’)

#p lo t c r o s s v a l i d a t i o n r e s u l t s

p l o t (NNcv)

p lo t (SVMcv)

Page 165 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 166

#plo t models

p l o t . nnet (NNcv)

p lo r . svm(SVMcv)

################################

################################

Listing D.7: R Script: 7-fold SVM Cross Validation: Credit Data

D.10 R Code for the Dimension Reduction Techniques

The R script for the neural network and support vector machine models built using the

dimensionally reduced feature space in chapter 5 is as follows

rm(l i s t=l s ())

l i b r a r y (ca r e t)

################################

read in data

################################

Linux :

mydata <− read . csv (" . . / . . / d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

#head (mydata)

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

load (" indexes90 . Rdata")

################################

Conduct PCA

Page 166 of 191.

167 Appendix D: R Code and Output: Default in Payment Data Set

Fit model

################################

pr in_comp <− prcomp(mydata [, −24] , s c a l e . = T)

In t e r p r e t a t i o n

pr in_comp

l i b r a r y (Hmisc)

l a t e x (round (pr in_comp$ ro ta t i on , 4) , f i l e="PrinCompScoresCredit . tex ")

pr in_comp$ r o t a t i o n

In t e r p r e t a t i o n : Not ove r ly c l e a r un l e s s you are a wine exper t or chemist ?

b i p l o t (pr in_comp , s c a l e = 0)

compute standard dev ia t i on o f each p r i n c i p a l component

s td_dev <− pr in_comp$ sdev

compute va r i ance

pr_var <− s td_dev^2

check va r i ance o f f i r s t 10 components

pr_var [1 : 1 0]

propor t ion o f va r i ance expla ined

prop_varex <− pr_var/sum(pr_var)

prop_varex [1 : 1 5]

sum(prop_varex [1 : 1 5])

s c r e e p lo t

p lo t (prop_varex , x lab = " Pr i n c i pa l Component" , y lab = "Proport ion o f Var iance

Expla ined" , type = "b")

cumulative s c r e e p lo t

p lo t (cumsum(prop_varex) , x lab = " Pr i n c i pa l Component" , y lab = "Cumulative

Proport ion o f Var iance Expla ined" , type = "b")

add a data s e t with p r i n c i p a l components

mydataPCA <− data . frame (defaultPayment = mydata$defaultPayment , pr in_comp$x)

trainPCA <− mydataPCA[indexes ,]

testPCA <− mydataPCA[− indexes ,]

#we are i n t e r e s t e d in f i r s t 15 PCAs

trainPCA1 <− trainPCA [, 1 : 1 6]

testPCA1 <− testPCA [, 1 : 1 6]

#c r e a t e t r a i n c on t r o l to s e t up ROC as the per formance measure

c t r l . 1 <− t r a inContro l (method = "none")

#c t r l . 1 <− t r a inContro l (summaryFunction=twoClassSummary , c l a s sProbs=TRUE)

Page 167 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 168

l i b r a r y (pROC)

################################

################################

nnPCA <− t r a i n (x = trainPCA1 [, 2 : 1 6] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l

. 1)

preds <− p r ed i c t (nnPCA, testPCA1 [, −1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

modpred<− p r ed i c t (nnPCA, newdata=testPCA1 [, −1] , type="prob")

nnPCAROC <− roc (p r ed i c t o r=modpred$no , r esponse=testPCA1$defaultPayment , l e v e l s

=rev (l e v e l s (testPCA1$defaultPayment)))

nnPCAROC$auc

################################

################################

#parameters that maximise accuracy

svmGrid <− expand . g r id (C = 0 .75 , sigma = 0 . 0 5)

svmPCA <− t r a i n (x = trainPCA1 [, 2 : 1 6] , y = trainPCA1$defaultPayment , method = ’

svmRadial ’ , metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid =

svmGrid , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmPCA, testPCA1 [, −1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

modpred<− p r ed i c t (svmPCA, newdata=testPCA1 [, −1] , type="prob")

svmPCAROC <− roc (p r ed i c t o r=modpred$no , r esponse=testPCA1$defaultPayment ,

l e v e l s=rev (l e v e l s (testPCA1$defaultPayment)))

svmPCAROC$auc

################################

################################

Listing D.8: R Script: Reduced Credit Data

rm(l i s t=l s ())

l i b r a r y (ca r e t)

Page 168 of 191.

169 Appendix D: R Code and Output: Default in Payment Data Set

################################

read in data

################################

Linux :

mydata <− read . csv (" . . / . . / d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

mydata <− read . csv (" d e f a u l t o f c r e d i t card c l i e n t s . csv " , sep = " ; ")

s t r (mydata)

#data imported c o r r e c t l y

#remove ID va r i a b l e

mydata <− mydata [, −1]

#head (mydata)

#change dependent va r i a b l e name

names (mydata) [names (mydata) == " de f au l t . payment . next . month"] <− "

defaultPayment"

#change dependent va r i a b l e coding

indexes <− which (mydata$defaultPayment == 1)

mydata$defaultPayment [indexes] <− ’ yes ’

mydata$defaultPayment [− indexes] <− ’ no ’

#changing response va r i a b l e to f a c t o r

mydata$defaultPayment <− f a c t o r (mydata$defaultPayment , l e v e l s = c (’ no ’ , ’ yes ’)

)

load (" indexes90 . Rdata")

#us ing lda method to reduce f e a tu r e space

l i b r a r y (MASS)

l i n e a rD i s = lda (defaultPayment ~ . , data = mydata)

In t e r p r e t a t i o n

pro j e c t ed_data = as . matrix (mydata [, −24]) %∗% l i n e a rD i s $ s c a l i n g

p lo t (p ro j e c t ed_data , c o l = mydata [, 2 4] , pch = 19)

add a t r a i n i ng s e t with l i n e a r d i s c r im inan t s

mydataLDA <− as . matrix (mydata [, −24]) %∗% l i n e a rD i s $ s c a l i n g

mydataLDA <− as . data . frame (mydataLDA)

mydataLDA <− data . frame (mydataLDA, defaultPayment = mydata$defaultPayment)

trainLDA <− mydataLDA[indexes ,]

testLDA <− mydataLDA[− indexes ,]

#c r e a t e t r a i n c on t r o l to s e t up ROC as the per formance measure

c t r l . 1 <− t r a inContro l (method = "none")

#c t r l . 1 <− t r a inContro l (summaryFunction=twoClassSummary , c l a s sProbs=TRUE)

################################

Page 169 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 170

################################

l i b r a r y (pROC)

nnLDA <− t r a i n (defaultPayment ~ . , data = trainLDA , method = ’ nnet ’ , metr i c =

’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e = FALSE,

preProces s = c (" cente r " , " s c a l e ") , maxit = 100 , t rCont ro l = c t r l . 1)

outofsampedata <− as

preds <− p r ed i c t (nnLDA, newdata=data . frame (LD1=testLDA$LD1))

confus ionMatr ix (preds , testLDA$defaultPayment)

modpred<− p r ed i c t (nnLDA, newdata=testLDA [, −2] , type="prob")

nnLDAROC <− roc (p r ed i c t o r=modpred$no , r esponse=testLDA$defaultPayment , l e v e l s=

rev (l e v e l s (testLDA$defaultPayment)))

nnLDAROC$auc

################################

################################

#parameters that maximise accuracy

svmGrid <− expand . g r id (C = 1 , sigma = 0 .015)

svmLDA <− t r a i n (defaultPayment ~ . , data = trainLDA , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmLDA, testLDA [, −2])

confus ionMatr ix (preds , testLDA$defaultPayment)

modpred<− p r ed i c t (svmLDA, newdata=testLDA [, −2] , type="prob")

svmLDAROC <− roc (p r ed i c t o r=modpred$no , r esponse=testLDA$defaultPayment , l e v e l s

=rev (l e v e l s (testLDA$defaultPayment)))

svmLDAROC$auc

################################

################################

plo t ROC curves

p lo t (nn7nodesROC , c o l = " green " , main = "ROC curve o f NN c l a s s i f i e r s ")

Draw a legend .

l egend (0 . 4 , 0 . 35 , c (’NN’ , ’PCA−NN’ , ’LDA−NN’) , c (’ green ’ , ’ red ’ , ’ b lue ’))

l i n e s (nnPCAROC, co l = " red ")

Page 170 of 191.

171 Appendix D: R Code and Output: Default in Payment Data Set

l i n e s (nnLDAROC, co l = "blue ")

################################

################################

plo t ROC curves

p lo t (svmRadROC, c o l = " green " , main = "ROC curve o f SVM c l a s s i f i e r s ")

Draw a legend .

l egend (0 . 4 , 0 . 35 , c (’SVM’ , ’PCA−SVM’ , ’LDA−SVM’) , c (’ green ’ , ’ red ’ , ’ b lue ’))

l i n e s (svmPCAROC, co l = " red ")

l i n e s (svmLDAROC, co l = "blue ")

################################

################################

Listing D.9: R Script: Reduced Credit Data

D.11 R Code for the Number of PC Investigation

The R script for the investigation conducted to find out the best number of principal com-

ponents to use to build the optimal model for the credit data set analysis in chapter 5 is as

follows

#get p r i n c i p a l components

mydataPCA <− data . frame (defaultPayment = mydata$defaultPayment , pr in_comp$x)

trainPCA <− mydataPCA[indexes ,]

testPCA <− mydataPCA[− indexes ,]

#c r e a t e dataframe f o r accuracy and AUC

accuracyRate <− 2 :23

AUC <− 2 :23

annPC <− data . frame (accuracyRate , AUC)

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10 ,

c l a s sProbs = TRUE, summaryFunction = twoClassSummary)

################################

################################

#we are i n t e r e s t e d in f i r s t 23 PCs

trainPCA1 <− trainPCA [, 1 : 2 4]

testPCA1 <− testPCA [, 1 : 2 4]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

Page 171 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 172

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [2 2] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[2 2] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 22 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 3]

testPCA1 <− testPCA1 [, 1 : 2 3]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) ,

t r a c e = FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [2 1] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[2 1] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 21 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 2]

testPCA1 <− testPCA1 [, 1 : 2 2]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) ,

t r a c e = FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [2 0] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

Page 172 of 191.

173 Appendix D: R Code and Output: Default in Payment Data Set

get AUC

annPC$AUC[2 0] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 20 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 1]

testPCA1 <− testPCA1 [, 1 : 2 1]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) ,

t r a c e = FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 9] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 9] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 19 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 0]

testPCA1 <− testPCA1 [, 1 : 2 0]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 8] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 8] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 18 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 9]

Page 173 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 174

testPCA1 <− testPCA1 [, 1 : 1 9]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 7] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 7] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 17 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 8]

testPCA1 <− testPCA1 [, 1 : 1 8]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) ,

t r a c e = FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 6] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 6] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 16 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 7]

testPCA1 <− testPCA1 [, 1 : 1 7]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) ,

t r a c e = FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

Page 174 of 191.

175 Appendix D: R Code and Output: Default in Payment Data Set

annPC$accuracyRate [1 5] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 5] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 15 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 6]

testPCA1 <− testPCA1 [, 1 : 1 6]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 4] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 4] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 14 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 5]

testPCA1 <− testPCA1 [, 1 : 1 5]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 3] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 3] <− nnModel$ r e s u l t s [3]

################################

Page 175 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 176

################################

#we are i n t e r e s t e d in f i r s t 13 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 4]

testPCA1 <− testPCA1 [, 1 : 1 4]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 2] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 2] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 12 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 3]

testPCA1 <− testPCA1 [, 1 : 1 3]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 1] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 1] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 11 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 2]

testPCA1 <− testPCA1 [, 1 : 1 2]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

Page 176 of 191.

177 Appendix D: R Code and Output: Default in Payment Data Set

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1 0] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1 0] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 10 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 1]

testPCA1 <− testPCA1 [, 1 : 1 1]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [9] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[9] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 9 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 0]

testPCA1 <− testPCA1 [, 1 : 1 0]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [8] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

Page 177 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 178

get AUC

annPC$AUC[8] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 8 PCs

trainPCA1 <− trainPCA1 [, 1 : 9]

testPCA1 <− testPCA1 [, 1 : 9]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [7] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[7] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 7 PCs

trainPCA1 <− trainPCA1 [, 1 : 8]

testPCA1 <− testPCA1 [, 1 : 8]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [6] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[6] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 6 PCs

trainPCA1 <− trainPCA1 [, 1 : 7]

Page 178 of 191.

179 Appendix D: R Code and Output: Default in Payment Data Set

testPCA1 <− testPCA1 [, 1 : 7]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [5] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[5] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 5 PCs

trainPCA1 <− trainPCA1 [, 1 : 6]

testPCA1 <− testPCA1 [, 1 : 6]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [4] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[4] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 4 PCs

trainPCA1 <− trainPCA1 [, 1 : 5]

testPCA1 <− testPCA1 [, 1 : 5]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

Page 179 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 180

annPC$accuracyRate [3] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[3] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 3 PCs

trainPCA1 <− trainPCA1 [, 1 : 4]

testPCA1 <− testPCA1 [, 1 : 4]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [2] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[2] <− nnModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 2 PCs

trainPCA1 <− trainPCA1 [, 1 : 3]

testPCA1 <− testPCA1 [, 1 : 3]

nnModel <− t r a i n (x = trainPCA1 [, −1] , y = trainPCA1$defaultPayment , method = ’

nnet ’ , metr i c = ’ROC’ , tuneGrid = expand . g r id (s i z e = 7 , decay = 0 . 3) , t r a c e

= FALSE, preProces s = c (" cente r " , " s c a l e ") , t rCont ro l = c t r l . 1)

preds <− p r ed i c t (nnModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

annPC$accuracyRate [1] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

annPC$AUC[1] <− nnModel$ r e s u l t s [3]

################################

Page 180 of 191.

181 Appendix D: R Code and Output: Default in Payment Data Set

################################

wr i t e . t a b l e (annPC , "E:\\annPC . csv " , row . names = FALSE, dec = " . " , sep = " ; ")

numPC <− 2 :23

p lo t (numPC, annPC$accuracyRate , x lab = ’Number o f Pr i n c i pa l Components ’ , y lab

= ’ Accuracy ra te ’)

l i n e s (numPC, annPC$accuracyRate)

p lo t (numPC, annPC$AUC, xlab = ’Number o f Pr i n c i pa l Components ’ , y lab = ’AUC’)

l i n e s (numPC, annPC$AUC)

################################

################################

Listing D.10: PCA: NN Credit Data

#get p r i n c i p a l components

mydataPCA <− data . frame (defaultPayment = mydata$defaultPayment , pr in_comp$x)

trainPCA <− mydataPCA[indexes ,]

testPCA <− mydataPCA[− indexes ,]

#c r e a t e dataframe f o r accuracy and AUC

accuracyRate <− 2 :23

AUC <− 2 :23

svmPC <− data . frame (accuracyRate , AUC)

svmGrid <− expand . g r id (C = 0 .75 , sigma = 0 . 0 5)

c t r l . 1 <− t r a inContro l (method = ’ repeatedcv ’ , number = 7 , r epea t s = 10 ,

c l a s sProbs = TRUE, summaryFunction = twoClassSummary)

################################

################################

#we are i n t e r e s t e d in f i r s t 23 PCs

trainPCA1 <− trainPCA [, 1 : 2 4]

testPCA1 <− testPCA [, 1 : 2 4]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

Page 181 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 182

svmPC$accuracyRate [2 2] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[2 2] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 22 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 3]

testPCA1 <− testPCA1 [, 1 : 2 3]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [2 1] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[2 1] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 21 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 2]

testPCA1 <− testPCA1 [, 1 : 2 2]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [2 0] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[2 0] <− svmModel$ r e s u l t s [3]

################################

################################

Page 182 of 191.

183 Appendix D: R Code and Output: Default in Payment Data Set

#we are i n t e r e s t e d in f i r s t 20 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 1]

testPCA1 <− testPCA1 [, 1 : 2 1]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 9] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 9] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 19 PCs

trainPCA1 <− trainPCA1 [, 1 : 2 0]

testPCA1 <− testPCA1 [, 1 : 2 0]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 8] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 8] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 18 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 9]

testPCA1 <− testPCA1 [, 1 : 1 9]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

Page 183 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 184

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 7] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 7] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 17 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 8]

testPCA1 <− testPCA1 [, 1 : 1 8]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 6] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 6] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 16 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 7]

testPCA1 <− testPCA1 [, 1 : 1 7]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 5] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

Page 184 of 191.

185 Appendix D: R Code and Output: Default in Payment Data Set

svmPC$AUC[1 5] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 15 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 6]

testPCA1 <− testPCA1 [, 1 : 1 6]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 4] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 4] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 14 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 5]

testPCA1 <− testPCA1 [, 1 : 1 5]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 3] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 3] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 13 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 4]

testPCA1 <− testPCA1 [, 1 : 1 4]

Page 185 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 186

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 2] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 2] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 12 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 3]

testPCA1 <− testPCA1 [, 1 : 1 3]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1 1] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 1] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 11 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 2]

testPCA1 <− testPCA1 [, 1 : 1 2]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

Page 186 of 191.

187 Appendix D: R Code and Output: Default in Payment Data Set

svmPC$accuracyRate [1 0] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1 0] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 10 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 1]

testPCA1 <− testPCA1 [, 1 : 1 1]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [9] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[9] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 9 PCs

trainPCA1 <− trainPCA1 [, 1 : 1 0]

testPCA1 <− testPCA1 [, 1 : 1 0]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [8] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[8] <− svmModel$ r e s u l t s [3]

################################

################################

Page 187 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 188

#we are i n t e r e s t e d in f i r s t 8 PCs

trainPCA1 <− trainPCA1 [, 1 : 9]

testPCA1 <− testPCA1 [, 1 : 9]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [7] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[7] <− svmModel$ r e s u l t s [3]

#

##

#we are i n t e r e s t e d in f i r s t 7 PCs

trainPCA1 <− trainPCA1 [, 1 : 8]

testPCA1 <− testPCA1 [, 1 : 8]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [6] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[6] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 6 PCs

trainPCA1 <− trainPCA1 [, 1 : 7]

testPCA1 <− testPCA1 [, 1 : 7]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

Page 188 of 191.

189 Appendix D: R Code and Output: Default in Payment Data Set

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [5] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[5] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 5 PCs

trainPCA1 <− trainPCA1 [, 1 : 6]

testPCA1 <− testPCA1 [, 1 : 6]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [4] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[4] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 4 PCs

trainPCA1 <− trainPCA1 [, 1 : 5]

testPCA1 <− testPCA1 [, 1 : 5]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [3] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

Page 189 of 191.

Appendix D: R Code and Output: Default in Payment Data Set 190

get AUC

svmPC$AUC[3] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 3 PCs

trainPCA1 <− trainPCA1 [, 1 : 4]

testPCA1 <− testPCA1 [, 1 : 4]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [2] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[2] <− svmModel$ r e s u l t s [3]

################################

################################

#we are i n t e r e s t e d in f i r s t 2 PCs

trainPCA1 <− trainPCA1 [, 1 : 3]

testPCA1 <− testPCA1 [, 1 : 3]

svmModel <− t r a i n (defaultPayment ~ . , data = trainPCA1 , method = ’ svmRadial ’ ,

metr i c = ’ROC’ , preProces s = c (" cente r " , " s c a l e ") , tuneGrid = svmGrid ,

t rCont ro l = c t r l . 1)

preds <− p r ed i c t (svmModel , testPCA1 [−1])

confus ionMatr ix (preds , testPCA1$defaultPayment)

svmPC$accuracyRate [1] <− confus ionMatr ix (preds , testPCA1$defaultPayment) $

o v e r a l l [1]

get AUC

svmPC$AUC[1] <− svmModel$ r e s u l t s [3]

################################

################################

wr i t e . csv (svmPC, "L:\\svmPC. csv " , row . names = FALSE)

Page 190 of 191.

191 Appendix D: R Code and Output: Default in Payment Data Set

numPC <− 2 :23

p lo t (numPC, svmPC$accuracyRate , x lab = ’Number o f Pr i n c i pa l Components ’ , y lab

= ’ Accuracy ra te ’)

l i n e s (numPC, svmPC$accuracyRate)

p lo t (numPC, svmPC$AUC, xlab = ’Number o f Pr i n c i pa l Components ’ , y lab = ’AUC’)

l i n e s (numPC, svmPC$AUC)

################################

################################

Listing D.11: PCA: SVM Credit Data

Page 191 of 191.

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	Introduction
	Classification
	Binary Classification
	Multiclass Classification
	Supervised Binary Classifier Performance and Evaluation
	Model Validation
	Cross Validation
	k-Fold Cross Validation
	Leave-One-Out Cross Validation
	Hold-Out Cross Validation

	The Bootstrap
	Choice of Model Validation Methodology.

	Principal Components and Linear Discriminant Analysis
	The Wine Data Set
	Principal Component Analysis
	Linear Discriminant Analysis
	Summary: PCA and LDA
	PCA and LDA Applied to the Wine Data Set

	Neural Networks
	Human Nervous System
	Biological Neurons
	Artificial Neurons
	Artificial Neural Networks
	Multi-layered Artificial Neural Networks
	Perceptrons
	Adaptive Linear Neuron
	Multi-layered Perceptrons and Adalines
	Backpropagation
	The Wine Data Neural Network

	Support Vector Machines
	The Iris Data Set
	Linear Separability
	Non-Linear Separability
	The Maximal Margin Classifier
	The Support Vector Classifier
	Support Vector Machines
	Kernel Functions and their Properties
	Examples of Kernel Functions

	The Iris Data Support Vector Machine

	Default in Payment on Credit Cards
	Artificial Neural Networks
	Support Vector Machines
	Dimension Reduction
	Comparison

	Conclusion
	Limitations of this Study
	Neural Networks
	Support Vector Machines
	Challenges in this Study
	Future Research

	References
	The Wine Data Set
	First Ten Observations: The Wine Data
	Summary of these Data
	Variance-Covariance Matrix
	Principal Component Analysis Results
	R Code for the Wine Data Example
	R Output for these Models
	R Code for the Number of PC Investigation

	R Code and Output: Chapter 3
	R Code for the Wine Data Neural Network
	R Output for the Wine Data Neural Network

	R Code and Output: Chapter 4
	First Ten Observations: The Iris Data
	R Code for the Iris Data Support Vector Machine
	R Output for the Iris Data Support Vector Machine

	R Code and Output: Default in Payment Data Set
	First Ten Observations: The Credit Data
	Summary of these Data
	Variance-Covariance Matrix
	Principal Component Analysis Results
	Neural Network: 7 Fold Cross Validation
	Support Vector Machine: 7 Fold Cross Validation
	R Code for the Credit Data Set Neural Network
	R Code for the Credit Data Set Support Vector Machine
	R Code for the Credit Data Set 7 Fold Cross Validation
	R Code for the Dimension Reduction Techniques
	R Code for the Number of PC Investigation

