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Abstract

Software-Defined Networking (SDN) is a paradigm which enables the realisation of pro-
grammable network through the separation of the control logic from the forwarding func-
tions. This separation is a departure from the traditional architecture. Much of the work
done in SDN enabled devices has concentrated on higher end, high speed networks (10s
GBit/s 100s GBit/s), rather than the relatively low bandwidth links (10s MBit/s to a
few GBit/s) which are seen, for example, in South Africa.

As SDN is increasingly becoming more accepted, due to its advantages over the traditional
networks, it has been adopted for industrial purposes such as networking in data centres
and network providers. The demand for programmable networks is increasing but is
limited by the ability of providers to upgrade their infrastructure. In addition, as access
to the Internet has become less expensive, the use of Internet is increasing in academic
institutions, NGOs, and small to medium enterprises.

This thesis details a means of building and managing a small scale Software-Defined
Network using commodity hardware and open source tools. Core to the SDN Network
illustrated in this thesis is the prototype of a multi-layer SDN switch. The proposed
device is targeted to serve lower bandwidth communication (in relation to commercially
produced high speed SDN-enabled devices). The performance of the prototype multi-
layer switch had shown to achieve: data-rates of up to 99.998%, average latencies that
are under 40µs during forwarding/switching and under 100µs during routing while using
packet sizes between 64 bytes and 1518 bytes, and a jitter of less than 15µs during all
tests.

This research explores in detail the design, development, and management of a multi-layer
switch and its placement and integration in small scale SDN network. This includes testing
of Layer 2 forwarding and Layer 3 routing, OpenFlow compliance testing, the management
of the switch using created SDN applications, and real life network functionality such as
forwarding, routing and VLAN networking to demonstrate its real world applicability.
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Chapter 1

Introduction

Software-Defined Networking (SDN) technology is an approach to network management
that has gained popularity in recent years. The shift towards SDN has been brought by
the need to configure network devices more flexibly and efficiently. The management of
these network devices is made easier through APIs in software. SDN achieves this by
separating the decision-making functions from the forwarding functions. In SDN, the
decision function exists externally as a logically centralised controller in software, hence
making changes to the software results in the manipulation of network behaviour. In an
enterprise, network management is generally complex. SDN decouples the control and
forwarding plane and abstracts the internals of a networking device from the administra-
tor. The benefits include a simplified management, greater flexibility, and a reduction
in operational costs. Within SDN, the control plane now operates on a general-purpose
machine existing externally from the infrastructure.

1.1 Problem Statement

The architecture of SDN differs from the traditional network architecture by separating the
control from the forwarding plane [19]. The result brings benefits to network applications
such as load balancers and policy engines that reside at the top of the framework. SDN
enables the control and management of tens, hundreds or even thousands of network
devices from a locally centralised controller, manipulating how the traffic is forwarded
[19]. This control software simplifies network management by fully inheriting the control
functionality, that is to say that the central control of these devices realises the benefit of

1
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making intelligent decisions based on a more global perspective, thus reducing down-time
in the event of faults in individual devices [20].

There are a number of open protocols which enable SDN. Examples are OpenFlow, NET-
CONF and ForCES. These enable the development of highly interoperable networks.
SDN-enabled devices are gradually becoming accepted for commercial networking and
are mainly targeted for enterprise networks. However, these solutions are still extremely
expensive (due to the level of packet switching that reach tens to hundreds Gigabit/s)
and unavailable to most researchers in spite of being based on open standards such as
OpenFlow [21, 22]. Furthermore, the openness of the standards coupled with availability
of commodity/inexpensive computing hardware opens the opportunity for researchers to
prototype cost effective SDN solutions on a reduced budget.

Similar existing solutions for developing inexpensive SDN networks are Mininet – which
creates virtualised networks widely used in research institutions [23] and NetFPGAs –
which can implement Ethernet switches or routers with high speed packet processing [24].
However, NetFPGAs are costly and require extensive knowledge in programming [25].
Other cost-effective implementations for small-scale architectures include the Raspberry-
Pi [23] and Zodiac FX [26], but they offer speeds in order of hundreds of Megabits/s.
However, there are new solutions that have switching speeds of a few Gigabits/s as seen
by the Zodiac GX, which shows that there is a market for such devices [26].

This thesis explores the development of an inexpensive SDN solution using free and open
software, utilising commodity hardware to come up with a system that is comparable to
existing commercial solutions targeted to small-to-medium scale deployments.

1.2 Objectives

The focus behind this dissertation was to develop flexible inexpensive, small SDN network
comprising both software and hardware tools to operate and monitor the network as seen
in commercially deployed SDN networks.

The primary goals of this were to develop a device that is capable of forwarding or routing
network packets between modules of the underlying network through the manipulation of
software. This device should be able to receive commands from a software entity so that
generic modifications to the network may be performed.
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Secondary goals include the development of applications for this system which are intended
to be simplified and to abstract low-level control functions of the underlying hardware
while maintaining these functions to allow flexibility.

With the above goals considered, the method of investigation was set as follows:

1. Investigate potential architectures, for both hardware and software, which may be
used as the underlying hardware of the system. This also includes best practices
on components placement and inter-component signalling to confirm proper system
design with optimal performance.

2. Determine the performance of the system by conducting a series of conformance
test to evaluate system performance and functions. These tests would determine
the behaviour of the system at wire speeds of 1 GBit/s on each port.

3. Determine a suitable structure for developing network applications that take ad-
vantage of the feature set of the selected hardware. To simplify development, the
design approach including abstractions such as API calls to allow integration of
generic languages such as Python or Java which would allow flexibility and aid in
the development of new applications.

4. Develop a simplified interface for easy network management.

1.3 Organisation of Thesis

The work done for this dissertation is structured in nine chapters and a list of appendices
with supporting material. The presented structure is as follows:

• Chapter 2 introduces the necessary background information related to the tech-
nologies used. This includes the introduction and discussion to the architectures of
traditional networks and Software-Defined Networks (SDN). This chapter provides
an overview of networking functions such as routing and switching.

• Chapter 3 describes open source software tools used in the development of the
proposed system. This includes the architecture of the OpenFlow protocol and the
details of the OpenFlow switch components (i.e. OpenFlow channel, OpenFlow
controller, flow tables and the group table). It also describes technologies used
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to implement the OpenFlow pipeline. The chapter also provides an overview of
OpenFlow controllers and a brief review of their differences.

• Chapter 4 describes the design of the multi-layer SDN switch including the network
functionality and system behaviour.

• Chapter 5 describes the implementation of the switch. Section 5.2 provides the
commodity devices used in building the switch. Section 5.3 provides its internal
software structure.

• Chapter 6 sets the stage for testing the SDN switch and its integration into small
SDN networks.

• Chapter 7 presents the results of performance and compliance tests of the multi-
layer switch.

• Chapter 8 presents real scenarios for the deployment of that SDN switch. This in-
cludes core network functionality such as layer 2 switching, layer 3 routing, network
isolating (VLANs) and network device monitoring.

• Chapter 9 concludes, highlighting the results from previous chapters; limitations
and suggestions for future work.



Chapter 2

Literature Review

2.1 Introduction

The idea of simplifying network management enables better operation and control over
data travelling in a network. The manipulation and control of data travelling over a packet
switched network has become the subject of much academic enquiry [27, 28]. Network
devices that couple the control plane (functions that manage the behaviour of network
components) and the forwarding plane (functions that forward the actual packets) have
inherent difficulties. Networks that make use of these devices have become difficult to
manage due to complexity [29]. The management of these traditional networks requires
manual configuration of individual devices, thus introducing difficulties when adapting
to dynamic conditions such as faults or changes in traffic behaviour. Modern network
applications must adapt to these conditions while maximising efficiency and maintaining
quality and performance.

SDN is a networking paradigm adopted by industry for the provisioning and maintenance
of network infrastructure [30, 31]. SDN brings the flexibility of managing and operating
networks through software and it delivers an alternate architectural design from conven-
tional computer network architecture [32]. Moreover, SDN proposes an open form of
network management, control and forwarding. SDN brings about the decoupling of con-
trol and forwarding functions, where the network control functions or decision making is
not embedded in each network device. Furthermore, the control of these network devices
is logically centralised, allowing the orchestration of network operations over a span of
network devices.

5



2.2. TRADITIONAL ARCHITECTURE 6

SDN promises to improve on most of the limitations that are currently faced in the tradi-
tional architecture [33]. Computer networks today consist of heterogeneous devices. These
devices (e.g. switches, routers, middle-boxes) from multiple vendors and are controlled
by sets of distributed and refined protocols or protocol suites to ensure that informa-
tion is successfully and efficiently conveyed within a network. Traditionally, these devices
form networks that are ‘static’ because of the tight coupling of the control logic and the
forwarding functions within the network device. The firmware of these devices consists
of proprietary software and has made it difficult for operators to innovate and specify
high-level policies [34].

This chapter reviews the traditional network architecture and introduces the architecture
of SDN and the key aspects behind its functionality. This chapter will also present different
protocols that enable SDN, focusing on its enablement through open protocols.

2.2 Traditional Architecture

Within a traditional computer network, data pass between two or more entities or net-
work nodes such that information can be exchanged. This data, as individual packets,
travels from node to node. A network consists of connected nodes. Consequently each
node performs packet buffering, packet scheduling, header modification, and forwarding.
Information is forwarded until it has reached its destination. Devices that form these
networks consists mainly of routers and switches which perform switching and routing.
These functions are defined and explained in detail next.

2.2.1 Overview

A computer network usually consists of at least two connected computer devices to allow
the exchange of information or the sharing of resources such as disk storage, printing
services and so forth. In general, computer networks comprise a collection of devices
often called nodes. These nodes connect with each other via different forms of media
such as copper wires, wireless, or optical fibres. Modern networks transmit information
through networks in packet-switched mode. Packet-switching is where data packets are
individually routed and forwarded between nodes within the network. Nodes send digital
information as a group of packets where each packet carries information in the header that
allows appropriate processing of these packets. Nodes can be classified as end-hosts and
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Figure 2.1: A Traditional Computer Network.

intermediary hosts. End-hosts communicate information with each other by transmitting
it as packets over a network while intermediary hosts make up the network infrastructure.
Furthermore, intermediary hosts offer network resources and network services to end-
hosts. Figure 2.1 shows an example network with end-hosts that share information and
intermediary hosts (routers and switches) that mediate data in the network.

Information which is sent as packets is sent from the sender (source) to the receiver (desti-
nation). The task of transmitting information within a network is typically broken down
into two functions which are routing and forwarding. The task of routing decides, with
respect to other connected intermediary hosts within the network, based on two criteria.
(1) the state of the interconnections between these nodes, which may also include other
factors such as the link connection, and (2) to decide within each network device the
route/path in which a packet should traverse to achieve the goal of forwarding packets.
The task of routing within the nodes happens continuously as each node continually up-
dates the state of the network which could change at any instant due to the node failures,
failures in the connections between the nodes, or high congestion due to unforeseen traf-
fic patterns. Generally, routing involves complex algorithms which determine paths that
packets take from source to destination.

The second function of forwarding differs from routing since it is much simpler. Within
each node, each packet will have a defined rule that contains labels and information that
is used to interpret the packet. The link between the routing and forwarding performed
within a node is realised as a collection of data structures called the Forwarding Informa-
tion Base (FIB) which is in each intermediary host. The routing process maintains the
state of the FIB while the forwarding process makes use of the FIB to determine how to
forward each packet.

The traditional network architecture contains three planes [1] which are: the management
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plane, the control plane, and the data plane (forwarding logic). The management plane
is responsible for the control and management of the node. Here network administrators
are able to monitor and configure the device through common mechanisms such as the
command-line interface (CLI), making use of protocols to manage and monitor network
devices such as SNMP (Simple Network Management Protocol), and more. The control
plane is responsible for learning and building awareness of the network. In addition, the
gathered information is used by the node to determine the egress port to forward traffic.
The forwarding logic or data plane handles the majority of these packets. The data plane
comprises of ports which receive and transmit packets between ingress and egress ports.
The data plane is responsible for the forwarding of packets from the ingress port to the
egress port. It will forward these packets based on sets of rules built by the control plane
for packets travelling through the network. These rules are saved or are laid out in the
FIB. When a packet arrives at the device’s ingress port, the data plane forwards the
packet to the next node until it is received at the next end-host. Figure 2.2 shows the
relationship between architectural layers among multiple network nodes.

Figure 2.2: Traditional Networking Planes. Source [1].

2.2.2 Architecture

Not all packets are processed in the data plane or forwarding logic. In contrast, infor-
mation on handling each packet has not been set or a rule is not found in the FIB for
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processing a particular type of packet. When, for example, the destination of an arriving
packet is unknown, the data plane forwards this packet to the control plane where the
details of the packet are learned, processed, and later forwarded. Similarly, control traffic
such as routing protocol messages are also forwarded to the control plane. The control
plane makes use of control protocols to determine how packets are to be processed. Hence,
the control plane is responsible for making the decision of how a packet is to be treated
based on the information found in the packet header. Within the control plane, a node
stores the structure of the network topology as a data set called the Routing Information
Base (RIB). The RIB is maintained by the exchange of information between other control
planes within the network. This control logic will then update the FIB, once the RIB is
stable (i.e. once the node has developed a view of the network topology), with the rules
to follow such that similar packets are processed the same way in future. Nevertheless,
the data plane alone handles a high volume of packets. Figure 2.3 illustrates the basic
scheme inside a network device.

Figure 2.3: Basic Scheme of an Network Device. Source [2].

A network can be of any size, from two devices to thousand or even more. When net-
works become large, they are usually subdivided into smaller portions called subnetworks
(subnets). Usually, these subnets consist of machines that are linked at layer 2 of the
OSI Model using technologies like Ethernet, while the linking between these subnets is at
layer 3 forming the larger network [35]. The OSI model consists of seven stacked layers
that implement protocols to define the networking framework [35]. Depending on either
layer 2 (communication between nodes in the same subnet) or layer 3 (communication
between nodes in the different subnets) the function of the control layer is dependent on
the location of the source and destination nodes. The control plane functions include
either a layer 2 switch or layer 3 router.

The function of routing and forwarding is separated within each node to make optimisation
possible between each tasks. The demand for high-speed packet processing is achieved
through special techniques for forwarding packets. As an example, the requirement for
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forwarding each packet on a 10 Gbps port requires on average, a packet processing time of
10 nanoseconds. The forwarding table(s) is normally maintained in a Dynamic Random
Access Memory (DRAM memory) [36]. The DRAM lookup of information is expensive
and as such, it is generally excluded. The result is the use of special hardware memories
and data structures within the forwarding engines are used to optimise the number of
memory accesses required to look for an action for a packet.

The control plane applies the logic defined in control protocols (e.g. routing protocols like
STP, RIP, OSPF, BGP) that then updates the FIB. Since each networking node internally
has three planes, each device is isolated creating distributed architecture. These network-
ing nodes, i.e. switches, routers and middleware, perform layer 2 – layer 7 switching,
where the control plane of one node communicates with control planes of neighbouring
nodes to maintain its RIB (for routing) and the FIB. The exchange of this information
occurs when these nodes broadcast data about connected/neighbouring hosts to the rest
of the network. The control plane will use this information to decide which path to follow.
The FIB may also be interacted with via the management plane where the administrator
may define the other rules like VLANs, ACLs or forwarding rules.

Examples of information that is announced are: broadcasting the state of the node to all
network nodes that are directly connected, or broadcasting the addresses of all directly
connected end-hosts. The information is used by each network node to calculate individ-
ually the desired routes. The state often can change; hence, network nodes periodically
announce their updated local state and receive updates from other nodes.

2.2.3 Benefits

The architecture of a traditional network consists of control and data plane. The advan-
tages seen in this architecture are as follows:

• Resilience: There is one instance of the control plane per device and this makes it
highly resilient to failure, i.e. no single point of failure.

• No round-trip latency: Since each device hosts a control plane, there is a minimal
delay when the data plane request policy directions from the control plane on how
each arriving should be handled.
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• Less software maintenance: traditional devices require less software maintenance
as vendors maintain the firmware that run these devices with the aim to provide
superior user experience. Hence, network administrators have less to focus on.

• Effective decision-making process: Each network node uses routing and switch-
ing built in hardware by vendors that deliver high bandwidth end to end.

2.2.4 Limitations

Traditional network devices can be described as plug-and-play which is designed to de-
liver packets from end to end if possible [37]. However, this architectural approach has
limitations. The networking devices consist of a layered architecture where each device
decides how each packet is to be forwarded. The nature of these traditional network
devices introduces limitations and complexity that are listed next:

• Tight Coupling: Not only are the control and data planes distributed but they are
also developed and managed using hardware and software that is tightly integrated.

• Lack of Openness: The internal components are proprietary, which results in
network devices whose internal hardware and software include proprietary firmware
from vendors. The network devices developed are often based on the same hard-
ware family [36]. The interdependencies created by the lack of openness creates
limitations such as limited innovation, complex management, cost of maintenance,
stability issues, and scalability.

• Management: The environments in which network technologies operate require
them to meet the demands of high availability, security and efficient delivery of
information [38]. Protocols have been designed to solve specific issues and have
been included as part of the functionality of these network technologies. This design
approach has led to complex network management and has become a burden where
several parts of the network require reconfiguration. The addition or removal of
devices may require, for example, reconfiguration of access lists, VLAN, quality of
service policies, routing protocols and as such, network administrators rather keep
networks static. Large networks generally have devices from multiple vendors and
the management using APIs (Application Program Interfaces) or CLI which makes
the management of multi-vendor networks very cumbersome.
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• Virtualisation (Slicing / Traffic Isolation): Business regulations and corporate
policies sometimes require the isolation of traffic in the network. Traditional solu-
tions use MPLS or Virtual Routing and Forwarding (VRF) – VRF-Lite to create
logic slices and managing and deploying of these technologies is cumbersome and
time-consuming [39].

• Scalability: In reality, these networks are complex to manage because of multiple
devices that require manual configuration. Limitations arise when scaling these net-
works due to the difficulty in being able to predict traffic behaviour and provisioning
capacity to meet variable demand.

• Innovation: The internal infrastructure, as mentioned, is proprietary and re-
searchers have no way of accessing the data forwarding functionality in the data
plane. Innovation is limited by the functions provided by the vendors and may not
meet the need particularly in the features developed.

• Cost: Cost has two components of capital expenditure (CAPEX) and operational
expenditure (OPEX). The OPEX of managing a large network is of concern due to
the required resources. Example of cost includes the required labour to locate issues
within an already complex environment, which requires specialised and experienced
personnel. The CAPEX is normally high due to the proprietary software included
by vendors.

2.2.5 The Need for Programmability in Networking

Traditional networks are static and innovation is limited to the vendor’s product release
cycles that may take years and may not meet the demand for easier management for the
networks. Multiple devices from multiple vendors implement their own standard way of
interfacing to the management plane of the device. Having a standardised interface, i.e.
abstracting the forwarding plane from the control, will realise programmability that will
bring about new innovative ideas.

The virtualisation through viewing the global view of the network can benefit better use
of network resources and allow the easy manipulation of how data flows through logical
topologies regardless of the physical design. The ability to control and manipulate the
behaviour of the network through centralising (physically or logically) the control will
enable easier management and centralisation allows changing the behaviour of the entire
network with just one command.
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The reduction of operating costs requires less time to implement the policies. A standard
API will enable compatibility between devices from different vendors. This will allow
monitoring of the infrastructure by calling these APIs to get the status of the network
device. Modulation enables coherence between policies and allows the dynamic application
of policies that will enable dynamic resource allocation.

2.3 Software-Defined Networking

The need for programmable networks has influenced the growth of SDN [34, 40]. The defi-
nition from the Open Network Foundation states that SDN is the separation of the control
plane from the data plane, where the control of infrastructure is centralised through the
management of one or more network devices [41]. SDN is largely based on open standards
[41] which is a major characteristic difference from the traditional network architecture.
SDN also differs from traditional networks that control is directly programmable. The
programmability of the network is due to the decoupling of the network control logic from
the forwarding functions. This separates the control of the network from the application
perspective. Because of this abstracted control, network administrators have the ability
to control network traffic dynamically.

The term Software-Defined in this context means that the high-level processes that make
use of network resources are able to interact with the network nodes. These high-level
processes are able to request information from the network. Furthermore, this would also
encourage new network management methods (e.g. routing algorithms) to be developed
and deployed more rapidly without the limitations of expense and slow standardisation
often seen in traditional networks [40]. Hence, the SDN standard will speed up the rate
of innovation within modern computer networks.

SDN is also able to support a variety of functions beyond layer 2 forwarding or layer
3 routing. For example, access control and traffic monitoring. SDN will also give the
possibility of simplifying network management and improve network utilisation. Thus,
decrease operating costs. SDN enables the control of network devices to be directly
programmable. It promises to achieve dynamic, cost-effective, adaptable management to
enable visualisation, monitoring and debugging of the network resources, and much more
[20, 21, 42, 43].
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2.3.1 Overview

The intention behind the SDN paradigm is to bring about the adoption of a standard
that enables the ‘forwarding abstraction’ for the FIB. This is to allow the configuration
of the FIB and the interaction with the forwarding node from higher-level processes.
Through the forwarding abstraction, the added flexibility of network control enables easier
implementation of a variety of algorithms. Moreover, the exposing of the functionality
of the devices via open interfaces will not only allow the forwarding of packets based
on layer 2 destination address but will also allow multi-layer forwarding. Furthermore,
applications and services are able to forward packets as source addresses as well.

2.3.2 Architecture

The architecture of SDN consists of three planes: management, control, and data [39]. A
software controller (SDN controller) abstracts the behaviour of the network device through
open API interfaces. The control logic is removed from the infrastructure whereas the end
devices only perform data forwarding. The SDN controller is thus, responsible for main-
tenance of the infrastructure. It interacts with the infrastructure through the southbound
interface. The southbound interface, explained in greater detail later in Section 2.3.4,
separates the control plane from the data plane as a result of, the control plane becomes
an independent software platform. This allows software development without the need
to engage low-level details of independent devices. This allows developers to focus on
the behaviour of the network as means of controlling this software. Consequently, the
software can be developed independently of hardware.

The level of control will fulfil the requirements or expectations of the changing require-
ments mentioned earlier in Section 2.2.4. The components that form the architecture
of SDN include the SDN controller, network nodes and SDN applications, as shown in
Figure 2.4.

The data plane comprises network nodes that take the role of forwarding the traffic i.e.
carries the traffic and transmits packets to the next node.

The control plane consists of an SDN controller – a system that makes the decision as
on where to and how the network traffic is directed within the data plane. The model
of SDN would centralise the control plane as a software entity i.e. the SDN controller.
Within the control plane, the controller receives the complex high-level policies from the
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Figure 2.4: Components that makeup the SDN Architecture. Source [3].

management plane, translates them to low-level rules and then transmits them to the
data plane. The controller will dynamically update these rules according to new policies,
network events or alerts.

The management plane interacts with the control plane which supports direct communi-
cation with the controller. SDN applications communicate their requirements and desired
network behaviour to the SDN controller. These applications may also access the ab-
stracted view of the network for internal decision-making purposes or to perform policies
such as monitoring, quality of service enforcement, load balancing, etc.

The three planes in the SDN architecture are divided by two interfaces: Northbound
Interface (NBI) and Southbound Interface (SBI). The control plane, separated from the
hardware, is implemented in software as the controller. Thus, communication between
the three planes is done through the two interfaces. The SDN controller has access to the
data plane through the SBI where it can manage multiple devices. The SDN controller
also exposes the data plane configurations to the management plane via the NBI allowing
SDN applications to configure the SDN controller and monitor the data plane.

SDN purports to institute an industry-wide interface standard that may realise “forward-
ing abstraction” for the data plane. This architecture enables the control or management
of the network to be automated and programmed on standard x86 server machines using
a standard interface that controls the network nodes. Standardisation also brings forth
innovation in networks. SDN allows access to the forwarding of the networking node,
hierarchical arrangement of arbitrary planes, and the increase of the control which also
has the advantages of security. SDN actively reduces the congestion within the network
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through load balancing which effectively improves the management of network resources
within the network [20].

2.3.3 Northbound APIs

A Northbound API provides the configuration and management services for SDN appli-
cations. These then use this information to specify the required network control and
are represented in the form of policies that support device abstractions. This API is
implemented as an open, vendor-neutral interface.

Commonly used NBIs are the REST API and the OSGi model [44].

2.3.3.1 REST API

The REST API is a software architecture that was first introduced by Roy Fielding
in his PhD thesis [45]. It uses a Client-Server Model where the client or server can be
developed separately without depending on the other. A fundamental concept of REST is
a resource. This can be information that can manipulated or accessed. The information or
states is represented using common formats such as Extensible Markup Language (XML)
or JavaScript Object Notation (JSON). Servers share the state of an application with one
or more clients. The server does not maintain the state of the application. As such, the
client will retrieve representations (views) of resources via a URL where each resource
will have a unique URI to identify them. REST makes use of ‘create’, ‘read’, ‘update’,
‘delete’ (CRUD) operations to manage the resources [46]. Within an SDN environment,
resources are managed as data types. Examples are controller node, firewall rules, the
configuration of the network, switch, port, link, flow entry, VLAN, etc.

2.3.3.2 OSGi Framework

The OSGi framework [47] includes a set of specifications for dynamic application compo-
sition that make use of reusable Java components called bundles. Each bundle publishes
its services and applications use services provided by other bundles. Bundles may be in-
stalled, started, stopped, updated, or removed on the fly without the need for restarting
the OSGi services registry, i.e. will not have the need to reset the controller after updating
applications. This framework allows applications to be able to use resources from other
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applications. Furthermore, it allows applications to load during runtime in a dynamic
fashion.

2.3.4 Southbound APIs

SDN can be implemented through various protocols. Examples of open source protocols
include ForCES, Netconfig and OpenFlow. One of the goals for SDN is to bring about the
standardisation of southbound protocols. This is to enable consistency of functionality
between devices from multiple vendors within an SDN environment.

2.3.4.1 ForCES Protocol

Forwarding and Control Element Separation (ForCES) [4] is defined by a framework
and related protocols to standardise information exchange between the control plane and
forwarding plane. The framework defined in [48] presents an architecture of logical com-
ponents. These logical components include Control (CE), Forwarding Elements (FE),
Control Element Manager (CEM) and Forwarding Element Manager (FEM) [48]. Fig-
ure 2.5 shows the architecture.

• Control Elements is a logical entity that uses ForCES protocol to interact with
one or more FEs. Its functions include execution of control and signalling protocols.
Each CE may interact with one or more FE.

• Forwarding Elements these provide per-packet processing and handling as in-
structed by one or more CEs. The CE control the FEs using the ForCES protocol.

• Control Element Manager is responsible for managing generic tasks for CE.
It particularly determines which FE(s) should communicate with a CE through a
process called FE discovery and may involve the manager to learn the capabilities
of the FEs.

• Forwarding Element Manager is responsible for managing generic tasks for FE.
It determines which CE(s) and an FE should communicate.

There are two ways the CE and FE are physically separated: blade level (shown in
Figure 2.6) and box level (shown in Figure 2.7) [48]. In blade level, the proprietary
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Figure 2.5: ForCES Architectural Diagram. Adapted from: [4].

protocol between the CE and FE within a single network device/element is replaced by
the ForCES protocol standard. In the box level, the CE and FE exist as two separate
devices and interface through the ForCES standard. ForCES enables SDN through the
separation of the control and forwarding data planes of various network devices, such as
IP routers, switches and firewalls.

2.3.4.2 Network Configuration (NETCONF) Protocol

The NETCONF protocol [5], defines simple mechanisms for how a network device is man-
aged, how the configuration information is retrieved and how the configuration data is
updated or changed. It is a network management protocol standardised by the IETF.
NETCONF uses Remote Procedure Calls (RPCs) to establish secure communication be-
tween a client (either a script or application) and a server (a network device). The client
can send a series RPC messages to the server/network device, and in turn can receive a
series of corresponding RPC response messages. The client can discover the capabilities
of the network device and is permitted to alter the behaviour and features exposed by
the device. The RPC messages are encoded in XML for data and protocol messages.
Figure 2.8 shows four layers of the partitioned entities which conceptualise NETCONF.
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Figure 2.6: Router Configuration with Separate Blades. Adapted from: [4].

Figure 2.7: Router Configuration with Separate Boxes. Adapted from: [4].

• Secure Transport provides secure communication path between client and server.

• Messages layer provides simplified framing mechanism for encoding RPCs and
notifications.

• Operations layer defines a set of protocol operations.

• Content layer includes the configuration and notification data. it is expected that
standardising of NETCONF data is expected to transpire [5].

2.3.4.3 OpenFlow Protocol

OpenFlow [41] was created at Stanford University and is now maintained by a non-
profit consortium, the Open Network Foundation (ONF). ONF’s goal is to promote the
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Figure 2.8: NETCONF Protocol Layers. Source [5].

transformation of network infrastructure and carrier business models [49].

OpenFlow is a standardised protocol for SDN to handle SBI communication between
an SDN controller and an SDN switch. Using the OpenFlow protocol, a controller can
discover the details, status, and the network topology of the switch; while controlling the
forwarding behaviour by providing flow rules with defined actions in the switch’s flow
table(s). A flow table is similar to how traditional network devices use their FIB. The
OpenFlow controller is logically centralised. As a result, there is no need to physically
configure each OpenFlow switch since the control plane is decoupled from the forwarding
plane. OpenFlow uses the OpenFlow channel as the interface between the control plane
and the data plane plane. The application plane comprises applications separated from
the underlying forwarding infrastructure that handle business policies. The controller
consists of centralised intelligence that simplifies, optimises, enables greater control, and
enforces policy management across all network devices.

2.3.5 Benefits of SDN

SDN brings forth changes to the way that networks are built and operate, and affects how
these networks accomplish business requirements. SDN will allow networks to use non-
proprietary open standards. With SDN the programming and management of networks
will become easier which will offer its users greater control over networks and operators
may tailor network functionality to optimise network utilisation. Thus, reduce the overall
cost of operating the network. Other benefits include:
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• Simplify network management – The SDN model of control centralisation will
allow the network to be configured and monitored from a single node. This would
allow easier management of complicated default network configuration and better
modelling or abstraction of network functionality. The management software now
deals only with a centralised controller which will allow more robustness of program-
matic interfaces since the complexity has been hidden from the management.

• Fast service deployment – The development of new features and applications
are deployed faster due to a simplified way of network management.

• Automated configuration – The SDN controller allows previously manual con-
figuration tasks such as VLAN assigning and QoS configuration to be automated.
The benefits of centralisation allow a single command to run on multiple devices
simultaneously.

• Network Virtualisation – The SDN NBI interface provides an abstracted view of
the network and enable SDN applications to communicate network behaviour and
requirements. The controller is able to implement constructs of layer 2 and layer 3
to provide bridging or routing between virtual machines.

• Reducing operational expenditure – SDN has the benefit of automating net-
work deployment. As a result, will reduce the cost of operating a network. Automa-
tion reduces errors experienced in managing multi-vendor devices and also reduces
the time and amount of labour required to configure them.

2.3.6 Limitations

SDN aims to enable easier management of multiple devices by moving the control in-
telligence from network devices to a centralised control that runs as the SDN controller
software. One of the expected values of SDN lies in exposing the capabilities and fea-
tures of network devices through interfaces implemented as open and vendor-neutral in
an interoperable way. However, SDN does not come without criticism, and some of the
limitations that this architecture introduces are as follows:

• Complexity due to redundancy – In a production network, a single controller
that manages the entire network becomes a single point of failure. Therefore, addi-
tional controllers are added to have multiple redundant control planes. Hence, these
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different clusters are expected to work together to manage a network. This adds
complexity.

• Complexity of interfaces – Previously, interfaces were proprietary and a single
control plane managed a single data plane. In SDN, controllers manage and control
multiple networks. The control interface should support controller redundancy, i.e.
a single node managed by multiple controllers. This implies that a new control
interface adds more complexity to allow interoperability between planes.

• Security concerns – Controllers run externally on machines which creates the
risk of communications between controller and node. At controller-application level,
one concern is the level of access to network resources [21]. Since applications may
require different privileges, creating mechanisms for multilevel authorisation may
provide protection of these network resources.

• SDN expertise – Designing an SDN network requires technical skills and a com-
patible controller, controller software (applications), and elements that interoperate.
This requires considering the requirements of the network that are supported by the
controller, applications and switch’s capabilities. Hence, to simplify this task, en-
terprises outsource network operations.

• Latency – Traditional switches have dedicated control processor logic with tasked
applications that run on real-time operating systems with protection against in-
terrupt loss due to task pre-emption. On the other hand, SDN controllers run on
general-purpose computers that have associated overhead due to general solutions.
The distance between the control plane and data plane in SDN is further away in
comparison to traditional with its own associated latency. Considerations may need
to include the time taken by a controller to add or update the configurations of the
data plane.

• SDN controller performance – Due to centralisation, the health of the SDN
controller affects the health of the entire network. Monitoring of the system is not
limited to the data plane but also the health of the controller.

2.4 A Case for OpenFlow

There are multiple protocols that exist in the implementation of SDN, however, OpenFlow
is one protocol that is particularly noteworthy due to its multiple benefits. This include
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benefits such as lowering costs, enabling flexibility, promotes rapid service development,
adaptable to business objectives, and more [50]. OpenFlow has attracted many proof
of concept or prototype implementations and used in the industry by organisations [23].
To date, there are a number of open-source implementations in the form of OpenFlow
controllers, as well as physical and virtual switch implementations which are discussed
later in the next chapter.

2.5 Summary

This chapter highlighted the architecture and components of traditional and SDN net-
works. Traditional networking faces challenges in managing the management plane and
control plane design as the network size scales and requires dynamic applications. The
architecture of traditional network devices introduces the heterogeneously distributed
structure of coupled of control and forwarding planes. This distributed structure has
evolved in efforts to satisfy the continual growth of the Internet and also to address issues
of network administrators around consistency between and fast convergence [36]. The
approach in SDN is to have the control plane software centralised into an SDN controller
and allows easier management which was previously centralised through APIs or CLI.

The main challenge with the design of this structure is the level of flexibility and ease of
user control, programmability and the interdependencies of the management, control and
data planes. The is difficulty in manageability and the restriction on flexibility as the
network scales. Traditional devices are generally implemented using ASICs running pro-
prietary software with limited programmability. The centralisation of the control planes
logically makes better for ease of management, scaling and flexibility. The SDN archi-
tecture proposes a separation of the forwarding and control planes of a network. The
separation of these plane is brought about by open APIs that expose the functionality of
these networks which enables programmability. This chapter also compared the two tech-
nologies, traditional and SDN architectures, and how SDN solves the issues of complex
management and limited flexibility.

Finally, this chapter looked at some of the available APIs for northbound and southbound
interfacing and saw that protocols are the key enablers of SDN. These protocols help build
an end-to-end SDN solution. The designing of SDN solutions requires defining a list of
sets of protocols used. The choice of northbound APIs is defined by the APIs that the
vendors of SDN controller have made available, while the southbound interfacing favours
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OpenFlow. The OpenFlow protocol is a prominent SDN standard protocol for imple-
menting controller and switch interaction and the organisational structure of OpenFlow
control planes along with different approaches to programming network controllers. In
Section 3.2 shows the different approaches in the implementation of an OpenFlow. The
next chapter looks into the data plane aspects, focusing on OpenFlow-based networking
and display why OpenFlow is used.



Chapter 3

Open Source Software Tools

In Chapter 2, the control and data planes of both traditional and SDN networks were
reviewed. This chapter will focus on OpenFlow, a protocol that enables SDN. This chap-
ter aims to justify the use of OpenFlow as the protocol of choice for the SBI. It will also
discuss, in general terms, the versions available, the feature set prominent, the implemen-
tations of OpenFlow, and the approach taken in terms of the architecture of a switch and
its data paths. The chapter will also look at multiple SDN controllers that implement a
network’s control plane.

3.1 OpenFlow

The OpenFlow standard [41] is a popular southbound interface for controllers in SDN
implementations. It enables SDN by allowing software to modify the behaviour of the
underlying network nodes through programmable APIs. The underlying network nodes
can be either virtual or physical where each network node hosts a local flow table used in
determining the behaviour of how packets are transmitted. The OpenFlow standard was
the first standard aligned with SDN [51] and was first proposed by McKeown in 2008 [21]
and is now maintained by the Open Network Foundation (ONF)[41].

OpenFlow devices are fully controlled by an OpenFlow controller and the capability of the
flow table not only includes IP, but also other protocols. The makeup of OpenFlow across
its versions requires at least one or more flow tables. The ONF releases specifications
for each released version of OpenFlow. OpenFlow defines the following components: an
OpenFlow switch, a controller, and the OpenFlow protocol. Figure 3.1 shows the basic
composition of an OpenFlow switch.

25
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Figure 3.1: Main Components of an OpenFlow Switch. Source: [6].

3.1.1 Version Timelines

The OpenFlow protocol is gradually evolving and has undergone a number of changes since
its inception. Its progression is shown as a timeline in Figure 3.2. OpenFlow is available
in multiple versions and an important considerarion is the incompatibility between them.
The determining factor for selecting a specific OpenFlow version was influenced by the
need for compatibility with popular systems. The initial release of OpenFlow 1.0 had a
limited subset of functions and ONF quickly released in version 1.1 and 1.2. Vendors,
however, requested that the OpenFlow development cycle be slowed down [52]. This
is because OpenFlow hardware implementations became increasingly incompatible with
each other, and vendors would need to re-implement specialised hardware to keep up. In
version 1.3, vendors were able to use this stable version before the ONF started releasing
new versions again. This thesis focuses on OpenFlow version 1.3 and its exploration of the
OpenFlow protocol because of the large support amongst hardware and software vendors
[53, 54].
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Figure 3.2: OpenFlow Version Timeline. Source: [7].

3.1.2 OpenFlow Switch

An OpenFlow switch includes an OpenFlow channel, one or more flow tables and a group
table [6] (See Figure 3.1). The OpenFlow controller communicates with and manages
the switch via this channel. The OpenFlow controller also pushes flows onto the switch’s
flow table through this channel. The flow table holds information used by the OpenFlow
switch to forward packets within a network. The flow table is similar to the FIB found in
traditional contexts (see Section 2.2.2). The difference is that the sets of rules defined are
called flow entries and these are stored in the flow table. Using the OpenFlow protocol,
the controller can add, delete and modify flow entries by means of reactive (as a response
to arriving packets) or proactive (predefined rules for known paths and routes). An
OpenFlow switch processes arriving packets through its pipeline. The pipeline shows how
the switch interfaces with the controller and other network devices.

3.1.3 OpenFlow Pipeline

OpenFlow switches either support the OpenFlow-only or OpenFlow-hybrid pipelines [55].
OpenFlow-only switches only support packet processing through the OpenFlow pipeline
whereas OpenFlow-hybrid switches are capable of processing packets through the Open-
Flow pipeline as well as the normal processing that exists in traditional network devices.
Normal processing may include layer 2 Ethernet switching or layer 3 routing. In the
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OpenFlow-hybrid pipeline, the switch may also allow packets to move from the Open-
Flow pipeline to the normal pipeline by outputting packets through the ‘normal ’ action.

An OpenFlow switch contains a minimum of one flow table where each flow table holds
sets of rules called flow entries which determine how a packet is handled upon arrival. The
OpenFlow-pipeline process packets using the flow entries as shown in Figure 3.3. Packets
are matched against the flow entries beginning with the default flow table, Table 0 [6].
If a packet matches a flow entry, the instruction set in the flow entry is then applied. A
flow entry may also include instructions to direct packets to other flow tables. Each entry
can only point to table numbers higher than the one where the instruction originated.
Therefore, processing only goes forward and not backward. This is a precaution to prevent
cycles in the pipeline [6]. After matching all flow entries within these tables, the pipeline
processing stops and the packet is processed with the associated instructions.

Figure 3.3: Packet Flow Through the Processing Pipeline. Source: [6].

In the event that none of the flow entries match the packet i.e. a table-miss, the OpenFlow
switch will execute a predefined table-miss flow entry. This entry will instruct the switch
on how to handle packets that do not have any matches in the flow table. Details about
the pipeline components are explained in more detail in the following subsections.
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3.1.3.1 Flow Table

A flow table consists of flow entries. Entries are uniquely identified by taking the match
fields and priority together [6]. A flow entry with all fields omitted defines the table-miss
and has a priority of zero. Below shows fields of a flow entry.

• Match fields these are used to match against packets arriving at the switch and
contain packet headers.

• Priority used to define the order of matching flow entries.

• Counters used for monitoring packet statistics, they are updated whenever a packet
matches an entry.

• Instructions contain a set of actions to apply to the packet when it has a matching
packet header.

• Timeouts define the maximum timeout (hard timeout) or idle time before discard-
ing a flow entry from the flow table.

• Cookie its main use is for managing flow entries. They are used by the controller
to filter flow entries for purposes such as flow statistics, flow modification, and flow
deletion requests [6]. The controller chooses the value of the cookie.

• Flags these alter the management of flow entries. An example flag is
OFPFF_SEND_FLOW_REM which triggers the ‘flow removed’ message when a flow ex-
pires or is deleted.

3.1.3.2 Matching

The OpenFlow specifications defines the processing that should be executed upon receiv-
ing a packet at a port on the forwarding device. Upon receiving a packet, the switch
performs a lookup in the table, beginning with Table 0. Depending on the requirements
of the pipeline, the switch may perform table lookups in other flow tables. Information
extracted from the packet headers defines match fields to be used for table lookups. The
packet type determines the process to be followed in the pipeline. In addition to the
packet headers, the ingress port, meta data fields and other pipeline fields also form part
of the matching [6]. When all match fields (header fields and pipeline fields) match a flow
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entry, it is selected. If the table contains multiple matching flow entries, then the one
with the highest priority is selected. Upon selection, the counters corresponding to the
flow entry are updated and the instruction set included in the flow entry is then applied.
Each table will update the counters, execute, and form the packet matching fields in the
subsequent tables.

3.1.3.3 Table-Miss Entry

Each table must define a table-miss entry. This is meant to continue the processing of a
packet in the event that there are no matches found. The table-miss contains no matching
fields and the priority is set to the lowest value of zero. The table miss entries are defined
by the user and enable better operation of the switch [6]. The behaviour is like any other
flow entry and may be used to discard a packet, forward it to the OpenFlow controller for
further processing, or forward it to the normal pipeline if supported by the switch. The
table-miss entry behaves like any other flow entry and it can be installed or removed by
the controller by the controller. In absence of a table-miss entry, by default the packet is
dropped/discarded [6].

3.1.4 OpenFlow Channel and Control Channel

The OpenFlow channel [6] is the interface that is used in the connection between an
OpenFlow switch and OpenFlow controllers. The controller manages the switch, obtains
events and sends packets to the switch using this interface. The switch can support a
single or multiple OpenFlow channels with a single or multiple OpenFlow controllers. The
OpenFlow channel connection uses the Transmission Control Protocol (TCP), which can
be encrypted using Transport Layer Security (TLS). The channel is sometimes referred
to as a secure channel indicating the use of an encryption of the connection.

There are three types of messages that OpenFlow supports [6], controller-to-switch, asyn-
chronous, and symmetric. The OpenFlow controller manages or retrieves the state of the
switch through controller-to-switch messages. Asynchronous messages are initiated by
the switch to inform the controller about network events or changes to the switch state.
Lastly, symmetric messages are initiated by either the controller or the switch. Symmet-
ric message functions include connection startup by using ‘Hello’ messages, verifying the
liveness of the connection using ‘echo’ messages, or used for testing experimental functions
of the switch.
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3.1.5 Group Table

A group table represents additional methods of packet processing. It is the last table to
implement multiple actions. It enables OpenFlow to represent a set of ports as a single
entity. There are different group types to represent abstractions such as multicasting or
multi-pathing. A group entry is composed of a set of group buckets where each bucket
contains the set of actions to be applied before forwarding to the port. Groups buckets
may also be chained to other groups. Below shows components of a group table entry.

The entries are defined as follows:

• Group identifier is used to match against packets arriving at the switch and
contain packet headers.

• Group type is used to define the group’s behaviour based on how the sets of actions
are to be executed.

• Counters are updated whenever a packet is processed by a group.

• Action buckets comprise of a list of action buckets. Each bucket contains a set of
actions that are applied as a set.

The action/behaviour is executed based on the type. The type may be defined as below:

• all: The behaviour is to execute each bucket. Application: broadcast and multicast.

• select: Will execute a select bucket. Application: port mirroring.

• indirect: Executes one defined bucket in this group.

• fast failover: Execute the first live bucket, if there are no live buckets then packets
are dropped.

3.2 OpenFlow Switch for Data Path

OpenFlow switches are either physical or virtual. The physical (hardware) implemen-
tation includes platforms like application specific integrated circuits (ASICs) and field
programmable gate arrays (FPGAs), while virtualised switches like Open vSwitch can
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run on general-purpose CPUs. The architecture of the switch and the type of platform
used impact the performance. An OpenFlow switch, in practice, has a limited amount of
resources available [56]. The resource constraints include memory, the CPU and band-
width. The OpenFlow pipeline will match arriving packets to the flow entries and execute
the set of instructions associated with the matching flow entries. The mechanisms used in
the implementation of the OpenFlow switch may limit the performance of the hardware
switch, hence may impose bottlenecks of the network.

A computer system comprises four basic components. These are: the Logic Unit (process-
ing unit), Memory, I/O modules and System interconnection (System bus). The perfor-
mance in general is dependent on these components. The performance metrics for logic
unit, Memory, I/O modules and System bus are generally measured in terms of through-
put and latency. These four components are used in the implementation of the system
platforms that form general-purpose Processors (CPU), NetFPGA, FPGA and ASIC [57].
One fundamental key for the implementation of efficient high packet processing of flows
involves two elements, performance and programmability. Figure 3.4 shows the relation-
ship between performance and programmability, the trade-off being that delivering high
performance limits the level of programmability of that hardware and vice-versa [21].

Figure 3.4: Performance and Programmability. Source: [8].

3.2.1 Table Lookup Mechanisms

OpenFlow table match lookup involves accessing memory. Different memory addressing
techniques are used in the implementation of OpenFlow table. However, these achieve
different speeds in terms of access times. The memory speed (in Hz) and lookup time
(number of cycles use to fetch data) affects the overall latency and data rate of the switch.
The different memory types include dynamic random access memory (DRAM), static
random access memory (SRAM), and advanced memory addressing such as a content
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addressable memory (CAM) or Ternary CAM (TCAM). The design of each memory type
factor into the characteristics. These characteristics include access speed, bit density, cost
per byte of memory, memory space, circuitry space on board, and power consumption.

DRAM is the cheapest way of memory addressing and the highest bit density per inte-
grated circuit. SRAM is useful for small amounts of high-speed memory [58]. while CAM
and TCAM have the best lookup performance at a higher cost, power consumption, and
area required for circuitry on the motherboard [59, 60]. CAM and TCAM allow the lookup
based on content rather than the address.

3.2.2 OpenFlow Pipeline Processing Architecture

The type of memory used for the lookup table determines the mechanism used to access the
OpenFlow table implemented. During packet processing, the OpenFlow table is accessed
to retrieve necessary information for processing packets. The packet processing logic
(CPU, FPGA or ASIC) coupled with these memory technologies form the core hardware
architecture of the OpenFlow pipeline. The following sections provide a brief commentary
on the processing logic.

3.2.2.1 General-purpose Processors

General-purpose CPUs provide the highest flexibility with respect to programming. They
support rapid development of complex packet processing implemented through high-level
languages and design tools [21]. The logic unit of CPUs includes multi-core processors,
which generally use DRAM and provide the cheapest practical application of OpenFlow
devices. Software switches are known to be used for virtualised networks as the underlying
network device [61]. Running in user-space, software switches have their OpenFlow tables
in DRAM. The OpenFlow switch runs as a program in main memory with a multi-level
cache memory system. The I/O module includes a hierarchy design to support multiple
devices. The physical ports are implemented as network card interfaces (NICs). The
system bus on these computer systems interfaces with the CPUs through the Peripheral
Component Interconnect (PCI) interface. The limitation is due to the memory access
times of DRAM. Multi-core system such the Intel R© Xeon processors can achieve several
tens of Gigabits/s [62].
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3.2.2.2 Network Flow Processors

NFPs are less programmable in comparison to CPUs, i.e. limited to network flow applica-
tions. They implement SRAMs for the lookup table [63]. SRAM in comparison to DRAM
for a general-purpose environment, provide faster access, but at a greater financial cost.
OpenFlow Table lookup with SRAM and NFP can provide 200Gbps line-rate with over
100 million packets per second (Mpps) [21].

3.2.2.3 Field Programmable Gate Arrays

FPGA implement their Lookup tables in SRAM. FPGAs, unlike general-purpose CPUs,
have less flexibility in terms of programmability [64]. However, unlike general-purpose
CPUs, they require programming expertise. They may achieve line speeds of 200 Gbps
per device and switching of 200 Mpps [21].

3.2.2.4 Application Specific Integrated Circuits

ASICs use CAM and TCAM [65]. These are optimised to have the fastest packet pro-
cessing. They achieve high speed by searching the entire memory in just a single clock
cycle [66]. CAM and TCAM memory searches are faster compared to SRAM and DRAM.
With TCAMs, bandwidths of 800 Gbps are possible [67].

3.2.3 Hardware, Software or Hybrid Table

The performance of an SDN switch depends on the implementation of the SDN pipeline,
where the data plane and the control plane are separated. The data plane, in this exam-
ple, is an OpenFlow-enabled switch which performs the forwarding of packets, whereas
the control plane makes decisions (rules) regarding how to deal with the packets. An
OpenFlow-enabled switch then stores the rules as flow table entries within one or more
flow tables. These rules are either exact-matches (with all match fields specified) or
wildcard-matches (some fields have any value). During data plane forwarding, flows in
the tables are stored and accessed from memory (DRAM, SRAM or TCAM). Depending
on the memory technology used, the penalties for searching memory (latency) for a flow
entry negatively affects the overall data rates and forwarding latency.
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The TCAM memory implemented in ASICs usually has very limited capacity, few capabil-
ities and is power hungry and expensive [68]. TCAMs consume large circuit areas within
switches where the circuit area is a key design constraint [60]. Because they are limited
by space and cost, the memory is usually extended to SRAM to implement a software
flow table and have a hybrid of both software and hardware tables. TCAM hardware flow
tables offer the best performance achieving near line rate switching speed.

This heterogeneity within the switch influences the performance of a software-defined
network. The performance characteristics and key features of OpenFlow-enabled devices
are as follows:

1. OpenFlow switches from different vendors have their own way of implementing
the OpenFlow pipeline. Hence, flow handling, processing logic, bus, and memory
requirements differ.

2. The capacity and capabilities also differ across switch models.

3. Hardware tables are fixed and are incompatible between versions of OpenFlow.

4. The cost for performance in the table lookups is at the expense of memory.

5. The complexity within the switch does not necessarily hinder performance [69]. For
example, TCAMs are more complex than DRAMs but offer better performance.

6. The switch’s packet processing i.e. the data path performance, looks at the process-
ing speed of the OpenFlow pipeline.

3.2.4 Evaluating Implementation Models

Table 3.1: Summary of Performance Characteristics
CPUs FPGAs ASICs

Table Capacity High Moderate Limited
Programming Very Flexible Least Flexible
Flexibility Flexible
Memory Type DRAM SRAM TCAM(and SRAM)
Switching Capacity Lowest High Very High

Table 3.1 shows a summary of the switching capacity, flexibility and table size based on
the type of memory access used in the implementation of an OpenFlow pipeline. Looking
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at the table capacity, i.e. the size of the OpenFlow Tables, it is less complex to implement
larger table sizes in virtualised environments than physical hardware. The flexibility in
terms of programmability makes it easier to implement extensions which ultimately affects
the ability to add new features.

CPUs generally implement software switches and features are easy to develop and deploy.
FPGAs, as mentioned before, require specialised knowledge in the programming and is
limited to how much resources are available. ASICs once developed, the addition of new
features achieved through firmware upgrades is limited to what is available on the ASIC
hardware.

As mentioned in Section 3.2.3, ASICs tend to have a hybrid software-hardware tables but
are generally the most expensive to develop. To conclude, the switching capacity increases
from CPUs to FPGAs to ASICs [57].

This thesis aims to meet the objective of building an inexpensive flexible multi-layer
switch. The implementation of an OpenFlow switch using the CPU model as the pro-
cessing logic of the switch is most favourable due to its high programmability at a low
cost. Though the switching capacity is lesser than either FPGAs or ASICs, the imple-
mentation of a switch using a CPU offers switching capacity that meet the requirements
of small-medium scale networks. In addition, a software (virtual) switch is suitable for an
OpenFlow switch if using the CPU architecture as its processing logic.

The following section looks at candidate virtual OpenFlow-enabled switches that are open
source.

3.3 Open Source Virtual Switches

There are multiple open source programs that are native to OpenFlow or compatible with
OpenFlow – to mention a few:

• Indigo – Developed by Big Switch, aims to enable support for OpenFlow on both
physical hardware and hypervisors [70].

• Open vSwitch – A project under the Linux Foundation, this is a multi-layer switch
that supports OpenFlow 1.0 – 1.5 [71].
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• Lagopus – An open source high-performance virtual switch with DPDK-powered
software data plane [72].

• LINC – Written in Erlang, the OpenFlow-pipeline is strictly OpenFlow-only. The
switch supports OpenFlow 1.2, 1.3 and 1.4 [73].

• Of13softswitch – Produced by Ericsson, implements a OpenFlow 1.1 softswitch
[74].

• BOFUSS – This is a user-space switch based on the Of13softswitch. It currently
only supports OpenFlow 1.3 [75].

Open vSwitch is used extensively by numerous companies in their solutions due to its ease
of adaptation in hardware switches networking stack [26, 76, 77]. Open vSwitch is also
designed to be adopted in hardware stacks used in the industry for host-based applications
[61]. The majority of the code found in Open vSwitch is written in platform-independent
C and may be ported into multiple environments including switching chipsets [78]. As a
result, Open vSwitch will form an important role in the focus of this thesis.

3.4 Open vSwitch

Open vSwitch (OVS) [71] is an open source software switch that runs on general-purpose
architecture. It is designed to run in a virtualised environment and is also designed to
be distributed across multiple physical servers that use Linux-based virtualisation includ-
ing Xen/XenServer, KVM, and VirtualBox [79]. OVS is OpenFlow enabled, hence is
accessible remotely through an OpenFlow controller that can configure the OpenFlow
settings and behaviour of OVS [71]. OVS is supported by many Linux distributions, such
as Ubuntu and even Windows platforms. The majority of OVS, as mentioned before, is
written in C programming language. This enables the support for multiple distributions.
The code in OVS is written to be platform-independent, hence the porting of OVS into
multiple environments including switching chipsets is possible [79]. OVS has also been
used to form part of the networking stack in hardware silicon [76, 77] and offloading packet
processing of software switches to hardware [80]. Through OpenFlow, OVS exposes itself
to management and control. OVS is a multi-layer switch that enables the programming
of the forwarding behaviour and control through software.
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3.4.1 Open vSwitch Architecture

The architecture of OVS comprises components that aid in the processing of packets.
These components, each with a different function, form a modular structure. As a vir-
tualised software switch, OVS makes use of the resources on the host machine for packet
processing including a multi-level cache for performance. Figure 3.5 shows the archit
ecture of OVS.

Figure 3.5: Open vSwitch Architecture. Adapted from: [3].

There are two major components included in its internal architecture which are:
ovs-vswitchd and kernel module. The first component, ovs-vswitchd, is a daemon
program that implements the core switching functions of OVS. This program runs in
user-space on the host machine and maintains the flow table. The daemon determines
how the packets are to be handled via flow entries. Flow entries include actions that list
the physical port or tunnels that the ingress packets should be transmitted in. The packet
classifier supports the matching of flow entries based on layer 2 to layer 4 implementing
switching features for forwarding, dropping, or modify packets. It also implements the
management of the data-path flow counters and handles flow expiration [1].

The second component, the kernel module resides in kernel space. This module is un-
aware of OpenFlow and processes packets based on instructions called actions set by the
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ovs-vswitchd daemon. Information from packet headers is extracted and hashed to use
as indices to find flows. When a match is found, the packet is processed further by the
data-path based on the actions that will forward, modify, encapsulate/de-capsulate and
increment packet counters. If a packet has no set action in the data-path module, the
kernel module will request instructions on handling the packet from ovs-vswitchd. The
associated actions are then returned to the data-path and these are normally cached in the
kernel module [81]. Future packets that have similar destination will be processed using
the actions. The daemon communicates with the kernel module and also communicates
with the system through an abstract interface.

Apart from the two major components, OVS includes another component named OVSDB
server. The function of this server is to store the configurations represented as an OVSDB
table. The communication between ovs-vswitchd and OVSDB server makes use of the
OVSDB protocol. OVS also includes a command line interface (CLI) where the con-
figuration and behaviour may be configured. ovs-vswitchd communicates with remote
OpenFlow controller(s) using OpenFlow. The configurations are managed through an
OpenFlow channel with an OpenFlow controller. The controller may also configure the
OpenFlow switch via the OVSDB protocol or the CLI. The CLI in OVS provides a set
of utilities that support the following features to configure, monitor, and debug Open
vSwitch.

• ovs-vsctl – A CLI tool to configure OVS to interact with the configuration database.
Using this tool, a user may communicate with ovsdb server which maintains an Open
vSwitch configuration database. The tool can be used to initialise Open vSwitch
bridges, configure ports, interfaces, and setting up the OpenFlow controller address.

• ovs-ofctl – A tool for monitoring and managing OpenFlow switches. It may
be used to request information such as current state, features, configuration, and
OpenFlow table entries.

• ovs-appctl – This may be used to invoke commands supported by ovs-vswitchd

program and display the response on a standard output (CLI).

• ovs-dpctl – A tool to create, modify and delete Open vSwitch data paths, for
example, the kernel module found in Linux.
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3.4.2 Open vSwitch Data Paths

The transaction between the kernel module and ovs-vswitchd daemon, i.e. when the
kernel module queries the daemon for actions, is a costly process which is why those
actions are cached in the kernel module. The kernel module and the ovs-vswitchd are
referred to as the ‘fast path’ and ‘slow path’ respectively [79]. The performance of the
switch is heavily reliant on the caching of the data-path.

Figure 3.6 shows the cache hierarchy within the kernel module. The ‘slow path’ in-
cludes the OpenFlow flow table and its flow entries. Because of the sizes of the tables,
performance is slow due to the fact that the passing of packets to the user-space daemon
requires context switching. Context switching between the kernel space and user-space
requires the computing process to store and restore the state of a CPU such that multiple
processes can share CPU resources. ‘Fast path’ (data-path) caching is further divided
into two levels, named megaflow and microflow [81]. The performance ranges from high
to low following microflow, megaflow and flow table classifiers.

Figure 3.6: Open vSwitch Cache Hierarchy. Source: [9].

3.5 Open vSwitch Alternate Data Path

The packet processing performance of OpenFlow, where the data-path implemented as
the kernel module, the data rate is limited by the delay penalty incurred during context
switching. The transfer of data between kernel and user-space involves system calls and
interrupts. In an environment where resources are limited, the performance of the switch
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is greatly diminished when under high load. This is due to the increase in overhead.
Alternatively, OVS may bypass the kernel and implement its data path in user-space
using an alternate driver set which eliminates any requirements for interrupts, system
calls and context switching between user-space programs and kernel space programs. This
approach offers a more desirable performance compared to the performance of a kernel
data-path. This method is discussed in subsequence sections which include the structure
and how it operates in the user-space.

3.5.1 Data Plane Development Kit

The Data Plane Development Kit (DPDK) [11] is a set of user-space drivers that enable
OVS to provide high-performance packet processing through accelerated user-space data-
paths.

DPDK implements a run-to-completion model which means that DPDK performs packet
processing in a chain of functional stages [82]. The result is an enhanced network packet
data rate with a much lower latency. The user-space drivers of DPDK implement threads
that poll the ingress ports of OVS. This bypasses the kernel and avoids the need for
interrupt processing. DPDK further optimises its performance by using techniques such
as hugepages, multi-core processing, processor affinity, no copy from Kernel, lockless ring
design with readers, and writers running on separate cores.

DPDK supports the development of applications that can take advantage of high-speed
data packet processing that DPDK offers, which means that applications can process
packets much faster without the need for implementing kernel modules. DPDK fast path
avoids context switching and packets are made available in user-space directly (as raw
packets). Figure 3.7 shows the difference between the two data paths, i.e the kernel
module and DPDK.

3.5.2 Core Components

DPDK provides a set of libraries that are needed for high-performance packet processing.
These components enable DPDK’s fast path mechanism for packet processing. Listed
below are these components, with the global overview is shown in Figure 3.8 [82].
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Figure 3.7: Native OVS vs OVS with DPDK. Adapted from: [10].

• Environment Abstraction Layer, EAL (rte_eal+libc) functions include ob-
taining low-level resources such as hardware and memory space and then provide a
generic interface that abstracts the environment specifics from the applications and
libraries. During initialisation, it decides how to allocate these resources.

• Memory Pool Manager (rte_mempool) is responsible for allocating pools of
objects in memory. A pool is created in hugepages as memory chunks of 4KB,
16KB, etc, and uses a ring for storing free objects. The memory manager provides
an alignment helper to ensure that objects are allocated in contiguous blocks equally
on all DRAM channels.

• Network Packet Buffer Manager (rte_mbuf) reduces, by a significant amount,
the time that the operating system spends allocating and de-allocating buffers us-
ing advanced techniques such as Bulk Allocation, Buffer Chains, Per Core Buffer
Caches, etc. Fixed size buffers are pre-allocated and stored in memory pools. This
manager provides an API to allocate or free buffers, manage control messages, and
packet buffers to carry network packets.

• Ring Manager (rte_ring) uses a ring structure providing a lockless multi-producer,
multi-consumer FIFO API, instead of lockless queues. The advantages compared to
lockless queues are easier to implement, adapted to bulk operations and generally
faster. This ring is used by rte_mempool manager and may provide a mechanism
for communication between cores and/or execution blocks.

• Timer Manager (rte_timer) provides a timer service to execution units allowing
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functions to be executed asynchronously. Its uses included periodic calls such as
garbage collectors or some state machines (ARP, bridging, etc).

Figure 3.8: Core Components Architecture. Source: [11].

3.5.3 Poll Mode Driver (PMD)

The PMD provides threads that run in user-space to enable fast packet processing. The
EAL (Environment Abstraction Layer) creates these threads, i.e. the poll mode driver,
to poll file descriptors of a device. PMD is designed to work without interrupts, avoiding
context switching between the kernel and user-space. A PMD is made up of APIs to
configure network interface controllers (NICs) and their respective queues. Additionally,
PMDs access the descriptors of ingress and egress ports directly to quickly receive, process
and deliver packets in the user’s application. The DPDK library provides a set of drivers
for a defined set of commodity NICs e.g. Intel R© ixgbe 1, Netronome nfp 2 and Mellanox
mlx5 3, and so on.

1Intel R© Network Adapter Driver for PCIe Intel R© 10 Gigabit Ethernet Network Connections
2Netronome NFP-4xxx and NFP-6xxx flow processor families
3Mellanox Network controllers: ConnectX-4, ConnectX-4 Lx, ConnectX-5, Bluefield
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3.6 OVS-DPDK

OVS (Section 3.4) and DPDK (Section 3.5.1) can be integrated to form OVS-DPDK (OVS
switch using DPDK as the data-path). The architecture of OVS-DPDK involves process
chaining that requires the movement of packets from the physical interface to user-space,
the processing of the packets, and then finally sending it back to the appropriate physical
interface for forwarding. Since this processing involves multiple stages of chaining, each
incurs a latency overhead. This chaining will consume CPU cycles at each stage during
packet processing.

OVS makes use of DPDK to implement the data-path in user-space for ‘fast path’ pro-
cessing. The PMDs allows fast packet processing at line rate speeds by polling the NIC
for the communication of packets. The OVS-DPDK uses three-tier look-up tables/caches
for processing which includes an Exact Match Cache (EMC), data-path classifier and the
ofproto classifier table. The EMC only caches exact matching flow entries while the
data-path classifier works as a wildcard matching table. Finally, the third-level table is
the ofproto classifier table whose contents are managed by an SDN OpenFlow-compliant
controller. Figure 3.9 depicts the three-tier cache architecture in OVS-DPDK.

Figure 3.9: OVS-DPDK three-tire cache architecture. Source: [12].

When packets arrive, they traverse through multiple tables beginning with flow table
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0. If a match is found, the corresponding forwarding action is executed. Real world
deployments handle thousands of flows and this quickly fills up the EMC cache. The
critical aspect for the overall performance depends on the performance of the data-path
classifier. The performance of the classifier is affected by the hash calculation used in
searching for a match. Leveraging on SIMD (Single Instruction Multiple Data) can speed
up hash computation [83].

3.7 SDN Controllers for the Control Plane

An OpenFlow switch is usually managed by a controller. These controllers coupled with
OpenFlow switches are used to create SDN networks. There are a variety of Open-
Flow controllers that are available to date. Examples of open-source controllers include
OpenDaylight4, Open Network Operating System (ONOS)5, Ryu6 and Faucet7. These
controllers provide APIs that wrap the OpenFlow protocol. By using these APIs, the
controllers provide a programmable environment that enable rapid network application
development [41]. As mentioned in the previous chapter, the controller forms the control
plane within the SDN architecture.

3.7.1 OpenDaylight Framework

OpenDaylight [84], which is part of the Linux Foundation, offers a community-led and
industry-supported controller. It is a Java-based SDN controller that can execute on any
system that supports Java. OpenDaylight uses the following tools to implement the SDN
concepts [84]:

• Maven: OpenDaylight uses Maven8, a tool to build and manage Java-based projects,
to define the bundles to load and start and also the scripting of the dependencies
between bundles.

• OSGi: A back-end framework of OpenDaylight to allow the dynamic loading and
binding of bundles for the communication between them.

4OpenDaylight: Home, https://www.opendaylight.org/
5ONOS - A new carrier-grade SDN network operating system, https://onosproject.org/
6Ryu SDN Framework, https://osrg.github.io/ryu/
7Faucet SDN Controller, https://faucet.nz/
8Maven – introduction, https://maven.apache.org/what-is-maven.html
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• Java interface: This is the main way how bundles receive information such as
events, specifications and forming patterns.

• REST API: This northbound API exposes network behaviour and functionality,
this include functions such as topology management, host discovery, flow program-
ming, etc.

OpenDaylight uses the OSGi framework and REST as the northbound APIs. Applica-
tions can be loaded onto the controller during runtime using the OSGi framework while
the REST API is used for applications that execute outside the controller’s address space
that may run on a separate system. The applications implement the business logic, which
makes use of the controller to gather network intelligence. The applications may run
algorithms to analyse and orchestrate rules on the network. OpenDaylight implements
multiple protocols for its southbound interface which are supported as plugins [84]. Ex-
amples of supported plugins are OpenFlow 1.0, OpenFlow 1.3, BGP-LS, and more.

The OpenDaylight controller can run multiple plugins by adding them to the controller
code that links dynamically into a Service Abstraction Layer (SAL). The SAL function is
to intercept the requests from the plugins using the underlying protocol that is between
the controller and the network devices. Hence, the details of the southbound protocol are
abstracted from the application’s perspective. OpenDaylight uses the Topology Manager
to store and manage information about the devices that the controller is managing. Open-
Daylight also uses other components like ARP handler, Host Tracker, Device Manager,
and Switch Manager to generate the topology database for the Topology Manager.

3.7.2 Open Network Operating System (ONOS)

Open Network Operating System (ONOS) [85] was the first open source SDN network
operating system and is also a project under the Linux Foundation (just like DPDK and
OVS) [71]. ONOS was targeted at network operators to deliver high availably scaling and
performance [86]. In recent years, ONOS has gained popularity among service providers
and network operators.

The architecture of ONOS is designed for service providers and defines its architecture as
follows [86]:
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• Distributed Cores provide scaling, high availability and performance. ONOS
runs as a service on a cluster of servers enabling rapid recovery in the event of
server failures. ONOS instances work together to bring web style agility and scale.

• Northbound abstraction/APIs enables the control, management and configu-
ration services through an abstraction.

• Southbound abstraction/APIs enables the management of both OpenFlow and
traditional devices using pluggable southbound protocols.

• Software Modularity enables rapid development, debugging and maintenance of
ONOS by a community of developers.

ONOS runs as a service with the same ONOS software running on clusters of servers.
Each instance works together and creates what appears to be a single platform, where
the instances are hidden from the applications. This allows ONOS to be scalable because
instances behave as a single logical entity. As a result, the distributed core is the key
feature of ONOS.

3.7.3 Ryu Controller

The Ryu controller [87] is an open-source, component-based SDN framework where de-
velopers can create network applications as software components using the defined APIs
provided by Ryu. Ryu fully supports OpenFlow versions 1.0, 1.2, 1.3, 1.4, 1.5 and Nicira
Extensions. These extensions were proposed by the vendor, Nicira, to address the lack of
generic and/or vendor-specific error codes in OpenFlow version 1.0 [88]. It also supports
other protocols such as Netconf, OF-Config, and so forth. The Ryu platform allows rapid
development and prototyping of network control software using Python programming
language [89]. Figure 3.10 shows the programming model used in Ryu.

Ryu applications run as a single thread that processes events. The series of actions
that an application takes, occurs when an event is sent by the controller (ryu-manager
process) which comes from the data path thread. Actions such as OpenFlow messages
between the controller and switch, trigger events in the data path thread. All attached
applications will load the event loop and call the corresponding event handler. The
set of actions such as routing or switching are then defined as a handler. The events are
received by the application in a form of a FIFO queue. The application is responsible for
draining the queue and calling the appropriate event handler for each received event type.
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Figure 3.10: Ryu Application Programming Model. Source: [13].

3.7.4 Faucet SDN Controller

Faucet [90] is a compact open source OpenFlow controller based on the Ryu architec-
ture. Faucet only supports OpenFlow version 1.3 and can manage physical hardware
switches to deliver high performance. Its architecture is shown in Figure 3.11. Faucet
has two OpenFlow controller components, Faucet itself, and Gauge. Faucet manages all
the forwarding and the state of the switch. It also makes the internal information about
a switch to be available through a monitoring system called Prometheus that can be vi-
sualised via Grafana, a monitoring dashboard. Gauge also establishes a connection with
the switch and monitor port information and flow statistics. However, Gauge does not
modify the switch state, so that the monitoring functions can be restarted or upgraded
without affecting the forwarding of the switch.

Faucet implements multiple tables to implement the network flow pipeline. Its features
include VLAN switching, IPv4 and IPv6 routing (static or Border Gate Protocol routing),
access control lists (ACLs), port mirroring, and policy-based forwarding [54]. Faucet uses
a two-system deployment scheme which consists of a controller and an OpenFlow-enabled
switch that provides a ‘drop-in’ replacement for a traditional network device such as a
switch or router. The controller is typically deployed as a Linux machine running Ubuntu,
although it may run on other systems such as Windows. Faucet only supports switches
with OpenFlow-only pipeline and is configured using configuration files (faucet.yaml and
gauge.yaml shown in Figure 3.11), which resembles a traditional network configuration
file.
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Figure 3.11: Faucet Architecture. Source: [14].

3.7.5 Overview

There are many variations of OpenFlow controllers, but they share the same objective of
controlling and configuring data plane switches [91]. Table 3.2 shows a comparison of the
SDN controllers mentioned in previous sections.

Table 3.2: Overview of SDN Controllers
OpenFlow OpenDaylight Open Network Ryu Faucet
Controller OS (ONOS)
Northbound OSGi, REST OSGi, REST Python, REST Python
Protocols

Southbound BGP, Netconf, BGP, Netconf, BGP, Netconf, BGP,
Protocols OpenFlow, OpenFlow, TL1, OpenFlow, OpenFlow

OVSDB OVSDB OF-config,
OpenFlow 1.0, 1.3, 1.0, 1.3, 1.0, 1.2, 1.3
Version 1.4 1.4 1.3, 1.4, 1.5
Primary Java Java Python Python
Language

Each SDN controller given in Table 3.2 supports OpenFlow version 1.3. This corresponds
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to the version of OpenFlow selected for this thesis, OpenFlow version 1.3, during the de-
velopment of the milti-layered SDN switch. This was found to be appropriate in enabling
compatibility between the multi-layer SDN switch and any SDN controller that supports
OpenFlow version 1.3.

3.8 Performance Metrics

This chapter has identified numerous factors that impinge on switch performance. The
thesis also has, as an objective, performance in mind, therefore a methodology was used
to provide methods for benchmarking. The methods used in the benchmarking of a device
includes: (1) using a benchmark methodology to observe the performance behaviour, and
(2) benchmarking the device within a network.

The benchmark methodology used to analyse the multi-layer SDN switch was the RFC
2455 Benchmarking Methodology, while the tool selected for network benchmarking was
the iPerf Network Benchmark Tool.

3.8.1 RFC 2455 Benchmarking Methodology

RFC 2544 [92] describes a benchmarking methodology developed by the Internet Engi-
neering Task Force (IETF). It defines a number of tests that can be used to quantify
the performance characteristics of a network device. These tests are aimed at providing
data for which devices from different vendors can be evaluated. The results produced
by each set of tests apply to the evaluation for a selected circumstance. For example,
the evaluation of VLAN tagged frames will provide the vendor with the behaviour of the
device when performing in a network where VLAN tagging is used. RFC 2544 also defines
the setup for testing single or a group of devices. The RFC 2544 document defines the
parameters such as frame formats, frame sizes, and the expected stream formats. It also
describes specific formats for reporting the results of these tests.

3.8.1.1 Test Conditions

The tests defined must run consistently without changes in configuration or running a
specific protocol or feature. This is to avoid biased results that do not reflect actual
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performance of the system. The ideal tester recommended includes both transmitting
and receiving ports. This will allow the verifying of the sequencing of sent frames with
the packets received. RFC 2544 supports layer 2 and layer 3 benchmarks. Layer 3 tests
include the IP packets configuration, parameters such as network mask and subnets, while
layer 2 frames include parameters such as frame size or bit rate.

3.8.1.2 Traffic Used

RFC 2544 defines test frame formats to be used in the benchmarking of a network device.
Below are some of the frame formats that are covered by the RFC.

• Traffic pattern: Typically traffic in a network is not constant but occurs in bursts.
However, the RFC proposes that the tests use constant traffic and with repeated
bursts of frames with the minimum inter-frame gap.

• Protocol addresses: Real-world traffic involve multiple streams of data. The
RFC addresses this by suggesting that tests are re-run using a random destination
address. For layer 3, a distributed range of 256 networks for routers and layer 2
tests uniformly distributed over the full MAC range.

• Maximum frame rate: LAN testing to use maximum frame rate with a defined
frame size. WAN testing to use rate greater than the maximum theoretical rate.

• Frame sizes: The range of frame sizes recommended are: 64, 128, 256, 512, 1024,
1280, 1518 bytes. This covers the range of frame sizes transmitted.

• Frame formats: The format of the layer 3 frames of TCP/IP for routing and UDP
Echo frame for layer 2.

3.8.1.3 The Tests

Vendors can use these tests to ensure that the Service Level Agreement (SLA) between
the consumer and a service provider are met. The benchmarking tests defined in RFC
2544 document include the six tests of throughput, latency, back-to-back frames, frame
loss rate, system recovery and reset. The details of these tests are:
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• Throughput: Is given as the maximum rate at which frames are transmitted by
the test equipment without any frame loss. The performance report must include
the maximum frame rate, the frame size used, the theoretic line rate for that frame
size, and the type of protocol used.

• Latency: The time taken by the networking equipment upon receiving a frame on
the input port to the time the same frame is seen on the output port of the device.

• Back-to-back: This will measure the buffering capacity of a device. The test
checks the speed at which a device is able to recover from an overload condition.

• Frame loss: The percentage of frames lost under a steady load. The frame loss
rate calculated as shown in Equation 3.1.

Frame loss =
(inputcount− outputcount)× 100

inputcount
(3.1)

• System recovery: The test checks the speed at which a device is able to recover
from an overload condition.

• Reset: The test checks the speed at which a device is able to recover from a device
or software reset.

3.8.2 iPerf Network Benchmark Tool

iPerf [93] is a network benchmarking tool that actively measures network bandwidth on
IP networks. The goal is to determine the maximum achievable throughput in the IP
network. iPerf can also perform other measurements such as latency and packet loss.
It can generate customised UDP and TCP packets of different frame sizes at specified
rates and intervals. The tool collects statistics based on the time interval of the number
of packets sent. The transmission of TCP or UDP traffic involves a client and a server
where the client generates traffic and is sent to the server. At the server, the traffic is
then analysed and measured. iPerf can also measure throughput at the application level
(Layer 5) of the TCP/IP model. Additionally, iPerf supports bidirectional transmission
between clients and servers.
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3.9 Summary

In this chapter, the discussion explored the components of an OpenFlow-enabled network.
OpenFlow is an open standard that enables software controllers to remotely manage
OpenFlow switches. However, the standard does not define a northbound API. The
implementation of the northbound API is left to the design of the OpenFlow controller.
As seen in Section 2.3.3 and Section 3.7.5, there are a number of software controllers
which implement different NBI protocols such as REST API or the OSGI model and
the implemention also differ in programming languages which gives flexibility to choose
a controller based on application. The chapter introduced multiple network processing
technologies such as ASICs, FPGAs and general-purpose CPU used in implementing an
OpenFlow-enabled switch. Each technology affects the manner in which the OpenFlow
pipeline is implemented, which also affects the cost of building an OpenFlow switch. The
architecture of general-purpose CPUs offers the least cost and greater flexibility when it
comes to implementing an OpenFlow pipeline for switches.

This chapter also introduced Open vSwitch (OVS), a popular virtual switch in SDN
applications. OVS is a multi-layer software switch that runs on general-purpose CPUs
and it implements a multi-level caching for its packet processing. OVS in conjunction with
Data Plane Development Kit (DPDK) provides accelerated packet processing. DPDK
enhances packet data rates by reducing the overhead of executing processing in the kernel.

The chapter briefly examined SDN controllers and the high-level interaction between con-
trollers and the management plane. Understanding the functionality of SDN controllers
forms the basis for the knowledge required in building an SDN network.



Chapter 4

Designing the Overall SDN Network

The previous chapter provided an overview of different network processing technologies
implemented in OpenFlow devices. From these technologies, general-purpose CPUs offer
the most flexibility in terms of programmability and is the cheapest solution for imple-
menting OpenFlow devices (Section 3.2.2). This dissertation aims to develop a multi-layer
SDN switch that makes use of open source tools and commodity hardware as a result,
creating the underlying hardware for SDN networks. At the time of starting this thesis,
there were several high-speed SDN devices, but no implementations that offered cheaper
solutions for small networks.

This chapter gives a description of the overall architecture that was implemented. The
implemented switch was then later used in several use cases. In Section 4.1 outlines the
overall architectural design considerations for this thesis. Section 4.2 lists the objectives
drawn from these considerations. Section 4.3 introduces the overall architecture and
designhosted by the prototype multi-layer switch.

4.1 Design Considerations

Prior to the development of programmable networks and the implementation of several
use cases of SDN networks, it is important to define the goals of implementing both the
multi-layer switch and the embedded SDN network used to test the set of use cases. SDN
offers numerous possibilities, however, it may not be possible to cover all possibilities as
these are outside the scope of the thesis. The objectives presented in this dissertation
were motivated by the following:

54
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1. Develop an inexpensive multi-layer switch.

2. Evaluate this device capabilities and features.

3. Use this prototype device in an SDN network.

4. Demonstrate the simplicity of management brought by manipulating the behaviour
of the programmable network device within a programmable network.

The task of creating an SDN system is divided into two sub-tasks which are: (1) the
selection and development of the control software and (2) the design and implementation
of the multi-layer switch. The control software relates to the logic required to create and
manage a network. This includes defining network addresses and the logic of the control
plane. The multi-layer switch includes the design of the hardware and software of the
data plane.

4.2 Design Objectives

To meet the specific challenges of designing inexpensive SDN Networks (discussed in
Chapter 1), the following are the requirements:

• Use of commodity hardware and open source tools: This fits well because it
provides an affordable means to build a multi-layer switch.

• Simplified programming model: As outlined in Chapter 1, the advantage of
SDN over traditional networking enable the association of centralised decisions and
policy making. This means that the users or applications may operate or change
the behaviour of the network. This grants users and SDN applications to reactively
handle the state of the network changes. The framework should provide the pro-
grammer and or application with primitives to express complex network services as
applications.

• Performance: One important aspect of hardware implementation is performance,
achieving realistic performance for the proposed prototype provides evidence that
an inexpensive implementation is feasible.

• Extensibility: This system should be extensible in order to account for the variety
of different SDN deployments.
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To satisfy the design objectives mentioned above, the structure of the overall system will
include key components and modules that combine to form each functional entity as seen
in each of the three layers of the SDN Architecture (discussed in Section 2.3.2). These
entities include an SDN enabled prototype device (data plane device), an SDN controller
software (control plane) and SDN Applications (application layer). The SDN Applications
will then set network policies and convey them to the SDN controller via the northbound
interface (NBI) using OpenFlow messages. The SDN controller then translates these
policies to OpenFlow messages for the data plane switches that define the behaviour of
the network based on the policy set in the SDN Applications.

4.3 Architecture of the SDN Network

Figure 4.1: Generic Architecture Overview.

Figure 4.1 shows the diagram of the proposed SDN network which consists of a physical
controller, one or more switches, and a set of SDN applications. The applications and
services are located at the top layer. The controller connects to OpenFlow switches via
a traditional TCP/IP network. The controller has access to the switch’s configurations
through the OpenFlow protocol. From the controller, the logical view and control access
over the network topology at the data plane allows the applications to request information
about the network. Additionally, the OpenFlow protocol enables the switch to communi-
cate with the controller via the OpenFlow channel that exposes the switch’s functionality
and the handling of the controller-switch connectivity. The controller uses a high-level
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specific protocol to speak with the applications. It can request and collect standard Open-
Flow specific statistics (e.g. number of packets matched per flow entry) from the switches
in the network. These collected statistics, along with some primitive operations as in-
terfaces, are then made available to applications for their use. Finally, SDN applications
programmatically carry out network services that will send policies through the interfaces
to the OpenFlow controller.

The underline network, for this proposed platform, is configured as an Ethernet standard
network (IEEE 802.3) [94]. The IEEE 802.3 is the protocol standard and frame format
used for communication for Local and Metropolitan Area Networks (LANs and MANs).

When an Ethernet frame is received at the SDN switch/node, header fields are extracted
from the frame. Table lookups check for matching entries in the OpenFlow table. If avail-
able, the corresponding Ethernet frame is processed and forwarded as per the 802.3 frame
format. As traffic flows through the network, each switch will receive commands from
the controller and deal with the traffic accordingly (Section 3.1). The remainder of the
chapter covers the methodology and design of the management layer and the applications
that are part of the control software.

4.3.1 Controller Selection

The controller is a functional component that enables the access to APIs that manipulate
the behaviour of the network. The prototype hardware switch will need to communicate
with the controller. In a previous chapter, Section 3.7.5 provided an overview of several
OpenFlow controllers. This information was used in deciding which SDN controller to
use. The criteria used for selection was based on the following: ease of management, use,
learning curve, and availability of documentation.

For this dissertation, the controller of choice was the Ryu SDN controller. OpenDayLight
was not considered due to its steep learning curve. ONOS and Faucet on the other hand
lack documentation. Ryu was selected since it has good documentation with an active
community keeping it updated and a moderate learning curve.

Ryu controller also exhibits other advantages. It supports multiple OpenFlow protocol
versions (1.0, 1.2, 1.3, 1.4 and 1.5) [87]. It includes built-in applications and examples
which are well documented. It also includes a documented book with examples showing
how Ryu applications are developed and how they manipulate network behaviour while
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other examples in the book show how to provide functionalities that can be consumed
by other Ryu applications [13]. The proposed solution employs a single general-purpose
machine (compute node) running the Ryu controller and several applications. These
applications implement network policies and manipulate the underline network.

4.3.2 Configuration of the Controller

Section 3.7.3 illustrates the structure of Ryu and the interaction between an appli-
cation and the controller (ryu-manager). The decorator application class method
ryu.controller.handler.set_ev_cls is used to trigger event handlers within the ap-
plication’s code. These handlers implement the logic behind the control software.

4.3.3 Basic Operating Principle

The OpenFlow switch depends on the controller for directing of traffic (Figure 4.1). Un-
known packets that arrive at the OpenFlow switch are sent to the Ryu controller that
forwards the packet to one or more Ryu applications. Within a Ryu application, an event
called ofp_event.EventOFPPacketIn is triggered in the data path thread. The event is
then sent to each application’s event queue in the ryu-manager process. The event loop
thread created for each Ryu application then loads the event and calls the corresponding
event handler.

After the event handler is called, in this case the handler for the EventOFPPacketIn

event, the application can extract information which is used for management, discovery
and monitoring of the network. Applications are able to obtain information about the
network while deciding how the packet is to be processed and return this information
(possibly by installing rules as flow entries in the OpenFlow table) to the OpenFlow
switch. The decision process includes switching, routing and render services to creating
and maintaining the network.

To achieve the objective of simplifying network management, a centralised control inter-
face is employed. To grant the administrator easy access and control over the network, the
test bed includes a web user interface or web UI that allows the administrator to manage
the network remotely. The administrator is able to submit new rules through the web UI.
The controller is accessed from the web UI through an API that implements the REST
calls. A Ryu application then translates these REST messages (formatted in JSON) into



4.4. NETWORK FLOW PIPELINE 59

network policies that are sent to the controller and finally translated into OpenFlow flow
table entries. These flow entries are then pushed onto the switch and the defined policy
is applied to the unknown packet as well as similar packets that arrive in future.

4.4 Network Flow Pipeline

The operating of the proposed multi-layer switch is defined by network functionalities.
These functionalities are used to represent the behaviour of the network. The first function
is forwarding. It is defined as a layer 2 (L2) functionality where all connected host
machines are within the same broadcast domain. Each network will have a subnet that
defines the range of IP addresses that all host machines will be associated with. When
configuring for networks with multiple subnets, routing between subnets is required, hence
the second function is a layer 3 (L3) router. The third function, if required, is to automate
the allocation of IP addresses for each end-host. Other non-core functions include simplify
access to the configurations for the above three functions and providing that access via
an interface. This is achieved using a user interface (web UI).

These mentioned functionalities are implemented as applications within the Ryu con-
troller. A brief description of each Ryu application is given below:

1. Base – Provides services for the web UI and the initialisation of flow entries within
the OpenFlow tables for each managed OpenFlow switch to allow the controller to
capture events.

2. L2Switch – Provide for the L2 function. The frame format defined in the 802.3 will
allow the manipulating of Ethernet traffic based on the L2 source and destination
addresses (MAC addresses).

3. Router – Provide for L3 routing for traffic moving between different subnets.

4. SimpleDHCPServer – Provide for dynamic assignment of IP addresses to hosts
using the Dynamic Host Configuration Protocol (DHCP).

5. WebAPI – A file server that provides web resources (such as HTML pages, script
files and images) used in the web UI.

The pipeline of the OpenFlow table for all managed multi-layer switches is given in Fig-
ure 4.2. This pipeline shows the overall process within each manged switch. The initial
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Figure 4.2: Pipeline for the Implementation of an SDN Network.

flows are OpenFlow table entries entered by the controller during its initial connection
with the switch. These flows instruct the switch on how to filter traffic (filter by L2,
L3 or DHCP traffic). The pipeline process implemented within the multi-layer switch
can be represented as six process blocks. The pipeline process starts with the Ingress

block. This block represents any ingress port on the OpenFlow switch. All arriving pack-
ets are filtered by the Traffic Filtering process block which represents the installed
flow entries. These packets are filtered according to whether the network is configured
with a single subnet or multiple subnets (i.e. L2 or L3 functionality) and whether the
dynamic allocation of IP addresses for connected end-hosts has been enabled (i.e. the
DHCP service is enabled). The filtering process performed by the Traffic Filtering

block is achieved by classifying the traffic base on Ethernet type (EtherType) or IP pro-
tocol number. The EtherType [95] is a two octet (16 bit) field in an Ethernet frame that
indicates the size or protocols encapsulated within the payload of the Ethernet frame and
it defines the type of packet received. If, for example, a packet has the EtherType of IPv4
or ARP, the IP protocol number will provide more information used to further classify the
traffic. The classification of IPv4 traffic can show us if the packet is of type Transmission
Control (TCP) or User Datagram (UDP) (It is worth noting that DHCP traffic are encap-
sulated within a UDP datagram). The information gathered is then used to process the
traffic accordingly (DHCP, L2 Lookup and L3/ARP Lookup). Once filtered, the packet may
processed by either the “DHCP”, “L2 Lookup” or “L3/ARP Lookup” which are processed
by the SimpleDHCPServer, L2Switch and Router applications respectively. These three
blocks heavily depend on the involvement of the controller. After each application has
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completed processing, the packet is then sent out the egress port represented by Egress

block.

The following sections show the design of the applications that control the network node,
that is essentially the multi-layer switch.

4.4.1 Base Application

The first Ryu application implemented in the proposed solution is the Base application.
The group of functions provided by the Base application are: (a) populate the OpenFlow
table with initial OpenFlow rules for all managed OpenFlow switches and (b) provide a
web interface to configure the functions of the managed switch. As shown in the pipeline
(see Figure 4.2), this requires the switch to categorise traffic according to function. The
categorisation of traffic that travels within the network is done by packet classification
based on a set of rules defined as match fields and actions.

The other function performed by the Base application is to provide a web UI that allows
the user to view and configure the network. The user is able to select and add the desired
rules for forwarding (L2), routing (L3) and assigning of IP addresses. The user is also able
to view the OpenFlow table entries within each managed switch from the web browser.
The topology and table display functionalities are adopted and modified from the built-in
application TopologyAPI found in the application rest_topology.py. Figure 4.3 shows
the structure of the proposed solution. The configuration of an SDN switch can be done
from the web UI accessible from a web browser.

Figure 4.3: Configuring of SDN Switches Via the Web UI.
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4.4.2 Forwarding Application

The second Ryu application implemented is the L2Switch. This application is concerned
with the communication of devices within the same layer 2 broadcast domain (same
subnet). To understand the function of the L2Switch application, taking a look at a
traditional layer 2 switch will explain the behaviour of this application. A traditional
layer 2 switch performs the following tasks:

• Learns the MAC addresses of connected hosts on each port and saves it in a MAC
table.

• Packets addressed to a known host are forwarded to the port connected to the host.

• Packets addressed to an unknown host are flooded to other ports.

Layer 2 Forwarding in Ryu

OpenFlow switches and the Ryu controller implement a layer 2 switching functionality
by having the OpenFlow switch performing the following instructions:

• Modify the address of the received packet or send the packet from a specified port.

• Send the unknown packet to the controller (Packet-In).

• Send the packet from the controller through the specified port (Packet-Out).

The performing of these tasks and instructions achieves L2 switching. The Packet-In
function is important for the learning of MAC addresses. The controller uses Packet-In to
receive packets from the switch. Information about the host and connected port is used
in the learning of the MAC table. Once learnt, the switch is able to correctly send the
received packets. The destination MAC address of the packets is then used to determine
the next action. The action taken is dependent on if the host is known or unknown defined
as follows:

• If the host is known or has been learnt, the Packet-Out function is used to transfer
the packets to the port to which the target host is connected.

• If the host is unknown, the Packet-Out function performs flooding.
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4.4.3 Routing Application

The L2Switch application can forward traffic for a single network. Inter-networks are
created by joining two or more networks at layer 3. The communication between these
networks would require a device with routing capabilities [96]. The implementation of
these capabilities are managed by the application Router.

The IP protocol of the TCP/IP model [35] is designed to facilitate the routing of infor-
mation over multiple networks. Within the TCP/IP model, a router is able to transmit
data from one network to the next as routers exchange critical information necessary for
deciding the next path to send the data to.

4.4.3.1 IP Addressing

The primary function of Internet Protocol (IP) is to deliver data across an internetwork
[35]. IP addresses have two different functions: (1) provide a unique identification of a
network interface and (2) provide a system to route data.

The second function facilitates routing. IP addresses can be used by routers to figure out
what to do with a packet based on the IP address. Related information such as subnet
mask and gateways are used in routing. A device may have at least one IP address (one
per network interface). End devices like hosts such as computers and network printers
usually have one IP address whereas routers have more than one IP address (one IP per
each port).

4.4.3.2 Subnet Mask and Default Gateway

In subnetting or classless addressing, the subnet mask is required to qualify the address.
The mask is then used to identify the network ID and host ID. The default gateway
generally is the IP address of the router that provides default routing functions. This
router is used when a router is unable to see the destination IP in its local network. The
default gateway will then take care of routing functions.

4.4.3.3 Address Resolution

Address Resolution Protocol (ARP) [35] is used by devices to request/reply IP addresses
to find out which hardware interface (MAC address) corresponds to a specific IP address.
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ARP is used to find a node’s MAC address when its IP address is known. A broadcast
of an ARP packet is sent by the sender. This ARP packet contains the IP address of
the node with the unkown MAC address. Once sent, the sender waits for a response
containing the MAC address. This is then stored in a cache for later use.

4.4.3.4 Implementing the Router Logic

Figure 4.4: Layer 3/Routing Lookup.

The logic behind the router is adapted from the example Ryu application RestRouterAPI
found in the rest_router.py file. In the proposed solution, the functionalities mentioned
above (subnet masking, gateways and address resolution) form part of the application
Router. Figure 4.4 shows the L3 lookup within an OpenFlow switch during the routing
of IP addresses. Each router uses a forwarding table that resides and maintained by
the module/class RouterAPI within the application. A router, by right, should forward
packets by examining the destination IP (dst_ip) extracted from each packet’s header.
The dst_ip value is used to index into the router’s forwarding table. Other values stored
in the forwarding table are the ‘netmask’ and ‘gateway IP’. These values are used to
indicate the router’s outgoing interface that a packet is forwarded.

VLAN support

The virtual local area network (VLAN) functionality was adapted from Ryu’s example
application and forms part of the RouterAPI implemented in the application Router.
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VLAN [96] enables the configuring of multiple virtual local area networks to be defined
over a single physical infrastructure. Hosts within a VLAN are able to communicate with
only hosts within the same VLAN. VLANs have advantages of traffic isolation, efficient
use of network devices and the management of tenants.

4.4.4 DHCP Service

SDN allow users to coordinate and manage a network by automating the behaviour of the
network. A key aspect in automating TCP/IP networks is the allocating of IP addresses.
IP addresses enable devices within the network to be able to identify each other. As part of
the process of automating IP allocation, dynamic IP allocation is used. The configuring of
IP addressing is done using the Dynamic Host Configuration Protocol (DHCP protocol)
[15]. The application SimpleDHCPServer serves this purpose. The workings of the
DHCP protocol is elaborated next.

4.4.4.1 Overview of DHCP Features

The allocation of addresses for hosts through manual or automated methods may be used
in creating a network. The manual allocation of IP addresses is achieved by configuring
the IP address for each the host by manually adding the IPs within the operating system
settings. This can become a cumbersome task especially when updating or reassigning IP
addresses for hosts in a large network. The second method is the assigning of IP through
the support for a dedicated server that dynamically appoints addresses for hosts. This
server, known as the DHCP Server, uses the hardware addresses (MACs) to assign IP
addresses. The DHCP makes use of a pool of IP addresses for the allocation of addresses.
The DHCP server still supports static mapping of addresses where it is required.

4.4.4.2 Address Assignment and Allocation Mechanisms

As mentioned before, the DHCP protocol allows assigning of IP addresses from a shared
pool managed by the DHCP server. The time which an IP address is assigned is either
chosen by the server or until the client informs the DHCP server that it no longer requires
the address. The administrator sets a range or set of ranges of IP addresses that are
available in the pool which is managed by the DHCP server. Clients configured to use
DHCP will contact the server to request an IP address. The server then decides the time
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for leasing an IP address and offers the leased free address from the pool to the client.
Upon expiry, clients will either renew the lease or is assigned a new one. Below are the
are some of the benefits of using DHCP:

• Automatic Assignment: IP addresses are assigned without administrator inter-
vention.

• Centralized Management: All the IP addresses are managed by the DHCP server
using a shared pool. The DHCP server can ensure that the pool of IP addresses is
updated when an IP address is leased.

• Conflict Avoidance: IP addresses managed by the DHCP server are selected from
a pool and conflicting addresses are avoided.

There are two choices that are available in the implementing of the DHCP server with
SDN. The first choice is to use a dedicated DHCP host server and the other is a DHCP
service running as an application from the SDN controller. In the first option, the DHCP
server is connected as an end-host with all DHCP messages being forwarded to the DHCP
server. Switches and routers are to forward DHCP traffic to this server. This option is
seen in large networks such as data centres. The second option is where the DHCP service
runs as an SDN application. This is similar to the DHCP services seen in smaller network
implementation such as a home or office router. This solution would allow administrators
to have access to DHCP settings along with other network configurations. The test bed
utilises the second option and is illustrated over the next few sections.

4.4.4.3 DHCP Process

The process behind the DHCP protocol illustrated in Figure 4.5 shows the timing relation-
ships for a typical client-server interaction. The allocation of a network address which is
initiated by the host sending a broadcast DHCP_DISCOVER message on its local subnet.
The message is captured and the DHCP server responds with a DHCP_OFFER which
includes configuration parameters. The host then sends a DHCP_REQUEST, requesting
the offered configuration. Finally, the DHCP server acknowledges with DHCP_ACK,
including the committed network address.
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Figure 4.5: DHCP Process. Source: [15].

4.4.4.4 Implementing DHCP in SDN

Upon connecting to the controller, the Base application (Section 4.4.1) installs an Open-
Flow rules to capture and send DHCP traffic to the controller. These rules allow all
matching DHCP traffic to be handled within the controller by the SimpleDHCPServer
application. The DHCP application, when enabled, will then handle the received DHCP
packets and reply accordingly (DHCP process shown in Section 4.4.4.3).

Figure 4.6 illustrates the flow of DHCP traffic within the proposed architecture. The
process is implemented as follows:

1. A host sends a DHCP_DISCOVER message.

2. The message is then classified as DHCP and forwarded to the controller.

3. The host will then sends a DHCP_REQUEST message.

4. The DHCP application then sends a DHCP_OFFER message back to the host.

5. Again at the OpenFlow switch, it is classified as a DHCP packet and forwarded to
the controller.

6. The DHCP application then acknowledges the request and sends a DHCP_ACK
message.

7. The host now has a configured IP.
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Figure 4.6: DHCP Flow Process in Proposed SDN Architecture.

4.4.5 WebAPI Application

The final Ryu application implemented is the WebAPI. The purpose of this application
is to provide web resources that are used in the displaying of the web UI. This application
works in conjunction with the Base application. Each time the web UI webpage is
requested, the HTML web files along with the required scripts and image resources are
sent back. The web UI contains a form to allow the entering of policies. Hence the sole
purpose of this application is to serve up a file server to allow access to web resources to
the users of the web UI

4.5 Summary

This chapter introduced the structure of the proposed architecture. The architecture
consists of a controller, network applications and SDN switches. The controller is the
core component in this implementation. The applications communicate with the switch
via the controller. The controller functions were divided into five applications which focus
on certain specific roles.

The chapter also introduced the network flow pipeline for SDN switches. The flow pipeline
described is implemented by the applications in the controller. The logic of the pipeline
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is then implemented as flow entries. These flows define the process that the switch would
follow, governing the behaviour of the switch. The behaviour of the switch would, as first
approximation, boils down to three network functions: DHCP service, L2 and L3.



Chapter 5

Designing the SDN Switch

The previous chapter gave the overall architecture introducing the design of the control
software which includes the Ryu controller and applications, i.e. the control plane and
management plane of the proposed architecture. This chapter describes the design of
the data plane hardware switch and the components used in developing the hardware.
One of the main objective for this thesis is to provide an inexpensive way of integrating
an OpenFlow device targeted for small-to-medium scale scenarios. The development
of such a device required a well thought structured model. The architecture of SDN
presents functional layers, which offer a guideline for the approach of developing physical
implementations.

This chapter is structured as follows. The chapter begins by covering a list of guidelines
that were considered in designing the hardware prototype. Section 5.1 lists the design
guidelines. Section 5.2 covers the hardware architecture for the OpenFlow switch. There-
after, Section 5.3 describes the software components used to build the switch and covers
the interfaces between them to meet the objectives defined. Finally, to verify that the
developed prototype is able to accomplish realistic performance, Section 5.4.1 discusses
the tools involved to evaluate the performance and capabilities, and how they are imple-
mented.

5.1 Design Guidelines

The guidelines that underpin the design of the data plane node were derived from the
objectives presented in a previous chapter. The guidelines are as follows:

70
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1. Inexpensive.

2. Reasonable performance and compatibility within SDN network environment, i.e.
does it meet OpenFlow specifications?.

3. The level of ease of reproduction.

The level of performance of a system is affected by the quality of hardware used in the
development of the prototype: higher performing hardware has a higher cost. In effort to
keep the cost reasonable, commodity hardware was used. To evaluation of performance
and compatibility, the resulting prototype underwent a series of tests. Finally, the use of
commodity hardware and open source components provide the means for reproducing the
prototype allowing interested users a chance to create their own network equipment.

5.2 Hardware Architecture

Figure 5.1: SDN Prototype Switch Block Diagram.

The hardware architecture of the SDN prototype switch is shown in Figure 5.1. The archi-
tecture shows a four port network card interconnected to a commodity desktop machine
via the PCIe bus. The figure also shows a general-purpose CPU used as the processing
hub of the SDN prototype switch. Other components that used includes a Motherboard
and Main Memory.

To ensure that the hardware is optimised, by closely examining each component for any
bottlenecks is crucial in the creation of a performant switch. Discussed later in the next
section, the requirements of OVS-DPDK includes the transferring of packets between the
PMD threads and the network card. Therefore, the data bus speeds between the network
card and main memory will have an effect on the overall performance of the switch.

The Peripheral Component Interconnect Express (PCIe) v2.0 bus supports a speed of 5
GT/s (Giga-Transfers per sec) with an effective speed of 500 MBytes/s (4 Gbits/s) per
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lane [97, 98]. The network card uses a total of four PCIe lanes. Packets transmitted
between memory and network card pass via the PCIe and CPU. The CPU also can affect
the performance where several features found in its architecture may boost networking
application [99]. The functionality and requirements of each component in Figure 5.1 is
discussed in more detail the next four sections.

5.2.1 Network Card

The Intel R© 82580 Quad 1GbE network card interface (NIC) has four 1 Gbps, full-duplex
Ethernet ports. It links to the system via the PCIe bus over four lanes for the full
bandwidth. This NIC was selected because it supports the DPDK drivers [100] which
are used to implement the data path in user space. To accommodate the maximum port
speeds on all ports, the network card was connected to a four lane PCIe bus to avoid
bottlenecks between the NIC and the main memory. The required bandwidth for four
full-duplex ports is a data rate of 8 Gbps calculated as shown in Equation 5.1, where 4

is the number of ports and 2 represents bi-direction traffic at 1 Gbps. The NIC uses the
bus to also send descriptors of packets [101].

4 (ports)× 2 (bi− direction)× 1 Gbps = 8 Gbps (5.1)

In this implementation of the switch, the number of ports on the Intel R© 82580 NIC
are used as the number of ports available for use on the SDN switch. An extra port is
required for the management of the switch is provided by the NIC that is available on the
motherboard. This is the network interface that the switch uses to communicate with the
controller to receive instructions.

5.2.2 General-purpose CPU

The purpose of this component is to provide the processing logic. The DPDK library
includes drivers called Poll Mode Drivers (PMDs) which process packets as they arrive.
Packets arriving at the Intel R© 82580 NIC are made available to OVS for processing. Each
port on the Intel R© 82580 NIC has 8 ingress queues and 8 egress queues. Each Enabled
ingress queue creates a PMD thread that shares workload where each thread manages
a separate ingress/egress port [82, 101]. The performance of OVS is improved further
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by pinning PMD threads to free cores. The CPU’s multi-threaded architecture allow
faster packet processing as multiple packets are processed simultaneously on each thread.
The DPDK library also supports hugepages which boosts the switch’s performance by
improving the memory hit rate. Hugepages [102] allow the CPU to efficiently allocate
memory chunks for programs. These chunks are called pages. When hugepages are
enabled, a CPU can allocate larger pages (chunks) of memory to a program therefore
requiring a smaller number of pages to store data of the same size. For example, a
process using 1 GB of memory would require 262144 lookup entries for a 4 KB page (1
GB/4 KB), whereas 2 MB hugepage would only require 512 entries (1 GB/2 MB). Fewer
page numbers requires less time to search and locate where the memory is mapped.

5.2.3 Main Memory

Memory is another influencing factor on the performance of the system. Memory speed
may be measured in terms of how many data transfers are made per second. In newer
computer systems, the overall bandwidth of the amount of memory transferred is improved
by transmitting data across multiple memory channels. More memory channels offer
higher memory throughput to the CPU or reduces memory latency [103]. For example,
if a single channel transmits 64 bits at a time, a dual-channel memory would mean that
data is transferred in chunks of 128 bits [104, 105]. The number of channels and the
overall bandwidth for the memory affects the transfers between the NIC and the memory
and how fast the network packets are fed to the CPU.

5.2.4 Motherboard

The motherboard is what connects the NIC, CPU and memory together. By building an
OpenFlow switch using a general-purpose CPU, avoiding any bottlenecks by optimising
component placement within the system will ensure that this prototype is able to achieve
desirable performance. Looking at Figure 5.1, the link between the NIC, CPU and main
memory does not pass through the chipset. Therefore minimising the distance between the
NIC and main memory, i.e. minimising the path that data travels improves performance.
The motherboard also defines the memory channels that are available. The total memory
bandwidth for this implementation is given in Equation 5.2.
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Total Memory Bandwidth =Memory Type×Max Number of Memory Channels×Memory Bus Width

(5.2)

5.3 Software Architecture

Figure 5.2: Architecture with DPDK. Source: [16].

The software architecture of the prototype SDN switch is shown in Figure 5.2. The
software includes OVS-DPDK that run in user-space (Section 3.6). The core function of
the switch consists of two main components, ovs-vswitchd (vswitchd) and user-space

data-path are located in the user-space as shown. These two components represent
the program that maintains the OpenFlow tables and defines the core functions of the
switch (ovs-vswitchd) and the program that handles packet processing (user-space
data-path).

The previous chapter illustrated how SDN applications and the controller may be de-
signed and used for the management of OpenFlow switches. As discussed, the controller
is responsible for managing flow control by adding flow entries to the switch. These flow
entries are then saved in the OpenFlow table maintained by ovs-vswitchd. All arriving
packets are then processed by the user-space data-path that extracts the information
from the packet and creates match fields and applies flow actions. These actions are set by
ovs-vswitchd program and cached in the user-space data-path. To recap from Sec-
tion 3.4.2, the user-space data-path implements the ‘fast path’ and non-cached actions



5.4. TOOLS TO EVALUATE THE PERFORMANCE OF THE SWITCH 75

would result in queries sent to the ovs-vswitchd (‘slow-path’). The ovs-vswitchd pro-
gram then searches the flow tables and then sends actions to the user-space data-path

that then applies the defined action. However, when an entry is not found in the flow
table, the table miss entry is executed. In this implementation, the table miss action is
set to send these packets to the controller. Packets that are sent to the controller are
defined as Packet-In events where SDN applications handle these packets accordingly.
After processing, the packets are sent back to the multi-layer switch (i.e. Packet-Out
events). During processing of these packets, SDN applications make use of the packet
header information to install OpenFlow entries which are sent to the ovs-vswitchd pro-
gram. The ovs-vswitchd program then uses these OpenFlow entries to define actions
for future arriving packets which are then processed by user-space data-path. This
process is repeated for all arriving packets.

The user-space data-path maintains cached actions to efficiently process packets with-
out unnecessary overhead (Section 3.5). A delay overhead is seen each time a miss occurs
in the user-space data-path’s EMC, Megaflow or ovs-vswitchd table, where the pro-
cessing of the packet finally occurs at the control plane (SDN controller) or management
plane (SDN applications).

5.4 Tools to Evaluate the Performance of the Switch

This section describes tools used to evaluate the performance, features and characteristics
of an OpenFlow-enabled Ethernet switch. (The results of the evaluation tests are shown
in a later chapter, Chapter 7). The goal is to report on the performance and level of Open-
Flow compliance of the SDN switch as characterised by the OpenFlow 1.3 specification
document.

The evaluation of the peak packet transfer rate and layer 2 processing corresponds to
the loopback forwarding setup from the DPDK library and layer 2 MAC address flow
entries respectively. The evaluation of the layer 3 performance uses the IP address as the
match field for the flow entries. The loopback test will show the peak maximum transfer
rate that the hardware (this includes the CPU, memory and bus transfers) is able to
achieve which is also known as the Input/Output (IO) rate. This will help in identifying
any bottlenecks within the interconnection between the NIC, CPU and memory prior to
any packet processing. While layer 2 or layer 3 benchmarking evaluates the behaviour
during packet processing. Testing the layer 2 and layer 3 packet processing evaluates the
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processing capability of the CPU. This will help identify if the CPU is the bottleneck
of the system. Ultimately, results for layer 2 and layer 3 will show the behaviour of the
switch during layer 2 and layer 3 functionality. The evaluation of packet processing using
MAC and IP addresses shown in Table 5.1 will allow the use of OpenFlow flow entries,
hence initiate packet processing using the OpenFlow pipeline within the SDN switch.

Table 5.1: Exanple MAC and IP addresses to evaluate an OpenFlow switch.
Port Number MAC Address IP Address
Port 1 00:00:00:00:00:01 10.0.0.1
Port 2 00:00:00:00:00:02 10.0.1.1

The MAC or IP addresses for ports 1 and 2 are used as the match fields for the OpenFlow
rule. The resulting actions are the forwarding of Ethernet packet based on the destination
MAC or IP address.

5.4.1 Benchmarking

Figure 5.3: OpenFlow Switch Benchmark Setup.

Section 3.8 provided the overview of the methodology developed by the IETF for the
evaluation of an Ethernet device [92]. Figure 5.3 shows the setup used to evaluate the
switch with four ports. The connections are made from the egress ports of the tester to
the ingress ports of the switch and from the egress ports of the switch back to the tester.
The tester sends packets to the switch which are processed by the user-space data-path
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from OVS-DPDK architecture. From the documentation, the performance evaluation of
the OpenFlow switch includes using multiple frame sizes to characterise its performance
over a range of multiple frame sizes. The range defined for these sets of tests describe
frame sizes from the smallest (64 byte) to largest (1518 byte) frame size. Table 5.2 shows
the frames type and sizes used for the evaluation. The report includes the measurement
of the latency, frame loss and maximum throughput. The latencies measured were the
average latency, maximum latency and jitter.

Table 5.2: Test Frames and OpenFlow Match Fields
Test Frame Size OpenFlow Match Field

CPU & IO 64, 128, 256, 512, 1024, 1280, 1518 Port number
Layer 2 64, 128, 256, 512, 1024, 1280, 1518 Src and Dest MAC addr.

Table 5.3 shows match fields used for creating matches for the entries. The EtherType
(dl_type) is set to 0x08001, this applies to filter IPv4 traffic. The destination MAC
address (dl_dst) field is used to match frames with a specified MAC destination ad-
dress. Using Table 5.3 as reference, all Ethernet frames with the destination address of
00:00:00:00:00:01 and 00:00:00:00:00:02 are forwarded to port 1 and port 2 of the
switch respectively. Likewise, nw_dst filters packets using the IP destination. Therefore,
for 10.0.0.1 or 10.0.1.1 addresses the frames are forwarded to port 1 or port 2 of the
switch. By making use of these flow entries, the tester is able to receive the frames that
are sent to the switch.

Table 5.3: OpenFlow Switch flow entry
Test Frame Flow Match Action

Layer 2 dl_type=0x0800,dl_dst=00:00:00:00:00:01 output:1
Layer 2 dl_type=0x0800,dl_dst=00:00:00:00:00:02 output:2
Layer 3 dl_type=0x0800,nw_dst=10.0.0.1 output:1
Layer 3 dl_type=0x0800,nw_dst=10.0.1.1 output:2

The key differences between between layers 2 and layer 3 are: layer 2 frames make use
of the MAC address for forwarding and identifying of network nodes within the same
network while layer 3 use IP addressing to determine the routing of packets between
directly or indirectly connected networks (same or different subnet) – where the IP address
identifies interfaces on each node. Layer 3 requires techniques that translate IP addresses
to MAC addresses (e.g. ARP protocol), the use of gateways and subnetmasks for routing
and setting of network boundaries. For this reason, the layer 3 benchmarking was also

10x800 is the hexadecimal EtherType for IPv4, https://www.iana.org/assignments/ieee-802-numbers
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extended to measure the bandwidth between end-hosts using a network benchmarking
tool.

5.4.2 Network Benchmarking

Performance measurement and validation of OpenFlow Compliance is important to ensure
that the prototype switch follows the OpenFlow protocol specifications and that the per-
formance is reasonable. Additionally, these tests reveal general behaviour and tendencies
of the prototype switch during traffic forwarding and routing. Therefore, the iPerf tool
was used to measure the bandwidth of the multi-layer switch under different network use
cases.

iPerf [93] was used to determine the maximum achievable throughput, latency and packet
loss in an IP network. Each host machine connected to the a network switch is set up to
function both as a client and server, hence it measures the bandwidth for bi-directional
traffic. The benchmarks were ran using TCP packets at the maximum rate with the
interval set to at least 60 seconds. The collected statistics for the generated traffic was
then analysed to evaluate the throughput of the network.

5.4.3 Compliance Testing

The OpenFlow 1.3 specification document [6] defines the requirements for an OpenFlow
Logical Switch. This document describes multiple functions that are required, optional
or experimental. Functions marked ‘Required’ are mandatory while ‘Optional’ and ‘Ex-
perimental’ represent additional functions and future OpenFlow features that a switch
developer may implement. For this dissertation, the Faucet SDN controller comprehen-
sive test suite [90] was used to test and verify these features. This testing suite validates
OpenFlow features defined by the specification and also runs benchmarking tests such as
layer 2 switching and layer 3 routing. The test suite runs as a docker container as shown
in Figure 5.4.

5.5 Summary

This chapter focused on the design of both the hardware and software of the prototype
device. The chapter began by discussing the design for the selected hardware comprised
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Figure 5.4: Hardware Switch Testing Setup.

of the Intel R© 82580 Quad 1GbE network card where the NIC was directly interfaced with
the CPU to fully take advantage of the system defined in Section 5.2.

The discussion also covered the behaviour of the software architecture. The architec-
ture consists of two main components, the ovs-vswitchd and user-space data-path.
The program ovs-vswitchd maintains the flow table and other core functions while the
user-space data-path performs the actual processing of traffic.

The remainder of the chapter focused on the design structure for the evaluation of the
prototype device. This covered the approach for evaluating the switch. The benchmarks
would begin with the IO measurements to evaluate interconnections between the NIC
and the system. Then the evaluation of L2 and L3 functionality which measures the
performance of the CPU. Lastly, evaluating the OpenFlow functionality of the prototype
device evaluates the features supported by the hardware. Results of the actual evaluation
of the switch are reported in Chapter 7.



Chapter 6

Setting the Stage for Testing

This chapter details the implementation of the proposed architecture for an SDN network.
The aim of the discussion is to demonstrate the implementation of functions that satisfy
the flexibility and easy management of networks. Several implementations of SDN use
cases were presented that made use of layer 2 switching, routing and network partition-
ing. The logic behind these use cases was implemented in the controller as a series of
applications that are managed from a web interface.

6.1 Overview

The implementation described here begins with the bottom layer, the data plane, and
covers the development of a multi-layer SDN switch that was used to create SDN networks.
This device was constructed from commodity hardware and open-source software. Once
the multi-layer switch was built and configured, it was tested to inspect the performance
under load. Afterwards, the switch was then paired with an SDN controller that hosted a
set of applications. The rest of the chapter is dedicated to describing in greater detail how
each SDN application was developed and to illustrate how the applications inter-operated
with each other to fulfil the objective of simplify network management.

6.2 Multi-layer Switch

This device is responsible for forwarding packets based on MAC address as well as IP
address. It runs on a general-purpose machine that processes traffic as well as receive

80
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instructions from an SDN controller.

Figure 6.1: Multi-layer Switch Interconnection Design.

Table 6.1 shows the specifications of the multi-layer switch while the Figure 6.1 shows
the hardware architecture of the switch. The switch consists of a multi-threaded CPU
running Ubuntu 17.10 Server edition. The device has five Ethernet ports, four of which
were used for forwarding and routing. The remaining one was used as the management
port for the switch. The software on the switch is Open vSwitch 2.9.90 and DPDK 17.11.3
compiled using GCC 7.2.0.

Table 6.1: Hardware & Software specifications for the Multi-layer Switch.
Item Description
Platform Intel R© DQ77MK
Chipset Intel R© Q77 chipset (formerly Panther Point)
CPU Intel R© CoreTMi5 3570 (6MB Cache, 3.39GHz),

4 core, 4 threads
Memory 2x4GB, Dual Channel @ 1333MHz, Memory Bandwidth

@ 170.624 GBits/s
Operating System Ubuntu Server 17.10

(GNU/Linux 4.13.0-39-generic x86_64)
NICs Intel R© 82580 Quad 1GbE (PCIe 2.0), Intel R© 82574L

Gigabit Ethernet, Bus Bandwidth @ 16 GBits/s
BIOS MKQ7710H.86A.0054.2012.1120.1444
Open vSwitch 2.9.90
Intel R© Ethernet Drivers igb - version 5.4.0-k
DPDK version 17.11.3
GCC version (Ubuntu 7.2.0-8ubuntu3.2) 7.2.0

The bus and memory bandwidth were calculated using equations from Section 5.3. The
bus speed is given as 16 GBits/s (shown in Equation 6.1) while the memory bandwidth
was calculate to be 170.624 GBits/s where 1333MHz is the Memory speed, 2 represents
Dual Channel and 64 is the bus width of the memory module (shown in Equation 6.2).

16 GBits/s = 4 PCIe lanes× 4GBits/lane (6.1)
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170.624 GBits/s = 1333MHz × 2 Channels× 64 Bits (6.2)

On the multi-layer switch, the motherboard’s NIC (Intel R© 82574 NIC) is reserved for com-
munication with the controller while the ports on the added network card (Intel R© 82580
NIC) are used as regular data ports.

6.3 Controller

This software allows centralised control of the multi-layer OpenFlow switch, a key charac-
teristic of SDN networks. The Ryu controller was the controller of choice. Discussed later
in this chapter (Section 6.6), The Ryu controller uses the Python programming language
and its applications are written as Python scripts. Table 6.2 shows the specifications of
the machine hosting the controller. The controller runs on a multi-threaded CPU running
Ubuntu 16.04 LTS Desktop environment. The management network, i.e the network that
links the controller to the switch, is a standalone.

Table 6.2: Hardware & Software Specifications for the Controller.
Item Description
Platform H170 PRO GAMING
Chipset Intel R© 760G (780L)
CPU Intel R© CoreTMi5-6400 CPU (6MB Cache, 2.70GHz),

4 core, 4 threads
Memory 2x4GB, Single Channel @ 2133MHz
Operating System Ubuntu Desktop 16.04 LTS

(GNU/Linux 4.15.0-39-generic x86_64)
NICs Intel R© 82580 Quad 1GbE, PCIe 2.0 x4

6.4 OpenFlow Protocol Version

The Ryu controller supports multiple OpenFlow versions (1.0, 1.2, 1.3, 1.4 and 1.5), and
so does the switch (1.0 – 1.5). Naturally, the communication between the switch and
the software controller requires the same OpenFlow version. In this thesis, OpenFlow
version 1.3 is used because it is supported by most open source and commercial SDN
controllers, and most production software and hardware switches [54, 53]. The imple-
mentation of OpenFlow version 1.3 will offer seamless transition when upgrading to a
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commercial OpenFlow switch. Nevertheless, OpenFlow version 1.5 is supported by both
the prototype switch and Ryu controller and is compatible where both the controller and
switch make use of a common OpenFlow version.

6.5 Controller and Switch Installation

This section covers the installation of the controller and installation of software on the
switch.

6.5.1 Controller Installation

The installation of the Ryu Controller is a simplified process with just a single command.
The Python Installation Program, pip, was used to install it. The following instruction
installs Ryu:

1 $ pip install ryu

After the installation, running the Ryu controller and a few applications only requires the
execution of a single command. For example, running the application script files, app1.py
and app2.py is done as follows:

1 $ ryu−manager app1.py app2.py

6.5.2 SDN Switch Installation

In this section, the building and installation of Open vSwitch and DPDK is discussed.
OVS and DPDK were build from source files using GCC version 7.2.0. At the time of
implementing, the latest version of Open vSwitch was version 2.9.90, which recommended
DPDK version 17.11.3 [106].

6.5.2.1 Prerequisites

The building of Open vSwitch and DPDK requires the following:

• DPDK version 17.11.3



6.5. CONTROLLER AND SWITCH INSTALLATION 84

• A DPDK supported NIC to provide physical Ethernet ports (Intel R© 82580 Quad
1GbE) [100].

6.5.2.2 Installation

To configure Open vSwitch to use DPDK, the DPDK library needs to be installed first.

Installing DPDK

Before the installation, the directory where the DPDK would be installed was initially
defined. The source files were downloaded and extracted (shown bellow in lines 1-3). The
DPDK_DIR was assigned to the string path of DPDK library. The variable $DPDK_DIR was
used to reference this directory. The installation was initiated as follows:

1 $ cd /usr/src/

2 $ wget http://fast.dpdk.org/rel/dpdk−17.11.3.tar.xz
3 $ tar xf dpdk−17.11.3.tar.xz
4 $ export DPDK_DIR=/usr/src/dpdk−17.11.3
5 $ cd $DPDK_DIR

The target location were the DPDK builds its files was defined and DPDK was installed
as follows:

6 $ export DPDK_TARGET=x86_64−native−linuxapp−gcc
7 $ export DPDK_BUILD=$DPDK_DIR/$DPDK_TARGET

8 $ make install T=$DPDK_TARGET DESTDIR=install

The DPDK library was installed in the folder /usr/src/. The make install command
(line 8) builds DPDK drivers that were later used to enable the OVS-DPDK architecture.
The DPDK library contains example applications including an application called TestPMD

which was used to verify the installation and also test the IO throughput benchmarks
mentioned in the previous chapter.

Installing Open vSwitch

Once DPDK was installed, the installation of Open vSwitch followed. The following steps
show its installation. Step 1, downloading of OVS:

1 $ cd ~

2 $ git clone https://github.com/openvswitch/ovs.git

3 $ cd ovs
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Step 2, bootstrap. This creates a configuration script file named configure. This script
can be used to customise the installation directory or change the location of the database
directory.

4 $ ./boot.sh

Step 3, configure the sources of OVS to enable DPDK function. The CFLAGS parameter
turns on flags for GCC compiler optimisation 1. Here the compiler attempts to improve
the performance and/or code size at the expense of compile time and/or memory used
during compiling. “-g -O2 -msse4.2” enables efficient hash computation, where SSE4.2
instruction extension is supported by Intel R© i5-3570 [107] which can improve perfor-
mance when performing same instruction on multiple data. This improves performance
by enabling SIMD capability improving hash table lookups within the data-path classifier
(see Section 3.6 for caching in DPDK) [83].

5 $ ./configure −−with−dpdk=$DPDK_BUILD CFLAGS="−g −O2 −msse4.2"

Step 4, building of the source files followed by the installation. To enable better perfor-
mance, the compiler optimisation options are enabled (Ofast), to use special instructions
(msse4.2) and multi-threaded compilation (j4) using all available cores in the Intel R© i5-
3570 CPU.

6 $ make ‘CFLAGS=−g −Ofast −msse4.2’ −j4
7 $ make install ‘CFLAGS=−g −Ofast −msse4.2’ −j4

Step 5, created the OVSDB database, which is used for saving configurations once the
OVS-DPDK switch is running.

8 $ ovsdb−tool create /usr/local/etc/openvswitch/conf.db vswitchd/vswitch.ovsschema

Step 6, configure ovsdb-server to use the database created, to listen on a Unix do-
main socket, to connect to any managers specified in the database and to use the SSL
configuration in the database:

9 $ ovsdb−server −−remote=punix:/usr/local/var/run/openvswitch/db.sock −−remote=db:Open_vSwitch,
↪→ Open_vSwitch,manager_options −−private−key=db:Open_vSwitch,SSL,private_key −−
↪→ certificate=db:Open_vSwitch,SSL,certificate −−bootstrap−ca−cert=db:Open_vSwitch,SSL,
↪→ ca_cert −−pidfile −−detach −−log−file

1Options that control optimisation, https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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6.5.2.3 Configuration

After the installation, the operating system hosted in the switch was configured to reserve
memory and CPU cores. This avoids memory fragmentation and restricts the operating
system to a single core. The reserved memory is allocated for hugepages while the isolated
cores are used for packet processing. This process is described below.

Configuring the Operating System (OS)

Performance is improved by enabling the hugepages which are supported by the CPU
(Inte R© i5 3570), reserving larger memory chunks that are used by the DPDK user-space
program. The Intel R© i5 3570 processor has 4 cores and supports hugepages of 2MB [107].
Three of the four cores were reserved for packet processing. To avoid fragmentation of the
hugepages, options were added to the kernel bootline. This results in contiguous hugepages
in memory. The adding of hugepages is done by appending the parameters shown below
to GRUB_CMDLINE_LINUX in the file located at /etc/default/grub. Grub is updated
and the system is rebooted. GRUB_CMDLINE_LINUX was updated as follows:

1 hugepagesz=2MB hugepages=2048 iommu=pt intel_iommu=on isolcpus=1−3

The above parameters, hugepagesz and hugepages, allocates 4 Gigabytes (2048 * 2
Megabytes) of memory to hugepages of 2MB and isolcpus reserves cores 1, 2 and 3.
These cores were isolated from the Linux scheduler so DPDK-based applications can
“pin” to them. This command is persistent, that is to say that these parameters are set
each time the machine was rebooted. This was included to avoid fragmentation of the
memory used by OVS, thereby enabling efficient use of the memory.

Once rebooted, the following commands allocate the created hugepages to DPDK shown
below (lines 1 – 4). The hugepages are allocated and the user space driver (igb_uio)
is loaded (lines 6 and 7). This driver (igb_uio.ko) was created during the building of
DPDK. The igb_uio is a driver for the Intel R© 82580 NIC.

1 $ mkdir −p /mnt/huge

2 $ mkdir −p /mnt/huge_2mb

3 $ mount −t hugetlbfs hugetlbfs /mnt/huge

4 $ mount −t hugetlbfs none /mnt/huge_2mb −o pagesize=2MB

5 #DPDK Load igb_uio

6 $ modprobe uio

7 $ insmod $DPDK_DIR/x86_64−native−linuxapp−gcc/kmod/igb_uio.ko
8 $ cp $DPDK_DIR/tools/dpdk_nic_bind.py /usr/bin/.

9 $ dpdk_nic_bind.py −−status
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10 #DPDK bind driver ovs

11 $ dpdk−devbind.py −b igb_uio 01:00.0 01:00.1 01:00.2 01:00.3

The igb_uio driver is bound to each port on the Intel R© 82580 (in line 11). Each port
is referenced by the PCI address of 01:00.X where ‘X’ corresponds to the port number,
i.e. 01:00.0 is port 0, 01:00.1 is port 1, 01:00.2 is port 2 and 01:00.3 is port 3.
The binding process loads drivers that enables packet processing in the user-space. This
finalises the DPDK configuration.

Configuring OVS-DPDK Settings

After the configuring of the OS and NIC, OVS is then configured to use the loaded
igb_uio driver. The driver represents the user-space data-path program which runs
on the pinned PMD threads (Section 3.5.1). Thereafter, the hugepages and isolated cores
are allocated to OVS and pinned to PMD threads as shown in lines 2 and 3 respectively
in the snippet below:

1 $ ovs−vsctl −−no−wait set Open_vSwitch . other_config:dpdk−init=true
2 $ ovs−vsctl −−no−wait set Open_vSwitch . other_config:dpdk−socket−mem="4096"
3 $ ovs−vsctl −−no−wait set Open_vSwitch . other_config:pmd−cpu−mask=0xe

6.5.2.4 Validation

The group of commands below added the physical ports of the Intel R© 82580 NIC to the
virtual switch named br0.

1 $ ovs−vsctl add−br br0 −− set bridge br0 datapath_type=netdev

2 $ ovs−vsctl add−port br0 ovsport1 −− set Interface ovsport1 type=dpdk options:dpdk−devargs
↪→ =01:00.0 ofport_request=1

3 $ ovs−vsctl add−port br0 ovsport2 −− set Interface ovsport2 type=dpdk options:dpdk−devargs
↪→ =01:00.1 ofport_request=2

4 $ ovs−vsctl add−port br0 ovsport3 −− set Interface ovsport3 type=dpdk options:dpdk−devargs
↪→ =01:00.2 ofport_request=3

5 $ ovs−vsctl add−port br0 ovsport4 −− set Interface ovsport4 type=dpdk options:dpdk−devargs
↪→ =01:00.3 ofport_request=4

The virtual switch br0 was populated with four physical ports corresponding to the PCI
addresses. Port 0 was defined as ovsport1, port 1 as as ovsport2, port 2 as as ovsport3
and port 3 as as ovsport4.

The code below configures the multi-layer switch to use OpenFlow version 1.3 (line
1). Line 2 requests the data path ID or switch ID. The switch returns its ID,
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0x0000001b21a6da00. In later chapters references to ID 0000001b21a6da00 refers to
the switch.

1 $ ovs−vsctl set bridge br0 protocols=OpenFlow13

2 $ ovs−vsctl get bridge br0 datapath_id

Starting the Switch ovs-vswitchd

After configuration, the switch will require the IP of the controller. This will allow the
switch to establish communication between the switch and the controller. As discussed
earlier, ‘Packet-In’ messages for unknown packets are forwarded to the controller’s IP
address. The controller will make decisions and add OpenFlow rules to be applied. Next,
the switch is now ready to start. Starting OVS-DPDK switch is done as follows:

1 $ ovs−ctl −−no−ovsdb−server −−db−sock="$DB_SOCK" start

Additional features were added to the OVS which included the monitoring of the multi-
layer switch from a remote server. OVS supports sFlow, a tool used in the industry to
monitor high speed switch networks [108].

6.5.3 Installation Overview

(a) (b)

Figure 6.2: CPU Partitioning (a), and Internal Structure (b) of the Prototype.

Figure 6.2 shows the result of the integration of the switch at this stage. Figure 6.2(a)
shows the CPU partitioning and logical topology. The host and OVS-DPDK shared the
CPU cores. The OVS-DPDK Poll Mode Drivers (PMDs) require hardware resources such
as dedicated cores and hugepages. The available four cores were utilised where one core
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was reserved for the host, i.e. operating system and the remaining cores were then made
available for OVS-DPDK’s use.

Figure 6.2(b) shows the structure of the switch (from the user’s perspective). It consists
of five physical ports. As mentioned above, four are regular network ports of the switch
while the fifth port is the management port for the switch to communicate with the Ryu
controller.

6.5.4 OpenFlow Switch Performance Setup

The previous sections demonstrated the operations that were taken to install and con-
figure the multi-layer switch and the controller. This section covers the tools used in
the benchmarking and evaluation of the SDN switch. Figure 6.3 shows the setup for the
benchmarking of the SDN switch (details covered in Section 5.4). A traffic generator
named TRex was used to evaluate the switch.

Figure 6.3: Switch Benchmark Setup.

TRex [109] is an open source traffic generator. The TRex stateless function supports
multiple data streams, the modification of packet fields, and provide per stream statistics
including latency.

6.5.4.1 Tester Specification

Table 6.3 shows a list of hardware and software that make up the TRex traffic generator.
The packet generator (tester) is connected as discussed in Section 5.4.

6.5.4.2 IO Test

The SDN switch is configured to execute in IO mode using TestPMD. This mode allows a
CPU core to forward packets from the ingress (Rx) port and transmit them to the egress
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Table 6.3: Software & Hardware components for TRex
Item Description
Platform H170 PRO GAMING
Chipset Intel R© 760G (780L)
CPU Intel R© CoreTMi5-6400 CPU (6MB Cache, 2.70GHz),

4 core, 4 threads
Memory 2x4GB, Single Channel @ 2133MHz
Operating System Ubuntu Server 16.04 LTS

(GNU/Linux 4.15.0-39-generic x86_64)
NICs Intel R© 82580 Quad 1GbE (PCIe 2.0), Intel R© Ethernet

Connection (2) I219-V
BIOS MBEC-GMB-0105.11.0.0.1168.31/D1
Intel R© Ethernet Drivers igb - version 5.4.0-k
DPDK version 18.05
GCC version (Ubuntu 5.4.0-6ubuntu1 16.04.10) 5.4.0 20160609

(Tx) port without any packet processing. This test benchmarked the maximum rate at
which the IO is able to forward packets.

6.5.4.3 Layer 2 Switching

The Benchmark for layer 2 behaviour followed a similar set up as the IO test but included
L2 packet processing. The traffic was directed based on the destination MAC address
of the received Ethernet packet. The MAC addresses for each port on the TRex traffic
generator were added to the OpenFlow table. The Layer 2 test will show additional
overhead incurred by L2 packet processing when compared to the IO test. Below is a list
of the MAC addresses for the TRex traffic generator:

• Port 1 : 00:1b:21:a6:d3:bc

• Port 2 : 00:1b:21:a6:d3:bd

• Port 3 : 00:1b:21:a6:d3:be

• Port 4 : 00:1b:21:a6:d3:bf

Similar to the setup seen in the IO test, this test includes packet processing. In order
for OVS to perform L2 switching, flows were added to direct traffic to connected ports.
Below is a set of instructions that add OpenFlow entries to the switch via the command
line interface (CLI)(Listing 6.1).
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Listing 6.1: Layer 2 Flow Entries to the Switch via the CLI.
1 sudo ovs−ofctl add−flows br0 −O OpenFlow13 − <<’EOF’

2 table=0, priority=2 dl_type=0x0800,dl_dst=00:1b:21:a6:d3:bc, actions=output:1

3 table=0, priority=2 dl_type=0x0800,dl_dst=00:1b:21:a6:d3:bb, actions=output:2

4 table=0, priority=2 dl_type=0x0800,dl_dst=00:1b:21:a6:d3:be, actions=output:3

5 table=0, priority=2 dl_type=0x0800,dl_dst=00:1b:21:a6:d3:bf, actions=output:4

6 EOF

The above had added flows to table 0 with a set priority of 2. The match field for these
flows uses the MAC destination address (defined by dl_dst) and EtherType (defined by
dl_type). The dl_dst parameter instructs the switch to filter by the destination MAC
address while the dl_type parameter instructs the switch to filter traffic with EtherType
of IPv4. For the flow entry in line 2, the rule is defined for all packets with destination
MAC address of 00:1b:21:a6:d3:bc and with EtherType of IPv4 are to be forwarded to
port 1. The same logic applies to the other three flow entries (lines 3 to 5) where packets
with corresponding match of MAC address and EtherType are sent to respective ports.

The switch’s behaviour can be analysed further by using the trace tool in OVS. This tool
can be used to view what happens to a packet when it goes through the data plane of
the multi-layer switch. Figure 6.4 shows the steps that the switch takes when a packet
addressed to MAC of 00:1b:21:a6:d3:bc (i.e. port 1 of TRex connected to port 1 of
the switch, Section 6.5.4) is passed to any of the switch’s port. The figure shows that the
packet matches the flow entry in table 0. The result action is to output the packet out of
port 1 as expected. The packet is not changed, hence ‘Final flow: unchanged’.

Figure 6.4: Verifying L2 Behaviour Using Trace Tool.
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6.5.4.4 Layer 3 Routing

The multi-layer switch also supports layer 3 routing which was also benchmarked. The
sets of tests performed included traffic that was directed based on the destination IP
address of the received packet. This function is used when traffic travels from one subnet
to another. In this case, the switch must alter the source and destination MAC addresses
of a packet each time a packet changes subnets.

Figure 6.5: Logical Connections Between Switch and TRex Traffic Generator.

Figure 6.5 shows the logical connections between the switch and TRex traffic generator.
TRex was configured to generate traffic from different subnets. The figure shows the
MAC and IP addresses for each port on the TRex machine. It also shows the port
MAC addresses for the switch. To recap on layer 3 functionality from Section 4.4.3, the
behaviour of a L3 switch (router) performs the following tasks as shown:

1. Set the source and destination MAC address where the source becomes the switch’s
MAC address and the destination becomes the MAC address of the machine hosting
TRex. In normal situations, protocols like ARP are used to determine the desti-
nation MAC address. In this setup, it is assumed that the MAC addresses were
already defined in the switch.

2. Decrement the time to live, i.e. the TTL, when a packet changes subnets. The
TTL or time to live [35] specifies how long the packet should live in the network.
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Routers decrement this value before transmitting packets. When the resulting TTL
is reduced to zero, it is assumed to have taken too long to route and the packet is
discarded.

3. Output to corresponding port.

To accomplish L3 switching, flows were added to direct traffic based on the destination
IP of the packet. Listing 6.2 shows a set of flow entries that where installed via the CLI.
Here it is seen that layer 3 operations are generally more complex than layer 2. The
above command added flows to the switch. The match field for these flow entries uses the
EtherType (defined by dl_type) and IP destination address (defined by nw_dst). For the
flow table entry in line 2, the rule defines that all IPv4 traffic with destination IP address
of 10.0.0.1 are to be treated as follows:

1. Set the source and destination MACs. This is done by the action set_field which
sets the Ethernet source (eth_src) to 00:1b:21:a6:da:00 and Ethernet destination
(eth_dst) to 00:1b:21:a6:d3:bc. These corresponds to the source port (ovsport1)
and destination port (TRex port 1) shown in Figure 6.5.

2. Decrement TTL value given by the action dec_ttl.

3. Output to port ovsport1 defined by the action output:1

The same principle applies to the other three flow entries (lines 3 to 5).

Listing 6.2: Adding of Layer 3 Flow Entries to the Switch via the CLI.
1 sudo ovs−ofctl add−flows br0 −O OpenFlow13 − <<’EOF’
2 table=0, priority=2 dl_type=0x0800,nw_dst=10.0.0.1/24, actions=set_field:00:1b:21:a6:da:00−>

↪→ eth_src, set_field:00:1b:21:a6:d3:bc−>eth_dst, dec_ttl,output:1
3 table=0, priority=2 dl_type=0x0800,nw_dst=10.0.1.1/24, actions=set_field:00:1b:21:a6:da:01−>

↪→ eth_src, set_field:00:1b:21:a6:d3:bd−>eth_dst, dec_ttl,output:2
4 table=0, priority=2 dl_type=0x0800,nw_dst=10.0.2.1/24, actions=set_field:00:1b:21:a6:da:02−>

↪→ eth_src, set_field:00:1b:21:a6:d3:be−>eth_dst, dec_ttl,output:3
5 table=0, priority=2 dl_type=0x0800,nw_dst=10.0.3.1/24, actions=set_field:00:1b:21:a6:da:03−>

↪→ eth_src, set_field:00:1b:21:a6:d3:bf−>eth_dst, dec_ttl,output:4
6 EOF

The trace tool in OVS was used to verify the correctness of the flow entries. For ex-
ample, consider a packet with IP destination of 10.0.0.1 and a TTL value of 16. As
shown in Figure 6.6, the packet matches a flow entry in table 0 where the packet’s
source MAC is changed to 00:1b:21:a6:da:00. The destination MAC is changed to
00:1b:21:a6:d3:bc and the TTL is changed to 15 before outputing it to port 1. This
demonstrates the L3 routing capability of the switch.
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Figure 6.6: Verifying L3 Behaviour Using Trace Tool.

6.6 Ryu Controller and Applications

Chapter 4 introduced the structure of the Ryu controller and supporting applications.
Configuring a network using the solution proposed in this thesis makes use of these ap-
plications which includes a base application and a few helper applications. This section
covers the implementation of these applications. The Ryu controller framework allows
the use of the following components [89] in implementing applications:

• Executable: The main executable program, ryu-manager.

• Ryu Base: This component (ryu.base.app_manager) is the central management
of Ryu applications that loads applications, shares data, and route message between
them.

• Ryu controller: Includes four components which are:
‘ryu.controller.controller’, ‘ryu.controller.dpset’,
‘ryu.controller.ofp_event’ and ‘ryu.controller.ofp_handler’. The
ryu.controller.controller is the main component that handles connections from
switches and generates and send events to appropriate entities like Ryu applications.
The ryu.controller.dpset component manages switches, the
ryu.controller.ofp_event component define OpenFlow events, and
ryu.controller.ofp_handler includes OpenFlow message handling including the
negotiation.
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• Protocol encoder and decoder: ryu.ofproto.ofproto_v1_3 defines the Open-
Flow 1.3 and ryu.ofproto.ofproto_v1_3_parser encodes/decodes these defini-
tions.

The above list is not exhaustive and only includes the components necessary in the ap-
plication design covered within this thesis. Figure 6.7 shows the overall structure of
the proposed SDN network which contains five applications (Base, WebAPI, L2Switch,
RouterAPI and SimpleDHCPServer), the Ryu controller, the prototype switch and con-
nected end-hosts. The applications were implemented as Python scripts which are covered
in detail in the following sections

Figure 6.7: Proposed SDN Network Design.

6.6.1 Base Application

The base application in the controller defines the core application responsible for serving
the web UI, management of the OpenFlow switches, and the exchange of configuration de-
tails between applications. The scripts for this application were saved as base.py. The im-
plementation of this application is defined as a Python class Base(app_manager.RyuApp).
Within the class, a web server (WebControlApi) is used to serve a web UI. The web UI is
defined by mapping server functions (WebControlApi functions) to Web Server Gateway
Interface (WSGI). The WSGI connects Web applications and Web servers in Python.
Table 6.4 shows a list of mapped web URLs and their functions.
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Table 6.4: Web URLs for REST Messages.
Function URL REST Calls Description
Configure <url>*/conf/switch_id GET, PUT Used to send/receive switch

configurations, where
switch_id is the identifier

Initialise <url>*/init/switch_id GET Used to submit the defined
configurations, where
switch_id is the identifier

Monitor <url>*/topology GET Get topology info
Topology <url>*/topology/switches GET Get switches info
Topology <url>*/topology/links GET Get links info
Topology <url>*/topology/hosts GET Get hosts info
Topology <url>*/topology/ws *NONE Web socket
File server <url>*/ GET To serve up HTML files,

scripts and image resources
managed by the webapi.py

The ‘<url>’, in the table, is defined by the format http://WebServerAddress:Port. Ac-
cess to the web UI on the controller machine is given by http://localhost:8080 which is
accessible from a web browser. Furthermore, the network design and state can be visu-
alised within the UI. Figure 6.8 and Figure 6.9 (in the next few pages) are screenshots
taken from the web UI showing the network topology of a single switch with four hosts
connected, configuration toolbar (showing the configuration of a switch) and the current
state of the OpenFlow table. The UI was adapted from an example given by Ryu. The
configuration toolbar and icons for connected hosts (in the network topology) were added
to allow the configuring of the switch and to view hosts connected to the switch.

The OpenFlow switches are managed by using OpenFlow controller component
ryu.controller.dpset. The ‘dpset’ is used to register the switch with the
WebControlApi server (lines 3–8 from Listing 6.3). The dpset.EventDP event in line
3 uses the decorator that informs the controller that the application captures events
which occur whenever the switch is connected/disconnected from the controller. These
events are then handled by the function datapath_handler shown in line 4. Each time
the OpenFlow switch gets connected to the controller, the ev.enter was triggered (line
5) which resulted in the registering of the switch to the WebControlApi. The switch reg-
istration to WebControlApi exposes the switch’s configuration in the web UI. The switch
would appear in the network topology and is represented with a switch icon.

Once registered with the web server, events were managed and updated in the web UI.
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Figure 6.8: The Full View of The Web UI.
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Figure 6.9: Configuration Toolbar Showing Settings for an OpenFlow Switch.

Listing 6.3: Code snippet from base.py
1 class Base(app_manager.RyuApp):
2 #...
3 @set_ev_cls(dpset.EventDP, dpset.DPSET_EV_DISPATCHER)
4 def datapath_handler(self, ev):
5 if ev.enter:
6 WebControlApi.register_ofswitch(ev.dp)
7 else:
8 WebControlApi.unregister_ofswitch(ev.dp)
9 #...

Table 6.5 shows some events with their description. These events are used to update the
topology viewer in the web UI.
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Table 6.5: Events for the Web UI.
Event Description
event.EventSwitchEnter Triggered when the switch connects to the controller.

Causes a graphical image of the switch to appear in the
UI.

event.EventSwitchLeave Triggered when the switch gets disconnected from the
controller. Results in the removal of the graphical
switch.

event.EventLinkAdd Triggered when a managed switch is directly connected
to another managed switch. Creates a line to show the
link connection of the switches.

event.EventLinkDelete Triggered when the link is disconnected from two
managed switches. Results in the removal of the link.

event.EventHostAdd Triggered when a host is discovered on a switch’s port.
Displays a small circle representing a host.

6.6.2 Web File Server Application

This application serves up the HTML files, script files and image resource files. The
WebAPI application, defined as the Python class WebAPI(app_manager.RyuApp), is
saved in the webapi.py script file. Within the class, a web controller class called
GUIServerController handles the process.



6.6. RYU CONTROLLER AND APPLICATIONS 100

Listing 6.4: Code snippet from webapi.py
1 class GUIServerController(ControllerBase):

2 def __init__(self, req, link, data, ∗∗config):
3 super(GUIServerController, self).__init__(req, link, data, ∗∗config)
4 path = "%s/html/" % PATH

5 self.static_app = DirectoryApp(path)

6
7 @route(’topology’, ’/{filename:[^/]∗}’)
8 def static_handler(self, req, ∗∗kwargs):
9 if kwargs[’filename’]:

10 req.path_info = kwargs[’filename’]

11 return self.static_app(req)

From Listing 6.4, the path, defined by path = "%s/html/" (in line 4) defines the location
where the web files are located. The DirectoryApp(path) (line 5) returns an application
that dispatches requests based on the path_info (line 10). Any requested file from the
web UI (line 9) would then be used as the path_info which results in files served that
are in the subdirectory html. Below shows the list of web files within the html directory
and their function.

• d3.js – JavaScript library used for the visualisation of the network topology.

• form.js – Script file that handles form data formatting within the Configuration
Toolbar seen in Figure 6.9. It is also used to make REST calls to the controller by
making use of the JQuery library.

• index.html – The main HTML file that displays the main web UI screen.

• jquery.js – JavaScript library used for REST calls and JSON data formatting.

• jquery.json-viewer.css – Cascade Style Sheet styling that describes how JSON
data is presented.

• jquery.json-viewer.js – Script file that transforms the JSON data received from
the controller into an HTML tree structure seen in Figure 6.9. It uses the JQuery
library.

• router.svg – Image file of a router as seen in Figure 6.8.

• ryu.topology.css – Cascade Style Sheet styling that describes how elements within
the web UI are presented.
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• ryu.topology.js – Script file that collects information from the controller using
URLs with the function topology given in Table 6.4. It makes use of the D3.js
library to translate data from the controller into a visual structure, i.e. network
topology.

The web UI was adapted from Ryu controller source code. A Configuration Toolbar
was developed to allow a user to interact with OpenFlow devices from within this UI.
Originally, querying and controlling an OpenFlow device meant using an external REST
client by sending JSON configurations through that client. This toolbar will, however,
makes the process of communicating with an OpenFlow device easier. As mentioned
before, multiple files were used to enable the functionality of a REST client.

The index.html, d3.js, router.svg and ryu.topology.css were taken from the source
code from the Ryu controller, where the index.html file was adapted to include the view
of the Configuration Toolbar. The remaining files provide the functionality of a REST
client and displays feedback that comes from an OpenFlow device.

6.6.3 L2Switch Application

During packet processing, the functionality of a layer 2 switch (covered in Section 4.4),
performs the following actions:

1. Modify the address of packet or send the packet from a specified port.

2. Send the unknown packet to the controller (Packet-In).

3. Send the packet from the controller through the specified port (Packet-Out).

The first action is executed based on flow entries within the OpenFlow table. However,
the other two actions involve the L2Switch application. The application was adapted
from [110]. This application is defined in Python as L2Switch(app_manager.RyuApp)

saved in the script file l2switch.py. Within the class, the Packet-In and Packet-Out
functions are implemented as follows (Listing 6.5):

Listing 6.5: Code snippet from l2switch.py
1 class L2Switch(app_manager.RyuApp):

2 #...

3 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)



6.6. RYU CONTROLLER AND APPLICATIONS 102

4 def _packet_in_handler(self, ev):

5 #...

6 dst = eth.dst

7 src = eth.src

8 dpid = datapath.id

9 self.global_mac_to_port.setdefault(dpid, {})

10
11 self.global_mac_to_port[dpid][src] = in_port

12
13 if dst in self.global_mac_to_port[dpid]:

14 out_port = self.global_mac_to_port[dpid][dst]

15 else:

16 out_port = ofproto.OFPP_FLOOD

17
18 actions = [parser.OFPActionOutput(port) for port in out_port]

19
20 # install a flow to avoid packet_in next time

21 if out_port != ofproto.OFPP_FLOOD:

22 match = parser.OFPMatch(in_port=in_port, eth_dst=dst)

23 ofp_helper.add_flow(COOKIE, datapath, 0, match, actions, idle_timeout=IDLE_TIMEOUT)

24
25 data = msg.data

26 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,in_port=in_port,

↪→ actions=actions, data=data)

27 datapath.send_msg(out)

28 #...

When a packet is sent by the OpenFlow switch, the EventOFPPacketIn event (line 3) is
triggered and is handled by the function _packet_in_handler decorated by
@set_ev_cls decorator (Section 4.3.2). As seen above, the MAC source and destination
are noted along with the data path ID (dpid) of the switch (lines 6 – 8). The MAC table,
saved as the variable global_mac_to_port (line 9) contains MAC addresses of nodes
connected at each port. The destination address is used to search the table (line 13). If
present, the received packet is forwarded to the corresponding port (line 14) otherwise
flood the packet (line 16). Line 18 creates an OpenFlow rule such that similar packets
are forwarded to the corresponding port in future. Lines 21 to 23 add the rule to the
OpenFlow switch while lines 25 to 27 send the packet back to the switch.

6.6.4 Router Application

The router application, adapted from the REST router (rest_router.py) included in
the Ryu framework, supports normal and VLAN based routing. The configuration of the
router is implemented by defining the address data as structured as "A.B.C.D/M". When
two or more routers are involved, extra information is required. This includes: defining
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the gateway as structured as "A.B.C.D" and also defining static routes. The process
of configuring the VLAN router is similar, the only difference is that the VLAN ID is
required.

The application is defined as class RouterAPI(app_manager.RyuApp) with the script
file saved as router.py. Within the class, the behaviour of the router is managed by the
corresponding object ‘Router’ or ‘VlanRouter’. Packet-In messages are handled by the
function packet_in_handler shown in Listing 6.6.

Listing 6.6: Code snippet from router.py
1 class RouterAPI(app_manager.RyuApp):

2 #...

3 def packet_in_handler(self, msg, header_list):

4 # Check invalid TTL (for OpenFlow V1.2/1.3)

5 ofproto = self.dp.ofproto

6 if ofproto.OFP_VERSION == ofproto_v1_2.OFP_VERSION or \

7 ofproto.OFP_VERSION == ofproto_v1_3.OFP_VERSION:

8 if msg.reason == ofproto.OFPR_INVALID_TTL:

9 self._packetin_invalid_ttl(msg, header_list)

10 return

11
12 # Analyze event type.

13 if ARP in header_list:

14 self._packetin_arp(msg, header_list)

15 return

16
17 if IPV4 in header_list:

18 rt_ports = self.address_data.get_default_gw()

19 if header_list[IPV4].dst in rt_ports:

20 # Packet to router’s port.

21 if ICMP in header_list:

22 if header_list[ICMP].type == icmp.ICMP_ECHO_REQUEST:

23 self._packetin_icmp_req(msg, header_list)

24 self.logger.debug("ICMP Packet to router’s port")

25 return

26 elif TCP in header_list or UDP in header_list:

27 self._packetin_tcp_udp(msg, header_list)

28 self.logger.debug("TCP/UDP Packet to router’s port")

29 return

30 else:

31 # Packet to internal host or gateway router.

32 self._packetin_to_node(msg, header_list)

33 self.logger.debug("Packet to internal host or gateway router")

34 return

Listing 6.6 shows the code snippet of the router application. Upon receiving a packet for
processing, the TTL value is verified (lines 3 to 8). The function _packetin_invalid_ttl

handles invalid TTL values by sending an ICMP TTL error that informs the sender that
the packet took too many hops to route. If the received packet is an ARP message, it is
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handled by the function _packetin_arp. Routers may use the information to learn host
MAC addresses, to update routing tables, or to reply to ARP messages. An IPv4 packet
is handled according to the type of packet. If the packet is either an ICMP echo, ping
message (line 22), a TCP/UDP packet on the router’s port (line 26), or a packet headed
to an internal host or gateway (line 30), the action would be to send an ICMP echo reply,
send an ICMP port unreachable error or forward packet to an internal host/gateway. This
covers the core functionality of the router implemented as the router application.

6.6.5 DHCP Application

Part of the responsibilities assigned to the Base application is to define flow rules
that capture DHCP messages. These packets are then handled by the SimpleD-
HCPServer application (process given in Section 4.4.4.3). This application has the
following functions: (1) maintain a shared pool of IP addresses, (2) offer an IP ad-
dress from this shared pool, and (3) acknowledge the offered IP if it is requested.
The application is defined as a class using the RyuApp component. The defined class,
SimpleDHCPServer(app_manager.RyuApp), was saved as the script file dhcp.py adapted
from [110]. Within the class, arriving DHCP frames are processed as shown in Listing 6.7:

Listing 6.7: Code snippet from dhcp.py
1 class SimpleDHCPServer(app_manager.RyuApp):

2 #...

3 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)

4 def _packet_in_handler(self, ev):

5 openflow_sw = self._OF_SWITCH_LIST_.get(datapath.id)

6 #...

7 if msgType == dhcp.DHCP_DISCOVER or not openflow_sw.mac_to_client_ip.has_key(dhcpPacket.

↪→ chaddr):

8 self.handle_dhcp_discover(openflow_sw, dhcpPacket, datapath, in_port)

9 elif msgType == dhcp.DHCP_REQUEST:

10 self.handle_dhcp_request(openflow_sw, dhcpPacket, datapath, in_port)

11 #...

DHCP messages received are either a DHCP_DISCOVER or DHCP_REQUEST.
The handle_dhcp_discover function will offer an IP address to received
DHCP_DISCOVER messages by sending a DHCP_OFFER with the offered IP,
while the handle_dhcp_request will send an ACK message if the offered IP address is
requested. This, thereby, perfoms the process of IP assignment.
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6.6.6 Running the Controller Software and Applications

The execution of these applications is done by running the controller and the script files.
To run the Ryu controller and the applications described in the previous sections, in the
terminal, the following command is entered.

1 >>> ryu−manager −−observe−links router.py base.py l2switch.py dhcp.py webapi.py

Listing 6.8 shows the logs from the Ryu controller during start up. The important thing
to note is the local web address and port number of the web UI given in line 26 since it
is used to access the web UI.

Listing 6.8: Logs from starting Ryu controller.
1 tinashe@Controller:~$ ryu−manager −−observe−links router.py base.py l2switch.py dhcp.py webapi

↪→ .py

2 loading app router.py

3 loading app base.py

4 loading app l2switch.py

5 loading app dhcp.py

6 loading app webapi.py

7 loading app ryu.controller.ofp_handler

8 loading app ryu.app.rest_topology

9 loading app ryu.app.ws_topology

10 loading app ryu.app.ofctl_rest

11 loading app ryu.controller.ofp_handler

12 instantiating app None of Switches

13 creating context switches

14 instantiating app None of DPSet

15 creating context dpset

16 creating context wsgi

17 instantiating app ryu.controller.ofp_handler of OFPHandler

18 instantiating app ryu.app.ws_topology of WebSocketTopology

19 instantiating app router.py of RestRouterAPI

20 instantiating app base.py of Base

21 instantiating app dhcp.py of SimpleDHCPServer

22 instantiating app ryu.app.rest_topology of TopologyAPI

23 instantiating app l2switch.py of L2Switch

24 instantiating app ryu.app.ofctl_rest of RestStatsApi

25 instantiating app webapi.py of GUIFileServer

26 (3787) wsgi starting up on http://0.0.0.0:8080

27 #...

6.7 Summary

This chapter detailed the installation and configurations for the multi-layer switch that
was built in the previous chapter. The installation covered the integration of OVS-DPDK
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and the hardware. Efforts to improve the performance include the optimising of the
running code by making use of features available in the hardware such as extensions
supported by the processor. The result was an OpenFlow-enabled switch with five physical
Ethernet ports highlighted in Section 6.5.3 (four data plane ports and one management
port).

This chapter also introduced the testing methodology as well as the implementation of
SDN applications. The tests outlined here are used in Chapter 7 to measure the IO, L2
and L3 performances. The tools used in these tests were: TestPMD, TRex traffic generator
and the trace tool from OVS. The TestPMD tool measures the IO forwarding throughput.
TRex measures the throughput for L2 and L3 packet processing as well as the latency
for IO, L2 and L3. Finally, the trace tool verified the L2 and L3 functionality of the
flow entries in the switch. The SDN applications implemented a set of features as seen
in some commercial applications which include flow management, topology update, and
traffic monitoring/classification accessed via the web UI (Section 6.6.1).



Chapter 7

Switch Benchmark Tests and Results

This chapter presents results that document the performance and functionality of the
multi-layer SDN switch. The initial tests described in this chapter are the subject of a
conference paper that the author wrote and published in 2018 [18]. Section 7.1 shows
the format in which the tests, discussed in this chapter, are organised. Section 7.2 relates
to throughput testing and assessing the performance of IO packet transfer to determine
if the functioning of the switch meets the link rate of 1 Gbps when all ports are under
load. Section 7.3 evaluates the performance of the switch when L2 packet processing is
involved, to examine if the CPU is the bottleneck. This section also covers the throughput
and delays introduced by packet processing and compares results between a single core
and multi-core processing. Section 7.4 evaluates the performance of L3 routing. This
includes packet processing, core utilisation and latency. Finally, Section 7.5 verifies the
controller-switch interaction and validates the OpenFlow functionality of the switch.

7.1 Tests General Structure

The format followed in the presentation of tests is as follows:

• Description of the test.

• Description of the testing environment.

• Results obtained.

• Analysis of results.

107
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The benchmarks in this chapter tested the multi-layer switch using a packet generator
following the RFC 2544 test methodology. The packet generator was deployed with the
following components which were an Intel R© 760G (780L) Motherboard, an Intel R© i5-
6400 CPU @ 2.7GHz, 8GB Single Channel @ 2133MHz RAM, and the Intel R© 82580
Quad 1GbE Card as its physical ports. The four Ethernet interfaces were connected
directly to the Ethernet ports of the switch and tests were taken to evaluate it. The
traffic generator implemented used the TRex network benchmark tool. The set up of this
test is shown in Figure 7.1.

Figure 7.1: Multi-layer Switch Benchmark Setup.

TRex [109] was used for the benchmarking of four 1 Gbps Ethernet interfaces to measure
the bi-directional transfer simultaneously on all four ports. Both the switch and TRex
negotiated a link speed of 1 Gbps between their connections. Traffic from TRex was sent
over port pairs. The traffic used in this process used the UDP protocol and different
frame sizes as defined in Section 5.4. TRex evaluated the traffic from its paired port and
tallied the rate of bytes received.

The tests, for single core and multi-core packet processing, were carried out to provide an
indication of the behaviour of the switch when processing frames at multiple frame rates.
These tests measured the overall packet per second (pps) and bits per second (bps). The
relationship between pps and bps is shown in Equation 7.1 [92, 94].

Packet Per Second(pps) =
Bits Per Second(bps)

(FrameSize+ 20)× 8
(7.1)

The 20 bytes defined in the equation is the header size of an IP packet as seen in Figure 7.2.
The frame size from the equation is the payload of the IP packet.

7.2 IO Forwarding Test

During this test, the multi-layer switch was configured for only IO transfers. This was to
ensure that the switch strictly forward frames without any packet processing. The Ether-
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Figure 7.2: Representation of an IPv4 packet. Source [17]

net ports on the switch were connected in a loop to make use of the loopback configuration
from the DPDK library. Included in the DPDK library are sample tools and applications
that provide for testing and further development. An application named TestPMD [82] was
used to evaluate the IO of the hardware switch for packet forwarding. TestPMD is also
able to directly access the ports present on the Intel R© 82580 NIC hardware (a sample is
shown in Appendix A.1). The evaluation of both the throughput and latency were done
over a minimum period of 60 seconds using frames with sizes between 64 bytes and 1518
bytes. Figure 7.3 shows the setup for the IO test.

Figure 7.3: DPDK IO Benchmark Setup.
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7.2.1 Results
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Figure 7.4: The IO Forwarding Rate of the Multi-layer Switch. Source [18].

Table 7.1: IO Forwarding Rate for the Multi-layer Switch.
Frame IO forwarding Theoretical Throughput Throughput
size rate (pps) line rate (pps) 1 rate (bps) %
64 1487911 1488905 999876192 99.988
128 844575 844594 999976800 99.997
256 452888 452898 999976704 99.997
512 234957 234962 999976992 99.998
1024 119728 119731 999968256 99.997
1518 81273 81274 999982992 99.998

Figure 7.4 and Table 7.1 shows the IO forwarding rate under multiple frame sizes during
the execution of the experiments [18]. The gathered information show that the frame
size of 64 bytes had the least performance, averaging 1487911 packets per second. This
amounts to 99.988% of the theoretical line speed of 1 Gbps. Following this was the
performance of near line rates which peaked at 99.998% for frames sizes between 128 and
1518 bytes.

Table 7.2 shows the average, maximum, and jitter latencies for IO forwarding. The
average latency gradually increased as the frame size increased. This is expected since
larger packets require more time to travel from the ingress port, to main memory, then
out the egress port. The maximum latency however, experienced a rather unique trend. It

1These values were calculated using Equation 7.1, where the bps is 1 Gigabit/s
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Table 7.2: IO Latency for the Multi-layer Switch. Source [18]
Packet size Average Maximum Jitter
(bytes) latency (µs) latency (µs) (µs)
64 14 103 1
128 15 210 1
256 18 69 3
512 22 67 5
1024 30.25 73 5
1518 36.75 86 1

was observed that 128 byte sized frames experienced the highest latency while the lowest
latency was observed for 512 byte frames. This outcome is a result of the behaviour of
the switch; the maximum latency is mostly affected at higher packets per second (pps).
The jitter, however gradually increased from 1µs to 5µs as the frame sizes increased from
64 bytes to 1024 bytes. The jitter, however, drops back to 1µs for the 1518 byte frame.

7.2.2 IO Summary

The throughput results show that the IO of the switch is able to forward traffic at near
line rate speed for all measured packet sizes as seen in Table 7.1. This means that the IO
transfer rate achieved by the switch for frames moving between the ingress and egress port
was not hindered by the path between the NIC, CPU, and main memory. The average
latency measured for IO operations from the ingress port to an egress port was less 40 µs.

7.3 Layer 2 Benchmarking

Switches and routers function together so that information is correctly forwarded through
the network. This feature involves processing of packets based on the information found
in the frame header. The results gathered from the IO benchmarks had shown that the
performance of the multi-layer switch regarding the internal IO were at line rate speeds
hinting that the NIC, the interconnection and memory were able to maintain the link
speed as frames moved in and out the switch. In this section, the sets of tests aim to find
out what overhead was incurred while the CPU processes the packets, in other words, to
find the effect of packet processing on throughput, latency and frame loss. The throughput
desired for this implementation would be 1 Gbps on all the ports, naturally.
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By referring to the results found in the IO test, comparing the IO transfer rate and the
L2 packet processing would reveal the extra overhead that the CPU introduces when
performing L2 packet processing.

7.3.1 Results – Single Core

Table 7.3: Layer 2 Forwarding Rate.
Packet size TRex line rate Packet loss Core
(bytes) (PPS) % Utilisation %
64 1480760 0.00267 91
128 844352 0 80
256 452695 0 54
512 234790 0 28
1024 119280 0 12
1500 82025 0 8

The results in Table 7.3 shows the packet loss and the CPU utilisation for each packet
size taken in earlier experiments [18]. Figure 7.5 shows the CPU utilisation of four PMD
threads whose total CPU utilisation is 91%. The result shows packet loss during these
tests. The packet loss seen for 64 byte packet was 0.00267%. It also shows the single
core CPU utilisation which peaked at 91% during the highest PPS. The CPU utilisation
however, decreased as the PPS decreased. This is expected since larger packets require a
lower number of operations.

Figure 7.5: PMD Thread Utilisation on a Single Core for 64 Byte Frames.

7.3.2 Analysis – Single Core

These sets of tests showed the behaviour of the CPU during L2 processing. The packet loss
experienced was seen to occur only during the beginning of the tests. It was found that the
loss was caused by the time taken by the switch to cache actions from the flow table in the
openvswichd program to the user-space data-plane (Section 5.3). The user-space
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data-plane is seen to improve packet processing by caching actions. Once these actions
were cached, no losses were experienced even after running the tests multiple times. This
behaviour may seem to have a potentially negative impact on the performance, but in
the real world, TCP/IP network connection information is not spontaneously sent in bulk
before the communication between the sender and receiver is initialised [111, 112]. As a
result, this initialisation gives the switch enough time to cache actions of flow entries in the
user-space data-plane before data transfer commences, and as such, the packet loss
experienced would unlikely occur. High CPU usage was observed, especially for smaller
packet sizes, during higher PPS. This may result in a potential lagging that delays packet
processing. The CPU may end up being the bottleneck of the system, especially as more
advanced computations such as routing and VLAN tagging would require greater CPU
resources.

7.3.3 Results – Three Cores

In these sets of tests, three cores where enabled instead of one. This was to evaluate
the significance of adding more cores to the switch’s capabilities. Table 7.4 shows the L2
switching latencies (average, maximum and jitter) and PMD thread utilisation on three
cores.

Figure 7.6: PMD Thread Utilisation on Three Cores for 64 byte Frames.

Figure 7.6 shows the PMD utilisation for each core during 64 byte frame tests. The
addition of CPU cores effectively reduced the maximum core usage to 83% (core 2) while
the other cores utilised 49% (core 1) and 48% (core 3). Two PMD threads ran on core 2
that is the reason why it shows higher core utilisation. The comparison between Table 7.2
and Table 7.4 shows the overhead experienced in average latency between IO forwarding
and L2 packet processing. The results show a slight increase in latency between IO and
L2 processing. However, the overall maximum latency was observed to be between 1400µs
and 1800µs with the highest maximum latency being for 64 byte frames.
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Table 7.4: L2 Switching Latency, Jitter and CPU Utilisation for 3 Cores
Packet size Core Utilisation Average Maximum Jitter
(bytes) 1 : 2 : 3 latency (µs) latency (µs) (µs)
64 49 : 83 : 48 14.75 1766 1
128 27 : 54 : 26 15 1526 2
256 14 : 28 : 14 18 1568 3
512 7 : 14 : 7 22.5 1660 5
1024 3 : 6 : 3 31.75 1734 5
1280 3 : 6 : 2 37 1446 6
1518 2 : 4 : 2 38 1580 2
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Figure 7.7: Average Latencies for Single Core and Three Cores (Lower is better).

Figure 7.7 and Figure 7.8 show the comparison between average latency and maximum
core utilisation of single core and multi-core (for core 2). The addition of cores reduced
the average latency especially for smaller frame sizes (shown in Figure 7.7). Not only
did the addition of cores reduced the maximum CPU utilisation, it also reduced average
latency, improving the performance of the multi-layer switch.

7.3.4 Analysis – Three Cores

Each port was configured with a single queue creating a total of four PMD threads which
were defined as ovsport1, ovsport2, ovsport3, and ovsport4. Cores 1 and 3 are each
running a single PMD thread, while core 2 ran two threads. The assignment of PMD
threads to cores was done automatically [79]. The OVS-DPDK framework include com-
mands for load balancing between each PMD threads across all running cores. This means
that the switch’s PMD threads can be distributed across cores for efficient use of the CPU.

The performance of the switch was seen to have improved when other cores were enabled
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Figure 7.8: Maximum CPU Utilisation Per Core (lower is better).

(when comparing the results in Figure 7.5 (single core) and Figure 7.6 (three cores)). This
resulted in a lower CPU utilisation. The DPDK library takes advantage of the multi-
threaded architecture which allows the processing of packets in bulk. Hence, the adding
of more cores reduced the average latency due to packets being processed simultaneously
in a multi-threaded environment.

7.3.5 Layer 2 Benchmarking Summary

These tests illustrate the performance and behaviour of the switch when L2 processing
is considered. The average latency between the IO forwarding and L2 packet processing
generally experienced a slight increase of less than 1 µsecond. This means that, on average,
packet processing under L2 load has little effect on the delay. The majority of the delay
is due to IO operations between the NIC, the CPU and the main memory. The maximum
latency, unlike the average latency, showed a significant increase. This may be caused
by the queuing of packets, a limitation within the NIC, or memory access during L2
processing.

The CPU utilisation for both single core and three cores tests increased as the packet
size decreased. This leads to conclude, reasonably, that higher pps require more CPU
resources. On average, the changes in delay were minor, demonstrating that L2 packet
processing had little effect on average latency.
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7.4 Layer 3 Benchmarking

L3 processing incurs a greater penalty, due to the number of actions needed to fulfil the
behaviour of a router. This section shows the performance characteristics of the switch
during L3 benchmarks.

7.4.1 Results

Table 7.5: Layer 3 Switching Latency, Jitter and CPU Utilisation for 3 Cores.
Packet size Core Utilisation Average Maximum Jitter
(bytes) 1 : 2 : 3 latency (µs) latency (µs) (µs)
64 56 : 86 : 54 91.77 1781 1
128 31 : 62 : 30 499 2082 1
256 16 : 32 : 16 42 1766 3
512 8 : 16 : 8 47 1476 5
1024 4 : 8 : 4 55 1329 8
1280 3 : 6 : 3 62 1527 6
1518 2 : 4 : 2 67 1070 11

Table 7.5 shows the CPU utilisation and latencies during L3 routing with different frame
sizes. Comparing the results from Table 7.4 (L2 latencies) and Table 7.5 (L3 latencies),
there is a significant change that is evident in the average latency between L2 and L3
packet processing. This is due to the L3 packet processing that requires altering the
header information for each packet before outputting to a port. CPU utilisation also
followed a similar trend, where the maximum per core utilisation peaked at 86% (42%
+ 44%) for 64 byte frames (shown in Figure 7.9). In spite of the added complexity,
the switch maintained link speed without dropping of packets. Figure 7.10 shows the
comparison between L2 and L3 packet processing for multiple frame sizes.

Figure 7.9: Thread Utilisation for 64 Byte Frame.
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Figure 7.10: Comparison Between Layer 2 and Layer 3 CPU utilisation.

7.4.2 Layer 3 Benchmarking Summary

The trace tool used earlier showed the actions that the switch executes during L2/L3
benchmarking (Section 6.5.4.3 and Section 6.5.4.4 respectively). It is evident that routing
requires greater CPU resources because of the number of actions required to process a
single packet. As such, a higher CPU utilisation was seen in the benchmarking tests for
L3 compared to L2 forwarding (shown in Figure 7.10), resulting in increased delay.

7.5 OpenFlow Compliance Testing

This section covers tests ran to validate the OpenFlow functionality of the multi-layer
switch. This is meant to check if the switch meets the function requirements defined in
the OpenFlow specification. Faucet’s unit-test framework reduces the time required to
manually test the hardware through automated testing [54]. The framework simplified the
process of testing and verified that the switch fulfilled both feature-level and system-level
interoperability.

7.5.1 Compliance Results

Feature-level and system-level testing was performed by executing multiple unit tests. A
total of 141 tests were ran which included testing the switch’s features such as multiple
tables flow injection, VLAN switching, IPv4 and IPv6 routing (static and BGP routing
protocol), access control lists (ACLs), port mirroring and policy-based forwarding among
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Table 7.6: Summary Results for Compliance Testing.
Test Result Remark
Group Table Un-
tagged IPv4 Route
Test

909 Mbps to 10.0.2.1, 903 Mbps
to 10.0.1.1

Routing between two hosts,
10.0.1.1 and 10.0.2.1

Group Table Un-
tagged IPv6 Route
Test

893 Mbps to fc00::20:1, 896 Mbps
to fc00::10:1

Routing between two hosts,
fc00::10:1 and fc00::20:1

IPv4 Tuple Test pushed 1024 IPv4 tuples Testing table capabilities
IPv6 Tuple Test pushed 1024 IPv6 tuples Testing table capabilities
Single L2 Learn MACs
On Port Test

verified 4096 hosts learned in 120
sec

Learn 4086 hosts and veri-
fying connectivity

Single L3 Learn MACs
On Port Test

verified 2048 hosts learned in 60
sec

Learn 2048 hosts and veri-
fying connectivity

Untagged ApplyMeter
Test

10000 packets transmitted, 7925
received, 20% loss

Test ACL with drop lossy
meter

Evaluation of 141
tests

OK elapse time 9234.158s

others. Table 7.6 shows a summary of the unit tests conducted from the 141 tests ran.
Appendix B.1 shows the full results.

The results show that the switch supports multiple OpenFlow switch features. The group
table routing for IPv4 and IPv6 utilised the OpenFlow Group table. The benchmarked
speed for group table routing was 909 Mbps and 903 Mbps between hosts in an IPv4
network while routing for IPv6 was 893 and 896 Mbps. In the tuple test, the framework
tested the up to 1024 table rules for both IPv4 and IPv6. However, the switch supports a
maximum of 1’000’000 flows per table with a total of 254 tables (shown in Appendix A.2).
This shows that the switch is able to hold a large number of flow table entries. An
important function of the switch is the ability to learn host MAC addresses and allow
necessary connectivity between hosts in reasonable time. The results also show that the
multi-layer switch is capable of learning L2 MAC addresses for 4096 hosts in 120 seconds,
while the learning and verification of L3 MAC addresses for 2048 hosts was done in 60
seconds.

7.5.2 Compliance Summary

Faucet’s comprehensive tests ran 141 unit tests, where the network was virtualised in
Mininet. The switch supported the group table forwarding, an experimental features not
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fully supported by all OpenFlow devices [54]. The tuple tests show how much time the
switch would require to learn and verify end-hosts when connected within a network of
thousands of machines. This defines how much time the switch requires to learn rules
necessary for switching and routing between all nodes of the network. The results had
shown that this switch is able to maintain flow entries for thousands of hosts.

The Faucet controller uses a physically centralised controller due its small footprint size
and simple architecture. A physically distributed SDN controller architecture is a better
solution for large-scale SDN networks [91].

7.6 Summary

The chapter began by detailing the hardware and setup for the tests that were performed.
The first group of tests was to check whether the IO operations within the multi-layer
switch could sustain forwarding at 1 Gbps for different frame sizes f rom the minimum
to maximum (64 bytes to 1518 bytes). The initial results showed that the hardware
supported IO forwarding at a rate of millions of packets per second (Table 7.1). This was
followed by the measurement of the CPU performance, in terms of L2 packet processing
and latency (Section 7.3). It was observed that L2 processing had little effect on the
average latency, where the average latency of the switch was less than 40 µs.

The L3 benchmark results show that L3 computation is a more expensive operation in
terms of latency where the delay doubles and in some cases is five times the latency seen in
IO forwarding. Nonetheless, the average latency for all frame sizes was less than 100 µs.
Finally in Section 7.5, the compliance for OpenFlow features for this multi-layer switch
were tested.



Chapter 8

Real Life Testing

This chapter demonstrates three small-scale networking use cases where the multi-layer
switch, the Ryu controller, and a selection of applications are used. These examples reflect
real-world setups and show how one would build, configure, and manage an SDN network
in support of specific use cases. The chapter includes the administration of the multi-layer
switch, applying network configurations for specified network topologies, verify network
connectivity between each host, and finally benchmarking the network.

Section 8.1 gives an overview of the use cases presented. Section 8.2 illustrates the process
of configuring a L2 network, while Section 8.3 and Section 8.4 demonstrate the application
of L3 routing and VLAN partitioning. Finally, Section 8.5 concludes the chapter by
observing bandwidth usage and analysing the switching/routing tables for the traffic
within each SDN network.

8.1 Overview

The use cases described in the sections below cover the core functionality of the multi-
layer switch which includes forwarding (L2) and routing (L3). This chapter aims to also
demonstrate functions that are seen in certain commercial designs, such as traffic isolation
through VLANs and network device monitoring. In an effort to simplify the process of
implementing these functions, the applications discussed in Chapter 6 were used in the
configuration of policies to define the behaviour of the network.

Each use case is presented as follows:

120
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1. The topology of the network use case.

2. Provide network configuration entered through the web interface.

3. The display of flow entries added to the switch’s OpenFlow table.

4. Testing of relevant environment. This includes tests such as host to host connectivity
and bandwidth benchmarks.

5. Analysis of the results of the realised network.

8.1.1 Policy Configuration

The configuration of policies in each use case were entered only through the web user
interface (UI). JSON objects were used as inputs to the web UI to configure each switch.
A JSON object defines the policy/behaviour that maintains the network. Within the UI,
the configuration process followed three steps: (1) creating the policy, (2) verifying the
policy, and (3) applying the policy. From a network administrator’s point of view, the
UI shows three key areas (the web UI is shown in Figure C.1 in the Appendix) which
are: the graphical section which shows view the topology of the network, the table entries
section which allows one to view the state of the OpenFlow table for the selected switch,
and the configuration toolbar which is where the policies (JSON objects) are added for
a switch (the configuration toolbar is shown in Figure C.2 in the Appendix). Within the
configuration toolbar, the user can add, verify, and apply policies.

8.1.2 Specification of Hosts Used

Table 8.1: Hosts Hardware & Software Specifications.
Item Description
Platform H170 PRO GAMING
Chipset Intel R© 760G (780L)
CPU Intel(R) CoreTMi5-6400 CPU (6MB Cache, 2.70GHz),

4 core, 4 threads
Memory 2x4GB, Single Channel @ 2133MHz
Operating System Ubuntu Server 16.04 64-bit

(GNU/Linux 4.15.0-39-generic x86_64)
NIC Intel R© Ethernet Connection (2) I219-V
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Table 8.1 shows the hardware and software specifications for each connected host, and
Figure 8.1 shows the overview structure used in each use case. The switch was directly
connected to four hosts using Ethernet cables. The link speed over each Ethernet port
was 1 Gbps. The same physical network topology was used in each use case where the
network configuration was entered into the web UI. The network benchmark tests were
ran using iPerf network-benchmarking tool such that all data ports on the switch were
tested simultaneously. Each test was conducted for minimum period of 60s to determine
the data rate under continuous load. This was to observe the throughput supported by
the switch.

Figure 8.1: SDN Network Architecture.

8.2 Hub and Learning Switch Use Case

L2 functionality enables a switch to support communication among devices within the
same network by making use of the source and destination MAC addresses. The decision
taken on how to forward traffic is performed within the controller. To demonstrate this
concept, the network was setup as shown in Figure 8.1. Each host was assigned an IP
by the DHCP service offered by the SimpleDHCPServer application where all IPs were
selected from the same subnet. Once the switch was configured and IPs were assigned,
the L2Switch application managed the logic/behaviour of an L2 switch.
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8.2.1 Configuration

The policy to define L2 functionality is as follows:

1. Enable DHCP service, where the IP address of the DHCP server is 10.0.0.1.

2. IP addresses must be assigned from the same subnet. Hence, the CIDR (Classless
Inter-Domain Routing) was set to 10.0.0.0/24.

3. Initialise the multi-layer switch as a L2 switch, i.e. to only use L2 functionality.

The following JSON object was created to achieve the policy defined above.

1 {
2 "subnet":{"all":"10.0.0.0/24"},
3 "dhcp_ips":{"all":"10.0.0.1"},
4 "is_router":false,
5 "enable_dhcp":true
6 }

The JSON object above initialises all given ports on the switch to be under the same
subnet of 10.0.0.0/24, shown in line 2. The DHCP service was enabled to allow automatic
allocation of IP addresses where the DHCP server’s IP is 10.0.0.1 (lines 5 and 3). Line 4
configures the multi-layer switch to only use L2 functionality.

8.2.1.1 Verifying Controller Settings

During this stage of the configuration, the controller was queried to verify the created
policy. The message replied is shown in Listing 8.1.

The received message shows the acknowledgement for the defined policy and validates
if the policy is applicable to the switch with id 0000001b21a6da00 (i.e. the ID of the
switch, Section 6.5.2.4). Listing 8.2 shows the confirmation message from the controller
after applying the policy.

8.2.1.2 Verifying Hosts Settings

By executing the Linux ifconfig command, the IP addresses and the interface names are
shown. The result shows IP addresses for Host 1, Host 2, Host 3, and Host 4. Listing 8.3
shows IP address for Host 1 and in Appendix D.1 shows IP addresses for Host 2, Host 3,
and Host 4. This shows that the entered policy correctly configured the network.
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Listing 8.1: Validation of Configuration.
1 {
2 "switch_id": "0000001b21a6da00",
3 "command_result": [
4 {
5 "result": "success",
6 "details": [
7 "Add subnet 10.0.0.0/24 [id=1]",
8 "Add subnet 10.0.0.0/24 [id=2]",
9 "Add subnet 10.0.0.0/24 [id=3]",

10 "Add subnet 10.0.0.0/24 [id=4]",
11 "Add dhcp_ips: 10.0.0.1 [id=1]",
12 "Add dhcp_ips: 10.0.0.1 [id=2]",
13 "Add dhcp_ips: 10.0.0.1 [id=3]",
14 "Add dhcp_ips: 10.0.0.1 [id=4]",
15 "DHCP set [enable=True]"
16 ]
17 }
18 ]
19 }

Listing 8.2: Confirmation For the Configured Input.
1 [
2 "Success",
3 "Updating switch values",
4 "Configure as:",
5 "DHCP: True",
6 "DHCP addresses: {1: ’10.0.0.1’, 2: ’10.0.0.1’, 3: ’10.0.0.1’, 4: ’10.0.0.1’}",
7 "Router: False",
8 "Subnets: {1: ’10.0.0.0/24’, 2: ’10.0.0.0/24’, 3: ’10.0.0.0/24’, 4: ’10.0.0.0/24’}"
9 ]

Listing 8.3: Host 1 Network Configuration.
host1@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7c:cd:9d

inet addr:10.0.0.254 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7c:cd9d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3580 errors:0 dropped:0 overruns:0 frame:0
TX packets:1243 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1210116 (1.2 MB) TX bytes:426174 (426.1 KB)
Interrupt:16 Memory:f7100000−f7120000

...

8.2.2 Results

Information and logs were gathered during the IP addressing, ping testing, and L2 switch-
ing (OpenFlow entries). Appendix D.2 shows logs from the DHCP application during the
allocation of IP addresses. The logs show the interaction and the order that the IPs
were addressed. The L2Switch application maintained the L2 logic within the network
by building the forwarding table. The connectivity between Host 1 and other hosts was
verified using ping tests which were successful as shown in Listing 8.4. It was observed
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that the initial ping message going to each host took longer compared to consecutive
pings. This is due to the time taken in learning of MAC addresses, and the adding of
flows during the first ping.

Listing 8.4: Host 1 pinging Host 2 (IP: 10.0.0.253), Host 3 (IP: 10.0.0.252), and Host 4
(IP: 10.0.0.251).
host1@ubuntu:~$ ping −c 4 10.0.0.253
PING 10.0.0.253 (10.0.0.253) 56(84) bytes of data.
64 bytes from 10.0.0.253: icmp_seq=1 ttl=64 time=20.0 ms
64 bytes from 10.0.0.253: icmp_seq=2 ttl=64 time=0.207 ms
64 bytes from 10.0.0.253: icmp_seq=3 ttl=64 time=0.189 ms
64 bytes from 10.0.0.253: icmp_seq=4 ttl=64 time=0.188 ms

−−− 10.0.0.253 ping statistics −−−
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.188/5.146/20.002/8.577 ms

host1@ubuntu:~$ ping −c 4 10.0.0.252
PING 10.0.0.252 (10.0.0.252) 56(84) bytes of data.
64 bytes from 10.0.0.252: icmp_seq=1 ttl=64 time=19.3 ms
64 bytes from 10.0.0.252: icmp_seq=2 ttl=64 time=0.196 ms
64 bytes from 10.0.0.252: icmp_seq=3 ttl=64 time=0.197 ms
64 bytes from 10.0.0.252: icmp_seq=4 ttl=64 time=0.204 ms

−−− 10.0.0.252 ping statistics −−−
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.196/4.992/19.371/8.301 ms

host1@ubuntu:~$ ping −c 4 10.0.0.251
PING 10.0.0.251 (10.0.0.251) 56(84) bytes of data.
64 bytes from 10.0.0.251: icmp_seq=1 ttl=64 time=14.4 ms
64 bytes from 10.0.0.251: icmp_seq=2 ttl=64 time=0.196 ms
64 bytes from 10.0.0.251: icmp_seq=3 ttl=64 time=0.200 ms
64 bytes from 10.0.0.251: icmp_seq=4 ttl=64 time=0.197 ms

−−− 10.0.0.251 ping statistics −−−
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.196/3.768/14.482/6.185 ms

Once the policy was applied and the MAC addresses of the hosts were noted, the state of
the flow table was taken. The flow table had the following flow entries:

Listing 8.5: OpenFlow Table for L2 Forwarding.
1 { "actions" : [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 0, "packet_count": 76, "

↪→ hard_timeout": 0, "byte_count": 4560, "duration_sec": 2715, "duration_nsec": 944000000,

↪→ "priority": 65535, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_type":

↪→ 35020, "eth_dst": "01:80:c2:00:00:0e" }},

2 { "actions" : [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 1000, "packet_count": 8, "

↪→ hard_timeout": 0, "byte_count": 2736, "duration_sec": 2715, "duration_nsec": 959000000,

↪→ "priority": 100, "length": 104, "flags": 0, "table_id": 0, "match": { "eth_type":

↪→ 2048, "tp_src": 68, "nw_proto": 17, "tp_dst": 67 }},

3 { "actions" : [ "OUTPUT:1" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10, "

↪→ hard_timeout": 0, "byte_count": 904, "duration_sec": 1579, "duration_nsec": 417000000,

↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst": "30:5a:3a

↪→ :7c:cd:9d", "in_port": 2 }},

4 { "actions" : [ "OUTPUT:2" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 9, "

↪→ hard_timeout": 0, "byte_count": 806, "duration_sec": 1579, "duration_nsec": 410000000,
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↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst": "30:5a:3a

↪→ :7e:36:a0", "in_port": 1 }},

5 { "actions" : [ "OUTPUT:1" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10981819, "

↪→ hard_timeout": 0, "byte_count": 15863485306, "duration_sec": 1517, "duration_nsec":

↪→ 499000000, "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst

↪→ ": "30:5a:3a:7c:cd:9d", "in_port": 3 }},

6 { "actions" : [ "OUTPUT:3" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10982450, "

↪→ hard_timeout": 0, "byte_count": 15861036504, "duration_sec": 1517, "duration_nsec":

↪→ 493000000, "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst

↪→ ": "30:5a:3a:7c:d3:58", "in_port": 1 }},

7 { "actions" : [ "OUTPUT:1" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10, "

↪→ hard_timeout": 0, "byte_count": 904, "duration_sec": 1510, "duration_nsec": 013000000,

↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst": "30:5a:3a

↪→ :7c:cd:9d", "in_port": 4 }},

8 { "actions" : [ "OUTPUT:4" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 9, "

↪→ hard_timeout": 0, "byte_count": 806, "duration_sec": 1510, "duration_nsec": 009000000,

↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst": "30:5a:3a

↪→ :7a:0d:b9", "in_port": 1 }},

9 { "actions" : [ "OUTPUT:2" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10, "

↪→ hard_timeout": 0, "byte_count": 904, "duration_sec": 1347, "duration_nsec": 727000000,

↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst": "30:5a:3a

↪→ :7e:36:a0", "in_port": 3 }},

10 { "actions" : [ "OUTPUT:3" ], "idle_timeout":0, "cookie":2000, "packet_count":9, "hard_timeout

↪→ ":0, "byte_count":806, "duration_sec":1347, "duration_nsec":725000000, "priority":1, "

↪→ length":96, "flags":0, "table_id":0, "match":{ "eth_dst":"30:5a:3a:7c:d3:58", "in_port

↪→ ": 2 }},

11 { "actions" : [ "OUTPUT:2" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10988721, "

↪→ hard_timeout": 0, "byte_count": 15863940960, "duration_sec": 1337, "duration_nsec":

↪→ 318000000, "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst

↪→ ": "30:5a:3a:7e:36:a0", "in_port": 4 }},

12 { "actions" : [ "OUTPUT:4" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10985823, "

↪→ hard_timeout": 0, "byte_count": 15859424236, "duration_sec": 1337, "duration_nsec":

↪→ 316000000, "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst

↪→ ": "30:5a:3a:7a:0d:b9", "in_port": 2 }},

13 { "actions" : [ "OUTPUT:4" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 10, "

↪→ hard_timeout": 0, "byte_count": 904, "duration_sec": 1242, "duration_nsec": 607000000,

↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst":"30:5a:3a

↪→ :7a:0d:b9", "in_port": 1 }},

14 { "actions" : [ "OUTPUT:3" ], "idle_timeout": 0, "cookie": 2000, "packet_count": 9, "

↪→ hard_timeout": 0, "byte_count": 806, "duration_sec": 1242, "duration_nsec": 601000000,

↪→ "priority": 1, "length": 96, "flags": 0, "table_id": 0, "match": { "eth_dst": "30:5a:3a

↪→ :7c:d3:58", "in_port": 4 }},

15 { "actions" : [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 1000, "packet_count":

↪→ 2706, "hard_timeout": 0, "byte_count": 198148, "duration_sec": 2715, "duration_nsec":

↪→ 959000000, "priority": 0, "length": 80, "flags": 0, "table_id": 0, "match": {} }

The flows added by the L2Switch application were to allow communication between hosts
connected to the switch. Lines 3 and 4 show flow entries for the bidirectional traffic
between Host 1 (on port 1) and Host 2 (on port 2) where line 3 is the flow entry for traffic
coming from port 2 going to port 1 while line 4 is the flow entry for traffic coming from
port2 going to port 1. The remaining lines, 5 to 14, demonstrate the flow entries that
enable bidirectional communication within the network.
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8.2.3 Throughput Tests

The throughput benchmark measurements were from host to host, which required client-
server pairs. Host 1 was paired to Host 2, and Host 3 to Host 4. This test measures
the throughput for TCP traffic between each pair, through bidirectional streams of data.
Listing 8.6 and Listing 8.7 shows the results for the network benchmarks for forwarding
between the host pairs of Host 1 and Host 2, Host 3 and Host 4. The throughput recorded
for L2 switching was 932 Mbit/s.

Listing 8.6: iPerf Benchmark Between Host 1 and Host 2.
host1@ubuntu:~$ iperf −s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 4] local 10.0.0.254 port 5001 connected with 10.0.0.253 port 51700
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client connecting to 10.0.0.253, TCP port 5001
TCP window size: 264 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 5] local 10.0.0.253 port 50816 connected with 10.0.0.254 port 5001
[ ID] Interval Transfer Bandwidth
[ 5] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec
[ 4] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec

Listing 8.7: iPerf Benchmark Between Host 4 and Host 3.
host4@ubuntu:~$ iperf −s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 4] local 10.0.0.251 port 5001 connected with 10.0.0.252 port 39610
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client connecting to 10.0.0.251, TCP port 5001
TCP window size: 280 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 5] local 10.0.0.252 port 52154 connected with 10.0.0.251 port 5001
[ ID] Interval Transfer Bandwidth
[ 5] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec
[ 4] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec

8.2.4 L2Switch Summary

The configuration of the network was initiated by defining a policy for L2 functionality.
The policy, represented by a JSON object, defines the behaviour which is translated into
OpenFlow rules and are installed as flow entries in the switch’s table. These entries
would instruct the switch to capture unknown and forward known L2 traffic. As seen in
Section 8.2.2, the L2switch application learnt the MAC addresses for each connected host
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Figure 8.2: Routing Use Case Topology.

and added flow entries so that traffic is directed based on the MAC destination (shown
in the logs). The result yielded a bandwidth of 931 Mbit/s, hence the total switching
capacity was 7448 Mbit/s, as the aggregate of all four ports.

8.3 Routing Use Case

Routing enables communication between devices in different networks. This is done by
identifying connected devices using IP addresses. Interfaces on a router each have an
IP address, and as such, should reply to ping and ARP messages. The decision-making
and behaviour of a router is established in the controller by the Router application (Sec-
tion 6.6.4). To demonstrate this concept, four subnets were created. Figure 8.2 depicts
the topology and IP addresses used in the experiment.

8.3.1 Configuration

Below are the configuration rules used to realise the network policy reflected in Figure 8.2
for L3 routing.
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• IP addresses on each interface are to be on different subnets. Hence, the CIDRs are
set to 10.0.0.0/24, 10.0.1.0/24, 10.0.2.0/24 and 10.0.3.0/24 on each interface.

• The interfaces for the switch were assigned IP addresses 10.0.0.1, 10.0.1.1, 10.0.2.1
and 10.0.3.1. This is to identify each of the router’s interfaces. These IP addresses
are also to be used as the addresses of the DHCP servers.

• Initialise the switch as a router; this use case uses L2 and L3 functionality. L2
functionality is handled by the normal pipeline (Section 3.1.3) of the router.

Using the above configuration and the web UI the following JSON object was created,
entered, and applied.

Listing 8.8: Policy for L3 Routing and IP Allocation
1 {
2 "subnet":{"1":"10.0.0.0/24", "2":"10.0.1.0/24", "3":"10.0.2.0/24", "4":"10.0.3.0/24"},
3 "router_ip":{"1":"10.0.0.1", "2":"10.0.1.1", "3":"10.0.2.1", "4":"10.0.3.1"},
4 "dhcp_ips":{"1":"10.0.0.1", "2":"10.0.1.1", "3":"10.0.2.1", "4":"10.0.3.1"},
5 "is_router":true,
6 "enable_dhcp":true
7 }

The above policy configures the switch as a router with the DHCP service included. The
interfaces on the router were defined to have the following DHCP server address and port
number of 10.0.0.1 – port 1, 10.0.1.1 – port 2, 10.0.2.1 – port 3, and 10.0.3.1 – port 4.

8.3.1.1 Verifying Controller Settings

Verifying the input configurations was done by querying the controlled. This displayed
the message from the web UI which is shown in Listing 8.9.

This confirms that the above policy was validated against the switch. The result be-
low (Listing 8.10) shows the confirmation from the controller after applying the policy
completing the configuration of the switch.

8.3.1.2 Verifying Hosts Settings

By running Linux tools, ifconfig and ip, information about the network such as IP
address, gateway, and subnets were collected to verify the correctness of the applied
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Listing 8.9: Validation of Configuration.
1 {
2 "switch_id": "0000001b21a6da00",
3 "command_result": [
4 {
5 "result": "success",
6 "details": [
7 "Add subnet 10.0.0.0/24 [id=1]",
8 "Add subnet 10.0.1.0/24 [id=2]",
9 "Add subnet 10.0.2.0/24 [id=3]",

10 "Add subnet 10.0.3.0/24 [id=4]",
11 "Add internal_router_ips: 10.0.0.1 [id=1]",
12 "Add internal_router_ips: 10.0.1.1 [id=2]",
13 "Add internal_router_ips: 10.0.2.1 [id=3]",
14 "Add internal_router_ips: 10.0.3.1 [id=4]",
15 "Add dhcp_ips: 10.0.0.1 [id=1]",
16 "Add dhcp_ips: 10.0.1.1 [id=2]",
17 "Add dhcp_ips: 10.0.2.1 [id=3]",
18 "Add dhcp_ips: 10.0.3.1 [id=4]"
19 ]
20 }
21 ]
22 }

Listing 8.10: Confirmation of Router settings.
1 [
2 "Success",
3 "Registering switch",
4 "Configure as:",
5 "DHCP: True",
6 "DHCP addresses: {1: ’10.0.0.1’, 2: ’10.0.1.1’, 3: ’10.0.2.1’, 4: ’10.0.3.1’}",
7 "Router: True",
8 "Router addresses: {1: ’10.0.0.1’, 2: ’10.0.1.1’, 3: ’10.0.2.1’, 4: ’10.0.3.1’}",
9 "Subnets: {1: ’10.0.0.0/24’, 2: ’10.0.1.0/24’, 3: ’10.0.2.0/24’, 4: ’10.0.3.0/24’}"

10 ]

policy. Below are the results for the configured network showing the interface and the
routing information for each host. Listing 8.11 shows the network configurations for Host
1 which shows: the IP is defined as 10.0.0.254, the gateway is defined as 10.0.0.1, and
the interface as enp0s31f6. The results for Host 2, Host 3, and Host 4’s configurations
are given in Appendix E.1

The results shown by the ip tool lists the routing table. The default route for Host 1 is
given by 10.0.0.1 which is the IP address of one of the switch’s interface.

8.3.2 Result

After applying the policy, logs were captured which shows the application adding flows.
This is shown in Listing 8.12. The logs show the router application adding the first
group of flows to the switch. The cookie (see Section 3.1.3.1) helps in keeping track
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Listing 8.11: Host 1 Network Configurations.
host1@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7a:0d:b9

inet addr:10.0.0.254 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7a:db9/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:6 errors:0 dropped:0 overruns:0 frame:0
TX packets:30 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:866 (866.0 B) TX bytes:2904 (2.9 KB)
Interrupt:16 Memory:f7100000−f7120000

...
host1@ubuntu:~$ ip route list
default via 10.0.0.1 dev enp0s31f6
10.0.0.0/24 dev enp0s31f6 proto kernel scope link src 10.0.0.254

of installed flow entries. The cookies selected ranged between 1 and 4, to identify the
grouping for flows added for each host. The installed flows during this process are shown
in Listing 8.13. Flow entries shown in lines 1 – 4 were created during the event ‘Set host

MAC learning (packet in) flow’ seen in the logs (see Listing 8.12, lines 3, 7, 12, and
16) which is used to learn MAC addresses of connected hosts. Flows in lines 5 – 8 instructs
the switch to perform L2 forwarding using the OpenFlow ‘normal’ pipeline. Lines 9 – 12
are IP handling flows. Packets matching these flows were sent to the controller so that
the Router application learns the IP addresses. The flow entry defined in line 13 is used
by the Router application to capture IPv4 traffic. The multi-layer switch (configured as
a router), requires constant updating of its routing tables, hence, the capturing of IPv4
traffic.

Listing 8.12: Router Logs During Reactive Adding of Flows
1 [RT][INFO] switch_id=0000001b21a6da00: Join as router.

2 # Adding flows for IP address ’10.0.0.1/24’

3 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0x1]

4 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x1]

5 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x1]

6 # Adding flows for IP address ’10.0.1.1/24’

7 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0x2]

8 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x2]

9 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x2]

10 127.0.0.1 − − [22/Oct/2018 04:28:17] "GET /init/0000001b21a6da00 HTTP/1.1" 200 723 0.013672

11 # Adding flows for IP address ’10.0.2.1/24’

12 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0x3]

13 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x3]

14 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x3]

15 # Adding flows for IP address ’10.0.3.1/24’

16 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0x4]

17 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x4]

18 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x4]

Listing 8.13: Added Flows by Router Application.
1 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 1, "packet_count": 0, "
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↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.0.1" } }

2 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 2, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.1.1" } }

3 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 3, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 433000000, "

↪→ priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.2.1" } }

4 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 4, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 433000000, "

↪→ priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.3.1" } }

5 { "actions": [ "OUTPUT:NORMAL" ], "idle_timeout": 0, "cookie": 1, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 37, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_src": "10.0.0.0/255.255.255.0", "nw_dst": "10.0.0.0/255.255.255.0" } }

6 { "actions": [ "OUTPUT:NORMAL" ], "idle_timeout": 0, "cookie": 2, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 37, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_src": "10.0.1.0/255.255.255.0", "nw_dst": "10.0.1.0/255.255.255.0" } }

7 { "actions": [ "OUTPUT:NORMAL" ], "idle_timeout": 0, "cookie": 3, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 433000000, "

↪→ priority": 37, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_src": "10.0.2.0/255.255.255.0", "nw_dst": "10.0.2.0/255.255.255.0" } }

8 { "actions": [ "OUTPUT:NORMAL" ], "idle_timeout": 0, "cookie": 4, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 433000000, "

↪→ priority": 37, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_src": "10.0.3.0/255.255.255.0", "nw_dst": "10.0.3.0/255.255.255.0" } }

9 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 1, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 3, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.0.0/255.255.255.0" } }

10 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 2, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 3, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.1.0/255.255.255.0" } }

11 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 3, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 434000000, "

↪→ priority": 3, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.2.0/255.255.255.0" } }

12 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 4, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 433000000, "

↪→ priority": 3, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ nw_dst": "10.0.3.0/255.255.255.0" } }

13 { "actions": [ "OUTPUT:CONTROLLER" ], "idle_timeout": 0, "cookie": 3000, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 197, "duration_nsec": 438000000, "

↪→ priority": 2, "length": 88, "flags": 0, "table_id": 0, "match": { "dl_type": 2054 } }

To initiate traffic flow, ping messages were sent from Host 1 to Host 4. This allowed the
multi-layer switch to begin the process of learning MAC addresses. As a result, more flows
were added to the OpenFlow table. Listing 8.14 shows successful ping messages between
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these hosts. This validates the correctness of the entered routing policy. Listing 8.15
shows the installed flow entries as a result of ping testing. The first behaviour of a router,
described in Section 6.6.4, was displayed. During routing, the multi-layer switch contained
flows that would decrease the TTL and set the destination MAC address (lines 1 – 4).
Interfaces on the multi-layer switch demonstrated the second router capability by replying
to ping messages as shown in Listing 8.16. This shows Host 3 receiving ping replies from
an interface on the switch.

Listing 8.14: Pinging form Host 1 to Host 4 (10.0.3.254).
host1@ubuntu:~$ ping −c4 10.0.3.254
PING 10.0.3.254 (10.0.3.254) 56(84) bytes of data.
64 bytes from 10.0.3.254: icmp_seq=1 ttl=63 time=0.210 ms
64 bytes from 10.0.3.254: icmp_seq=2 ttl=63 time=0.200 ms
64 bytes from 10.0.3.254: icmp_seq=3 ttl=63 time=0.195 ms
64 bytes from 10.0.3.254: icmp_seq=4 ttl=63 time=0.190 ms

−−− 10.0.3.254 ping statistics −−−
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.190/0.198/0.210/0.018 ms

Listing 8.15: Flows Added for Routing.
1 { "actions": [ "DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:00}", "SET_FIELD: {eth_dst

↪→ :30:5a:3a:7a:0d:b9}", "OUTPUT:1" ], "idle_timeout": 1800, "cookie": 1, "packet_count":
↪→ 60842180, "hard_timeout": 0, "byte_count": 87829836856, "duration_sec": 50, "
↪→ duration_nsec": 868000000, "priority": 36, "length": 136, "flags": 0, "table_id": 0, "
↪→ match": { "dl_type": 2048, "nw_dst": "10.0.0.254" } }

2 { "actions": [ "DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:01}", "SET_FIELD: {eth_dst
↪→ :30:5a:3a:7c:d3:58}", "OUTPUT:2" ], "idle_timeout": 1800, "cookie": 2, "packet_count":
↪→ 60832754, "hard_timeout": 0, "byte_count": 87829607700, "duration_sec": 37, "
↪→ duration_nsec": 471000000, "priority": 36, "length": 136, "flags": 0, "table_id": 0, "
↪→ match": { "dl_type": 2048, "nw_dst": "10.0.1.254" } }

3 { "actions": [ "DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:03}", "SET_FIELD: {eth_dst
↪→ :30:5a:3a:7e:36:a0}", "OUTPUT:4" ], "idle_timeout": 1800, "cookie": 4, "packet_count":
↪→ 60796851, "hard_timeout": 0, "byte_count": 87839034654, "duration_sec": 24, "
↪→ duration_nsec": 659000000, "priority": 36, "length": 136, "flags": 0, "table_id": 0, "
↪→ match": { "dl_type": 2048, "nw_dst": "10.0.3.254" } }

4 { "actions": [ "DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:02}", "SET_FIELD: {eth_dst
↪→ :30:5a:3a:7c:cd:9d}", "OUTPUT:3" ], "idle_timeout": 1800, "cookie": 3, "packet_count":
↪→ 60841207, "hard_timeout": 0, "byte_count": 87839733926, "duration_sec": 4, "
↪→ duration_nsec": 411000000, "priority": 36, "length": 136, "flags": 0, "table_id": 0, "
↪→ match": { "dl_type": 2048, "nw_dst": "10.0.2.254" } }
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Listing 8.16: Pinging Router interfaces from Host 3.
host3@ubuntu:~$ ping −c4 10.0.3.1
PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data.
64 bytes from 10.0.3.1: icmp_seq=1 ttl=64 time=7.28 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=64 time=7.24 ms
64 bytes from 10.0.3.1: icmp_seq=3 ttl=64 time=7.53 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=64 time=7.51 ms

−−− 10.0.3.1 ping statistics −−−
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 7.248/7.392/7.531/0.142 ms
host3@ubuntu:~$ ping −c1 10.0.2.1
PING 10.0.2.1 (10.0.2.1) 56(84) bytes of data.
64 bytes from 10.0.2.1: icmp_seq=1 ttl=64 time=14.5 ms

−−− 10.0.2.1 ping statistics −−−
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 14.558/14.558/14.558/0.000 ms

8.3.3 Throughput Tests

The throughput measurements were taken for host-to-host, that is from Host 1 to Host
3, and Host 2 to Host 4. Listing 8.17 and Listing 8.18 shows the results for the network
benchmarks for routing between the host pairs Host 1 and Host 3, and host pair Host 2
and Host 4. The recorded throughput during routing was 931 Mbit/s. This meant that
the total bandwidth of the device during routing was 7448 Mbit/s. The monitoring of the
multi-layer switch, using the sFlow tool, generated the report shown in Figure 8.3 which
shows the sFlow’s network dashboard during L3 benchmarks. The results gathered show
the frame/s during the tests, giving the average frame rate during each minute interval.
The benchmark test performed in Listing 8.17 and Listing 8.18 correspond to the frame
rate recorded between 6.06 AM and 6.12 AM.

Listing 8.17: iPerf benchmark between Host 1 and Host 2.
host1@ubuntu:~$ iperf −s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client connecting to 10.0.2.254, TCP port 5001
TCP window size: 425 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 5] local 10.0.0.254 port 37694 connected with 10.0.2.254 port 5001
[ 4] local 10.0.0.254 port 5001 connected with 10.0.2.254 port 47084
[ ID] Interval Transfer Bandwidth
[ 5] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec
[ 4] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec
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Listing 8.18: iPerf benchmark between Host 4 and Host 3.
host4@ubuntu:~$ iperf −s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client connecting to 10.0.1.254, TCP port 5001
TCP window size: 280 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 6] local 10.0.3.254 port 49996 connected with 10.0.1.254 port 5001
[ 6] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec
[ 5] 0.0−300.0 sec 32.5 GBytes 931 Mbits/sec
[ 4] local 10.0.3.254 port 5001 connected with 10.0.1.254 port 40154
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 8.3: sFlow Monitoring Switch During iPerf Benchmarks for VLAN.

8.3.4 Routing Summary

The switch exhibited a performance of 931 Mbit/s on all four ports during bandwidth
testing for L3 routing. In this network setup, network functions made use of L2, L3
and DHCP. The results shown included logs during the creation and configuration of
the network. The results also show that the switch exhibited the expected behaviour of a
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router which includes altering packet headers and decrementing the TTL as required. The
throughput and bandwidth was 931 Mbits/s. This shows that the switch’s total capaity
to forward L3 traffic was 7448 Mbits/s.
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Figure 8.4: VLAN Use Case Topology.

8.4 VLAN Use Case

The 802.1Q protocol allows the partitioning of networks by using a single switch to host
multiple networks, i.e. host different subnets. This allows the use of a single switch to
act as multiple logically separated switches. As discussed before, an L2 switch is not
able to route communication between subnets, hence routing between VLAN networks,
requires a router with VLAN support. To demonstrate network partitioning, the topology
illustrated in Figure 8.4 shows an example of partitioning the network using VLANs.

8.4.1 Configuration

Implemented for this use case, the switch was configured to have the following properties:

• IP addresses for the switch’s interfaces are from two different subnets. The CIDR
is set to 172.16.10.0/24 for port 1 and port 3, while the CIDR for ports 2 and 4 is
defined as 192.168.30.0/24.

• The four interfaces of the multi-layer switch were assigned the following IP address:
172.16.10.1 for ports 1 and 3, and IP address 192.168.30.1 for ports 2 and 4. These
were used for routing.



8.4. VLAN USE CASE 138

• Figure 8.4 shows that the network was partitioned into two VLANs with ID 2 and
110 respectively. Host 1 and Host 3 are in the VLAN 2, while Host 2 and Host 4
are in the VLAN 110. By partitioning the network (in absence of routing capability
between the VLANs), hosts in VLAN 2 are unable to communicate to hosts in
VLAN 110 and vice-versa.

• The interfaces on each host was configured manually for VLAN 2 and 110. This
required initialising the ports to use VLAN tagging, hence DHCP was disabled.

Using the above policy and the configuration toolbar from he web UI, the following was
set and applied to the multi-layer switch. This policy was created for the switch to have
two VLAN networks. The controller used this policy to create and add OpenFlow flow
entries onto the switch (Listing 8.19).

Listing 8.19: Input Configuration for VLAN Network.
1 {
2 "vlan_ip":{
3 "2":["172.16.10.1/24","192.168.30.1/24"],
4 "110":["172.16.10.1/24","192.168.30.1/24"]
5 },
6 "is_router":true
7 }

8.4.1.1 Verifying Controller Settings

Verifying the policy displayed the following message in the web UI shown in Listing 8.20.

Listing 8.20: Validation of VLAN Configuration.
1 {
2 "switch_id": "0000001b21a6da00",
3 "command_result": [
4 {
5 "result": "success",
6 "details": [
7 "Add VLAN addresses {’vlan_ip’: {’vlan_id’: ’2’, ’address’: [’172.16.10.1/24’, ’192.16

↪→ 8.30.1/24’]}} [vlan_id=1]",
8 "Add VLAN addresses {’vlan_ip’: {’vlan_id’: ’110’, ’address’: [’172.16.10.1/24’, ’192.

↪→ 168.30.1/24’]}} [vlan_id=2]",
9 ]

10 }
11 ]
12 }

This confirmed that the created policy was validated against port structure of the switch.
The details of the message show actions that the controller takes when the policy is
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applied. This also hints that the switch’s OpenFlow table will be updated with flows with
VLAN IP addresses of 172.16.10.1/24 and 192.168.30.1/24 for VLAN 2 and VLAN 110.

The result in Listing 8.21 shows the controller reply message after applying the policy to
the switch (0000001b21a6da00).

Listing 8.21: Confirmation For the Configured Input.
1 [
2 "Success",
3 "Updating switch values",
4 "Configure as:",
5 "DHCP: False",
6 "DHCP addresses: ",
7 "Router: True",
8 "VLAN router addresses: {’2’: [’172.16.10.1/24’, ’192.168.30.1/24’], ’110’: [’172.16.10.1/24

↪→ ’, ’192.168.30.1/24’]}"
9 ]

The controller was queried to display the switch’s settings. This is displayed in List-
ing 8.22.

Listing 8.22: Requested Switch’s Configuration Returned by Controller.
1 [
2 {
3 "vlan_id": 2,
4 "address": [
5 {
6 "address_id": 2,
7 "address": "192.168.30.1/24"
8 },
9 {

10 "address_id": 1,
11 "address": "172.16.10.1/24"
12 }
13 ]
14 },
15 {
16 "vlan_id": 110,
17 "address": [
18 {
19 "address_id": 2,
20 "address": "192.168.30.1/24"
21 },
22 {
23 "address_id": 1,
24 "address": "172.16.10.1/24"
25 }
26 ]
27 }
28 ]

The above message tallies with the entered policy confirming the correctness of the created
policy. This completed the configuration of the VLAN setup as shown in Figure 8.4. This
procedure shows that creating an SDN network with subnet partitioning can be achieved
using the JSON object shown in Listing 8.19.
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Configuring The Host Machines

The DHCP service was not configured to operate with VLANs. Hence, at each host,
the VLAN interfaces were added manually with the respective VLAN ID followed by
registering the default gateway on each port. Listing 8.23 shows the configuration of Host
1 (Host 2 – 4 are shown configuration in Appendix F.1).

Listing 8.23: Configuring Interface enp0s31f6 for VLAN 2 in Host 1.
1 >>> ip link add link enp0s31f6 name enp0s31f6.2 type vlan id 2

2 >>> ip addr add 172.16.10.10/24 dev enp0s31f6.2

3 >>> ip link set dev enp0s31f6.2 up

4 >>> ip route add default via 172.16.10.1

8.4.1.2 Verifying Hosts Settings

By executing the Linux tools ifconfig and ip, network configuration could be displayed
including information about the IP address, the interface and the routing for the interfaces.
Listing 8.24 shows the netowrk configuration for Host 1 (configurations for Host 2 – 4 in
Appendix F.2).

Listing 8.24: Network Configuration for Host 1.
host1@ubuntu:~$ ip route list
default via 172.16.10.1 dev enp0s31f6.2
172.16.10.0/24 dev enp0s31f6.2 proto kernel scope link src 172.16.10.10
host1@ubuntu:~$ ifconfig
enp0s31f6.2 Link encap:Ethernet HWaddr 30:5a:3a:7a:0d:b9

inet addr:172.16.10.10 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7a:db9/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:59 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:2790 (2.7 KB)

8.4.2 Results

Once the network was up and running, traffic was observed to be circulating between the
switch and the four hosts. As a result, OpenFlow entries were added to the switch. As
discussed in the previous chapter, the source application of the OpenFlow entries can be
determined by the value of the cookie field of the flow. The cookie grouping value for flow
entries added is given by V LAN ID × 232. Table 8.2 shows the cookies for flows added
for each VLAN ID.
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Table 8.2: Cookie Grouping for VLAN 2 and 110
VLAN ID Base Cookie Value Value (HEX)

2 2× 232 8589934592 0x200000000
110 110× 232 472446402560 0x6E00000000

The ping tool in Linux was used to verify connectivity between hosts. The configured
switch was set up as a VLAN router that had partitioned the network into two. By
partitioning the network, the expected behaviour was to limit the communication between
the two VLAN networks (in the absence of a routing capabilities between the two VLANs).
The results displayed in Listing 8.25 – Listing 8.27 show that hosts were only able to ping
interfaces of hosts and router within the same VLAN ID. Listing 8.25 and Listing 8.26
shows successful ping messages between Host 4 and router interface. Listing 8.27 shows
unsuccessful ping messages. This result is expected since the logically partitioned router
was unable to forward these messages. Logs from the router shown in Listing 8.28 shows
the switch is unable to reach the network. The pings from Host 4 (192.168.30.11) to Host
1 (172.16.10.10) in different VLANs were unsuccessful and the controller explicitly replied
with ICMP messages as unreachable.

Listing 8.25: Host 4 Pinging Router Interface in Same Subnet.
host4@ubuntu:~$ ping −c10 172.16.10.1
PING 172.16.10.1 (172.16.10.1) 56(84) bytes of data.
64 bytes from 172.16.10.1: icmp_seq=1 ttl=64 time=7.22 ms
64 bytes from 172.16.10.1: icmp_seq=2 ttl=64 time=3.02 ms
64 bytes from 172.16.10.1: icmp_seq=3 ttl=64 time=6.54 ms
64 bytes from 172.16.10.1: icmp_seq=4 ttl=64 time=9.26 ms
64 bytes from 172.16.10.1: icmp_seq=5 ttl=64 time=7.29 ms
64 bytes from 172.16.10.1: icmp_seq=6 ttl=64 time=8.89 ms
64 bytes from 172.16.10.1: icmp_seq=7 ttl=64 time=7.82 ms
64 bytes from 172.16.10.1: icmp_seq=8 ttl=64 time=6.22 ms
64 bytes from 172.16.10.1: icmp_seq=9 ttl=64 time=8.48 ms
64 bytes from 172.16.10.1: icmp_seq=10 ttl=64 time=8.38 ms

−−− 172.16.10.1 ping statistics −−−
10 packets transmitted, 10 received, 0% packet loss, time 9013ms
rtt min/avg/max/mdev = 3.029/7.317/9.260/1.711 ms

Appendix F.7 shows the settled OpenFlow table. The table had a total of 25 flow entries.
Flows added by the router application had the cookie parameter defined as hex values of
0x200000001, 0x200000002, 0x6e00000001, 0x6e00000002. This is observed in the
logs shown in Appendix F.8. These values translate to cookie values of 8589934593,

8589934594 for VLAN2 and 472446402561, 472446402562 for VLAN 110 in the Open-
Flow table. Other supporting logs show the router application adding flows during ping-
ing (Appendix F.9). sFlow recorded the source-destination traffic in bits/s shown in
Figure 8.5, and the corresponding source VLANs, shown in Figure 8.6.
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Listing 8.26: Host 4 Pinging Router Interface in Same VLAN but Different Subnet.
host4@ubuntu:~$ ping −c10 192.168.30.1
PING 192.168.30.1 (192.168.30.1) 56(84) bytes of data.
64 bytes from 192.168.30.1: icmp_seq=1 ttl=64 time=6.23 ms
64 bytes from 192.168.30.1: icmp_seq=2 ttl=64 time=5.69 ms
64 bytes from 192.168.30.1: icmp_seq=3 ttl=64 time=7.77 ms
64 bytes from 192.168.30.1: icmp_seq=4 ttl=64 time=8.86 ms
64 bytes from 192.168.30.1: icmp_seq=5 ttl=64 time=5.89 ms
64 bytes from 192.168.30.1: icmp_seq=6 ttl=64 time=7.69 ms
64 bytes from 192.168.30.1: icmp_seq=7 ttl=64 time=8.21 ms
64 bytes from 192.168.30.1: icmp_seq=8 ttl=64 time=5.79 ms
64 bytes from 192.168.30.1: icmp_seq=9 ttl=64 time=5.17 ms
64 bytes from 192.168.30.1: icmp_seq=10 ttl=64 time=6.64 ms

−−− 192.168.30.1 ping statistics −−−
10 packets transmitted, 10 received, 0% packet loss, time 9015ms
rtt min/avg/max/mdev = 5.174/6.797/8.860/1.185 ms

Listing 8.27: Host 4 Pinging Host 1 in Different VLANs.
host4@ubuntu:~$ ping −c10 172.16.10.10
PING 172.16.10.10 (172.16.10.10) 56(84) bytes of data.
From 192.168.30.1 icmp_seq=1 Destination Host Unreachable
From 192.168.30.1 icmp_seq=2 Destination Host Unreachable
From 192.168.30.1 icmp_seq=3 Destination Host Unreachable
From 192.168.30.1 icmp_seq=4 Destination Host Unreachable
From 192.168.30.1 icmp_seq=5 Destination Host Unreachable
From 192.168.30.1 icmp_seq=6 Destination Host Unreachable
From 192.168.30.1 icmp_seq=7 Destination Host Unreachable
From 192.168.30.1 icmp_seq=8 Destination Host Unreachable
From 192.168.30.1 icmp_seq=9 Destination Host Unreachable
From 192.168.30.1 icmp_seq=10 Destination Host Unreachable

−−− 172.16.10.10 ping statistics −−−
10 packets transmitted, 0 received, +10 errors, 100% packet loss, time 9008ms

8.4.3 Throughput iPerf

The throughput benchmark measurements were for host-to-host, that is from Host 1 to
Host 2 and Host 3 to Host 4. This test aimed to see what the throughput was for TCP
communication between each pair of server and client, bidirectional data transmission.
These tests were run simultaneously on all hosts. Listing 8.29 and Listing 8.30 shows the
results for the network benchmarks for VLAN routing between the host pairs 1 and 2, 3
and 4. The throughput for VLAN Routing was 929Mbit/s. By making use of the sFlow
tool, the generated report shows the hosts and their associated TCP ports.

8.4.4 VLAN Summary

The process of partitioning the network only required setting up the VLANs by applying
the configuration of Listing 8.19 in the web UI. This essentially configured the switch as a
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Listing 8.28: Log Messages from the Router Application.
1 #...
2 [RT][INFO] switch_id=0000001b21a6da00: Receive IP packet from [192.168.30.11] to an internal

↪→ host [172.16.10.10].
3 [RT][INFO] switch_id=0000001b21a6da00: Send ARP request (flood)
4 [RT][INFO] switch_id=0000001b21a6da00: ARP reply wait timer was timed out.
5 [RT][INFO] switch_id=0000001b21a6da00: Send ICMP destination unreachable to [172.16.10.10].
6 #...

Figure 8.5: sFlow Monitoring Source-Destination traffic for VLAN.

Listing 8.29: iPerf benchmark between Host 1 and Host 2.
host1@ubuntu:~$ iperf −s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 4] local 172.16.10.10 port 5001 connected with 192.168.30.10 port 34462
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client connecting to 192.168.30.10, TCP port 5001
TCP window size: 706 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 6] local 172.16.10.10 port 53620 connected with 192.168.30.10 port 5001
[ ID] Interval Transfer Bandwidth
[ 6] 0.0−300.0 sec 32.4 GBytes 929 Mbits/sec
[ 4] 0.0−300.0 sec 32.4 GBytes 929 Mbits/sec

router with two VLANs, VLAN 2 and VLAN 110. It was seen that successful partitioning
between the VLANs was enforced in the controller and traffic between VLANs was not
routed. The benchmarks of the VLAN network peaked at 929 Mbit/s. The switch is able
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Figure 8.6: sFlow Monitoring Source VLANs.

Listing 8.30: iPerf benchmark between Host 3 and Host 4.
host4@ubuntu:~$ iperf −s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 4] local 172.16.10.11 port 5001 connected with 192.168.30.11 port 38988
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Client connecting to 192.168.30.11, TCP port 5001
TCP window size: 264 KByte (default)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 6] local 172.16.10.11 port 47984 connected with 192.168.30.11 port 5001
[ ID] Interval Transfer Bandwidth
[ 6] 0.0−300.0 sec 32.4 GBytes 929 Mbits/sec
[ 4] 0.0−300.0 sec 32.4 GBytes 929 Mbits/sec

to handle a total VLAN routing capacity of 7432 Mbit/s on all of its ports. These results
were also monitored externally using sFlow.

8.5 Summary

This chapter demonstrated that the multi-layer switch is able to serve as an L2 switch,
router or a VLAN router. The use cases covered also demonstrated the application of the
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developed SDN applications. The experiments have shown also the easy extensibility of
the system.

The processes illustrated in this chapter for network monitoring and management of
the underlying network demonstrated a simple model of network management through
centralised decisions and policy making. The policies defined for each use case resulted
in automated flow management, topology update and traffic monitoring.



Chapter 9

Conclusion

The main goal of this thesis was to develop an inexpensive, multi-layer SDN switch that
could be used in conjunction with a small-medium scale network. This work should pro-
vide useful information for network administrators undertaking the creation of SDN net-
works faced with limited resources. It also provides various tools to manage, benchmark,
and evaluate network hardware and network bandwidth. The software tools selected were
open source, i.e. freely available. This chapter concludes the thesis by providing an anal-
ysis of the work done, summarising contributions made and presenting suggestions for
future work.

9.1 Achieved Objectives

This section revisits the objectives outlined in Section 1.2, to evaluate the degree to which
these objectives were met.

The following are the objectives set in Section 1.2:

1. Investigate open source tools and commodity hardware to implement an inexpensive
multi-layer SDN switch.

2. Evaluate the performance of the developed switch.

3. Provide a simplified structure for network applications development and integrate
common functions present in certain commercial implementations.

4. Demonstrate a simplified process of network management.

146
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9.1.1 Tools to Use for Developing an SDN Switch

The investigation of commodity hardware revealed three major forms of networking hard-
ware: general-purpose CPU, FPGAs and ASICs. By considering the requirement of an
inexpensive, general-purpose CPU offers the cheapest solution but possibly with limited
performance. On the other hand, they offer the greatest flexibility (This is because CPUs
implement programs that run as software in main memory). Hence changes in function-
ality is quick and seamless. So, the switch was realised as a software switch that runs on
commodity hardware. The software tools implemented were free and open. This helped
achieve the goal of implementing an inexpensive hardware switch.

The OVS and DPDK framework enabled high speed packet processing in software for
physical interfaces. The scale at which the switch operates was deemed be feasible for
small-medium networks with port speeds of 1 GBit/s, suitable for research, office, campus
networks or even private cloud environments.

An important question on the suitability of commodity hardware was to research further
about system architecture. This would ensure that there was optimal configuration for
the system. This investigated the interconnection between the NIC (Intel R© 82580), CPU
and memory. The Intel R© 82580 network card interfaced directly with the CPU over the
recommended 4 lanes. This minimised the distance between NIC and main memory. And
so, did not limit the rate of data transfer between a port on the NIC and the user program
ovs-vswitchd.

9.1.2 Performance of the Switch

The second objective was to evaluate the performance of the multi-layer SDN switch.
This was achieved by performing sets of tests on the switch. These included IO, L2, L3
performance and bandwidth as well as VLAN tagging networks. The results gathered
were throughput and latency measurements for IO, L2 and L3 forwarding. Using the
TRex traffic generator, the switch maintained line speed, where the average forwarding
time was less than 100 µs. Using iPerf, the results of L2 and L3 achieved speeds of 931
MBits/s; the results of VLAN achieved speeds of 929 MBits/s. The performance of the
switch is therefore suitable for small-medium scale applications.
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9.1.3 Simplified Structure for Network Applications

The third objective was to provide simplified method of implementing SDN networking
including network applications that perform functions found in commercial implemen-
tations. This was demonstrated Through Ryu SDN controller which hosted network
applications. The platform for programming included API calls to the Ryu controller
simplifying the development of applications. The Ryu framework also comes with exam-
ple implementations reducing the time to develop applications.

The functions tested were the functioning of an L2 switch, a router, DHCP service and
VLAN.

9.1.4 Simplified the Process of Network Management

The fourth objective was to express a simplified way for network management. This was
demonstrated by the development of a web interface to configure the system. This reduces
the time to configure the network, improving the efficiency of the system.

The web interface also displays the network topology for visualising the structure of the
network. The user can take advantage of the interface by creating JSON objects to set
policies, while the controller and SDN applications handle low-level commands to the
underlying network devices.

9.2 Limitations

Naturally, there are some limitations to the OpenFlow multi-layer switch implementation.
The measurements done during the evaluation of the switch cover the core functionality
and does not completely cover the behaviour for all the features of the switch nor cover
the entire functions of the controller. eg, the switch’s capability such as MAC and VLAN
learning for ingress port, VLAN trunking and access ports, Generic Routing Encapsulation
(GRE), Virtual Extensible LAN (VXLAN) , Stateless Transport Tunneling (STT), and
Locator/Identifier Separation Protocol (LISP) tunnelling, e.t.c, while the controller is able
to extend on these capabilities. Another limitation was the measurements of the latency,
which was based on the CPU, software timers, rather than using hardware timers [113].



9.3. FUTURE WORK 149

9.3 Future work

Below are the considerations for future development, beginning with the data plane switch.

• Extending the functions within the web UI by introducing additional applications
such as load balancers and policy engines.

• To further reduce costs, ARM processors (which are found in mobile devices) may
substitute the Intel processor, offering multi-threaded architecture which the OVS-
DPDK can take advantage of.

• Use the switch to provide a way to test the migration from traditional to SDN
networks, as done by Google in [114] or proposed migration structure seen in [54].

• Deploy the switch in a production environment to judge its robustness.

9.4 Summary

The work done in this thesis detailed the development of an inexpensive but flexible SDN
switch using open source software and commodity hardware. The testing of the switch
also provided a guide for building a small-scale SDN network.
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Appendix A

TestPMD Info

Listing A.1: TestPMD info for port 0 of Intel R© 82580 NIC.

testpmd> show port info 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Infos for port 0 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
MAC address: 00:1B:21:A6:D3:BC
Driver name: net_e1000_igb
Connect to socket: 0
memory allocation on the socket: 0
Link status: down
Link speed: 0 Mbps
Link duplex: half−duplex
MTU: 1500
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 24
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:
strip on
filter on
qinq(extend) off

Hash key size in bytes: 40
Redirection table size: 128
Supported flow types:
ipv4
ipv4−tcp
ipv4−udp
ipv6
ipv6−tcp
ipv6−udp
user defined 15
user defined 16
user defined 17

Max possible RX queues: 8
Max possible number of RXDs per queue: 4096
Min possible number of RXDs per queue: 32
RXDs number alignment: 8
Max possible TX queues: 8
Max possible number of TXDs per queue: 4096
Min possible number of TXDs per queue: 32
TXDs number alignment: 8
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A.1 OpenFlow Table Description

Listing A.2: Table Description for Table 0.
openvswitch@openvswitch:~$ sudo ovs−ofctl dump−table−features br0 −O OpenFlow13
table 0:
metadata: match=0xffffffffffffffff write=0xffffffffffffffff
max_entries=1000000
instructions (table miss and others):
next tables: 1−253
instructions: meter,apply_actions,clear_actions,write_actions,write_metadata,goto_table
Write−Actions and Apply−Actions features:
actions: output group set_field strip_vlan push_vlan mod_nw_ttl dec_ttl set_mpls_ttl

↪→ dec_mpls_ttl push_mpls pop_mpls set_queue
supported on Set−Field: tun_id tun_src tun_dst tun_ipv6_src tun_ipv6_dst tun_flags

↪→ tun_gbp_id tun_gbp_flags tun_erspan_idx tun_erspan_ver tun_erspan_dir
↪→ tun_erspan_hwid tun_metadata0 tun_metadata1 tun_metadata2 tun_metadata3
↪→ tun_metadata4 tun_metadata5 tun_metadata6 tun_metadata7 tun_metadata8
↪→ tun_metadata9 tun_metadata10 tun_metadata11 tun_metadata12 tun_metadata13
↪→ tun_metadata14 tun_metadata15 tun_metadata16 tun_metadata17 tun_metadata18
↪→ tun_metadata19 tun_metadata20 tun_metadata21 tun_metadata22 tun_metadata23
↪→ tun_metadata24 tun_metadata25 tun_metadata26 tun_metadata27 tun_metadata28
↪→ tun_metadata29 tun_metadata30 tun_metadata31 tun_metadata32 tun_metadata33
↪→ tun_metadata34 tun_metadata35 tun_metadata36 tun_metadata37 tun_metadata38
↪→ tun_metadata39 tun_metadata40 tun_metadata41 tun_metadata42 tun_metadata43
↪→ tun_metadata44 tun_metadata45 tun_metadata46 tun_metadata47 tun_metadata48
↪→ tun_metadata49 tun_metadata50 tun_metadata51 tun_metadata52 tun_metadata53
↪→ tun_metadata54 tun_metadata55 tun_metadata56 tun_metadata57 tun_metadata58
↪→ tun_metadata59 tun_metadata60 tun_metadata61 tun_metadata62 tun_metadata63
↪→ metadata in_port in_port_oxm pkt_mark ct_mark ct_label reg0 reg1 reg2 reg3 reg4
↪→ reg5 reg6 reg7 reg8 reg9 reg10 reg11 reg12 reg13 reg14 reg15 xreg0 xreg1 xreg2
↪→ xreg3 xreg4 xreg5 xreg6 xreg7 xxreg0 xxreg1 xxreg2 xxreg3 eth_src eth_dst
↪→ vlan_tci vlan_vid vlan_pcp mpls_label mpls_tc mpls_ttl ip_src ip_dst ipv6_src
↪→ ipv6_dst ipv6_label nw_tos ip_dscp nw_ecn nw_ttl arp_op arp_spa arp_tpa arp_sha
↪→ arp_tha tcp_src tcp_dst udp_src udp_dst sctp_src sctp_dst icmp_type icmp_code
↪→ icmpv6_type icmpv6_code nd_target nd_sll nd_tll nsh_flags nsh_spi nsh_si nsh_c1
↪→ nsh_c2 nsh_c3 nsh_c4 nsh_ttl

....



Appendix B

Faucet Compliance Tests

B.1 Test Results

Listing B.1: Faucet full test results.
1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Ran 141 tests in 9234.158s

3
4 test results

5 ============

6
7
8 faucet_mininet_test_unit.FaucetSanityTest.test_listening OK

9 faucet_mininet_test_unit.FaucetSanityTest.test_portmap OK

10 faucet_mininet_test_unit.FaucetSanityTest.test_untagged OK

11 faucet_mininet_test_unit.FaucetConfigReloadAclTest.test_port_acls OK

12 faucet_mininet_test_unit.FaucetConfigReloadTest.test_add_unknown_dp OK

13 faucet_mininet_test_unit.FaucetConfigReloadTest.test_port_change_acl OK

14 faucet_mininet_test_unit.FaucetConfigReloadTest.test_port_change_perm_learn OK

15 faucet_mininet_test_unit.FaucetConfigReloadTest.test_port_change_vlan OK

16 faucet_mininet_test_unit.FaucetConfigReloadTest.test_tabs_are_bad OK

17 faucet_mininet_test_unit.FaucetConfigStatReloadAclTest.test_port_acls OK

18 faucet_mininet_test_unit.FaucetDeleteConfigReloadTest.test_delete_interface OK

19 faucet_mininet_test_unit.FaucetDestRewriteTest.test_switching OK

20 faucet_mininet_test_unit.FaucetDestRewriteTest.test_untagged OK

21 faucet_mininet_test_unit.FaucetEthSrcMaskTest.test_untagged OK

22 faucet_mininet_test_unit.FaucetExperimentalAPITest.test_untagged OK

23 faucet_mininet_test_unit.FaucetGroupTableTest.test_group_exist OK

24 faucet_mininet_test_unit.FaucetGroupTableTest.test_untagged OK

25 faucet_mininet_test_unit.FaucetGroupTableUntaggedIPv4RouteTest.test_untagged OK

26 faucet_mininet_test_unit.FaucetGroupTableUntaggedIPv6RouteTest.test_untagged OK

27 faucet_mininet_test_unit.FaucetIPv4TupleTest.test_tuples OK

28 faucet_mininet_test_unit.FaucetIPv6TupleTest.test_tuples OK

29 faucet_mininet_test_unit.FaucetMaxHostsPortTest.test_untagged OK

30 faucet_mininet_test_unit.FaucetMultiOutputTest.test_untagged OK
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31 faucet_mininet_test_unit.FaucetNailedFailoverForwardingTest.test_untagged OK

32 faucet_mininet_test_unit.FaucetNailedForwardingTest.test_untagged OK

33 faucet_mininet_test_unit.FaucetRouterConfigReloadTest.test_router_config_reload OK

34 faucet_mininet_test_unit.FaucetSingleHostsTimeoutPrometheusTest.test_untagged OK

35 faucet_mininet_test_unit.FaucetSingleL2LearnMACsOnPortTest.test_untagged OK

36 faucet_mininet_test_unit.FaucetSingleL3LearnMACsOnPortTest.test_untagged OK

37 faucet_mininet_test_unit.FaucetSingleUntaggedIPv4ControlPlaneTest.test_fping_controller OK

38 faucet_mininet_test_unit.FaucetSingleUntaggedIPv4ControlPlaneTest.test_untagged OK

39 faucet_mininet_test_unit.FaucetSingleUntaggedIPv6ControlPlaneTest.test_fping_controller OK

40 faucet_mininet_test_unit.FaucetSingleUntaggedIPv6ControlPlaneTest.test_untagged OK

41 faucet_mininet_test_unit.FaucetSingleUntaggedInfluxTooSlowTest.test_untagged OK

42 faucet_mininet_test_unit.FaucetStackStringOfDPUntaggedTest.test_untagged OK

43 faucet_mininet_test_unit.FaucetTaggedAndUntaggedTest.test_separate_untagged_tagged OK

44 faucet_mininet_test_unit.FaucetTaggedAndUntaggedVlanGroupTest.test_untagged OK

45 faucet_mininet_test_unit.FaucetTaggedAndUntaggedVlanTest.test_untagged OK

46 faucet_mininet_test_unit.FaucetTaggedBroadcastTest.test_tagged OK

47 faucet_mininet_test_unit.FaucetTaggedGroupTableTest.test_group_exist OK

48 faucet_mininet_test_unit.FaucetTaggedGroupTableTest.test_tagged OK

49 faucet_mininet_test_unit.FaucetTaggedICMPv6ACLTest.test_icmpv6_acl_match OK

50 faucet_mininet_test_unit.FaucetTaggedICMPv6ACLTest.test_tagged OK

51 faucet_mininet_test_unit.FaucetTaggedIPv4ControlPlaneTest.test_ping_controller OK

52 faucet_mininet_test_unit.FaucetTaggedIPv4ControlPlaneTest.test_tagged OK

53 faucet_mininet_test_unit.FaucetTaggedIPv4RouteTest.test_tagged OK

54 faucet_mininet_test_unit.FaucetTaggedIPv6ControlPlaneTest.test_ping_controller OK

55 faucet_mininet_test_unit.FaucetTaggedIPv6ControlPlaneTest.test_tagged OK

56 faucet_mininet_test_unit.FaucetTaggedIPv6RouteTest.test_tagged OK

57 faucet_mininet_test_unit.FaucetTaggedPopVlansOutputTest.test_tagged OK

58 faucet_mininet_test_unit.FaucetTaggedProactiveNeighborIPv4RouteTest.test_tagged

↪→ OKfaucet_mininet_test_unit.

59 faucet_mininet_test_unit.FaucetTaggedProactiveNeighborIPv6RouteTest.test_tagged OK

60 faucet_mininet_test_unit.FaucetTaggedScaleTest.test_tagged OK

61 faucet_mininet_test_unit.FaucetTaggedSwapVidMirrorTest.test_tagged OK

62 faucet_mininet_test_unit.FaucetTaggedSwapVidOutputTest.test_tagged OK

63 faucet_mininet_test_unit.FaucetTaggedTargetedResolutionIPv4RouteTest.test_tagged OK

64 faucet_mininet_test_unit.FaucetTaggedTest.test_tagged OK

65 faucet_mininet_test_unit.FaucetTaggedWithUntaggedTest.test_tagged OK

66 faucet_mininet_test_unit.FaucetUntagged8021XTest.test_untagged OK

67 faucet_mininet_test_unit.FaucetUntaggedACLMirrorDefaultAllowTest.test_eapol_mirrored OK

68 faucet_mininet_test_unit.FaucetUntaggedACLMirrorDefaultAllowTest.test_untagged OK

69 faucet_mininet_test_unit.FaucetUntaggedACLMirrorTest.test_eapol_mirrored OK

70 faucet_mininet_test_unit.FaucetUntaggedACLMirrorTest.test_untagged OK

71 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_port5001_blocked OK

72 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_port5002_notblocked OK

73 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_port_gt1023_blocked OK

74 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_untagged OK

75 faucet_mininet_test_unit.FaucetUntaggedACLTest.test_port5001_blocked OK

76 faucet_mininet_test_unit.FaucetUntaggedACLTest.test_port5002_notblocked OK

77 faucet_mininet_test_unit.FaucetUntaggedACLTest.test_untagged OK

78 faucet_mininet_test_unit.FaucetUntaggedApplyMeterTest.test_untagged OK

79 faucet_mininet_test_unit.FaucetUntaggedBGPDualstackDefaultRouteTest.test_untagged OK

80 faucet_mininet_test_unit.FaucetUntaggedBGPIPv4DefaultRouteTest.test_untagged OK

81 faucet_mininet_test_unit.FaucetUntaggedBGPIPv4RouteTest.test_untagged OK

82 faucet_mininet_test_unit.FaucetUntaggedBGPIPv6DefaultRouteTest.test_untagged OK

83 faucet_mininet_test_unit.FaucetUntaggedBGPIPv6RouteTest.test_untagged OK

84 faucet_mininet_test_unit.FaucetUntaggedBroadcastTest.test_untagged OK

85 faucet_mininet_test_unit.FaucetUntaggedCDPTest.test_untagged OK
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86 faucet_mininet_test_unit.FaucetUntaggedControllerNfvTest.test_untagged OK

87 faucet_mininet_test_unit.FaucetUntaggedDPACLTest.test_port5001_blocked OK

88 faucet_mininet_test_unit.FaucetUntaggedDPACLTest.test_port5002_notblocked OK

89 faucet_mininet_test_unit.FaucetUntaggedDPACLTest.test_untagged OK

90 faucet_mininet_test_unit.FaucetUntaggedExpireIPv4InterVLANRouteTest.test_untagged OK

91 faucet_mininet_test_unit.FaucetUntaggedGroupHairpinTest.test_untagged OK

92 faucet_mininet_test_unit.FaucetUntaggedHUPTest.test_untagged OK

93 faucet_mininet_test_unit.FaucetUntaggedHairpinTest.test_untagged OK

94 faucet_mininet_test_unit.FaucetUntaggedHostMoveTest.test_untagged OK

95 faucet_mininet_test_unit.FaucetUntaggedHostPermanentLearnTest.test_untagged OK

96 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_flap_ping_controller

↪→ OK

97 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_fuzz_controller OK

98 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_ping_fragment_controller

↪→ OK

99 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_untagged OK

100 faucet_mininet_test_unit.FaucetUntaggedIPv4InterVLANRouteTest.test_untagged OK

101 faucet_mininet_test_unit.FaucetUntaggedIPv4LACPTest.test_untagged OK

102 faucet_mininet_test_unit.FaucetUntaggedIPv4PolicyRouteTest.test_untagged OK

103 faucet_mininet_test_unit.FaucetUntaggedIPv4RouteTest.test_untagged OK

104 faucet_mininet_test_unit.FaucetUntaggedIPv6ControlPlaneFuzzTest.test_flap_ping_controller

↪→ OK

105 faucet_mininet_test_unit.FaucetUntaggedIPv6ControlPlaneFuzzTest.test_fuzz_controller OK

106 faucet_mininet_test_unit.FaucetUntaggedIPv6ControlPlaneFuzzTest.test_untagged OK

107 faucet_mininet_test_unit.FaucetUntaggedIPv6InterVLANRouteTest.test_untagged OK

108 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_ndisc6 OK

109 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_ra_advertise OK

110 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_rdisc6 OK

111 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_rs_reply OK

112 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_untagged OK

113 faucet_mininet_test_unit.FaucetUntaggedIPv6RouteTest.test_untagged OK

114 faucet_mininet_test_unit.FaucetUntaggedInfluxDownTest.test_untagged OK

115 faucet_mininet_test_unit.FaucetUntaggedInfluxTest.test_untagged OK

116 faucet_mininet_test_unit.FaucetUntaggedInfluxUnreachableTest.test_untagged OK

117 faucet_mininet_test_unit.FaucetUntaggedLLDPBlockedTest.test_untagged OK

118 faucet_mininet_test_unit.FaucetUntaggedLLDPDefaultFallbackTest.test_untagged OK

119 faucet_mininet_test_unit.FaucetUntaggedLLDPTest.test_untagged OK

120 faucet_mininet_test_unit.FaucetUntaggedLogRotateTest.test_untagged OK

121 faucet_mininet_test_unit.FaucetUntaggedLoopTest.test_untagged OK

122 faucet_mininet_test_unit.FaucetUntaggedMaxHostsTest.test_untagged OK

123 faucet_mininet_test_unit.FaucetUntaggedMeterParseTest.test_untagged OK

124 faucet_mininet_test_unit.FaucetUntaggedMirrorTest.test_untagged OK

125 faucet_mininet_test_unit.FaucetUntaggedMixedIPv4RouteTest.test_untagged OK

126 faucet_mininet_test_unit.FaucetUntaggedMixedIPv6RouteTest.test_untagged OK

127 faucet_mininet_test_unit.FaucetUntaggedMultiDBWatcherTest.test_untagged OK

128 faucet_mininet_test_unit.FaucetUntaggedMultiMirrorSepTest.test_untagged OK

129 faucet_mininet_test_unit.FaucetUntaggedMultiMirrorTest.test_untagged OK

130 faucet_mininet_test_unit.FaucetUntaggedMultiVlansOutputTest.test_untagged OK

131 faucet_mininet_test_unit.FaucetUntaggedNoCombinatorialBroadcastTest.test_untagged OK

132 faucet_mininet_test_unit.FaucetUntaggedNoPortUnicastFloodTest.test_untagged OK

133 faucet_mininet_test_unit.FaucetUntaggedNoReconfACLTest.test_untagged OK

134 faucet_mininet_test_unit.FaucetUntaggedNoVLanUnicastFloodTest.test_untagged OK

135 faucet_mininet_test_unit.FaucetUntaggedOutputOnlyTest.test_untagged OK

136 faucet_mininet_test_unit.FaucetUntaggedOutputOverrideTest.test_untagged OK

137 faucet_mininet_test_unit.FaucetUntaggedOutputTest.test_untagged OK

138 faucet_mininet_test_unit.FaucetUntaggedPortUnicastFloodTest.test_untagged OK
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139 faucet_mininet_test_unit.FaucetUntaggedPrometheusGaugeTest.test_untagged OK

140 faucet_mininet_test_unit.FaucetUntaggedRandomVidTest.test_untagged OK

141 faucet_mininet_test_unit.FaucetUntaggedSameVlanIPv6RouteTest.test_untagged OK

142 faucet_mininet_test_unit.FaucetUntaggedTcpIPv4IperfTest.test_untagged OK

143 faucet_mininet_test_unit.FaucetUntaggedTcpIPv6IperfTest.test_untagged OK

144 faucet_mininet_test_unit.FaucetUntaggedTest.test_untagged OK

145 faucet_mininet_test_unit.FaucetUntaggedVLANACLTest.test_port5001_blocked OK

146 faucet_mininet_test_unit.FaucetUntaggedVLANACLTest.test_port5002_notblocked OK

147 faucet_mininet_test_unit.FaucetUntaggedVLANACLTest.test_untagged OK

148 faucet_mininet_test_unit.FaucetUntaggedVLanUnicastFloodTest.test_untagged OK

149 faucet_mininet_test_unit.FaucetSanityTest.test_listening OK

150 faucet_mininet_test_unit.FaucetSanityTest.test_portmap OK

151 faucet_mininet_test_unit.FaucetSanityTest.test_untagged OK

152 faucet_mininet_test_unit.FaucetConfigReloadAclTest.test_port_acls OK

153 faucet_mininet_test_unit.FaucetConfigReloadTest.test_add_unknown_dp OK

154 faucet_mininet_test_unit.FaucetConfigReloadTest.test_port_change_acl OK

155 faucet_mininet_test_unit.FaucetConfigReloadTest.test_port_change_perm_learn OK

156 faucet_mininet_test_unit.FaucetConfigReloadTest.test_port_change_vlan OK

157 faucet_mininet_test_unit.FaucetConfigReloadTest.test_tabs_are_bad OK

158 faucet_mininet_test_unit.FaucetConfigStatReloadAclTest.test_port_acls OK

159 faucet_mininet_test_unit.FaucetDeleteConfigReloadTest.test_delete_interface OK

160 faucet_mininet_test_unit.FaucetDestRewriteTest.test_switching OK

161 faucet_mininet_test_unit.FaucetDestRewriteTest.test_untagged OK

162 faucet_mininet_test_unit.FaucetEthSrcMaskTest.test_untagged OK

163 faucet_mininet_test_unit.FaucetExperimentalAPITest.test_untagged OK

164 faucet_mininet_test_unit.FaucetGroupTableTest.test_group_exist OK

165 faucet_mininet_test_unit.FaucetGroupTableTest.test_untagged OK

166 faucet_mininet_test_unit.FaucetGroupTableUntaggedIPv4RouteTest.test_untagged OK

167 faucet_mininet_test_unit.FaucetGroupTableUntaggedIPv6RouteTest.test_untagged OK

168 faucet_mininet_test_unit.FaucetIPv4TupleTest.test_tuples OK

169 faucet_mininet_test_unit.FaucetIPv6TupleTest.test_tuples OK

170 faucet_mininet_test_unit.FaucetMaxHostsPortTest.test_untagged OK

171 faucet_mininet_test_unit.FaucetMultiOutputTest.test_untagged OK

172 faucet_mininet_test_unit.FaucetNailedFailoverForwardingTest.test_untagged OK

173 faucet_mininet_test_unit.FaucetNailedForwardingTest.test_untagged OK

174 faucet_mininet_test_unit.FaucetRouterConfigReloadTest.test_router_config_reload OK

175 faucet_mininet_test_unit.FaucetSingleHostsTimeoutPrometheusTest.test_untagged OK

176 faucet_mininet_test_unit.FaucetSingleL2LearnMACsOnPortTest.test_untagged OK

177 faucet_mininet_test_unit.FaucetSingleL3LearnMACsOnPortTest.test_untagged OK

178 faucet_mininet_test_unit.FaucetSingleUntaggedIPv4ControlPlaneTest.test_fping_controller OK

179 faucet_mininet_test_unit.FaucetSingleUntaggedIPv4ControlPlaneTest.test_untagged OK

180 faucet_mininet_test_unit.FaucetSingleUntaggedIPv6ControlPlaneTest.test_fping_controller OK

181 faucet_mininet_test_unit.FaucetSingleUntaggedIPv6ControlPlaneTest.test_untagged OK

182 faucet_mininet_test_unit.FaucetSingleUntaggedInfluxTooSlowTest.test_untagged OK

183 faucet_mininet_test_unit.FaucetStackStringOfDPUntaggedTest.test_untagged OK

184 faucet_mininet_test_unit.FaucetTaggedAndUntaggedTest.test_separate_untagged_tagged OK

185 faucet_mininet_test_unit.FaucetTaggedAndUntaggedVlanGroupTest.test_untagged OK

186 faucet_mininet_test_unit.FaucetTaggedAndUntaggedVlanTest.test_untagged OK

187 faucet_mininet_test_unit.FaucetTaggedBroadcastTest.test_tagged OK

188 faucet_mininet_test_unit.FaucetTaggedGroupTableTest.test_group_exist OK

189 faucet_mininet_test_unit.FaucetTaggedGroupTableTest.test_tagged OK

190 faucet_mininet_test_unit.FaucetTaggedICMPv6ACLTest.test_icmpv6_acl_match OK

191 faucet_mininet_test_unit.FaucetTaggedICMPv6ACLTest.test_tagged OK

192 faucet_mininet_test_unit.FaucetTaggedIPv4ControlPlaneTest.test_ping_controller OK

193 faucet_mininet_test_unit.FaucetTaggedIPv4ControlPlaneTest.test_tagged OK

194 faucet_mininet_test_unit.FaucetTaggedIPv4RouteTest.test_tagged OK
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195 faucet_mininet_test_unit.FaucetTaggedIPv6ControlPlaneTest.test_ping_controller OK

196 faucet_mininet_test_unit.FaucetTaggedIPv6ControlPlaneTest.test_tagged OK

197 faucet_mininet_test_unit.FaucetTaggedIPv6RouteTest.test_tagged OK

198 faucet_mininet_test_unit.FaucetTaggedPopVlansOutputTest.test_tagged OK

199 faucet_mininet_test_unit.FaucetTaggedProactiveNeighborIPv4RouteTest.test_tagged OK

200 faucet_mininet_test_unit.FaucetTaggedProactiveNeighborIPv6RouteTest.test_tagged OK

201 faucet_mininet_test_unit.FaucetTaggedScaleTest.test_tagged OK

202 faucet_mininet_test_unit.FaucetTaggedSwapVidMirrorTest.test_tagged OK

203 faucet_mininet_test_unit.FaucetTaggedSwapVidOutputTest.test_tagged OK

204 faucet_mininet_test_unit.FaucetTaggedTargetedResolutionIPv4RouteTest.test_tagged OK

205 faucet_mininet_test_unit.FaucetTaggedTest.test_tagged OK

206 faucet_mininet_test_unit.FaucetTaggedWithUntaggedTest.test_tagged OK

207 faucet_mininet_test_unit.FaucetUntagged8021XTest.test_untagged OK

208 faucet_mininet_test_unit.FaucetUntaggedACLMirrorDefaultAllowTest.test_eapol_mirrored OK

209 faucet_mininet_test_unit.FaucetUntaggedACLMirrorDefaultAllowTest.test_untagged OK

210 faucet_mininet_test_unit.FaucetUntaggedACLMirrorTest.test_eapol_mirrored OK

211 faucet_mininet_test_unit.FaucetUntaggedACLMirrorTest.test_untagged OK

212 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_port5001_blocked OK

213 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_port5002_notblocked OK

214 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_port_gt1023_blocked OK

215 faucet_mininet_test_unit.FaucetUntaggedACLTcpMaskTest.test_untagged OK

216 faucet_mininet_test_unit.FaucetUntaggedACLTest.test_port5001_blocked OK

217 faucet_mininet_test_unit.FaucetUntaggedACLTest.test_port5002_notblocked OK

218 faucet_mininet_test_unit.FaucetUntaggedACLTest.test_untagged OK

219 faucet_mininet_test_unit.FaucetUntaggedApplyMeterTest.test_untagged OK

220 faucet_mininet_test_unit.FaucetUntaggedBGPDualstackDefaultRouteTest.test_untagged OK

221 faucet_mininet_test_unit.FaucetUntaggedBGPIPv4DefaultRouteTest.test_untagged OK

222 faucet_mininet_test_unit.FaucetUntaggedBGPIPv4RouteTest.test_untagged OK

223 faucet_mininet_test_unit.FaucetUntaggedBGPIPv6DefaultRouteTest.test_untagged OK

224 faucet_mininet_test_unit.FaucetUntaggedBGPIPv6RouteTest.test_untagged OK

225 faucet_mininet_test_unit.FaucetUntaggedBroadcastTest.test_untagged OK

226 faucet_mininet_test_unit.FaucetUntaggedCDPTest.test_untagged OK

227 faucet_mininet_test_unit.FaucetUntaggedControllerNfvTest.test_untagged OK

228 faucet_mininet_test_unit.FaucetUntaggedDPACLTest.test_port5001_blocked OK

229 faucet_mininet_test_unit.FaucetUntaggedDPACLTest.test_port5002_notblocked OK

230 faucet_mininet_test_unit.FaucetUntaggedDPACLTest.test_untagged OK

231 faucet_mininet_test_unit.FaucetUntaggedExpireIPv4InterVLANRouteTest.test_untagged OK

232 faucet_mininet_test_unit.FaucetUntaggedGroupHairpinTest.test_untagged OK

233 faucet_mininet_test_unit.FaucetUntaggedHUPTest.test_untagged OK

234 faucet_mininet_test_unit.FaucetUntaggedHairpinTest.test_untagged OK

235 faucet_mininet_test_unit.FaucetUntaggedHostMoveTest.test_untagged OK

236 faucet_mininet_test_unit.FaucetUntaggedHostPermanentLearnTest.test_untagged OK

237 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_flap_ping_controller

↪→ OK

238 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_fuzz_controller OK

239 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_ping_fragment_controller

↪→ OK

240 faucet_mininet_test_unit.FaucetUntaggedIPv4ControlPlaneFuzzTest.test_untagged OK

241 faucet_mininet_test_unit.FaucetUntaggedIPv4InterVLANRouteTest.test_untagged OK

242 faucet_mininet_test_unit.FaucetUntaggedIPv4LACPTest.test_untagged OK

243 faucet_mininet_test_unit.FaucetUntaggedIPv4PolicyRouteTest.test_untagged OK

244 faucet_mininet_test_unit.FaucetUntaggedIPv4RouteTest.test_untagged OK

245 faucet_mininet_test_unit.FaucetUntaggedIPv6ControlPlaneFuzzTest.test_flap_ping_controller

↪→ OK

246 faucet_mininet_test_unit.FaucetUntaggedIPv6ControlPlaneFuzzTest.test_fuzz_controller OK

247 faucet_mininet_test_unit.FaucetUntaggedIPv6ControlPlaneFuzzTest.test_untagged OK
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248 faucet_mininet_test_unit.FaucetUntaggedIPv6InterVLANRouteTest.test_untagged OK

249 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_ndisc6 OK

250 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_ra_advertise OK

251 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_rdisc6 OK

252 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_rs_reply OK

253 faucet_mininet_test_unit.FaucetUntaggedIPv6RATest.test_untagged OK

254 faucet_mininet_test_unit.FaucetUntaggedIPv6RouteTest.test_untagged OK

255 faucet_mininet_test_unit.FaucetUntaggedInfluxDownTest.test_untagged OK

256 faucet_mininet_test_unit.FaucetUntaggedInfluxTest.test_untagged OK

257 faucet_mininet_test_unit.FaucetUntaggedInfluxUnreachableTest.test_untagged OK

258 faucet_mininet_test_unit.FaucetUntaggedLLDPBlockedTest.test_untagged OK

259 faucet_mininet_test_unit.FaucetUntaggedLLDPDefaultFallbackTest.test_untagged OK

260 faucet_mininet_test_unit.FaucetUntaggedLLDPTest.test_untagged OK

261 faucet_mininet_test_unit.FaucetUntaggedLogRotateTest.test_untagged OK

262 faucet_mininet_test_unit.FaucetUntaggedLoopTest.test_untagged OK

263 faucet_mininet_test_unit.FaucetUntaggedMaxHostsTest.test_untagged OK

264 faucet_mininet_test_unit.FaucetUntaggedMeterParseTest.test_untagged OK

265 faucet_mininet_test_unit.FaucetUntaggedMirrorTest.test_untagged OK

266 faucet_mininet_test_unit.FaucetUntaggedMixedIPv4RouteTest.test_untagged OK

267 faucet_mininet_test_unit.FaucetUntaggedMixedIPv6RouteTest.test_untagged OK

268 faucet_mininet_test_unit.FaucetUntaggedMultiDBWatcherTest.test_untagged OK

269 faucet_mininet_test_unit.FaucetUntaggedMultiMirrorSepTest.test_untagged OK

270 faucet_mininet_test_unit.FaucetUntaggedMultiMirrorTest.test_untagged OK

271 faucet_mininet_test_unit.FaucetUntaggedMultiVlansOutputTest.test_untagged OK

272 faucet_mininet_test_unit.FaucetUntaggedNoCombinatorialBroadcastTest.test_untagged OK

273 faucet_mininet_test_unit.FaucetUntaggedNoPortUnicastFloodTest.test_untagged OK

274 faucet_mininet_test_unit.FaucetUntaggedNoReconfACLTest.test_untagged OK

275 faucet_mininet_test_unit.FaucetUntaggedNoVLanUnicastFloodTest.test_untagged OK

276 faucet_mininet_test_unit.FaucetUntaggedOutputOnlyTest.test_untagged OK

277 faucet_mininet_test_unit.FaucetUntaggedOutputOverrideTest.test_untagged OK

278 faucet_mininet_test_unit.FaucetUntaggedOutputTest.test_untagged OK

279 faucet_mininet_test_unit.FaucetUntaggedPortUnicastFloodTest.test_untagged OK

280 faucet_mininet_test_unit.FaucetUntaggedPrometheusGaugeTest.test_untagged OK

281 faucet_mininet_test_unit.FaucetUntaggedRandomVidTest.test_untagged OK

282 faucet_mininet_test_unit.FaucetUntaggedSameVlanIPv6RouteTest.test_untagged OK

283 faucet_mininet_test_unit.FaucetUntaggedTcpIPv4IperfTest.test_untagged OK

284 faucet_mininet_test_unit.FaucetUntaggedTcpIPv6IperfTest.test_untagged OK

285 faucet_mininet_test_unit.FaucetUntaggedTest.test_untagged OK

286 faucet_mininet_test_unit.FaucetUntaggedVLANACLTest.test_port5001_blocked OK

287 faucet_mininet_test_unit.FaucetUntaggedVLANACLTest.test_port5002_notblocked OK

288 faucet_mininet_test_unit.FaucetUntaggedVLANACLTest.test_untagged OK

289 faucet_mininet_test_unit.FaucetUntaggedVLanUnicastFloodTest.test_untagged OK
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Web UI

C.1 Full View of the web UI
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Figure C.1: The Full View of The Web UI.
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C.2 Configuration Toolbar

Figure C.2: Configuration Toolbar Showing Settings for an OpenFlow Switch.



Appendix D

Use Case: Layer 2

D.1 IP Addresses

Listing D.1: Host 2 Network Configuration.
host2@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7e:36:a0

inet addr:10.0.0.253 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7e:36a0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4251 errors:0 dropped:0 overruns:0 frame:0
TX packets:1333 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1270258 (1.2 MB) TX bytes:425570 (425.5 KB)
Interrupt:16 Memory:f7100000−f7120000

....

Listing D.2: Host 3 Network Configuration.
host3@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7c:d3:58

inet addr:10.0.0.252 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7c:d358/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3365 errors:0 dropped:0 overruns:0 frame:0
TX packets:1410 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1136334 (1.1 MB) TX bytes:482866 (482.8 KB)
Interrupt:16 Memory:f7100000−f7120000

....
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Listing D.3: Host 4 Network Configuration.
host4@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7a:0d:b9

inet addr:10.0.0.251 Bcast:10.0.0.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7a:db9/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:349 errors:0 dropped:0 overruns:0 frame:0
TX packets:170 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:74726 (74.7 KB) TX bytes:46580 (46.5 KB)
Interrupt:16 Memory:f7100000−f7120000

....

D.2 DHCP Logs During IP Allocation

Listing D.4: DHCP Application Logs During IP allocation.
1 127.0.0.1 − − [18/Aug/2018 08:54:17] "GET /init/0000116528699904 HTTP/1.1" 200 379 0.009102

2 [DHCP][INFO] @ 2018−08−18 08:54:25.048271> switch:116528699904 Managed by DHCP

3 [DHCP][INFO] @ 2018−08−18 08:54:25.048513> port:1 Receive DHCP message type

↪→ DHCP_DISCOVER

4 client_ip_addr 10.0.0.254

5 [DHCP][INFO] @ 2018−08−18 08:54:25.048704> port:1 Send DHCP message type DHCP_OFFER

6 [DHCP][INFO] @ 2018−08−18 08:54:25.049582> {’30:5a:3a:7c:cd:9d’: ’10.0.0.254’}

7 [DHCP][INFO] @ 2018−08−18 08:54:25.049749> {’10.0.0.254’: 1}

8 [DHCP][INFO] @ 2018−08−18 08:54:25.049935> IP pool len 253

9 [DHCP][INFO] @ 2018−08−18 08:54:25.055254> switch:116528699904 Managed by DHCP

10 [DHCP][INFO] @ 2018−08−18 08:54:25.055426> port:1 Receive DHCP message type DHCP_REQUEST

11 [DHCP][INFO] @ 2018−08−18 08:54:25.055546> port:1 Send DHCP message type DHCP_ACK

12 [DHCP][INFO] @ 2018−08−18 08:55:06.396331> switch:116528699904 Managed by DHCP

13 [DHCP][INFO] @ 2018−08−18 08:55:06.396580> port:2 Receive DHCP message type DHCP_REQUEST

14 client_ip_addr 10.0.0.253

15 [DHCP][INFO] @ 2018−08−18 08:55:06.396843> port:2 Send DHCP message type DHCP_OFFER

16 [DHCP][INFO] @ 2018−08−18 08:55:06.397726> {’30:5a:3a:7c:cd:9d’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.0.253’}

17 [DHCP][INFO] @ 2018−08−18 08:55:06.397912> {’10.0.0.253’: 2, ’10.0.0.254’: 1}

18 [DHCP][INFO] @ 2018−08−18 08:55:06.398098> IP pool len 252

19 [DHCP][INFO] @ 2018−08−18 08:55:09.558645> switch:116528699904 Managed by DHCP

20 [DHCP][INFO] @ 2018−08−18 08:55:09.558899> port:2 Receive DHCP message type DHCP_REQUEST

21 [DHCP][INFO] @ 2018−08−18 08:55:09.559068> port:2 Send DHCP message type DHCP_ACK

22 [DHCP][INFO] @ 2018−08−18 08:55:09.640380> switch:116528699904 Managed by DHCP

23 [DHCP][INFO] @ 2018−08−18 08:55:09.640626> port:3 Receive DHCP message type DHCP_REQUEST

24 client_ip_addr 10.0.0.252

25 [DHCP][INFO] @ 2018−08−18 08:55:09.640890> port:3 Send DHCP message type DHCP_OFFER

26 [DHCP][INFO] @ 2018−08−18 08:55:09.641896> {’30:5a:3a:7c:cd:9d’: ’10.0.0.254’, ’30:5a:3a

↪→ :7c:d3:58’: ’10.0.0.252’, ’30:5a:3a:7e:36:a0’: ’10.0.0.253’}

27 [DHCP][INFO] @ 2018−08−18 08:55:09.642032> {’10.0.0.252’: 3, ’10.0.0.253’: 2,

↪→ ’10.0.0.254’: 1}

28 [DHCP][INFO] @ 2018−08−18 08:55:09.642178> IP pool len 251

29 [DHCP][INFO] @ 2018−08−18 08:55:12.867275> switch:116528699904 Managed by DHCP

30 [DHCP][INFO] @ 2018−08−18 08:55:12.867519> port:3 Receive DHCP message type DHCP_REQUEST

31 [DHCP][INFO] @ 2018−08−18 08:55:12.867671> port:3 Send DHCP message type DHCP_ACK

32 [DHCP][INFO] @ 2018−08−18 08:55:12.944377> switch:116528699904 Managed by DHCP

33 [DHCP][INFO] @ 2018−08−18 08:55:12.944619> port:4 Receive DHCP message type DHCP_REQUEST

34 client_ip_addr 10.0.0.251
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35 [DHCP][INFO] @ 2018−08−18 08:55:12.944811> port:4 Send DHCP message type DHCP_OFFER

36 [DHCP][INFO] @ 2018−08−18 08:55:12.945658> {’30:5a:3a:7c:cd:9d’: ’10.0.0.254’, ’30:5a:3a

↪→ :7a:0d:b9’: ’10.0.0.251’, ’30:5a:3a:7c:d3:58’: ’10.0.0.252’, ’30:5a:3a:7e:36:a0’:

↪→ ’10.0.0.253’}

37 [DHCP][INFO] @ 2018−08−18 08:55:12.945868> {’10.0.0.252’: 3, ’10.0.0.253’: 2,

↪→ ’10.0.0.251’: 4, ’10.0.0.254’: 1}

38 [DHCP][INFO] @ 2019−02−13 08:55:12.946021> IP pool len 250

39 [DHCP][INFO] @ 2019−02−13 08:55:15.367329> switch:116528699904 Managed by DHCP

40 [DHCP][INFO] @ 2019−02−13 08:55:15.367572> port:4 Receive DHCP message type DHCP_REQUEST

41 [DHCP][INFO] @ 2019−02−13 08:55:15.367727> port:4 Send DHCP message type DHCP_ACK



Appendix E

Use Case: Layer 3

E.1 Host Network Configurations

Listing E.1: Host 2 Network Configurations.
host2@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7c:d3:58

inet addr:10.0.1.254 Bcast:10.0.1.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7c:d358/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:334 errors:0 dropped:0 overruns:0 frame:0
TX packets:191 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:75852 (75.8 KB) TX bytes:50744 (50.7 KB)
Interrupt:16 Memory:f7100000−f7120000

...
host2@ubuntu:~$ ip route list
default via 10.0.1.1 dev enp0s31f6
10.0.1.0/24 dev enp0s31f6 proto kernel scope link src 10.0.1.254

Listing E.2: Host 3 Network Configurations.
host4@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7c:cd:9d

inet addr:10.0.2.254 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7c:cd9d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:11 errors:0 dropped:0 overruns:0 frame:0
TX packets:143 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1186 (1.1 KB) TX bytes:11620 (11.6 KB)
Interrupt:16 Memory:f7100000−f7120000

....
host4@ubuntu:~$ ip route list
default via 10.0.2.1 dev enp0s31f6
10.0.2.0/24 dev enp0s31f6 proto kernel scope link src 10.0.2.254
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Listing E.3: Host 4 Network Configurations.
host3@ubuntu:~$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 30:5a:3a:7e:36:a0

inet addr:10.0.3.254 Bcast:10.0.3.255 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7e:36a0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:302 errors:0 dropped:0 overruns:0 frame:0
TX packets:189 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:68902 (68.9 KB) TX bytes:45258 (45.2 KB)
Interrupt:16 Memory:f7100000−f7120000

....
host3@ubuntu:~$ ip route list
default via 10.0.3.1 dev enp0s31f6
10.0.3.0/24 dev enp0s31f6 proto kernel scope link src 10.0.3.254

E.2 DHCP Logs

Listing E.4: DHCP application logs during IP allocation
1 [DHCP][INFO] @ 2018−10−22 04:32:03.421104> switch:116528699904 Managed by DHCP

2 [DHCP][INFO] @ 2018−10−22 04:32:03.421352> port:1 Receive DHCP message type

↪→ DHCP_DISCOVER

3 client_ip_addr 10.0.0.254

4 [DHCP][INFO] @ 2018−10−22 04:32:03.421612> port:1 Send DHCP message type DHCP_OFFER

5 [DHCP][INFO] @ 2018−10−22 04:32:03.422568> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’}

6 [DHCP][INFO] @ 2018−10−22 04:32:03.422764> {’10.0.0.254’: 1}

7 [DHCP][INFO] @ 2018−10−22 04:32:03.422906> IP pool len 253

8 [DHCP][INFO] @ 2018−10−22 04:32:03.432072> switch:116528699904 Managed by DHCP

9 [DHCP][INFO] @ 2018−10−22 04:32:03.432626> port:1 Receive DHCP message type DHCP_REQUEST

10 [DHCP][INFO] @ 2018−10−22 04:32:03.432970> port:1 Send DHCP message type DHCP_ACK

11 [DHCP][INFO] @ 2018−10−22 04:32:36.768076> switch:116528699904 Managed by DHCP

12 [DHCP][INFO] @ 2018−10−22 04:32:36.768350> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

13 client_ip_addr 10.0.3.254

14 [DHCP][INFO] @ 2018−10−22 04:32:36.768580> port:4 Send DHCP message type DHCP_OFFER

15 [DHCP][INFO] @ 2018−10−22 04:32:36.769307> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.3.254’}

16 [DHCP][INFO] @ 2018−10−22 04:32:36.769446> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

17 [DHCP][INFO] @ 2018−10−22 04:32:36.769546> IP pool len 253

18 [DHCP][INFO] @ 2018−10−22 04:32:40.776150> switch:116528699904 Managed by DHCP

19 [DHCP][INFO] @ 2018−10−22 04:32:40.776318> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

20 client_ip_addr 10.0.3.254

21 [DHCP][INFO] @ 2018−10−22 04:32:40.776434> port:4 Send DHCP message type DHCP_OFFER

22 [DHCP][INFO] @ 2018−10−22 04:32:40.777012> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.3.254’}

23 [DHCP][INFO] @ 2018−10−22 04:32:40.777131> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

24 [DHCP][INFO] @ 2018−10−22 04:32:40.777218> IP pool len 253

25 [DHCP][INFO] @ 2018−10−22 04:32:44.784966> switch:116528699904 Managed by DHCP

26 [DHCP][INFO] @ 2018−10−22 04:32:44.785157> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

27 client_ip_addr 10.0.3.254

28 [DHCP][INFO] @ 2018−10−22 04:32:44.785257> port:4 Send DHCP message type DHCP_OFFER

29 [DHCP][INFO] @ 2018−10−22 04:32:44.785730> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a
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↪→ :7e:36:a0’: ’10.0.3.254’}

30 [DHCP][INFO] @ 2018−10−22 04:32:44.785845> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

31 [DHCP][INFO] @ 2018−10−22 04:32:44.785923> IP pool len 253

32 [DHCP][INFO] @ 2018−10−22 04:32:48.794158> switch:116528699904 Managed by DHCP

33 [DHCP][INFO] @ 2018−10−22 04:32:48.794325> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

34 client_ip_addr 10.0.3.254

35 [DHCP][INFO] @ 2018−10−22 04:32:48.794442> port:4 Send DHCP message type DHCP_OFFER

36 [DHCP][INFO] @ 2018−10−22 04:32:48.795285> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.3.254’}

37 [DHCP][INFO] @ 2018−10−22 04:32:48.795431> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

38 [DHCP][INFO] @ 2018−10−22 04:32:48.795531> IP pool len 253

39 [DHCP][INFO] @ 2018−10−22 04:32:52.803470> switch:116528699904 Managed by DHCP

40 [DHCP][INFO] @ 2018−10−22 04:32:52.803675> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

41 client_ip_addr 10.0.3.254

42 [DHCP][INFO] @ 2018−10−22 04:32:52.803875> port:4 Send DHCP message type DHCP_OFFER

43 [DHCP][INFO] @ 2018−10−22 04:32:52.804553> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.3.254’}

44 [DHCP][INFO] @ 2018−10−22 04:32:52.804702> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

45 [DHCP][INFO] @ 2018−10−22 04:32:52.804853> IP pool len 253

46 [DHCP][INFO] @ 2018−10−22 04:32:56.812774> switch:116528699904 Managed by DHCP

47 [DHCP][INFO] @ 2018−10−22 04:32:56.813008> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

48 client_ip_addr 10.0.3.254

49 [DHCP][INFO] @ 2018−10−22 04:32:56.813317> port:4 Send DHCP message type DHCP_OFFER

50 [DHCP][INFO] @ 2018−10−22 04:32:56.814646> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.3.254’}

51 [DHCP][INFO] @ 2018−10−22 04:32:56.814856> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

52 [DHCP][INFO] @ 2018−10−22 04:32:56.814999> IP pool len 253

53 [DHCP][INFO] @ 2018−10−22 04:33:00.821412> switch:116528699904 Managed by DHCP

54 [DHCP][INFO] @ 2018−10−22 04:33:00.821608> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

55 client_ip_addr 10.0.3.254

56 [DHCP][INFO] @ 2018−10−22 04:33:00.821809> port:4 Send DHCP message type DHCP_OFFER

57 [DHCP][INFO] @ 2018−10−22 04:33:00.822484> {’30:5a:3a:7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a

↪→ :7e:36:a0’: ’10.0.3.254’}

58 [DHCP][INFO] @ 2018−10−22 04:33:00.822628> {’10.0.3.254’: 4, ’10.0.0.254’: 1}

59 [DHCP][INFO] @ 2018−10−22 04:33:00.822734> IP pool len 253

60 [DHCP][INFO] @ 2018−10−22 04:33:36.977542> switch:116528699904 Managed by DHCP

61 [DHCP][INFO] @ 2018−10−22 04:33:36.977778> port:3 Receive DHCP message type

↪→ DHCP_DISCOVER

62 client_ip_addr 10.0.2.254

63 [DHCP][INFO] @ 2018−10−22 04:33:36.977992> port:3 Send DHCP message type DHCP_OFFER

64 [DHCP][INFO] @ 2018−10−22 04:33:36.979018> {’30:5a:3a:7c:cd:9d’: ’10.0.2.254’, ’30:5a:3a

↪→ :7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a:7e:36:a0’: ’10.0.3.254’}

65 [DHCP][INFO] @ 2018−10−22 04:33:36.979213> {’10.0.2.254’: 3, ’10.0.3.254’: 4,

↪→ ’10.0.0.254’: 1}

66 [DHCP][INFO] @ 2018−10−22 04:33:36.979346> IP pool len 253

67 [DHCP][INFO] @ 2018−10−22 04:33:36.986201> switch:116528699904 Managed by DHCP

68 [DHCP][INFO] @ 2018−10−22 04:33:36.986439> port:3 Receive DHCP message type DHCP_REQUEST

69 [DHCP][INFO] @ 2018−10−22 04:33:36.986592> port:3 Send DHCP message type DHCP_ACK

70 [DHCP][INFO] @ 2018−10−22 04:33:49.765645> switch:116528699904 Managed by DHCP

71 [DHCP][INFO] @ 2018−10−22 04:33:49.765852> port:4 Receive DHCP message type

↪→ DHCP_DISCOVER

72 client_ip_addr 10.0.3.254
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73 [DHCP][INFO] @ 2018−10−22 04:33:49.766012> port:4 Send DHCP message type DHCP_OFFER

74 [DHCP][INFO] @ 2018−10−22 04:33:49.766709> {’30:5a:3a:7c:cd:9d’: ’10.0.2.254’, ’30:5a:3a

↪→ :7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a:7e:36:a0’: ’10.0.3.254’}

75 [DHCP][INFO] @ 2018−10−22 04:33:49.766869> {’10.0.2.254’: 3, ’10.0.3.254’: 4,

↪→ ’10.0.0.254’: 1}

76 [DHCP][INFO] @ 2018−10−22 04:33:49.766986> IP pool len 253

77 [DHCP][INFO] @ 2018−10−22 04:33:49.774697> switch:116528699904 Managed by DHCP

78 [DHCP][INFO] @ 2018−10−22 04:33:49.774902> port:4 Receive DHCP message type DHCP_REQUEST

79 [DHCP][INFO] @ 2018−10−22 04:33:49.775035> port:4 Send DHCP message type DHCP_ACK

80 [DHCP][INFO] @ 2018−10−22 04:34:57.404079> switch:116528699904 Managed by DHCP

81 [DHCP][INFO] @ 2018−10−22 04:34:57.404362> port:2 Receive DHCP message type

↪→ DHCP_DISCOVER

82 client_ip_addr 10.0.1.254

83 [DHCP][INFO] @ 2018−10−22 04:34:57.404603> port:2 Send DHCP message type DHCP_OFFER

84 [DHCP][INFO] @ 2018−10−22 04:34:57.405729> {’30:5a:3a:7c:cd:9d’: ’10.0.2.254’, ’30:5a:3a

↪→ :7a:0d:b9’: ’10.0.0.254’, ’30:5a:3a:7c:d3:58’: ’10.0.1.254’, ’30:5a:3a:7e:36:a0’:

↪→ ’10.0.3.254’}

85 [DHCP][INFO] @ 2018−10−22 04:34:57.405941> {’10.0.2.254’: 3, ’10.0.3.254’: 4,

↪→ ’10.0.0.254’: 1, ’10.0.1.254’: 2}

86 [DHCP][INFO] @ 2018−10−22 04:34:57.406104> IP pool len 253

87 [DHCP][INFO] @ 2018−10−22 04:34:57.416905> switch:116528699904 Managed by DHCP

88 [DHCP][INFO] @ 2018−10−22 04:34:57.417170> port:2 Receive DHCP message type DHCP_REQUEST

89 [DHCP][INFO] @ 2018−10−22 04:34:57.417332> port:2 Send DHCP message type DHCP_ACK



Appendix F

Use Case: VLAN

F.1 Host Port Configuration

Listing F.1: Configuring Interface enp0s31f6 for VLAN 2 for Host 1.
1 >>> ip link add link enp0s31f6 name enp0s31f6.2 type vlan id 2

2 >>> ip addr add 192.168.30.10/24 dev enp0s31f6.2

3 >>> ip link set dev enp0s31f6.2 up

4 >>> ip route add default via 192.168.30.1

Listing F.2: Configuring Interface enp0s31f6 for VLAN 110 for Host 3.
1 >>> ip link add link enp0s31f6 name enp0s31f6.110 type vlan id 110

2 >>> ip addr add 172.16.10.11/24 dev enp0s31f6.110

3 >>> ip link set dev enp0s31f6.110 up

4 >>> ip route add default via 172.16.10.1

Listing F.3: Configuring Interface enp0s31f6 for VLAN 110 for Host 4.
1 >>> ip link add link enp0s31f6 name enp0s31f6.110 type vlan id 110

2 >>> ip addr add 192.168.30.11/24 dev enp0s31f6.110

3 >>> ip link set dev enp0s31f6.110 up

4 >>> ip route add default via 192.168.30.1
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F.2 VLAN Network Configurations for Host 2, Host 3

and Host 4.

Listing F.4: Network Configuration for Host 2.
host2@ubuntu:~$ ip route list
default via 192.168.30.1 dev enp0s31f6.2
192.168.30.0/24 dev enp0s31f6.2 proto kernel scope link src 192.168.30.10
host2@ubuntu:~$ ifconfig
enp0s31f6.2 Link encap:Ethernet HWaddr 30:5a:3a:7c:d3:58

inet addr:192.168.30.10 Bcast:0.0.0.0 Mask:255.255.255.255
inet6 addr: fe80::325a:3aff:fe7c:d358/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:308 errors:0 dropped:0 overruns:0 frame:0
TX packets:24 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:12936 (12.9 KB) TX bytes:1320 (1.3 KB)

....

Listing F.5: Network Configuration for Host 3.
host3@ubuntu:~$ ip route list
192.168.30.0/24 dev enp0s31f6.110 proto kernel scope link src 192.168.30.11
host3@ubuntu:~$ ifconfig
enp0s31f6.110 Link encap:Ethernet HWaddr 30:5a:3a:7e:36:a0

inet addr:192.168.30.11 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7e:36a0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)

....

Listing F.6: Network Configuration for Host 4.
host4@ubuntu:~$ ip route list
default via 172.16.10.1 dev enp0s31f6.110
172.16.10.0/24 dev enp0s31f6.110 proto kernel scope link src 172.16.10.11
host4@ubuntu:~$ ifconfig
enp0s31f6.110 Link encap:Ethernet HWaddr 30:5a:3a:7c:cd:9d

inet addr:172.16.10.11 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::325a:3aff:fe7c:cd9d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:16 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:984 (984.0 B)

....

F.3 Settled OpenFlow Table
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Listing F.7: OpenFlow Table After Learning Hosts
1 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 0, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 2551, "duration_nsec": 173000000, "

↪→ priority": 65535, "length": 96, "flags": 0, "table_id": 0, "match": { "dl_type": 35020,

↪→ "dl_dst": "01:80:c2:00:00:0e" } }

2 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 8589934593, "packet_count":

↪→ 10, "hard_timeout": 0, "byte_count": 1020, "duration_sec": 1845, "duration_nsec":

↪→ 406000000, "priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "2", "nw_dst": "172.16.10.1" } }

3 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 8589934594, "packet_count":

↪→ 10, "hard_timeout": 0, "byte_count": 1020, "duration_sec": 1845, "duration_nsec":

↪→ 406000000, "priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "2", "nw_dst": "192.168.30.1" } }

4 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 472446402561, "packet_count":

↪→ 12, "hard_timeout": 0, "byte_count": 1224, "duration_sec": 1845, "duration_nsec":

↪→ 330000000, "priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "110", "nw_dst": "172.16.10.1" } }

5 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 472446402562, "packet_count":

↪→ 19, "hard_timeout": 0, "byte_count": 1938, "duration_sec": 1845, "duration_nsec":

↪→ 330000000, "priority": 1038, "length": 96, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "110", "nw_dst": "192.168.30.1" } }

6 { "actions": ["DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:03}", "SET_FIELD: {eth_dst

↪→ :30:5a:3a:7c:cd:9d}", "OUTPUT:4"], "idle_timeout": 1800, "cookie": 472446402561, "

↪→ packet_count": 2, "hard_timeout": 0, "byte_count": 204, "duration_sec": 25, "

↪→ duration_nsec": 552000000, "priority": 1036, "length": 136, "flags": 0, "table_id": 0,

↪→ "match": { "dl_type": 2048, "dl_vlan": "110", "nw_dst": "172.16.10.11" } }

7 { "actions": ["DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:02}", "SET_FIELD: {eth_dst

↪→ :30:5a:3a:7e:36:a0}", "OUTPUT:3"], "idle_timeout": 1800, "cookie": 472446402562, "

↪→ packet_count": 26, "hard_timeout": 0, "byte_count": 2652, "duration_sec": 11, "

↪→ duration_nsec": 948000000, "priority": 1036, "length": 136, "flags": 0, "table_id": 0,

↪→ "match": { "dl_type": 2048, "dl_vlan": "110", "nw_dst": "192.168.30.11" } }

8 { "actions": ["DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:01}", "SET_FIELD: {eth_dst

↪→ :30:5a:3a:7c:d3:58}", "OUTPUT:2"], "idle_timeout": 1800, "cookie": 8589934594, "

↪→ packet_count": 17, "hard_timeout": 0, "byte_count": 1734, "duration_sec": 8, "

↪→ duration_nsec": 603000000, "priority": 1036, "length": 136, "flags": 0, "table_id": 0,

↪→ "match": { "dl_type": 2048, "dl_vlan": "2", "nw_dst": "192.168.30.10" } }

9 { "actions": ["DEC_NW_TTL", "SET_FIELD: {eth_src:00:1b:21:a6:da:00}", "SET_FIELD: {eth_dst

↪→ :30:5a:3a:7a:0d:b9}", "OUTPUT:1"], "idle_timeout": 1800, "cookie": 8589934593, "

↪→ packet_count": 17, "hard_timeout": 0, "byte_count": 1734, "duration_sec": 4, "

↪→ duration_nsec": 90000000, "priority": 1036, "length": 136, "flags": 0, "table_id": 0, "

↪→ match": { "dl_type": 2048, "dl_vlan": "2", "nw_dst": "172.16.10.10" } }

10 { "actions": ["OUTPUT:NORMAL"], "idle_timeout": 0, "cookie": 8589934593, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec": 406000000, "

↪→ priority": 1037, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048,

↪→ "dl_vlan": "2", "nw_src": "172.16.10.0/255.255.255.0", "nw_dst":

↪→ "172.16.10.0/255.255.255.0" } }

11 { "actions": ["OUTPUT:NORMAL"], "idle_timeout": 0, "cookie": 8589934594, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec": 406000000, "

↪→ priority": 1037, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048,

↪→ "dl_vlan": "2", "nw_src": "192.168.30.0/255.255.255.0", "nw_dst":

↪→ "192.168.30.0/255.255.255.0" } }

12 { "actions": ["OUTPUT:NORMAL"], "idle_timeout": 0, "cookie": 472446402561, "packet_count": 0,

↪→ "hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec": 330000000, "

↪→ priority": 1037, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048,

↪→ "dl_vlan": "110", "nw_src": "172.16.10.0/255.255.255.0", "nw_dst":
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↪→ "172.16.10.0/255.255.255.0" } }

13 { "actions": ["OUTPUT:NORMAL"], "idle_timeout": 0, "cookie": 472446402562, "packet_count": 0,

↪→ "hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec": 212000000, "

↪→ priority": 1037, "length": 112, "flags": 0, "table_id": 0, "match": { "dl_type": 2048,

↪→ "dl_vlan": "110", "nw_src": "192.168.30.0/255.255.255.0", "nw_dst":

↪→ "192.168.30.0/255.255.255.0" } }

14 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 8589934593, "packet_count":

↪→ 0, "hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec":

↪→ 406000000, "priority": 1003, "length": 104, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "2", "nw_dst": "172.16.10.0/255.255.255.0" } }

15 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 8589934594, "packet_count":

↪→ 0, "hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec":

↪→ 406000000, "priority": 1003, "length": 104, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "2", "nw_dst": "192.168.30.0/255.255.255.0" } }

16 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 472446402561, "packet_count":

↪→ 0, "hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec":

↪→ 330000000, "priority": 1003, "length": 104, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "110", "nw_dst": "172.16.10.0/255.255.255.0" } }

17 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 472446402562, "packet_count":

↪→ 1, "hard_timeout": 0, "byte_count": 102, "duration_sec": 1845, "duration_nsec":

↪→ 330000000, "priority": 1003, "length": 104, "flags": 0, "table_id": 0, "match": { "

↪→ dl_type": 2048, "dl_vlan": "110", "nw_dst": "192.168.30.0/255.255.255.0" } }

18 { "actions": [], "idle_timeout": 0, "cookie": 8589934592, "packet_count": 1480, "hard_timeout

↪→ ": 0, "byte_count": 115472, "duration_sec": 1845, "duration_nsec": 406000000, "priority

↪→ ": 1002, "length": 64, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "dl_vlan

↪→ ": "2" } }

19 { "actions": [], "idle_timeout": 0, "cookie": 472446402560, "packet_count": 843, "hard_timeout

↪→ ": 0, "byte_count": 66522, "duration_sec": 1845, "duration_nsec": 330000000, "priority

↪→ ": 1002, "length": 64, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "dl_vlan

↪→ ": "110" } }

20 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 1000, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 31771, "duration_nsec": 444000000, "

↪→ priority": 100, "length": 104, "flags": 0, "table_id": 0, "match": { "dl_type": 2048, "

↪→ tp_src": 68, "nw_proto": 17, "tp_dst": 67 } }

21 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 3000, "packet_count": 159, "

↪→ hard_timeout": 0, "byte_count": 9540, "duration_sec": 1845, "duration_nsec": 406000000,

↪→ "priority": 2, "length": 88, "flags": 0, "table_id": 0, "match": { "dl_type": 2054 } }

22 { "actions": [], "idle_timeout": 0, "cookie": 0, "packet_count": 0, "hard_timeout": 0, "

↪→ byte_count": 0, "duration_sec": 1845, "duration_nsec": 406000000, "priority": 2, "

↪→ length": 64, "flags": 0, "table_id": 0, "match": { "dl_type": 2048 } }

23 { "actions": ["OUTPUT:CONTROLLER"], "idle_timeout": 0, "cookie": 1000, "packet_count": 64794,

↪→ "hard_timeout": 0, "byte_count": 4032864, "duration_sec": 31771, "duration_nsec":

↪→ 444000000, "priority": 0, "length": 80, "flags": 0, "table_id": 0, "match": {} }

24 { "actions": ["OUTPUT:NORMAL"], "idle_timeout": 0, "cookie": 3000, "packet_count": 0, "

↪→ hard_timeout": 0, "byte_count": 0, "duration_sec": 1845, "duration_nsec": 406000000, "

↪→ priority": 1, "length": 80, "flags": 0, "table_id": 0, "match": {} }

Listing F.8: Logs After Applying of VLAN Policy.
1 #....

2 [RT][INFO] switch_id=0000001b21a6da00: Set default route (drop) flow [cookie=0x200000000]

3 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0

↪→ x200000001]

4 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x200000001]

5 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x200000001]

6 # Adding VLAN ’address’: ’192.168.30.1/24’
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7 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0

↪→ x200000002]

8 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x200000002]

9 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x200000002]

10 127.0.0.1 − − [22/Oct/2018 02:35:19] "GET /init/0000001b21a6da00 HTTP/1.1" 200 388 0.301416

11 # Adding VLAN ’address’: ’172.16.10.1/24’

12 [RT][INFO] switch_id=0000001b21a6da00: Set default route (drop) flow [cookie=0x6e00000000]

13 [RT][INFO] switch_id=0000001b21a6da00: Set host MAC learning (packet in) flow [cookie=0

↪→ x6e00000001]

14 [RT][INFO] switch_id=0000001b21a6da00: Set IP handling (packet in) flow [cookie=0x6e00000001]

15 [RT][INFO] switch_id=0000001b21a6da00: Set L2 switching (normal) flow [cookie=0x6e00000001]

16 #....

Listing F.9: Logs During Ping Messaging to Router Interface.
1 #....

2 [RT][INFO] switch_id=0000001b21a6da00: Set implicit routing flow [cookie=0x200000002]

3 [RT][INFO] switch_id=0000001b21a6da00: Receive ARP request from [192.168.30.10] to router port

↪→ [192.168.30.1].

4 [RT][INFO] switch_id=0000001b21a6da00: Send ARP reply to [192.168.30.10]

5 [RT][INFO] switch_id=0000001b21a6da00: Set implicit routing flow [cookie=0x6e00000001]

6 [RT][INFO] switch_id=0000001b21a6da00: Receive ARP request from [172.16.10.11] to router port

↪→ [172.16.10.1].

7 [RT][INFO] switch_id=0000001b21a6da00: Send ARP reply to [172.16.10.11]

8 #....

9 [RT][INFO] switch_id=0000001b21a6da00: Receive ICMP echo request from [192.168.30.10] to

↪→ router port [172.16.10.1].

10 [RT][INFO] switch_id=0000001b21a6da00: Send ICMP echo reply to [192.168.30.10].

11 #....

12 [RT][INFO] switch_id=0000001b21a6da00: Receive ICMP echo request from [192.168.30.10] to

↪→ router port [192.168.30.1].

13 [RT][INFO] switch_id=0000001b21a6da00: Send ICMP echo reply to [192.168.30.10].

14 #....
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