
Static and Bootstrapped Neuro-Simulation
for Complex Robots in Evolutionary

Robotics

Grant Warren Woodford

Submitted in fulfilment of the requirements for the degree of Philosophiae Doctor

(Computer Science) in the Faculty of Science at the Nelson Mandela University

The financial assistance of the National Research Foundation (NRF) towards this

research is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the author and are not necessarily to be attributed to the NRF.

December 2019

Supervisor: Mathys C. du Plessis

Acknowledgements
I would like to thank my examiners for their time and energy in reviewing this research.

I hope you find this work interesting and thoughtful.

A sincere thanks is due to the many people who helped with the completion of this

thesis. I would like to thank Dr MC du Plessis and Dr CJ Pretorius for their support and

patience. I could not have completed this thesis without their expertise. I would like to

thank Ms A De Franca for her help with the important and lengthy data collection phase

of this research.

I would like to thank the Department of Computing Sciences at the Nelson Mandela

University for the resources required to complete this work. I have learnt and grown a lot

during this period.

Thank you to my parents, friends and family for their support and patience.

The financial assistance of the National Research Foundation (NRF) towards this re-

search is hereby acknowledged. Opinions expressed and conclusions arrived at, are those

of the authors and are not necessarily to be attributed to the NRF.

Abstract
Evolutionary Robotics (ER) is a field of study focused on the automatic development

of controllers and robot morphologies. Evolving controllers on real-world hardware is

time-consuming and can damage hardware through wear. Robotic simulators can be

used as an alternative to a real-world robot in order to speed up the ER process. Most

simulation techniques in practice use physics-based models that rely on an understanding

of the robotic system in question. Developing effective physics-based simulators is time-

consuming and requires a significant level of specialised knowledge. A lengthy simulator

development and tuning process is typically required before the ER process can begin.

Artificial Neural Networks simulators (SNNs) can be used as an alternative to a physics-

based simulation approach. SNNs are simple to construct, do not require significant levels

of prior knowledge of the robotic system, are computationally efficient and can be highly

accurate. Two types of ER approaches utilising SNNs exist. The Static Neuro-Simulation

(SNS) approach involves developing SNNs before the ER process where these SNNs are

used instead of a physics-based simulator. Alternatively, SNNs can be developed during

the ER process, called the Bootstrapped Neuro-Simulation (BNS) approach.

Prior work investigating SNNs has largely been limited to simple robots. A complex

robot has many degrees of freedom and if a low-level controller design is used, the solution

search space is high-dimensional and difficult to traverse. Prior work investigating the

SNS and BNS approaches have mostly relied on simplified controller designs which rely

on built-in prior knowledge of intended robot behaviours. This research uses low-level

controller designs which in turn rely on low level simulators.

Most ER studies are conducted on a single type of robot morphology. This research

investigates the SNS and BNS approaches on two significantly different classes of robots. A

Hexapod and Snake robot are used to study the SNS and BNS approaches. The Hexapod

robot exhibits limbed, walking behaviours. The Snake robot is limbless and generates

crawling behaviours. Demonstrating the viability of the SNS and BNS approaches for two

different classes of robots provides strong evidence that the tested approaches are likely

viable on other classes of robots.

Various proposed improvements to the SNS and BNS approaches are investigated. The

performance and transferability properties of these tested improvements are studied and

presented in this research. For each robot investigated, comparisons are made between

the SNS and BNS approaches in terms of the observed performance and transferability

properties achieved.

Results demonstrate that the SNS and BNS approaches are viable when applied to

Hexapod and Snake robots without restricting controller designs to those with significant

levels of built-in prior knowledge of robot behaviours. SNNs configured in ensembles

improve the likely performance outcomes of solutions. The expected benefit of adding

simulator noise during the evolutionary process were not as pronounced for problems

investigated in this work.

Contents

1 RESEARCH CONTEXT 1

1.1 Introduction . 1

1.2 Research Objectives . 4

1.3 Methodology . 4

1.4 Dissertation Layout . 6

2 RELATED WORK 9

2.1 Introduction . 9

2.2 Artificial Neural Networks . 10

2.2.1 The Artificial Neuron . 10

2.2.2 Neural Networks . 11

2.2.3 ANN Training . 15

2.2.4 Uncertainty Estimation . 17

2.2.5 Bias-Variance Tradeoff . 18

2.2.6 Ensembles . 20

2.3 Evolutionary Computation . 20

2.3.1 Evolutionary Algorithms . 21

2.3.2 Evolutionary Robotics . 22

2.3.2.1 Evolutionary Robotics Process 22

2.3.2.2 General State of the Evolutionary Robotics Field 23

2.4 Snake Robot Morphologies . 25

2.5 Simulators . 27

2.5.1 Evolving Controllers in Reality . 28

i

2.5.2 Simulators in Evolutionary Robotics 28

2.5.2.1 Simulation Strategies . 29

2.5.2.2 Evolving Controllers in Simulation 29

2.5.2.3 Simulator Development using Machine Learning Techniques 31

2.5.3 Bidirectional Simulation Development 32

2.5.3.1 Bidirectional Mechanism 32

2.5.3.2 Anytime Learning . 33

2.5.3.3 Estimation-Exploration Algorithm 33

2.5.3.4 Back to Reality Algorithm 35

2.5.3.5 Transferability Approach 37

2.5.3.6 Intelligent Trial-and-Error Learning 38

2.5.3.7 Model-fitting based on Empirical Data 39

2.5.4 Simulator Neural Networks . 41

2.5.4.1 Behavioural Components 42

2.5.4.2 Level of Prior Knowledge 43

2.5.4.3 Evaluation Platforms . 44

2.5.4.4 The SNS Approach . 45

2.5.4.5 The BNS Approach . 48

2.5.4.6 Simulating Snake Robots using SNNs 51

2.5.4.7 Simulating Hexapod Robots using SNNs 52

2.6 High Level Comparison of ER Approaches 54

2.7 Conclusions . 59

3 EXPERIMENTAL METHOD 61

3.1 Introduction . 61

3.2 Robot Morphologies . 62

3.2.1 Hexapod Robot . 62

3.2.2 Snake Robot . 63

3.3 Controller Design . 65

3.4 Data Collection . 66

3.5 Challenges . 67

3.6 Methodology . 70

3.7 Adaptations . 73

3.7.1 Simulator Configurations . 75

3.7.1.1 Basic Configuration . 76

3.7.1.2 Dropout Configuration . 77

3.7.1.3 Ensemble Configuration . 78

3.7.1.4 Basic Multi-output Configuration 78

3.7.1.5 Ensemble Multi-output Configuration 79

3.7.2 Simulator Noise . 81

3.7.3 Controller Resetting . 82

3.7.4 Simulator Resetting . 83

3.7.5 Sampling Strategy . 83

3.8 Conclusions . 84

4 HEXAPOD STATIC NEURO-SIMULATION 85

4.1 Introduction . 85

4.2 Experimental Procedure . 85

4.2.1 Controllers . 86

4.2.2 The Simulator . 87

4.3 SNS Experiments . 88

4.4 The SNS Experiment Results . 90

4.4.1 Demonstration . 91

4.4.2 Static SNN Results . 93

4.4.2.1 Behavioural Data . 94

4.4.2.2 Training Errors . 94

4.4.3 Performance . 98

4.4.4 Transferability . 101

4.4.5 Simulated and Real-world Trajectories 104

4.4.6 Best Controllers . 111

4.5 Conclusion . 116

5 HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 118

5.1 Introduction . 118

5.2 Experimental Procedure . 119

5.2.1 Hardware and Data Capture . 120

5.2.2 Controllers . 120

5.2.3 Simulator . 121

5.3 BNS Experiments . 123

5.3.1 The Simulated BNS Experiments . 123

5.3.2 The BNS Validation Experiments . 127

5.4 Successful BNS Hexapod Controller . 128

5.5 The Simulated BNS Experiment Results . 130

5.5.1 Overall Comparisons . 131

5.5.1.1 Simulator Configurations 131

5.5.1.2 Resetting Procedures . 132

5.5.1.3 Simulator Noise . 135

5.5.1.4 Sampling Strategies . 136

5.5.1.5 Summary . 137

5.5.2 Transferability . 138

5.5.2.1 Simulator Configurations 138

5.5.2.2 Resetting Procedures . 140

5.5.2.3 Simulator Noise . 142

5.5.2.4 Sampling Strategies . 143

5.5.2.5 Summary . 144

5.5.3 Convergence Properties . 145

5.5.4 Top Performers . 147

5.5.5 Summary . 151

5.6 The BNS Validation Experiment Results . 154

5.6.1 Performance . 156

5.6.2 Transferability . 159

5.6.3 Validation Solutions . 161

5.6.4 Summary . 170

5.7 SNS and BNS Comparisons . 171

5.8 Conclusion . 172

6 SNAKE STATIC NEURO-SIMULATION 174

6.1 Introduction . 174

6.2 Experimental Procedure . 175

6.2.1 Controllers . 175

6.2.2 Simulator . 177

6.3 Simulator Benchmark Experiments . 177

6.4 Static SNN Results . 178

6.4.1 Behavioural Data . 178

6.4.2 Ideal SNN Architectures . 180

6.4.3 Training Errors . 182

6.5 SNS Experiments . 186

6.6 The SNS Experiment Results . 190

6.6.1 Demonstration . 191

6.6.2 Performance . 192

6.6.3 Transferability . 198

6.6.4 Comparisons . 199

6.6.5 Simulated and Real-world Trajectories 202

6.6.6 Best Controllers . 207

6.7 Comparing the SNS approach for the Hexapod and Snake robots 212

6.8 Conclusion . 213

7 SNAKE BOOTSTRAPPED NEURO-SIMULATION 215

7.1 Introduction . 215

7.2 Experimental Procedure . 216

7.2.1 Hardware and Data Capture . 217

7.2.2 Controllers . 217

7.2.3 Simulator . 217

7.3 BNS Experiments . 218

7.3.1 The Simulated BNS Experiments . 218

7.3.2 The BNS Validation Experiments . 222

7.4 Successful BNS Snake Controller . 223

7.5 The Simulated BNS Experiment Results . 225

7.5.1 Overall Comparisons . 225

7.5.1.1 Simulator Configurations 225

7.5.1.2 Resetting Procedures . 226

7.5.1.3 Simulator Noise . 228

7.5.1.4 Sampling Strategies . 229

7.5.1.5 Summary . 230

7.5.2 Transferability . 230

7.5.2.1 Simulator Configurations 231

7.5.2.2 Resetting Procedures . 232

7.5.2.3 Simulator Noise . 234

7.5.2.4 Sampling Strategies . 235

7.5.2.5 Summary . 235

7.5.3 Convergence Properties . 236

7.5.4 Top Performers . 237

7.5.5 Summary . 243

7.6 The BNS Validation Experiment Results . 248

7.6.1 Performance . 249

7.6.2 Transferability . 250

7.6.3 Validation Solutions . 252

7.6.4 Summary . 262

7.7 SNS and BNS Comparisons . 263

7.8 Conclusions . 264

8 CONCLUSIONS AND FUTURE WORK 265

8.1 Introduction . 265

8.2 Overview of Experimental Results . 266

8.3 Outcomes of Research Objectives . 266

8.4 Contributions and Recommendations . 274

8.5 Limitations . 276

8.6 Future Research . 277

8.7 Summary . 277

Appendices 290

A Research Output by the Author 291

B Experimental Results 293

List of Figures

1.1 Structure of dissertation . 7

2.1 Artificial Neuron . 11

2.2 Rectified Linear Unit (ReLu) activation function 12

2.3 Artificial Neural Network . 13

2.4 ANN predictions with dropout enabled for a simple regression problem (Gal

and Ghahramani, 2016) . 18

2.5 Graphical illustration of bias and variance (Fortmann-Roe, 2012) 19

2.6 Bias and variance contribution to total error (Fortmann-Roe, 2012) 20

2.7 The Evolutionary Robotics Process applied to the evolution of an ANN

based controller (Floreano, Husbands, and Nolfi, 2008; Pretorius, 2010) . . 23

2.8 Snake locomotion modes . 26

2.9 Snake robot (left) and rattlesnake (right) executing turning behaviours . . . 27

2.10 Anytime Learning System . 34

2.11 Estimation-Exploration Algorithm (Bongard, Zykov, and Lipson, 2006b) . . 36

2.12 Intelligent Trial-and-Error Learning (Cully, Clune, Tarapore, and Mouret,

2015) . 40

2.13 Behavioural components of a robot . 43

2.14 Controller evaluation platforms . 46

2.15 Static Neuro-Simulation (SNS) approach . 47

2.16 Bootstrapped Neuro-Simulation (BNS) . 49

2.17 Simulated and real-world fitness over time for BNS approach (Woodford,

Pretorius, and du Plessis, 2016) . 51

2.18 Snake controller and simulator design . 53

viii

2.19 Hexapod controller and simulator design . 54

3.1 Hexapod robot . 63

3.2 Snake robot . 65

3.3 Controller example . 65

3.4 Behavioural Components . 66

3.5 Data Collection . 68

3.6 Methodology A: Adaptations to the SNS approach 71

3.7 Methodology B: Adaptations to the BNS approach 71

3.8 Methodology C: Real-world validation of adaptations 72

3.9 Venn Diagram of SNS and BNS adaptations 74

3.10 Basic Configuration . 76

3.11 SNN Architecture . 77

3.12 Dropout Configuration . 77

3.13 Ensemble SNN Configuration . 79

3.14 Basic Multi-output SNN Configuration . 80

3.15 Multi-output SNN architecture . 80

3.16 Ensemble Multi-output SNN Configuration 81

4.1 Methodology A: Adaptations to the SNS approach 86

4.2 Solution controller demonstration . 92

4.3 Simulated and real-world trajectory paths for solution controller 93

4.4 Scatter plot for the training data ∆x and ∆y components 95

4.5 Density plot for the training data ∆x and ∆y components 95

4.6 Density plot of the training data ∆a component 96

4.7 Performance distributions for SNS adaptations 101

4.8 Transferability distributions for the SNS adaptations 103

4.9 Solution paths for the Basic (HBE) and Basic Multi-output (HSE) simulator

configurations without noise . 107

4.10 Solution paths for the Basic (HBN) and Basic Multi-output (HSN) simula-

tor configurations with noise . 108

4.11 Solution paths for Dropout (HDE), Ensemble (HEE) and Ensemble Multi-

output (HME) configurations without noise 109

4.12 Solution paths for Dropout (HDN), Ensemble (HEN) and Ensemble Multi-

output (HMN) configurations with noise . 110

4.13 Solution diversity and magnitude trends between SNS adaptations 111

4.14 Best performing solutions for the Basic and Basic Multi-output simulator

configurations . 114

4.15 Best performing solutions for the Dropout, Ensemble and Ensemble Multi-

output configurations . 115

5.1 Methodology B: Adaptations to the BNS approach 119

5.2 Methodology C: Real-world validation of adaptations 120

5.3 Solution controller demonstration . 129

5.4 Real-world and simulated trajectories . 130

5.5 Performance comparisons between simulator configurations 132

5.6 Performance comparison between resetting procedures 134

5.7 Performance comparison for simulator noise 136

5.8 Performance comparisons of sampling strategies 137

5.9 Transferability distributions for each simulator configurations 139

5.10 Transferability distributions for each resetting procedure 141

5.11 Transferability distributions between simulator noise approaches 143

5.12 Transferability distributions between sampling strategies 144

5.13 Performance over time for the best performer of each resetting procedure . 146

5.14 Performance distributions of the top 10 adaptations for the BNS approach . 148

5.15 Transferability distributions for the top 10 BNS adaptations 151

5.16 Validation experiment performance distributions 156

5.17 BNS validation performance distributions grouped by simulator noise 159

5.18 Validation experiment transferability distributions 160

5.19 BNS validation transferability statistics grouped by simulator noise 162

5.20 HESEU Real-world experiments . 163

5.21 HESNU Real-world experiments . 164

5.22 HMSEU Real-world experiments . 165

5.23 HMSNU Real-world experiments . 166

5.24 HBSET Real-world experiments . 167

5.25 HBSNT Real-world experiments . 168

6.1 Methodology A: Adaptations to the SNS approach 175

6.2 Scatter plot for the training data ∆x and ∆y behavioural components . . . 179

6.3 Density plot for the ∆x and ∆y behavioural components 180

6.4 Density plot for the ∆a and ∆o behavioural components 181

6.5 Controller solution that produces turning behaviours 187

6.6 Solution controller demonstration (SME adaptation) 192

6.7 Simulated and Real-world trajectories of solution controller 193

6.8 Performance distributions for SNS adaptations 194

6.9 Transferability distributions for SNS adaptations 198

6.10 Scatter plot comparing the tested adaptations according to the number of

failed controller solutions, median performance and median transferability . 201

6.11 Scatter plot (2D) comparing the tested adaptations according to the number

of failed controller solutions, median performance and median transferability202

6.12 Solution paths for the Basic and Basic Multi-output simulator configura-

tions without noise . 203

6.13 Solution paths for the Basic and Basic Multi-output simulator configura-

tions with noise . 204

6.14 Solution paths for Dropout, Ensemble and Ensemble Multi-output config-

urations without noise . 205

6.15 Solution paths for Dropout, Ensemble and Ensemble Multi-output config-

urations with noise . 206

6.16 Best performing solutions for the Basic and Basic Multi-output simulator

configurations . 208

6.17 Best performing solutions for the Dropout, Ensemble and Ensemble Multi-

output configurations . 209

7.1 Methodology B: Simulated experimental trial of BNS adaptation 216

7.2 Methodology C: Real-world demonstration of BNS adaptation 216

7.3 Solution controller demonstration (SMSNU adaptation) 224

7.4 Performance comparison between simulator configurations 226

7.5 Performance comparison between resetting procedures 228

7.6 Performance distributions for simulator noise and sampling strategies 230

7.7 Transferability distributions for simulator configurations 231

7.8 Transferability distributions for resetting procedures 233

7.9 Transferability distributions for simulator noise and sampling strategies . . 236

7.10 Performance over time for the best performer of each resetting procedure . 237

7.11 Performance distributions of the top 10 adaptations for the BNS approach . 239

7.12 Density of performances for best performing adaptations 243

7.13 Best solution for the SSNET adaptations 244

7.14 Transferability distributions for the top 10 BNS adaptations 245

7.15 Validation experiment performance distributions 250

7.16 BNS validation performance distributions grouped by simulator noise 252

7.17 Validation experiment transferability distributions 253

7.18 BNS validation transferability statistics grouped by noise 255

7.19 SESEU Real-world experiments . 256

7.20 SESNU Real-world experiments . 257

7.21 SMSEU Real-world experiments . 258

7.22 SMSNU Real-world experiments . 259

7.23 SBSET Real-world experiments . 260

7.24 SBSNT Real-world experiments . 261

List of Tables

2.1 Robot morphologies investigated using the SNS and BNS approaches 45

2.2 Comparison of ER approaches . 55

2.3 Validated robot morphologies per ER approaches 57

4.1 Parameters for controller evolution . 89

4.2 SNS Experimental Adaptations . 90

4.3 Training dataset MSE and IQR for each simulator configuration 97

4.4 Test dataset MSE and IQR for each simulator configuration 98

4.5 Performance statistics for the SNS adaptations 99

4.6 Comparisons between the performances of adaptations for the SNS approach100

4.7 SNS trial run durations . 102

4.8 Transferability statistics for the SNS adaptations 104

4.9 Comparison between transferability distributions of adaptations for the SNS

approach . 105

4.10 Behavioural metrics of the best controller in each adaptation 113

5.1 BNS adaptations using no resetting procedure 124

5.2 BNS adaptations using the controller resetting procedure 125

5.3 BNS adaptations using the simulator resetting procedure 125

5.4 BNS adaptations using the controller and simulator resetting procedures . . 126

5.5 Number of controller evolution generations iterated per sampling controller

evaluation for the BNS approach on the Hexapod robot 127

5.6 Summary statistics for the simulator configuration performance distributions133

xiii

5.7 The p-values of post hoc analysis comparing performance distributions be-

tween simulator configurations . 133

5.8 Summary statistics for the resetting procedure performance distributions . . 135

5.9 The p-values from post hoc analysis comparing performance distributions

between resetting procedures . 135

5.10 Summary statistics for the simulator noise performance distributions 136

5.11 Summary statistics of sampling strategy performance distributions 137

5.12 Transferability statistics for the simulator configurations 138

5.13 Transferability distribution p-values for comparisons between simulator con-

figurations . 139

5.14 Transferability statistics for the resetting procedures 142

5.15 Transferability distribution p-values for comparisons between resetting pro-

cedures . 142

5.16 Transferability statistics for the simulator noise 143

5.17 Transferability statistics for sampling strategies 144

5.18 Performance summary of the top 10 adaptations for the BNS approach . . . 149

5.19 Performance comparisons between the top 10 adaptations for the BNS ap-

proach . 150

5.20 The transferability statistics for the top 10 adaptations for the BNS approach152

5.21 Transferability comparisons between the top 10 adaptations for the BNS

approach . 153

5.22 The p-values for transferability variance comparisons between the HESEU

adaptation and the other top adaptations for the BNS approach 154

5.23 BNS performance statistics on validation results 157

5.24 BNS validation performance statistics grouped by simulator noise 158

5.25 BNS transferability statistics on validation results 161

5.26 BNS validation transferability statistics grouped by simulator noise 161

6.1 SNN architectures . 181

6.2 Training dataset MSE and IQR for each simulator configuration 183

6.3 Test dataset MSE and IQR for each simulator configuration 184

6.4 Parameters for controller evolution . 189

6.5 SNS Experimental Adaptations . 190

6.6 Performance statistics for the SNS adaptations 195

6.7 Comparisons between the performance distributions of adaptations for the

SNS approach . 196

6.8 Failure rates for the tested SNS adaptations 197

6.9 SNS trial run durations . 197

6.10 Transferability statistics for the SNS adaptations 199

6.11 Comparisons between the transferability distributions of adaptations for

the SNS approach . 200

6.12 Behavioural metrics of the best controller in each adaptation 211

7.1 BNS adaptations using no resetting procedure 219

7.2 BNS adaptations using the controller resetting procedure 220

7.3 BNS adaptations using the simulator resetting procedure 220

7.4 BNS adaptations using the controller and simulator resetting procedures . . 221

7.5 Number of controller evolution generations iterated per sampling controller

evaluation for the BNS approach on the Snake robot 222

7.6 Summary Statistics for the simulator configuration performance distributions226

7.7 The p-values of post hoc analysis comparing performance distributions be-

tween simulator configurations . 227

7.8 Summary statistics for the resetting procedure performance distributions . . 227

7.9 The p-values of post hoc analysis comparing performance distributions be-

tween resetting procedures . 227

7.10 Summary statistics for the simulator noise performance distributions 229

7.11 Summary statistics for the sampling strategy performance distributions . . 229

7.12 Transferability statistics for the simulator configurations 232

7.13 Transferability distribution p-values for comparisons between simulator con-

figurations . 232

7.14 Transferability statistics for the resetting procedures 233

7.15 Transferability distribution p-values for comparisons between resetting pro-

cedures . 234

7.16 Transferability statistics for simulator noise 235

7.17 Transferability statistics for the sampling strategies 235

7.18 Performance distributions of the top 10 adaptations for the BNS approach . 238

7.19 Performance comparisons between the top 10 adaptations for the BNS ap-

proach . 240

7.20 The transferability statistics for the top 10 adaptations for the BNS approach246

7.21 Transferability comparisons between the top 10 adaptations for the BNS

approach . 247

7.22 BNS performance statistics on validation results 251

7.23 BNS validation performance statistics grouped by simulator noise 251

7.24 BNS transferability statistics on validation results 254

7.25 BNS validation transferability statistics grouped by simulator noise 254

8.1 Summary of high level findings . 267

8.2 Summary of adaptation result for the SNS approach 268

8.3 Summary of adaptations results for the BNS approach 269

B.1 Performance results for the SNS approach applied to the Hexapod robot . . 294

B.2 Transferability results for the SNS approach applied to the Hexapod robot . 295

B.3 Performance results for the SNS approach applied to the Snake robot . . . 296

B.4 Transferability results for the SNS approach applied to the Snake robot . . 297

B.5 Validation performance results for the Hexapod robot 298

B.6 Validation transferability results for the Hexapod robot 298

B.7 Validation performance results for the Snake robot 298

B.8 Validation transferability results for the Snake robot 298

B.9 Performance summary for the simulated BNS experiments of the Hexapod

robot . 300

B.10 Transferability summary for the simulated BNS experiments of the Hexapod

robot . 302

B.11 Performance summary for the simulated BNS experiments of the Snake robot304

B.12 Transferability summary for the simulated BNS experiments of the Snake

robot . 306

List of Abbreviations

Abbreviation Term

Adam Adaptive Moment Estimation

AN Artificial Neuron

ANN Artificial Neural Network

BNS Bootstrapped Neuro-Simulation

BTR Back to Reality Algorithm

EA Evolutionary Algorithm

EC Evolutionary Computing

EEA Estimation-Exploration Algorithm

ER Evolutionary Robotics

GA Genetic Algorithm

IQR Interquartile Range

SNN Simulator Neural Network

SNS Static Neuro-Simulation

Chapter 1

RESEARCH CONTEXT

1.1 Introduction

Evolutionary Robotics (ER) is a methodology for the automatic creation of autonomous

robotic systems [Floreano et al., 2008]. ER is related to the Evolutionary Computation

(EC) field where algorithms are inspired by biological evolution. A controller, often re-

ferred to as a policy [Chatzilygeroudis, Rama, Kaushik, Goepp, Vassiliades, and Mouret,

2017], is a program that manages a robot’s interactions with its environment [Brooks,

1992; Miglino, Lund, and Nolfi, 1995]. In ER, a population of controllers and/or robot

morphologies is evolved using Darwinian principles. Evaluating the large number of con-

trollers produced through the ER process on real-world hardware is impractical and time-

consuming. A simulator, often referred to as a model [Nguyen-Tuong and Peters, 2011], is

a method for approximating the behaviour of a real-world robotic system. Controllers can

be evaluated in a robotic simulation that acts as a surrogate to real-world hardware [Zagal

and Ruiz-del Solar, 2007]. A simulator can greatly speed up the ER process by evaluat-

ing controllers faster than possible in reality. The ER process, carried out in simulation,

produces a final controller solution that can be validated on a real-world robot.

Traditional, physics-based simulators can become complex and time-consuming to de-

velop. Simulators are constructed before the ER process can begin. Specialised domain

knowledge is normally required to construct and effectively utilise simulators in ER. Spe-

cialised knowledge specific to a given robotic system may need to be acquired in order to

1

CHAPTER 1. RESEARCH CONTEXT 2

be accurately simulated.

The behaviours observed when evaluating controllers in simulation are often signifi-

cantly different when those same controllers transferred into reality, known as the “Reality

Gap” problem [Jakobi, Husbands, and Harvey, 1995]. The degree to which a controller’s

simulated behaviours transfer well into reality is commonly referred to as the transferabil-

ity. Controllers evolved in simulation often do not transfer well into reality and have poor

transferability caused by exploiting inaccuracies in modelled phenomena [Koos, Mouret,

and Doncieux, 2013b]. Developing ER approaches that are resistant to the reality-gap

problem is an important topic in ER [Jakobi et al., 1995; Miglino et al., 1995].

ER approaches that produce highly transferable controllers generally have some sort

of bi-directional mechanism. Bi-direction ER approaches should be considered a broad

category of ER approaches. In a bi-directional ER process, controllers are continually

evaluated in reality and information about controller transferability is used to improve the

simulator during the ER process [Bongard, 2013]. The optimisation process simultaneously

improves both the controllers and simulator. A physics-based simulator is typically used

in most bi-directional ER approaches. For bi-directional ER approaches, a least a partially

developed simulator needs to be built before the ER process can begin.

Due to the complexity and prior knowledge required to build physics-based simula-

tors, automating simulator development is difficult. However, an alternative simulation

approach can be used. Artificial Neural Networks (ANNs) can be used to simulate robot

behaviours. ANN-based simulators are referred to as Simulator Neural Networks (SNNs).

SNNs are simple to construct, accurate and require little specialised knowledge [Pretorius,

du Plessis, and Gonsalves, 2017, 2019]. Traditional SNNs are created and trained before

the ER process begins and remain unchanged during the ER process. Static, precom-

puted SNNs are developed using the Static Neuro-Simulation (SNS) approach. The SNS

approach requires a lengthy data collection process. Static SNNs can become inaccurate

if the robot or environment changes significantly. Inaccurate SNNs would need to be

retrained with data obtained from the changed robotic system.

SNNs combined with a bi-directional approach alleviates some of the disadvantages

inherent in both the static SNNs and physics-based simulation approaches. The current

author proposed the Bootstrapped Neuro-Simulation (BNS) approach [Woodford et al.,

CHAPTER 1. RESEARCH CONTEXT 3

2016] in order to take advantage of SNNs in a bi-directional ER process. The BNS ap-

proach can be considered a model-based policy search algorithm where the learning process

alternates between optimising robot simulators (models) and controllers (policies) in order

to maximise an objective function [Kaushik, Chatzilygeroudis, and Mouret, 2018]. Dur-

ing the BNS approach, SNNs and controllers are concurrently optimised during the ER

process. For the BNS approach, the ER process can begin before SNNs are fully trained.

The complexity of the robot morphology and controller design are important factors

to consider when studying the SNS and BNS approaches. Most of the work investigating

SNNs has been performed on simple wheeled robots [Pretorius, du Plessis, and Cilliers,

2009; Pretorius, du Plessis, and Gonsalves, 2014; Pretorius et al., 2017; Woodford et al.,

2016]. Robot morphologies with many degrees of freedom are significantly more difficult

to simulate. The complexity of the controller design can be measured in terms of the

dimensionality of the solution space. Controller designs for complex robots often take

into account expert domain knowledge, such as specially crafted mathematical functions,

curve fitting procedures or pattern generating functions. For example, a Snake robot

controller design could be based on a mathematical function that is able to generate joint

angles mimicking biological snake locomotion [Melo, Hernandez, and Gonzalez, 2012].

Alternatively, the controller design could consist of low level commands that do not take

advantage of any prior knowledge. Controller designs based on prior knowledge have a

lower solution space dimensionality compared to those without.

If the controller design is simplified and relies on prior expert knowledge, the simu-

lator design can also be simplified based on the controller design in order to reduce the

complexity of SNNs [Woodford, du Plessis, and Pretorius, 2017]. However, the simulator

would then only be compatible with the particular controller design and not generalisable

for use with other controller designs. However, a simplified controller design can be used

with a non-simplified simulator design.

Little work exists that investigates the scaling of SNNs for use on complex robot mor-

phologies with high dimensional solution spaces. The SNS approach has been successfully

demonstrated on a complex Hexapod robot using a controller design without prior knowl-

edge [Pretorius et al., 2019]. When considering complex robot morphologies, the SNS

approach has only been investigated using a Hexapod robot platform. The BNS approach

CHAPTER 1. RESEARCH CONTEXT 4

has been successfully applied to a complex Snake robot but with a controller design based

on prior knowledge [Woodford et al., 2017]. No studies have investigated the BNS ap-

proach for complex robots using controller designs without prior knowledge. No work has

investigated the BNS approach on a Hexapod robot platform.

1.2 Research Objectives

The main objectives of this Thesis are:

1. Identify relevant trends in the existing ER literature.

2. Identify shortcomings of existing ER approaches.

3. Demonstrate the scalability, generality, effectiveness and feasibility of the SNS and

BNS approaches on complex robots using controllers that do not utilise prior knowl-

edge.

4. Propose and investigate potential improvements to the SNS and BNS approaches.

5. Determine the relative advantages and disadvantages of the SNS and BNS ap-

proaches.

1.3 Methodology

Certain measurements are used in this work in order to quantify properties mentioned in

the previous section, such as Scalability, Generality, Effectiveness and Feasibility of the

SNS and BNS approaches studied in this research. The SNS and BNS approaches have

mainly been studied on simple robot morphologies and have not been rigorously shown to

scale well to more complex robot morphologies. Scalability is defined in terms of how well

an approach is able to develop viable controllers on complex robots and high dimensional

controller designs. Generality is the viability of an approach to develop viable solutions

on different classes of complex robots. Effectiveness is measured in terms of the how well

solution controllers perform a given task. Feasibility is measured in terms of the amount

of behavioural data required and time taken to evolve viable solution controllers.

CHAPTER 1. RESEARCH CONTEXT 5

The purpose of this research is to investigate the use of SNNs on complex robot mor-

phologies and controller designs without built-in prior knowledge. This work develops

proof-of-concept prototypes that are evaluated through a series of experiments. An anal-

ysis of the experimental results helps demonstrate the scalability, generality, effectiveness

and feasibility of the SNS and BNS approaches on the chosen robotic platforms.

The positivist approach gains knowledge through the use of empirical evidence instead

of introspection or intuition [Easterbrook, Singer, Storey, and Damian, 2008]. This ensures

that any researcher bias is kept to a minimum by objective observations of reality. A

positivist approach will be taken in this study because it is believed the research objectives

can be answered through an empirical study.

The deductive approach is focused on testing a particular hypothesis or theory as op-

posed to the inductive approach which involves discovering a theory based on available

data [Gray, 2009]. This study uses a deductive approach to test hypotheses in order to

confirm the theory that complex robots with high dimensional controllers can be success-

fully evolved using the SNS and BNS approaches. Hypotheses regarding the accuracy,

generality, effectiveness, feasibility and scalability are judged through experimentation.

A thorough literature review of related work is conducted. Existing ER approaches are

identified and their particular contributions to the field are noted. The literature presents

known problems inherent in using existing ER approaches and current solution strategies

are discussed. The literature study helps elucidate how this research fits into the existing

body of knowledge (Objectives 1 and 2).

Few existing ER approaches in the literature demonstrate viability on more than one

complex robot morphology. In this work, complex robots are defined to have more than

11 degrees of joint freedom. All controller designs in this work are purposely not sim-

plified and do not rely on significant levels of human expertise. This research purposely

investigates the SNS and BNS approaches on two complex robot morphologies. These

robots produce completely different classes of behaviour compared to each other. The

first robot used in this research is a limbed, walking Hexapod robot while the second is

a limbless, crawling Snake robot. For any particular ER approach, demonstrating via-

bility on either robot indicates that said approach can scale for use on certain complex

robot morphologies (Objective 3). Demonstrating viability on more than one complex

CHAPTER 1. RESEARCH CONTEXT 6

robot where robots exhibit significantly different classes of behaviour indicates that an

ER approach can generalise well (Objective 3).

The effectiveness and feasibility of each approach is judged based on experimental

observations (Objective 3). Various proposals for improvements to the SNS and BNS

approaches are investigated. Proposed improvements include changes to the simulator,

the inclusion or exclusion of simulator noise, controller resetting, simulator resetting and

behavioural data sampling strategies (Objective 4). Experimental results are studied quan-

titatively and qualitatively for the SNS and BNS approaches (Objectives 3, 4 and 5). The

accuracy and effectiveness of solutions produced by the SNS and BNS approaches are

compared to each other (Objective 5).

1.4 Dissertation Layout

The structure of this dissertation is illustrated in Figure 1.1. The background, problem

statement and related research is presented in Chapter 2. The research objectives and

methodology used are discussed in Chapter 3. Two different classes of robots are used

in the experimental work. For the Hexapod robot, the SNS and BNS approaches are

studied in Chapters 4 and 5, respectively. The Snake robot is utilised in Chapters 6 and

7 for experimental work related to the SNS and BNS approaches, respectively. Lastly,

conclusions are drawn in Chapter 8.

Each chapter is detailed below:

Chapter 2 An introduction to the related work is presented. Existing ER approaches that are

particularly relevant to this research are discussed and compared. In particular,

prior work investigating the SNS and BNS approaches is presented.

Chapter 3 Preliminaries to the experimental work and the methods used to investigate the

SNS and BNS approaches are discussed. Detailed explanations of the experimental

procedures, data acquisition methods and experimental hardware is covered in this

chapter. Proposed improvements to the SNS and BNS approaches are also outlined.

Chapter 4 This chapter covers experimental work related to the SNS approach, performed

on the Hexapod robot. The best SNN architectures for the Hexapod robot are

CHAPTER 1. RESEARCH CONTEXT 7

Figure 1.1: Structure of dissertation

CHAPTER 1. RESEARCH CONTEXT 8

chosen based on prior work. Improvements to the SNS approach are proposed and

investigated through a series of experiments. Quantitative and qualitative results

produced by the experiments performed in this chapter are presented and discussed.

Chapter 5 The experimental work related to the Hexapod robot and the BNS approach are

covered in this chapter. Proposed improvements to the BNS approach are inves-

tigated through a series of experiments. Results related to the experimental work

performed in this chapter are also presented and discussed.

Chapter 6 The experimental work specific to the Snake robot and the SNS approach are cov-

ered in this chapter. Benchmarks are conducted in order to identify the best SNN

architectures to use when simulating the Snake robot. Improvements to the SNS

approach are proposed and tested through a series of experiments. Results related

to this chapter are presented and discussed.

Chapter 7 This chapter involves investigations specific to the Snake robot and the BNS ap-

proach. Proposed improvements to the BNS approach are studied through a series

of experiments. Results related to the experimental work in this chapter is presented

and discussed.

Chapter 8 The overall results to this study are summarized and conclusions are drawn. The

research contributions in this work is described, limitations are discussed and possible

future work is suggested.

Chapter 2

RELATED WORK

2.1 Introduction

This chapter introduces the background knowledge specific to the study. Prior studies

related to this research are also outlined. The Evolutionary Robotics (ER) approaches

investigated in this thesis necessitate a basic understanding of ANN theory (Section 2.2).

Background knowledge and procedures followed during the ER process are covered in

Section 2.3.

ER approaches are typically studied using wheeled or limbed robot morphologies.

Swimming, flying and limbless robots are the least well studied morphologies in the ER

field. The study of ER approaches using a Snake robot morphologies is therefore of

particular interest (Section 2.4).

Prior work related to integrating simulators into the ER process are of particular

interest. Many ER approaches have been designed to automatically improve or augment

an existing simulator during the ER process. A literature review covering ER approaches

that integrate simulators into the ER process are covered in Section 2.5. A high level

comparison of ER approaches particularly relevant to this work are presented in Section

2.6. Finally, conclusions to the chapter are covered in Section 2.7.

9

CHAPTER 2. RELATED WORK 10

2.2 Artificial Neural Networks

Biological brains can process complex information and generate fine motor control which

has led researchers to develop computational models of biological neural systems [Engel-

brecht, 2007]. These computational models, called Artificial Neural Networks (ANNs),

have been demonstrated to possess excellent processing and control capabilities [Maren,

Harston, and Pap, 2014; Pretorius et al., 2017]. ANNs consist of many computational

units called Artificial Neurons (ANs). Theory related to ANs is covered in Section 2.2.1.

The combination of many ANs to form ANNs is discussed in Section 2.2.2. The ANN

training process optimises weight parameter settings of an ANN in order to model a given

system (Section 2.2.3). Specific trade-offs, features and improvements that are relevant to

ANNs are discussed in Sections 2.2.4, 2.2.5 and 2.2.6.

2.2.1 The Artificial Neuron

A representation of an AN is given in Figure 2.1. ANs are mathematical functions based on

biological neurons [Engelbrecht, 2007]. An input vector of numeric features (x1, x2, ..., xn)

is taken as input to the AN and produces a single numeric output y, where n represents

the number of input features. Each input feature xi has a corresponding weight wi (for

i = 1, 2, 3, ..., n). All weights, inputs and outputs are real numbers. Input features are

multiplied by their corresponding weights which weaken or strengthen input signals. A

constant bias input node (xn+1) is usually assigned the value -1 and has an associated

weight (wn+1). A bias is needed to effectively model certain phenomena [Engelbrecht,

2007]. The weighted sum of the input features is expressed as the net (equation (2.1)).

An activation function takes the net summation as input and outputs a single result

(equation (2.2)).

net =
n+1∑
i=1

xiwi (2.1)

y = f(net) (2.2)

Activation functions are important for modelling non-linear systems [Russell and Norvig,

2016]. The Sigmoid, Hyperbolic tangent, Linear and Rectified Linear Unit (ReLU) func-

CHAPTER 2. RELATED WORK 11

x2 w2 net f

Activation

function
y

Output

x1 w1
wn+1

−1

Bias

...

xn wn

Weights

Inputs

Figure 2.1: Artificial Neuron

tions are examples of commonly used activation functions. The ReLU activation function

was popularised after 2010 when it was shown to outperform many traditional activation

functions in terms of computational efficiency, convergence and sparsity [Glorot, Bordes,

and Bengio, 2011; Nair and Hinton, 2010] (Section 2.2.3). A graphical representation of

the ReLU function is given in Figure 2.2. The ReLu activation function (equation (2.3))

receives as input any real number x, returns zero for any negative values of x or outputs

x for positive values of x.

f(x) = max(0, x) (2.3)

2.2.2 Neural Networks

ANNs are commonly used to solve classification and regression problems. Regression

measures the relationship between output and input variables where outputs are numerical.

Classification is used to categorise input variables.

An ANN consists of many connected ANs. Many different types of ANN topologies

exist. A common topology is called the Feed-Forward Neural Network (FFNN) and is

illustrated in Figure 2.3. Circular nodes represent ANs and arrows are the connections

between nodes. The illustrated topology consists of three layers. Namely, the input,

CHAPTER 2. RELATED WORK 12

−4 −2 0 2 4
Input

0

1

2

3

4

5
Ou

tp
ut

Figure 2.2: Rectified Linear Unit (ReLu) activation function

hidden and output layers. However, FFNNs can contain zero or many hidden layers.

Hidden layers are required to accurately model many complex phenomena [Engelbrecht,

2007].

The input layer receives inputs and the computed signals propagate through the hidden

layer to the output layer. No signals propagate backwards towards previous layers in FFNN

topologies. The input layer receives I input values, x1, ..., xi, ..., xI , plus a bias input xI+1.

Inputs are multiplied by their associated weights (vj,i) and the results serve as inputs to

the hidden layer neurons y1, ..., yj , ..., yJ . For each hidden layer neuron, the net (equation

(2.1)) is calculated and activation functions are applied (equation (2.2)). Similarly, the

signals from the hidden layer neurons are multiplied by their associated weights (wk,j) and

the results serve as input to the output layer neurons o1, ..., ok, ..., oK , net summations are

calculated and activation functions are applied.

The output for neuron ok, given input values x1, ..., xi, ..., xI is calculated using equa-

tion (2.4). The activation functions for neurons ok and yj are represented as fok
and fyj ,

respectively.

ok = fok
(
J+1∑
j=1

wk,jfyj (
I+1∑
i=1

vj,ixi)); 1 ≤ k ≤ K (2.4)

CHAPTER 2. RELATED WORK 13

Figure 2.3: Artificial Neural Network

CHAPTER 2. RELATED WORK 14

Explicit mathematical models based on human understanding are only viable when

a system is well understood. ANNs can model systems where the complexity has in-

creased to the point where human understanding is difficult or time-consuming to achieve.

Machine learning approaches, such as ANNs are advantageous when the relationship be-

tween the input and output variables is difficult to establish through expert knowledge.

A strong statistical or mathematical background is usually not required in order to use

ANNs effectively.

Researchers typically describe ANNs as black-boxes due to the difficulty in interpreting

their behaviours. Gaining insights into the inner workings of underlying systems being

modelled using ANNs can be challenging. An ANN is essentially a mathematical function

that maps an input space to an output space.

Systems with a higher number of input features are more difficult to model compared

to systems with fewer inputs. As the dimensionality of an input space increases, the

volume of the input space increases exponentially. An exponential increase in the volume

of the input space eventually leads to a point where available data becomes sparse. This

phenomena is referred to as the curse of dimensionality [Bellman, 1961; Domingos, 2012].

High dimensional search spaces could require significant amounts of training data and

may suffer from over-fitting. Over-fitting occurs when a model memorises the training

data such that the model performs poorly on unseen data [Engelbrecht, 2007].

Deep Learning involves models that consist of multiple stages or layers of nonlinear

information processing and learning happens using supervised or unsupervised methods

[Deng and Yu, 2014]. The field of Deep Learning is a relatively new research area [Ben-

gio, 2009]. Advances in Deep Learning have greatly impacted the Machine Learning and

Artificial Intelligence fields. Recent advancements includes better activation functions

[Glorot et al., 2011], stochastic backpropagation [Ruder, 2016], multi-hidden-layer train-

ing [Huang, Sun, Liu, Sedra, and Weinberger, 2016], regularisation techniques [Srivastava,

Hinton, Krizhevsky, Sutskever, and Salakhutdinov, 2014] and Open Source Deep Learn-

ing libraries [Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, and

Devin, 2015; Chollet, 2015]. Approaches developed in this thesis have greatly benefited

from advances in the Deep Learning field. It is doubtful that the approaches developed in

this thesis would be viable without recent advances in the Deep Learning field.

CHAPTER 2. RELATED WORK 15

2.2.3 ANN Training

ANN training is an iterative process that optimises the weights of an ANN in order to

approximate some function. The optimisation process relies on many input-output pair

examples, called the training dataset. A single input-output pair is commonly referred to

as a pattern.

Pre-processing steps are often applied to all patterns before training. Training pattern

inputs and target outputs can be standardised or normalised. Standardisation is where a

feature/output variable is transformed so that they have a zero mean and unit standard

deviation. Normalisation is where a feature/output variable is transformed to be between

the domain of -1 and 1 or between 0 and 1.

ANN weights are optimised by reducing differences between the training dataset’s ideal

outputs and the ANN’s predicted outputs. The difference between the training dataset

outputs and the ANN predicted outputs is measured as the Mean Squared Error (MSE),

also known as the cost or loss function. The MSE is the average of the squares of errors

(equation (2.5)). The squaring of errors results in larger errors being significantly more

influential in the calculation.

MSE = 1
P

P∑
p=1

K∑
k=1

(tk,p − ok,p)2 (2.5)

where P is the total number of training patterns. The total number of output neurons

is represented as K. The predicted output for the kth output neuron and pth training

pattern is shown as ok,p. The ideal output for the kth output neuron and pth training

pattern is represented by tk,p.

Gradient Descent (GD) is a common algorithm for minimising the cost function. Ini-

tially, ANN weights are initialised with randomly generated values. Weights are iteratively

updated based on the derivative with respect to the weights of the cost function (gradi-

ent). Gradients are multiplied by a learning rate and added to the weights in the direction

of minimising the cost function. New gradients are then calculated and weights updated

based on the new gradients. This process repeats until some stopping condition is met.

GD calculates gradients using the entire training dataset. A variation on the GD

algorithm is called Stochastic Gradient Descent (SGD). SGD calculates gradients using a

CHAPTER 2. RELATED WORK 16

subset sample of the full training dataset. Gradient calculations based on a small number

of training patterns makes SGD less computationally expensive than GD. SGD often

converges faster than GD depending of the function being modelled.

The learning rate applied to gradients in GD and SGD can be static or adjusted during

the training process. A popular extension of the SGD algorithm implements adaptive

learning rates and is called Adaptive Moment Estimation (Adam). A dynamic learning

rate is maintained for each weight parameter setting. Learning rates are computed from

the first and second moments of the gradients. Adam was first introduced in 2014 and is

simple, computationally efficient, scalable to many types of problems and requires minimal

parameter tuning [Kingma and Ba, 2014]. The Adam optimisation algorithm has also been

demonstrated to outperform many other ANN training algorithms [Ruder, 2016].

The training process can result in a problem called model over-fitting. This occurs

when the errors between the predicted and ideal outputs are low for the training dataset

but new patterns not presented during training have high errors. Over-training can result

in ANNs memorising the training data but lose the ability to generalise to unseen data.

Over-fitting can be avoided by continually monitoring an ANNs generalisation ability

during training. Available patterns can be divided into two separate groups, namely, the

training and validation datasets. The validation set is used to measure the generalisation

ability of the ANN during training. Once the errors between predictions and the validation

dataset start to increase during training, the training process should be stopped early in

order to prevent over-fitting.

In 2014, Dropout was proposed as a technique to help ANNs avoid over-fitting [Sri-

vastava et al., 2014]. During training, hidden layer neurons are temporarily and randomly

turned on or off along with their connections. The dropout rate is the probability of any

given hidden layer node being ignored during feed forward calculations. This prevents the

modelling process from relying too heavily on a small subset of neurons and improves an

ANN’s generalisation ability.

The number of hidden layers and neurons for a particular ANN morphology is directly

proportional to the complexity of the phenomena being modelled. For many problems, it

is difficult to determine the optimum ANN morphology [Russell and Norvig, 2016]. A trial

and error approach is often used in practice for selecting a good ANN architecture. ANNs

CHAPTER 2. RELATED WORK 17

can increase in complexity by either adding more neurons or increasing the number of

hidden layers. More hidden layers increases the capacity of an ANN by creating complex

mapping functions and forming abstractions of the underlying relationships. Morphologies

with an insufficient level of complexity will fail to adequately model a given phenomena

while too much complexity increases the likelihood of over-fitting.

The vanishing gradient problem [Bengio, Simard, and Frasconi, 1994] occurs when

training ANNs using gradient-based optimisation techniques and gradient information

is lost when many hidden layers are used. Computing gradients over multiple hidden

layers can produce gradients that become vanishing small and can prevent or slow down

ANN training. The vanishing gradient problem can be solved using alternative activation

functions, better weight initialisations and increasing the training time. ANNs that use the

ReLU activation function are less prone to suffering from the vanishing gradient problem

compared to other activation functions.

2.2.4 Uncertainty Estimation

ANNs can make point predictions on unseen observation, however, ANNs do not inher-

ently indicate the reliability of predictions. Bayesian Neural Networks and other Bayesian

modelling techniques create models that produce uncertainty information but these mod-

elling techniques can be prohibitively slow for high dimensional problems. Techniques

have been developed for providing uncertainty for standard ANNs [Gal and Ghahramani,

2016; Lakshminarayanan, Pritzel, and Blundell, 2017].

Figure 2.4 illustrates predictions from an ANN with dropout enabled for a simple

regression problem. ANNs with dropout enabled produce a confidence interval. These

confidence intervals can then be used to estimate the reliability of any given ANN pre-

diction. The grey line represents the ideal values. The blue line represents the ANN

predictions. The only known observations are the black dots. The shades of blue repre-

sent the distribution of predictions from an ANN with dropout enabled. The standard

deviations of ANN predictions close to known observations is low compared to the standard

deviation of predictions far from known observations. Alternatively, confidence intervals

can be estimated using ensembles of ANNs trained on the the same dataset, producing a

distribution of predictions for any given input [Lakshminarayanan et al., 2017].

CHAPTER 2. RELATED WORK 18

x-axis

y-
ax

is

Figure 2.4: ANN predictions with dropout enabled for a simple regression problem [Gal

and Ghahramani, 2016]

2.2.5 Bias-Variance Tradeoff

If multiple models are trained on independently collected datasets for a given system, each

model will likely produce a different prediction for any given set of inputs. Errors can be

classified in terms of bias and variance. In Figure 2.5, the target centres represent perfect

model predictions. Predictions farther or away from the bulls-eye indicate larger errors.

Each hit on the target represents an independently trained model. Ideally, a low bias and

low variance is achieved.

A trade-off exists between reducing bias and variance. Bias measures the difference

between the average of predictions and the correct value. The variance is the degree to

which independent model predictions vary from each other. A high variance is the result

of overfitting.

Bias and variance can be understood in terms of over-fitting and under-fitting (Figure

2.6). Increasing a model’s complexity increases variance and reduces bias. A complex

model tends to memorise the training dataset, leading to a low bias while the model is

unable to generalise on unseen data (high variance). A balance between bias and variance

is achieved by developing models with different levels of complexity and comparing the

errors. A high bias can be identified when observing a high training error and the validation

CHAPTER 2. RELATED WORK 19

Figure 2.5: Graphical illustration of bias and variance [Fortmann-Roe, 2012]

CHAPTER 2. RELATED WORK 20

Figure 2.6: Bias and variance contribution to total error [Fortmann-Roe, 2012]

error is similar to the training error. A high variance is identified when a low training

error is achieved but the validation error is high.

2.2.6 Ensembles

ANNs are trained using stochastic algorithms which leads to differences in predictions

for different weight initialisations. If many identical ANN architectures are initialised

with different weight settings and trained on the same dataset, each trained ANN may

produce a significantly different mapping between inputs and outputs which can produce

a high variance problem in predictions. One method for reducing the variance is to train

multiple ANNs and combine the predictions, called ensemble learning. Each ANN is not

likely to make the same mistakes when calculating predictions on unseen patterns. ANNs

configured in ensembles helps reduce the variance of predictions and tends to perform

better than any single ANN [Goodfellow, Bengio, and Courville, 2016].

2.3 Evolutionary Computation

Evolutionary Computation (EC) is a family of algorithms within the Computational Intel-

ligence field that involves finding solutions to discontinuous and continuous optimisation

problems using computation models and evolutionary processes [Engelbrecht, 2007]. Evo-

CHAPTER 2. RELATED WORK 21

lutionary Algorithms (EA) is a subset of EC and involve algorithms based on natural

evolution. In EA, a population of candidate solutions is evolved over many generations

through biological mechanisms such as reproduction, selection, recombination and mu-

tations. Solution candidates, referred to as individuals, survive or die based on evolved

characteristics important for solving a particular problem. Fitter individuals are more

likely to reproduce and pass on useful characteristics to their children.

2.3.1 Evolutionary Algorithms

An EA is a population-based optimisation algorithm that uses evolutionary principles in

order to perform a stochastic search over a solution space. The pseudo-code of a generic

EA is shown in Algorithm 1 [Engelbrecht, 2007].

An initial population of randomly generated individuals is created. Each individual

consists of genes that encode traits that affect its characteristics or behaviours. An indi-

vidual’s ability to perform the chosen goal task is measured using a fitness function.

Algorithm 1 The Evolutionary Algorithm
Let generation t = 0

Initialize a population, C(0), of n individuals

while no stopping condition(s) are met do

Evaluate the fitness of each individual in C(t)

Create offspring through reproduction operators

Use selection operators to create a new population C(t+ 1)

Advance to the next generation: t = t+ 1

end while

All individuals in the population are evaluated and assigned a fitness value. Children

are produced from the population by means of reproduction operators. Reproduction in-

volves crossover operations between parents. Parents are selected for crossover operations

through selection methods that favour higher fitnesses.

After the reproduction process, offspring can be mutated in order to introduce small

changes to their genes and help increase diversity [Beasley, Martin, and Bull, 1993]. The

probability that a particular gene will be mutated is called the mutation rate. In order to

CHAPTER 2. RELATED WORK 22

avoid distorting existing good solutions, mutations are small and the mutation rate should

not be too high. After the mutations are applied to the offspring, the current population

is discarded and the offspring become the new population. Some of the best performing

individuals from the old population can carry forward to the next generation. This process

continues for many generations until some stopping condition is met.

The EA can terminate if certain convergence criteria have been met like no significant

improvement can be found, there can be a limit to the total number of generations or the

EA could terminate when an adequate solution is found.

2.3.2 Evolutionary Robotics

Evolutionary Robotics (ER) uses Darwinian principles in order to evolve a population of

robotic controllers and/or robot morphologies [Floreano et al., 2008]. Controllers receive

input from robotic actuators and sensors, processes them and then produces a response as

output, such as motor movements or changing a joint position. In order to produce con-

trollers that generate target robot behaviours or solve goal tasks, controller settings need

to be optimised using evolutionary techniques, such as Evolutionary Strategies [Schwefel,

1993], Evolutionary Programming [Koza, 1992] and Genetic Algorithms [Pratihar, 2003].

ER algorithms are not limited to evolving controllers but can also evolve robot morpholo-

gies [Lund, 2003].

The procedure followed for performing the ER process can be found in Section 2.3.2.1.

A high level discussion regarding the current state of the ER field is given in Section

2.3.2.2.

2.3.2.1 Evolutionary Robotics Process

The ER process applied to an ANN-based controller is illustrated in Figure 2.7. An initial

population of controllers is randomly generated. The initial population is randomly gen-

erated but future generations are created through a reproduction process (A). Individuals

are made up of genes that are the weight parameters to a controller (B). The decoded

genes are used to construct the actual ANN used to control robot behaviours (C). The

example uses an ANN-based controller but other types of controllers are possible. The

decoded individuals are evaluated on a real-world robot or behaviours are approximated

CHAPTER 2. RELATED WORK 23

in simulation. Based on observed or simulated behaviours, fitness scores are assigned to

individuals (D). Once all individuals have been evaluated and assigned a fitness, a new

population of individuals is created through cross-over and mutation operators (E). This

cycle is repeated for many generations until some termination state is reached.

Figure 2.7: The Evolutionary Robotics Process applied to the evolution of an ANN based

controller [Floreano et al., 2008; Pretorius, 2010]

2.3.2.2 General State of the Evolutionary Robotics Field

Manually creating robot controllers becomes less feasible as tasks and robotic systems

become more complex [Sofge, Potter, Bugajska, and Schultz, 2003]. A goal in ER is the

automatic synthesis of control solutions and/or design of body plans for the specified task

[Silva, Duarte, Correia, Oliveira, and Christensen, 2016]. ER research can be broadly di-

vided into two primary categories. The first category involves cognitive science [Auerbach

and Bongard, 2014; Harvey, Paolo, Wood, Quinn, and Tuci, 2005] and the second focus is

CHAPTER 2. RELATED WORK 24

the study of ER as an engineering tool.

ER and neuroscience researchers can collaborate by study biologically inspired models

of particular environments. A biological model of a target system can be developed and

studied using ER techniques. For example, a central pattern generator of the swimming

behaviours of Lamprey eels have been studied using ER techniques [Hallam and Ijspeert,

2003]. Experimental studies in biological evolution is usually practically impossible due

to the long time periods required to observe evolution in a natural environment [Don-

cieux, Bredeche, Mouret, and Eiben, 2015]. Simulated versions of biological evolutionary

processes is often the only viable method of investigation. ER has been used to investi-

gate the evolutionary basis for altruism as a survival strategy [Montanier and Bredeche,

2011], species communication strategies [Wischmann, Floreano, and Keller, 2012], preda-

tor confusion through collective swarms [Olson, Hintze, Dyer, Knoester, and Adami, 2013]

and how an environment can influence morphological complexity [Auerbach and Bongard,

2014].

For engineering applications, it is envisioned that ER approaches could replace in-

efficient manual controller/morphology development [Lipson and Pollack, 2000; Quinn,

Smith, Mayley, and Husbands, 2003]. Traditional robotics involves human experts de-

signing most aspects of a robotic system, such as the mechanics, sensors, control and

morphology separately. These separate pieces are then put together to form the final so-

lution. This manual process can be time-consuming, is subject to human bias, requires

significant levels of specialised human knowledge and interventions. For example, the

manual development of walking robot gaits can be replaced with an ER approach which

can automate some of the controller development process [Hornby, Takamura, Yamamoto,

and Fujita, 2005; Pretorius et al., 2019]. Multiple aspects regarding a robotic system can

be considered and optimised together as part of the ER process. Novel robot morpholo-

gies (modular robots [Zykov, Chan, and Lipson, 2007], soft robots [Cheney, Clune, and

Lipson, 2014], swarms [Şahin, Girgin, Bayindir, and Turgut, 2008]) can be discovered and

the solution spaces explored using ER approaches [Bongard et al., 2006b].

ER techniques are of particular interest for the development of more autonomous and

robust robots. For complex robotic systems, it is practically infeasible to account for all

possible failure modes or changes in a target environment. ER approaches can be used to

CHAPTER 2. RELATED WORK 25

automatically detect and recover from hardware damage or changes to the environment

[Bongard, Zykov, and Lipson, 2006a; Cully et al., 2015]. This would be particularly useful

in scenarios where human interventions are difficult, such as robots operating on other

planets or dangerous environments.

The ER field is having difficulties in scaling up current ER approaches and undertaking

more complex problems. This is arguably one reason for the lack of mainstream adoption of

ER techniques [Silva, Duarte, Oliveira, Correia, and Christensen, 2014]. There is currently

a significant gap between ER and mainstream robotics fields [Silva et al., 2016]. The

difficulties in scaling ER approaches has likely caused current ER research to be more

centred around theoretical contributions rather than practical applications.

The Evolutionary Computing field has developed standard benchmarks against which

new techniques can be tested and compared. However, the ER field lacks standardised

benchmarks, robots or environments against which to investigate ER approaches [Don-

cieux et al., 2015; Silva et al., 2016]. This makes comparisons between ER approaches

difficult. Few ER approaches are rigorously studied across different robots and tasks. The

effectiveness of certain ER approaches across different robotic systems may not be readily

apparent based on the current literature.

Simulators are used to avoid damaging real-world hardware and to speed up the ER

process. However, developing an effective simulator can become a challenging problem

(Section 2.5). Behaviours developed in simulation often do not transfer well into reality.

A trade-off between simulator accuracy and computational efficiency is often required.

Alleviating some of the problems inherent in using robotic simulators in ER is an active

and important research area (Section 2.5.3).

2.4 Snake Robot Morphologies

A robot’s morphology can greatly affect the controller design, optimisation and difficulty

level of the problem. The chosen robot morphology greatly influences real-world robot

behaviours. ANNs can be used to simulate behaviours from different robot morphologies

based on observed behaviours.

Many Snake robot locomotion modes are based on biological snake behaviours such as

CHAPTER 2. RELATED WORK 26

Figure 2.8: Snake locomotion modes

[Britannica, 2012]

slide-pushing, lateral undulation (serpentine locomotion), concertina, rectilinear motion,

side-winding and various others [Dowling, 1996]. Some of these locomotion modes can

be visualised in Figure 2.8. For biological snakes, lateral undulation is the most common

locomotion mode used. Side-winding is when the snake body forms a sine-like wave while

only two static contact points are made with the ground at any given time. Biological

snake skins possess directional friction properties where forward movements are subject

to less friction compared to moving backwards [Hu, Nirody, Scott, and Shelley, 2009].

Lateral undulation is less suitable for low-friction surfaces. Side-winding locomotion is

capable of generating effective movements in low-friction environments [Shmakov, 2006].

Snake robot locomotion can be inspired by biological snakes. Figure 2.9 illustrates

turning behaviours from a robot and biological snake where the robot is on a flat hard

surface and the snake is on loose sand. Current Snake robot morphologies are unable to

match the agility of current biological snakes [Gong, Travers, Astley, Li, Mendelson, Gold-

man, and Choset, 2016]. Non-biologically inspired locomotion modes include flapping and

rolling motions. Robot Snake morphologies sometimes use wheels or directional friction

mechanisms. Snake robots can be designed to operate in environments not suitable for

CHAPTER 2. RELATED WORK 27

Figure 2.9: Snake robot (left) and rattlesnake (right) executing turning behaviours

[Gong et al., 2016]

wheeled motion, including tight spaces, swimming, climbing inside/outside pipes, stairs

and many others [Melo et al., 2012]. Robot Snakes without specialised friction generat-

ing mechanisms typically rely on locomotion modes similar to side-winding or sideways

shifting [Woodford, du Plessis, and Pretorius, 2015].

The Snake robot morphology is theoretically appealing in terms of its potential but is

difficult to use in practice. The study of most ER approaches on complex robots tend to

be limited to limbed robot morphologies. Research into Snake-like robots in ER have been

limited to relatively simple morphologies and problems [Au and Jin, 2016; Hasanzadeh and

Akbarzadeh, 2013; Hasanzadeh and Tootoonchi, 2010; Kamimura, Kurokawa, Yoshida,

Murata, Tomita, and Kokaji, 2005].

2.5 Simulators

As previously mentioned, simulators play a significant role in speeding up the ER process

and avoiding problem inherent in evolving controllers in reality (Section 2.5.1). Back-

ground knowledge and prior research to consider when integrating simulators into ER are

CHAPTER 2. RELATED WORK 28

covered in Section 2.5.2. Using simulators during the ER process can result in a mismatch

between behaviours observed in simulation and reality. This is due to simulator inaccura-

cies or peculiarities that arise in simulation and not in reality. Many ER approaches have

been designed, such that the simulator is improved or augmented during the ER process

(Section 2.5.3). Most ER approaches make use of a physics-based simulator which come

with significant disadvantages. SNNs do not suffer from many of the disadvantages seen

in physics-based approaches. Prior research involving the use of SNNs in ER are covered

in Section 2.5.4.

2.5.1 Evolving Controllers in Reality

Evaluating large numbers of controllers on real-world hardware can become infeasibly

time-consuming and may result in significant damage to the robot through mechanical

wear [Floreano and Mondada, 1994; Zagal and Ruiz-del Solar, 2007]. Evaluation times

tend to increase as the complexity in a robotic system increases [Zagal and Ruiz-del Solar,

2007]. Erratic movements during the early stages of the ER process may damage robot

hardware [Floreano et al., 2008]. Frequent real-world controller evaluations can require

significant manual human interventions, such as resetting the robot [Floreano et al., 2008].

In order to escape the limitations of performing large numbers of real-world evaluations,

controllers can be evaluated in simulation. The solution search space can be explored

faster in simulation compared to reality. The number of real-world evaluations required

to discover effective controller solutions can be reduced by using a simulator [Lund and

Miglino, 1996].

2.5.2 Simulators in Evolutionary Robotics

A high level overview of the types of simulation strategies that can be followed are discussed

in Section 2.5.2.1. Important aspects to consider when evolving controllers in simulation

are discussed in Section 2.5.2.2. Lastly, simulators developed using Machine Learning

techniques are covered in Section 2.5.2.3.

CHAPTER 2. RELATED WORK 29

2.5.2.1 Simulation Strategies

Simulators can be constructed from expert knowledge, such as physics-based simulation

techniques. Alternatively, a more machine learning approach can be followed and empiri-

cal models can be built from experimentally collected data. A hybrid simulation approach

could combine different aspects of both an empirical and physics-based simulation ap-

proach.

Robotic systems can be modelled using either a knowledge-based or behavioural-based

representation system, with varying levels in-between [De Nardi, 2010]. In knowledge-

based representations, the underlying components governing a robotic system are modelled

individually and integrated with one another, leading to clearly understood structures.

Examples of components include kinetics, friction, gravity, weight distributions and many

others. Knowledge-based representations require significant prior knowledge and human

interventions to build. Behavioural-based representations ignore the direct modelling of

underlying components and instead model behaviours directly. Little expert knowledge

is required to model direct behaviours of a robot. However, many behavioural-based

modelling techniques have the disadvantage of being black-boxes, whereas knowledge-

based approaches have parameters and structures with real-world interpretations. As the

complexity in robotic systems increase, the ability to construct simulators from human

gained expert knowledge becomes more difficult.

The model taxonomy can be broken down in terms of the prior knowledge integrated

into the simulator design [De Nardi, 2010]. Namely, simulators can be classified as white-

box, black-box or grey-box models. White-box models, such as physics-based equations,

are developed using specialised prior knowledge and physical insights. Certain machine

learning approaches produce black-box models, such as ANNs. Grey-box models use both

empirical data and prior knowledge.

2.5.2.2 Evolving Controllers in Simulation

There are challenges to overcome when using simulators in ER. If the ER process takes

place in simulation only, solution controllers can develop behaviours in simulation that do

not transfer well into reality, referred to as the reality-gap problem. A simulator design

CHAPTER 2. RELATED WORK 30

could be oversimplified and lead to solutions that rely too heavily on simulated peculiari-

ties that are absent in reality. Simulator inaccuracies are inevitable and even high fidelity

simulators cannot perfectly model reality [Floreano et al., 2008]. High fidelity simula-

tors can reduce the reality-gap but can be computationally expensive to operate [Miglino,

Nafasi, and Taylor, 1994; Mouret and Chatzilygeroudis, 2017]. Simulated controller eval-

uation times can increase substantially for more complex robotic system [Bongard, 2013;

Matarić and Cliff, 1996].

The reality-gap problem can be reduced by injecting a reasonable amount of noise

into simulated behaviours [Harvey, Husbands, Cliff, Thompson, and Jakobi, 1997; Jakobi

et al., 1995; Miglino et al., 1995; Mouret and Chatzilygeroudis, 2017; Nolfi, Bongard,

Husbands, and Floreano, 2016]. Small discrepancies between simulation and reality can

accumulate over time and exacerbate the reality-gap problem. Even if the same controller

is evaluated multiple times in reality, there are small differences in observed behaviours

between evaluations. A simulator without noise does not account for the slight variations

in behaviours seen in reality. Adding noise to simulated sensors and movements can

prevent solution controllers from relying on peculiarities seen only in simulation. Noise

can be added to a simulator by including sensor or movement data sampled directly from

the real-world robot. Alternatively, a noise model or distribution can be estimated from

empirically collected data. Injecting the correct type and level of simulator noise can be

difficult and might require significant manual tuning [Mouret, Koos, and Doncieux, 2012].

As the complexity of a robotic system increases, it becomes increasingly difficult to inject

large amounts of simulator noise [Bongard, 2013].

Physics engines such as the Open Dynamics Engine (ODE) [Smith, 2005], Bullet [C.,

2019] and Dart [Lee, Grey, Ha, Kunz, Jain, Ye, Srinivasa, Stilman, and Liu, 2018] make

use of algorithms for collision detection, rigid body dynamics and classical mechanics.

Physics-based simulators have been used to evolve controllers that can transfer simulated

behaviours into reality [Bongard and Lipson, 2004a; Jakobi et al., 1995; Moeckel, Perov,

Nguyen, Vespignani, Bonardi, Pouya, Sproewitz, van den Kieboom, Wilhelm, and Ijspeert,

2013; Pretorius et al., 2019]. It is practically impossible to account for every possible physi-

cal component that makes up any given system, such as gravity, friction, kinetics, dynamics

and many others. Developing a highly accurate simulator requires specialised knowledge,

CHAPTER 2. RELATED WORK 31

can be time-consuming and financially costly [Floreano and Mondada, 1994; Wittmeier,

Jäntsch, Dalamagkidis, and Knoll, 2011]. Significant resources can be spent evaluating

existing simulation frameworks based on multiple criteria [Mouret and Chatzilygeroudis,

2017]. Simulation frameworks can become outdated quickly or are subject to significant

changes over time [Mouret and Chatzilygeroudis, 2017].

In an attempt to reduce the complexities inherent in simulating real-world robotic

systems, Jakobi [1998a] suggested that a minimal simulation be built. A simulation need

not accurately simulate every component of a given system. Specific features of a system

could be simulated while other aspects are randomly generated so that the ER process

can only exploit predictable aspects. However, such an approach could require domain

knowledge of the given robotic system and identifying the components to simulate may

be difficult [Floreano et al., 2008].

2.5.2.3 Simulator Development using Machine Learning Techniques

Simulation techniques that do not require significant expert knowledge of a given robotic

system are possible using empirical models. Experimental data can be collected from a

robotic system and standard regression or clustering methods used to build accurate be-

havioural models [De Nardi and Holland, 2008; Kamio and Iba, 2004; Pretorius et al.,

2019; Togelius, De Nardi, Marques, Newcombe, Lucas, and Holland, 2007; Woodford

and du Plessis, 2018]. Empirical models can be built using lookup tables or interpola-

tion techniques [Lund and Miglino, 1996]. More advanced modelling techniques include

NARMAX polynomials [Nehmzow, Kerr, and Billings, 2009], Gaussian Processes [Lizotte,

Wang, Bowling, and Schuurmans, 2007], ANNs [Lee, Nehmzow, and Hubbold, 1998, 1999;

Nakamura, Saegusa, and Hashimoto, 2007; Pretorius et al., 2017; Togelius et al., 2007;

Woodford et al., 2015] and Genetic Programming [De Nardi and Holland, 2008; Schmidt

and Lipson, 2009]. Most empirically developed simulators are for relatively simple robots

with few degrees of freedom [De Nardi, 2010; De Nardi and Holland, 2008; Kamio and Iba,

2004, 2005; Lund and Miglino, 1996; Togelius et al., 2007; Woodford et al., 2016], however,

recent work has demonstrated that empirical simulation approaches can be scaled up to

more complex robots [Pretorius et al., 2019; Woodford et al., 2017].

CHAPTER 2. RELATED WORK 32

2.5.3 Bidirectional Simulation Development

The importance of bidirectional ER approaches are covered in Section 2.5.3.1. The follow-

ing sections discuss particular implementations of bidirectional ER approaches. Physics-

based model parameters can be manually tuned through trial-and-error experimentation.

Alternatively, model parameters and structures can be automatically optimised using the

Anytime Learning Algorithm (Section 2.5.3.2), Estimation-Exploration Algorithm (Sec-

tion 2.5.3.3) or the Back to Reality Algorithm (Section 2.5.3.4). Instead of improving

an existing simulator, weaknesses could be identified and the ER process could evolve

controllers that avoid unreliably simulated behaviours (Section 2.5.3.5). An existing sim-

ulator can be augmented by some mapping procedure, such as Intelligent Trial-and-Error

Learning (Section 2.5.3.6). Many approaches require the development of a physics-based

simulator based on prior knowledge. If a Machine Learning strategy is followed, empirical

data can be collected and used to automatically model a given robotic system without

specialised prior knowledge (Section 2.5.3.7).

2.5.3.1 Bidirectional Mechanism

The reality-gap problem can be avoided by evaluating all controllers in reality [Floreano

and Mondada, 1994; Hornby et al., 2005; Lipson, Bongard, Zykov, and Malone, 2006].

Alternatively, the ER process can initially evaluate controllers in simulation and later

switch over to evaluating controllers in reality [Pollack, Lipson, Ficici, Funes, Hornby, and

Watson, 2000].

The quality of solution controllers evolved in simulation is assessed through real-world

evaluations. If all solutions fail to transfer well into reality, improvements to the simulator

or fitness function could be necessary. The ER approaches described up to this point

do not include a built-in mechanism for improving or augmenting the simulator during

the ER process. Empirical data can be collected during the ER process for simulator

improvement or augmentations that leads to the discovery of more transferable controllers.

Bi-directional mechanisms to the ER process have been developed with feedback loops for

reducing the reality-gap [Bongard et al., 2006b; Cully et al., 2015; De Nardi and Holland,

2008; Grefenstette and Ramsey, 1992; Mouret et al., 2012; Zagal and Ruiz-del Solar, 2007].

CHAPTER 2. RELATED WORK 33

2.5.3.2 Anytime Learning

The Anytime Learning approach is designed for controller optimisation in dynamically

changing environments [Grefenstette and Ramsey, 1992]. The approach is illustrated in

Figure 2.10 and consists of an execution system and a learning system.

The execution system runs the current best controller on real-world hardware. A moni-

tor observes the real-world environment in order to identify significant changes. Controllers

are made up of a decision maker and a knowledge base. The decision maker controls the

robot based on strategies specified by the active knowledge base. The knowledge base

is a set of rules governing behavioural strategies. The real-world environment and con-

troller performance is monitored continually. The learning system is notified of significant

changes to the environment.

The learning system is similar to the execution system, except that a simulator model

is used as an alternative to the real-world environment. If the environment changes signifi-

cantly, the simulation model is updated to better reflect reality. A population of knowledge

base test strategies is evolved using a Genetic Algorithm (GA). The best knowledge base

discovered is transferred to the execution system, swapping out the previous knowledge

base.

The effectiveness of the Anytime Learning approach is highly dependent of the design of

the decision makers. Specialised knowledge of the robotic system may be required in order

to create and update the simulation model [Zagal and Ruiz-del Solar, 2007]. Measuring

certain real-world phenomena related to the simulation model can be impractical.

The approach is appropriate for model-based parameter tuning. The Anytime Learning

approach has been validated using a two dimensional cat-and-mouse game. Prior work

has also successfully applied the Anytime Learning approach for gait optimisation on a

Hexapod robot with 12 degrees of freedom [Parker, 2000, 2002].

2.5.3.3 Estimation-Exploration Algorithm

The Estimation-Exploration Algorithm (EEA) is a hybrid co-evolutionary algorithm that

evolves populations of simulator models and controllers [Bongard and Lipson, 2004b]. The

population of simulator models is evolved to better approximate the morphology of some

CHAPTER 2. RELATED WORK 34

Figure 2.10: Anytime Learning System

target robot. Models consist of parameter settings and joint configurations, such as body

dimensions, limb positions, weight distributions, gravity and others. A model’s fitness is

calculated by comparing simulated behaviours with those observed on the target robot.

The population of controllers is evolved to either explore the simulation model search space

or to maximise performance for a particular task [Bongard and Lipson, 2004b, 2005].

The approach consists of two distinct phases, namely, the estimation and exploration

phases. During the estimation phase, controllers are evaluated on a real-world robot and

behavioural data is collected. During the exploration phase, controllers are evolved to

maximise the disagreement in behaviours observed when evaluated on the population of

simulator models.

An illustration of the EEA is given in Figure 2.11. During the estimation phase,

controllers are evaluated on the real-world robot (A). The behavioural data collected from

these evaluation is compared to the behaviours produced by the models. The population

of models is evolved in order to produce the behaviours observed in reality (B).

The exploration phase (C), evolves a population of controllers in order to maximise

disagreement between the population of models. The optimisation process tries to discover

controllers that demonstrate inconsistent behaviours when evaluated on the population of

models.

The EEA alternates between the estimation and exploration phases until a termination

CHAPTER 2. RELATED WORK 35

condition is triggered. Once an adequate model is found (D), controllers are evolved to

solve a particular goal task, such as gait optimisation. The solution controller is validated

on the real-world robot (E). Improved models, damage recovery can be achieved by al-

ternating between the estimation and exploration phases or new solutions can be evolved

with the existing model (F).

Prior work has validated the EEA using a four-legged, real-world robot with 8 degrees

of freedom [Bongard et al., 2006b; Liang and Xue, 2010]. Tilt and joint angle sensors

were simulated. The approach has been used for gait optimisation problems, such as

achieving forward locomotion. A Humanoid robot has been used to validate a variation

of the EEA for evolving walking and kicking gaits [Iocchi, Libera, and Menegatti, 2007].

The Humanoid robot consisted of 22 degrees of freedom.

The EEA was also investigate using a Hexapod robots with 18 degrees of freedom for

gait optimisation problems [Koos, Cully, and Mouret, 2013a]. However, the EEA failed

to perform adequately well on a Hexapod robot platform. This failure might be due to

the initial simulator not being powerful enough to capture the dynamics of the Hexapod

robot or an insufficient number of real-world evaluations was performed.

The EEA can be used to allow a robot to quickly detect and recover from unantici-

pated damage [Bongard et al., 2006a]. The approach can automatically fix or fine-tune

inaccurate models. However, an initial simulator must be designed that is capable of sim-

ulating arbitrary robot morphologies. Developing a powerful simulator that is capable of

simulating arbitrary robots morphologies or behaviours is a challenging problem.

2.5.3.4 Back to Reality Algorithm

The Back to Reality (BTR) algorithm co-evolves a population of controllers and simulator

models [Zagal and Ruiz-del Solar, 2007]. Controllers are optimised for a particular task,

such as developing fast gaits or kicking a ball. Controllers consist of parameter settings

to parametrised mathematical equations. Models are optimised such that the difference

between controller fitnesses observed in simulation and reality are minimised. Models con-

sist of parameter settings to predefined physics equations. Examples of model parameter

settings include mass distributions, friction properties, gravity, joint torques and others.

The BTR algorithm has been successfully validated on a physical four-legged Sony

CHAPTER 2. RELATED WORK 36

Figure 2.11: Estimation-Exploration Algorithm [Bongard et al., 2006b]

CHAPTER 2. RELATED WORK 37

AIBO robot with 12 degrees of freedom [Zagal and Ruiz-del Solar, 2007]. Controllers are

optimised for either ball kicking or fast walking. Models consisted of 12 parameter settings.

Depending on the problem, controllers consist of either 20 or 25 parameter settings.

The BTR algorithm has also been validated by generating walking behaviours for a

humanoid soccer playing robot with 22 degrees of freedom [Zagal, Delpiano, and Ruiz-del

Solar, 2009]. The controller consisted of 7 parameter settings. Simulator models consisted

of 8 parameter settings.

The fitness function for assessing models is calculated as the average absolute difference

between controller fitnesses in simulation and reality. The simulator optimisation process

minimises 4F :

4F = 1
m

m∑
k=1
|fsk − frk| (2.6)

A GA is used to evolve the population of simulators. Each simulator’s fitness is cal-

culated using equation (2.6), where the best m controllers are selected and evaluated in

simulation and reality. A controller’s fitness in simulation is denoted as fsk (s: simu-

lator; k=1,...,m) and the corresponding real-world fitness is denoted as frk (r: reality;

k=1,...,m).

The approach simply requires controller fitness assessments in simulation and real-

ity. No explicit measurements of non-fitness related controller behavioural features are

required. BTR can significantly reduce the number of real-world evaluations needed to

evolve transferable controller solutions [Zagal and Ruiz-del Solar, 2007].

2.5.3.5 Transferability Approach

The Transferability approach does not optimise an existing simulator. Inaccurately mod-

elled behaviours are identified and the ER process evolves solutions such that simulator

weaknesses are avoided [Koos et al., 2013b; Mouret et al., 2012]. The ER process uses a

multi-objective fitness function taking into account two factors. One factor estimates a

controller’s ability to solve the given task. The second factor, called the transferability

function, estimates how well simulated behaviours will transfer into reality.

The transferability function approximates the size of the reality-gap by modelling dif-

CHAPTER 2. RELATED WORK 38

ferences between chosen behavioural metrics in simulation and reality. These behavioural

metrics can include differences in 3D-trajectories, joint positions, leg contact times with

the ground and others. The transferability function can be implemented using standard

machine learning techniques, such as ANNs or Support Vector Machines. The transfer-

ability function could map a controller’s genotype to a particular transferability score,

however, this type of mapping can become difficult to learn for high dimensional geno-

types. Alternatively, mapping a relatively low dimensional simulated behaviour (such as

leg contact times with the ground) to a transferability measure can be more effective. Ex-

pert domain knowledge might be required to identify appropriate transferability mappings

and measuring particular behaviours in reality can be difficult.

The Transferability approach has been validated by optimising walking gaits on a

quadruped robot with eight degrees of freedom [Mouret et al., 2012]. Controllers consisted

of sinusoidal mathematical equations with parameter settings requiring optimisation. Ex-

perimental work demonstrated that the Transferability approach can significantly reduce

the reality-gap problem and improve performance outcomes. The Transferability approach

has also been adapted (T-Resilience Algorithm) for use in optimising walking gaits on an

undamaged and damaged Hexapod robot with 18 degrees of freedom [Koos et al., 2013a].

2.5.3.6 Intelligent Trial-and-Error Learning

The Intelligent Trial-and-Error Learning approach (Figure 2.12) computes an initial be-

havioural performance map before the ER process can begin [Cully et al., 2015]. The

behavioural performance map is also updated during the ER process based on real-world

feedback. A controller’s evaluated behaviour can be measured in terms of behavioural

metrics, such as leg contact times with the ground. The approach has been validated on a

six-legged robot. The measured contact times of each leg with the ground (6-dimensional

behavioural space) can be mapped to a single performance measure, such as the walk-

ing gait speed. The high dimensional search space of a controller is reduced to a low

dimensional behaviour space (A & B). An optimisation algorithm can discover a large

number of controller solutions using a high fidelity simulator and construct a behavioural

performance map based on simulated performance. This initial pre-computed behavioural

performance map requires an existing simulator to be built.

CHAPTER 2. RELATED WORK 39

A behavioural confidence mapping is also required. The confidence level is a measure of

the reliability of a performance prediction. Initially, low confidence levels are assigned over

the entire behavioural confidence mapping due to the lack of real-world fitness assessments.

Confidence levels improve when controllers are evaluated in reality.

The performance and confidence level mappings are updated as controllers are evalu-

ated in reality (C & D). Nearby mappings are adjusted with performance and confidence

levels proportional to their proximity to the behaviours observed in reality. After a map

update, a new controller is selected and evaluated in reality, producing further updates.

This process continues until a sufficiently good solution is found (E).

Validation experiments investigated the Intelligent Trial-and-Error approach on a Hexa-

pod robot with 18 degrees of freedom [Cully et al., 2015]. Effective walking gait controllers

were discovered in less than a minute for the undamaged configuration and less than 3

minutes for damaged configurations [Cully et al., 2015]. Additional validation experiments

were conducted on a physical robotic arm with 9 degrees of freedom. The robot arm results

demonstrated success for problems involving placing balls into bins.

The approach can effectively discover viable controller solutions quickly. If the robot is

damaged, a lengthy self-diagnosis period might be avoided and the simulator does not need

to be corrected. However, a relatively high fidelity physics-based simulator is developed

before the behavioural performance map can be compiled. The approach requires millions

of controller evaluations in simulation in order to produce the behavioural performance

map. Expert knowledge could be required in order to identify useful behavioural measures

used to form the behavioural performance map.

2.5.3.7 Model-fitting based on Empirical Data

Surrogates or meta-models can be used to help approximate the fitness of individuals in

Evolutionary Algorithms (EAs). Surrogate models can be constructed from empirically

collected data and machine learning techniques. Surrogate modelling is often used when a

high fidelity simulator becomes too computationally expensive to perform the high number

of evaluations required in an EA. A surrogate model is used to help approximate the

fitnesses of many candidate solutions while the computationally expensive simulator is

used to selectively evaluate only the most promising solutions. A surrogate model can

CHAPTER 2. RELATED WORK 40

Figure 2.12: Intelligent Trial-and-Error Learning [Cully et al., 2015]

also serve as a complete replacement to a high fidelity simulator. Surrogate models can

be built before or during the optimisation process [Mainini and Willcox, 2015; Zavoianu,

Lughofer, Bramerdorfer, Amrhein, and Klement, 2013].

Robotics systems can be modelled using equation (2.7). The current state of the

environment (st), the action or command (at) to be applied and the transition state (st+1)

after an action is applied . The state and action search spaces can be either discrete or

continuous. Physics models create mathematical functions, f , using theoretical physical

knowledge of a robotic system.

st+1 = f(st, at) (2.7)

A more autonomous, machine learning approach can be used to develop f . A real-world

robot generates behavioural data that can be collected. The collected behaviour data could

be used to train a model using machine learning techniques. Models can be constructed

using machine learning and empirically collected data with little prior knowledge of the

dynamics of the given robot system [De Nardi and Holland, 2008; Kamio and Iba, 2004;

Pretorius et al., 2019; Woodford et al., 2017].

CHAPTER 2. RELATED WORK 41

Prediction models can be developed through reinforcement learning approaches [Kamio

and Iba, 2005], evolutionary algorithms [De Nardi and Holland, 2008], SNNs [Pretorius

et al., 2017; Woodford et al., 2017] and many others. Modelling empirical data directly can

be easier than modelling a system using physics-based principles [Pretorius et al., 2017,

2019].

De Nardi and Holland [2008] used Genetic Programming to model a miniature rotor-

craft from empirically collected data. The robot consists of four propellers. The dynamics

of the rotorcraft were successfully modelled without specialised domain knowledge.

Kamio and Iba [2004] successfully validated that Genetic Programming and cluster

approximation techniques can adequately model certain behaviours of a humanoid robot

with 20 degrees of freedom. However, the controller design is simplified and utilises a

significant degree of prior knowledge. Commands consisted of discrete actions such as

sidesteps, forward/backwards, turning and various combinations of actions. Controllers

were trained to move a box to a specific goal region.

SNNs can simulate different robot morphologies, such as wheeled, Snake and Hexapod

robots [Pretorius et al., 2014, 2019; Woodford et al., 2015, 2016]. Bidirectionally developed

SNNs have also been investigated [Woodford et al., 2016, 2017]. These approaches are

discussed in detail in the following sections.

2.5.4 Simulator Neural Networks

Some of the proof of concept work regarding SNNs was performed by the current author

[Woodford et al., 2015, 2016, 2017]. Other researchers have also shown that SNNs can serve

as an alternative to physics-based simulators [De Nardi, 2010; Nakamura and Hashimoto,

2007; Pretorius et al., 2009; Wang, 2005]. Controllers have been evolved with the help

of SNNs for problems such to gait optimisation, trajectory planning, obstacle avoidance,

balancing and light following problems [Pretorius, du Plessis, and Cilliers, 2013; Pretorius

et al., 2017, 2019; Woodford et al., 2015]. SNNs can handle noisy data, possess good

generalisation abilities and can accurately model complex relationships. SNNs can be

simpler to construct compared to physics-based approaches [Pretorius et al., 2017, 2019].

Prior research has found that SNNs can be more accurate, computationally efficient and

transferable compared to certain physics-based approaches [Pretorius et al., 2014, 2019].

CHAPTER 2. RELATED WORK 42

An explanation of the behavioural components simulated using SNNs is given in Section

2.5.4.1. A controller design can be simplified with built-in prior knowledge of robotic

locomotion or the design can purposely not rely on any prior knowledge (Section 2.5.4.2).

The platforms used to evaluate the controllers in this research are discussed in Section

2.5.4.3. The SNS and BNS approaches are presented in Sections 2.5.4.4 and 2.5.4.5,

respectively. Two robot platforms are explored in this thesis, namely, a Hexapod robot

(Section 2.5.4.6) and Snake robot (Section 2.5.4.7).

2.5.4.1 Behavioural Components

A robot’s behaviours can be broken down into smaller components (Figure 2.13). Robot

behaviours can be measured according to a single or group of commands, depending on

the controller design.

A command is a set of actions that can be applied to a robot’s actuators, such as

changes to joint angles or specified motor speeds. Behaviours can be broken down into

physical components. The relative change in the position of a robot after executing a

command is measured as ∆x, ∆y and ∆a. Depending on the controller design, physical

components could be measured for a group of commands instead of a single command.

The x-axis represents lateral (sideways) movement of the robot and the y-axis represents

forward/backward movement. Changes in position are relative the centre point on the

robot’s head. The relative change in the robot’s position with respect to the perpendicular

of the initial heading is denoted as ∆x. The relative change in the robot’s position parallel

to the initial heading is denoted as ∆y. The relative change in the robot’s heading is

expressed as ∆a.

SNNs can be designed to take as input the command sent directly to a robot’s ac-

tuators. Alternatively, SNNs can take as input the parameter settings used to generate

a sequential list of commands. SNNs are designed to take as input either a single com-

mand or a set of parameter settings, then output the behavioural components, ∆x, ∆y

and ∆a. A single SNN can be configured to predict either one or all physical components

as output. Prior work has found that multiple SNNs, each predicting a single physical

component tends to have better accuracy [Pretorius et al., 2013]. For any given controller,

a sequential list of behavioural components is predicted (∆x, ∆y, ∆a). These predictions

CHAPTER 2. RELATED WORK 43

Figure 2.13: Behavioural components of a robot

accumulate to form an overall approximation of a controller’s total behaviour, such as the

path followed by the robot or the values of a sensor over time. A behavioural dataset is

defined in this work as a collection of command/parameter inputs and corresponding be-

havioural component outputs used to form the training, validation and test datasets. The

behavioural dataset is constructed by sending many commands to a robot and observing

the resulting behavioural components generated.

SNNs can be trained either before [Pretorius et al., 2017; Woodford and du Plessis,

2018, 2019; Woodford et al., 2015] or during the ER process [Woodford et al., 2016, 2017].

The Static Neuro-Simulation (SNS) approach trains SNNs before the ER process begins

and SNNs remain static during the ER process (Section 2.5.4.4). Section 2.5.4.5 discusses

the Bootstrapped Neuro-Simulation (BNS) approach where SNNs are trained during the

ER process.

2.5.4.2 Level of Prior Knowledge

Table 2.1 lists some robot morphologies that have been studied using the SNS and BNS

approaches. Wheeled robot morphologies have been investigated for tasks such as tra-

jectory planning, light approaching behaviours and obstacle avoidance [Pretorius, 2010;

Woodford et al., 2016]. A balancing robot was used to study the inverted pendulum sta-

bilisation problem [Pretorius et al., 2017]. The Hexapod robot platform has been used to

study gait optimisation problems [Pretorius et al., 2019]. A Snake robot has been used to

investigate trajectory planning scenarios [Woodford et al., 2015, 2017].

A controller design can have built-in prior knowledge of the robotic system or the design

CHAPTER 2. RELATED WORK 44

can avoid using existing human gained knowledge of the problem. Scripted controllers

consist of a sequential list of low level commands sent to the robot directly, such as

sequences of joint angle changes or wheel speeds. Scripted or ANN-based controllers do

not use prior knowledge to help guide and simplify the solution search space. Parametrised

controllers use mathematical functions or central patten generators to help generate the

low level commands sent to a robot based on specialised knowledge of the robotic system.

For a parametrised controller design, the parameter settings applied to a mathematical

function constructed by a human are optimised. The checkmarks in Table 2.1 indicate

that the particular robot and controller design have been investigated in prior work for

the SNS and BNS approaches. With the exception of the Snake robot, all prior work

investigating the SNS or BNS approaches do not rely on controller designs with built-in

prior knowledge of the robotic problem. Due to the complexity of using the Snake robot,

the controller was simplified through prior knowledge.

The SNS approach has been investigated for Wheeled, Balancing and Hexapod robots

using controller designs without prior knowledge. The Snake robot uses a parametrised

controller design for the SNS and BNS approaches. The BNS approach has not been

investigated for a Balancing or Hexapod robot morphology. The viability of using the

SNS approach on different classes of complex robot morphologies has been demonstrated

through experimental work on both the Hexapod and Snake robots. However, for complex

robot morphologies, the BNS approach has only be demonstrated for a Snake robot using

a controller design reliant on a significant level of prior human knowledge. The generalis-

ability of the BNS approach to work on different classes of complex robots using controller

designs without prior knowledge has not been established.

2.5.4.3 Evaluation Platforms

Controllers are evaluated either in simulation or reality. Figure 2.14 illustrates the dif-

ferent controller evaluation platforms (Static SNNs, Dynamic SNNs, Real-World Robot)

that will be referenced throughout this thesis. Two different simulation approaches are

explored, namely Static and Dynamic SNNs. Static and Dynamic SNNs simulate the real-

world behaviours of controllers. The real-world robot determines the actual performance

of any given controller. Static SNNs are trained from randomly generated behavioural

CHAPTER 2. RELATED WORK 45

SNS BNS

Controller Prior No Prior Prior No Prior

Knowledge Knowledge Knowledge Knowledge

Wheeled robot X X

Balancing robot X

Hexapod robot X

Snake robot X X

Table 2.1: Robot morphologies investigated using the SNS and BNS approaches

data collected from real-world robot evaluations. Static SNNs are used as part of the SNS

approach. Dynamic SNNs are developed during the ER process and are trained using be-

havioural data generated from evaluations of select controllers from the evolving controller

population. Dynamic SNNs are used as part of the BNS approach.

2.5.4.4 The SNS Approach

The SNS approach [Pretorius et al., 2009] is illustrated in Figure 2.15. A behavioural data

collection phase is performed before SNNs can be trained and utilised in the ER process.

During the data collection phase, commands are randomly generated and executed on a

real-world robot. The behavioural data collection phase continues until enough data is

available to adequately represent the behavioural search space. The number of patterns

required to adequately simulate a given robotic system is determined experimentally.

Before SNN training can begin, the appropriate SNN architectures need to be chosen.

The number of hidden layers and nodes required to accurately simulate behavioural com-

ponents is initially unknown for any given robotic system. Appropriate SNN architectures

are normally determined through a benchmarking process that compares the accuracy of

different SNN architectures. Evolving SNN architectures and weight parameters using the

Neuroevolution of Augmenting Topologies (NEAT) algorithm has been investigated but

the accuracy of produced SNNs tended to be relatively poor [Pretorius et al., 2017].

Once good SNN architectures have been found, a training phase is completed before

controller evolution can begin. Behavioural data variables are standardised before training

so that each variable’s distribution has a mean of zero and a standard deviation of one.

CHAPTER 2. RELATED WORK 46

Figure 2.14: Controller evaluation platforms

Training SNNs on standardised data tends to improve accuracy. The behavioural data is

split into three groups, namely, training, validation and test datasets. SNNs are trained

using the training dataset while the validation dataset is used to prevent over-fitting.

The test dataset is not available during training and is used to estimate the real-world

prediction accuracy of the trained SNNs. The training process produces Static SNNs.

These Static SNNs do not change in any way after the training phase is complete.

For all simulated controller evaluations performed during the ER process, simulator

noise is typically injected into SNN predictions. Simulator noise is sourced from a Gaussian

distribution with a mean of zero. The standard deviation is equal to the standard deviation

of the prediction errors between the trained simulator and the test dataset.

The Static SNNs simulate robot behaviours during controller evolution and serve as

an alternative to real-world controller evaluations. Controllers are evolved for many gen-

erations until a stopping condition is met. The best controller in the last generation is

selected as the final controller solution.

The pendulum swing-up problem has been simulated using SNNs [Nakamura et al.,

2007]. The dynamics of miniature rotorcraft and vehicles have been simulated using

SNNs [De Nardi, 2010]. Differentially-steered mobile robot platforms have been used to

CHAPTER 2. RELATED WORK 47

Figure 2.15: Static Neuro-Simulation (SNS) approach

study the SNS approach on tasks such as obstacle avoidance, trajectory planning, light

approaching behaviour and inverted pendulum stabilisation [Pretorius et al., 2013, 2014,

2017]. However, these robot morphologies are relatively simple and have a low number of

degrees of freedom.

Prior work using Snake and Hexapod robot platforms have validated that the SNS

approach is viable on complex robot morphologies [Pretorius et al., 2019; Woodford et al.,

2015]. A Snake robot has been simulated using SNNs for trajectory planning problems

[Woodford et al., 2016]. However, the prior work use a parametrised Snake controller

design with built-in knowledge of biological snake locomotion. SNNs were also specialised

to only be compatible with the chosen parametrised Snake controller design. Prior work

on the Snake robot is discussed in Section 2.5.4.6.

A Hexapod robot platform has been simulated using SNNs and controllers evolved for

a gait optimisation problem [Pretorius et al., 2019]. Controllers were evolved to maximise

the total Euclidean distance travelled. Unlike prior work on the Snake robot, the Hexapod

robot did not use a parametrised controller design with prior knowledge. The Hexapod

controller design was scripted and did not include any built-in prior knowledge of Hexapod

CHAPTER 2. RELATED WORK 48

locomotion modes. The Hexapod simulator was designed to be compatible with any

controller design, scripted or parametrised. The prior research specific to the Hexapod

robot is covered in greater detail in Section 2.5.4.7.

2.5.4.5 The BNS Approach

The BNS approach was proposed and demonstrated to be viable by the current author

in prior work [Woodford et al., 2015, 2016, 2017]. The BNS approach performs data

collection, simulator training and controller evolution concurrently. The ER process can

begin without a fully trained simulator. A population of controllers is continually evolved

to solve a particular task. Behavioural data is sourced through real-world evaluations of

controllers selected from the evolving controller population. The behavioural data used to

train SNNs are candidate controllers seen during controller evolution.

The BNS approach is illustrated in Figure 2.16. Controllers are continually selected

from the controller population and evaluated on the real-world robot. Selecting a controller

from the controller population and evaluating it on a target robot is referred to as a

sampling evaluation. At the time of selection, a fixed number of controllers is randomly

chosen from the latest controller population and the fittest controller is evaluated on the

real-world robot. The resulting behavioural data is collected and used to improve a set of

Dynamic SNNs.

All newly sourced behavioural data is added to a training dataset. Splitting patterns

into training and validation datasets have not yet been investigated. The Dynamic SNNs

are continually trained while periodically integrating newly acquired training data. Dy-

namic SNNs are used to help evaluate controllers during the controller evolution process.

The continual optimisation of controllers and SNNs is performed until some stopping con-

dition is met. The fittest controller in the final controller population is produced as the

final solution controller.

For the SNS approach, the parameter settings used to standardise the behavioural

dataset or generate simulator noise is calculated based on the already collected behavioural

dataset. However, an initial large behavioural dataset is not available during the early

stages of the BNS process. Prior work on the BNS approach used the standardisation

and noise generation parameter settings calculated as part of the SNS approach. For the

CHAPTER 2. RELATED WORK 49

Figure 2.16: Bootstrapped Neuro-Simulation (BNS)

BNS approach to be practically applied to robotics systems without an initial behavioural

dataset collection phase, the noise and standardisation parameter settings would need to

be calculated during the BNS approach. A method for dynamically standardising the

behavioural dataset during the BNS approach is yet to be investigated. A method for

dynamically calculating the simulator noise parameter settings during the BNS approach

has not been investigated.

A robot’s morphology or environment could change under certain scenarios. Any sig-

nificant changes might render an existing simulator inaccurate. The data collection process

would need to be restarted and a new simulator trained. Training a new simulator using

the SNS approach can be time-consuming due to the lengthy data collection process. The

BNS approach is designed to reduce the amount of behavioural data collected compared

to the SNS approach [Woodford, 2016].

A simulator developed using the BNS approach specialises in simulating behaviours

seen during controller evolution. As a consequence, the simulator might not generalise

well to unseen behaviours. No research has investigated the re-usability of simulators

developed using the BNS approach.

The BNS approach has been validated on a simple differentially-steered Khepera robot

for trajectory planning problems [Woodford et al., 2016]. For complex robot morphologies,

CHAPTER 2. RELATED WORK 50

the BNS approach has only been validated on a Snake robot platform with a parametrised

controller design [Woodford et al., 2017]. Snake robot controllers were evolved to solve

trajectory planning problems. The Snake robot controller and simulator designs were

simplified in order to reduce the complexity of the controller and simulator search spaces.

In the prior research, the Snake robot controller design used a mathematical function

that simplified the generation of snake-like locomotion modes. However, the Snake robot

simulator was only capable of simulating behaviours generated by the chosen controller

design. Due to this specialisation, the Snake robot simulator was not compatible with

other alternative Snake robot controller designs. Prior work specific to the Snake robot is

covered in greater detail in Section 2.5.4.6.

In prior research, the relationship between BNS simulated and real-world fitnesses were

studied [Woodford et al., 2016]. Estimating the real-world fitness of solutions over time

for a single run of the BNS approach is practically infeasible using a real-world robot

due to the large number of controller evaluations involved. It was necessary to use a

Static Simulator as an alternative to a real-world robot (substitute real-world) in order to

estimate the relationship between BNS simulated and real-world fitnesses over the lifetime

of the BNS approach. Figure 2.17 illustrates the substitute real-world (Static Simulator)

and BNS simulated fitnesses of solution controllers over the lifetime of a single run of

the BNS approach. Higher values indicate better fitness. The dotted line represents the

substitute real-world fitness of solutions over time. The solid line represents the simulated

(Dynamic SNNs) fitnesses of solution controllers over time. Early fitness assessments

are inaccurate and volatile but gradually stabilise as accuracy improves over time. The

substitute real-world fitnesses are almost always overestimated by the BNS simulator.

Towards the end of the BNS approach, the substitute real-world fitnesses converge towards

the BNS simulated fitnesses and the robot is able to solve the given robotic problem. In

summary, solution controllers solve the problem in the inaccurate BNS simulator and

as the BNS simulator becomes more accurate, the real-world solutions slowly converge

towards the solved behaviour.

No studies have investigated the BNS approach on complex robots with a scripted con-

troller design. A scripted controller design consists of low level, arbitrary commands not

constrained by expert knowledge, such as a mathematical function modelling biological

CHAPTER 2. RELATED WORK 51

0 5 10 15 20
Time (minutes)

10-6

10-5

10-4

Fi
tn

es
s

substitute real-world
simulator

Figure 2.17: Simulated and real-world fitness over time for BNS approach [Woodford et al.,

2016]

snake locomotion. A scripted controller design requires the use of a generalised simula-

tor design capable of simulating low-level robot commands. A generalised simulator is

compatible with any controller design.

In prior work investigating the BNS approach, no validation dataset is used to avoid

over-fitting during SNN training. The SNNs used in previous studies had a low number

of input features and the SNN architectures were relatively small. The continual addition

of new training data during the BNS approach, low number of input features, combined

with simple SNN architectures helped the training process avoid over-fitting. Over-fitting

is of greater concern when studying more complex robot morphologies.

2.5.4.6 Simulating Snake Robots using SNNs

A Snake robot can be considered a complex morphology due to the high number of degrees

of freedom and dynamics involved. Prior work has investigated the SNS [Woodford et al.,

2015] and BNS [Woodford et al., 2017] approaches on a Snake robot platform. The prior

work used a simulator design only compatible with the chosen parametrised controller

design. The controller design used parametrised equations [Melo et al., 2012] (equations

(2.8) and (2.9)) that generates joint angles mimicking biological snake locomotion. The

equation can generate angles at discrete time steps t. The angle φ(n, t) of the nth joint,

at time step t is calculated using equation (2.8). The parameter setting values Alateral,

CHAPTER 2. RELATED WORK 52

Avertical, ω and α affect the locomotion modes generated.

φ(n, t) =

Alateral · sin(θ + α), n is even

Avertical · sin(θ), otherwise
(2.8)

θ = ωn+ 2πt/12 (2.9)

The simulator predicts changes in position for two tracked positions on the Snake

robot. These two tracked positions are 65cm apart when the Snake robot is completely

straight. The heading of the robot is calculated as the direction from one tracked position

to the other.

The controller design consisted of a sequential list of parameter settings to the parametrised

equations (Figure 2.18). Each cycle consisted of unique parameter setting values. The

SNNs were designed to predict the behavioural outcomes of the two tracked positions,

per cycle. SNNs took as input the parameter settings to equations (2.8) and (2.9) and

predicted the changes in position for the first (∆x1(t) and ∆y1(t)) and second (∆x2(t)

and ∆y2(t)) tracked positions, where t is the time index. The heading of the robot was

simulated as the direction from the first tracked position to the second. The trajectory

of the robot was calculated as the midpoint of the tracked markers over time. When all

cycles have been simulated, the trajectory followed by the robot can be calculated and

controller fitness assessed.

SNNs that take as input parametrised features are not generalisable to other controller

designs. The simulator ignored changes in position related to transitions between cycles

which introduced inaccuracies in overall simulated behaviours. Simulating two separate

tracked positions resulted in the simulated distances between the tracked markers becom-

ing unrealistically too far or close to each other over time. No prior work has simulated

sensors on a Snake robot for the SNS or BNS approaches.

2.5.4.7 Simulating Hexapod Robots using SNNs

Pretorius et al. [2019] demonstrated that the SNS approach is viable for a Hexapod robot.

The SNS approach has been compared to standard physics-based simulation techniques

for a Hexapod robot platform [Pretorius et al., 2019]. A scripted controller design was

CHAPTER 2. RELATED WORK 53

Figure 2.18: Snake controller and simulator design

used with no built-in prior knowledge of known Hexapod locomotion modes. The Hexapod

SNNs were designed to be low level and compatible with arbitrary controller designs. Vali-

dation experiments found that the Hexapod SNNs are relatively simple to construct, com-

putationally efficient and are an accurate alternative to certain physic-based approaches

[Pretorius et al., 2019].

A controller evaluation in simulation is illustrated in Figure 2.19. A scripted controller

consists of a sequential list of commands. Each command contains angle changes that are

applied to each joint on the Hexapod robot. Joints are indexed numerically. The starting

and transition joint angles for the ith command and jth joint is represented by αij and βij ,

respectively (for i = 1, 2, ..., n and j = 1, 2, ...,m). SNNs take as input the starting and

transition joint angles of each command and output the predicted behavioural components

∆x(t), ∆y(t) and ∆a(t) where t is the time step. The accumulated predictions are used

to calculate the overall trajectory and heading of the Hexapod robot over time.

CHAPTER 2. RELATED WORK 54

Figure 2.19: Hexapod controller and simulator design

2.6 High Level Comparison of ER Approaches

Natural biological evolution happens automatically and without the help of human inter-

ventions. An ideal ER approach would be able to evolve robotic controllers for complex

robots without the help or expertise of humans while also not taking an infeasibly long

time to produce effective solutions. Ideal ER approaches would require few human inter-

ventions or specialised knowledge, can produce effective solutions in a reasonable amount

of time and still be effective when increasing the complexity of the robot morphology.

This section speculates as to which ER approaches have the most potential in terms of

the outlined ideal ER properties. Currently, no existing ER approach perfectly achieves

all ideal properties but some ER approaches have demonstrated significant potential in

performing well in most aspects.

CHAPTER 2. RELATED WORK 55

ER Approach Sc
al

ab
ili

ty

G
en

er
al

isa
bi

lit
y

N
o

pr
e-

de
ve

lo
pe

d
sim

ul
at

or

Li
tt

le
sp

ec
ia

lis
ed

kn
ow

le
dg

e

N
ar

ro
w

in
g

re
al

ity
-g

ap

M
in

im
ise

s
da

ta
co

lle
ct

io
n

Reality X X X X N/A
Simulation X X

Minimal Simulation X

Anytime Learning X X X

Estimation-Exploration X X X

Transferability X X X

Intelligent Trial-and-Error X X X

Back to Reality X X X X

Genetic Programming X X X X

Static Neuro-Simulation (SNS) X X X

Bootstrapped-Neuro Simulation (BNS) X X X X X

Table 2.2: Comparison of ER approaches

In Table 2.2, the rows contain different ER approaches and the columns represent im-

portant goals for finding an ideal ER approach. Approaches that have been demonstrated

to exhibit particular properties are marked with a X in the table.

In order to determine if an ER approach can handle more complex robots, two aspects

are studied. Is the ER approach scalable for use on more complex robots? Secondly, can

the ER approach generalise for use on more than one class of complex robots? Many ER

approaches are only validated on a single complex robot morphology. The generalis-

ability of ER approaches to work across different classes of complex robot morphologies

is typically not studied. The complexity of a robot can be categorised according to the

number of degrees of freedom involved in locomotion (Table 2.3). At least in this study,

only robots with at least 12 degrees of freedom of movement are considered complex robot

CHAPTER 2. RELATED WORK 56

morphologies. An ER approach is defined as scalable if it has been validated on at least

one complex robot morphology without drastically simplifying the controller design.

The time taken for an ER approach to develop effective solutions is important. Not

requiring an initial simulator to be developed before the ER process begins eliminates

a lengthy simulator development process. ER approaches that reduce the number of

controller evaluations on real-world hardware, minimising data collection, can greatly

reduce the time taken to develop effective controller solutions.

Different ER approaches require varying degrees of human interventions. Requiring

little specialised knowledge to develop a robotic simulator reduces the need for human

interventions and the simulator development process can be automated. Physics-based

simulators require significant human understanding to use effectively. SNNs are based on

Machine Learning principles and are relatively easy to automate.

Simulators will inevitably contain weaknesses or encounter unseen behaviours that end

up being exploited by the reality-gap problem. These problems can be resolved through

human interventions. However, some ER approaches have a mechanism for integrating

real-world feedback for simulator improvement or augmentation. Bi-directional ER ap-

proaches attempt to automatically narrow the reality-gap during the ER process with-

out human interventions.

Evolving controllers directly on complex robots can be time-consuming but still feasible

[Hornby et al., 2005; Lipson et al., 2006]. Alternatively, evolving controllers in simulation

tends to produce solutions with poor transferability unless the simulator is sufficiently

accurate. Prior work has demonstrated that evolving controllers in a physics-based simu-

lator is possible and solutions can transfer well into reality for complex robots [Belter and

Skrzypczyński, 2010; Hong and Lee, 2017; Pretorius et al., 2019]. Many ER approaches

have been validated to be scalable, namely, Minimal Simulation [Jakobi, 1998b], Any-

time Learning [Parker, 2002], Estimation-Exploration [Iocchi et al., 2007], Transferability

[Koos et al., 2013a], Intelligent Trial-and-Error Learning [Cully et al., 2015], Back to Re-

ality [Zagal and Ruiz-del Solar, 2007; Zagal et al., 2009], SNS approach [Pretorius et al.,

2019; Woodford, 2016] and BNS approach [Woodford et al., 2017].

Most ER approaches have not been validated on significantly different classes of com-

plex robot morphologies. For example, an ER approach could be viable on a Hexapod

CHAPTER 2. RELATED WORK 57

E
R

A
pp

ro
ac

h
M

or
ph

ol
og

y
cl

as
s

D
eg

re
es

of
fr

ee
do

m
C

om
pl

ex
G

en
er

al
is

ab
le

R
ea

lit
y

D
ou

bl
e

St
ew

ar
t

P
la

tf
or

m
12

Ye
s

Ye
s

Q
ua

dr
up

ed
19

Ye
s

Si
m

ul
at

io
n

B
ip

ed
20

Ye
s

Ye
s

H
ex

ap
od

18
Ye

s

M
in

im
al

Si
m

ul
at

io
n

O
ct

op
od

16
Ye

s
N

o

A
ny

ti
m

e
L

ea
rn

in
g

H
ex

ap
od

12
Ye

s
N

o

E
st

im
at

io
n-

E
xp

lo
ra

ti
on

B
ip

ed
22

Ye
s

N
o

St
ar

fis
h

8
N

o

T
ra

ns
fe

ra
bi

lit
y

H
ex

ap
od

18
Ye

s
N

o
Q

ua
dr

up
ed

8
N

o

In
te

lli
ge

nt
T

ri
al

-a
nd

-E
rr

or
H

ex
ap

od
18

Ye
s

N
o

A
rm

9
N

o

B
ac

k
to

R
ea

lit
y

B
ip

ed
22

Ye
s

Ye
s

Q
ua

dr
up

ed
12

Ye
s

G
en

et
ic

P
ro

gr
am

m
in

g
B

ip
ed

(s
im

pl
ifi

ed
)

20
N

o
N

o
Q

ua
dc

op
te

r
4

N
o

St
at

ic
N

eu
ro

-S
im

ul
at

io
n

(S
N

S)
H

ex
ap

od
18

Ye
s

Ye
s

Sn
ak

e
12

Ye
s

B
oo

ts
tr

ap
p

ed
N

eu
ro

-S
im

ul
at

io
n

(B
N

S)
Sn

ak
e

12
Ye

s
N

o

Ta
bl

e
2.

3:
Va

lid
at

ed
ro

bo
t

m
or

ph
ol

og
ie

s
pe

r
ER

ap
pr

oa
ch

es

CHAPTER 2. RELATED WORK 58

robot for limbed behaviours but non-viable on a Snake robot. An ER approach is demon-

strated to be generalisable if more than one class of complex robot morphologies have been

used validate the approach in reality. Classes that differ significantly from each other are

Hexapod, Bipedal, Crawling and Flying robots. In Table 2.2, some ER approaches could

potentially be generalisable but no validation studies could be found.

Robot morphologies validated for each ER approach are given in Table 2.3. Evolv-

ing controllers completely in reality has been validated on a nine-legged double Stewart

platform (robot body connected with many linear actuators) [Lipson et al., 2006] and

Quadruped robots [Hornby et al., 2005]. Evolving controllers completely in simulation

has also been validated on Hexapod [Pretorius et al., 2019] and Bipedal [Hong and Lee,

2017] robots. For the other ER approaches, only Back-to-Reality and the SNS approach

have been validated on significantly different real-world, complex robot morphologies.

ER approaches that do not require an initial simulator to be developed before the ER

process can be advantageous. A simulator can be built and trained during the ER process,

such as in BNS approaches. For the Genetic Programming approach, the simulator can be

develop before or during the ER process [De Nardi, 2010]. Other ER approaches require

at least an initial simulator development process.

Physics-based simulation approaches require a significant amount of prior knowledge.

Minimal simulations are reliant on specialised domain knowledge. Behavioural-based mod-

elling techniques do not rely on prior knowledge but instead use empirically collected data

and machine learning regression and classification techniques. The Genetic Programming,

SNS and BNS approaches do not require significant amounts of specialised knowledge to

develop a simulator.

An ER approach has a narrowing reality-gap if inaccurately simulated behaviours are

avoided or corrected during the ER process. All bidirectional ER approaches achieve a

narrowing reality-gap using real-world feedback. The Transferability [Koos et al., 2013a]

and Intelligent Trial-and-Error [Cully et al., 2015] approaches do not improve an existing

simulator but construct a surrogate of the transferability or performance during the ER

process which is used to reduce the reality-gap.

The development, augmentation or tuning of a simulator requires the collection of

significant amounts of real-world data. Behavioural data can be collected by evaluating

CHAPTER 2. RELATED WORK 59

randomly generated commands on a real-world robot. Many of these randomly generated

behaviours are not required for training an effective simulator. Smarter data collection

techniques ideally focus on collecting behavioural data related to simulator weaknesses

or are specific to the chosen problem. All bidirectional ER approaches rely on smart,

non-randomised data collection techniques specific to the given problem.

Few researchers are actively investigating Machine Learning based simulation tech-

niques and their integration into the ER process. Genetic Programming based ER ap-

proaches appear promising, however, no existing work has demonstrated the approach

on more complex robot morphologies. The SNS approach has been demonstrated to be

generalisable and require little specialised knowledge but is lacking in terms of the other

important goals. The BNS approach is closest to performing well in all specified ideal

goals in Table 2.2, however, the BNS approach has not been demonstrated to generalise

as of yet.

In the following chapters, the BNS approach is demonstrated to generalise across two

significantly different complex robot morphologies. The SNS and BNS approaches are

closely related to each other and differences between these approaches are worth investi-

gating.

2.7 Conclusions

Physics-based simulators require prior expert knowledge, can be time-consuming to build

and are difficult to automate. The feasibility of developing high fidelity simulators de-

creases as robotic systems become more complex. Physics-based simulators tend to be

fine-tuned and specialised to model a particular robotic system and tend to not generalise

without significant human interventions.

ANNs are becoming more advanced and capable of handling complex relationships.

Machine learning approaches have helped automate the development of solutions to prob-

lems, such as video game playing AI and self-driving cars. It is not inconceivable that

a machine learning approach to simulator development could one day outperform tradi-

tional approaches in certain domains. Simulating complex robotic systems can be greatly

simplified through the use of SNNs. Investigating approaches that reduce the need for hu-

CHAPTER 2. RELATED WORK 60

man interventions in the development of simulators could greatly increase the autonomy

of future robotic systems.

SNNs have not been thoroughly studied on complex robots and high dimensional con-

troller designs without built-in prior knowledge. The BNS approach combines advantages

seen in both bidirectional and SNS ER approaches. No studies have investigated the BNS

approach on complex robots with scripted controller designs. No experimental compar-

isons have been performed between the SNS and BNS approaches on significantly different

classes of complex robots.

Chapter 3

EXPERIMENTAL METHOD

3.1 Introduction

This research studies the use of SNNs as an alternative to physic-based approaches. Two

classes of ER approaches using SNNs have been proposed in prior work. Namely, the

SNS and BNS approaches. Research into the SNS and BNS approaches have been largely

limited to simple robots or problems. This work attempts to scale up and generalise these

ER approaches for more complex robots (Section 3.2).

The ER process optimises controllers for a particular robotic task. Before conducting

any experimental work, a controller design needs to be decided upon. A controller design

can be high level, consisting of parameters specific to a mathematical function with built-

in knowledge on movement strategies. Alternatively, a low level controller design consists

of raw joint angle changes over time. A low level controller design uses no specialised prior

knowledge that can simplify the controller solution space.

A low level controller design is chosen for the experimental work which significantly

increases the difficulty level of the optimisation process due to the high dimensionality

of the search space. SNNs are also required to simulate low level commands and are not

able to take advantage of a parametrised controller design. The controller design and data

collection process are discussed in Sections 3.3 and 3.4, respectively.

The real-world implications of certain experimental methodologies are not readily ap-

parent and careful planning is required. There are practical implications and limitations

61

CHAPTER 3. EXPERIMENTAL METHOD 62

in dealing with real-world robotic systems. Challenges experience in this research are

discussed in Section 3.5.

In order to perform statistically significant comparisons between proposed variations

to the SNS and BNS approaches, experiments are designed to gather a quantitative level of

data. Two different classes of robot morphologies are selected in order to validate the gen-

eralisability of the SNS and BNS approaches. Few studies investigate ER approaches on

different classes of complex robots. The proposed improvements to the SNS and BNS ap-

proaches are tested in order to identify if improvements in transferability and performance

outcomes are possible. The experimental methodology is covered in Section 3.6.

A detailed explanation of the proposed adaptations applied to the SNS and BNS

approaches are discussed in Section 3.7. Lastly, conclusions are presented in Section 3.8.

3.2 Robot Morphologies

Two different classes of robot morphologies are studied. Hexapod walking gaits require

coordination between multiple limbs. The Snake robot relies on crawling behaviours.

Dynamics involved in simulating behaviours for the Snake and Hexapod robots are signif-

icantly different.

These two robots are investigated on order to study the generalisation potential of the

SNS and BNS approaches. The successful application of the SNS and BNS approaches on

both robots morphologies, in addition to applications in previous studies, would strongly

indicate that the tested approaches could generalise across many other classes of robots.

The Hexapod and Snake robot morphologies are described in Sections 3.2.1 and 3.2.2,

respectively.

3.2.1 Hexapod Robot

Hexapod robot platforms are commonly used in robotics research. The Hexapod robot

used in this research is shown in Figure 3.1. The robot consists of 18 Dynamixel AX-12

joint motors. Each leg consists of 3 joint motors. Motors are controlled using a Arbotix-M

micro-controller. No mechanical wheel mechanisms are present on the robot. Commands

are sent to the robot over a Bluetooth serial interface. The robot is powered through a

CHAPTER 3. EXPERIMENTAL METHOD 63

tethered connection. Tethered power ensures stable, consistent power without practical

issues related to battery technologies. No sensors are used for the robot morphology.

The robot operates on a horizontal, flat surface. Locomotion is achieved through the

coordinated movement of six limbs. The robot has two coloured markers placed on its

back. The different coloured markers allows for the colour-based tracking system to discern

heading. The position of the robot is calculated as the midpoint of the tracked markers.

A camera is placed above the robot in order to record the position of tracking marker

positions.

Figure 3.1: Hexapod robot

3.2.2 Snake Robot

No known work has investigated bi-directional ER approaches using a Snake robot. The

Snake robot used in this work has more degrees of freedom than prior work in the ER field.

Most controller designs for Snake robots are simplified by being based on mathematical

CHAPTER 3. EXPERIMENTAL METHOD 64

equations, curve fitting procedures or Central Pattern Generators. The controller design

used in this work is not simplified and do not make use of prior knowledge of snake

locomotion. This research specifically utilised a Snake robot morphology due to the lack

of existing work in ER and the high complexity and novelty of the dynamics involved.

The Snake robot is arguably more complex compared to most limbed morphologies.

The weight distribution properties produced by controller solutions are important due

to friction with the working surface greatly affecting the robot’s performance. Taking into

account all the factors required to adequately simulate the Snake robot using a physics-

based approach would be a significant challenge. SNNs are easier to build in comparison

to a physics-based simulator.

The Snake robot used in this research is shown in Figure 3.2. The Snake robot consists

of 12 Dynamixel AX-12 joint motors connected serially. Joint motors are controlled using

a Arbotix-M micro-controller. Joints are designed to alternate between moving the robot

vertically and laterally. The height and width of the robot is approximately 5 cm and has

a length of 114 cm. Communication is achieved using a serial data cable. Power is supplied

using a tether in order to void issues related to battery technologies. No snake-like skins

or mechanical wheel mechanisms are used.

The Snake robot operates on the same flat, horizontal surface as the Hexapod robot.

Movement is achieve through a coordinated series of joint angle changes which produce

crawling behaviours. Behavioural data is collected using camera-based tracking of the

coloured markers located on the head of the robot. Yellow and blue coloured markers are

located on the head. Positions are calculated as the midpoint of the tracked markers. The

heading is calculated based on the different coloured markers. The orientation of the head

relative to the ground is determined using an orientation sensor located on the head of

the robot. Effective solution controllers require balanced behaviours that keep the head

relatively upright, otherwise, the robot could roll onto its back. The tracking system is

unable to track the robot if the head is upside down.

CHAPTER 3. EXPERIMENTAL METHOD 65

Figure 3.2: Snake robot

3.3 Controller Design

At the beginning of every controller evaluation, all joint angles start off in a default

position. The Snake robot starts off completely straight. The starting position for the

Hexapod robot is when all joint positions are straight and all feet touch the ground.

Each controller consists of a sequential list of commands (Figure 3.3). A command

contains a set of joint angle changes to be applied to a robot’s joint angles. The jth joint

is changed by αij units when the ith command is executed. Commands are sent to the

robot sequentially and joint angles are changed accordingly.

Figure 3.3: Controller example

The controller design is purposely an open-loop controller with no feedback mecha-

CHAPTER 3. EXPERIMENTAL METHOD 66

nisms. During controller evaluations, robots cannot perform corrections in their positions

over time. This allows for the study of how accurate the developed simulators are at

predicting the accumulated consequences of simulated behaviours over many commands.

For controllers to be useful in practice, future work might be required to transition to a

close-loop controller design.

3.4 Data Collection

For each command sent to the robot, a particular behaviour is observed. The behaviour

specific to each command sent, broken down into behavioural components is recorded.

The motion breakdowns, sideway displacement (∆x), forwards/backward displacement

(∆y), heading displacement (∆a) and head orientation displacement (∆o) will be referred

to as behavioural components of the robot. The behavioural components are illustrated

in Figure 3.4. Changes in behaviour for a given command are calculated relative to the

starting position before the command is executed.

Figure 3.4: Behavioural Components

CHAPTER 3. EXPERIMENTAL METHOD 67

A camera mounted above the robot records changes in position and heading of the

tracking markers. Positions are calculated as the midpoint between coloured markers.

Energy, torques, power usage and speed of controllers are not measured or simulated in

any way.

The execution of a controller and related data collection is illustrated in Figure 3.5.

The robot has a total number of m joint motors. All joint angles are considered to be

zero in the default starting position. Commands are sequentially executed on the robot.

A single command consists of a list of joint angle changes to be applied to the robot’s

joint angles (represented as αij , where i is the command being evaluated and j is the joint

number). The starting and final joint positions are captured for every command. Starting

and final joint positions are represented by βij and δij , respectively. A controller consists

of n commands. For the ith command, the robot’s relative change in position in the

perpendicular direction (∆xi), parallel direction (∆yi) and heading (∆ai) are captured.

Only the Snake robot has an orientation sensor. The snake’s head orientation relative to

the ground at the beginning of the ith command evaluation is captured as θi. The change in

the Snake robot’s head orientation relative to the ground (∆oi) for the ith command is also

captured. Simulating only the head orientation relative to the ground is computationally

more efficient than simulating the yaw, pitch and roll separately.

3.5 Challenges

Currently, no ER approaches achieve a level of automation required to develop a truly

autonomous robotic system. Human interventions are still required in the planning and

execution of the ER approaches. This section discusses some practical challenges encoun-

tered.

A tethered power connection is used in order to avoid problems associated with portable

power solutions. For untethered robots, this work would require Lithium Polymer bat-

teries. Batteries would significantly increase the weight on the robots, adding additional

strain on motors which increases the likelihood of damage. Robot behaviours are less

consistent if power levels fluctuate based on the charge level of batteries. A power tether

guarantees consistent, stable power without the need to recharge batteries.

CHAPTER 3. EXPERIMENTAL METHOD 68

Figure 3.5: Data Collection

Executing the exact same controller in reality multiple times produces slightly different

behaviours. The power tether introduces a small force on the robots when dragged on the

working surface. Depending on the positioning of the tether, there can be significant

differences in robot behaviours. Fortunately, scenarios where tether positioning greatly

influences behaviours are not a common occurrence. The tether positioning or drag force

is not directly simulated in this research and is only indirectly simulated through observed

behaviours.

Human intervention is required in order to effectively collect behavioural data from

commands executed on the robot hardware. Robots are manually repositioned once out-

side the bounds of the working surface. Manual interventions may be required to avoid

CHAPTER 3. EXPERIMENTAL METHOD 69

the robot stepping on the power tether or becoming entangled. Unforeseen problems may

occur during the data collection process that may require human intervention. Exam-

ples include motor failures, overheating, loose connections or the tracking system might

not pick up certain robot states. The tracking system is designed to rely on robots re-

maining fairly upright. Frequent pauses in robot operation are required in order to avoid

overheating of joint motors.

Joint motors are manually replaced due to damage caused by overuse. The most

common cause of motor failure is gear damage. The gears inside the motors consist of

plastic. Significant levels of torque over a period of time wears down these gears until

certain gear positions can no longer be maintained.

If the temperatures of motors are ignored, a slow degradation in performance is ob-

served. Robot behaviours become less reliable and the frequency at which motors fail

increases. Overheating is significantly worse on the Hexapod robot when compared to the

Snake robot. This is probably due to the motors on the Hexapod robot moving faster

than the Snake robot. Motor joints on the Hexapod robot typically carry the weight of

the body above the working surface. The weight of the Snake robot’s body is usually more

distributed on the working surface.

All joint motors have torque limits. If a motor maintains a certain position and a high

torque is experienced for too long, the motor will shut off in order to prevent damage.

Torque limits mainly affect motors on certain parts of the robot. On the Hexapod robot,

the middle joint motors on each leg are most affected by torque failures. For the Snake

robot, joint motors close to the centre of the robot are most likely to fail.

Certain robot behaviours are more likely to trigger torque limit failures than others.

In order to reduce the likelihood of motors reaching torque limits on the Snake robot, the

range of motion for the vertical joints are half that of the lateral joints. This reduces how

high the body can lift off the ground, thereby reducing the strain on motors. Scheduled

pauses in robot operation reduces the likelihood of motors failing. It should be noted that

the simulator does not model torque values or motor failures.

Unlike the Hexapod robot, the same sequence of commands executed on the Snake

robot can result in drastically mixed behavioural outcomes if the starting head orienta-

tions are different. The Snake robot requires the modelling of the head orientation while

CHAPTER 3. EXPERIMENTAL METHOD 70

the Hexapod robot is less sensitive to orientation states. The camera-based tracking sys-

tem is not designed to take into account rolling behaviours for the Snake robot. If the

Snake robot rolls onto its back during a controller evaluation, the controller is considered

a failure. In order to avoid rolling behaviours, Snake robot controllers are evolved to re-

main relatively upright throughout controller evaluations. If the head orientation is not

accurately simulated, it is likely that many solution controllers will fail.

3.6 Methodology

Three stages of experimental work are conducted. The first stage, Methodology A (Fig-

ure 3.6), investigates proposed enhancements (adaptations) applied to the SNS approach.

The second stage, Methodology B (Figure 3.7), investigates proposed adaptations to the

BNS approach completely in simulation, without the use of a real-world robot. The last

stage, Methodology C (Figure 3.8), demonstrates and validates the promising adaptations

discovered during the Methodology B experimental work. Adaptations can consist of mod-

ifications to the simulator configurations, training, data collection and controller evolution

process.

The SNS approach can be modified in various ways (Section 3.7). Adaptations to the

SNS approach are investigated in Methodology A (Figure 3.6). The adaptations are inves-

tigate through a series of experiments. The experimental work produces a set of controller

solutions associated to each adaptation tested. Comparing these sets of controllers against

one another provides insight into differences between the tested adaptations.

Methodology B investigates the BNS approach and is conducted completely within a

simulated environment in order to benchmark the large number of proposed adaptations.

A statistically rigorous analysis of many adaptations is practically infeasible on real-world

robots. Performing such a large number of experiments in reality would take over a year

to complete. It would also be financially costly in terms of repairs required from the wear

and tear. However, conducting the experimental work for Methodology B completely in

simulation over a large number of computers is achievable. A quantitative analysis of many

adaptations is only feasibly by replacing the real-world robot with the simulated alterna-

tive developed in Methodology A (Figure 3.6). Static SNNs are used as a replacement

CHAPTER 3. EXPERIMENTAL METHOD 71

for a real-world robot in Methodology B. Simulator noise is always added to sampling

evaluations performed using the Static SNNs in order to represent noise present in reality.

Conducting experimental benchmarks completely in simulation due to the infeasibility of

a large number of real-world experiments has been seen in prior robotics research [Klaus,

Glette, and Tørresen, 2012].

Figure 3.6: Methodology A: Adaptations to the SNS approach

Figure 3.7: Methodology B: Adaptations to the BNS approach

The third stage of experimental work is required in order to validate and demonstrate

that top performing BNS adaptations discovered in Methodology B are viable for a real-

world robot. Methodology C (Figure 3.8) selects the top performing BNS adaptations

based on the Methodology B results and repeats the experimental work on a real-world

CHAPTER 3. EXPERIMENTAL METHOD 72

robot. Only a small number of adaptations can be feasibly investigated in reality. In

Methodology C, adaptations are studied on a qualitative level.

Figure 3.8: Methodology C: Real-world validation of adaptations

The problems chosen for the experimental work is intentionally open-ended. There

exists a large number of possible good solutions. Robots are required to maximise the total

distance travelled after a fixed number of commands. The performance and transferability

of solution trajectories are calculated.

The simulated and real-world trajectories of solution controllers are recorded. The

robot’s final positions in simulation and reality are denoted by (xs, ys) and (xr, yr),

respectively. The starting position is denoted by (ox, oy). The angle between the final

simulated and real-world position vectors is denoted as φ. Controller performance is

calculated as the distance of the projection of the real-world final position vector onto

the simulated final position vector (equation (3.1)). The performance metric measures

the real-world distance travelled by the robot relative to the simulated final position.

Controllers ideally travel a great distance, however, trajectories significantly different to

the simulated direction are considered bad. The chosen performance metric captures the

distance travelled in the correct trajectory.

F =
√

(ox − xr)2 + (oy − yr)2 × cosφ (3.1)

A transferability metric is designed to study differences between the transferability

CHAPTER 3. EXPERIMENTAL METHOD 73

properties of the tested adaptations. The transferability metric is defined as the Euclidean

distance between the final positions of the robot in simulation and reality, divided by the

Euclidean distance between the starting and final positions of the robot in reality (equation

(3.2)). The transferability metric can be thought of as having two components. Firstly, an

error measure for the gap between simulation and reality. The other component is a scaling

factor that adjusts the error measure according to the real-world distance travelled. Good

transferability indicates that the simulated and real-world final positions are relatively

close when taking into account the real-world distance travelled.

T =
√

(xs − xr)2 + (ys − yr)2√
(ox − xr)2 + (oy − yr)2

(3.2)

To compare the transferability and performance differences between adaptations, pair-

wise Mann-Whitney U tests are performed. The Mann-Whitney U test is a non-parametric

test and does not assume normally distributed datasets. This test is also a more conserva-

tive comparison of differences between distributions than other statistical tests. No p-value

adjustments are performed which will result in a small percentage of the pairwise com-

parisons having a Type 1 error. The Mann-Whitney U test is already quite conservative

and many pairwise comparisons share common adaptations which means that adjusted

p-values would become overly conservative. No more than 10 groups are compared when

using pairwise comparisons. All experiments are planned beforehand and no decisions or

reporting are performed based on the pairwise comparison results. Statistical outcomes

are used to confirm prior theoretical predictions. Theories and statistical outcomes are also

analysed and reported through multiple experiments across different robot morphologies.

3.7 Adaptations

The proposed enhancements to the SNS and BNS approaches are called adaptations.

Certain adaptations can be applied to both the SNS and BNS approaches while others are

only relevant to the BNS approach. Figure 3.9 is a Venn diagram that represents the SNS

and BNS approaches. The top circle represent the SNS approach while the bottom circle

represents the BNS approach. Each adaptation tested is listed within these circles.

CHAPTER 3. EXPERIMENTAL METHOD 74

The first adaptation, Simulator Configuration, investigates different simulator archi-

tectures (Section 3.7.1). The second adaptation, Simulator Noise, is a technique where

noise is intentionally added or excluded in controller evaluations in simulation (Section

3.7.2). These first two adaptations can be applied to both the SNS and BNS approaches.

The following three adaptations are only relevant to the BNS approach. For the BNS

approach, controller evolution and simulator training are conducted concurrently. This

research proposes that periodically resetting the controller population and/or simulator

weights during the BNS approach could be beneficial. Controller Resetting and Simulator

Resetting procedures are explained in Sections 3.7.3 and 3.7.4, respectively. The last

adaptation, Sampling Strategies, is the selection technique used to pick controllers from

the controller population for behavioural data acquisition purposes (Section 3.7.5).

Figure 3.9: Venn Diagram of SNS and BNS adaptations

CHAPTER 3. EXPERIMENTAL METHOD 75

3.7.1 Simulator Configurations

SNNs have to deal with the bias-variance trade-off problem (Section 2.2.5). Training

ensembles of SNNs to simulate particular behaviours could potentially help reduce the

bias and variance experienced. Training multiple independent SNNs to predict the same

behavioural components may provide significant improvements to the SNS and BNS ap-

proaches.

An additional improvement to consider is uncertainty estimation (Section 2.2.4). Dis-

agreement between SNN predictions could be used to create an uncertainty measure. Any

high levels of uncertainty could be penalised during controller evolution. The ER process

could take into account the accumulated uncertainty of controller behaviours and avoid

inaccurately simulated controllers. This would ideally direct the evolution process into

more accurately simulated regions of the search space.

Prior work determined that robot behaviours are most accurately simulated when

each SNN only models a single behavioural component as output. SNNs with multiple

behavioural component outputs have not been investigated for complex robots. This work

investigates SNN configurations that simulate all behavioural components at once. No

prior work has used SNNs to simulate the head orientation of a Snake robot.

The Simulator Configurations investigated are:

• Basic (Section 3.7.1.1)

• Dropout (Section 3.7.1.2)

• Ensemble (Section 3.7.1.3)

• Basic Multi-output (Section 3.7.1.4)

• Ensemble Multi-output (Section 3.7.1.5)

Configurations that generate uncertainty information are the Dropout, Ensemble

and Ensemble Multi-output simulator configurations. The two techniques for pro-

ducing uncertainty information is enabling dropout layers during predictions (Dropout

configuration) and grouping SNNs into ensembles (Ensemble and Ensemble Multi-

output configurations).

CHAPTER 3. EXPERIMENTAL METHOD 76

3.7.1.1 Basic Configuration

The Basic configuration (Figure 3.10) consists of either three (Hexapod) or four (Snake)

SNNs, one for each of the behavioural components simulated. This simulator configuration

has been investigated in prior studies [Pretorius et al., 2013; Woodford et al., 2015, 2016].

The architecture of each SNN is illustrated in Figure 3.11. The size and number of

hidden layers used depends on the robot and behavioural component simulated. The

input layer takes as input the current and transition joint angles of a particular robot

command. The Snake robot additionally takes as input the starting orientation of the

head of the robot relative to the working surface before the command is executed. Both

robot morphologies require SNNs predicting the robot’s sideways trajectory (∆x), forward-

backwards trajectory (∆y) and the change in heading (∆a). An additional SNN is required

for the Snake robot in order to predict the change in the robot’s head orientation relative

to the ground (∆o).

Figure 3.10: Basic Configuration

The dropout layers seen in Figure 3.11 are used to reduce over-fitting during training.

During the training phase, hidden layer nodes are randomly enabled or disables. Dropout

nodes have a dropout rate of 50%. The ReLU activation function is used for all hidden

and output layer nodes. Once a SNN is trained, all nodes are utilised during controller

evaluations. The Basic configuration does not produce uncertainty information during

controller evolution.

CHAPTER 3. EXPERIMENTAL METHOD 77

Figure 3.11: SNN Architecture

3.7.1.2 Dropout Configuration

The Dropout configuration is identical to the Basic configuration, except that the

dropout layers are also enabled during controller evaluations. Multiple forward passes of

the same command produce different outputs due to hidden layer neurons being randomly

turned on or off. For each SNN in the Dropout configuration (Figure 3.12), multiple pre-

dictions for the same command are evaluated with the dropout layers enabled, generating

multiple predictions per behavioural component. The mean and standard deviation of

these predictions are calculated. The mean predictions become the simulated behaviour

and the standard deviations are a measurement of uncertainty. The fitness function is

designed to penalise the accumulated uncertainty measurements for controllers. Highly

penalised controllers are less likely to survive during controller evolution. Enabling dropout

layers during controller evaluations is a novel proposal for the SNS and BNS approaches.

Figure 3.12: Dropout Configuration

CHAPTER 3. EXPERIMENTAL METHOD 78

3.7.1.3 Ensemble Configuration

An Ensemble configuration (Figure 3.13) involves training multiple Basic configurations

and grouping the SNNs according to the behavioural components modelled. Multiple

Basic configurations simulate each behavioural component. This is the most computa-

tionally expensive simulator configuration tested. Every SNN is randomly initialised with

a different set of weights. SNNs are trained independently using the same behavioural

dataset. The trained SNNs contain different weight settings even when simulating the

same behavioural component. Configuring SNNs into ensembles is a novel proposal for

the SNS and BNS approaches.

Each SNN will output a different behavioural component prediction for the same com-

mand due to different weight settings. This produces a distribution of predictions for

each behavioural component. The mean and standard deviation for each behavioural

component is calculated. The means become the simulated behaviour and the standard

deviations are utilised in fitness penalisations. The standard deviation in predictions is

used as a source of uncertainty information (Section 2.2.4). A group of SNNs simulating

the same behavioural component reduces the variance of predictions at no cost to the

bias (Section 2.2.5). Ensembles rely on simulating behaviours from multiple SNNs and

averages out the simulated errors (Section 2.2.6).

3.7.1.4 Basic Multi-output Configuration

The Basic Multi-output configuration is illustrated in Figure 3.14. It is the most

computationally efficient configuration tested. The Basic Multi-output configuration

simulates all behavioural components using a single SNN. The SNN architecture used

is shown in Figure 3.15. A multi-output SNN architecture has three or four outputs

depending on the number of behavioural components simulated. Dropout is only used

during training. The configuration does not produce any uncertainty information.

Prior work has found that this configuration tends to model behaviours less accurately

compared to single-output SNN architectures [Pretorius et al., 2009]. However, multi-

output SNNs have not been investigated for complex robots. This research is the first

time that multi-output SNN architectures are investigated on complex robots.

CHAPTER 3. EXPERIMENTAL METHOD 79

Figure 3.13: Ensemble SNN Configuration

3.7.1.5 Ensemble Multi-output Configuration

The Ensemble Multi-output simulator configuration (Figure 3.16) consists of many

Basic Multi-output simulator configurations in an ensemble. The configuration is a

CHAPTER 3. EXPERIMENTAL METHOD 80

Figure 3.14: Basic Multi-output SNN Configuration

Figure 3.15: Multi-output SNN architecture

mixture of the Ensemble and Basic Multi-output simulator configurations. SNNs

are independently initialised with different randomised weight settings and trained using

the same behavioural dataset. Each SNN predicts all behavioural components. For any

given command, a distribution of predictions is obtained and predictions are grouped

into their respective behavioural components. The mean and standard deviation of each

behavioural component is calculated. The mean values become the simulated behaviours

and the standard deviation are used for uncertainty penalties (Section 2.2.4). Similar to

the Ensemble configuration, ensembles of SNNs helps reduce the variance of predictions

at no cost to the bias (Section 2.2.5). Simulated errors are averaged out over multiple

SNN predictions (Section 2.2.6). Multi-output SNNs configured in ensembles is a novel

proposal of this thesis.

CHAPTER 3. EXPERIMENTAL METHOD 81

Figure 3.16: Ensemble Multi-output SNN Configuration

3.7.2 Simulator Noise

Real-world robotic systems contain noise which can result in significant differences in

behaviours even when actions applied are identical. The noise component of reality is

often modelled and integrated into simulators. The inclusion of simulator noise has been

shown to improve the transferability of evolved behaviours from simulation to reality

[Jakobi, 1997; Jakobi et al., 1995]. The addition of simulator noise is commonly used

in ER [Bongard, 2013; Bongard and Hornby, 2013; Doncieux and Mouret, 2014; Miglino

CHAPTER 3. EXPERIMENTAL METHOD 82

et al., 1995]. The inclusion or exclusion of simulator noise is an adaptation investigated

in this research.

Controllers are evaluated multiple times in simulation with noise, each evaluation pro-

duces slightly different behaviours and different fitness estimates. The average fitness over

multiple evaluations is used during controller evolution. Noise is injected into predictions

of each behavioural component. A Gaussian distribution is used to generate noise. For

the SNS approach, simulator noise is included or excluded for Static SNN predictions. For

the BNS approach, simulator noise is included or excluded for Dynamic SNN predictions.

Importantly, in order to more accurately represent reality, simulator noise is always added

to the Static SNN predictions in Methodology B.

For the Hexapod robot, prior work has demonstrated that not using simulator noise

for the SNS approach can lead to improved performance outcomes for the robotic task

investigated [Pretorius et al., 2019]. For the Snake robot, this research is the first time

that the inclusion or exclusion of simulator noise is compared for the SNS approach. This

thesis presents a first time investigation comparing the inclusion or exclusion of simulator

noise for the BNS approach.

3.7.3 Controller Resetting

During the early stages of the BNS approach, the controller population typically converges

towards poor solutions due to a largely untrained simulator. Over time the simulator

improves as more behavioural data is collected and used to improve the simulator. The

controller population converges towards better solutions as the simulator becomes more

accurate. However, premature convergence during the early stages of controller evolution

might impede progress towards a better convergence point as the simulator improves.

Periodically restarting the controller evolution process as the simulator improves is an

adaptation worth investigating. Periodically resetting the controller population during

the BNS approach is a novel proposal of this research.

Controller resetting periodically eliminates the entire controller population and ran-

domly generates a new one. The controller evolution process simply continues to evolve

the new population after the reset. Other resetting procedures not investigated include

partial population resetting, dynamic restart strategies based on a lack of progress and

CHAPTER 3. EXPERIMENTAL METHOD 83

optimising separate populations. Age-Layered Population Structure (ALPS) Evolutionary

Algorithms optimise individuals based on their age and continually generates younger in-

dividuals. This research is limited to studying full resetting and no resetting procedures.

Partial resetting and island-based population optimisation techniques are more advanced

and may be more computationally expensive. Future work should investigate a wider

variety of resetting procedures.

3.7.4 Simulator Resetting

Slowly increasing the size of the behavioural dataset used to train SNNs may have disad-

vantages. The Dynamic SNNs could become bias towards modelling behaviours encoun-

tered during the early stages of the data acquisition process. Learning newer behavioural

patterns might take longer than necessary. Periodically reinitialising the Dynamic SNNs

and retraining with all available behavioural data could help eliminate training bias. Re-

setting ensures that all behavioural data collected is equally considered during retraining.

Periodically resetting the simulator during the BNS approach is a novel proposal of this

research.

3.7.5 Sampling Strategy

During the BNS approach, controllers are selected from the controller population and are

evaluated on the target robot in order to collect behavioural data. The technique used to

select controllers from the controller population is called the Sampling Strategy.

The baseline Sampling Strategy used in prior work is called High Fitness sampling,

where a tournament selection process is followed. A certain number of controllers are

randomly selected from the controller population. The fittest controller from the selection

is evaluated in order to obtain new behavioural patterns. Prior work found that the

tournament size does not greatly influence the performance of the BNS approach and

higher tournament sizes perform marginally better than small tournament sizes [Woodford

et al., 2016].

Controllers with the highest degree of accumulated uncertainty is chosen for real-world

evaluations. A controller’s accumulated uncertainty is the summation of all its prediction

CHAPTER 3. EXPERIMENTAL METHOD 84

standard deviations over all commands and behavioural components. Evaluations from

controllers with a high accumulated uncertainty would ideally contain more valuable infor-

mation compared to behavioural data collected from a High Fitness sampling strategy.

The Most Uncertain sampling strategy is a novel proposal of this research.

3.8 Conclusions

The generalisability of the SNS and BNS approaches can be inferred based on the exper-

imental outcomes of this work. Demonstrating the SNS and BNS approaches are viable

on completely different classes of robots would provide strong evidence these approaches

might generalise for use on other classes of robots not investigated in this research.

The controller designs used in this work do not heavily rely on specialised human

knowledge. Controller solutions are not biased by human understanding. The controller

solution search space is not simplified by some mathematical functions that mimics biolog-

ical behaviours. The ER process evolves low-level arbitrary joint angle changes in robot

joints which means that controllers have a high level of flexibility and freedom to generate

arbitrary behaviours.

Experiments are designed to investigate improvements applied to the SNS and BNS

approaches for both the Hexapod and Snake robots. Methodology A investigates pro-

posed improvements for the SNS approach. Investigating the large number of possible im-

provements for the BNS approach is only feasible in a completely simulated environment

(Methodology B). Promising improvements are selected based on observations generated

by Methodology B and are validated on the real-world robots (Methodology C).

Chapter 4

HEXAPOD STATIC

NEURO-SIMULATION

4.1 Introduction

Prior research has already validated that the SNS approach is viable on a Hexapod robot

[Pretorius et al., 2019]. This chapter builds upon prior work by investigating novel adap-

tations to the standard SNS approach. The experimental procedures used to investigate

adaptations are discussed in Section 4.2. Experimental configurations tested consist of

standard and novel adaptations which are described in Section 4.3.

Experimental results achieved in this chapter are presented and used to determine if

any proposed adaptations improve upon the standard SNS approach (Section 4.4). Finally,

conclusions to the work are presented in Section 4.5.

4.2 Experimental Procedure

This chapter consists of experimental work specific to the SNS approach and the Hexapod

robot. Methodology A illustrated in Figure 4.1 visually demonstrates the experimental

procedure followed in this chapter. Methodology A is discussed in greater detail in Section

3.6.

Methodology A requires the use of a real-world Hexapod robot only to collect be-

havioural data and validate the final solution controllers. Details of the chosen controller

85

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 86

Figure 4.1: Methodology A: Adaptations to the SNS approach

design and data collection process are covered in Section 4.2.1. This chapter uses the

same controller design, Hexapod robot and randomly collected behavioural data from a

prior study [Pretorius et al., 2019]. However, only the Basic simulator configuration is

investigated in the prior study. Specifics regarding the tested simulator configurations and

training procedures are discussed in Section 4.2.2.

4.2.1 Controllers

The controller design is also discussed in Section 3.3. Specific design decisions related to

the Hexapod robot are covered in this section. Controllers are developed for an open-

loop gait optimisation problem. No feedback is provided to a controller about the robot’s

current position or state during evaluation. The ER process optimises controllers in order

to maximise the distance travelled by the robot in any particular direction. Controllers

consist of a sequential list of eleven commands. A command contains the joint angle

changes that need to be applied to each of the robot’s 18 joints. Each command evaluation

requires that all the robot’s joint angles are adjusted according to the change specified by

the command. Once all the joints have reach their specified positions, the next command

can be executed. Joints are limited in their range of motion in order to eliminate the

possibility of limbs colliding with each other or the body of the robot. Each joint can

move between -26 and 26 degrees relative to the start position of a controller evaluation.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 87

4.2.2 The Simulator

The SNN architectures, namely, the number of hidden layers and nodes for each be-

havioural component are based on experimental benchmarks conducted in prior research

[Pretorius et al., 2019]. Normally the ideal SNN architectures for a particular robotic

platform would be unknown until behavioural data is collected and various SNN architec-

tures are tested. Since proven SNN architectures have been demonstrated in prior work,

this study avoids benchmarking a large number of SNN architectures. The prior study

investigating the SNS approach for the Hexapod robot found that a single hidden layer

per SNN is the best architecture [Pretorius et al., 2019].

The Basic, Dropout and Ensemble simulator configurations have separate SNNs

for each behavioural component simulated. All SNNs consist of a single hidden layer. The

number of hidden layer neurons for the ∆x, ∆y and ∆a behavioural components are 100,

200 and 100 neurons, respectively. The Ensemble Multi-output and Basic Multi-

output simulator configurations consist of multi-output SNNs. Every multi-output SNN

consists of a single hidden layer and is expected to simulate all behavioural components

as output. Each multi-output SNN contains 200 hidden layer neurons.

A total number of 4942 behavioural patterns were collected by evaluating randomly

generated commands on the real-world Hexapod robot. From the patterns collected, 80%

were used to train the SNNs, 10% formed the validation set and 10% formed the test

dataset. The features and predicted outputs of all behavioural patterns are standardised

to have a zero mean and unit standard deviation. The whole training dataset is used

for gradient calculations and batch-based training methods are not used. Training is

performed using the Adam optimisation algorithm. The SNNs are implemented using the

Deep Learning Libraries called Keras [Chollet, 2015] and Tensorflow [Abadi et al., 2015].

After each training iteration, the weights are saved whenever the validation error improves.

SNNs are trained for 4000 iterations. Nodes in the dropout layer have a dropout rate of

50%. Dropout is enabled for all SNNs during training but only enabled during controller

evolution for the Dropout Simulator Configuration. Over-fitting is avoided by saving the

weights associated with the lowest validation error. The saved weights are used for the

final SNN models.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 88

4.3 SNS Experiments

During the ER process, controllers are evaluated in simulation. A simulator predicts the

path of each controller. The simulated path is a list of positions reached by the robot

in simulation. A fitness function (Algorithm 2) assigns controller fitness scores during

the ER process. The fitness function takes as input the controller being assessed and

the corresponding simulated path of the controller. The Euclidean distance between the

simulated starting and final positions of the controller evaluation is calculated.

Simulator configurations not producing uncertainty information will have a standard

deviation of zero and will not contribute any penalties. For each command and behavioural

component simulated, the normalised standard deviation of the predictions is determined.

The normalised standard deviation is multiplied by a penalty factor and added to an ac-

cumulation of penalties. The normalisation is based on the maximum standard deviations

observed for predictions on the test dataset. Normalisation is necessary in order equally

consider the uncertainty weight of each behavioural component. A controller’s fitness score

becomes the ratio of the final displacement of the robot and the accumulated penalties.

The evolution process tries to minimise the penalties and maximise the distance travelled

in Algorithm 2.

Algorithm 2 Hexapod Controller fitness evaluation
Require: positions← Simulated path list and commands← List of controller commands

distance← Distance between start and end of positions

penalties← 1

c← Penalty factor

for each command in commands do

for for each behavioural component of prediction do

v ← Normalised standard deviation of the prediction

penalties← penalties+ c× v

end for

end for

fitness← distance/penalties

return fitness

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 89

Parameter settings used during the ER process were established in prior work [Pre-

torius et al., 2019] and are shown in Table 4.1. An initial population of 100 controllers

is generated from a uniform distribution. Parents are selected through a tournament se-

lection process using a tournament size of 10% of the controller population size. The

crossover method used is Simulated Binary Crossover (SBX). The probability of mutating

any particular joint angle change in a controller by a random amount is 10%. The size of

a mutation is a random number between -6 and 6 degrees. The ER process is carried out

for 1000 controller generations. The fittest controller in the final generation is selected

as the solution. Thirty independent trial runs of the SNS approach (Methodology A) per

unique adaptation are performed.

Controller Population Size 100

Initialization Random from a uniform distribution

Selection Tournament (Tournament size 10%)

Cross-over Method Simulated Binary Crossover (SBX)

Mutation Rate 10%

Mutation Method Random Component Perturbation

Controller Generation Limit 1000

Table 4.1: Parameters for controller evolution

Adaptations investigated consist of changes to the simulator configuration and the

inclusion or exclusion of simulator noise. A total number of 10 unique adaptations are

investigated (Table 4.2). Each adaptation is given an encoded name which is listed in the

first column of Table 4.2. The first letter, “H”, stands for Hexapod which indicates the

robot platform. The second letter represents the simulator configuration. Letters B, D,

E, M and S represent the Basic, Dropout, Ensemble, Ensemble Multi-output and

Basic Multi-output simulator configurations, respectively. The third letter indicates

if noise is injected into simulator predictions during the ER process (E indicates that

simulator noise is excluded while N indicates that noise is present).

The procedure followed in each trial run of the SNS approach is as follows:

1. A set of adaptations is chosen for the experimental run.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 90

2. The process described in Methodology A is performed (Figure 4.1).

3. The simulated and real-world paths of the solution controller is collected as obser-

vational data.

Experiment Simulator Configuration
Simulator

Noise

HBE Basic No

HBN Basic Yes

HDE Dropout No

HDN Dropout Yes

HEE Ensemble No

HEN Ensemble Yes

HME Ensemble Multi-output No

HMN Ensemble Multi-output Yes

HSE Basic Multi-output Yes

HSN Basic Multi-output No

Table 4.2: SNS Experimental Adaptations

Once all trial runs are complete, the performance distributions of the tested SNS

adaptations are studied. The transferability and convergence properties of the tested

adaptations are also investigated.

4.4 The SNS Experiment Results

An example solution controller is presented in Section 4.4.1. The behavioural dataset and

SNN training is covered in Section 4.4.2. Once SNNs are trained, they can be used to

evaluated candidate controllers during the ER process. For each proposed adaptation in

Table 4.2, thirty solution controllers are independently produced.

Performance and transferability distributions of each tested adaptation are presented

in Sections 4.4.3 and 4.4.4, respectively. The solution trajectories of solutions are highly

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 91

dependent on the adaptation used (Section 4.4.5). Finally, the real-world and simulated

paths of the best performing solution to each adaptation is presented in Section 4.4.6.

4.4.1 Demonstration

The SNS approach is successfully used to develop effective gaits for the Hexapod robot.

The trained SNNs can accurately simulate Hexapod robot behaviours over many com-

mands without real-time feedback. No sensors are simulated in any way. Effective solu-

tions are developed without the simulator explicitly taking into account body orientations

or leg contact times with the ground. The success rate for producing adequate solutions

is high and the SNS approach can be considered a fairly robust method when applied to

the Hexapod robot. This section demonstrates a single example solution produced by the

SNS approach.

The chosen solution controller is demonstrated1 in Figure 4.2. The robot success-

fully traverses a significant distance upwards. The robot’s initial position before the first

command is executed is shown in Figure 4.2a. During controller evaluation, the robot’s

position is captured at 3 second intervals. The final position of the robot upon completion

of the controller evaluation is given in Figure 4.2l.

The simulated and real-world trajectories of the chosen solution controller is also il-

lustrated in Figure 4.3. The robot is situated on the origin facing the positive y-direction

before the evaluation begins. The solid line represents the real-world trajectory of the

robot. Similarly, the dashed line illustrates the simulated trajectory.

The positions achieved by the robot (Figure 4.3) are annotated to approximately cor-

respond to the sub-figures in Figure 4.2. The start and end positions are represented by

the letters ‘a’ (Figure 4.2a) and ‘l’ (Figure 4.2l), respectively. The robot moves slightly

upwards from the starting position, reaching ‘b’ (Figure 4.2b). Movement shifts upwards

and to the left to reach the the position annotated ‘c’ (Figure 4.2c) and to the upper

right towards ‘e’ (Figure 4.2e). Significant movement upwards towards ‘g’ (Figure 4.2g) is

achieved, followed by a slight shift towards the position annotated ‘i’ (Figure 4.2i). The

next 6 seconds entails the robot moving upwards to the position annotated as ‘k’ (Figure

4.2k), followed by the robot achieving its end position which is annotated as ‘l’ (Figure
1https://youtu.be/5z7JgWLb9rg

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 92

(a) Start (b) 3 seconds (c) 6 seconds (d) 9 seconds

(e) 12 seconds (f) 15 seconds (g) 18 seconds (h) 21 seconds

(i) 24 seconds (j) 27 seconds (k) 30 seconds (l) End

Figure 4.2: Solution controller demonstration

4.2l).

The movement strategy involves a subset of limbs reaching forwards while other limbs

keep the robot’s main body off the floor. After certain limbs have reached sufficiently

far forwards, the limbs stop reaching forwards and instead stabilise the robot while other

limbs reach forwards. Limbs alternate between support and reaching forward in a cyclical

fashion without being designed to do so. The robot also slightly shifts left and right while

moving forwards.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 93

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

a
b

c
e

g i

k
l

Figure 4.3: Simulated and real-world trajectory paths for solution controller

4.4.2 Static SNN Results

This section returns to the training of the SNNs based on the collected behavioural data,

which is required before controllers can be evolved in the SNS approach. Section 4.4.2.1

presents an analysis of the collected behavioural data. Once the SNNs have been trained,

the accuracy of the proposed simulator configurations are discussed in Section 4.4.2.2.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 94

4.4.2.1 Behavioural Data

The ∆x and ∆y behavioural components for the training dataset are visualised as a scatter

plot in Figure 4.4. Each point represents the final position of the robot after evaluating a

single command. The x and y displacements represent the relative change in the robot’s

position due to the execution of the associated command. It is clear that most commands

have little effect on the distance travelled by the robot. The observed displacements are

not uniformly distributed but more closely resemble a Gaussian distribution.

Density plots comparing the robot’s displacements and changes in heading for the

training dataset are given in Figures 4.5 and 4.6, respectively. The interquartile range

(IQR) for the x displacements are between -1.87 and 1.83 centimetres. The IQR for the y

displacements are between -2.61 and 2.55 centimetres. This indicates that a large portion

of the training data patterns have displacements relatively close to zero. Both the x

and y displacements have a mean close to zero. The standard deviation for the x and y

displacements are 3.41 and 4.47 centimetres, respectively.

A Levene’s statistical test for assessing equality of variance is used to compare the

variances between the x and y displacement distributions. The variance for the y dis-

placements is significantly greater than that of the x displacements with a p-value of

5.7× 10−50. Physically this indicates that the Hexapod robot has greater mobility mov-

ing forwards and backwards relative to the robot’s heading. The distribution for the

heading displacement is Gaussian with a mean close to zero. The standard deviation of

the heading displacements is 10.24 degrees. The IQR is between -7.00 and 6.69 degrees.

4.4.2.2 Training Errors

The MSE and IQR per simulated behavioural component and simulator configuration

tested for the training and test datasets are given in Tables 4.3 and 4.4, respectively. The

first and third quartiles of squared errors are represented by Q1 and Q3, respectively.

The lowest ∆x training MSE values are achieved by the Basic and Dropout simulator

configurations. This is followed closely by the Ensemble simulator configuration. For

the training dataset, the MSE values for the ∆x Ensemble Multi-output and Basic

Multi-output simulator configurations have noticeably higher MSEs compared to the

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 95

−15 −10 −5 0 5 10 15
x displacement

−15

−10

−5

0

5

10

15

20

y
di
sp
la
ce
m
en
t

Figure 4.4: Scatter plot for the training data ∆x and ∆y components

−20 −15 −10 −5 0 5 10 15 20
Change centimetres

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
en
si
ty

Training data density plot for x and y displacements

x displacement

y displacement

Figure 4.5: Density plot for the training data ∆x and ∆y components

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 96

−40 −20 0 20 40
Change in degrees

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
D
en
si
ty

Training data density plot for heading displacements

a displacement

Figure 4.6: Density plot of the training data ∆a component

other configurations.

The lowest training dataset MSE for the ∆y component is the Ensemble simulator

configuration followed closely by the Basic and Dropout simulator configurations. The

Basic, Dropout and Ensemble simulator configuration have ∆y MSEs within 4% of each

other. The Ensemble Multi-output and Basic Multi-output simulator configurations

have a more than 24% higher ∆y training dataset MSE compared to other configurations.

The ∆a training dataset MSE values for all configurations are within 7% of each

other. The Ensemble simulator configuration has the lowest MSE and IQR compared

to all other configurations. The Basic Multi-output simulator configuration has the

highest MSE and IQR followed by the Ensemble Multi-output, Dropout and Basic

simulator configurations.

The squared errors observed on the test dataset are a more realistic indicator of pre-

dictive accuracy compared to the training dataset. Differences in MSE values between

simulator configurations are less extreme for the test dataset. The MSE values are within

8%, 3.2% and 1% of each other for the ∆x, ∆y and ∆a behavioural components, respec-

tively. The Ensemble Multi-output and Basic Multi-output simulator configurations

have lower ∆x and ∆y MSE values compared to the Basic and Dropout simulator con-

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 97

Training Dataset ∆x ∆y ∆a

MSE Q1 Q3 MSE Q1 Q3 MSE Q1 Q3

Basic 3.93 0.26 4.30 6.27 0.47 7.08 33.42 2.72 37.15

Dropout 3.97 0.28 4.37 6.33 0.47 7.07 33.54 2.68 37.30

Ensemble 4.27 0.29 4.83 6.12 0.46 6.65 32.18 2.49 35.80

Ensemble Mulit-output 5.26 0.37 6.04 7.85 0.54 9.03 33.63 2.73 37.96

Basic Multi-output 5.44 0.39 6.18 8.05 0.56 9.32 34.44 2.95 38.13

Table 4.3: Training dataset MSE and IQR for each simulator configuration

figurations.

The Ensemble simulator configuration has the lowest ∆x test dataset MSE but the

Ensemble Multi-output configuration has the lowest IQR. The Dropout and Basic

simulator configurations have the highest MSE and IQR for the ∆x test dataset.

The MSE values for the test dataset ∆y component are lowest for the Ensemble

Multi-output and Basic Multi-output simulator configurations followed closely by the

Basic and Dropout simulator configurations. The Ensemble Multi-output simulator

configuration has the lowest ∆y test dataset IQR. The Ensemble simulator configuration

has the highest MSE and IQR.

The Ensemble Multi-output simulator configuration has marginally the lowest test

dataset ∆a MSE while the Basic Multi-output and Dropout simulator configurations

have the highest MSE values. The MSE values for the test dataset ∆a behavioural com-

ponent are all within 1% of each other.

Multi-output SNNs modelling all behavioural components have a smaller gap between

the training and test MSE values. The multi-output SNNs are likely less capable of over-

fitting the training dataset in comparison to single output SNN configurations.

The best simulator configuration should be judged based on the test dataset MSE

distributions. Simulator configurations modelling the ∆x behavioural component have

the largest differences between test dataset MSE distributions. The Ensemble Multi-

output simulator configuration is the best choice for the ∆x and ∆y behavioural compo-

nents. Simulator configurations modelling the ∆a behavioural component are relatively

more similar to each other. There is no clear best simulator configuration choice for

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 98

Test Dataset ∆x ∆y ∆a

MSE Q1 Q3 MSE Q1 Q3 MSE Q1 Q3

Basic 7.45 0.64 8.57 10.77 0.77 12.42 47.86 4.02 53.64

Dropout 7.65 0.69 8.76 10.78 0.76 12.39 48.34 4.30 52.05

Ensemble 7.09 0.55 7.95 11.02 0.74 12.87 47.87 4.44 51.43

Ensemble Mulit-output 7.18 0.55 7.78 10.71 0.69 12.39 47.82 4.28 51.68

Basic Multi-output 7.23 0.57 7.93 10.68 0.76 12.56 48.20 4.02 50.23

Table 4.4: Test dataset MSE and IQR for each simulator configuration

modelling the ∆a behavioural component.

4.4.3 Performance

Thirty independent trial runs are conducted for each SNS adaptation tested, producing

30 controller solutions per SNS adaptation (Table B.1). The solutions controllers are

evaluated on the real-world Hexapod robot and the resulting paths generated are recorded.

The performance metric calculation is given in equation (3.1).

A summary of the performance statistics for adaptations is given in Table 4.5. The

performance distributions are illustrated as standard box-and-whisker plots in Figure 4.7.

Not adding noise to the simulator during the ER process always performs significantly

better than including noise. Adaptations without simulator noise are observed to have

higher standard deviations compared to their noiseless counterparts. This could be due

to simulator noise significantly decreasing the performance which leads to lower possible

standard deviations.

For all box-and-whisker plots in this thesis, the box plot rectangle spans the IQR with

the segment inside the IQR box representing the median. The whiskers outside the IQR

box represent values 1.5 times the IQR above third quartile and below the first quartile.

Whiskers extend up to the last datum within the 1.5 times IQR extensions. Values outside

the whisker range are considered outliers.

All statistical comparisons use a significance level of 5%. The Kruskal-Wallis H test

is used to determine whether the performances of the tested adaptations originate from

the same distribution. The performance distributions between the adaptations were found

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 99

Approach Mean (cm) Median (cm) Q1 (cm) Q3 (cm) Std. Dev. (cm)

HBE 53.8 53.6 47.5 60.5 10.0

HBN 41.7 40.8 37.1 48.6 9.1

HDE 52.1 52.9 44.8 59.1 12.1

HDN 39.9 39.7 33.4 46.1 10.8

HEE 53.4 53.1 48.3 60.7 10.4

HEN 39.0 38.0 33.4 45.8 9.3

HME 60.2 61.1 54.4 66.8 8.7

HMN 40.3 41.0 33.8 47.3 8.0

HSE 55.7 55.0 50.9 60.0 8.6

HSN 41.1 41.2 34.9 47.6 7.6

Table 4.5: Performance statistics for the SNS adaptations

to be significantly different with a p-value of 1.15× 10−22. This indicates that there are

significant differences between the performance distributions of the tested adaptations. A

post hoc analysis is performed using pairwise Mann-Whitney U (also called the Mann-

Whitney-Wilcoxon) tests to determine which adaptations are significantly different from

each other. The Mann-Whitney U test is a non-parametric test and does not assume nor-

mally distributed datasets. This test is also a more conservative comparison of differences

between distributions than other statistical tests. The p-values for the post hoc analysis

are shown in Table 4.6. Rows and columns represent the adaptations listed in Table 4.2.

No significant differences in performance are found between adaptations that add noise

to the simulator (Adaptations HBN, HDN, HEN, HMN and HSN). Adaptations with sim-

ulator noise perform significantly worse compared to all noiseless adaptations. Not adding

simulator noise results in better likely performance outcomes for solutions. The only adap-

tation that performed significantly better than all others excludes simulator noise and uses

an Ensemble Multi-output simulator configuration (HME). The combined effect of us-

ing ensembles with multi-output SNNs improves performance outcomes significantly more

than if only the Ensemble (HEE) or a Basic Multi-output (HSE) simulator configu-

ration is used alone.

The time taken to complete a single trial run of the SNS approach is highly dependent

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 100

H
B

E
H

B
N

H
D

E
H

D
N

H
E

E
H

E
N

H
M

E
H

M
N

H
SE

H
B

N
1.

0
×

10
−

5
-

-
-

-
-

-
-

-

H
D

E
0.

64
37

7
0.

00
01

6
-

-
-

-
-

-
-

H
D

N
4.

5
×

10
−

6
0.

40
62

9
6.

7
×

10
−

5
-

-
-

-
-

-

H
E

E
0.

83
15

0
2.

2
×

10
−

5
0.

78
60

1
1.

6
×

10
−

5
-

-
-

-
-

H
E

N
6.

2
×

10
−

7
0.

16
35

1
8.

7
×

10
−

6
0.

70
81

9
9.

0
×

10
−

7
-

-
-

-

H
M

E
0.

00
76

5
2.

0
×

10
−

10
0.

00
73

0
4.

1
×

10
−

10
0.

00
69

7
9.

1
×

10
−

12
-

-
-

H
M

N
5.

1
×

10
−

7
0.

53
25

0
1.

2
×

10
−

5
0.

91
23

7
1.

3
×

10
−

6
0.

55
20

0
2.

5
×

10
−

12
-

-

H
SE

0.
58

18
8

1.
3
×

10
−

7
0.

24
78

1
2.

6
×

10
−

7
0.

47
61

4
4.

0
×

10
−

9
0.

03
19

4
6.

3
×

10
−

10
-

H
SN

1.
6
×

10
−

6
0.

74
12

3
5.

1
×

10
−

5
0.

63
32

7
2.

4
×

10
−

6
0.

31
36

2
5.

3
×

10
−

12
0.

75
23

5
2.

4
×

10
−

9

Ta
bl

e
4.

6:
C

om
pa

ris
on

s
be

tw
ee

n
th

e
pe

rf
or

m
an

ce
s

of
ad

ap
ta

tio
ns

fo
r

th
e

SN
S

ap
pr

oa
ch

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 101

H
B
E

H
B
N

H
D
E

H
D
N

H
E
E

H
E
N

H
M
E

H
M
N

H
S
E

H
S
N

20

30

40

50

60

70

80

P
er
fo
rm

an
ce

M
et
ri
c
(c
m
)

Figure 4.7: Performance distributions for SNS adaptations

on the simulator configuration used. Controller evaluations are slower on more complex

simulator configurations. The estimated runtime for executing a single trial run of the SNS

approach for adaptations using the tested simulator configurations are given in Table 4.7.

Durations are estimated using a mid-range desktop computer without using a Graphics

Processing Unit (GPU). The shortest runtime durations are seen for trial runs consisting

of Basic Multi-output and Basic simulator configurations. SNS trial runs using the

Basic and Basic Multi-output simulator configurations take approximately 2 and 1.5

minutes to complete, respectively. The Ensemble Multi-output simulator configuration

takes approximately 3 minutes to complete. The Ensemble and Dropout simulator

configurations take the longest to complete at 15 and 8 minutes, respectively.

4.4.4 Transferability

A summary of the transferability statistics for adaptations is given in Table 4.8. Trans-

ferability values for trial runs are given in Table B.2. The transferability between the

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 102

Time (minutes)

Basic 2

Dropout 8

Ensemble 15

Ensemble Multi-output 3

Basic Multi-output 1.5

Table 4.7: SNS trial run durations

various adaptations of the SNS approach are illustrated in Figure 4.8. Lower values in-

dicate better transferability and a closer correspondence between simulation and reality.

The Kruskal-Wallis H test is used to determine whether the transferability distributions

of each tested adaptation originates from the same distribution. The transferability distri-

butions between adaptations were found to be significantly different from each other. The

p-value for the Kruskal-Wallis H test is 3.41× 10−16. A post hoc analysis is conducted

using Mann-Whitney U pairwise comparisons. The p-values for the post hoc analysis are

shown in Table 4.9.

Adaptations with simulator noise do not generally have significantly better transferabil-

ity distributions compared to adaptations without simulator noise. The only adaptations

that have significantly better transferability distributions with simulator noise use either

the Ensemble Multi-output or Basic Multi-output simulator configuration (Adapta-

tions HMN and HSN). However, the overall results indicate that simulator noise has little

effect on the likely transferability of solutions.

Adaptations HBE, HBN, HDE, HDN, HEE and HEN have significantly worse trans-

ferability distributions compared to adaptation using multi-output SNNs (HME, HMN,

HSE and HSN). For configurations using multi-output SNNs, the transferability distribu-

tion for the HSE adaptation is significantly worse compared to the HME, HMN and HSN

adaptations.

The most significant contributor towards better transferability is the use of multi-

output SNNs. The transferability distribution upper quartiles for adaptations HME,

HMN, HSE and HSN are close to the lower quartile values of the single-output SNN

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 103

H
B
E

H
B
N

H
D
E

H
D
N

H
E
E

H
E
N

H
M
E

H
M
N

H
S
E

H
S
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra
n
sf
er
ab
il
it
y

Figure 4.8: Transferability distributions for the SNS adaptations

configurations. The standard deviations for the multi-output SNN configurations are also

relatively low. The HME, HMN and HSN adaptations, statistically have similar transfer-

ability distributions. The HME adaptation has both the best in performance distribution

and one of the best transferability distributions.

Section 4.4.5 examines the behavioural trends of solution controllers in simulation and

reality for each adaptation tested. Some of the trends observed indicate why certain adap-

tations have significantly better transferability distributions than others. The simulators

for adaptations HBE, HBN, HDE, HDN, HEE and HEN visibly overestimate the real-

world distances travelled. This result in their being a large error between the simulated

and real-world final positions of solutions, leading to a high transferability values.

Simulators for adaptations HME, HMN, HSE and HSN tend not to overestimate the

real-world distances travelled. The Basic Multi-output simulator configuration with

noise (HSN) has the best overall transferability, followed closely by the Ensemble Multi-

output simulator configuration with and without noise (HMN, HME). The Basic Multi-

output simulator configuration without noise (HSE) demonstrated worse transferability

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 104

Approach Mean Median Q1 Q3 Std. Dev.

HBE 0.92 0.84 0.67 1.08 0.38

HBN 0.79 0.75 0.51 0.94 0.49

HDE 0.84 0.70 0.47 0.89 0.55

HDN 0.84 0.72 0.50 0.99 0.54

HEE 0.87 0.80 0.67 1.01 0.37

HEN 0.78 0.73 0.47 1.04 0.37

HME 0.42 0.42 0.33 0.50 0.18

HMN 0.41 0.40 0.25 0.52 0.25

HSE 0.52 0.49 0.38 0.67 0.20

HSN 0.39 0.33 0.22 0.55 0.22

Table 4.8: Transferability statistics for the SNS adaptations

compared to the HSN, HMN and HME adaptations. The HSE adaptation has a sig-

nificantly better transferability compared to adaptations using a Basic (HBE, HBN),

Ensemble (HEE, HEN) or Dropout (HDE, HDN) simulator configuration.

4.4.5 Simulated and Real-world Trajectories

The simulated and real-world paths generated by solution controllers for adaptations are

visualised and discussed in this section. Figures 4.9 and 4.10 illustrate the solution paths

obtained for the Basic and Basic Multi-output simulator configurations. Similarly,

solution paths for the Ensemble, Dropout and Ensemble Multi-output simulator

configurations are shown in Figures 4.11 and 4.12. The sub-figures on the left illustrate

the simulated paths. The corresponding real-world paths are shown by the sub-figures on

the right. Having the simulated and real-world paths side-by-side helps visualise differences

between simulation and reality.

The distances travelled by controllers in simulation tend to be relatively similar within

each adaptation. Simulators tend to overestimate the distances travelled. The addition of

simulator noise noticeably reduces the simulated distances travelled. Noise likely compli-

cates the controller search space due to random changes in the fitness landscape, making

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 105

H
B

E
H

B
N

H
D

E
H

D
N

H
E

E
H

E
N

H
M

E
H

M
N

H
SE

H
B

N
0.

09
65

-
-

-
-

-
-

-
-

H
D

E
0.

13
42

0.
97

07
-

-
-

-
-

-
-

H
D

N
0.

21
88

0.
86

60
0.

71
91

-
-

-
-

-
-

H
E

E
0.

48
53

0.
32

08
0.

32
80

0.
51

33
-

-
-

-
-

H
E

N
0.

21
32

0.
85

45
0.

94
74

0.
94

74
0.

41
47

-
-

-
-

H
M

E
4.

6
×

10
−

9
1.

3
×

10
−

5
1.

5
×

10
−

5
2.

8
×

10
−

5
3.

1
×

10
−

9
4.

1
×

10
−

5
-

-
-

H
M

N
3.

4
×

10
−

8
2.

4
×

10
−

5
2.

6
×

10
−

5
4.

7
×

10
−

5
6.

6
×

10
−

8
7.

7
×

10
−

5
0.

59
20

-
-

H
SE

2.
7
×

10
−

6
0.

00
21

0.
00

43
0.

00
41

6.
8
×

10
−

6
0.

00
67

0.
04

79
0.

03
85

-

H
SN

5.
9
×

10
−

9
8.

7
×

10
−

6
6.

8
×

10
−

6
1.

1
×

10
−

5
1.

2
×

10
−

8
1.

5
×

10
−

5
0.

40
63

0.
90

07
0.

02
34

Ta
bl

e
4.

9:
C

om
pa

ris
on

be
tw

ee
n

tr
an

sf
er

ab
ili

ty
di

st
rib

ut
io

ns
of

ad
ap

ta
tio

ns
fo

r
th

e
SN

S
ap

pr
oa

ch

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 106

the exploitation of known good solutions more difficult.

A significant difference in evolved behaviours is observed between the Basic and Basic

Multi-output simulator configurations. Solution paths for the HBE and HBN adapta-

tions have diverse behaviours moving in many directions. However, the HSE and HSN

adaptations have little diversity in terms of the direction of trajectories. Adaptations

HEE, HEN, HME and HMN generally have paths moving in an upward trajectory.

The Dropout simulator configuration demonstrates diverse sets of behaviours. Adap-

tations using the Basic and Dropout simulators configurations are relatively similar in

terms of having highly diverse sets of solutions. However, the Dropout simulator config-

urations appear to be slightly more grouped together. Adaptations using the Ensemble

and Ensemble Multi-output simulator configurations result in controllers that are sig-

nificantly similar to each other.

The SNS adaptations can be studied in terms of the diversity of the controller solutions

produced and the general simulated and real-world distances travelled. Figure 4.13 illus-

trates where each adaptation falls on the diversity and distance travelled spectrum. The

magnitude of the distance represents the simulated and real-world distanced travelled.

Two trends are observed in terms of the general heading of solution paths. Controller

solutions either conform to an upward trajectory or solutions tend to move in diverse

directions.

All SNS adaptations that include simulator noise tend to produce controller solutions

that travel shorter distances compared to adaptations that include simulator noise. Not

including simulator noise is beneficial in that there is an increased likelihood of evolving

controllers that cover greater distances. Noise slightly increases diversity of solutions when

SNNs are configured in an ensemble configuration (HEN, HMN).

Adaptations using an ensemble approach are likely to produce solutions that have tra-

jectories with a forward direction. The Ensemble simulator configuration without noise

(HEE) produces a slightly less diverse set of solutions compared to the same simulator

configuration with noise. The HEE adaptation also has paths all moving in the forward

direction while the HEN adaptation has five solution paths not having in a forward tra-

jectory. All adaptations using multi-output SNNs are biased towards producing forward

moving solutions.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 107

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(a) HBE simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(b) HBE reality

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(c) HSE simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(d) HSE reality

Figure 4.9: Solution paths for the Basic (HBE) and Basic Multi-output (HSE) simulator

configurations without noise

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 108

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(a) HBN simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(b) HBN reality

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(c) HSN simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(d) HSN reality

Figure 4.10: Solution paths for the Basic (HBN) and Basic Multi-output (HSN) simulator

configurations with noise

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 109

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(a) HDE simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(b) HDE reality

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(c) HEE simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(d) HEE reality

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(e) HME simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(f) HME reality

Figure 4.11: Solution paths for Dropout (HDE), Ensemble (HEE) and Ensemble Multi-

output (HME) configurations without noise

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 110

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(a) HDN simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(b) HDN reality

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(c) HEN simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(d) HEN reality

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(e) HMN simulation

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

100

(f) HMN reality

Figure 4.12: Solution paths for Dropout (HDN), Ensemble (HEN) and Ensemble Multi-

output (HMN) configurations with noise

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 111

Figure 4.13: Solution diversity and magnitude trends between SNS adaptations

The Basic Multi-output simulator configurations with and without noise always

produces solutions with trajectories that move in the forward trajectory. The Ensemble

Multi-output simulator configuration without noise only consisted of one controller not

moving in a forward trajectory.

4.4.6 Best Controllers

The best controller for each SNS adaptation is discussed in this section. The best per-

forming controllers simulated and real-world trajectories are illustrated in Figures 4.14

and 4.15. Figures have the same dimensions in order to easily identify differences. The

dashed lines represent the simulated trajectories of the robot for their respective controller

evaluations. The solid lines represent the trajectories generated by the real-world robot

for the specified controllers evaluated. The x and y axis is measured in centimetres. The

starting position of the robot is located at the origin with the robot facing the positive

y direction. The red arrow at the origin represents the initial heading of the robot. The

final heading of the robot in simulation and reality is represented by the red arrows at the

end of the simulated and real-world trajectories.

Behavioural metrics for the best controller in each adaptation is presented in Table

4.10. The performance and transferability columns are defined as in previous sections.

The position error is calculated at the Euclidean distance between a controller’s evaluated

final positions in simulation and reality. The actual distance is measured as the Euclidean

distance between the starting and final positions of the robot’s trajectory in reality. Simi-

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 112

larly, simulated distance is the Euclidean distance between the starting and final positions

of the robot in simulation. The heading error is the difference between the robot’s final

heading in simulation and reality in degrees.

All the best controllers for adaptations with simulator noise have performance values

less than or equal to 62.5 centimetres. Top controllers evolved from adaptations without

simulator noise have performance values greater than or equal to 71.9 centimetres. The

inclusion of simulator noise visibly reduces the distance travelled by the best controller in

each SNS adaptation.

For the best controller in each adaptation, simulated and real-world trajectories are

a relatively close match. All the best controllers transfer well from simulation to reality.

The simulator tends to overestimate the actual distances travelled for the best controllers

in the HBN, HDE, HDN and HEE adaptations. However, behaviours observed between

the simulated and real-world controller evaluations correspond relatively well even if there

is a slight mismatch between the simulated and real-world distances travelled.

The best controllers for adaptations with multi-output SNNs (HME, HMN, HSE, HSN)

are accurately simulated. Differences between the simulated and actual distances travelled

is less than 6.7 centimetres for the best controllers evolved using adaptations with multi-

output SNNs. Similarly, the best controllers developed using adaptations with single

output SNNs (HBE, HBN, HDE, HDN, HEE, HEN) have simulated and actual distance

differences greater than 11.1 centimetres.

Studying only the simulated and real-world final trajectory positions of evaluated con-

trollers does not take into account the robot’s simulated and real-world headings. The

simulated and real-world final position headings are represented by the red arrows in Fig-

ures 4.14 and 4.15. The difference between the final real-world and simulated headings

is relatively low for most of the best controllers. Only the best controllers for the HMN

and HSE adaptations have heading errors greater than 13 degrees. The angle between

the final simulated and real-world headings for the best controllers of the HME and HSE

adaptations is 24.8 and 28.8 degrees, respectively.

Most of the best controller solutions move a significant distance in the positive y

direction. The best solutions for the HBN, HEE, HEN, HME, HMN, HSE and HSN

adaptations have trajectories moving mostly in the positive y direction. Seven of the

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 113

P
os

it
io

n
A

ct
ua

l
Si

m
ul

at
ed

H
ea

di
ng

A
da

pt
at

io
n

P
er

fo
rm

an
ce

(c
m

)
T

ra
ns

fe
ra

bi
lit

y
E

rr
or

(c
m

)
D

is
ta

nc
e

(c
m

)
D

is
ta

nc
e

(c
m

)
E

rr
or

(d
eg

re
es

)

H
B

E
74

.7
0.

32
24

.5
77

.3
89

.2
1.

3

H
B

N
58

.6
0.

28
16

.4
58

.6
74

.8
5.

6

H
D

E
71

.9
0.

35
24

.9
72

.0
96

.4
6.

4

H
D

N
62

.5
0.

35
22

.0
62

.7
84

.0
10

.2

H
E

E
74

.1
0.

33
25

.0
75

.2
95

.4
4.

8

H
E

N
59

.4
0.

20
11

.6
59

.5
70

.7
4.

0

H
M

E
78

.5
0.

11
8.

9
78

.8
85

.4
11

.7

H
M

N
51

.7
0.

27
14

.7
53

.8
51

.8
24

.8

H
SE

77
.5

0.
25

20
.3

79
.8

85
.0

28
.8

H
SN

53
.8

0.
11

5.
7

54
.1

51
.6

12
.4

Ta
bl

e
4.

10
:

B
eh

av
io

ur
al

m
et

ric
s

of
th

e
be

st
co

nt
ro

lle
r

in
ea

ch
ad

ap
ta

tio
n

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 114

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(a) Best HBE controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(b) Best HBN controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(c) Best HSE controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(d) Best HSN controller

Figure 4.14: Best performing solutions for the Basic and Basic Multi-output simulator

configurations

ten best controllers travel in the positive y direction. The only best controller to travel

towards the negative y direction is evolved from the HBE adaptation. Trajectories moving

a significant distance in the positive x direction are from the HDE and HDN adaptations.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 115

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(a) Best HDE controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(b) Best HDN controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(c) Best HEE controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(d) Best HEN controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(e) Best HME controller

−80 −60 −40 −20 0 20 40 60 80 100

x position (cm)

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

simulator

reality

(f) Best HMN controller

Figure 4.15: Best performing solutions for the Dropout, Ensemble and Ensemble Multi-

output configurations

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 116

4.5 Conclusion

The chapter successfully validates that the SNS approach can develop effective gait con-

trollers for a Hexapod robot. Controllers evolved in simulation transfer well into reality.

The controller design used is high dimensional, low-level and provides sufficient freedom for

a robot to exhibit arbitrary behaviours. The simulator design models low-level commands

which results in the simulator being compatible with any controller design.

Different simulator configurations are trained to model Hexapod robot behaviours.

Many independent ER runs are conducted using different simulator configurations with

and without simulator noise. The trajectories followed by solution controllers in simulation

and reality are analysed. Solution controllers are grouped according to their adaptations

and are analysed in terms of performance, transferability and general behaviours.

Prior research investigating the SNS approach has largely focused on simple robots or

controllers. This work pioneers the way towards SNS approaches that try to compensate

for the inaccuracies in simulating high dimensional robot behaviours. The prior work es-

tablished a guideline that multi-output SNNs perform worse compared to using a separate

SNN for each behavioural component. The results presented here strongly indicate that

multi-output SNNs can at least for the specified problem outperform single-output SNNs.

The Ensemble Multi-output simulator configuration without noise performs signif-

icantly better in terms of the distance travelled in the direction of the simulated path

compared to all other adaptations tested. The factors contributing towards improved per-

formance outcomes is a combination of an ensemble approach, uncertainty penalisation

and the use of multi-output SNNs without simulator noise. Not adding simulator noise to

controller evaluations significantly improved the likely performance outcomes of solutions

while not adversely affecting transferability. Simulator configurations with multi-output

SNNs demonstrated particularly good transferability properties.

The diversity in observed trajectories for each adaptation differed significantly. The

Basic and Dropout simulator configurations increase solution diversity while other sim-

ulator configurations produced mostly similar solutions. The observed differences in diver-

sity might be due to the smoothness in the simulator search space. Multi-output SNNs and

ensembles likely smooth out the controller search space which biases certain behaviours.

CHAPTER 4. HEXAPOD STATIC NEURO-SIMULATION 117

The solution search space likely changes significantly between certain simulator configu-

rations.

Choosing the ideal adaptation can depend on certain goals. If highly diverse solution

controllers are required then the Basic simulator configuration without noise should be

used. The Basic Multi-output simulator configuration without noise is the best choice

if computational efficiency is of primary importance. If discovering the best performing

solution controller is the most important goal, the Ensemble Multi-output simulator

configuration without noise is the best adaptation. For the problem investigated, results

confirm the findings of prior research that not including simulator noise significantly im-

proves performance outcomes for the specified gait optimisation problem.

The SNS approach does have significant disadvantages. The data collection scheme

is time consuming and explores many unnecessary behaviours. Smarter data collection

methods should be explored. The SNS approach creates static simulators. If the robot

or environment changes significantly, the trained simulator might become inaccurate and

unusable. The next chapter investigates the BNS approach which is designed to remedy

some disadvantages inherent in the SNS approach.

Chapter 5

HEXAPOD BOOTSTRAPPED

NEURO-SIMULATION

5.1 Introduction

The BNS approach is yet to be investigated on a limbed, walking robot such as the

Hexapod robot. For the BNS approach, a lengthy data collection phase can be avoided.

Little specialised knowledge would be required and the ER process would begin sooner

than if a SNS or physics-based approach were used.

Details of the experimental procedures followed in this chapter are discussed in Section

5.2. The experimental work is split into two phases. The initial phase benchmarks a large

number of adaptations completely in simulation without a real-world robot (Methodology

B). Benchmarking a large number of adaptations is not feasible in reality. This simulated

benchmarking phase is simply used to identify promising adaptations.

In the second phase (Methodology C), top performing adaptations observed during

the first phase are selected and validated on the real-world Hexapod robot. Validating

adaptations on real-world hardware is only viable for a small number of adaptations.

Details of the two phases of experimental work are covered in Section 5.3.

A successful solution controller is demonstrated in Section 5.4. The experimental

results specific to the first phase are presented in Section 5.5. Results specific to the

second phase are presented in Section 5.6. The results in this chapter are compared to

118

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 119

the SNS experimental observations achieved in the previous chapter (Section 5.7). Lastly,

conclusions are discussed in Section 5.8.

5.2 Experimental Procedure

The experimental work consists of two phases, namely the simulated BNS experiments

(Methodology B) and the BNS validation experiments (Methodology C). Illustrations of

these methodologies are given in Figures 5.1 and 5.2. A detailed discussion of these

methodologies can be found in Chapter 3. Purely simulated BNS experiments benchmark

the proposed adaptations on a quantitative level. Methodology B uses the Static SNNs

developed in the previous chapter as a substitute to the real-world Hexapod robot. Con-

trollers sampled and evaluated using the Static SNNs always include simulator noise in

order to represent noise inherent in real-world controller evaluations. Top adaptations

identified during the simulated BNS experiments are selected for validation. The valida-

tion experimental work studies the BNS approach on a real-world Hexapod robot in order

to demonstrate and validate real-world viability.

Figure 5.1: Methodology B: Adaptations to the BNS approach

The experimental procedure followed in the SNS experimental work is slightly modified

for the BNS approach. Implementation details specific to data acquisition, controller de-

sign and simulator development require modifications when applied to the BNS approach.

Data acquisition is more tightly integrated into the ER process. The BNS approach

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 120

Figure 5.2: Methodology C: Real-world validation of adaptations

requires real-time data acquisition and simulator training during the ER process. Modifi-

cations to the data acquisition process are discussed in Section 5.2.1. The controller and

simulator designs remain similar to that of the SNS approach, however, modifications spe-

cific to the BNS approach are required. Changes to the controller design are discussed in

Section 5.2.2. Similarly, changes to the simulator design and training process are covered

in Section 5.2.3.

5.2.1 Hardware and Data Capture

The same Hexapod robot described for the SNS experimental work is used (Section 3.2.1).

The BNS approach requires real-time data collection, processing and training. Controller

evaluations are continually performed in order to collect behavioural data during the ER

process. The simulator is continually improved based on the behavioural data collected.

Controllers are selected for real-world evaluations from the latest controller population.

Behavioural data is not randomly generated but is acquired through the evaluation of

evolving solutions throughout the execution of the BNS approach.

5.2.2 Controllers

The controller design (Section 4.2.1) and fitness function (Algorithm 2) is identical to that

used in the SNS approach, however, uncertainty penalty normalisation is by necessity

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 121

quite different. For the SNS approach, uncertainty penalties are normalised based on the

maximum standard deviations observed in the test dataset for the respective behavioural

components. However, for the BNS approach, no test dataset exists upfront. It is difficult

to normalise prediction standard deviations when little data is available. Parameter set-

tings needed to normalise the standard deviation of SNN predictions is initially unknown.

This work proposes a method of normalising prediction standard deviations based on

predictions observed every controller evolution generation. For a population of controllers,

the standard deviations for each behavioural component simulated is recorded. These

standard deviations are divided by the maximum standard deviation observed for each

behavioural component. The fitness function uses the normalised standard deviations in

order to calculate the uncertainty penalties of controllers.

Due to no behavioural dataset being available upfront for the BNS approach, the nor-

malisation parameters are continually recalculated. The maximum standard deviation for

each behavioural component is calculated from predictions encountered through the evalu-

ation of the controller population. These maximum standard deviations in predictions are

used to normalise all prediction standard deviations during fitness calculations. The nor-

malisation parameters are recalculated every generation based on the standard deviation

in predictions of the current controller population.

5.2.3 Simulator

A behavioural dataset is not completely available during most of the execution of the

BNS approach. Not having a complete behavioural dataset creates certain complications

with regards to Dynamic SNNs. Three aspects regarding Dynamic SNNs require special

attention. Namely, the standardisation process applied to the behavioural patterns used

for training, the Dynamic SNN training process and how simulator noise is applied.

The behavioural data standardisation process improves the accuracy of SNNs. The

BNS approach cannot use the same training data standardisation process used in the SNS

approach. Standardisation transforms all behavioural data features and outputs to have

a zero mean and a unit standard deviation. For the SNS approach, the behavioural data

standardisation parameters are calculated based on the fully available behavioural dataset.

A full behavioural dataset is not available for most of the BNS approach. Standardisation

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 122

parameters need to be dynamically calculated based on the latest available behavioural

dataset. The standardisation parameters are dynamic and are re-calculated using the

mean and standard deviation of the latest available behavioural dataset. These dynamic

standardisation parameters change significantly during the early stages of the BNS ap-

proach and stabilise as more behavioural data is acquired. This dynamic standardisation

process is a novel contribution of this research.

Dynamic SNNs are trained for 1000 iterations of the Adam algorithm after every half

dozen behavioural patterns are collected (twice per sampling evaluation). Early stopping

is used where training is terminated if the validation dataset error does not improve within

10 iterations. Only weights associated with the lowest validation dataset MSE are used

for the Dynamic SNNs. This can be thought of as a check-pointing procedure, where only

the best SNN weights are used based on the validation MSE. For each behavioural pattern

collected, there is an 80% probability of it being added to the training dataset and a 20%

probability of being added to the validation dataset. Checking and avoiding overfitting of

the Dynamic SNNs is a novel contribution of this thesis. Prior research has never tested

a mechanism for avoiding overfitting during the BNS approach.

Certain adaptations inject noise into the simulated (Dynamic SNNs) controller evalu-

ations during controller evolution. The BNS approach requires a method for dynamically

calculating the noise distribution based on the latest available behavioural dataset. This

is due to the absence of a complete behavioural dataset at the start of the BNS approach.

This research is the first time that dynamic noise distribution parameter settings have been

proposed and investigated for the BNS approach. The level of noise injected into simula-

tor (Dynamic SNNs) evaluations is dynamically calculated. The parameter settings used

to generate simulator noise are estimated using the validation dataset. This estimation

process takes place after every training phase has ended (twice per sampling evaluation).

The noise distribution used to inject noise into each behavioural component is Gaussian

with a mean of zero. The standard deviation of the noise is calculated as the standard

deviation of the errors observed between the simulator and the latest available validation

dataset.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 123

5.3 BNS Experiments

The last two out of three phases of experimental work conducted on the Hexapod robot are

covered in this chapter. The first phase, investigating adaptations to the SNS approach,

was covered in the previous chapter. The second phase investigates the BNS approach

within a purely simulated environment without a real-world robot (Section 5.3.1). A

purely simulated environment enables extensive analysis and comparisons between BNS

adaptations. The last phase of the experimental work demonstrates and validates the

viability of the BNS approach on a real-world Hexapod robot. Top performing BNS

adaptations are selected based on the Simulated BNS Experimental observations and

experiments are repeated for validation on the real-world Hexapod robot (Section 5.3.2).

5.3.1 The Simulated BNS Experiments

The parameter settings chosen for the BNS approach remain unchanged compared to

the SNS approach (Table 4.1). However, an additional parameter setting is required for

the sampling strategy. A sampling strategy is the method used for selecting controllers

from the controller population and evaluating on a target robot. Two different sampling

strategies are investigated, namely, the High Fitness and Most Uncertain approaches.

The first uses a High Fitness sampling strategy where a tournament selection of 70

randomly chosen controllers are selected from the controller population and the controller

with the highest fitness is selected. The second method (Most Uncertain) simply selects

the controller with the highest accumulation of uncertainty penalties to be evaluated. The

Most Uncertain sampling strategy can only be applied to adaptations that produce

uncertainty information.

The BNS adaptations consist of changes to the simulator configuration, simulator noise,

resetting procedures and sampling strategy. A total number of 64 unique combinations of

adaptation settings are investigated (Tables 5.1 to 5.4). The configurations are separated

into different tables according to the resetting procedure. An encoded naming scheme is

used to represent each adaptation. The encoded names are given in the first columns of

Tables 5.1 to 5.4.

The first letter of the encoding scheme stands for the robot morphology, namely, the

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 124

Hexapod robot (H: Hexapod). The second letter indicates the simulator configuration (B:

Basic, E: Ensemble, D: Dropout, M: Ensemble Multi-output, S: Basic Multi-output) and

the third letter indicates the resetting procedure (N: None, C: Controller, S: Simulator, B:

Both). The fourth letter indicates if simulator noise is present (N: for including simulator

noise; E: for exclude simulator noise). Finally, the sampling strategy (T: Tournament,

U: Most uncertain) is represented by the last letter of the encoding scheme. Thirty inde-

pendent trial runs of the BNS approach are conducted per adaptation. Each adaptation

produces 30 independent solution controllers to make a total of 1920 solutions over all 64

adaptations.

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Uncertainty

Penalties

Samplng

Strategy

HBNNT Basic None Yes No High Fitness

HBNET Basic None No No High Fitness

HENNT Ensemble None Yes Yes High Fitness

HENNU Ensemble None Yes Yes Most Uncertain

HENEU Ensemble None No Yes Most Uncertain

HENET Ensemble None No Yes High Fitness

HDNNT Dropout None Yes Yes High Fitness

HDNET Dropout None No Yes High Fitness

HDNNU Dropout None Yes Yes Most Uncertain

HDNEU Dropout None No Yes Most Uncertain

HMNEU Ensemble Multi-output None No Yes Most Uncertain

HMNNT Ensemble Multi-output None Yes Yes High Fitness

HMNNU Ensemble Multi-output None Yes Yes Most Uncertain

HMNET Ensemble Multi-output None No Yes High Fitness

HSNNT Basic Multi-output None Yes No High Fitness

HSNET Basic Multi-output None No No High Fitness

Table 5.1: BNS adaptations using no resetting procedure

The procedure for each BNS simulated experimental run is as follows:

1. A specific adaptation is chosen from the configurations listed in Tables 5.1 to 5.4.

2. The BNS approach described in Methodology B is performed.

3. The ER process continues until 100 controllers have been evaluated using the sub-

stitute real-world simulator.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 125

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Uncertainty

Penalties

Sampling

Strategy

HBCNT Basic Controller Yes No High Fitness

HBCET Basic Controller No No High Fitness

HECNT Ensemble Controller Yes Yes High Fitness

HECNU Ensemble Controller Yes Yes Most Uncertain

HECEU Ensemble Controller No Yes Most Uncertain

HECET Ensemble Controller No Yes High Fitness

HDCNT Dropout Controller Yes Yes High Fitness

HDCET Dropout Controller No Yes High Fitness

HDCNU Dropout Controller Yes Yes Most Uncertain

HDCEU Dropout Controller No Yes Most Uncertain

HMCEU Ensemble Multi-output Controller No Yes Most Uncertain

HMCNT Ensemble Multi-output Controller Yes Yes High Fitness

HMCNU Ensemble Multi-output Controller Yes Yes Most Uncertain

HMCET Ensemble Multi-output Controller No Yes High Fitness

HSCNT Basic Multi-output Controller Yes No High Fitness

HSCET Basic Multi-output Controller No No High Fitness

Table 5.2: BNS adaptations using the controller resetting procedure

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Uncertainty

Penalties

Sampling

Strategy

HBSNT Basic Simulator Yes No High Fitness

HBSET Basic Simulator No No High Fitness

HESNT Ensemble Simulator Yes Yes High Fitness

HESNU Ensemble Simulator Yes Yes Most Uncertain

HESEU Ensemble Simulator No Yes Most Uncertain

HESET Ensemble Simulator No Yes High Fitness

HDSNT Dropout Simulator Yes Yes High Fitness

HDSET Dropout Simulator No Yes High Fitness

HDSNU Dropout Simulator Yes Yes Most Uncertain

HDSEU Dropout Simulator No Yes Most Uncertain

HMSEU Ensemble Multi-output Simulator No Yes Most Uncertain

HMSNT Ensemble Multi-output Simulator Yes Yes High Fitness

HMSNU Ensemble Multi-output Simulator Yes Yes Most Uncertain

HMSET Ensemble Multi-output Simulator No Yes High Fitness

HSSNT Basic Multi-output Simulator Yes No High Fitness

HSSET Basic Multi-output Simulator No No High Fitness

Table 5.3: BNS adaptations using the simulator resetting procedure

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 126

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Uncertainty

Penalties

Sampling

Strategy

HBBNT Basic Both Yes No High Fitness

HBBET Basic Both No No High Fitness

HEBNT Ensemble Both Yes Yes High Fitness

HEBNU Ensemble Both Yes Yes Most Uncertain

HEBEU Ensemble Both No Yes Most Uncertain

HEBET Ensemble Both No Yes High Fitness

HDBNT Dropout Both Yes Yes High Fitness

HDBET Dropout Both No Yes High Fitness

HDBNU Dropout Both Yes Yes Most Uncertain

HDBEU Dropout Both No Yes Most Uncertain

HMBEU Ensemble Multi-output Both No Yes Most Uncertain

HMBNT Ensemble Multi-output Both Yes Yes High Fitness

HMBNU Ensemble Multi-output Both Yes Yes Most Uncertain

HMBET Ensemble Multi-output Both No Yes High Fitness

HSBNT Basic Multi-output Both Yes No High Fitness

HSBET Basic Multi-output Both No No High Fitness

Table 5.4: BNS adaptations using the controller and simulator resetting procedures

4. The fittest controller in the final controller population is selected as the solution.

5. For the solution controller, the paths generated by the Static and Dynamic simulators

are collected for analysis.

The time taken to evaluate controllers on a real-world robot and the complexity of

the simulator used affect the design of the simulated BNS experiments. Evaluation times

do not need to be simulated but the number of controller evolution generations iterated

per sampling evaluation needs to be simulated based on real-world estimates. Controller

evolution is carried out throughout the BNS approach and many controller population

generations are iterated per sampling evaluation. The number of controller evolution

generations processed per sampling evaluation is significantly different between simulator

configurations. More complex simulator configurations slow down controller evaluations

and consequentially training times. The number of generations achieved per sampling eval-

uation is given in Table 5.5. The simulated BNS experiments are configured to process

a certain number of generations per selective evaluation. Adaptations using the Basic

simulator configurations iterate through 156 generations for each sampling evaluation.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 127

Adaptations consisting of Ensemble or Dropout simulator configurations have the low-

est number of generations per sampling evaluation at 55 and 74 generations, respectively.

The Basic and Dropout simulator configurations have equally complex architectures,

however, evaluating controllers using the later configuration is significantly more compu-

tationally expensive. Adaptations consisting of an Ensemble Multi-output simulator

configuration iterates 150 generations per sampling evaluation. Adaptations using a Ba-

sic Multi-output simulator configuration achieve the highest number of generations per

sampling evaluation at 280 generations. The total number of controller evolution genera-

tions iterated for the tested adaptations can differ significantly from each other depending

on the simulator configuration used. Certain adaptations have the advantage of a faster

evolution rate compared to others.

Simulator Configuration Number Generations per Sampling Evaluation

Basic 156

Dropout 74

Ensemble 55

Ensemble Multi-output 150

Basic Multi-output 280

Table 5.5: Number of controller evolution generations iterated per sampling controller

evaluation for the BNS approach on the Hexapod robot

Adaptations are studied in terms of their performance, transferability and convergence

properties. The top 10 best performing adaptations are identified and selected for further

investigations.

5.3.2 The BNS Validation Experiments

The BNS validation experiments follow the approach specified in Methodology C. The

experimental procedure for the BNS validation experiments are similar to that of the

Simulated BNS Experimental work (Methodology B), except that a real-world robot is

used instead of a simulation.

Six promising BNS adaptations are identified from the results of the Simulated BNS

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 128

Experimental work and selected for real-world testing. Each selected adaptation is vali-

dated through 5 independent experimental runs of the BNS approach (Methodology C).

The paths generated by the final simulated and real-world evaluations are captured, anal-

ysed and presented in Section 5.6.

The procedure for each BNS validation experimental run is as follows:

1. A specific adaptation is chosen from the configurations listed in Tables 5.1 to 5.4.

2. The BNS approach described in Methodology C is performed.

3. The ER process continues until 100 controllers have been evaluated using the real-

world robot.

4. The fittest controller in the final controller population is selected as the solution.

5. For the solution controller, the paths generated in simulation and reality are collected

for analysis.

5.4 Successful BNS Hexapod Controller

The BNS approach is successfully used to develop effective distance maximising gait con-

trollers for the Hexapod robot. A BNS simulator can be trained to accurately simulate

Hexapod robot behaviours during the ER process. Less behavioural data is collected when

compared to the SNS approach. Some of the BNS adaptations investigated perform and

transfer similarly well compared to the best SNS adaptation tested for the Hexapod robot.

The BNS approach is a robust method for developing gait maximising controllers for the

Hexapod robot. This section demonstrates a single example solution produced by the

BNS approach.

A time-lapse demonstration1 of a solution developed using the BNS approach is pre-

sented in Figure 5.3. The simulated and real-world trajectories are also given in Figure 5.4.

The simulated path generated by the Static Simulator is presented in order to demonstrate

that the simulator developed by the BNS approach is more accurate in comparison.
1https://youtu.be/8ZWUWEjL1Cw

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 129

(a) Start (b) 6 seconds

(c) 12 seconds (d) 18 seconds

(e) 24 seconds (f) 30 seconds

(g) 36 seconds (h) 42 seconds

Figure 5.3: Solution controller demonstration

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 130

−20 0 20 40 60 80 100
x position (cm)

−60

−40

−20

0

20

40

60

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

Figure 5.4: Real-world and simulated trajectories

The time-lapse is captured such that frames are 6 seconds apart. The starting position

(Figure 5.3a) begins with all legs making contact with the ground. The robot reaches

downwards in the first 6 seconds (Figure 5.3b), followed by stepping towards the right

(Figure 5.3c). The robot steps moves towards the bottom-right in order to reach the

position presented in Figure 5.3d after which the robot side shifts further right (Figure

5.3e). The robot reaches downwards (Figure 5.3f) and repositions its legs in order to reach

upward (Figure 5.3g). Lastly, the robot adjusts to its initial starting stance in Figure 5.3h.

5.5 The Simulated BNS Experiment Results

The BNS adaptations in prior work used the Basic simulator configuration with simulator

noise, no resetting of any kind and High Fitness sampling. Results demonstrate that many

novel variations on the BNS approach perform significantly better than the baseline BNS

approach. High level performance comparisons between adaptation settings are covered in

Section 5.5.1. Differences between the transferability distributions of different adaptation

settings are presented in Section 5.5.2. The convergence properties over the lifetime of the

BNS approach for the different resetting procedures are studied in Section 5.5.3.

Grouping adaptations according to the simulator configuration, resetting procedures,

simulator noise or sampling strategy may not be necessarily give good indications of the

best adaptations settings to use. For example, the Ensemble simulator configuration

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 131

may not perform well in aggregate over other adaptation settings but could show excellent

performance for specific adaptation settings. In order to account for such a scenario, the

best 10 adaptations are studied in Section 5.5.4. Lastly, a summary of the findings is given

in Section 5.5.5.

5.5.1 Overall Comparisons

This section presents the performances of adaptation settings discussed in Section 3.7.

Adaptations investigated include the Simulator Configurations (Section 5.5.1.1), Resetting

Procedures (Section 5.5.1.2), Simulator Noise (Section 5.5.1.3) and Sampling Strategies

(Section 5.5.1.4). Every possible adaptation setting is grouped over all other adaptation

settings and the performance distributions studied. The performance properties of adap-

tation settings are identified and discussed. An overall summary of the comparison work

is discussed in Section 5.5.1.5.

5.5.1.1 Simulator Configurations

The performance distributions for the tested simulator configurations are illustrated as

standard box-plots in Figure 5.5. Summary statistics are given in Table 5.6. All statistical

comparisons use a significance level of 5%. The Kruskal-Wallis H test is used to determine

whether the performance distributions of the tested simulator configurations originate

from the same distribution. The performance distributions for the tested the simulator

configurations are significantly different from each other, with a p-value of 1.35× 10−52.

A post hoc comparison is performed using pairwise Mann-Whitney U tests. The p-values

obtained are given in Table 5.7.

The Basic simulator configuration is considered the baseline configuration against

which all other configurations can be measured. The Ensemble Multi-output simu-

lator configuration performs significantly better than all other simulator configurations.

The second best performer is the Basic Multi-output simulator configuration. A Mann-

Whitney U test indicates a significant performance difference between the Ensemble

Multi-output and Basic Multi-output simulator configurations, with a p-value of

0.0132. The Ensemble Multi-output simulator configuration’s performance IQR is

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 132

between 15.8 and 36.1 centimetres. The performance IQR for the Basic Multi-output

simulator configuration is between 13.1 and 32.3 centimetres.

The overall performance distribution of the Basic simulator configuration is statisti-

cally equal to the Ensemble and Basic Multi-output simulator configurations. The

performance IQR for the Basic simulator configuration is between 12.0 and 29.6 centime-

tres while the Ensemble configuration is between 10.5 and 30.4 centimetres. The use of

either ensembles or multi-output SNNs alone does not significantly improve overall perfor-

mance outcomes when compared to the baseline. The Dropout simulator configuration

performs significantly worse than all other configurations with an IQR between 6.9 and

17.4 centimetres.

The performance distributions are skewed towards the right where average perfor-

mances are higher than median performances. The performance distribution for the

Dropout simulator configuration is less skewed than other configurations which is prob-

ably due to poor performance and low standard deviation.

Basic Ensemble Dropout Ensemble
Multi-output

Basic
Multi-output

−10

0

10

20

30

40

50

60

70

P
er
fo
rm

an
ce

(c
m
)

Figure 5.5: Performance comparisons between simulator configurations

5.5.1.2 Resetting Procedures

Performance distributions for the tested resetting procedures are illustrated in Figure 5.6

and summary statistics are given in Table 5.8. Similar to the simulator configurations, the

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 133

Mean Median Q1 Q3 Std. Dev.

Basic 23.4 21.0 12.0 29.6 16.1

Ensemble 22.4 18.5 10.5 30.4 16.7

Dropout 13.4 12.0 6.9 17.4 10.1

Ensemble Multi-output 27.4 23.8 15.8 36.1 16.9

Basic Multi-output 24.8 21.2 13.1 32.3 17.4

Table 5.6: Summary statistics for the simulator configuration performance distributions

Basic Ensemble Dropout
Ensemble

Multi-output

Ensemble 1.94 × 10−1 -

Dropout 1.52 × 10−19 2.12 × 10−20 -

Ensemble Multi-output 4.07 × 10−4 1.05 × 10−8 1.13 × 10−50 -

Basic Multi-output 3.59 × 10−1 2.54 × 10−2 4.26 × 10−23 1.32 × 10−2

Table 5.7: The p-values of post hoc analysis comparing performance distributions between

simulator configurations

resetting procedure performance distributions are skewed towards the right. Performance

distributions are skewed towards the right if the mean performance is greater than the

median. Most adaptations within each distribution perform poorly while some adaptations

perform disproportionately well.

The Kruskal-Wallis H test is used to determine whether the performance distributions

of the tested resetting procedures originate from the same distribution. The performance

distributions for the tested resetting procedures are significantly different from one another,

with a p-value of 1.76× 10−113. A post hoc pairwise comparison is performed using Mann-

Whitney U tests. The p-values obtained are given in Table 5.9. All resetting procedures

have significantly different performance distributions when compared to each other.

The no resetting procedure is considered the baseline against which improvement are

measured. Results demonstrate that the no resetting procedure has the worst overall per-

formance distribution compared to the newly proposed resetting procedures. Periodically

resetting the simulator performs significantly better than all other tested resetting proce-

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 134

None Controller Simulator Both
−20

0

20

40

60

80

P
er
fo
rm

an
ce

(c
m
)

Figure 5.6: Performance comparison between resetting procedures

dures. Results indicate that periodically resetting the simulator during the ER process

significantly increases the likelihood of discovering good controller solutions. The lower

quartile of the simulator resetting procedure is higher than the upper quartiles of the no

resetting and controller resetting procedures.

SNN training is likely to stop early if the validation dataset MSE shows no improvement

after 10 iterations of the Adam training algorithm. Premature stopping would result in

the SNNs not learning the newly acquired behavioural patterns. The simulator may then

become more specialised at simulating solutions obtained during the early stages of the

BNS approach. Periodically resetting the simulator and completely retraining the SNNs

likely helps avoids bias in the prediction models.

The second best procedure resets both the controllers and simulator. Resetting both

the controller and simulator does not perform as well as only resetting the simulator.

Periodically resetting the simulator has a greater ability to improved the likely performance

outcomes of solutions than resetting controllers.

Periodically resetting the controller population helps the ER process to escape sub-

optimal convergence in fitness. Periodically resetting controllers improvements the likely

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 135

Mean Median Q1 Q3 Standard Deviation

None 14.0 12.2 7.1 18.7 11.0

Controller 15.2 14.2 8.6 20.4 9.2

Simulator 34.7 31.8 22.8 44.6 18.1

Both 23.4 20.6 12.3 31.0 15.7

Table 5.8: Summary statistics for the resetting procedure performance distributions

None Controller Simulator

Controller 1.94× 10−3 -

Simulator 5.18× 10−84 4.29× 10−78 -

Both 6.06× 10−28 1.22× 10−18 1.38× 10−27

Table 5.9: The p-values from post hoc analysis comparing performance distributions be-

tween resetting procedures

performance outcomes compared to the no resetting procedure. The IQR of the controller

resetting procedure is between 8.6 and 20.4 centimetres while the no resetting procedure

is slightly lower being between 7.1 and 18.7 centimetres. After controller resets the ER

process can better traverse the updated fitness landscape. However, completely resetting

the controller population means that all known good solutions are lost and need to be

rediscovered which can negatively affect performance.

If simulator is reset, it is likely that the controller search space might change signifi-

cantly. Any solution convergence in the controller population might be disturbed due to

simulator resets. The controller population is less impacted by simulator resets during

the later stages of the BNS approach. Periodically resetting the simulator has the highest

observed IQR between 22.8 and 44.6 centimetres while resetting both controllers and the

simulator is only between 12.3 and 31.0 centimetres.

5.5.1.3 Simulator Noise

Performance distributions for the inclusion or exclusion of simulator noise are illustrated

in Figure 5.7 and summary statistics given in Table 5.10. A comparison between per-

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 136

formance distributions for the inclusion or exclusion of simulator noise is tested using a

Mann-Whitney U test. A p-value of 4.42× 10−12 is obtained. Not injecting noise into

the simulator performs significantly better compared to when simulator noise is included.

Adding simulator noise likely results in many random changes to the fitness landscape dur-

ing the ER process. Many random changes in the fitness landscape may be impairing the

ability of the ER process to exploit known good solutions. The performance distributions

are skewed towards the right where a subset of adaptations perform disproportionately

better than others. The IQR for not injecting noise into the simulator is between 12.0

and 32.3 centimetres. The IQR for adaptations that include simulator noise is between

9.6 and 25.7 centimetres.

Noise No Noise

0

20

40

60

P
er
fo
rm

an
ce

(c
m
)

Figure 5.7: Performance comparison for simulator noise

Has Simulator Noise Mean Median Q1 Q3 Standard Deviation

Noiseless 24.4 21.1 12.0 32.3 17.5

Noise 19.2 15.9 9.6 25.7 14.4

Table 5.10: Summary statistics for the simulator noise performance distributions

5.5.1.4 Sampling Strategies

Performance distributions for the tested sampling strategies are illustrated in Figure 5.8

and summary statistics are given in Table 5.11. Evaluating the most uncertain controller

for every sampling evaluation does not perform significantly better compared to a High

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 137

Fitness sampling strategy. The High Fitness sampling strategy has a slightly better mean,

median and IQR compared to selectively evaluating the most uncertain controllers. A com-

parison between the performance distributions of the tested sampling strategies achieves a

p-value of 0.24 for the Mann-Whitney U test. The tested sampling strategy performance

distributions are not significantly different from each other.

Most Uncertain High Fitness

0

20

40

60

P
er
fo
rm

an
ce

(c
m
)

Figure 5.8: Performance comparisons of sampling strategies

Mean Median Q1 Q3 Standard Deviation

Most Uncertain 21.4 17.1 10.9 28.8 16.1

High Fitness 22.1 18.6 10.4 29.6 16.3

Table 5.11: Summary statistics of sampling strategy performance distributions

5.5.1.5 Summary

The most influential adaptation settings for improving the likely performance of adap-

tations is the resetting procedure used. The simulator resetting procedure is the most

beneficial adaptation setting tested for improving performance outcomes of solution con-

trollers developed for the Hexapod robot. The simulator configuration is the second most

important adaptation setting for improving the likely performance outcomes of solutions.

The Ensemble Multi-output simulator configuration is identified as the best configu-

ration for improving overall performance outcomes. Not including simulator noise during

controller evolution is the third best technique for improving the overall performance

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 138

outcomes. The tested sampling strategies do not greatly affect the likely performance

outcomes of solutions.

5.5.2 Transferability

This section presents the transferability of adaptation settings discussed in Section 3.7.

Adaptation settings investigated include the Simulator Configurations (Section 5.5.2.1),

Resetting Procedures (Section 5.5.2.2), Simulator Noise (Section 5.5.2.3) and Sampling

Strategies (Section 5.5.2.4). Every possible adaptation setting is grouped over all other

adaptation settings and the transferability distributions studied. An overall summary of

the comparison work is discussed in Section 5.5.2.5.

5.5.2.1 Simulator Configurations

The transferability distributions for the tested simulator configurations are illustrated in

Figure 5.9 and summary statistics are given in Table 5.12. Lower transferability values

indicate a closer correspondence between simulation and reality. The Kruskal-Wallis H

test is used to determine whether the transferability distributions for the tested simulator

configurations originate from the same distribution. The p-value for the Kruskal-Wallis

H test is 6.94× 10−66 which is highly significant. The transferability distributions of the

tested simulator configurations are significantly different from each other.

Mean Median Q1 Q3 Std. Dev.

Basic 2.34 1.32 0.71 2.82 2.66

Dropout 4.74 3.04 1.77 5.37 6.29

Ensemble 2.37 1.25 0.54 2.68 4.47

Ensemble Multi-output 1.70 0.96 0.49 1.89 2.96

Basic Multi-output 2.40 1.56 0.59 2.82 4.05

Table 5.12: Transferability statistics for the simulator configurations

A post hoc comparison between simulator configurations is performed using pairwise

Mann-Whitney U tests. The p-values for the pairwise comparisons are given in Table 5.13.

The Basic, Ensemble and Basic Multi-output simulator configurations do not have

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 139

Basic Dropout Ensemble Ensemble
Multi-output

Basic
Multi-output

0

1

2

3

4

5

6

7

8

9

10

11

T
ra
n
sf
er
ab
ili
ty

Figure 5.9: Transferability distributions for each simulator configurations

significantly different transferability distributions compared to each other. The Basic

simulator configuration has an IQR between 0.71 and 2.82 while the Ensemble simulator

configuration is between 0.54 and 2.68. The Ensemble simulator configuration transfer-

ability distribution IQR is slightly better than the Basic simulator configuration, however,

a comparison between the two yields a p-value of 0.147. There is insufficient evidence to

conclude that solutions related to the Ensemble simulator configuration have significantly

better transferability than the Basic simulator configuration.

The Ensemble Multi-output simulator configuration has the best transferability

Basic Dropout Ensemble E. Multi-output

Dropout 1.93× 10−21 -

Ensemble 1.47× 10−1 2.44× 10−38 -

E. Multi-output 1.41× 10−5 6.03× 10−62 7.61× 10−4 -

Basic Multi-output 8.68× 10−1 2.56× 10−21 1.78× 10−1 3.33× 10−5

Table 5.13: Transferability distribution p-values for comparisons between simulator con-

figurations

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 140

distribution compared to all other configurations. The IQR for the Ensemble Multi-

output simulator configuration is between 0.49 and 1.89. The second best transferability

outcome is found with the Ensemble simulator configuration.

The Dropout simulator configuration demonstrated a significantly worse transferabil-

ity distribution compared to all other configurations. The median transferability for the

Dropout simulator configuration is 3.04 which is greater than the upper quartile of all

other simulator configurations. A partial reason for the Dropout simulator configuration

performing so poorly is due to the significantly lower real-world distances travelled by

solutions. The real-world distance travelled by the robot is an important component of

the transferability metric.

An ensemble approach alone does not significantly improve the transferability of so-

lutions compared to a non-ensemble approach. Similarly, the use of multi-outputs SNNs

alone does not significantly improve the likely transferability of solutions. However, ap-

plying multi-output SNNs within an ensemble configuration (Ensemble Multi-output)

results in a large improvement in the likely transferability of solutions.

The transferability distributions for the tested simulator configurations are heavily

skewed towards the right. The mean transferability for each simulator configuration is

higher than its median. The skewness in the transferability distributions is due to subsets

of adaptations with disproportionately bad transferability profiles.

5.5.2.2 Resetting Procedures

The transferability distributions of the different resetting procedures are illustrated in

Figure 5.10 and summary statistics are given in Table 5.14. The Kruskal-Wallis H test

is used to determine if the transferability distributions for the different resetting proce-

dures originate from the same distribution. The p-value of the Kruskal-Wallis H test is

1.06× 10−146. The transferability distributions for the tested resetting procedures are

significantly different from each other.

Post hoc comparison tests are performed between the resetting procedure transfer-

ability distributions. The p-values of the Mann-Whitney U pairwise comparison tests are

given in Table 5.15. All p-values obtained from the comparisons are less than the 5%

significance level. This indicates that there is a significant difference in the transferability

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 141

None Controller Simulator Both
0

1

2

3

4

5

6

7

8

9

10

11

T
ra
n
sf
er
ab
il
it
y

Figure 5.10: Transferability distributions for each resetting procedure

distributions between all resetting procedures.

No periodic resetting of controllers or the simulator results in a significantly worse

transferability distribution compared to the newly proposed resetting procedures. The

IQR for the no resetting procedure is between 1.76 and 5.34. Periodically resetting con-

trollers has better transferability compared to the no resetting procedure. The IQR for

the controller resetting transferability distribution is between 1.48 and 4.03.

The mean transferability for each resetting procedure is higher than its median trans-

ferability. However, the simulator resetting procedure has the closest gap between the

mean and median transferability statistics.

Results indicate that the best proposal for improving a controller’s transferability is the

simulator resetting procedure. Periodically resetting the simulator and retraining likely

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 142

Mean Median Q1 Q3 Standard Deviation

None 4.75 2.99 1.76 5.34 6.60

Controller 3.63 2.43 1.48 4.03 4.78

Simulator 0.96 0.62 0.33 1.04 1.37

Both 1.84 1.09 0.51 2.11 2.87

Table 5.14: Transferability statistics for the resetting procedures

None Controller Simulator

Controller 6.77× 10−5 -

Simulator 1.49× 10−100 2.71× 10−93 -

Both 1.73× 10−51 1.54× 10−38 2.79× 10−18

Table 5.15: Transferability distribution p-values for comparisons between resetting proce-

dures

helps eliminate modelling bias towards robot behaviours encountered during the early

stages of the BNS process. The simulator resetting procedure has the best transferability

distribution with an IQR between 0.33 and 1.04. Controller evolution is less likely to

exploit weaknesses in the simulators due to frequent resets. Simulator weaknesses before

and after resets are likely to be different.

Periodically resetting the controllers and simulator has a significantly better trans-

ferability distribution compared to not resetting at all or simply resetting the controller

population. The IQR for resetting both is between 0.51 and 2.11. The ER process appears

to be unable to recover fully from frequent controller resets.

5.5.2.3 Simulator Noise

The transferability distributions for adaptations including or excluding simulator noise

are illustrated in Figure 5.11 and summary statistics are given in Table 5.16. The median

transferability achieved when injecting noise into the simulator is 1.76 with an IQR between

0.81 and 3.32. The noiseless simulator approach has a median transferability of 1.35 and

an IQR between 0.61 and 2.98. The noiseless simulator approach has a significantly better

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 143

Mean Median Q1 Q3 Standard Deviation

Noiseless 2.56 1.35 0.61 2.98 4.10

Noise 3.03 1.76 0.81 3.32 5.07

Table 5.16: Transferability statistics for the simulator noise

transferability distribution. The p-value for the Mann-Whitney U test comparing the

inclusion or exclusion of simulator noise is 3.71× 10−4. The transferability distribution

for including simulator noise has a standard deviation of 5.07 while the transferability

distribution of the noiseless simulator configuration has a standard deviation of 4.10.

Noise No Noise
0

1

2

3

4

5

6

7

8

T
ra
n
sf
er
ab
ili
ty

Figure 5.11: Transferability distributions between simulator noise approaches

5.5.2.4 Sampling Strategies

Transferability distributions for the sampling strategies tested are illustrated in Figure 5.12

and summary statistics are given in Table 5.17. The observed mean, median, IQR and

standard deviations of the tested sampling strategies are relatively close to one another.

The High Fitness sampling strategy has a slightly better transferability than selecting

the most uncertain controllers. The p-value for the Mann-Whitney U test comparing the

transferability distributions of the sampling strategies is 0.568. The sampling strategies

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 144

tested do not significantly affect the likely transferability outcomes of solutions.

The median transferability for the High Fitness sampling strategy is 1.55 with an

IQR between 0.67 and 3.11. When only sampling the most uncertain controller (Most

Uncertain sampling strategy), the median transferability is 1.63 with an IQR between

0.72 and 3.26. The mean transferability for both sampling strategies is higher than the

median. The transferability distributions are highly skewed towards poor transferability

outcomes.

High Fitness Most Uncertain
0

1

2

3

4

5

6

7

8

T
ra
n
sf
er
ab
il
it
y

Figure 5.12: Transferability distributions between sampling strategies

Mean Median Q1 Q3 Standard Deviation

High Fitness 2.78 1.55 0.67 3.11 4.56

Most Uncertain 2.82 1.63 0.72 3.26 4.72

Table 5.17: Transferability statistics for sampling strategies

5.5.2.5 Summary

The high level transferability properties of tested adaptations settings are now summarised.

Periodically resetting the simulator during the BNS approach improves the likely trans-

ferability of solutions more than any other adaptation setting tested. The Ensemble

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 145

Multi-output simulator configuration is the second most influential adaptations setting

tested with regards to improving the transferability of solutions. Solution controllers pro-

duced from noiseless adaptations are more likely to have better transferability outcomes

compared to adaptations with noise. The tested sampling strategies do not affect the

likely transferability of solutions.

5.5.3 Convergence Properties

In order to study the performance properties of the tested resetting procedures over time,

the median performance over time for the different resetting procedures is given in Figure

5.13. The performance of the fittest controller after every sampling controller evaluation

is recorded for all experimental runs. Controllers are evaluated by the Static SNNs and

the developing Dynamic SNNs which produces “real-world” and simulated trajectories, re-

spectively. The median performance of the fittest controller after each sampling evaluation

is calculated for each resetting procedure.

Performances achieved during the early stages of the BNS approach are poor but grad-

ually improve over time. The median performance of the different resetting procedures

appear similar up to the twentieth evaluation, after which median performances signifi-

cantly diverge from each other. The no resetting procedure is considered the baseline.

The simulator resetting procedure, reset the simulator every 10 sampling controller

evaluations. The controller resetting procedure, resets the controller population every 10

sampling controller evaluations. The last proposed resetting procedure is when both the

controller population and simulator are reset every 10 sampling controller evaluations.

The no resetting procedure has a consistent but relatively slow upward trend in perfor-

mance over time. The improvement in performance over time is relatively small compared

to procedures that include simulator resetting. After the 60th evaluation, the no resetting

procedure appears to show little improvement.

The simulator resetting procedure performs significantly better than all other proce-

dures for the majority of the timeline. Past the 20th evaluation, the simulator resetting

procedure almost always outperforms the other procedures. The second best resetting

procedure periodically reset both the controllers and simulator.

If the controller population is periodically reset, performance drastically drops every

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 146

20 40 60 80 100
Number sampling evaluations

0

10

20

30

40

P
er
fo
rm

an
ce

No resetting

Reset Simulator

Reset Controller

Reset Both

Figure 5.13: Performance over time for the best performer of each resetting procedure

10 sampling controller evaluations, followed by a recovery period. The controller reset-

ting procedure results in the optimisation process spending a significant amount of time

recovering from controller resets.

For the resetting procedure that resets both the simulator and controllers, swings in

performance are significantly greater than all other procedures. As with the controller

resetting procedure, it is likely that controllers are selectively evaluated before the ER

process has converged. Behavioural data collected directly after a controller population

reset is significantly less relevant to converged solutions compared to behavioural data

collected before a controller population reset. Due to controller population resetting, a

larger portion of the behavioural data is less similar to converged solutions, negatively

affecting simulator specialisation. Another factor is that the controller population may

often reset before convergence is achieved. Newly found convergence points could also

be significantly different to the previous convergence point and the simulator would be

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 147

required to learn new behaviours.

5.5.4 Top Performers

The 64 tested adaptations are ordered in descending order of performance and the top 10

best performers are discussed in this section. Performance and transferability statistics

of each tested adaptation is given in Tables B.9 and B.10, respectively. Performances are

ordered based on the results of the Mann-Whitney U pairwise comparison tests. The best

performing adaptation is identified as the HESEU adaptation. Tested adaptations are

ordered based on the p-value obtained from the Mann-Whitney U test performed against

the best adaptation.

The performance distributions of the top 10 best performing BNS adaptations tested

are summarised in Table 5.18 and illustrated in Figure 5.14. The mean performances

for the top 10 BNS adaptations are between 36.4 and 47.9 centimetres while the median

performances are between 32.9 and 42.6 centimetres. The HESEU and HESET adapta-

tions both use an Ensemble simulator configuration without simulator noise and use the

simulator resetting procedure. The only difference between these two adaptations is that

the HESEU adaptation uses the Most Uncertain sampling strategy while the HESET

adaptation uses the High Fitness sampling strategy.

The 3rd up to 7th top adaptations all use the Ensemble Multi-output simulator

configuration. The 8rd best adaptation, HBSET, uses the Basic simulator configuration

without simulator noise and the simulator resetting procedure. The last two top adap-

tations make use of the Basic Multi-output simulator configuration without simulator

noise. The HSBET adaptation periodically resets both the controllers and simulator.

The HSSET adaptation uses the Basic Multi-output simulator configuration without

simulator noise and periodic simulator resetting.

The 1st and 2nd best adaptations are essentially the same adaptation except for the

sampling strategy used. Similarly, the 3rd and 4th top adaptations only differ in terms

of the sampling strategy chosen, and so does the 5th and 6th top adaptations. These

groupings indicate that similar adaptations perform similarly well. Contrary to the over-

all comparison results, the Ensemble simulator configurations perform better than the

Ensemble Multi-output simulator configurations.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 148

HESEU HESET HMSET HMSEU HMBEU HMBET HMSNU HBSET HSBET HSSET
0

20

40

60

80

100

P
er
fo
rm

an
ce

Figure 5.14: Performance distributions of the top 10 adaptations for the BNS approach

The first seven top adaptations use an ensemble approach. Half of the top adaptations

use the Ensemble Multi-output simulator configuration. Only one adaptation uses

the Basic simulator configuration. Two top adaptations have a Basic Multi-output

simulator configuration.

All top 10 adaptations reset the simulator periodically. Only three of the top adapta-

tion reset both the simulator and controller population. Resetting the simulator appears

to be an important method for improving the performance of the BNS approach.

Nine of the top 10 best performing adaptations do not include simulator noise. Adding

noise to the simulator appears to negatively affect the likely performance of solutions. The

tested sampling strategies are almost evenly represented amongst the top adaptations and

appear to have little significance.

The top adaptations are compared to one another using pairwise Mann-Whitney U

tests. The p-values are given in Table 5.19. If the best performing adaptation (HESEU) is

compared to all other adaptations, only HESET, HMSET, HMSEU and HMBEU are found

to have a statistically equivalently performance distribution to the HESEU adaptation.

The second best performer (HESET) has a significantly better performance distribution

compared to the HSBET and HSSET adaptations. If the top two adaptations are excluded,

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 149

Mean Median Q1 Q3 Std. Dev.

HESEU 47.9 42.0 35.3 61.2 17.1

HESET 45.9 41.6 34.0 59.7 18.0

HMSET 43.1 40.0 32.1 52.5 13.5

HMSEU 42.7 42.6 30.2 49.7 19.6

HMBEU 40.7 36.7 28.4 52.9 17.5

HMBET 37.0 37.3 25.4 45.0 15.1

HMSNU 36.8 35.7 27.4 43.6 17.3

HBSET 37.4 37.3 24.8 47.0 16.5

HSBET 36.4 35.9 23.7 40.1 19.0

HSSET 37.4 32.9 20.8 42.6 23.2

Table 5.18: Performance summary of the top 10 adaptations for the BNS approach

the remaining adaptations have statistically equivalent performance distributions to each

other.

The transferability distributions for the best BNS adaptations are illustrated in Figure

5.15 and summarised in Table 5.20. The p-values for the Mann-Whitney U pairwise

comparisons are given in Table 5.21. Amongst the top performers, the HESEU and HESET

adaptations achieved the lowest median and IQR for their transferability distributions.

The HESEU and HESET adaptations have significantly better transferability distributions

compared to the HMBET, HBSET, HSBET and HSSET adaptations.

Ideal adaptations should have a low transferability metrics while also possessing high

performance metrics. The HESEU adaptation has the best performance distribution while

also demonstrating one of the best transferability distributions. The standard deviation

of the transferability distributions is an additional factor to consider. A low standard

deviation for the transferability distribution indicates that an adaptation is relatively

consistent in terms of the reality gap between simulation and reality.

The HESEU adaptation achieved the lowest standard deviation amongst the best per-

forming adaptations. A Levene’s statistical test for assessing equality of variance is used

to compare the variances between the HESEU adaptation and the other best performing

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 150

H
E

SE
U

H
E

SE
T

H
M

SE
T

H
M

SE
U

H
M

B
E

U
H

M
B

E
T

H
M

SN
U

H
B

SE
T

H
SB

E
T

H
E

SE
T

8.
07

×
10
−

1
-

H
M

SE
T

2.
90

×
10
−

1
5.

59
×

10
−

1
-

H
M

SE
U

2.
64

×
10
−

1
5.

40
×

10
−

1
7.

84
×

10
−

1
-

H
M

B
E

U
8.

77
×

10
−

2
2.

40
×

10
−

1
4.

04
×

10
−

1
6.

84
×

10
−

1
-

H
M

B
E

T
4.

51
×

10
−

2
6.

15
×

10
−

2
1.

49
×

10
−

1
2.

52
×

10
−

1
6.

20
×

10
−

1
-

H
M

SN
U

3.
03

×
10
−

2
5.

94
×

10
−

2
1.

02
×

10
−

1
2.

23
×

10
−

1
4.

46
×

10
−

1
8.

88
×

10
−

1
-

H
B

SE
T

2.
81

×
10
−

2
9.

05
×

10
−

2
1.

19
×

10
−

1
2.

64
×

10
−

1
5.

69
×

10
−

1
7.

84
×

10
−

1
8.

53
×

10
−

1
-

H
SB

E
T

2.
32

×
10
−

2
2.

92
×

10
−

2
7.

98
×

10
−

2
1.

45
×

10
−

1
3.

40
×

10
−

1
5.

30
×

10
−

1
6.

73
×

10
−

1
4.

92
×

10
−

1
-

H
SS

E
T

1.
84

×
10
−

2
3.

39
×

10
−

2
5.

94
×

10
−

2
9.

63
×

10
−

2
2.

64
×

10
−

1
5.

69
×

10
−

1
6.

84
×

10
−

1
4.

92
×

10
−

1
9.

59
×

10
−

1

Ta
bl

e
5.

19
:

Pe
rf

or
m

an
ce

co
m

pa
ris

on
s

be
tw

ee
n

th
e

to
p

10
ad

ap
ta

tio
ns

fo
r

th
e

B
N

S
ap

pr
oa

ch

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 151

HESEU HESET HMSET HMSEU HMBEU HMBET HMSNU HBSET HSBET HSSET
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T
ra
n
sf
er
ab
ili
ty

Figure 5.15: Transferability distributions for the top 10 BNS adaptations

adaptations. The p-values for the Levene’s statistical test are given in Table 5.22. The

variance between the HESEU adaptation and the HESET, HMSET, HMSEU, HMBEU,

HMBET and HMSNU adaptations have statistically equal variances. The HBSET, HS-

BET and HSSET adaptations have significantly higher variances compared to the HESEU

adaptation. The top adaptations configured in non-ensemble configurations have signifi-

cantly higher variances compared to the HESEU adaptation.

5.5.5 Summary

This section summarises results obtained from the Simulated BNS Experimental work.

The overall performance and transferability capabilities of the tested adaptation settings

are studied and compared. When measuring the median performance and transferability

of all simulator configurations, the Ensemble Multi-output and Basic Multi-output

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 152

Mean Median Q1 Q3 Std. Dev.

HESEU 0.39 0.36 0.18 0.55 0.24

HESET 0.40 0.38 0.17 0.53 0.27

HMSET 0.50 0.44 0.31 0.65 0.28

HMSEU 0.96 0.49 0.25 0.77 2.35

HMBEU 0.61 0.47 0.32 0.75 0.53

HMBET 0.65 0.47 0.32 0.94 0.48

HMSNU 0.63 0.51 0.21 0.75 0.70

HBSET 0.70 0.54 0.24 0.94 0.65

HSBET 0.87 0.54 0.38 1.15 0.79

HSSET 0.97 0.62 0.36 1.35 0.91

Table 5.20: The transferability statistics for the top 10 adaptations for the BNS approach

configurations performed best overall while the Ensemble Multi-output and Ensemble

configurations had the best overall transferability. Multi-output SNNs obtained the best

performance properties while configuring SNNs into ensembles has the best transferability

profiles.

Periodically resetting the simulator greatly improves both the likely performance and

transferability of solution controllers. Not adding noise to controller evaluations during

controller evolution improved both the performance and transferability of controllers com-

pared to simulator configurations with noise. The sampling strategies do not significantly

affect the likely performance or transferability profiles of adaptations.

The top performing adaptations from the Simulated BNS Experimental results are

selected and studied. Many of the best adaptations consisted of either Ensemble or

Ensemble Multi-output simulator configurations without noise. Most of the top adap-

tations use the simulator resetting procedure. Almost all the top performing adaptations

make use of simulator noise.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 153

H
E

SE
U

H
E

SE
T

H
M

SE
T

H
M

SE
U

H
M

B
E

U
H

M
B

E
T

H
M

SN
U

H
B

SE
T

H
SB

E
T

H
E

SE
T

9.
12

×
10
−

1
-

H
M

SE
T

1.
22

×
10
−

1
1.

41
×

10
−

1
-

H
M

SE
U

9.
05

×
10
−

2
9.

93
×

10
−

2
7.

51
×

10
−

1
-

H
M

B
E

U
9.

93
×

10
−

2
1.

02
×

10
−

1
8.

88
×

10
−

1
9.

23
×

10
−

1
-

H
M

B
E

T
3.

64
×

10
−

2
2.

71
×

10
−

2
5.

30
×

10
−

1
5.

79
×

10
−

1
6.

10
×

10
−

1
-

H
M

SN
U

2.
58

×
10
−

1
2.

84
×

10
−

1
9.

12
×

10
−

1
6.

52
×

10
−

1
6.

63
×

10
−

1
4.

38
×

10
−

1
-

H
B

SE
T

3.
51

×
10
−

2
4.

36
×

10
−

2
4.

83
×

10
−

1
7.

17
×

10
−

1
6.

95
×

10
−

1
9.

82
×

10
−

1
4.

46
×

10
−

1
-

H
SB

E
T

1.
95

×
10
−

3
1.

95
×

10
−

3
1.

05
×

10
−

1
1.

19
×

10
−

1
1.

76
×

10
−

1
2.

64
×

10
−

1
1.

02
×

10
−

1
2.

97
×

10
−

1
-

H
SS

E
T

9.
52

×
10
−

4
2.

16
×

10
−

3
4.

84
×

10
−

2
7.

98
×

10
−

2
8.

50
×

10
−

2
1.

91
×

10
−

1
5.

75
×

10
−

2
1.

81
×

10
−

1
7.

84
×

10
−

1

Ta
bl

e
5.

21
:

Tr
an

sf
er

ab
ili

ty
co

m
pa

ris
on

s
be

tw
ee

n
th

e
to

p
10

ad
ap

ta
tio

ns
fo

r
th

e
B

N
S

ap
pr

oa
ch

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 154

HESEU

HESET 9.35× 10−1

HMSET 7.29× 10−1

HMSEU 2.30× 10−1

HMBEU 9.34× 10−2

HMBET 5.78× 10−2

HMSNU 5.97× 10−2

HBSET 2.42× 10−2

HSBET 3.75× 10−2

HSSET 6.28× 10−3

Table 5.22: The p-values for transferability variance comparisons between the HESEU

adaptation and the other top adaptations for the BNS approach

5.6 The BNS Validation Experiment Results

Results presented on the BNS approach so far have been completely simulated and have

not yet been validated on a real-world Hexapod robot. Promising BNS adaptations discov-

ered through the simulated experimental work are selected for real-world viability tests.

Three of the top performing adaptations are selected based on the Simulated BNS Exper-

imental results. The chosen adaptations are HESEU, HMSEU and HBSET. The HESEU

adaptation is the best performing adaptation in the Simulated BNS Experimental results.

The second best performing adaptation in the Simulated BNS Experimental results is

the HESET adaptation but this adaptation is essentially the HESEU adaptation using a

different sampling strategy. The third and fourth best performing adaptations (HMSET,

HMSEU) in the simulated results are essentially equivalent adaptations but with different

sampling strategies. No significant difference between the tested sampling strategies was

found in the simulated results. The HMSEU adaptation is chosen for validation purposes.

The next best adaptation from the simulated results that consisted of a different simulator

configuration from the HESEU and HMSEU adaptations is the HBSET adaptation.

A limited number of real-world experiments are possible and the validation adaptations

are carefully chosen based on better likely performance/transferability outcomes and in

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 155

order to validate a diverse set of adaptation settings. The chosen adaptations all use the

simulator resetting procedure without noise. All chosen adaptations purposely use the sim-

ulator resetting procedure due to its excellent performance and transferability properties

observed in the Simulated BNS Experimental results. Each adaptation utilises a differ-

ent simulator configuration in order to validate many different simulator configurations.

The HESEU and HMSEU adaptations use the Ensemble and Ensemble Multi-output

simulator configurations, respectively. The HBSET adaptation uses a traditional Basic

simulator configuration.

According to the ER literature, the addition of simulator noise should improve the

likely transferability of solutions and result in better likely performance outcomes for

solutions. However, simulated results indicated that, at least for the given robot task, not

adding noise improved both the performance and transferability outcomes compared to

adaptations that include noise. In order to validate that this is not the result of problems

in the methodology chosen for the simulated experimental work (simulated inaccuracies),

adaptations with and without simulator noise are validated.

Based on the chosen adaptations (HESEU, HMSEU and HBSET), the correspond-

ing adaptations with simulator noise are also selected for real-world testing. The noise

injected adaptations are HESNU, HMSNU and HBSNT. An additional advantage being

that the HMSNU adaptation also happens to be one of the top 10 best performing adapta-

tions discovered in the Simulated BNS Experiments. This is also the reason the HMSEU

adaptation was chosen over the HMSET adaptation.

Each of the six chosen adaptations are investigated through five experimental trial runs

of the BNS approach on the real-world Hexapod robot. The low number of samples per

tested adaptation means that statistical comparisons between adaptations are unreliable.

The validation experimental work is conducted for the primary purpose of demonstrating

the viability of the BNS approach on a real-world Hexapod robot. Solution controllers are

evaluated on the real-world Hexapod robot and the paths generated are recorded. Each

experimental run can take between 3-4 hours to complete. Thirty experimental trial runs

of the BNS approach are performed in total (5 trial runs per adaptation).

Performance statistics are collected and discussed in Section 5.6.1. The transferability

properties of the tested adaptations are covered in Section 5.6.2. The paths generated

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 156

in simulation and reality are presented in Section 5.6.3 and lastly a summary is given in

Section 5.6.4.

5.6.1 Performance

Performances achieved in trial runs are provided in Table B.5. Performance statistics for

the validation experiments are provided in Table 5.23. The performance distributions of

the tested adaptations are illustrated as standard box plots in Figure 5.16. The median

performance achieve over all 30 trial runs is 50.8 centimetres with an IQR between 41.0

and 61.2 centimetres. The worst trial run has a solution with a performance metric of

20.6 centimetres. The second worst solution has a performance metric of 31.7 centimetres.

Eighty percent of the 30 trial runs have a performance metric of 40 centimetres or greater.

The HBSET, HBSNT and HESNU adaptations each contain a single outlier solution.

HBSET HBSNT HESEU HESNU HMSEU HMSNU

20

30

40

50

60

70

80

P
er
fo
rm

an
ce

Figure 5.16: Validation experiment performance distributions

The HBSNT adaptation obtained the best performance IQR which is between 55.6

and 65.8 centimetres. The worst performing trial run also happens to be an outlier of

the HBSNT adaptation. The second best IQR is observed for the HESEU adaptation

solutions and is between 46.3 and 62.1 centimetres. The other adaptations have lower

quartiles between 38.0 and 42.8 centimetres and upper quartiles are between 50.1 and

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 157

Mean Median Q1 Q3 Std. Dev.

HBSET 51.4 52.6 42.8 53.1 11.8

HBSNT 55.3 61.7 55.6 65.8 20.4

HESEU 54.9 57.7 46.3 62.1 11.1

HESNU 50.0 49.1 38.0 50.1 19.1

HMSEU 46.2 44.6 38.3 51.9 9.5

HMSNU 49.2 50.8 41.2 50.8 9.4

Table 5.23: BNS performance statistics on validation results

53.1 centimetres. The HBSNT and HESNU adaptations have relatively high standard

deviations largely due to outliers and the small sample sizes.

When comparing patterns seen in the validated and simulated results, it is important

to take into account the small sample sizes of the validated results. Expected performance

observations are confirmed, such as the validated HESEU performance being higher than

the validated performance for the HBSET, HESNU, HMSEU and HMSNU adaptations.

The validated HBSNT adaptation performs better than the HESEU adaptation which is

not consistent with the simulated results. However, the small sample sizes of the validated

adaptations is important to stress. If only two or three solution controllers had performed

slightly better or worst between the validated HBSNT and HESEU adaptation results,

the HBSNT adaptation could perform worse than the HESEU adaptation. The simulated

standard deviation in performance outcomes is between 15 and 20 centimetres for most

adaptations. The possibility of the HBSNT adaptation performing well by chance is

relatively high.

The top 10 best performing adaptations from the Simulated BNS Experimental results

have median performances between 32.9 and 42.6 centimetres. For the Validation BNS

Experimental results, tested adaptations achieved median performances between 44.6 and

61.7 centimetres. The real-world validation experiment results perform better than ex-

pected compared to the completely simulated experimental investigations. The Simulated

BNS Experimental work gives a relative indication of the likely performance differences

between tested adaptations but does not perfectly represent reality. Differences between

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 158

the validated and simulated results may be due to simulated inaccuracies or high noise

levels.

The validation results are grouped according to the inclusion or exclusion of simula-

tor noise. The performance distributions for the noise injected and noiseless simulator

configurations are illustrated in Figure 5.17 and summary statistics given in Table 5.24.

The mean and median performance metrics are relatively close to each other. The per-

formance distributions for the noise injected and noiseless simulator configurations are

relatively symmetrical, however, the IQR and standard deviations appear different. The

standard deviation for the noise injected and noiseless simulator configurations are 16.0

and 10.7 centimetres, respectively. However, sample sizes are too small to achieve a statis-

tically significant comparisons when comparing variances. This large difference between

the performance variance appears to be due to outliers.

According to the Simulated BNS Experimental work, noiseless adaptations are sup-

posed to result in better likely performance outcomes. Except for the HESEU and HESNU

adaptation validation results, the other validated adaptations indicate better performance

outcomes when simulator noise is used. However, the sample sizes are too small to make

statistical judgements based on the validation results.

Mean Median Q1 Q3 Standard Deviation

Noiseless 50.9 51.9 41.9 58.6 10.7

Noise 51.5 50.8 40.6 62.5 16.0

Table 5.24: BNS validation performance statistics grouped by simulator noise

For the 30 validation solutions, 7 solution controllers are considered poor perform-

ers where performance measurements are less than 40 centimetres. Performances greater

than 60 centimetres are considered excellent. Eight validation solution controllers demon-

strated excellent performance outcomes. The remaining 15 validation solutions achieved

acceptable performance values between 40 and 60 centimetres.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 159

Noiseless Noise

20

30

40

50

60

70

80

P
er
fo
rm

an
ce

Figure 5.17: BNS validation performance distributions grouped by simulator noise

5.6.2 Transferability

Transferability values achieved in trial runs are provided in Table B.6. The transferability

distributions for the validated BNS adaptations are illustrated in Figure 5.18 and summary

statistics are given in Table 5.25. The transferability values for the tested adaptations

is relatively low. Lower transferability values indicate a better correspondence between

the real-world and simulated trajectories. The median transferability over all validated

adaptations is 0.43 with an IQR between 0.23 and 0.56. The HBSET, HBSNT and HMSEU

adaptations each consisted of a single outlier solution.

The HMSEU and HBSNT adaptations have the best median transferability. The IQR

for the HMSEU adaptation is between 0.30 and 0.45 while the HBSNT adaptation is

between 0.12 and 0.42. The HESEU adaptaton has a good lower quartile transferability

of 0.13 but the median and upper quartile is relatively high at 0.47 and 0.66, respectively.

The HESNU and HMSNU adaptations have the worst transferability distribution.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 160

HBSET HBSNT HESEU HESNU HMSEU HMSNU
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra
n
sf
er
ab
il
it
y

Figure 5.18: Validation experiment transferability distributions

The median transferability for the HESNU and HMSNU adaptations are 0.50 and 0.57,

respectively. The IQR for the HESNU adaptation is between 0.38 and 0.88 while the

HMSNU adaptation is between 0.41 and 0.73. Adding simulator noise to the solution

search space probably leads to more varied behaviours and convergences over the lifetime

of the BNS approach. The developing BNS simulator likely cannot keep up with the

modelling of new behaviours and transferability is poorer.

The transferability distributions of the noise injected and noiseless simulator configu-

rations are illustrated in Figure 5.19 and summary statistics given are in Table 5.26. The

mean and median transferability for adaptations injecting simulator noise is 0.53 and 0.42,

respectively. The mean and median transferability for noiseless adaptations is 0.39 and

0.45, respectively. The transferability distributions for the noise injected and noiseless

simulator configurations are heavily skewed. Noiseless simulator configuration are skewed

towards better transferability while the noise injected simulator configurations are skewed

towards poor transferability. The standard deviation for the noise included and noiseless

simulator configurations are 0.36 and 0.21, respectively.

According to the Simulated BNS Experimental work, noiseless adaptations are sup-

posed to result in better likely transferability outcomes. Except for the HBSET and

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 161

Approach Mean Median Q1 Q3 Std. Dev.

HBSET 0.42 0.48 0.41 0.50 0.15

HBSNT 0.45 0.28 0.12 0.42 0.52

HESEU 0.41 0.47 0.13 0.66 0.29

HESNU 0.61 0.50 0.38 0.88 0.35

HMSEU 0.34 0.35 0.30 0.45 0.18

HMSNU 0.54 0.57 0.41 0.73 0.24

Table 5.25: BNS transferability statistics on validation results

HBSNT adaptation validation results, the other validated adaptations confirmed that

noiseless configurations improve the likely transferability outcomes of solutions. However,

the sample sizes are too small to make statistical judgements based on the validation

results.

Mean Median Q1 Q3 Standard Deviation

Noiseless 0.39 0.45 0.23 0.52 0.21

Noise 0.53 0.42 0.25 0.76 0.36

Table 5.26: BNS validation transferability statistics grouped by simulator noise

5.6.3 Validation Solutions

The 30 controller solutions evolved during the validation experiments are described in

greater detail in this section. The real-world and simulated paths generated by the eval-

uated solution controllers are presented in Figures 5.20 to 5.25. The robot starts at the

origin facing the positive y-direction as represented by the arrow. The final simulated and

real-world headings of the robot at the final positions in each trajectory are indicated with

arrows.

The simulated paths generated by the BNS and SNS simulators are included. The

two simulated paths are provided in order to compare the predictive accuracies between

the BNS and SNS simulators for the given solutions. The simulated paths generated by

the BNS simulator are usually a better indication of real-world performance compared

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 162

Noiseless Noise
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
ra
n
sf
er
ab
ili
ty

Figure 5.19: BNS validation transferability statistics grouped by simulator noise

to the SNS simulator. The BNS simulator specialises in the modelling of those specific

behaviours seen in the final controller solutions. Most solution controllers generate paths

that travel a significantly forward/backward trajectory. Large movement towards the left

or right are observed less often.

Solution controllers specific to the HESEU adaptation are illustrated in Figure 5.20.

Evolved controller solutions successfully transfer well into reality. The first and fourth trial

runs demonstrate solutions with particularly good transferability. The BNS simulated

paths for second and fifth trial runs deviate slightly from reality due to inaccuracies in

early heading predictions. The third trial run has the greatest disparity between the

BNS simulated and real-world final positions. The SNS simulator performed poorly at

predicting the behaviours of all the HESEU solutions.

Solutions specific to the HESNU adaptation are presented in Figure 5.21. The first

three trial runs demonstrate relatively good transferability. The first and second controller

solutions travel a significantly further distances compared to the other HESNU adaptation

solutions. The distance travelled in the third run is relatively small. The fourth and

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 163

−80 −60 −40 −20 0 20 40
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(a) First run

−40 −20 0 20 40 60 80
x position (cm)

−80

−60

−40

−20

0

20

40

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(b) Second Run

−40 −20 0 20 40 60 80
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(c) Third run

−40 −20 0 20 40 60 80
x position (cm)

−80

−60

−40

−20

0

20

40

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(d) Fourth run

−40 −20 0 20 40 60 80
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(e) Fifth run

Figure 5.20: HESEU Real-world experiments

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 164

−60 −40 −20 0 20 40 60
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(a) First run

−40 −20 0 20 40 60 80 100
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(b) Second Run

−80 −60 −40 −20 0 20 40
x position (cm)

−20

0

20

40

60

80

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(c) Third run

−60 −40 −20 0 20 40 60
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(d) Fourth run

−60 −40 −20 0 20 40 60
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(e) Fifth run

Figure 5.21: HESNU Real-world experiments

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 165

−40 −20 0 20 40 60 80
x position (cm)

−40

−20

0

20

40

60

80

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(a) First run

−40 −20 0 20 40 60 80
x position (cm)

−80

−60

−40

−20

0

20

40

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(b) Second Run

−60 −40 −20 0 20 40 60
x position (cm)

−40

−20

0

20

40

60

80

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(c) Third run

−60 −40 −20 0 20 40 60
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(d) Fourth run

−80 −60 −40 −20 0 20 40
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(e) Fifth run

Figure 5.22: HMSEU Real-world experiments

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 166

−100 −80 −60 −40 −20 0 20
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(a) First run

−40 −20 0 20 40 60 80
x position (cm)

−40

−20

0

20

40

60

80

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(b) Second Run

−80 −60 −40 −20 0 20 40
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(c) Third run

−60 −40 −20 0 20 40 60
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(d) Fourth run

−60 −40 −20 0 20 40 60
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(e) Fifth run

Figure 5.23: HMSNU Real-world experiments

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 167

−40 −20 0 20 40 60 80
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(a) First run

−40 −20 0 20 40 60 80
x position (cm)

−40

−20

0

20

40

60

80

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(b) Second Run

−80 −60 −40 −20 0 20 40
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(c) Third run

−80 −60 −40 −20 0 20 40
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(d) Fourth run

−80 −60 −40 −20 0 20 40
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(e) Fifth run

Figure 5.24: HBSET Real-world experiments

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 168

−80 −60 −40 −20 0 20 40
x position (cm)

−100

−80

−60

−40

−20

0

20

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(a) First run

−20 0 20 40 60 80 100
x position (cm)

−60

−40

−20

0

20

40

60

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(b) Second Run

−40 −20 0 20 40 60 80
x position (cm)

−40

−20

0

20

40

60

80

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(c) Third run

−40 −20 0 20 40 60 80
x position (cm)

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(d) Fourth run

−40 −20 0 20 40 60 80
x position (cm)

−80

−60

−40

−20

0

20

40

y
p
os
it
io
n
(c
m
)

Reality

BNS simulator

Static simulator

(e) Fifth run

Figure 5.25: HBSNT Real-world experiments

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 169

fifth trial runs transfer poorly into reality. For the SNS simulator, the first and second

trial runs are poorly simulated in terms of the real-world distances travelled, however,

the simulated direction of the paths are reasonably accurate. For the third run, the SNS

simulated distance is significantly underestimated. The fourth and fifth solutions have SNS

simulated paths that appear to more accurately represent reality than the BNS simulated

paths.

Figure 5.22 present controller solution paths for the HMSEU adaptation. All solutions

demonstrate good transferability into reality. The first trial run transfers well into reality

but the distance travelled is relatively low. For the second trial run, the BNS simulator

underestimates the real-world distance travelled but the simulated heading and shape are

reasonably close to reality. The third trial run is simulated well for the first two-thirds of

the BNS simulated path, after which the last few commands transfer poorly onto reality.

The fourth and fifth trial runs demonstrate excellent performance, transferability and even

small variations in behaviours are accurately predicted by the BNS simulator. The SNS

approach significantly underestimates the real-world distances travelled but the simulated

headings are mostly accurate.

Solution paths for the HMSNU adaptation are illustrated in Figure 5.23. The second,

fourth and fifth trial runs demonstrate excellent performance in terms of distance travelled.

For the BNS simulator, the simulated paths for the second and fourth trial runs closely

correspond to reality. The fifth run is accurately simulated in term of distance travelled and

overall behaviour, however, the simulated direction of the trajectory deviates substantially

from reality. The deviation is due to inaccuracies in simulator predictions during the early

part of the controller evaluation. The first and third trial runs travel significantly shorter

distances in reality compared to the BNS simulated predictions. The BNS simulated path

for the third trial run is relatively accurate for the first few commands but the real-world

path deviates for the last few commands. The SNS approach greatly underestimates

the real-world distances travelled for all trial runs but does often simulate the trajectory

headings relatively well.

For the HBSET adaptation, paths for solution controllers (Figure 5.24) demonstrate

good transferability for all trial runs. The first and fourth trial runs are accurately sim-

ulated (BNS simulator) in terms of the real-world distances travelled. The simulated

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 170

direction of the trajectory for the first trial run deviates slightly from reality but the

zigzag behaviours are simulated relatively well. The third trial run demonstrates good

transferability but the BNS simulator slightly overestimates the real-world distance trav-

elled. The fifth trial run is simulated well in terms of the overall behaviour and heading

but the simulated distance is overestimated significantly. The SNS simulator failed to

accurately simulate the real-world behaviours for any of the solution controllers.

Solution paths for the HBSNT adaptation are presented in Figure 5.25. The BNS sim-

ulator demonstrates great transferability for the first four trial runs. The BNS simulator

accurately estimates many low level behaviours for the first, second and third trial runs.

For the second trial run, the BNS simulator slightly underestimates the real-world distance

travelled. The fourth trial solution transfers well into reality but a few commands do ap-

pear to transfer poorly. The fifth trial run transfers poorly into reality due to a significant

change in the real-world trajectory heading. The SNS simulated paths demonstrate poor

transferability compared to the BNS simulator for all solutions, except the fifth trial run.

Only the fifth trial run is simulated more accurately using the SNS simulator. The SNS

simulator predicted most of the trajectory headings relatively well, however, simulated

distances are always underestimated.

5.6.4 Summary

Six promising adaptations were validated on a real-world Hexapod robot. Adaptations

that performed well in simulated benchmarks are validated on a real-world robot in order

to verify real-world viability of the BNS approach. For each adaptation, five BNS trial runs

are performed on the real-world Hexapod robot and solution trajectories are recorded.

The best performing and most transferable BNS adaptation validated used the Basic

simulator configuration with noise, simulator resetting and the Tournament sampling

strategy (HBSNT). A close second best performing adaptation, used a noiseless Ensem-

ble simulator configuration with simulator resetting and the Most Uncertain sampling

strategy (HESEU).

Most of the validated solutions demonstrated excellent transference of simulated be-

haviours into reality. Only 7 out of the 30 validated solutions demonstrated poor per-

formance. This conclusively demonstrates that the tested BNS adaptations are viable in

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 171

reality.

The Dynamic Simulators developed using the BNS approach are specialised towards

simulating particular behaviours for a single solution, whereas Static Simulators are gen-

eralised for use on multiple problems and/or behaviours. Solutions developed using the

BNS approach tend to be poorly simulated using the simulator developed by the SNS ap-

proach. BNS developed simulators could more accurately predict the real-world behaviours

of evolved solutions compared to SNS developed simulators. The Static Simulators are

unable to adequately predict the behaviours of solution controllers developed using the

BNS approach. This indicates that solution controllers evolved using the BNS approach

are unlikely have been discovered using the SNS approach.

5.7 SNS and BNS Comparisons

The behavioural dataset used to train the Static Simulators for the SNS approach con-

sists of 4942 behavioural patterns. A single experimental run of the BNS approach (100

sampling controller evaluations) consists of 1100 behavioural patterns. The BNS approach

developed adequate controller solutions with significantly fewer behavioural patterns com-

pared to the SNS approach.

The SNS approach requires a lengthy data collection process. It takes approximately

16 hours to collect the amount of behavioural data used to train the Static SNNs for the

Hexapod robot. Once the behavioural data collection phase is completed, training any

of the tested simulator configurations takes less than 15 minutes. Data collection and

training process only need to be performed once, after which the produced Static SNNs

can be reused. Once the Static Simulator is trained, producing a solution for the SNS

approach takes between 1.5 and 15 minutes, depending on the adaptation used.

A trial run of the BNS approach is approximately 3.5 hours when including rest periods.

An adequate solution is often discovered in less than 100 controller sampling evaluations.

For the BNS approach, simulator training and controller evolution is performed concur-

rently with the behavioural data collection process. In order to produce the first solution,

the BNS approach can take 3.5 hours while the SNS approach takes approximately 16.5

hours.

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 172

The best performing BNS adaptation in the validation experimental work achieved a

median performance of 61.7 centimetres with an IQR between 55.6 and 65.8 centimetres.

The best performing adaptation for the SNS approach achieved a median performance of

60.2 centimetres with an IQR between 54.4 and 66.8 centimetres. The best SNS adapta-

tion performs similarly well compared to the best performing validated BNS adaptation.

A statistical comparison between the SNS and BNS approaches is not possible due to

the small sample sizes of the validated BNS adaptation results. However, experimental

outcomes appear to indicate that the BNS approach can at least match the performances

outcomes achieved by the SNS approach.

The best performing SNS adaptation has a similar transferability compared to all the

tested BNS adaptations. The BNS validated solutions have a median transferability of

0.43 while the HME adaptation achieved a median transferability of 0.42. In terms of

the diversity of solutions produced, the SNS approach is greatly affected by the chosen

adaptation. Independent trial runs of the BNS approach can produce a diverse set of

solutions no matter which adaptation is chosen.

5.8 Conclusion

This research is the first time that the BNS approach has been validated on a Hexapod

robot. This chapter successfully demonstrates that the BNS approach can develop effective

Hexapod gaits that can travel significant distances without real-time position or sensor

feedback. The controller design is high dimensional without relying on prior knowledge of

Hexapod locomotion modes. Developed simulators can accurately model the behaviours of

a Hexapod robot based on prior observations and little specialised human knowledge. The

BNS approach can develop effective solutions without the lengthy data collection phase

seen with the SNS approach.

Many novel BNS adaptations are proposed and tested. Configuring SNNs into ensem-

bles improved the likely performance and transferability outcomes of solution controllers.

The Ensemble simulator configuration performed particularly well in simulated and val-

idation results. Not using simulator noise might improve the likely performance outcomes

of solutions. However, validation results did not confirm that noiseless adaptations always

CHAPTER 5. HEXAPOD BOOTSTRAPPED NEURO-SIMULATION 173

lead to improved performance results. Periodically resetting the simulator significantly

improves the likely performance and transferability outcomes of solutions. Simulator re-

setting appears to reduce the likelihood that the ER process will exploit weaknesses in

simulated behaviours. The sampling strategies tested do not significantly influence per-

formance outcomes.

Chapter 6

SNAKE STATIC

NEURO-SIMULATION

6.1 Introduction

Prior research has demonstrated that the SNS approach is viable for a Snake-like robot

morphology [Woodford et al., 2015]. However, for a Snake robot, no prior work has inves-

tigated the SNS approach for a controller design that relies on little prior knowledge. This

chapter presents a first time investigation demonstrating that the SNS approach is viable

for a Snake robot without a simplified controller design. The experimental procedures

used to investigate the proposed SNS adaptations are discussed in Section 6.2.

The Snake robot simulator investigated in prior work was simplified to the point of

not being compatible with the controller design chosen in this work. A new generalised

Snake robot simulator needs to be built. However, the ideal SNN architectures that

specify the number of hidden layers and layer sizes has not been identified. Behavioural

data is collected from a real-world Snake robot and used to benchmark a large number of

potential SNN architectures in order to identify ideal SNN architecture (Section 6.3). The

SNN architecture benchmarking results are presented in Section 6.4.

The SNS experimental work investigating proposed adaptations is described in Section

6.5. Experimental results are presented and discussed in Section 6.6. The SNS experi-

mental outcomes between the Hexapod and Snake robots are compared to each other and

174

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 175

discussed in Section 6.7. Finally, conclusions to the chapter are drawn in Section 6.8.

6.2 Experimental Procedure

Methodology A is the experimental procedure followed in this chapter (Figure 6.1). Method-

ology A is applied similarly to the Hexapod experiment work and is discussed in greater

detail in Section 3.6.

Figure 6.1: Methodology A: Adaptations to the SNS approach

The Snake robot controller design is discussed in Section 6.2.1 while the Snake robot

simulator is covered in Section 6.2.2.

6.2.1 Controllers

The Snake robot controller design is similar to that described in Section 3.3. The controller

design is slightly modified to accommodates the Snake robot platform. Controllers are

optimised for developing crawling gaits where the Euclidean distance between the start

and final positions of the robot are maximised. The positions measured are calculated

as the midpoint of the tracked markers located on the head of the Snake robot. Prior

work positioned tracked points on either end of the Snake robot’s body. An advantage of

the Snake robot tracking approach explored in this research is that only a single tracked

position is simulated. The prior tracking method required simulating two tracked positions

for the Snake robot [Woodford et al., 2015]. No real-time feedback is provided to controllers

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 176

regarding its current position or state during evaluations.

Due to limitations of the tracking system, a Snake robot cannot be tracked if the robot

turns upside down during controller evaluations. Evaluations where the robot turns upside-

down for more than two commands are categorised as failures. In order to evolve controllers

exhibiting relatively upright behaviours, the robot’s head orientation is simulated and

failures are penalised in the fitness function.

A controller consists of a sequential list of thirteen commands. Each command consist

of 12 joint angle changes, one for each joint on the robot. Each joint angle change is an

integer value between -100 and 100 units which translates to angle changes between -30

to 30 degrees. Joints have a resolution of approximately 0.3 degrees. Lateral joints have

a movement range between -60 and 60 degrees relative to the starting position. Vertical

joint angles have a range between -30 and 30 degrees relative to the starting positions.

The vertical joint position range is intentionally smaller than the lateral range in order to

reduce the likelihood of the robot exhibiting behaviours that cause it to roll onto its back.

The difference in vertical and lateral freedom of movement also helps reduce joint failures

caused by high joint torques.

For a controller, the sequence of 13 commands is repeated multiple times in order to

produce cyclical crawling behaviours. The Snake robot is initially positioned with straight

joint angles. The first command positions the joint angles into an initial stance. Thirteen

commands are then executed sequentially three times to form cycles. The robot returns

to an initial stance at the end of each cycle. Forty commands are executed in total for

any given Snake robot controller evaluation solution. The Snake robot controllers require

significantly more commands compared to the Hexapod robot in order to traverse similar

distances.

If simulator noise is present, controllers are evaluated five times in simulation with

noise added to each behavioural component prediction. The average fitness from the five

evaluations becomes the controller fitness. The noise distributions are Gaussian with a zero

mean and the standard deviations are equal to the test dataset error standard deviations.

Test dataset error standard deviations are 3.03 centimetres for ∆x, 2.00 centimetres for

∆y, 7.17 degrees for ∆a and 15.49 degrees for ∆o.

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 177

6.2.2 Simulator

An orientation sensor is placed on the head of the Snake robot. The head orientation

state of a robot has been simulated as a yaw, pitch and roll [De Nardi and Holland,

2008]. However, this requires simulating multiple behavioural components which may be

unnecessary. This research opted to simulated the head orientation as a single behavioural

component. The orientation is measured as the angle between the normal of the working

surface and the normal on the head of the robot. This overall change in the robot’s

orientation is denoted as ∆o (Figure 3.4).

Unlike the Hexapod robot, Snake controller commands cannot be independently eval-

uated. The behavioural outcome of the first command depends on the starting head ori-

entation. Subsequent commands depend on the outcome of all previous head orientation

predictions. This can slow down the evaluation process and be a source of accumulated

inaccuracies.

The starting head orientation of the first command, θ1, is always zero because the

robot’s starting position is straight and upright. The first command is taken as input to

the SNNs which produces simulated behavioural component displacements as output. The

simulated change in the head orientation is used to calculate the new head orientation,

θ2. The second command can only be evaluated once the new head orientation has been

predicted. This sequential evaluation process continues until all commands have been

evaluated.

6.3 Simulator Benchmark Experiments

The Simulator Benchmarking Experiments investigate a large number of proposed SNN

architectures. SNN architectures tested can consist of between one and five hidden layers.

Hidden layers can have either 25, 100, 400 or 800 Artificial Neurons. The total number of

possible SNN architectures tested is 1364 combinations per behavioural component sim-

ulated. Every possible SNN architecture is independently initialised and trained thirty

times in order to perform statistical comparisons. Only the best performing architectures

are presented but summarised test data can be found in Appendix B. The best perform-

ing SNN architectures are those that achieve the lowest average error on the unseen test

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 178

dataset. For each behavioural component simulated, the best SNN architectures have

statistically the lowest test dataset errors compared to all other architectures. SNN ar-

chitectures with the lowest number of hidden layers or with the smaller hidden layer sizes

are selected when multiple SNN architectures perform statistically equally the best.

Training is performed using the Adam optimiser and the Deep Learning libraries called

Keras [Chollet, 2015] and Tensorflow [Abadi et al., 2015]. SNN weights are saved after

every training iteration whenever the validation error is improved. SNNs are trained for

4000 iterations. Only weights associated to the lowest validation error are used in the final

models in order to avoid problems related to over-fitting. During training, hidden layer

nodes have a dropout rate of 50%.

6.4 Static SNN Results

This section discusses the identified ideal SNN architectures and the training of the SNNs

based on the collected behavioural data, which is required before controllers can be evolved

during the SNS approach. Section 6.4.1 presents an analysis of the collected behavioural

data. The ideal SNN architectures are identified and presented in Section 6.4.2. Once the

ideal SNNs have been trained, the accuracy of the proposed simulator configurations are

discussed in Section 6.4.3.

6.4.1 Behavioural Data

Behavioural observations collected during the data collection phase are analysed in this

section. A total number of 4990 behavioural patterns are collected from randomly gener-

ated commands that are evaluated on the real-world Snake robot. Ten percent of this data

forms the test dataset, another 10% forms the validation set used to prevent over-fitting

and the remaining 80% forms the training dataset.

Position displacements for the training dataset are illustrated in Figure 6.2. Each point

represents the relative displacement of the tracked position on the head of the robot after

evaluating a single command. The x and y displacements are the relative changes in the

Snake robot’s position due to the execution of the given command. The displacement

trends are significantly different compare to the Hexapod robot covered in Section 4.4.2.

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 179

−30 −20 −10 0 10 20 30
x displacement

−10

0

10

20

30

y
di
sp
la
ce
m
en
t

Figure 6.2: Scatter plot for the training data ∆x and ∆y behavioural components

Displacements appear to have a parabolic shape. There is a significant bias towards moving

in the positive y direction. Few observation are found moving significant distances in the

positive or negative y directions without comparable x displacement. The parabola shape

is likely due to the body of the Snake robot weighing more than the tracked head. The

head tends to get pulled towards the body during movements.

Density plots for the robots x and y displacements are given in Figure 6.3. The IQR for

the x displacements are between -3.65 and 3.43 centimetres. The IQR for the y displace-

ments are between -0.01 and 2.49 centimetres which is greatly skewed towards positive

displacements. The Snake head is unlikely to move in the negative y direction due to the

heavy Snake body. A large proportion of commands generate x and y displacements close

to zero. The robot has greater mobility in moving the head in a side-ways trajectory,

rather than directly forward/backward. The density decreases for highly positive or neg-

ative displacement values. The training data is imbalanced and trained models are likely

more accurate for predictions close to the origin.

Density plots for the robots heading (a displacements) and head orientation (o displace-

ments) training datasets are given in Figure 6.4. The IQR for the heading displacements

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 180

−40 −20 0 20 40
Change centimetres

0.00

0.05

0.10

0.15

0.20

0.25

D
en
si
ty

Training data density plot for x and y displacements

x displacement

y displacement

Figure 6.3: Density plot for the ∆x and ∆y behavioural components

are between -13.0 and 12.0 degrees. The IQR for the head orientation displacements are

between -13.6 and 12.25 degrees. The heading displacement density plot is relatively sym-

metrical and normal. However, the head orientation displacement density plot appears to

be non-symmetrical. This indicates that the Snake robot head orientations are slightly

biased towards falling sooner on one side of the robot’s body compared to the other. The

weight distribution for the robot’s body is not perfectly balanced.

6.4.2 Ideal SNN Architectures

Test error results for all the tested SNN architectures are referenced in Appendix B. The

ideal SNN architectures are presented in Table 6.1. The ideal number of SNN hidden

layers was found to be three for all behavioural components. When identifying the ideal

SNN architecture for each behavioural component, comparisons between candidate SNN

architectures are performed using Mann-Whitney U tests. A significance level of 5% is

chosen for all comparisons. For each behavioural component, the SNN architecture with

the best test dataset accuracy is compared to all other configurations. SNN architectures

that are not significantly worse compared to the most accurate SNN architecture are iden-

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 181

−100 −50 0 50 100
Change degrees

0.000

0.005

0.010

0.015

0.020

0.025

D
en
si
ty

Training data density plot for a and o displacements

a displacement

o displacement

Figure 6.4: Density plot for the ∆a and ∆o behavioural components

tified. If multiple SNN architectures perform statistically similar to the best architecture

then the SNN architecture with the lowest number of hidden layers or Artificial Neurons

is declared the ideal SNN architecture.

FFNN First hidden Second hidden Third hidden

component layer layer layer

∆x 800 800 100

∆y 800 800 25

∆a 800 800 100

∆o 800 800 25

Table 6.1: SNN architectures

SNN architectures with the best accuracy for modelling the x and o displacements

are significantly more accurate than all other tested architectures. The most accurate

SNN architecture for predicting y displacements is statistically equal to two other SNN

architectures tested. One of these architectures has four hidden layers while the other

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 182

two only have three hidden layers. Four hidden layers is considered more computationally

expensive, so the 3 layer configuration is selected. The remaining y displacement candidate

architectures all have 800 Artificial Neurons for the first two hidden layers. The last hidden

layer for one architecture has 100 Artificial Neurons while the chosen ideal architecture

only has 25.

The best SNN architecture for modelling the a displacements performs similarly well

to one other SNN architecture. Both candidate SNN architectures have 800 Artificial

Neurons for the first two hidden layers. The third hidden layer has 400 Artificial Neurons

for the one architecture while the chosen ideal SNN architecture has 100 Artificial Neurons.

6.4.3 Training Errors

The ideal SNN architectures are used to construct the simulator configurations specified

in Section 3.7.1. For each ideal simulator configuration, MSE and the IQR for the squared

errors of the training and test behavioural datasets are presented in Tables 6.2 and 6.3,

respectively. The first and third quartiles of the squared errors are given by the columns

labelled Q1, and Q3, respectively. The lowest ∆x training MSE and IQR is achieved

by the Dropout simulator configuration, followed closely by the Basic and Ensemble

configurations. The Ensemble Multi-output and Basic Multi-output simulator con-

figurations have MSE values more than four times higher than the other configurations.

For the y displacements, the Dropout, Basic and Ensemble simulator configurations

have the best training dataset accuracy. However, the Ensemble simulator configuration

has the lowest training IQR of squared errors. The Ensemble Multi-output and Basic

Multi-output simulator configurations have MSE values more than 2.5 times higher than

the other configurations.

The Dropout simulator configuration has the lowest ∆a training dataset MSE and

IQR of squared errors, followed closely by the Basic simulator configuration. The En-

semble Multi-output and Basic Multi-output simulator configurations have ∆a MSE

values over four times higher than other simulator configuration.

The Ensemble Multi-output and Basic Multi-output simulator configurations

have ∆o training dataset MSE values more than 4.5 times higher than all other simulator

configurations. The Dropout simulator configuration has the lowest ∆o training dataset

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 183

T
ra

in
in

g
D

at
as

et
∆
x

∆
y

∆
a

∆
o

M
SE

Q
1

Q
3

M
SE

Q
1

Q
3

M
SE

Q
1

Q
3

M
SE

Q
1

Q
3

B
as

ic
1.

64
0.

05
1.

13
0.

77
0.

04
0.

58
7.

09
0.

16
3.

12
40

.1
6

0.
96

24
.6

6

D
ro

po
ut

1.
34

0.
05

0.
75

0.
74

0.
03

0.
49

6.
20

0.
14

2.
14

37
.8

7
0.

96
16

.5
9

E
ns

em
bl

e
1.

60
0.

03
1.

18
0.

80
0.

02
0.

36
9.

20
0.

23
7.

37
41

.0
1

0.
81

28
.6

8

E
ns

em
bl

e
M

ul
ti

-o
ut

pu
t

7.
44

0.
36

6.
45

2.
03

0.
11

1.
63

36
.8

8
2.

40
34

.4
4

19
7.

26
8.

47
16

0.
11

B
as

ic
M

ul
ti

-o
ut

pu
t

8.
63

0.
43

7.
78

2.
26

0.
12

1.
83

43
.0

9
2.

86
41

.1
7

22
7.

61
10

.1
2

18
8.

66

Ta
bl

e
6.

2:
Tr

ai
ni

ng
da

ta
se

t
M

SE
an

d
IQ

R
fo

r
ea

ch
sim

ul
at

or
co

nfi
gu

ra
tio

n

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 184

T
es

t
D

at
as

et
∆
x

∆
y

∆
a

∆
o

M
SE

Q
1

Q
3

M
SE

Q
1

Q
3

M
SE

Q
1

Q
3

M
SE

Q
1

Q
3

B
as

ic
10

.0
8

0.
30

7.
00

4.
24

0.
16

2.
83

59
.6

3
2.

53
41

.0
5

38
2.

50
10

.4
3

20
5.

25

D
ro

po
ut

9.
74

0.
32

6.
70

4.
12

0.
15

2.
75

58
.8

2
2.

08
38

.2
4

38
2.

16
10

.9
4

21
0.

43

E
ns

em
bl

e
10

.0
0

0.
38

7.
19

4.
03

0.
14

2.
56

59
.2

6
2.

67
39

.5
7

35
7.

34
9.

30
20

7.
66

E
ns

em
bl

e
M

ul
ti

-o
ut

pu
t

10
.9

2
0.

47
7.

79
4.

06
0.

16
2.

56
62

.7
5

3.
23

50
.6

1
42

1.
53

15
.7

5
24

5.
05

B
as

ic
M

ul
ti

-o
ut

pu
t

12
.2

2
0.

54
9.

43
4.

34
0.

18
2.

56
69

.4
0

3.
43

58
.4

8
44

0.
55

15
.7

8
28

1.
36

Ta
bl

e
6.

3:
Te

st
da

ta
se

t
M

SE
an

d
IQ

R
fo

r
ea

ch
sim

ul
at

or
co

nfi
gu

ra
tio

n

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 185

MSE and IQR of squared errors, followed closely by the Basic and Ensemble simulator

configurations.

The Dropout simulator configuration has the lowest ∆x MSE and IQR of squared

errors for the test dataset, followed closely by the Basic, Ensemble and Ensemble

Multi-output simulator configurations. The Basic Multi-output simulator configu-

ration has the worst ∆x MSE and IQR of squared errors. However, differences between

configurations are less pronounced compared to the training dataset.

For the ∆y behavioural component, the test dataset MSE and IQR of squared errors

for all simulator configurations are relatively similar to each other. The test dataset MSEs

for the different simulator configurations are all within 8% of each other. The Ensemble

simulator configuration has the lowest MSE followed closely by the Ensemble Multi-

output simulator configuration.

The Dropout, Ensemble and Basic simulator configurations have similarly the low-

est ∆a test dataset MSE and IQR for squared errors. For the test dataset ∆a behavioural

component, the test dataset MSE and IQR of squared errors is highest for the Basic

Multi-output and Ensemble Multi-output simulator configurations.

The Ensemble simulator configuration has the lowest test dataset ∆o behavioural

component MSE and IQR of squared errors, followed closely by the Basic and Dropout

simulator configurations. The Basic Multi-output and Ensemble Multi-output sim-

ulator configurations have the worst test dataset ∆o behavioural component MSE and

IQR of squared errors.

The test dataset MSE values and IQR of squared errors between simulator configura-

tions are relatively close to one another compared to the training dataset. The test and

training dataset squared errors are closest to each other for the Ensemble Multi-output

and Basic Multi-output simulator configurations.

Simulator configurations with the lowest test dataset squared errors are now considered

(Table 6.3). The Dropout simulator configuration is most accurate for the ∆x and ∆a

behavioural components while the Ensemble and Basic simulator configurations are rel-

atively accurate too. The Ensemble simulator configuration has the best accuracy for the

∆y behavioural component, followed closely by the Ensemble Multi-output simulator

configuration. For the ∆o behavioural component, the Ensemble simulator configura-

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 186

tion is most accurate. If only one simulator configuration is chosen for all behavioural

components, it is likely that an Ensemble simulator configuration might possess the best

overall accuracy in modelling overall Snake robot behaviours. Simulator configurations

consisting of multi-output SNNs achieved higher test dataset squared error values com-

pared to single-output SNNs. This is consistent with the finding in prior research that

single-output SNNs tend to be more accurate.

6.5 SNS Experiments

The fitness function used during controller evolution is given in Algorithm 3. The function

takes as input the simulated path positions and associated controller commands. Fitnesses

are calculated based on two component considerations. The Euclidean distance between

the start and final positions of the simulated path is the first component of the fitness

calculation. The second component consists of penalties applied based on uncertainty

information and penalties applied to simulated head orientations violating a specified

boundary.

The distance of the trajectory is extended from 3 to 9 cycles before the Euclidean dis-

tance travelled is calculated. Solution controllers have a tendency to develop unintended

turning behaviours if the trajectory is not extended. Trajectories where the whole Snake

robot body moves a significant distance is considered the intended behaviour. By extrap-

olating the estimated trajectory, the evolutionary process rewards controllers that exhibit

significantly less turning behaviours.

A time-lapse of a prior solution controller evolved from a fitness function that does not

extend the trajectory is presented in Figure 6.5 in order to illustrate the turning behaviour

of this particular controller1. The robot appears to simply turn in place approximately

90 degrees every 300 seconds. This solution illustrates an example of the ER process ex-

ploiting a weakness in the fitness function. Ideal solutions would displace the entire Snake

robot body from the starting position. Extending the trajectory significantly decreases

the degree to which controllers exhibit such turning behaviours.

Penalties are needed in order to prevent the robot from rolling onto its back which is not
1https://youtu.be/WMWQ2SM5Qj4

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 187

Figure 6.5: Controller solution that produces turning behaviours

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 188

Algorithm 3 Snake Controller fitness evaluation
Require: positions← Simulated path list and commands← List of controller commands

distance← Distance between start and end of positions extrapolated 3 times

penalties← 1

c← A large constant

o← A orientation cycle penalty constant

v ← A constant

for each command in commands do

if command has reached a boundary limit then

penalties← penalties+ c

end if

if each component being predicted then

std← Normalised standard deviation of predicted component

penalties← penalties+ (v × std)

end if

end for

angle← Head orientation difference between cycles

penalties← penalties+ angle× o

fitness← distance/penalties

return fitness

supported by the chosen tracking system in this research. For each evaluated command,

a penalty is applied whenever the simulated orientation of the robot head relative to the

starting upright position is outside the range -90 to 90 degrees. The head orientations

at the end of each cycle are evolved to be as close to each other as possible in order to

increase consistency in behaviours for each cycle. Consistency in behaviour for each cycle

is important for the BNS approach due to sampling evaluations only evaluating a single

cycle in terms of data collection.

Simulator configurations not producing uncertainty information will have prediction

standard deviations of zero and will not contribute any uncertainty penalties. For each

command and behavioural component simulated, the normalised standard deviation of the

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 189

predictions is determined. The normalised standard deviation is multiplied by a penalty

factor and added to an accumulation of penalties. The normalisation is based on the max-

imum standard deviations observed for predictions on the test dataset. Normalisation is

necessary in order equally consider the uncertainty weight of each behavioural component.

The parameter settings (Table 6.4) used for controller evolution is based on prior work

[Woodford et al., 2017]. The controller population consists of 400 controller individuals.

The initial population of controllers is generated from a uniform distribution. During con-

troller evolution, parents are chosen for crossover operations using Tournament selection

with a tournaments size of 50% of the controller population. For mutations, the proba-

bility that a random change is applied to any given joint angle is 10%. A random change

is drawn from a uniform distribution between -15 and 15 degrees. Controller evolution

proceeds for 1000 generations and the fittest controller in the final generation is declared

the final solution.

Controller Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (Tournament size 50%)

Cross-over Method Two-parent crossover

Mutation Rate 10%

Mutation Method Random Component Perturbation

Controller Generation Limit 1000

Table 6.4: Parameters for controller evolution

Table 6.5 lists the 10 adaptations tested. The adaptations investigated are the same

as those specified in the SNS experimental work in the Hexapod robot. Adaptations are

given encoded names listed in the first column. The first letter, S indicated that the

Snake robot is used. The second letter represents the simulator configurations. Letters B,

D, E, M and S represent the Basic, Dropout, Ensemble, Ensemble Multi-output

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 190

and Basic Multi-output simulator configurations, respectively. For the third letter, E

indicates that simulator noise is excluded while N indicates noise is included.

Experiment Simulator Configuration
Simulator

Noise

SBE Basic No

SBN Basic Yes

SDE Dropout No

SDN Dropout Yes

SEE Ensemble No

SEN Ensemble Yes

SME Ensemble Multi-output No

SMN Ensemble Multi-output Yes

SSE Basic Multi-output Yes

SSN Basic Multi-output No

Table 6.5: SNS Experimental Adaptations

The procedure followed in each trial run of the SNS approach is as follows:

1. An adaptation from Table 6.5 is chosen for an experimental trial run.

2. The process described in Methodology A is performed (Figure 6.1).

3. The simulated and real-world trajectory paths of the solution controller is collected

as observational data.

For each adaptation listed in Table 6.5, 30 independent trial runs of the SNS approach

are performed. Final solution controllers are evaluated on the real-world Snake robot and

performance, transferability and behavioural properties are analysed.

6.6 The SNS Experiment Results

A successful Snake robot controller solution is demonstrate in Section 6.6.1. The per-

formance and transferability properties of the tested SNS adaptations are presented in

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 191

Sections 6.6.2 and 6.6.3, respectively. Identifying good SNS adaptations requires studying

the performance, transferability and failure properties of solutions (Section 6.6.4). The

solution trajectories are studied in Section 6.6.5 and the best performing solutions are

presented in Section 6.6.6.

6.6.1 Demonstration

The SNS approach applied to the Snake robot can successfully be used to develop ef-

fective distance maximising gait controllers. The trained SNNs can simulate Snake robot

behaviours over many commands. The head orientation can be simulated in order to avoid

certain behaviours from developing during the ER process. The success rate for produc-

ing adequate solution controllers is relatively high when selecting appropriate adaptation

settings. The SNS approach does not produce solutions that perform as consistently well

compared to the Hexapod robot but that is to be expected considering the increased com-

plexity of the problem applied to the Snake robot. This section demonstrates a single

example solution produced by the SNS approach.

A time-lapse demonstration2 of a solution developed using the SNS approach is pre-

sented in Figure 6.6. The real-world and BNS simulated trajectories are also illustrate in

Figure 6.7. The head of the robot is towards the left and the tail is on the right. The

time-lapse is captured such that frames are 60 seconds apart. The first command positions

the robot into an initial stance, after which 13 commands are executed in 3 cycles in order

to produce crawling behaviours. The starting position (Figure 6.6a) begins with the robot

in its starting position. The tail end of the body shifts upward and the head rotates down-

ward (Figure 6.6b). The middle of the body pushes the head and tail upwards (Figure

6.6c) after which the middle part of the body shifts upwards with the help of either end

of the robot pulling it up (Figures 6.6d to 6.6f). Again the tail and head shift upwards

in Figures 6.6g and 6.6h in order to pull the middle portion of the body upwards (Figure

6.6i). The head of the robot moves upwards (Figure 6.6j) and partially drags the middle

part of the robot slightly upwards while the tail end straightens out (Figure 6.6l).
2https://youtu.be/4JxlYunz7k0

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 192

(a) Start (b) 60 seconds (c) 120 seconds

(d) 180 seconds (e) 240 seconds (f) 300 seconds

(g) 360 seconds (h) 420 seconds (i) 480 seconds

(j) 540 seconds (k) 600 seconds (l) 660 seconds

Figure 6.6: Solution controller demonstration (SME adaptation)

6.6.2 Performance

Performances achieved in trial runs are provided in Table B.3. The performance distribu-

tions of the tested SNS adaptations are illustrated in Figure 6.8 and summarised in Table

6.6. The Kruskal-Wallis H test is used to determine whether the performances of the

tested adaptations originate from the same distribution. The tested adaptations perform

significantly different to each other with a p-value of 1.34× 10−2.

A post hoc analysis is performed using pairwise Mann-Whitney U tests in order to

determine which adaptations are significantly different from each other (Table 6.7). No

statistically significant difference is found between the SBE adaptation and all other adap-

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 193

0 20 40 60 80

0

20

40

60
simulator

reality

Figure 6.7: Simulated and Real-world trajectories of solution controller

tations. Solution controllers for the SBN and SDE adaptations perform statistically better

than the SMN, SSE and SSN adaptations. The performance distributions for the SDN

and SEE adaptations perform significantly better than the SME, SMN, SSE and SSN

adaptations. Controllers evolved using the SEN adaptation perform significantly better

than solutions to the SSE and SSN adaptations. Lastly, the performance distribution for

the SME adaptation is significantly better than the SSE adaptation.

The SEE and SDN adaptations achieved the two highest mean and median performance

outcomes. Generally, adaptations consisting of multi-output SNNs perform significantly

worst than adaptations consisting of single-output SNNs. For single-output SNNs, adap-

tations using a Basic simulator configuration have lower performance medians compared

to Dropout or Ensemble simulator configurations. For multi-output SNNs, adaptations

using an Ensemble Multi-output simulator configuration have higher median perfor-

mances compared to adaptations using a Basic Multi-output simulator configuration.

The failure rates of adaptations are given in Table 6.8. Failures occur when the Snake

robot turns onto its back and can no longer be tracked. A solution can traverse a significant

distance when evaluated but can still fail due to turning behaviours. The SDN and SME

adaptations have the lowest failure rate at 13.3%. The second lowest failure rate is 16.7%

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 194

S
B
E

S
B
N

S
D
E

S
D
N

S
E
E

S
E
N

S
M
E

S
M
N

S
S
E

S
S
N

−60

−40

−20

0

20

40

60

80

100

P
er
fo
rm

an
ce

M
et
ri
c
(c
m
)

Figure 6.8: Performance distributions for SNS adaptations

for the SEE and SEN adaptations. The third lowest failure rate (20.0%) is observed for

the SSN adaptation. The SBE and SMN adaptations have a failure rate of 23.3% and the

SDE adaptation has a failure rate of 30.0%. The highest failure rates are observe for the

SBN (36.7%) and SSE (50.0%) adaptations.

If the SNS adaptation trial runs with and without simulator noise are compared to each

other, noiseless trials have a median performance of 22.7 centimetres and an IQR between

6.1 and 52.0 centimetres. Trial runs with simulator noise have a median performance of

23.3 centimetres and an IQR between 5.2 and 45.8 centimetres. Simulator noise does not

appear to greatly affect the likely performance of solutions controllers for the Snake robot.

The time taken to complete a single trial run of the SNS approach is highly dependent

on the simulator configuration used. Controller evaluations are slower on more complex

simulator configurations. The estimated runtime for executing a single trial run of the SNS

approach for adaptations using the tested simulator configurations are given in Table 6.9.

Durations are estimated using a relatively high-end computer (AMD Ryzen Threadripper

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 195

Mean Median Q1 Q3 Standard Deviation

SBE 26.2 31.4 -0.9 65.0 45.1

SBN 32.3 32.2 10.5 53.1 34.0

SDE 36.9 39.7 11.7 66.2 35.7

SDN 37.0 43.2 14.9 66.5 31.3

SEE 42.6 49.7 21.8 64.0 35.1

SEN 33.4 37.3 -2.6 59.8 32.8

SME 21.1 17.9 9.1 34.5 19.1

SMN 17.5 12.3 5.4 25.2 15.8

SSE 13.0 8.5 -0.3 19.2 19.8

SSN 13.6 9.1 3.6 20.4 16.7

Table 6.6: Performance statistics for the SNS adaptations

1920X 4.0 GHz) without using a Graphics Processing Unit (GPU). The shortest runtime

durations are seen for trial runs consisting of Basic Multi-output and Basic simula-

tor configurations. SNS trial runs using the Basic and Basic Multi-output simulator

configurations take approximately 2.5 and 2 hours to complete, respectively. Adaptations

consisting of an Ensemble Multi-output simulator configuration take approximately 5

hours to complete. Adaptations consisting of Ensemble or Dropout simulator configu-

rations take the longest to complete at 7.5 or 6 hours, respectively.

Note that these durations are in hours while all Hexapod SNS adaptations take less

than 15 minutes to complete. The Snake Robot SNNs consist of 3 times as many hidden

layers compared to the Hexapod robot SNNs. A head orientation component is simulated

with the Snake robot while the Hexapod robot orientations are not simulated. The con-

troller population size for the Snake robot ER process is 4 time larger than the Hexapod

robot. Hexapod robot controllers consist of 11 commands while each Snake robot con-

troller consists of 40 commands. SNN predictions for the Hexapod robot are independent

of each other which allows for bulk predictions. However, SNN predictions for the Snake

robot are dependent on the head orientation reached by previous commands which creates

significant overhead in predictions.

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 196

S
B

E
S

B
N

S
D

E
S

D
N

S
E

E
S

E
N

S
M

E
S

M
N

S
S

E

S
B

N
7.

62
×

10
−

1
-

S
D

E
3.

79
×

10
−

1
5.

20
×

10
−

1
-

S
D

N
4.

20
×

10
−

1
4.

64
×

10
−

1
9.

12
×

10
−

1
-

S
E

E
2.

12
×

10
−

1
1.

45
×

10
−

1
4.

92
×

10
−

1
4.

04
×

10
−

1
-

S
E

N
9.

47
×

10
−

1
9.

94
×

10
−

1
6.

84
×

10
−

1
4.

64
×

10
−

1
2.

84
×

10
−

1
-

S
M

E
4.

46
×

10
−

1
1.

05
×

10
−

1
5.

37
×

10
−

2
1.

99
×

10
−

2
1.

24
×

10
−

3
1.

41
×

10
−

1
-

S
M

N
3.

48
×

10
−

1
2.

71
×

10
−

2
1.

33
×

10
−

2
6.

38
×

10
−

3
2.

01
×

10
−

4
8.

24
×

10
−

2
3.

40
×

10
−

1
-

S
S

E
1.

09
×

10
−

1
3.

34
×

10
−

3
4.

64
×

10
−

3
6.

91
×

10
−

4
4.

35
×

10
−

5
3.

03
×

10
−

2
2.

24
×

10
−

2
1.

49
×

10
−

1
-

S
S

N
1.

71
×

10
−

1
5.

32
×

10
−

3
3.

50
×

10
−

3
1.

60
×

10
−

3
5.

27
×

10
−

5
3.

78
×

10
−

2
5.

37
×

10
−

2
2.

46
×

10
−

1
7.

28
×

10
−

1

Ta
bl

e
6.

7:
C

om
pa

ris
on

s
be

tw
ee

n
th

e
pe

rf
or

m
an

ce
di

st
rib

ut
io

ns
of

ad
ap

ta
tio

ns
fo

r
th

e
SN

S
ap

pr
oa

ch

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 197

Failures out 30 Failure Rate

SBE 7 23.3%

SBN 11 36.7%

SDE 9 30.0%

SDN 4 13.3%

SEE 5 16.7%

SEN 5 16.7%

SME 4 13.3%

SMN 7 23.3%

SSE 15 50.0%

SSN 6 20.0%

Table 6.8: Failure rates for the tested SNS adaptations

Time (hours)

Basic 2.5

Dropout 6

Ensemble 7.5

Ensemble Multi-output 5

Basic Multi-output 2

Table 6.9: SNS trial run durations

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 198

6.6.3 Transferability

Transferability values achieved in trial runs are provided in Table B.4. The transferability

distributions observed for the tested SNS adaptations are illustrated in Figure 6.9 and

summarised in Table 6.10. A lower transferability value indicates better correspondence

between simulated and real-world trajectories. The Kruskal-Wallis H test is used to de-

termine if the transferability distributions of the tested adaptations originate from the

same distribution. A p-value of 4.00× 10−11 is obtained which indicates that the tested

adaptations have significantly different transferability distributions.

S
B
E

S
B
N

S
D
E

S
D
N

S
E
E

S
E
N

S
M
E

S
M
N

S
S
E

S
S
N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
ra
n
sf
er
ab
il
it
y

Figure 6.9: Transferability distributions for SNS adaptations

A post hoc analysis is performed using Mann-Whitney U pairwise comparisons (Table

6.11). The SBE, SDE, SME, SSE and SSN adaptations have particularly poor median

transferability values. The SBE adaptation has a statistically worst transferability distri-

bution compared to all other adaptations, except the SSE adaptation.

The SDN adaptation achieved the best median transferability. The transferability

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 199

Mean Median Q1 Q3 Standard Deviation

SBE 21.06 8.25 4.33 15.31 33.15

SBN 4.05 2.17 1.30 4.07 5.15

SDE 10.34 3.62 2.49 11.36 15.36

SDN 7.71 1.75 1.05 3.37 27.23

SEE 3.90 2.70 2.21 4.51 3.07

SEN 4.01 1.81 0.87 4.63 5.44

SME 6.26 3.47 1.63 4.62 11.25

SMN 4.24 2.70 1.23 4.44 6.68

SSE 10.78 6.74 4.07 10.17 13.58

SSN 4.00 3.41 1.65 6.29 2.78

Table 6.10: Transferability statistics for the SNS adaptations

distribution of the SDN adaptation is not significantly better than the SBN, SEN, SME,

SMN and SSN adaptations. Results also indicate that adaptations with simulator noise

(SBN, SDN, SEN, SMN, SSN) generally have a better transferability compared to the

corresponding noiseless variations (SBE, SDE, SEE, SME, SSE).

Experimental runs with and without simulator noise are compared to each other. Ex-

perimental runs without simulator noise have a median transferability of 4.21 and an IQR

between 2.61 and 8.91. All experimental runs with simulator noise have a median trans-

ferability of 2.29 and an IQR between 1.09 and 4.73. Simulator noise greatly improves the

likely transferability of solutions when applying the SNS approach to a Snake robot.

6.6.4 Comparisons

The performance distributions between noise injected and noiseless SNS adaptations are

relatively close but transferability distributions differ greatly. Adaptations without sim-

ulator noise tend to greatly overestimate the real-world distances travelled. For noiseless

adaptations, the controller evolution process appears to exploit simulator weaknesses and

discovers overly optimistic performance outcomes. Simulator noise reduces an adaptations

susceptibility to exploit weaknesses in the simulator during the ER process.

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 200

SB
E

SB
N

SD
E

SD
N

SE
E

SE
N

SM
E

SM
N

SS
E

SB
N

3.
57

×
10
−

6
-

SD
E

4.
86

×
10
−

3
4.

03
×

10
−

3
-

SD
N

8.
20

×
10
−

7
3.

63
×

10
−

1
2.

53
×

10
−

4
-

SE
E

2.
49

×
10
−

6
1.

67
×

10
−

1
4.

51
×

10
−

2
1.

17
×

10
−

2
-

SE
N

8.
29

×
10
−

6
4.

83
×

10
−

1
2.

27
×

10
−

3
9.

59
×

10
−

1
5.

19
×

10
−

2
-

SM
E

2.
96

×
10
−

5
2.

40
×

10
−

1
9.

33
×

10
−

2
6.

15
×

10
−

2
9.

94
×

10
−

1
1.

19
×

10
−

1
-

SM
N

2.
68

×
10
−

6
8.

30
×

10
−

1
9.

88
×

10
−

3
3.

48
×

10
−

1
2.

97
×

10
−

1
4.

12
×

10
−

1
3.

79
×

10
−

1
-

SS
E

2.
77

×
10
−

1
6.

36
×

10
−

5
8.

50
×

10
−

2
2.

43
×

10
−

5
8.

66
×

10
−

5
1.

41
×

10
−

4
1.

00
×

10
−

3
3.

59
×

10
−

5
-

SS
N

2.
43

×
10
−

5
2.

28
×

10
−

1
1.

26
×

10
−

1
5.

55
×

10
−

2
8.

42
×

10
−

1
1.

15
×

10
−

1
8.

42
×

10
−

1
2.

90
×

10
−

1
9.

52
×

10
−

4

Ta
bl

e
6.

11
:

C
om

pa
ris

on
s

be
tw

ee
n

th
e

tr
an

sf
er

ab
ili

ty
di

st
rib

ut
io

ns
of

ad
ap

ta
tio

ns
fo

r
th

e
SN

S
ap

pr
oa

ch

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 201

The performance, transferability and failure rate of each SNS adaptation is now con-

sidered. Good SNS adaptations would ideally perform well in all these criteria. Figures

6.10 and 6.11 illustrate the relationships using three and two dimensional scatter plots.

Axes include the number of solution failures, median performance and median transfer-

ability. Each SNS adaptation tested is plotted as a single point and annotated with the

encoded adaptation name. Better adaptations have a high performance, a low transfer-

ability and few controller failures. In the scatter plot, the SEN, SDN and SEE adaptations

are grouped together in the ideal zone. Adaptations consisting of an Ensemble simulator

configuration, with or without simulator noise (SEN, SEE) or the Dropout simulator

configuration with noise (SDN) are the overall best SNS adaptations when applied to a

Snake robot.

performance

10
20

30
40

50 failures4
6 8 10 12 14

tra
ns
fe
ra
bi
lit
y

2

3

4

5

6

7

8

SBE

SBN
SDE

SDN
SEESEN

SME SMN

SSE

SSN

Figure 6.10: Scatter plot comparing the tested adaptations according to the number of

failed controller solutions, median performance and median transferability

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 202

10 20 30 40 50
Performance

2

3

4

5

6

7

8

T
ra
n
sf
er
ab
ili
ty

SBE

SBN

SDE

SDN

SEE

SEN

SME

SMN

SSE

SSN

(a) Transferability versus performance

10 20 30 40 50
Performance

4

6

8

10

12

14

F
ai
lu
re

ra
te

SBE

SBN

SDE

SDN

SEESEN

SME

SMN

SSE

SSN

(b) Failure rate versus performance

Figure 6.11: Scatter plot (2D) comparing the tested adaptations according to the number

of failed controller solutions, median performance and median transferability

6.6.5 Simulated and Real-world Trajectories

The simulated and real-world trajectories of evaluated controller solutions for adaptations

consisting of Basic and Basic Multi-output simulator configurations are illustrated

in Figures 6.12 and 6.13. Simulated and real-world solution trajectories for adaptations

using the Dropout, Ensemble and Ensemble Multi-output simulator configurations

are presented in Figures 6.14 and 6.15. For each figure, the left sub-figures illustrate

the simulated trajectories of solution controllers while the right sub-figures present the

corresponding real-world trajectories. For each adaptation tested, simulated and real-

world trajectories are presented side-by-side in order to easily visualise differences.

The SBE and SSE adaptations (Figure 6.12) obtained the two worst transferability

distributions compared to the other tested adaptations. The controller evolution process

greatly exploit weaknesses in the developed simulators. Compared to the SBE and SSE

adaptations, the adaptations consisting of ensembles or enable dropout during the ER

process demonstrate better transferability properties. The median simulated distances

travelled by solution controllers is 398.3 centimetres for the SBE adaptation, however,

real-world solution trajectories travelled a median distance of 42.4 centimetres.

Simulated solution trajectory distances are again significantly overestimated for the

SSE adaptation but mostly in the positive x direction instead of either the positive or

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 203

−200 −100 0 100 200 300 400 500 600 700 800
x position (cm)

−500

−400

−300

−200

−100

0

100

200

300

400

500

y
p
os
it
io
n
(c
m
)

(a) SBE simulation

−200 −100 0 100 200 300 400 500 600 700 800
x position (cm)

−500

−400

−300

−200

−100

0

100

200

300

400

500

y
p
os
it
io
n
(c
m
)

(b) SBE reality

−150 −100 −50 0 50 100 150 200
x position (cm)

−150

−100

−50

0

50

100

150

y
p
os
it
io
n
(c
m
)

(c) SSE simulation

−150 −100 −50 0 50 100 150 200
x position (cm)

−150

−100

−50

0

50

100

150

y
p
os
it
io
n
(c
m
)

(d) SSE reality

Figure 6.12: Solution paths for the Basic and Basic Multi-output simulator configurations

without noise

negative y direction. Only a single simulated solution travels in the negative x direc-

tion. No real-world trajectories travel a significant distance in the negative x direction.

The extent of the simulated overestimation is reduced compared to the SBE adaptation.

Simulated solutions from the SSE adaptations travel a median distance of 179.7 centime-

tres while real-world solutions travel a median distance of 26.8 centimetres. The Basic

Multi-output simulator configuration can reduce simulated overestimations compared to

the Basic simulator configuration.

The SBN and SSN adaptations (Figure 6.13) have a closer correspondence between

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 204

−40 0 40 80 120 160 200 240
x position (cm)

−160

−120

−80

−40

0

40

80

120

160

y
p
os
it
io
n
(c
m
)

(a) SBN simulation

−40 0 40 80 120 160 200 240
x position (cm)

−160

−120

−80

−40

0

40

80

120

160

y
p
os
it
io
n
(c
m
)

(b) SBN reality

−20 0 20 40 60 80 100
x position (cm)

−60

−40

−20

0

20

40

60

y
p
os
it
io
n
(c
m
)

(c) SSN simulation

−20 0 20 40 60 80 100
x position (cm)

−60

−40

−20

0

20

40

60

y
p
os
it
io
n
(c
m
)

(d) SSN reality

Figure 6.13: Solution paths for the Basic and Basic Multi-output simulator configurations

with noise

simulated and real-world solution trajectories compared to the noiseless adaptations. The

simulated and real-world median distances travelled are 115.4 and 43.7 centimetres, re-

spectively. A subset of controller solutions transfer poorly and the real-world curvature of

trajectories are not well captured.

For the SSN adaptation, the median distances travelled for the simulated and real-

world trajectories are 65.6 and 16.7 centimetres, respectively. The performance of solu-

tions for the SSN adaptation are particularly poor. The simulated trajectories move a

significant distance in the positive x direction but real-world trajectories do not display

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 205

−300 −200 −100 0 100 200 300 400
x position (cm)

−300

−200

−100

0

100

200

300

y
p
os
it
io
n
(c
m
)

(a) SDE simulation

−300 −200 −100 0 100 200 300 400
x position (cm)

−300

−200

−100

0

100

200

300

y
p
os
it
io
n
(c
m
)

(b) SDE reality

−100 −50 0 50 100 150 200 250 300 350 400
x position (cm)

−250

−200

−150

−100

−50

0

50

100

150

200

250

y
p
os
it
io
n
(c
m
)

(c) SEE simulation

−100 −50 0 50 100 150 200 250 300 350 400
x position (cm)

−250

−200

−150

−100

−50

0

50

100

150

200

250

y
p
os
it
io
n
(c
m
)

(d) SEE reality

−80 −60 −40 −20 0 20 40 60 80 100 120 140 160
x position (cm)

−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

(e) SME simulation

−80 −60 −40 −20 0 20 40 60 80 100 120 140 160
x position (cm)

−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

y
p
os
it
io
n
(c
m
)

(f) SME reality

Figure 6.14: Solution paths for Dropout, Ensemble and Ensemble Multi-output configu-

rations without noise

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 206

−100 −50 0 50 100 150 200 250
x position (cm)

−150

−100

−50

0

50

100

150

200

y
p
os
it
io
n
(c
m
)

(a) SDN simulation

−100 −50 0 50 100 150 200 250
x position (cm)

−150

−100

−50

0

50

100

150

200

y
p
os
it
io
n
(c
m
)

(b) SDN reality

−40 −20 0 20 40 60 80 100 120 140 160 180 200
x position (cm)

−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

120

y
p
os
it
io
n
(c
m
)

(c) SEN simulation

−40 −20 0 20 40 60 80 100 120 140 160 180 200
x position (cm)

−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

120

y
p
os
it
io
n
(c
m
)

(d) SEN reality

−20 0 20 40 60 80 100 120 140 160
x position (cm)

−60

−40

−20

0

20

40

60

80

100

120

y
p
os
it
io
n
(c
m
)

(e) SMN simulation

−20 0 20 40 60 80 100 120 140 160
x position (cm)

−60

−40

−20

0

20

40

60

80

100

120

y
p
os
it
io
n
(c
m
)

(f) SMN reality

Figure 6.15: Solution paths for Dropout, Ensemble and Ensemble Multi-output configu-

rations with noise

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 207

such behaviour. Few training patterns exhibit behaviours where the Snake robot travels a

significant distance in the positive x direction without also moving a significant distance

in the positive or negative y directions.

Solutions developed using noiseless simulator configurations that consist of ensembles

(SEE, SME) or enable dropout (SDE) during the ER process (Figure 6.14) greatly over-

estimate the actual distances travelled compared to adaptation variations with simulator

noise. However, the degree of overestimation is not as drastic compared to the SBE or

SSE adaptations. The median simulated distances travelled for the SEE, SME and SDE

adaptations are 200.9, 98.1 and 276.9 centimetres, respectively. The median real-world

distances travelled for the SEE, SME and SDE adaptations are 60.6, 31.6 and 63.4 cen-

timetres, respectively.

The median simulated distances travelled for solutions produced by the SEN, SMN

and SDN adaptations (Figure 6.15) are 98.7, 63.0 and 120.6 centimetres, respectively. The

median real-world solution distances travelled for the SEN, SMN and SDN adaptations

are 45.8, 22.4 and 46.0 centimetres, respectively. Adaptations consisting of multi-output

SNNs tends to traverse significantly shorter real-world distances compared to single-output

SNNs. For the SMN adaptation, simulated solutions travelling a significant distance in the

positive x-direction when in reality most movement is in the positive/negative y-directions.

The simulated behaviours for the Snake robot appear to be greatly affected by the chosen

simulator configuration.

The SDN and SEN adaptations demonstrate the most correspondence between simu-

lated and real-world trajectories. However, the SDN adaptation has a greater correspon-

dence between simulated and real-world behaviours compared to the SEN adaptation.

The SEE adaptation generally performs well and has a low failure rate but there is little

correspondence between simulated and real-world trajectories.

6.6.6 Best Controllers

The best performing solution to each SNS adaptation are illustrated in Figures 6.16 and

6.17. Each sub-figure has a different scaling dimension depending on distances travelled.

Dashed lines represent the simulated trajectories of evaluated solution controller. Solid

lines represent the real-world trajectories of solution controllers. The robot’s initial head-

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 208

ing is illustrated by a red arrow facing the negative x-direction and pointing at the origin.

The simulated and real-world final position headings for each solution are illustrated as

red directional arrows.

0 100 200 300 400
0

100

200

300

400

simulator

reality

(a) Best SBE controller

0 20 40 60 80 100 120
−80

−60

−40

−20

0

20

40 simulator

reality

(b) Best SBN controller

0 20 40 60 80 100 120 140 160 180
−40

−20

0

20

40

60

80

100

120

140 simulator

reality

(c) Best SSE controller

0 20 40 60 80 100 120
−80

−60

−40

−20

0

20

40 simulator

reality

(d) Best SSN controller

Figure 6.16: Best performing solutions for the Basic and Basic Multi-output simulator

configurations

The best solution controllers for the SBE (Figure 6.16a) and SDE (Figure 6.17a)

adaptations appear to have relatively similar simulated and real-world trajectories. The

simulated distances travelled in the upward direction are greatly overestimated and poorly

captures the real-world curvature of the trajectories.

The SBN (Figure 6.16b) and SEE (Figure 6.17c) adaptations appear to have simi-

lar solutions trajectories for their best performing solutions. Both simulated trajectories

overestimate the distances travelled but the overall direction is accurate. The simulated

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 209

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

simulator

reality

(a) Best SDE controller

0 25 50 75 100

−125

−100

−75

−50

−25

0 simulator

reality

(b) Best SDN controller

0 50 100 150 200

−200

−150

−100

−50

0
simulator

reality

(c) Best SEE controller

0 20 40 60 80 100

0

20

40

60

80

100

simulator

reality

(d) Best SEN controller

0 20 40 60 80 100 120 140
−100

−80

−60

−40

−20

0

20

40 simulator

reality

(e) Best SME controller

−20 0 20 40 60 80 100

−60

−40

−20

0

20

40 simulator

reality

(f) Best SMN controller

Figure 6.17: Best performing solutions for the Dropout, Ensemble and Ensemble Multi-

output configurations

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 210

trajectory for the best SEE adaptations is overestimated significantly more than than the

best SBN solution. Trajectories move towards the bottom right. The slight real-world

curvature is not particularly well captured in simulation.

For the best solutions to the SSE (Figure 6.16c) and SEN (Figure 6.17d) adaptations,

controllers possess relatively similar real-world and simulated trajectories. The real-world

curvature of the trajectories are not well simulated and there are significant differences

in the final simulated and real-world headings. The overall directions and distances trav-

elled are relatively accurate. The simulator overestimates the distance travelled for the

SSE adaptation. The simulated distance travelled for the best SEN adaptation is not

overestimated.

The best solution controller for the SDN adaptation (Figure 6.17b) has a relatively

unique solution compared to the other best solutions. The simulated and real-world tra-

jectories move downwards. The real-world distance travelled is overestimated but the

simulated and real-world final headings are reasonably close.

The SME (Figure 6.17e) and SMN (Figure 6.17f) adaptations appear to have relatively

similar solution trajectories for the best performing solutions. The simulate and real-

world trajectories are similar in shape and trajectories move towards the bottom right in

direction. There is good correspondence between the simulated and real-world headings

and distances travelled.

The best solution controller for the SSN adaptation (Figure 6.16d) has a simulated

trajectory moving towards the right while the real-world trajectory is towards the bottom

right. The simulated distance travelled is relatively accurate but the direction is off. The

simulated curvature and final heading are significantly different compared to reality.

Behavioural metrics for the best performing solution controller to each SNS adaptation

is given in Table 6.12. The performance and transferability columns are defined as in

previous sections. The position error is the Euclidean distance between a solution’s final

simulated and real-world positions. The actual distance is the Euclidean distance between

the starting and final positions of the real-world trajectory. The simulated distance is the

Euclidean distance between the starting and final positions in simulation. The heading

error is the difference between the robot’s final simulated and real-world position headings.

For the best performing solution controllers, solutions using noiseless adaptations tend

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 211

P
os

it
io

n
A

ct
ua

l
Si

m
ul

at
ed

H
ea

di
ng

A
da

pt
at

io
n

P
er

fo
rm

an
ce

T
ra

ns
fe

ra
bi

lit
y

E
rr

or
(c

m
)

D
is

ta
nc

e
(c

m
)

D
is

ta
nc

e
(c

m
)

E
rr

or
(d

eg
re

es
)

SB
E

93
.1

2.
62

30
2.

6
11

5.
7

38
7.

7
75

.1

SB
N

73
.3

0.
66

49
.8

75
.0

12
0.

5
41

.1

SD
E

92
.5

2.
45

28
8.

4
11

7.
5

37
1.

7
73

.7

SD
N

76
.1

0.
66

51
.8

78
.3

12
4.

5
29

.5

SE
E

10
6.

4
1.

29
14

0.
0

10
8.

6
24

4.
6

53
.4

SE
N

93
.2

0.
30

29
.6

97
.7

98
.0

99
.6

SM
E

71
.4

0.
60

46
.1

76
.9

10
7.

7
40

.7

SM
N

53
.4

0.
57

37
.0

64
.7

59
.4

32
.4

SS
E

97
.0

0.
57

55
.1

97
.0

15
2.

0
11

7.
1

SS
N

67
.3

0.
62

50
.7

82
.2

85
.8

71
.1

Ta
bl

e
6.

12
:

B
eh

av
io

ur
al

m
et

ric
s

of
th

e
be

st
co

nt
ro

lle
r

in
ea

ch
ad

ap
ta

tio
n

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 212

to perform better than the corresponding noise injected adaptation. In Table 6.12, the

noiseless Basic (SBE), Dropout (SDE) and Ensemble (SEE) simulator configurations

have particularly bad transferability values compared to the noise injected variations (SBN,

SDN and SEN). However, the Ensemble Multi-output (SME and SMN) and Basic

Multi-output (SSE and SSN) simulator configurations have similarly good transferabil-

ity measures. For the final position errors, actual distances and simulated distances, the

noiseless simulator configurations (SBE, SDE, SEE, SME, SSE) have higher values com-

pared to the corresponding noise injected variations (SBN, SDN, SEN, SMN, SSN). How-

ever, the error between the simulated and real-world final position headings are higher for

the noiseless simulator configuration, except for the Ensemble simulator configuration.

These top performer examples illustrate that simulating Snake robot behaviours accu-

rately over many commands is a difficult problem. Practical applications in future work

would likely require some form of real-time feedback mechanism in order to correct for

drift. Top performing SNS adaptations might be dependent on the goal task and/or robot

morphology used.

6.7 Comparing the SNS approach for the Hexapod and Snake

robots

The experimental results identified different ideal SNS adaptation settings between the

Hexapod and Snake robots. The best performing and highly transferable adaptation

for the Hexapod robot consisted of a noiseless Ensemble Multi-output simulator con-

figuration (HME). For the Hexapod robot, all noiseless adaptations perform better than

adaptations with noise. Additionally, Hexapod simulator configurations with multi-output

SNNs have significantly better transferability compared to single-output SNNs.

For the Snake robot, controllers can fail by turning upside down when evaluated.

Compared to the Hexapod robot, the SNS approach is less consistent in finding effective

controller solutions for the Snake robot. The Snake robot has more complex dynamics and

a larger number of commands to execute. The complex Snake robot morphology used in

this research is seldom used to investigate ER approaches in the literature. This is likely

due to the difficulty with accurately simulating Snake robot behaviours and developing

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 213

transferable solutions using current ER approaches.

A noiseless Ensemble Multi-output adaptation (SME) performs relatively poorly

when applied to the Snake robot. If performance, transferability and failure rates are con-

sidered together, the best Snake robot adaptations consisted of either the noisy Dropout

simulator configuration (SDN) or the Ensemble simulator configurations (SEE and SEN).

For the Snake robot, adaptations with noise tend to have better transferability proper-

ties compared their noiseless counterparts. The Snake robot simulators developed in this

work required the modelling of the head orientation. The extra behavioural component

increased the likelihood of inaccuracies building up during simulated controller evaluations.

The Hexapod and Snake robot simulators are trained using similar amounts of training

patterns. Data collection for the Snake robot is slower. The data collection process can

generate approximately 308 patterns per hour for the Hexapod robot and 204 patterns per

hour for the Snake robot. The SNNs used to simulate the Snake robot are significantly

larger compared to the Hexapod SNNs. This indicates the behaviours modelled for the

Snake robot are more complex compared to the Hexapod robot. Controller evolution for

the Snake robot is significantly slower compared to the Hexapod robot. For the Hexapod

robot, a trial run of the SNS approach can take between 1.5 and 15 minutes to complete,

depending on the simulator configuration used. For the Snake robot, a trial run of the

SNS approach can take between 2 and 7.5 hours to complete, depending on the simulator

configuration used.

6.8 Conclusion

The SNS approach can be used to discover effective gait controllers for a Snake robot.

Many independent ER trial runs may be required in order to produce multiple solutions.

This increases the likelihood of discovering effective solutions. This chapter is a first time

demonstration of the viability of the SNS approach applied to a complex Snake robot

without relying on controller designs with significant prior human knowledge.

The experimental work performed in this chapter is a repeat of the Hexapod SNS exper-

imental work. Behavioural data is collected by evaluating randomly generated controllers

on a real-world Snake robot. The collected behavioural data is used to independently train

CHAPTER 6. SNAKE STATIC NEURO-SIMULATION 214

various simulator configurations that model Snake robot behaviours. Proposed adapta-

tions are investigated in the experimental work, producing representative samples of so-

lution controllers for each SNS adaptation. The performance, failure and transferability

properties of the tested adaptations were presented and analysed.

The Ensemble Multi-output simulator configuration without noise (SME) did not

perform significantly better than other adaptations. The ideal SNS adaptation for the

Snake robot differs from the ideal SNS adaptation for the Hexapod robot. The best adap-

tations (SEE, SDN and SEN) are identified by considering performance, transferability

and failure properties of the tested SNS adaptations. The addition of simulator noise can

significantly improve the likely transferability of controller solutions without negatively

affecting performance outcomes.

Adaptations consisting of multi-output SNNs tend to have simulated trajectories that

move from the head towards the centre of the robot. Single-output SNN configurations

usually produce simulated trajectories where the robot shifts sideways. The overall be-

havioural differences of simulated trajectories between adaptations using single or multi-

output SNNs indicates that the SNN architecture can significantly affect simulated be-

haviours and the effectiveness of the SNS approach. Future research should investigate

actually evolving the simulator configurations and SNN architectures in order to improve

transferability.

Chapter 7

SNAKE BOOTSTRAPPED

NEURO-SIMULATION

7.1 Introduction

Prior BNS related research performed on the Snake robot relied on smart controller de-

signs with prior knowledge of locomotion modes. No prior work has investigated the BNS

approach on a Snake robot morphology using a controller design that does not rely on a

high level of prior human knowledge. The BNS approach eliminates the data collection

phase required by the SNS approach. Data collection, simulator training and controller

evolution happen simultaneously. This chapter is a repeat of the Hexapod BNS exper-

imental work but applied to a Snake robot. Details of the experimental procedures are

discussed in Section 7.2.

In order to identify effective BNS adaptations, all combinations of adaptation settings

are investigated completely in simulation (Section 7.3). A successful Snake robot solution

controller is demonstrate in Section 7.4. Promising BNS adaptations are identified based

on these simulated BNS experiments (Section 7.5). Promising adaptations are validated

on a real-world Snake robot by way of a set of validation experiments (Section 7.6). For

the Snake robot, the SNS and BNS experimental results are compared to each other in

Section 7.7. Lastly, conclusions to the chapter are drawn in Section 7.8.

215

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 216

7.2 Experimental Procedure

The simulated BNS experiments (Section 7.3.1) follow the methodology illustrated in

Figure 7.1 (Methodology B). Once promising BNS adaptations have been identified, these

adaptations are demonstrated using Methodology C (Figure 7.2).

Figure 7.1: Methodology B: Simulated experimental trial of BNS adaptation

Figure 7.2: Methodology C: Real-world demonstration of BNS adaptation

The data acquisition process is discussed in Section 7.2.1. The controller design is

similar to that used during the SNS experimental work for the Snake robot, however,

certain modifications are required (Section 7.2.2). The simulator design and simulator

training process are discussed in Section 7.2.3.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 217

7.2.1 Hardware and Data Capture

The Snake robot morphology discussed in Section 3.2.2 remains unchanged from the SNS

experimental work on the Snake robot. During the execution of the BNS process, con-

trollers are selected from the evolving controller population in order to acquire behavioural

data. The collected behavioural data is periodically integrated into the simulator training

process. If the robot fails by turning upside down during a controller evaluation, the eval-

uation is paused and the robot is reset to the starting position. Once the robot is reset,

the paused evaluation is resumed.

7.2.2 Controllers

The fitness function (Algorithm 3) remains unchanged from the SNS approach applied

to the Snake robot. The Snake robot controller design remains mostly unchanged from

the SNS experimental work (Section 6.2.1). However, uncertainty penalty normalisation

requires modification. The uncertainty penalty normalisation parameter settings are ini-

tially unknown due to no behavioural dataset being available at the start of the BNS

approach. The normalisation parameter settings are continually recalculated based on

the maximum standard deviations observed when evaluating the controller population.

The same calculation is performed for the BNS approach applied to the Hexapod robot

(Section 5.2.2).

7.2.3 Simulator

The simulator design is similar to the SNS experimental work (Section 6.2.2). The BNS

approach requires modifications to the behavioural dataset standardisation, simulator

training and simulator noise generation. Similar modifications are required for the BNS

approach when applied to the Hexapod robot (Section 5.2.3).

The behavioural dataset is standardised before any simulator training is performed.

All behavioural data features and outputs are standardised to have a zero mean and unit

standard deviation. The parameter setting values used to standardise the behavioural data

are periodically recalculated (twice per sampling evaluation). Parameter setting values are

calculated as the mean and standard deviation of the latest available behavioural dataset.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 218

Dynamic SNNs are periodically trained after every 7 behavioural patterns are collected

(twice per sampling evaluation). A sampling evaluation only executes a controller for a

single cycle in order to reduce the total runtime required to complete a BNS trial run.

For each behavioural pattern collected, there is an 80% probability it will be added to the

training dataset and a 20% probability of being added to the validation dataset. Each

training event involves 1000 iterations of the Adam training algorithm. Early stopping

is used where training terminates when the validation MSE does not improve within 10

iterations. Dynamic SNN weights associated with the lowest validation MSE values are

used after each training event.

The simulator noise parameter settings are dynamically calculated during the BNS

approach. After every simulator training event, the parameter settings used to generate

simulator noise are recalculated. The noise distribution of each behavioural component is

Gaussian with a mean of zero and a standard deviation equal the standard deviation of

the observed errors between the simulator and validation dataset.

7.3 BNS Experiments

The BNS experimental work consists of two phases. The first phase investigates all combi-

nations of BNS adaptation settings in a completely simulated environment (Section 7.3.1).

Once promising adaptations are identified, validation experiments are used to demonstrate

the viability of the BNS approach on a real-world Snake robot (Section 7.3.2).

7.3.1 The Simulated BNS Experiments

Static SNNs developed in the previous chapter are used as an alternative to a real-world

Snake robot. A large number of BNS trial runs are needed to complete the Simulated

BNS Experimental work. Investigating a large number of BNS adaptations is practically

infeasible in reality. Controller evolution parameter settings used for each BNS trial run

remains unchanged from the SNS experimental work (Table 6.4). The High Fitness

sampling strategy uses a tournament selection method with a tournament size of 280

randomly chosen controllers. This tournament size is chosen based on prior research

[Woodford et al., 2017].

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 219

A total number of 64 unique combinations of adaptation settings are tested (Tables

7.1 to 7.4). Encoded names for each adaptation are given in the first columns. The first

letter of the encoding scheme stands for the Snake robot morphology (S: Snake robot).

The second letter indicates the simulator configuration used (B: Basic, E: Ensemble, D:

Dropout, M: Ensemble Multi-output, S: Basic Multi-output). The third letter indicates

the resetting procedure (N: None, C: Controller, S: Simulator, B: Both). The fourth letter

indicates if simulator noise is present (N: including simulator noise; E: exclude simulator

noise). The sampling strategy (T: Tournament, U: Most uncertain) is indicated by the

last letter of the encoded name. Thirty independent trial runs of the BNS approach are

conducted per adaptation.

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Samplng

Strategy

SBNNT Basic None Yes High Fitness

SBNET Basic None No High Fitness

SENNT Ensemble None Yes High Fitness

SENNU Ensemble None Yes Most Uncertain

SENEU Ensemble None No Most Uncertain

SENET Ensemble None No High Fitness

SDNNT Dropout None Yes High Fitness

SDNET Dropout None No High Fitness

SDNNU Dropout None Yes Most Uncertain

SDNEU Dropout None No Most Uncertain

SMNEU Ensemble Multi-output None No Most Uncertain

SMNNT Ensemble Multi-output None Yes High Fitness

SMNNU Ensemble Multi-output None Yes Most Uncertain

SMNET Ensemble Multi-output None No High Fitness

SSNNT Basic Multi-output None Yes High Fitness

SSNET Basic Multi-output None No High Fitness

Table 7.1: BNS adaptations using no resetting procedure

The procedure for each Simulated BNS Experimental run is as follows:

1. A specific adaptation is chosen from the configurations listed in Tables 7.1 to 7.4.

2. The BNS approach described in Methodology B (Figure 7.1) is performed.

3. The ER process continues until 50 controllers have been evaluated using the substi-

tute real-world. For each sampling evaluation, only a single cycle of the controller is

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 220

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Sampling

Strategy

SBCNT Basic Controller Yes High Fitness

SBCET Basic Controller No High Fitness

SECNT Ensemble Controller Yes High Fitness

SECNU Ensemble Controller Yes Most Uncertain

SECEU Ensemble Controller No Most Uncertain

SECET Ensemble Controller No High Fitness

SDCNT Dropout Controller Yes High Fitness

SDCET Dropout Controller No High Fitness

SDCNU Dropout Controller Yes Most Uncertain

SDCEU Dropout Controller No Most Uncertain

SMCEU Ensemble Multi-output Controller No Most Uncertain

SMCNT Ensemble Multi-output Controller Yes High Fitness

SMCNU Ensemble Multi-output Controller Yes Most Uncertain

SMCET Ensemble Multi-output Controller No High Fitness

SSCNT Basic Multi-output Controller Yes High Fitness

SSCET Basic Multi-output Controller No High Fitness

Table 7.2: BNS adaptations using the controller resetting procedure

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Sampling

Strategy

SBSNT Basic Simulator Yes High Fitness

SBSET Basic Simulator No High Fitness

SESNT Ensemble Simulator Yes High Fitness

SESNU Ensemble Simulator Yes Most Uncertain

SESEU Ensemble Simulator No Most Uncertain

SESET Ensemble Simulator No High Fitness

SDSNT Dropout Simulator Yes High Fitness

SDSET Dropout Simulator No High Fitness

SDSNU Dropout Simulator Yes Most Uncertain

SDSEU Dropout Simulator No Most Uncertain

SMSEU Ensemble Multi-output Simulator No Most Uncertain

SMSNT Ensemble Multi-output Simulator Yes High Fitness

SMSNU Ensemble Multi-output Simulator Yes Most Uncertain

SMSET Ensemble Multi-output Simulator No High Fitness

SSSNT Basic Multi-output Simulator Yes High Fitness

SSSET Basic Multi-output Simulator No High Fitness

Table 7.3: BNS adaptations using the simulator resetting procedure

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 221

Adaptations
Simulator

Configuration

Resetting

Procedure

Simulator

Noise

Sampling

Strategy

SBBNT Basic Both Yes High Fitness

SBBET Basic Both No High Fitness

SEBNT Ensemble Both Yes High Fitness

SEBNU Ensemble Both Yes Most Uncertain

SEBEU Ensemble Both No Most Uncertain

SEBET Ensemble Both No High Fitness

SDBNT Dropout Both Yes High Fitness

SDBET Dropout Both No High Fitness

SDBNU Dropout Both Yes Most Uncertain

SDBEU Dropout Both No Most Uncertain

SMBEU Ensemble Multi-output Both No Most Uncertain

SMBNT Ensemble Multi-output Both Yes High Fitness

SMBNU Ensemble Multi-output Both Yes Most Uncertain

SMBET Ensemble Multi-output Both No High Fitness

SSBNT Basic Multi-output Both Yes High Fitness

SSBET Basic Multi-output Both No High Fitness

Table 7.4: BNS adaptations using the controller and simulator resetting procedures

evaluated in order to reduce the time taken to complete a BNS trial run.

4. The fittest controller in the final generation is selected as the solution.

5. The solution trajectories generated by the Static and Dynamic simulators are col-

lected for analysis.

The number of controller evolution generations iterated per sampling evaluation de-

pends on the computational complexity of the simulator configuration used. Simulated

controller evaluations are slower when using more complex simulator configurations. The

number of controller evolution generations achieved per sampling evaluation for each sim-

ulator configuration are given in Table 7.5. The ER process can iterate 23 generations

per sampling evaluation for the Basic simulator configuration, 10 generations for the

Dropout simulator configuration, 8 generations for the Ensemble simulator configura-

tion, 12 generations for the Ensemble Multi-output simulator configuration and 30

generations for the Basic Multi-output simulator configuration.

A BNS trial run consisting of an Ensemble simulator configuration can only produce

400 controller generations after 50 sampling evaluations while the Basic Multi-output

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 222

simulator configuration produces 1500 controller generations during the same time pe-

riod. Adaptations using more complex simulator configurations have the disadvantage of

producing fewer controller generations.

Simulator Configuration Number Generations per Sampling Evaluation

Basic 23

Dropout 10

Ensemble 8

Ensemble Multi-output 12

Basic Multi-output 30

Table 7.5: Number of controller evolution generations iterated per sampling controller

evaluation for the BNS approach on the Snake robot

7.3.2 The BNS Validation Experiments

Six promising BNS adaptations are identified from the Simulated BNS Experimental work

and are validated in reality. Each chosen adaptation is validated with 5 independent trial

runs of the BNS approach. The simulated and real-world solution trajectories are recorded

and analysed in Section 7.6.

The procedure for each BNS validation experimental run is as follows:

1. A specific adaptation is chosen from the configurations listed in Tables 7.1 to 7.4.

2. The BNS approach described in Methodology C (Figure 7.2) is performed.

3. The ER process continues until 50 controllers have been evaluated using the real-

world Snake robot.

4. The fittest controller in the last generation is selected as the solution.

5. The solution trajectories generated in reality and the simulator are collected for later

analysis.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 223

7.4 Successful BNS Snake Controller

The BNS approach is successfully used to develop effective distance maximising gait con-

trollers for the Snake robot. Simulators developed using the BNS approach are often more

accurate compared to simulators developed using the SNS approach. Significantly less

behavioural data is collected when compared to the SNS approach in order to produce

a single solution. Certain BNS adaptations investigated demonstrate better performance

and transferability properties compared to the best SNS adaptations. None of the BNS

adaptation solutions demonstrated the failure behaviours observed with some solutions

developed using the SNS approach. The BNS approach is a more robust method for de-

veloping gait maximising controllers for the Snake robot. This section demonstrates a

single example solution produced by the BNS approach.

A time-lapse demonstration1 of a solution developed using the BNS approach is pre-

sented in Figure 7.3. The time-lapse is captured such that frames are 60 seconds apart.

The first command positions all joints into an initial stance, after which 13 commands

are executed 3 times in order to form cycles. The shape of the body is important for

preventing rolling behaviours. The starting position (Figure 7.3a) begins with the robot

being completely straight, upright and the entire body making contact with the ground.

The head of the robot is towards the left and the tail is on the right. The head of the

robot angles upwards and the tail-end moves slightly upwards after 60 seconds (Figure

7.3b). The middle and head portion of the body shifts downwards (Figure 7.3c), followed

by the robot adjusting its orientation such that the head is upright (Figure 7.3d). In order

to reach the position in Figure 7.3e, the middle part of the body shifts downwards and

pulls the head and tail down too. The head orientation is again adjusted to be upright

(Figure 7.3f). The head again moves downward (Figure 7.3g) and the body straightens in

order to pull the tail further down (Figure 7.3h).

1https://youtu.be/NLy9bBuuz7Q

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 224

(a) Start (b) 60 seconds

(c) 120 seconds (d) 180 seconds

(e) 240 seconds (f) 300 seconds

(g) 360 seconds (h) 420 seconds

Figure 7.3: Solution controller demonstration (SMSNU adaptation)

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 225

7.5 The Simulated BNS Experiment Results

A high level performance comparison between groupings of adaptation settings is presented

in Section 7.5.1. Similarly, transferability comparisons between adaptation settings are

studied in Section 7.5.2. The convergence properties of the tested resetting procedures

over time are covered in Section 7.5.3. The best performing adaptations are identified and

presented in Section 7.5.4. Lastly, a summary of the Simulated BNS Experimental results

is given in Section 7.5.5.

7.5.1 Overall Comparisons

The performance distributions of the tested adaptation settings are presented in this sec-

tion. Each adaptation setting is grouped over all other adaptation settings and the perfor-

mance distributions are analysed. Adaptation settings investigated include the Simulator

Configuration (Section 7.5.1.1), Resetting Procedures (Section 7.5.1.2), Simulator Noise

(Section 7.5.1.3) and Sampling Strategies (Section 7.5.1.4). A summary regarding the

overall comparison results is given in Section 7.5.1.5.

7.5.1.1 Simulator Configurations

The performance distributions observed for the tested simulator configurations are illus-

trated in Figure 7.4 and summary statistics are given in Table 7.6. All statistical com-

parisons use a significance level of 5%. The Kruskal-Wallis H test is used to determine if

performance distributions of the tested simulator configurations originate from the same

distribution. Performance distributions for the tested simulator configurations are signif-

icantly different from each other, with a p-value of 5.52× 10−7. A post hoc analysis is

performed using pairwise Mann-Whitney U tests (Table 7.7).

The Basic Multi-output simulator configuration has the highest mean and median

performance. However, the Basic Multi-output simulator configuration only performs

significantly better than the Basic and Dropout simulator configurations. The Ensem-

ble and Basic Multi-output simulator configurations have similar median and IQR

values, with the Ensemble simulator configuration having a lower standard deviation in

performances. Adaptations using the Basic Multi-output simulator configuration ap-

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 226

pear to benefit greatly from producing the most controller generations. The Dropout

simulator configuration has a significantly worse performance distribution compared to all

other simulator configurations.

Basic Ensemble Dropout Ensemble
Multi-output

Basic
Multi-output

−25

0

25

50

75

100

125

150

P
er
fo
rm

an
ce

(c
m
)

Figure 7.4: Performance comparison between simulator configurations

Mean Median Q1 Q3 Std. Dev.

Basic 52.2 47.8 28.1 67.7 38.0

Ensemble 54.8 49.2 31.5 74.1 36.0

Dropout 43.5 41.6 27.3 58.2 24.2

Ensemble Multi-output 53.6 47.4 34.2 68.2 31.3

Basic Multi-output 65.6 49.3 33.6 78.0 55.2

Table 7.6: Summary Statistics for the simulator configuration performance distributions

7.5.1.2 Resetting Procedures

The performance distributions of the tested resetting procedures are illustrated in Figure

7.5 and summary statistics are given in Table 7.8. The Kruskal-Wallis H test is used to

determine if performance distributions of the tested resetting procedures originate from

the same distribution. The performance distributions were found to differ significantly

from each other, with a p-value of 8.42× 10−16. The performance distributions of the

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 227

Basic Ensemble Dropout E. Multi-output

Ensemble 2.27× 10−1 -

Dropout 1.61× 10−2 7.66× 10−6 -

E. Multi-output 2.97× 10−1 7.99× 10−1 5.69× 10−6 -

Basic Multi-output 3.29× 10−2 2.00× 10−1 1.61× 10−6 1.46× 10−1

Table 7.7: The p-values of post hoc analysis comparing performance distributions between

simulator configurations

tested resetting procedures are compared to each other using pairwise Mann-Whitney U

tests (Table 7.9).

Mean Median Q1 Q3 Std. Dev.

None 61.5 52.3 35.0 76.4 45.0

Controller 44.6 40.5 28.1 57.6 26.0

Simulator 59.3 52.0 33.4 77.8 40.1

Both 45.4 42.0 27.1 58.7 27.0

Table 7.8: Summary statistics for the resetting procedure performance distributions

None Controller Simulator

Controller 7.54× 10−11 -

Simulator 7.49× 10−1 1.73× 10−9 -

Both 1.87× 10−9 6.24× 10−1 2.07× 10−8

Table 7.9: The p-values of post hoc analysis comparing performance distributions between

resetting procedures

The performance distributions do not appear particularly skewed towards either high

or low values. The controller resetting procedure has a significantly worse performance

distribution compared to the simulator resetting procedure. Periodically resetting only the

simulator or not resetting anything obtained the best performance distributions. There is

no significant performance difference between the simulator and no resetting procedures

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 228

None Controller Simulator Both

−20

0

20

40

60

80

100

120

140

P
er
fo
rm

an
ce

(c
m
)

Figure 7.5: Performance comparison between resetting procedures

(p-value of 7.49× 10−1). Periodically resetting only the controller population and/or the

simulator performs significantly worse compared to the other resetting procedures.

Not resetting controllers likely aids the ER process in exploiting good solutions. Con-

troller resetting destroys good solutions before the ER process can further exploit them

and the ER process cannot recover in time before the next reset. Simulator resetting

modifies the fitness landscape but does not completely destroy existing good solutions.

Not resetting or simply resetting the simulator preserves known good solutions over the

lifetime of the BNS approach.

7.5.1.3 Simulator Noise

Performance distributions for the inclusion or exclusion of simulator noise are illustrated

in Figure 7.6a and summary statistics given in Table 7.10. Not adding noise to simulated

controller evaluations performs significantly better compared to trials including simulator

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 229

noise. The p-value for the Mann-Whitney U test is 3.39× 10−47.

Mean Median Q1 Q3 Standard Deviation

Noise 40.6 39.1 25.7 54.0 22.2

Noiseless 64.8 57.7 37.5 82.3 43.0

Table 7.10: Summary statistics for the simulator noise performance distributions

Trial runs with simulator noise have a mean and median performance of 40.6 and

39.1 centimetres, respectively. Adaptations without simulator noise have a mean and

median performance of 64.8 and 57.7 centimetres, respectively. Adding simulator noise

can significantly complicate the fitness landscape and result in more exploration and less

exploitation. Controller evolution may be unable to exploit known good solutions due to

random changes in the fitness landscape. The median performance for noiseless solutions

is higher than 75% of all noise injected solutions. However, noiseless adaptations have close

to double the performance standard deviation compared to the noise injected adaptations.

Simulator noise appears to improve the consistency in performance of discovered solutions

but negatively affects likely performance.

7.5.1.4 Sampling Strategies

Performance distributions of the tested sampling strategies is illustrated in Figure 7.6b

and summary statistics are given in Table 7.11. No significant difference in performance is

found between the High Fitness and Most Uncertain sampling strategies. The p-value

for the Mann-Whitney U comparison test is 2.50× 10−1.

Mean Median Q1 Q3 Standard Deviation

Most Uncertain 50.9 44.9 30.6 66.4 31.1

High Fitness 53.8 47.3 30.4 68.7 39.1

Table 7.11: Summary statistics for the sampling strategy performance distributions

The High Fitness sampling strategy has a slightly better mean and median perfor-

mances. Little difference is observed between the sampling strategy IQR values. The Most

Uncertain sampling strategy has a slightly lower standard deviation in performances.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 230

Noise No Noise

0

50

100

150

P
er
fo
rm

an
ce

(c
m
)

(a) Performance distributions for simulator noise

Most Uncertain High Fitness

0

50

100

P
er
fo
rm

an
ce

(c
m
)

(b) Performance distributions for sampling

strategies

Figure 7.6: Performance distributions for simulator noise and sampling strategies

7.5.1.5 Summary

Performance distributions of the tested BNS adaptation settings are investigated and com-

pared. Observations presented are achieved by benchmarking the proposed adaptations

completely in a simulated environment. Results presented are based on high level aggre-

gations over many different adaptation settings and may not indicate ideal adaptations

settings for top performers.

The most influential adaptation setting for improving the likely performance outcomes

of solution controllers is the exclusion of simulator noise. Not including simulator noise

leads to a faster convergence in the ER process. The resetting procedure used is the

second most important adaptation setting to consideration for improving performance.

Using either simulator resetting or no resetting can significantly improve performance

outcomes compared to the other tested procedures. The simulator configuration used is

the third most important adaptation setting to consider. The Basic Multi-output and

Ensemble simulator configurations produce the best performance outcomes. The tested

sampling strategies do not significantly affect the likely performance of solutions.

7.5.2 Transferability

The transferability distributions of the tested adaptation settings are presented and dis-

cussed in this section. Each adaptation setting is grouped over all other adaptation settings

and the transferability distributions are analysed. Adaptation settings investigated include

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 231

the Simulator Configuration (Section 7.5.2.1), Resetting Procedures (Section 7.5.2.2), Sim-

ulator Noise (Section 7.5.2.3) and the Sampling Strategy (Section 7.5.2.4). Finally, a

summary of the transferability observations is given in Section 7.5.2.5.

7.5.2.1 Simulator Configurations

The transferability distributions of the tested simulator configurations are illustrated in

Figure 7.7 and summary statistics are given in Table 7.12. Lower transferability values

indicates a better correspondence between simulated and real-world solution trajectories.

The Kruskal-Wallis H test is used to determine whether the tested simulator configuration

transferability distributions originate from the same distribution. The p-value for the

comparison is 3.19× 10−30. The transferability distributions are significantly different to

each other.

Basic Dropout Ensemble Ensemble
Multi-output

Basic
Multi-output

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
ra
n
sf
er
ab
ili
ty

Figure 7.7: Transferability distributions for simulator configurations

A post hoc comparison of the simulator configuration transferability distributions is

performed using pairwise Mann-Whitney U tests (Table 7.13). The Basic simulator con-

figurations has a significantly worse transferability distribution compared to all other sim-

ulator configurations tested, except the Dropout simulator configuration. The Basic

simulator configuration has the worst transferability distribution with an IQR between

0.87 and 2.00.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 232

Mean Median Q1 Q3 Std. Dev.

Basic 1.75 1.42 0.87 2.00 1.58

Dropout 1.56 1.29 0.85 1.92 1.15

Ensemble 1.31 1.09 0.71 1.65 0.96

Ensemble Multi-output 1.03 0.83 0.50 1.28 0.96

Basic Multi-output 1.13 0.96 0.55 1.46 0.87

Table 7.12: Transferability statistics for the simulator configurations

The Ensemble Multi-output simulator configuration has the best overall transfer-

ability compared to the other configurations tested, with an IQR between 0.50 and 1.28.

The Ensemble Multi-output and Basic Multi-output simulator configurations are

not significantly different from each other in terms of overall transferability with a p-value

for the comparison being 6.06× 10−2. Simulator configurations consisting of multi-output

SNNs demonstrate improved transferability properties compared to adaptations consist-

ing of single-output SNNs. Additionally, grouping SNNs into ensembles also significantly

improves the likely transferability of solution controllers.

Basic Dropout Ensemble E. Multi-output

Dropout 2.31× 10−1 -

Ensemble 7.86× 10−6 4.32× 10−5 -

E. Multi-output 9.28× 10−20 3.56× 10−23 3.54× 10−10 -

Basic Multi-output 6.99× 10−10 1.16× 10−9 2.57× 10−3 6.06× 10−2

Table 7.13: Transferability distribution p-values for comparisons between simulator con-

figurations

7.5.2.2 Resetting Procedures

Transferability distributions of the tested resetting procedures is illustrated in Figure 7.8

and summary statistics are given in Table 7.14. The Kruskal-Wallis H test is used to

determine if the transferability distributions for the tested resetting procedures originate

from the same distribution. The p-value of the Kruskal-Wallis H test is 8.42× 10−16. The

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 233

transferability distributions of the tested resetting procedures are significantly different

from each other.

None Controller Simulator Both

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
ra
n
sf
er
ab
il
it
y

Figure 7.8: Transferability distributions for resetting procedures

Mean Median Q1 Q3 Standard Deviation

None 1.25 1.03 0.68 1.51 1.04

Controller 1.52 1.31 0.81 1.88 1.12

Simulator 1.21 0.94 0.59 1.44 1.19

Both 1.37 1.11 0.68 1.74 1.10

Table 7.14: Transferability statistics for the resetting procedures

A post hoc comparison is performed between the tested resetting procedure transfer-

ability distributions (Table 7.15). The simulator resetting procedure has a significantly

better transferability distribution compared to all other tested resetting procedures. Fre-

quent simulator resets reduces the likelihood that the ER process will exploit weaknesses

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 234

in the developing simulator, leading to better transferability properties. The controller

resetting procedure has a significantly worse transferability distribution compared to all

other resetting procedures. Periodic controller resetting reduces the ability of the ER pro-

cess to exploit good controller solutions and candidate solutions likely differ significantly

between resets. The ER is less able to recover from frequent controller resets. The no

resetting procedure and resetting both (simulator and controller population) do not have

significantly different transferability distributions.

None Controller Simulator

Controller 2.51× 10−6 -

Simulator 3.54× 10−2 1.31× 10−10 -

Both 1.00× 10−1 4.80× 10−3 4.31× 10−4

Table 7.15: Transferability distribution p-values for comparisons between resetting proce-

dures

7.5.2.3 Simulator Noise

The transferability distributions for trial runs that include or exclude of simulator noise

are illustrated in Figure 7.9a and summary statistics are given in Table 7.16. For all BNS

trial runs that include simulator noise, the mean and median transferability metrics are

1.29 and 1.00, respectively. For noiseless trial runs, the mean and median transferability

is 1.38 and 1.18, respectively. Approaches that include simulator noise have a significantly

better transferability distribution. The p-value for the Mann-Whitney U comparison test

is 3.39× 10−47. The addition of simulator noise improves the likely transferability of

solutions for the BNS approach when applied to the Snake robot morphology whereas the

transferability worsens when applied to the Hexapod robot. The Snake robot simulators

are relatively large in terms of the number of hidden layers and layer sizes. For the Snake

robot, the ER process is probably more prone to exploiting simulator weaknesses compared

to the Hexapod robot.

The point of simulator noise is intended to prevent the ER process from exploiting

idiosyncrasies of the simulator not accurately representing reality. For the BNS approach,

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 235

Mean Median Q1 Q3 Standard Deviation

Noise 1.29 1.00 0.64 1.54 1.21

Noiseless 1.38 1.18 0.71 1.73 1.02

Table 7.16: Transferability statistics for simulator noise

the simulator continually changes over time due to the constant integration of new training

data. It can be argued that a constantly changing simulator encourages the ER process

to pursue less brittle solutions.

7.5.2.4 Sampling Strategies

The observed transferability distributions of the tested sampling strategies is illustrated

in Figure 7.9b and summary statistics are given in Table 7.17. The sampling strategies

have almost equal mean, median and IQR values. The difference between the transfer-

ability standard deviations is relatively small. The p-value for the Mann-Whitney U test

comparing the transferability distributions is 0.25. The tested sampling strategies do not

have significantly different transferability distributions.

Mean Median Q1 Q3 Standard Deviation

High Fitness 1.34 1.08 0.67 1.65 1.16

Most Uncertain 1.33 1.10 0.68 1.64 1.05

Table 7.17: Transferability statistics for the sampling strategies

7.5.2.5 Summary

The Ensemble Multi-output simulator configuration improves the likely transferability

of solution controllers more than any other adaptation setting tested. Periodically resetting

the simulator configuration is the second most influential adaptation setting for improving

the transferability of solution controllers. Not periodically resetting the controller popula-

tion or simulator is also a good choice for improving the transferability of solutions. Due

to the slow rate at which generations are progressed, any adaptation settings that resets

the controller population cannot recover quickly enough before the next reset. Solution

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 236

Noise No Noise
0

1

2

3

T
ra
n
sf
er
ab
ili
ty

(a) Transferability distributions for simulator

noise

High Fitness Most Uncertain
0

1

2

3

T
ra
n
sf
er
ab
il
it
y

(b) Transferability distributions for sampling

strategies

Figure 7.9: Transferability distributions for simulator noise and sampling strategies

controllers evolved from adaptations that include simulator noise are likely to have better

transferability properties compared to adaptations without simulator noise. The tested

sampling strategies do not affect the likely transferability of solution controllers.

7.5.3 Convergence Properties

For all BNS trial runs, the fittest controller after every sampling evaluation is recorded.

Trial runs are grouped according to the resetting procedure used. The median performance

over time for each resetting procedure is calculated and illustrated in Figure 7.10. Con-

trollers are evaluated using the Static SNNs as a “real-world” surrogate and the Dynamic

SNNs produce simulated behaviours.

The median performance for each resetting procedure is poor during the early stages of

the BNS approach but gradually improve over time. The median performances improves

up until the 10th sampling evaluation, after which the median performance drastically

drops for resetting procedures including periodic controller resets. Controller/simulator

resetting takes place every 10 sampling evaluations. Resetting the controller population

with or without simulator resetting appears to result in a significant drop in performance

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 237

10 20 30 40 50

Number sampling evaluations

20

30

40

50

P
er
fo
rm

a
n
ce

No resetting

Reset Simulator

Reset Controller

Reset Both

Figure 7.10: Performance over time for the best performer of each resetting procedure

every 10 sampling evaluations. The no resetting or simulator resetting procedures do not

result in any drastic drops in performance. Past the 20th sampling evaluation, the median

performance of the no resetting and simulator resetting procedures increase almost linearly

over time.

No resetting appears to perform marginally better over time compared to the simulator

resetting procedure. Resetting procedures that include periodic controller resetting (Reset

Controller, Reset Both) perform almost equally worse than the other tested resetting

procedures procedures.

7.5.4 Top Performers

The 64 tested adaptations are ordered in descending order of performance and the top 10

best performing adaptations are presented in this section. Performance and transferability

statistics of each tested adaptation is given in Appendices B.11 and B.12, respectively. The

performance distributions of the 10 best performing BNS adaptations are illustrated in

Figure 7.11 and summary statistics are given in Table 7.18. The top adaptations are com-

pared using pairwise Mann-Whitney U tests (Table 7.19). For top performing adaptations,

mean performances are between 75.2 and 130.7 centimetres and median performances are

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 238

between 66.0 and 113.5 centimetres. None of the best performing adaptations use the

controller resetting procedure. All best performing adaptations do not include simulator

noise.

The SSNET adaptation achieved the highest mean and median performance at 130.7

and 113.5 centimetres, respectively. The SSNET adaptation consists of a noiseless Basic

Multi-output simulator configuration and used the no resetting procedure. The Basic

Multi-output simulator configuration is the most computationally efficient simulator con-

figuration. The BNS approach is able to process many more controller generations using

the Basic Multi-output simulator configuration compared to the other configurations

tested. The SSNET adaptation does have the highest standard deviation in performance.

A Levene’s statistical test for assessing equality of variance is used to compare the perfor-

mance variances between the SSNET and SESEU adaptations. The SESEU adaptation

is the 2nd best performing BNS adaptation for the Snake robot. The Levene’s statistical

test achieved a p-value of 5.86× 10−3 which indicates that the SSNET adaptation has a

significantly higher performance variance compared to the SESEU adaptation.

Mean Median Q1 Q3 Std. Dev.

SSNET 130.7 113.5 68.2 172.6 89.7

SESEU 98.6 97.0 76.4 130.5 44.1

SESET 87.3 84.7 73.0 117.5 50.4

SSSET 95.7 78.5 59.6 115.3 65.1

SENEU 84.7 88.1 65.8 110.2 41.2

SBNET 88.5 74.0 50.9 117.8 54.7

SENET 80.7 83.4 57.6 101.4 41.0

SMSET 82.2 73.8 56.7 112.5 41.8

SMSEU 78.0 78.6 52.0 103.0 35.7

SMNEU 75.2 66.0 38.9 105.8 42.0

Table 7.18: Performance distributions of the top 10 adaptations for the BNS approach

The 2nd and 3rd best performing adaptations (SESEU and SESET) consist of noise-

less Ensemble simulator configurations and make use of simulator resetting. These two

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 239

S
S
N
E
T

S
E
S
E
U

S
E
S
E
T

S
S
S
E
T

S
E
N
E
U

S
B
N
E
T

S
E
N
E
T

S
M
S
E
T

S
M
S
E
U

S
M
N
E
U

05010
0

15
0

20
0

25
0

30
0

Performance

Fi
gu

re
7.

11
:

Pe
rf

or
m

an
ce

di
st

rib
ut

io
ns

of
th

e
to

p
10

ad
ap

ta
tio

ns
fo

r
th

e
B

N
S

ap
pr

oa
ch

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 240

SS
N

E
T

SE
SE

U
SE

SE
T

SS
SE

T
SE

N
E

U
SB

N
E

T
SE

N
E

T
SM

SE
T

SM
SE

U

SE
SE

U
4.

73
×

10
−

1
-

SE
SE

T
2.

23
×

10
−

1
3.

87
×

10
−

1
-

SS
SE

T
1.

02
×

10
−

1
1.

49
×

10
−

1
4.

73
×

10
−

1
-

SE
N

E
U

7.
01

×
10
−

2
2.

12
×

10
−

1
6.

52
×

10
−

1
7.

84
×

10
−

1
-

SB
N

E
T

4.
84

×
10
−

2
1.

37
×

10
−

1
4.

73
×

10
−

1
8.

07
×

10
−

1
8.

19
×

10
−

1
-

SE
N

E
T

3.
15

×
10
−

2
6.

79
×

10
−

2
3.

11
×

10
−

1
8.

65
×

10
−

1
5.

30
×

10
−

1
8.

65
×

10
−

1
-

SM
SE

T
3.

15
×

10
−

2
4.

68
×

10
−

2
2.

46
×

10
−

1
6.

63
×

10
−

1
4.

64
×

10
−

1
8.

42
×

10
−

1
9.

82
×

10
−

1
-

SM
SE

U
2.

61
×

10
−

2
3.

39
×

10
−

2
1.

86
×

10
−

1
6.

20
×

10
−

1
3.

79
×

10
−

1
7.

17
×

10
−

1
8.

65
×

10
−

1
8.

30
×

10
−

1
-

SM
N

E
U

9.
07

×
10
−

3
1.

38
×

10
−

2
8.

24
×

10
−

2
2.

84
×

10
−

1
2.

23
×

10
−

1
3.

40
×

10
−

1
4.

64
×

10
−

1
4.

83
×

10
−

1
6.

73
×

10
−

1

Ta
bl

e
7.

19
:

Pe
rf

or
m

an
ce

co
m

pa
ris

on
s

be
tw

ee
n

th
e

to
p

10
ad

ap
ta

tio
ns

fo
r

th
e

B
N

S
ap

pr
oa

ch

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 241

adaptations are close variations on each other. The only difference between the SESEU

and SESET adaptations is the sampling strategy used.

The 4th best performing adaptation (SSSET) is a variation on the SSNET adaptation

but with simulator resetting. The SSSET adaptation consists of a noiseless Basic Multi-

output simulator configuration and uses simulator resetting. The standard deviation in

performance is the second highest amongst the top adaptations.

The 5th and 7th best performing adaptations (SENEU and SENET) consist of noiseless

Ensemble simulator configurations and use the no resetting procedure. These two adap-

tations are variations on each other. The SENEU adaptation uses the Most Uncertain

sampling strategy and SENET uses the High Fitness sampling strategy.

The SESEU, SESET, SENEU and SENET adaptations all consist of noiseless En-

semble simulator configurations. These adaptations are amongst the best performing

adaptations even though the Ensemble simulator configuration is the most computation-

ally expensive configuration. The SESEU and SESET adaptations use simulator resetting

while the SENEU and SENET adaptations use the no resetting procedure.

The 6th best adaptation (SBNET) uses the noiseless Basic simulator configuration and

no resetting. Compared to the best performing adaptation (SSNET), the 6th (SBNET)

up to the 10th (SMNEU) best adaptations perform significantly worse.

The 8th and 9th best performing adaptations (SMSET and SMSEU) consist of noise-

less Ensemble Multi-output simulator configurations and use simulator resetting. The

SMSET adaptation uses the High Fitness sampling strategy and the SMSEU adapta-

tion uses the Most Uncertain sampling strategy. The 10th best performing adaptation

(SMNEU) consist of a noiseless Ensemble Multi-output simulator configuration and

uses the no resetting procedure. The 2nd best adaptation (SESEU) has a significantly

better performance distribution compared to the 8th (SMSET) up to 10th (SMNEU) best

adaptations.

For the best adaptations, the ER process is better able to exploit known good solution

in the absence of simulator noise. Half the top performing adaptations use the simulator

resetting procedure and the other half use the no resetting procedure. Adaptations using

periodic controller resetting do not make it into the top 10 best performing adaptations.

The SSNET and SSSET adaptations perform disproportionately well due to the BNS

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 242

approach exploiting weaknesses in the Static Simulator. The SSNET and SSSET adapta-

tions have a higher controller evolution rate compared to other adaptations, such as the

SESEU and SESET adaptations. For the Snake robot, exploiting simulator weaknesses is

a general problem encountered with certain adaptations. This problem was not seen for

the Hexapod robot simulators. A density versus performance plot of the top four best

performing BNS adaptations in this section are illustrated in Figure 7.12. This density

plot demonstrates that the SSNET and SSSET adaptations achieve disproportionately

high performances for many trial runs compared to the SESEU and SESET adaptations.

Performances values greater than 200 centimetres are considered unrealistic in terms of

real-world performance. As an example, the real-world, Dynamic Simulated and Static

Simulated trajectories produced by the best performing SSNET adaptation is given in

Figure 7.13. The Dynamic Simulator appears to have simulated a weakness in the Static

Simulator that would not be possible in reality. The solution controller is evaluated on

the real-world robot and the real-world trajectory is included for reference purposes. The

Static Simulator overestimates the real-world distance travelled by just over 300%. The

simulated performance outcomes for the SSNET and SSSET adaptations should be consid-

ered less reliable estimates of real-world performance compared to other BNS adaptations.

As previously mentioned, a Static Simulator is used as an alternative to a real-world

robot during the Simulated BNS Experimental work. During the Simulated BNS Exper-

imental work, simulator noise is always added to sampling evaluations produced through

the Static Simulator, however, exploitation of weaknesses in the Static Simulator can still

take place. Exploitations of the Static Simulator during these simulated experiments is

a problem mainly seen for certain BNS adaptations applied to the Snake robot. Adap-

tations using the Basic Multi-output simulator configuration for the Snake robot are

most affected by this issue. This research is cognisant of the fact that this is a flaw in the

methodology and conclusions are drawn accordingly.

The transferability distributions for the top 10 best performing BNS adaptations are

illustrated in Figure 7.14 and summarised in Table 7.20. The p-values for the Mann-

Whitney U pairwise comparisons are given in Table 7.21.

The SMSEU adaptation achieved the best transferability distribution compared to the

other best performing adaptations and had significantly better transferability compared

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 243

0 50 100 150 200 250 300 350
Performance

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
en
si
ty

SSNET

SESEU

SESET

SSSET

Figure 7.12: Density of performances for best performing adaptations

to the SESET, SENEU, SBNET, SENET and SMNEU adaptations. The SMSET and SS-

SET adaptations demonstrated particularly good transferability. The SBNET adaptation

has a significantly worse transferability distribution compared to all other top performing

adaptations. Solution controllers for the SSNET adaptation are observed to have relatively

good median transferability properties compared to the other top performing adaptations.

However, the SSSET adaptation does not have a consistently good transferability com-

pared to the SMSET adaptation. Top adaptations using simulator resetting tend to have

better overall transferability distributions compared to corresponding adaptations using

the no resetting procedure.

7.5.5 Summary

The overall performance and transferability properties of the tested adaptation settings are

investigated. Adaptations consisting of Basic Multi-output, Ensemble or Ensemble

Multi-output simulator configurations have better overall performance and transferabil-

ity distributions compared to adaptations using Basic or Dropout simulator configura-

tions. The simulator resetting and no resetting procedures have equally good performance

properties. However, adaptations using simulator resetting have better transferability

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 244

0 50 100 150 200 250

−250

−200

−150

−100

−50

0 Dynamic Simulator

Static Simulator

Reality

Figure 7.13: Best solution for the SSNET adaptations

properties. Noiseless adaptations are more likely to perform better than noisy adapta-

tions. Noisy adaptations demonstrate better transferability properties compared with

noiseless counterparts. The tested sampling strategies do not significantly affect the likely

performance or transferability of solution controllers.

The top five best performing adaptations consist of either a Basic Multi-output

or Ensemble simulator configuration. All top performing adaptations exclude simulator

noise. Amongst the top performing adaptations, the Basic simulator configurations is

observed to have the worst transferability. No top performing adaptations consist of a

Dropout simulator configuration.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 245

S
S
N
E
T

S
E
S
E
U

S
E
S
E
T

S
S
S
E
T

S
E
N
E
U

S
B
N
E
T

S
E
N
E
T

S
M
S
E
T

S
M
S
E
U

S
M
N
E
U

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

Transferability

Fi
gu

re
7.

14
:

Tr
an

sf
er

ab
ili

ty
di

st
rib

ut
io

ns
fo

r
th

e
to

p
10

B
N

S
ad

ap
ta

tio
ns

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 246

Mean Median Q1 Q3 Std. Dev.

SSNET 0.89 0.75 0.46 1.07 0.82

SESEU 0.94 0.92 0.55 1.20 0.54

SESET 0.93 0.85 0.59 1.00 0.47

SSSET 0.84 0.67 0.37 1.26 0.57

SENEU 1.11 0.91 0.60 1.34 0.78

SBNET 1.49 1.43 1.12 1.69 0.77

SENET 1.11 0.94 0.78 1.35 0.55

SMSET 0.74 0.68 0.39 0.97 0.57

SMSEU 0.79 0.58 0.38 0.90 0.81

SMNEU 1.02 0.86 0.63 1.47 0.60

Table 7.20: The transferability statistics for the top 10 adaptations for the BNS approach

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 247

SS
N

E
T

SE
SE

U
SE

SE
T

SS
SE

T
SE

N
E

U
SB

N
E

T
SE

N
E

T
SM

SE
T

SM
SE

U

SE
SE

U
4.

12
×

10
−

1
-

SE
SE

T
3.

79
×

10
−

1
8.

88
×

10
−

1
-

SS
SE

T
9.

00
×

10
−

1
5.

49
×

10
−

1
5.

69
×

10
−

1
-

SE
N

E
U

1.
33

×
10
−

1
5.

69
×

10
−

1
5.

30
×

10
−

1
2.

17
×

10
−

1
-

SB
N

E
T

1.
58

×
10
−

4
1.

44
×

10
−

3
4.

22
×

10
−

4
6.

55
×

10
−

4
1.

50
×

10
−

2
-

SE
N

E
T

4.
06

×
10
−

2
2.

23
×

10
−

1
9.

05
×

10
−

2
7.

98
×

10
−

2
5.

69
×

10
−

1
2.

07
×

10
−

2
-

SM
SE

T
4.

29
×

10
−

1
7.

48
×

10
−

2
4.

68
×

10
−

2
3.

79
×

10
−

1
1.

70
×

10
−

2
4.

74
×

10
−

6
1.

44
×

10
−

3
-

SM
SE

U
2.

97
×

10
−

1
5.

94
×

10
−

2
2.

92
×

10
−

2
4.

73
×

10
−

1
1.

76
×

10
−

2
2.

43
×

10
−

5
1.

37
×

10
−

3
8.

19
×

10
−

1
-

SM
N

E
U

1.
96

×
10
−

1
6.

95
×

10
−

1
7.

28
×

10
−

1
1.

91
×

10
−

1
8.

88
×

10
−

1
1.

56
×

10
−

2
5.

01
×

10
−

1
4.

84
×

10
−

2
4.

51
×

10
−

2

Ta
bl

e
7.

21
:

Tr
an

sf
er

ab
ili

ty
co

m
pa

ris
on

s
be

tw
ee

n
th

e
to

p
10

ad
ap

ta
tio

ns
fo

r
th

e
B

N
S

ap
pr

oa
ch

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 248

7.6 The BNS Validation Experiment Results

The purpose of this section is to demonstrates that the BNS approach can effectively be

applied to a real-world Snake robot. Promising BNS adaptations are selected based on the

Simulated BNS Experimental results. The most promising adaptations selected for vali-

dation are the SBSET, SESEU and SMSEU adaptations. These adaptations are selected

due to their simulated high performances and in order to validate significantly different

simulator configurations. A limited number of real-world experiments are possible and val-

idation adaptations are carefully chosen based on better likely performance/transferability

outcomes and in order to validate a diverse set of adaptation settings.

The first and fourth best performing adaptations (SSNET, SSSET) are not considered

due to their simulated performances being deemed unreliable due to the exploitation of

Static Simulator weaknesses. The second best performing adaptation in the Simulated

BNS Experimental results is the SESEU adaptation chosen for validation. The third best

adaptation (SESET) is essentially equivalent to the SESEU but using a different sampling

strategy. No significant difference between the tested sampling strategies was found in the

simulated results. The fifth up to seventh best performing adaptations (SENEU, SBNET,

SENET) are avoided due to their use of the no resetting procedure. Simulated experiments

indicate that adaptations using the simulator resetting procedure tend to produce solu-

tions with better likely transferability properties compared to other resetting procedures.

The eight and ninth best performing adaptations (SMSET, SMSEU) are essentially the

same but use different sampling strategies. the SMSEU adaptation is chosen in order to

correspond with the HMSEU adaptation chosen for the Hexapod validation work. For the

Hexapod validation experiments, the HBSNT adaptation performed unexpectedly better

than expected. In order to validate if this might be the case for the Snake robot, the

SBSET adaptation is purposely chosen in order to investigate if its noisy variation too

demonstrates better than expected performance in validation experiments. The SBSET

adaptation is the fifteenth best performing adaptation in the simulated experimental work.

The corresponding adaptations with simulator noise are also selected for validation.

Noise injected variations are validated in order to validate the effect that noise has when

applied in reality. For similar reasons stated for the Hexapod validation experiments, the

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 249

use of simulator noise is validated. The noise injected adaptations are SBSNT, SESNU

and SMSNU. The SBSET and SBSNT adaptations use the Basic simulator configuration

with simulator resetting and the High Fitness sampling strategy. The SESEU and

SESNU adaptations used the Ensemble simulator configuration with simulator resetting

and the Most Uncertain sampling strategy. The SMSEU and SMSNU adaptations use

the Ensemble Muti-output simulator configuration with simulator resetting and the

Most Uncertain sampling strategy. The best performing Simulated BNS adaptation,

SSNET, is not chosen to be validated. Only the top performing adaptations, common to

both robot morphologies, are considered for validation and comparison purposes.

The real-world performances of validated adaptations are covered in Section 7.6.1.

Real-world transferability of validated adaptations are presented in Section 7.6.2. The

real-world and simulated trajectories of solution controllers are presented in Section 7.6.3.

Lastly, a summary is given in Section 7.6.4.

7.6.1 Performance

Performances achieved in trial runs are provided in Table B.7. The performance distribu-

tions for the validated adaptations are illustrated in Figure 7.15 and summary statistics

are given in Table 7.22. Each adaptations is validated by performing 5 independent trial

runs of the BNS approach on a real-world Snake robot. The median performance over all

validation trial runs is 46.0 centimetres with an IQR between 31.5 and 68.6 centimetres.

The SESEU adaptation achieved the highest median performance of 78.5 centimetres.

The SMSNU adaptation has the second best median performance of 61.5 centimetres.

The SBSET and SMSEU adaptations have median performances of 49.4 and 49.2 cen-

timetres, respectively. The SBSNT and SESNU adaptations obtained the worst median

performances at 39.5 and 33.7 centimetres, respectively. Outlier trial runs are seen for

the SBSNT, SMSEU and SMSNU adaptations. The SBSNT adaptation does not perform

unexpectedly better than the SBSET adaptation. This provides some evidence that the

unexpectedly high performance seen with the HBSNT adaptation for the Hexapod robot

might have been a statistical anomaly.

Experimental trial runs are separated into groups either including or excluding simu-

lator noise. The performance distributions for the noise injected and noiseless simulator

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 250

SBSET SBSNT SESEU SESNU SMSEU SMSNU
−20

0

20

40

60

80

100

120

140
P
er
fo
rm

an
ce

Figure 7.15: Validation experiment performance distributions

configuration solutions are illustrated in Figure 7.16 and summary statistics are given in

Table 7.23. Trial runs using a noiseless simulator have a median performance of 49.4

centimetres and an IQR between 33.9 and 80.9 centimetres. Trial runs using simulator

configurations with noise achieve a median performance of 43.3 centimetres and an IQR

between 28.0 and 57.6 centimetres. In general, solutions developed using noiseless simula-

tor configurations performed better than solutions produced from simulators with noise.

For the 30 validation solutions, 7 solution controllers are considered poor performers

where performance measurements are less than 30 centimetres. Performances greater than

60 centimetres are considered excellent. Ten validation solution controllers demonstrated

excellent performance outcomes. The remaining 13 validation solutions achieved accept-

able performance values between 30 and 60 centimetres. Half of the validated solutions

achieve a performance measure greater than 46 centimetres.

7.6.2 Transferability

Transferability values achieved in trial runs are provided in Table B.8. The transferability

distributions for the validated BNS adaptations are illustrated in Figure 7.17 and sum-

mary statistics are given in Table 7.24. A lower transferability metric corresponds to a

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 251

Mean Median Q1 Q3 Standard Deviation

SBSET 61.0 49.4 45.1 87.0 37.7

SBSNT 37.0 39.5 34.1 43.3 35.9

SESEU 69.1 78.5 30.7 83.3 52.9

SESNU 32.6 33.7 22.3 45.6 14.0

SMSEU 43.4 49.2 37.2 53.2 23.8

SMSNU 50.0 61.5 53.8 62.2 37.3

Table 7.22: BNS performance statistics on validation results

Mean Median Q1 Q3 Standard Deviation

Noiseless 57.8 49.4 33.9 80.9 38.6

Noise 39.9 43.3 28.0 57.6 29.6

Table 7.23: BNS validation performance statistics grouped by simulator noise

closer correspondence between simulation and reality. The median transferability over all

validated trial runs is 0.94 with an IQR between 0.54 and 2.44. Adaptations SBSET,

SBSNT, SMSEU and SMSNU each have transferability outliers.

The SMSEU and SMSNU adaptations have the best median transferability values at

0.49 and 0.58, respectively. The second least transferable adaptation (SESEU) has an

IQR between 0.94 and 2.59 and the least transferable adaptation (SBSET) has an IQR

between 2.39 and 3.20. The SBSET adaptation demonstrates drastically worse valida-

tion transferability outcomes compared to the other validated adaptations. The reason

for relatively high transferability values for the SBSET adaptation is due to the greatly

overestimated simulated distances travelled. The transferability IQR for the SBSNT and

SESNU adaptations are similar to each other.

For the SBSET, SBSNT, SESEU, SESNU adaptations, the noise injected adaptations

(SBSNT and SESNU) demonstrate better transferability compared to the noiseless adapta-

tions (SBSET and SESEU). The SMSEU and SMSNU adaptations have relatively similar

transferability distributions for the simulated results. Simulator noise appears to improve

the likely transferability of solutions for the validated results.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 252

Noiseless Noise
−20

0

20

40

60

80

100

120

140
P
er
fo
rm

an
ce

Figure 7.16: BNS validation performance distributions grouped by simulator noise

The validated trial solutions are grouped according to their inclusion or exclusion

of simulator noise. The transferability distributions of the noise injected and noiseless

simulator configurations are illustrated in Figure 7.18 and summary statistics are given in

Table 7.25. The mean and median transferability of validated trial runs without simulator

noise is 2.34 and 1.13, respectively, with an IQR between 0.60 and 2.90. Noise injected trial

run solutions have mean and median transferability values of 1.34 and 0.70, respectively,

with an IQR between 0.49 and 1.29. Including simulator noise greatly improves the likely

transferability of solution controllers. This improvement is achieved because including

simulator noise greatly reduces the level of overestimation in simulated distances travelled.

The standard deviation of transferability for noiseless solutions is 2.70 while noise injected

solutions demonstrated a transferability standard deviation of 1.78.

7.6.3 Validation Solutions

The simulated and real-world trajectories of solution controllers are presented in Figures

7.19 to 7.24. The SNS and BNS simulated paths generated from evaluating the solution

controllers are presented for comparison purposes. The green solid line represents the

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 253

SBSET SBSNT SESEU SESNU SMSEU SMSNU
0

2

4

6

8

10
T
ra
n
sf
er
ab
il
it
y

Figure 7.17: Validation experiment transferability distributions

trajectory followed by the tracked head of the Snake robot for the particular controller

evaluation. The dashed blue and orange lines represent the BNS and SNS simulated

trajectories, respectively. For most solutions, the BNS simulator demonstrates either

better or similar transferability compared to the SNS simulator. All real-world trajectories

move in the positive x-direction with varying degrees of positive or negative y-direction

displacements.

Figure 7.19 illustrates solution controllers for the SESEU adaptation. The first, second

and fourth trial runs have relatively similar simulated and real-world trajectory behaviours.

The fourth solution moves in an upward trajectory while the first and second solutions

have downward trajectories. The BNS simulator estimates the general directions of real-

world trajectories relatively well but the simulated and real-world curvatures and headings

diverge over time. The third and fifth trail runs demonstrate poor performance and

transference with the BNS simulator significantly overestimating the real-world distances

travelled.

For the SESNU adaptation, the real-world and simulated trajectories are illustrated in

Figure 7.20. The first trial run produces a downward trajectory for the BNS simulator and

real-world robot but the simulator overestimates the total real-world distance travelled.

The Static simulator is unable to predict the direction of the real-world trajectory for the

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 254

Mean Median Q1 Q3 Standard Deviation

SBSET 2.81 2.45 2.39 3.20 1.37

SBSNT 1.35 0.70 0.55 1.29 1.39

SESEU 1.72 0.97 0.94 2.59 1.27

SESNU 0.85 0.94 0.53 1.28 0.51

SMSEU 2.48 0.49 0.47 0.61 4.60

SMSNU 1.81 0.58 0.38 0.78 2.89

Table 7.24: BNS transferability statistics on validation results

Mean Median Q1 Q3 Standard Deviation

Noiseless 2.34 1.13 0.60 2.90 2.70

Noise 1.34 0.70 0.49 1.29 1.78

Table 7.25: BNS validation transferability statistics grouped by simulator noise

first solution. The second and fourth trial runs have similar trajectories and relatively

good correspondence between the real-world and BNS simulated trajectories but the final

heading for the second solution is poorly estimated. The third trial solution is inaccurately

estimated by the BNS simulator in terms of the overall direction of the trajectory but

the final heading is accurately predicted. For the fifth trial solution, the BNS simulator

correction estimates the upward trajectory and final heading but the distance travelled is

overestimated.

Figure 7.21 illustrates trajectories for solutions produced using the SMSEU adaptation.

For the first trial run, the BNS simulator greatly overestimates the distance travelled for

the downward trajectory. The first solution’s performance is poor and the real-world

distance travelled is small. The Static simulator is also unable to simulate the real-world

trajectory of the first trial run. The second, third and fifth trial runs are effective and

relatively accurately estimated by the BNS simulator. The third and fifth trial runs are

accurately simulated in terms of the final headings but the second solution heading is not

accurately predicted. The BNS simulator predicts the real-world upward trajectory of the

fourth trial run relatively well but the simulated and real-world final headings are off by

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 255

Noiseless Noise
0

1

2

3

4

5

T
ra
n
sf
er
ab
il
it
y

Figure 7.18: BNS validation transferability statistics grouped by noise

almost 90 degrees.

For the SMSNU adaptation, the real-world and simulated trajectories of solution con-

trollers are illustrated in Figure 7.22. For the first solution, the BNS simulator accurately

predicts that the trajectory moves towards the bottom right but the final predicted head-

ing is not accurately estimated. The second and fifth trial runs demonstrate excellent

transference from the BNS simulator into reality. The second run is accurately simulated

in terms of the distance travelled and final heading. The BNS simulated distance for the

fifth trial run is overestimated. The third trial solution demonstrates poor performance

and the BNS and Static simulators are unable to accurately predict the real-world trajec-

tory. For the fourth solution, the BNS simulator accurately predicts the distance travelled

but is unable to account for the slight changes in the robot’s heading over time which

accumulates to create a curved trajectory.

The SBSET adaptation solution controllers are illustrated in Figure 7.23. The first

trial run has a trajectory moving a significant distance towards the right. The BNS

simulator poorly estimates the distance travelled and the final trajectory heading is off

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 256

−25 0 25 50 75 100 125
x-direction

−140

−120

−100

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(a) First run

0 50 100 150
x-direction

−160

−140

−120

−100

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(b) Second Run

−20 0 20 40 60 80
x-direction

−100

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(c) Third run

−50 0 50 100
x-direction

0

25

50

75

100

125

150

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(d) Fourth run

−20 0 20 40 60 80
x-direction

0

20

40

60

80

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(e) Fifth run

Figure 7.19: SESEU Real-world experiments

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 257

−40 −20 0 20 40 60
x-direction

−80

−60

−40

−20

0

20

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(a) First run

0 10 20 30 40 50
x-direction

−10

0

10

20

30

40

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(b) Second Run

−20 0 20 40
x-direction

−30

−20

−10

0

10

20

30

40

50

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(c) Third run

0 20 40 60 80
x-direction

−20

0

20

40

60

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(d) Fourth run

−20 0 20 40
x-direction

−10

0

10

20

30

40

50

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(e) Fifth run

Figure 7.20: SESNU Real-world experiments

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 258

−20 0 20 40 60
x-direction

−60

−40

−20

0

20

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(a) First run

0 10 20 30 40 50
x-direction

−40

−30

−20

−10

0

10

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(b) Second Run

0 20 40 60
x-direction

−60

−50

−40

−30

−20

−10

0

10

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(c) Third run

−20 0 20 40 60 80
x-direction

−20

0

20

40

60

80

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(d) Fourth run

−10 0 10 20 30 40
x-direction

−40

−30

−20

−10

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(e) Fifth run

Figure 7.21: SMSEU Real-world experiments

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 259

−20 0 20 40 60 80
x-direction

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(a) First run

−20 0 20 40 60
x-direction

−70

−60

−50

−40

−30

−20

−10

0

10

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(b) Second Run

−40 −20 0 20 40
x-direction

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(c) Third run

0 20 40 60 80
x-direction

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(d) Fourth run

−20 0 20 40 60
x-direction

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(e) Fifth run

Figure 7.22: SMSNU Real-world experiments

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 260

0 50 100 150 200 250 300
x-direction

−150

−100

−50

0

50

100

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(a) First run

0 20 40 60 80 100 120
x-direction

0

20

40

60

80

100

120

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(b) Second Run

−50 0 50 100 150
x-direction

0

50

100

150

200

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(c) Third run

0 50 100 150 200
x-direction

−150

−100

−50

0

50

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(d) Fourth run

−100 −50 0 50
x-direction

−150

−125

−100

−75

−50

−25

0

25

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(e) Fifth run

Figure 7.23: SBSET Real-world experiments

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 261

−20 0 20 40 60 80
x-direction

0

20

40

60

80

100

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(a) First run

−20 0 20 40
x-direction

−10

0

10

20

30

40

50

60

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(b) Second Run

−20 0 20 40 60 80
x-direction

−100

−80

−60

−40

−20

0

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(c) Third run

0 10 20 30 40 50 60
x-direction

−50

−40

−30

−20

−10

0

10

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(d) Fourth run

−40 −20 0 20 40 60
x-direction

−40

−20

0

20

40

60

y-
d
ir
ec
ti
on

BNS simulator

Static simulator

Reality

(e) Fifth run

Figure 7.24: SBSNT Real-world experiments

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 262

by more than 90 degrees. The Static simulator more accurately predicts the trajectory of

the first solution compared to the BNS simulator. The BNS simulated distance travelled

by the second and third solution controllers are greatly overestimated but the direction

travelled is accurate. The fourth trial run has a distinct curved trajectory towards the

right. The BNS simulated distance travelled by the fourth solution is overestimated but

the general direction, heading and curvature are relatively accurate. The fifth trial run

performs poorly and the distance travelled is greatly overestimated by the BNS simulator.

For all SBSET solutions, the BNS simulator greatly overestimates the real-world distances

travelled.

For the SBSNT adaptation, solution controllers are illustrated in Figure 7.24. The first

and second trial runs have similar upward trajectories and the BNS simulated direction

and distances travelled are relatively accurate. The third solution is more accurately

simulated by the Static simulator compared to the BNS simulator. The BNS simulator

appears to have failed to accurately simulate the heading of the robot which leads to an

accumulation of errors in heading predictions. The fourth trial run is accurately simulated

by the BNS simulator in terms of the heading and direction but the distance travelled is

overestimated. Lastly, the fifth solution trajectory is poorly predicted by both the BNS and

Static simulators with the real-world trajectory moving in the opposite direction predicted

by the BNS simulator.

7.6.4 Summary

The validated adaptation using a noiseless Ensemble simulator configuration, simulator

resetting and the Most Uncertain sampling strategy (SESEU) achieved the best overall

performance amongst the validated adaptations. Adaptations consisting of Ensemble

Multi-output simulator configurations with and without noise, use simulator resetting

and the Most Uncertain sampling strategy (SMSEU, SMSNU) demonstrated particu-

larly good transferability.

Most of the validated solutions achieved either excellent or acceptable performance

levels. Only 7 out of the 30 validation solutions perform poorly with performance metrics

less than 30 centimetres. The transference of simulated behaviours into reality is not

nearly as accurate or reliable compared to when the BNS approach is applied to the

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 263

Hexapod robot. However, the Snake robot involves more complex behaviours and there

is a greater accumulation of simulated errors over time compared to the Hexapod robot.

Results demonstrate that the tested BNS adaptations can be applied to a real-world Snake

robot.

7.7 SNS and BNS Comparisons

The Static Simulators for the SNS approach are trained from 4990 behavioural patterns.

A single experimental run of the BNS approach only consists of 700 behavioural patterns

(50 sampling controller evaluations). Including rest periods, the SNS approach had a data

collection period of approximately 22 hours. Once the behavioural data collection phase

is complete, training Static Simulators takes less than 15 minutes. The BNS approach

requires about 4 hours per trial run and includes data collection, training and controller

evolution.

The best performing adaptation for the SNS approach has a median performance of

49.7 centimetres and an IQR between 21.8 and 64.0 centimetres. The best performing

validated BNS adaptation achieved a median performance of 78.5 centimetres and has

an IQR between 30.7 and 83.3 centimetres. The best SNS adaptation performs less well

compared to the best validated BNS adaptation. A statistical comparison between the

SNS and BNS approaches is not possible due to the small sample sizes of the validated

BNS adaptation results. None of the validated BNS solutions failed by turning upside

down while many solution controllers for the SNS approach do indeed fail. This indicates

that the BNS approach is more robust in terms of avoiding failures.

The transferability distributions of the tested SNS adaptations are compared to the

validated BNS adaptations. The median transferability of all BNS validation solutions

is 0.94 with an IQR between 0.54 and 2.44. The median transferability for each tested

SNS adaptation is greater than 1.75 with all first quartiles being higher than 0.86 and the

lowest third quartile achieved is 3.37. The validated BNS adaptations demonstrate better

transferability compared to all the tested SNS adaptation. The BNS approach improves

the likely transferability of solution controllers without sacrificing performance compared

to the SNS approach while also minimising data collection.

CHAPTER 7. SNAKE BOOTSTRAPPED NEURO-SIMULATION 264

7.8 Conclusions

This chapter demonstrates for the first time that the BNS approach can effectively develop

Snake robot gaits using a controller design that does not rely on a significant amount of

prior knowledge. Novel adaptation proposals are investigated and compared to each other

in order to identify high performance adaptation settings. Promising BNS adaptations

are validated using a real-world Snake robot.

Top performing adaptations mostly consist of either Ensemble or Basic Multi-

output simulator configurations. Performing no resetting or periodically resetting only

the simulator improves the likely performance outcomes of controller solutions. Adap-

tations that only periodically reset the simulator have significantly better transferability

properties compared to the other tested resetting procedures.

According to the Simulated BNS Experiments, a noiseless simulator configuration im-

proves the likely performance outcomes of solutions while including simulator noise im-

proves the likely transferability of solution controllers. These performance and transferabil-

ity properties related to simulator noise are confirmed during the Validation Experimental

work. Performance and transferability outcomes with respect to simulator noise seem de-

pendent on the robot morphology used and may be subject to change if the goal task is

changed. The tested sampling strategies do not demonstrate significant changes in the

likely performance or transferability of solution controllers. The BNS approach improves

the likely transferability and robustness of solutions while achieving higher performance

levels compared to the SNS approach.

Chapter 8

CONCLUSIONS AND FUTURE

WORK

8.1 Introduction

In the previous four chapters, the SNS and BNS approaches are applied to Hexapod

and Snake robot morphologies. Various novel adaptation settings are studied. The per-

formance, transferability and behavioural properties of adaptation settings are explored

during the experimental work. Top performing adaptations are identified and validated on

real-world hardware. The aim of this chapter is to draw conclusions from the experimen-

tal work and discuss how research objective were achieved. Experimental outcomes of the

SNS and BNS approaches applied to the two robots are compared and general conclusions

are drawn.

An overall summary of the experimental results is given in Section 8.2. Research ob-

jectives are discussed in the context of the experimental findings (Section 8.3). Research

contributions and limitations of this study are discussed in Sections 8.4 and 8.5, respec-

tively. Recommendations and a discussion of future work is covered in Section 8.6. Lastly,

an overall summary of the chapter is presented in Section 8.7.

265

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 266

8.2 Overview of Experimental Results

For each robot morphology, experimental observations are collected for the SNS and BNS

approaches. For each approach, various combinations of proposed improvements are in-

vestigated and compared to each other. The scalability, generalisability, effectiveness and

feasibility properties associated with the SNS and BNS approach, as defined in Section

1.3, are discussed in Table 8.1.

Conclusions drawn from the SNS experimental work are given in Table 8.2. Similarly,

conclusions specific to the BNS approach are discussed in Table 8.3.

8.3 Outcomes of Research Objectives

Research objectives mentioned in Section 1.2 in relation to the experimental results achieved

in this work are now discussed:

Identify relevant trends in the existing ER literature.

A literature review covering the integration of simulators into the ER process was con-

ducted in Section 2.5. Simulator accuracy can improve the likely effectiveness of the

evolutionary process. However, better accuracy usually comes at the expense of increased

simulator complexity. Most ER approaches make use of physics-based simulation tech-

niques that rely on a great amount of prior knowledge of the given robotic system. Sim-

ulation approaches that improve simulator accuracy with little prior human knowledge of

the given robotic system are a significant contribution to the ER field.

Solution controllers evolved in simulation usually suffer from the reality-gap problem.

Prior work indicates that simulator noise can play an role in reducing the reality-gap

problem. Prior work also shows that bidirectional ER approaches can improve simulator

accuracy and reduce reality-gap problems. Prominent bidirectional ER approaches are

studied in Section 2.5.3. A high level comparison between relevant ER approaches is

covered in Section 2.6.

Bidirectional ER approaches have certain advantages over static ER approaches. For

bidirectional ER approaches, real-world behaviours observed during the ER process can be

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 267
SN

S
A

pp
ro

ac
h

B
N

S
A

pp
ro

ac
h

Sc
al

ab
ili

ty

E
xp

er
im

en
ta

lr
es

ul
ts

de
m

on
st

ra
te

th
at

vi
ab

le
so

lu
tio

ns
ar

e
pr

o-

du
ce

d
fo

r
th

e
te

st
ed

co
m

pl
ex

ro
bo

t
m

or
ph

ol
og

ie
s.

A
da

pt
at

io
ns

ap
pl

ie
d

to
th

e
H

ex
ap

od
ro

bo
t

ac
hi

ev
e

m
or

e
co

ns
is

te
nt

ly
go

od

re
su

lts
co

m
pa

re
d

to
th

e
Sn

ak
e

ro
bo

t.

V
ia

bl
e

so
lu

tio
ns

ar
e

pr
od

uc
ed

fo
rt

he
te

st
ed

co
m

pl
ex

ro
bo

tm
or

-

ph
ol

og
ie

s.
R

es
ul

tin
g

so
lu

tio
n

ou
tc

om
es

ar
e

m
or

e
co

ns
is

te
nt

ly

go
od

fo
rt

he
H

ex
ap

od
ro

bo
tw

he
n

co
m

pa
re

d
to

th
e

Sn
ak

e
ro

bo
t.

G
en

er
al

is
ab

ili
ty

V
ia

bl
e

co
nt

ro
lle

r
so

lu
tio

ns
ar

e
su

cc
es

sf
ul

ly
de

ve
lo

pe
d

fo
r

bo
th

th
e

H
ex

ap
od

an
d

Sn
ak

e
ro

bo
t

m
or

ph
ol

og
ie

s.

V
ia

bl
e

so
lu

tio
n

co
nt

ro
lle

rs
ar

e
su

cc
es

sf
ul

ly
de

ve
lo

pe
d

fo
r

bo
th

th
e

H
ex

ap
od

an
d

Sn
ak

e
ro

bo
t

m
or

ph
ol

og
ie

s.

E
ff

ec
ti

ve
ne

ss

H
ig

h
pe

rf
or

m
an

ce
so

lu
tio

ns
ar

e
pr

od
uc

ed
fo

r
th

e
H

ex
ap

od
an

d

Sn
ak

e
ro

bo
ts

.
P

ro
du

ci
ng

hi
gh

pe
rf

or
m

an
ce

Sn
ak

e
co

nt
ro

lle
rs

is

m
or

e
ch

al
le

ng
in

g
co

m
pa

re
d

to
th

e
H

ex
ap

od
ro

bo
t.

Va
lid

at
io

n
ex

pe
rim

en
ts

pr
od

uc
e

m
an

y
hi

gh
ly

eff
ec

tiv
e

so
lu

tio
ns

fo
r

th
e

te
st

ed
ro

bo
ts

.
P

ro
du

ci
ng

hi
gh

pe
rf

or
m

an
ce

so
lu

tio
ns

fo
r

th
e

Sn
ak

e
ro

bo
t

is
m

or
e

ch
al

le
ng

in
g

co
m

pa
re

d
to

th
e

H
ex

ap
od

ro
bo

t.

Fe
as

ib
ili

ty

T
he

be
ha

vi
ou

ra
l

da
ta

co
lle

ct
io

n
ph

as
e

co
ns

is
te

d
of

49
42

an
d

49
90

be
ha

vi
ou

ra
l

pa
tt

er
ns

fo
r

th
e

H
ex

ap
od

an
d

Sn
ak

e
ro

bo
ts

,

re
sp

ec
tiv

el
y.

T
he

be
ha

vi
ou

ra
l

da
ta

co
lle

ct
io

n
ph

as
e

to
ok

ap
-

pr
ox

im
at

el
y

16
an

d
22

ho
ur

s
fo

r
th

e
H

ex
ap

od
an

d
Sn

ak
e

ro
bo

ts
,

re
sp

ec
tiv

el
y.

T
he

da
ta

co
lle

ct
io

n
ph

as
e

is
on

ly
pe

rf
or

m
ed

on
ce

.

W
he

n
da

ta
co

lle
ct

io
n

is
co

m
pl

et
e,

si
m

ul
at

or
tr

ai
ni

ng
ta

ke
s

le
ss

th
an

15
m

in
ut

es
fo

r
an

y
gi

ve
n

si
m

ul
at

or
co

nfi
gu

ra
tio

n.
D

ev
el

-

op
in

g
a

co
nt

ro
lle

r
so

lu
tio

n
ta

ke
s

be
tw

ee
n

1.
5

an
d

15
m

in
ut

es
fo

r

th
e

H
ex

ap
od

ro
bo

t
an

d
be

tw
ee

n
2.

0
an

d
7.

5
ho

ur
s

fo
r

th
e

Sn
ak

e

ro
bo

t,
de

pe
nd

in
g

on
th

e
ad

ap
ta

tio
n

us
ed

.
Tr

ai
ne

d
si

m
ul

at
or

s

ca
n

be
re

us
ed

fo
r

de
ve

lo
pi

ng
m

ul
tip

le
in

de
pe

nd
en

t
so

lu
tio

n
co

n-

tr
ol

le
rs

fo
r

ar
bi

tr
ar

y
ro

bo
t

ta
sk

s.

T
he

B
N

S
ap

pr
oa

ch
co

lle
ct

s
11

00
an

d
70

0
be

ha
vi

ou
ra

lp
at

te
rn

s

fo
rt

he
H

ex
ap

od
an

d
Sn

ak
e

ro
bo

ts
,r

es
pe

ct
iv

el
y.

If
su

ffi
ci

en
tr

es
t

pe
rio

ds
ar

e
in

cl
ud

ed
,t

he
to

ta
lr

un
tim

e
is

ap
pr

ox
im

at
el

y
3.

5
an

d

4.
0

ho
ur

s
fo

r
th

e
H

ex
ap

od
an

d
Sn

ak
e

ro
bo

ts
,r

es
pe

ct
iv

el
y.

A
s-

su
m

in
g

on
ly

a
si

ng
le

so
lu

tio
n

co
nt

ro
lle

r
is

de
ve

lo
pe

d,
th

e
B

N
S

ap
pr

oa
ch

is
si

gn
ifi

ca
nt

ly
le

ss
tim

e-
co

ns
um

in
g

to
pe

rf
or

m
co

m
-

pa
re

d
to

th
e

SN
S

ap
pr

oa
ch

.

Ta
bl

e
8.

1:
Su

m
m

ar
y

of
hi

gh
le

ve
lfi

nd
in

gs

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 268

SN
S

A
pp

ro
ac

h

H
ex

ap
od

Sn
ak

e

Si
m

ul
at

or

C
on

fig
ur

at
io

n

T
he

be
st

pe
rf

or
m

in
g

ad
ap

ta
tio

n
us

es
a

no
is

el
es

sE
ns

em
-

bl
e

M
ul

ti
-o

ut
pu

t
si

m
ul

at
or

co
nfi

gu
ra

tio
n.

T
he

co
m

-

bi
na

tio
n

of
us

in
g

en
se

m
bl

es
,

un
ce

rt
ai

nt
y

pe
na

lti
es

an
d

m
ul

ti-
ou

tp
ut

SN
N

s
re

su
lte

d
in

im
pr

ov
ed

pe
rf

or
m

an
ce

ou
tc

om
es

.
A

da
pt

at
io

ns
co

ns
is

tin
g

of
ei

th
er

E
ns

em
bl

e

M
ul

ti
-o

ut
pu

t
or

B
as

ic
M

ul
ti

-o
ut

pu
t

si
m

ul
at

or
co

n-

fig
ur

at
io

ns
ha

ve
be

tt
er

tr
an

sf
er

ab
ili

ty
co

m
pa

re
d

to
ot

he
r

si
m

ul
at

or
co

nfi
gu

ra
tio

ns
.

W
he

n
co

ns
id

er
in

g
th

e
pe

rf
or

m
an

ce
,

fa
ilu

re
ra

te
an

d

tr
an

sf
er

ab
ili

ty
of

th
e

te
st

ed
ad

ap
ta

tio
ns

,
id

ea
l

ad
ap

ta
-

tio
ns

co
ns

is
t

of
ei

th
er

th
e

E
ns

em
bl

e
or

D
ro

p
ou

t
si

m
-

ul
at

or
co

nfi
gu

ra
tio

ns
.

U
nc

er
ta

in
ty

pe
na

lis
at

io
ns

in
th

e

fit
ne

ss
fu

nc
tio

n
lik

el
y

he
lp

s
th

e
E

R
pr

oc
es

s
to

av
oi

d
si

m
-

ul
at

ed
in

ac
cu

ra
ci

es
.

T
he

ag
gr

eg
at

io
n

of
si

m
ul

at
ed

be
-

ha
vi

ou
rs

us
in

g
en

se
m

bl
es

or
dr

op
ou

ti
m

pr
ov

es
th

e
ov

er
al

l

lik
el

y
ou

tc
om

e
of

so
lu

tio
ns

.

Si
m

ul
at

or

N
oi

se

A
ll

no
is

el
es

s
ad

ap
ta

tio
ns

pe
rf

or
m

si
gn

ifi
ca

nt
ly

be
tt

er

th
an

ad
ap

ta
tio

ns
th

at
in

cl
ud

e
si

m
ul

at
or

no
is

e.
In

cl
ud

in
g

si
m

ul
at

or
no

is
e

do
es

no
t

gr
ea

tly
aff

ec
t

th
e

lik
el

y
tr

an
s-

fe
ra

bi
lit

y
of

so
lu

tio
n

co
nt

ro
lle

rs
.

Si
m

ul
at

or
no

is
e

di
d

no
t

si
gn

ifi
ca

nt
ly

aff
ec

t
ge

ne
ra

l
pe

r-

fo
rm

an
ce

ou
tc

om
es

of
th

e
te

st
ed

ad
ap

ta
tio

ns
.

H
ow

ev
er

,

ad
ap

ta
tio

ns
w

ith
si

m
ul

at
or

no
is

e
de

m
on

st
ra

te
gr

ea
tly

im
-

pr
ov

ed
tr

an
sf

er
ab

ili
ty

pr
op

er
tie

s
co

m
pa

re
d

to
ad

ap
ta

-

tio
ns

w
ith

ou
t

si
m

ul
at

or
no

is
e.

T
he

ex
pl

oi
ta

tio
n

of
si

m
u-

la
to

rw
ea

kn
es

se
sd

ur
in

g
th

e
E

R
pr

oc
es

si
sg

re
at

ly
re

du
ce

d

th
ro

ug
h

th
e

in
cl

us
io

n
of

si
m

ul
at

or
no

is
e.

Ta
bl

e
8.

2:
Su

m
m

ar
y

of
ad

ap
ta

tio
n

re
su

lt
fo

r
th

e
SN

S
ap

pr
oa

ch

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 269
B

N
S

A
pp

ro
ac

h

H
ex

ap
od

Sn
ak

e

Si
m

ul
at

or

C
on

fig
ur

at
io

n

A
da

pt
at

io
ns

de
m

on
st

ra
tin

g
go

od
pe

rf
or

m
an

ce
an

d
tr

an
s-

fe
ra

bi
lit

y
pr

op
er

tie
s

us
e

ei
th

er
E

ns
em

bl
e

or
E

ns
em

bl
e

M
ul

ti
-o

ut
pu

t
si

m
ul

at
or

co
nfi

gu
ra

tio
ns

.

H
ig

h
pe

rf
or

m
an

ce
ad

ap
ta

tio
ns

co
ns

is
tm

ai
nl

y
of

ei
th

er
E

n-

se
m

bl
e

or
B

as
ic

M
ul

ti
-o

ut
pu

t
si

m
ul

at
or

co
nfi

gu
ra

tio
ns

.

H
ow

ev
er

,
si

m
ul

at
ed

ob
se

rv
at

io
ns

fo
r

th
e

B
as

ic
M

ul
ti

-

ou
tp

ut
si

m
ul

at
or

co
nfi

gu
ra

tio
n

ar
e

le
ss

re
lia

bl
e

du
e

to

si
m

ul
at

or
ex

pl
oi

ta
tio

n
pr

ob
le

m
s.

A
da

pt
at

io
ns

co
ns

is
tin

g

of
E

ns
em

bl
e

M
ul

ti
-o

ut
pu

t
or

B
as

ic
M

ul
ti

-o
ut

pu
t

si
m

ul
at

or
co

nfi
gu

ra
tio

ns
te

nd
to

ha
ve

be
tt

er
tr

an
sf

er
ab

ili
ty

pr
op

er
tie

s.

Si
m

ul
at

or

N
oi

se

M
os

t
hi

gh
pe

rf
or

m
an

ce
ad

ap
ta

tio
ns

do
no

t
in

cl
ud

e
si

m
u-

la
to

r
no

is
e.

N
oi

se
le

ss
si

m
ul

at
or

co
nfi

gu
ra

tio
ns

al
so

te
nd

to
ha

ve
be

tt
er

tr
an

sf
er

ab
ili

ty
pr

op
er

tie
s

co
m

pa
re

d
to

ad
ap

ta
tio

ns
th

at
in

cl
ud

e
si

m
ul

at
or

no
is

e.

A
da

pt
at

io
ns

w
ith

ou
t

si
m

ul
at

or
no

is
e

ar
e

m
or

e
lik

el
y

to

pe
rf

or
m

be
tt

er
th

an
ad

ap
ta

tio
ns

w
ith

si
m

ul
at

or
no

is
e.

In
-

cl
ud

in
g

si
m

ul
at

or
no

is
e

im
pr

ov
es

th
e

lik
el

y
tr

an
sf

er
ab

ili
ty

of
so

lu
tio

ns
pr

od
uc

ed
w

hi
ch

is
th

e
op

po
si

te
fin

di
ng

co
m

-

pa
re

d
to

th
e

H
ex

ap
od

ro
bo

t.

R
es

et
ti

ng

H
ig

h
pe

rf
or

m
an

ce
ad

ap
ta

tio
ns

at
le

as
t

pe
rio

di
ca

lly
re

se
t

th
e

si
m

ul
at

or
.

Si
m

ul
at

or
re

se
tt

in
g

al
so

he
lp

s
im

pr
ov

in
g

th
e

tr
an

sf
er

ab
ili

ty
pr

op
er

tie
s

of
so

lu
tio

ns
.

H
ig

h
pe

rf
or

m
an

ce
ad

ap
ta

tio
ns

us
e

ei
th

er
no

re
se

tt
in

g
or

si
m

ul
at

or
re

se
tt

in
g.

A
da

pt
at

io
ns

us
in

g
th

e
si

m
ul

at
or

re
-

se
tt

in
g

pr
oc

ed
ur

e
te

nd
to

pr
od

uc
e

m
or

e
tr

an
sf

er
ab

le
so

lu
-

tio
ns

co
m

pa
re

d
to

ot
he

r
pr

oc
ed

ur
es

.

Sa
m

pl
in

g

St
ra

te
gy

T
he

te
st

ed
sa

m
pl

in
g

st
ra

te
gi

es
do

no
aff

ec
tt

he
lik

el
y

pe
r-

fo
rm

an
ce

or
tr

an
sf

er
ab

ili
ty

of
co

nt
ro

lle
r

so
lu

tio
ns

T
he

te
st

ed
sa

m
pl

in
g

st
ra

te
gi

es
do

no
t

aff
ec

t
th

e
lik

el
y

pe
r-

fo
rm

an
ce

or
tr

an
sf

er
ab

ili
ty

of
co

nt
ro

lle
r

so
lu

tio
ns

Ta
bl

e
8.

3:
Su

m
m

ar
y

of
ad

ap
ta

tio
ns

re
su

lts
fo

r
th

e
B

N
S

ap
pr

oa
ch

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 270

used to identify weaknesses in an existing simulator. These simulator weaknesses can either

be corrected or avoided during controller evolution. Less behavioural data is collected

because the simulator is only corrected or augmented based on evolved behaviours. This

reduces the effort required to develop accurate simulators.

Existing research into the use of SNNs in ER has produced promising results. Prior

work shows that the use of SNNs to simulate robot behaviours during the ER process

reduces the need for specialised human knowledge compared to physics-based approaches.

The simulator development phase can then be greatly simplified, shortened and automated

through the use of SNNs.

Identify shortcomings of existing ER approaches.

Physics-based simulation approaches usually require significant prior knowledge of the

robotic system relevant to the given problem. Some bidirectional ER approaches optimise

physics-based model structures and/or parameter settings. The scalability and general-

isability of current ER approaches that use physics-based simulators for different classes

of robot morphologies is not well established. Automating and simplifying a significant

portion of the simulator development process is not rigorously proposed or researched.

Automating physics-based approaches without relying on a significant level of human

knowledge is a difficult problem. In the existing body of work, few researchers are propos-

ing and actively pursuing alternative simulation approaches that are simpler to construct

and do not rely on significant levels of prior knowledge.

This research brings up the concept of demonstrated generality for a given ER ap-

proach. The viability and effectiveness of most ER approaches are not investigated across

significantly different classes of robots. For example, certain approaches might be easy

to implement for gait optimisation on limbed robots but infeasibly complex for crawling,

limbless robot morphologies. When covering the existing literature, a complex Snake robot

morphology is rarely used to demonstrate significant ER approaches.

Most prior studies investigate the SNS and BNS approaches on simple robot morpholo-

gies with few degrees of freedom. Studies that make use of a complex robot morphology for

investigating the SNS and BNS approaches have relied on simplified controller/simulator

designs with prior built-in knowledge. The scaling up of SNN-based approaches for high-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 271

dimensional, low-level controller designs on complex robots has not been extensively stud-

ied. An exception is prior work investigating the SNS approach for a Hexapod robot mor-

phology [Pretorius et al., 2019]. No studies compare the SNS and BNS approaches to each

other or identify differences in effectiveness between classes of complex robot morpholo-

gies. Prior work has been mainly focused on studying the Basic simulator configuration

with limited exploration of alternative simulator configurations.

Demonstrate the scalability, generality, effectiveness and feasibility of the

SNS and BNS approaches on complex robots using controllers that do

not utilise prior knowledge.

The experimental results in this research demonstrate that the SNS and BNS approaches

can scale for use on complex Hexapod and Snake robot morphologies. The SNS and BNS

approaches are effectively applied to two significantly different complex robot morpholo-

gies. The SNS and BNS approaches can therefore be considered generalisable.

For the Hexapod and Snake robots, top performing SNS adaptations are effective

in producing high performance solutions. Similarly, results demonstrate that the BNS

approach can effectively produce high performance solutions when applied to the tested

robot morphologies. However, the SNS and BNS approaches are more effective when

applied to the Hexapod robot. The Snake robot morphology is a significantly more difficult

platform to discover effective solutions.

For the Hexapod and Snake robots, Static SNNs are trained using similar amounts

of behavioural training data. Data collection is spread out over 3 to 5 days for the SNS

approach. Long periods of data collection cause overheating, damage the robot and require

many manual interventions. However, prior studies have shown that the SNS approach

can be easier to implement compared to physics-based simulators [Pretorius et al., 2014,

2019]. Static SNNs are re-usable across trial runs. The BNS approach is considerably less

time-consuming and more feasible to use than the SNS approach in producing a single

solution controller quickly. A controller can be created with little prior knowledge or data

using the BNS approach in about 4 hours for either of the tested robot morphologies.

The SNS approach is less time-consuming to use when producing many independent

solutions or in scenarios involving many different goal tasks. The Static SNNs can be

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 272

re-used for simulated robot behaviours for any given task. Simulators developed using the

BNS approach are unlikely to be effective for developing controllers for many difference

problems. The effectiveness of re-using BNS simulators has not been studied.

Propose and investigate potential improvements to the SNS and BNS

approaches.

The best SNS adaptation consisted of a noiseless Ensemble Multi-output simulator

configuration for the Hexapod robot. Generally, SNS adaptations without simulator noise

perform significantly better than adaptations with noise for the Hexapod robot. For the

Hexapod robot, SNS adaptations consisting of simulator configurations using multi-output

SNNs have better transferability compared to those using single-output SNNs.

For the Snake robot, the best SNS adaptations consisted of either a Dropout simulator

configuration with noise or an Ensemble simulator configuration with/without noise.

Simulator noise does not generally affect the likely performance of SNS adaptations for

the Snake robot but noise does improve the likely transferability of solutions.

The best performing BNS adaptations for the Hexapod robot use either the noiseless

Ensemble or noiseless Ensemble Multi-output simulator configuration with simulator

resetting. Additionally, these best performing adaptations have relatively good transfer-

ability profiles. Non-intuitively, noiseless BNS adaptations tend to have better transfer-

ability properties compared to adaptations with noise for the Hexapod robot.

For the Snake robot, top performing BNS adaptations consist of either a noiseless

Ensemble or noiseless Basic Multi-output simulator configuration. The best BNS

adaptations for the Snake robot all use either a no resetting or simulator resetting pro-

cedure. Simulator noise and simulator resetting are both shown to improve the likely

transferability of BNS adaptation solutions for the Snake robot. Larger more complicated

simulator architectures are more likely to consist of many inaccuracies or weaknesses in

simulated behaviours. Periodically resetting the simulator likely prevents the ER pro-

cess from exploiting simulator weaknesses or inaccuracies. For more complex simulator

architectures, noise seems to prevent the ER process from exploiting simulator weaknesses.

High performance adaptations tend to produce uncertainty information which penalises

robot behaviours that may be inaccurately simulated. Contributing factors such as en-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 273

semble techniques additionally contribute towards improving performance outcomes due

to the aggregation of simulator inaccuracies.

High performance BNS adaptations common to both robots use a noiseless Ensemble

simulator configuration with periodic simulator resetting. The tested sampling strategies

do not affect on the likely performance or transferability of solution controllers. Simulator

resetting is found to improve the transferability of solution controllers for both the Hexa-

pod and Snake robot morphologies. BNS adaptations without simulator noise improve

the likely transferability of solutions for the Hexapod robot but simulators with noise im-

prove the likely transferability of solutions for the Snake robot. This is likely due to the

Snake robot simulator being more susceptible to having its weaknesses exploited during

the ER process. It is likely that the size of the Snake robot SNNs are too large and can

be simplified for the BNS approach.

Determine the relative advantages and disadvantages of the SNS and

BNS approaches.

Data collection, simulator training and controller evolution take place sequentially for the

SNS approach. After SNNs are trained, the SNS approach does not require the use of

any real-world hardware until the final solution is tested. This allows multiple SNS trials

to be run over many computers at the same time in order to produce many independent

solutions. However, the BNS approach requires constant access to a real-world robot. If

a large number of independent solution controllers needs to be found, the SNS approach

is a more appropriate choice compared to the BNS approach.

Simulators developed using the BNS approach are specialised towards simulating par-

ticular behaviours for a single solution. Simulators developed through the SNS approach

are capable of generalising for use across multiple problems and/or behavioural search

spaces. The SNS approach is suitable for ER problems where multiple goal tasks are

specified or many independent solutions are produced.

The BNS approach can be used to produce a single solution controller relatively quickly

without a lengthy data collection phase. In scenarios where data collection needs to be

minimised and only a single effective solution is required, the BNS approach is the best

choice. If the robot morphology or environment are likely to change frequently, the BNS

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 274

approach is also advantageous.

For the SNS approach applied to a Hexapod robot, it takes approximately between

16.3 and 16.5 hours to produce the first solution controller, depending on the adaptation

used. Similarly, it takes approximately between 24.3 and 29.8 hours to produce the first

solution controller for the Snake robot, depending on the adaptation used. For the BNS

approach, the first solution controller is produced after 3.5 and 4.0 hours for the Hexapod

and Snake robots, respectively.

The following discussion assumes that only a single instance of the SNS approach is

run at any given time and SNS trials are not run simultaneously across many computers.

In order to produce 30 solution controllers, the SNS approach would take between 17.0

and 23.8 hours for the Hexapod robot, depending on the adaptation used. For the SNS

approach applied to a Snake robot and depending on the adaptation used, it can take

between 82.3 and 247.3 hours to produce 30 solution controllers. However, if more com-

puting resources are available and SNS trials can be performed simultaneously, producing

30 solution controllers in the same amount of time taken to produce the first solution.

For the BNS approach to produce 30 independent solution controllers, it would take

approximately 105 and 120 hours for the Hexapod and Snake robots, respectively. The SNS

approach is a better choice for producing 30 solution controllers for both the Hexapod and

Snake robots. Performing over 100 hours of evaluations on either robot would definitely

cause significant damage to motors, would be financially costly and require significant

manual interventions. This also assumes that data sharing between BNS trial runs is not

considered.

8.4 Contributions and Recommendations

This thesis confirms prior research that the SNS approach is scalable and generalisable.

The BNS approach is demonstrated for the first time to be viable on a Hexapod robot.

The BNS approach can then be considered generalisable due to the approach being demon-

strated on two complex robots. For the SNS and BNS approaches, the use of non-simplified

controller designs are investigated for the first time on a Snake robot morphology.

The study presents a first time investigation of the inclusion or exclusion of simulator

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 275

noise for the BNS approach. Results demonstrate that not including simulator noise for

the SNS and BNS approaches can increase the likely performance outcomes of solutions.

Experimental outcomes found that the relationship between transferability and sim-

ulator noise depends on the robot morphology used. Adding simulator noise improves

transferability for the Snake robot. However, excluding simulator noise improves the likely

transferability of solution controllers for the Hexapod robot. This may be dependent on

the size of the SNN architecture used.

For the SNS approach, the chosen simulator configuration can significantly influence

the behavioural strategies seen in solution trajectories. Adaptations using certain simula-

tor configurations can produce diverse sets of solution behaviours while the use of other

simulator configurations can produce solutions with relatively similar behaviours.

Prior BNS research used predetermined parameter setting values for behavioural data

standardisation and simulator noise generation. This thesis proposes and validates a

method for dynamically calculated all these parameter setting values during the BNS

approach.

Novel adaptation settings are proposed and investigated for the SNS and BNS ap-

proaches. Dropout, Ensemble and Ensemble Multi-output simulator configurations

are novel proposals. For the SNS and BNS approaches, generating uncertainty information

using dropout or ensembles are novel proposals. Multi-output and single-output SNNs are

for the first time compared for complex robot morphologies. Contrary to prior research,

experimental results found that single-output SNNs are not always a better choice over

multi-output SNNs. Controller and simulator resetting procedures are also novel propos-

als. The Most Uncertain sampling strategy is a novel proposal.

If given an new robot morphology and problem, the recommended approach and adap-

tation to use would depend on certain goals. If the goal is to discover a viable solution

quickly, it is recommended to use a noiseless Ensemble simulator configuration and to

use the BNS approach with simulator resetting. However, if the problem is such that a

good transferability is important, an Ensemble Multi-output simulator configuration

might produce better solution outcomes. Alternatively, if the goal is to produce a large

number of diverse solution controllers, the SNS approach is more appropriate but using a

Basic simulator configuration.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 276

8.5 Limitations

This research has certain limitations to consider when discussing the results. Restrictions

placed on the scope of the study contribute to limitations.

The SNS and BNS approaches are found to be viable and effective for the tested

robot morphologies and problems. Results indicate that approaches presented in this

work are likely to be effective for other robot morphologies. However, this work does

not demonstrate that the SNS and BNS approaches are guaranteed to perform well on

every possible robot morphology or given problem. Further research is required in order

to fully confirm the extent of the effectiveness and generalisability of the SNS and BNS

approaches.

The robotic problem explored in this research is limited to distance maximising open

loop walking or crawling gait optimisation. This research indicates that not including

simulator noise improves the likely performance outcomes of solutions. This observation

might be problem specific and simulator noise could be more important for goal tasks not

investigated in this research. The chosen goal task in this work is likely more forgiving

towards adaptations not including simulator noise.

Robot control policies do not use real-time sensor or position feedback during eval-

uations. SNNs presented in this research are limited to simulating changes in position,

heading and orientations but do not simulate interactions with other robots or objects.

SNNs are trained from observations collected from real-world controller evaluations.

The tracking system used to collect behavioural data does not have perfect accuracy and

tracked behaviours may contain errors. Due to the high dimensional behavioural search

space of the controller design chosen for this work, a fully representative training sample

is practically impossible to collect. Trained SNNs will inevitably contain weaknesses.

For the BNS approach, the validated adaptations have small test sample sizes. These

sample sizes are too small to achieve statistically significant results for comparisons. The

validation experiments are mainly used to confirm the viability of the BNS approach on

real-world hardware.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 277

8.6 Future Research

Alternative methods for behavioural data tracking could be proposed and studied. This

could be particularly beneficial for Snake-like robot morphologies. Whole body tracking

could provide better accuracy and flexibility in evolving particular behaviours or penalising

undesired ones.

Ensemble configurations are shown to be particularly effective, however, only a limited

set of ensemble configurations are investigated. Future work could investigate other types

of ensemble configurations, with ensembles of different types of SNNs. The simulator

configuration and even SNN architectures could be evolved during training. Ensembles

consisting of multiple types of regression modelling techniques seen in Machine Learning

could be investigated.

The BNS approach could be extended, such that behavioural data could be reused be-

tween BNS trial runs, or even changing the robotic task between trial runs. Investigations

into the use of SNNs for robot damage recover or changing environments is a promising

research topic for future work. The BNS approach in particular could be adapted for

changing robotic systems.

The BNS approaches explored in this research use SNN architectures identified as

part of the SNS experimental work. Ideally, SNN architectures should be dynamically

calculated during the BNS approach. Simpler SNN architectures would be utilised during

the early stages of the BNS approach with slow increments in the size and complexity as

more behavioural data is collected.

8.7 Summary

Simulating and successfully evolving target robot behaviours on different classes of complex

robots is a non-trivial task. Controller and simulator designs in the ER field are often

simplified using specialised knowledge. Simulators and controllers in this work are designed

with little prior knowledge specific to the robotic systems.

Few ER approaches in the literature have been demonstrated on different classes of

robot morphologies. This study investigates the SNS and BNS approaches on two com-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 278

plex robot morphologies. The Hexapod and Snake robots generate different classes of

behaviours. Experimental results suggest that the SNS and BNS approaches could be

successfully applied to other classes of robots in future work.

Proposed improvements to the SNS and BNS approaches are investigated and com-

pared. Results helped to identify high performance adaptation settings common to both

robot morphologies. This research leads to recommendations for ideal adaptation settings

that could be successfully applied to untested robot morphologies or problems.

Most ER researchers have spent a great deal of energy learning existing physics-based

frameworks and techniques. This prior knowledge is often taken for granted when assessing

ER approaches. For any particular simulation approach, the amount of human gained

specialised knowledge required to build an effective simulator should be considered. ER

approaches that reduce the required human knowledge needed to solve particular problems

are a valuable contribution to the ER field. The SNS and BNS approaches are promising

ER approaches for reducing simulation complexity and human interventions.

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis,

J. Dean, and M. Devin. TensorFlow: Large-scale machine learning on heterogeneous

systems. http://tensorflow.org/, 2015.

C. Au and P. Jin. Investigation of serpentine gait of a snake robot with a wireless camera.

In 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded

Systems and Applications (MESA), pages 1–6. IEEE, 2016.

J. Auerbach and J. Bongard. Environmental influence on the evolution of morphological

complexity in machines. PLoS computational biology, 10(1):e1003399, 2014.

D. Beasley, R. Martin, and D. Bull. An overview of Genetic Algorithms: Part 1. Funda-

mentals. University Computing, 15(2):58–69, 1993.

R. Bellman. Adaptive control processes: A guided tour, 1961.

D. Belter and P. Skrzypczyński. A biologically inspired approach to feasible gait learning

for a hexapod robot. International Journal of Applied Mathematics and Computer

Science, 20(1):69–84, 2010.

Y. Bengio. Learning deep architectures for AI. Foundations and trends in Machine Learn-

ing, 2(1):1–127, 2009.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

J. Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74–83, 2013.

279

BIBLIOGRAPHY 280

J. Bongard and G. Hornby. Combining fitness-based search and user modeling in evolution-

ary robotics. In Proceedings of the 15th annual conference on Genetic and evolutionary

computation, pages 159–166. ACM, 2013.

J. Bongard and H. Lipson. Automated damage diagnosis and recovery for remote robotics.

In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International

Conference on, volume 4, pages 3545–3550. IEEE, 2004a.

J. Bongard and H. Lipson. Once more unto the breach: Co-evolving a robot and its

simulator. In Proceedings of the Ninth International Conference on the Simulation and

Synthesis of Living Systems (ALIFE9), pages 57–62, 2004b.

J. Bongard and H. Lipson. Nonlinear system identification using coevolution of models

and tests. IEEE Transactions on Evolutionary Computation, 9(4):361–384, 2005.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-modeling.

Science, 314(5802):1118–1121, December 2006a.

J. Bongard, V. Zykov, and H. Lipson. Automated synthesis of body schema using multiple

sensor modalities. In Proc. of the Int. Conf. on the Simulation and Synthesis of Living

Systems (ALIFEX). Citeseer, 2006b.

Encyclopedia Britannica. 2012.

R. Brooks. Artificial life in real robots. Artificial Intelligence, 48:3–10, 1992.

Erwin C. Bullet physics engine. https://pybullet.org, 2019.

K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades, and J. Mouret.

Black-box data-efficient policy search for robotics. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 51–58. IEEE, 2017.

N. Cheney, J. Clune, and H. Lipson. Evolved electrophysiological soft robots. In Artificial

Life Conference Proceedings 14, pages 222–229. MIT Press, 2014.

F. Chollet. Keras. https://keras.io, 2015.

BIBLIOGRAPHY 281

A. Cully, J. Clune, D. Tarapore, and J. Mouret. Robots that can adapt like animals.

Nature, 521(7553):503–507, 2015.

R. De Nardi. Automatic Design of Controllers for Miniature Vehicles through Automatic

Modelling. PhD thesis, University of Essex, 2010.

R. De Nardi and O. Holland. Coevolutionary modelling of a miniature rotorcraft. In 10th

International Conference on Intelligent Autonomous Systems (IAS10), pages 364–373,

2008.

L. Deng and D. Yu. Deep learning: methods and applications. Foundations and Trends

in Signal Processing, 7(3–4):197–387, 2014.

P. Domingos. A few useful things to know about machine learning. Commun. acm, 55

(10):78–87, 2012.

S. Doncieux and J. Mouret. Beyond black-box optimization: a review of selective pressures

for evolutionary robotics. Evolutionary Intelligence, 7(2):71–93, 2014.

S. Doncieux, N. Bredeche, J. Mouret, and A. Eiben. Evolutionary robotics: what, why,

and where to. Frontiers in Robotics and AI, 2:4, 2015.

K. Dowling. Limbless locomotion: Learning to crawl with a snake robot. PhD thesis,

NASA, 1996.

S. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting empirical methods for

software engineering research. In Guide to advanced empirical software engineering,

pages 285–311. Springer, 2008.

A. Engelbrecht. Computational intelligence: An introduction. John Wiley & Sons, 2007.

D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Genetic

evolution of a neural-network driven robot. From animals to animats, pages 421–430,

1994.

D. Floreano, P. Husbands, and S. Nolfi. Evolutionary robotics. Springer handbook of

robotics, pages 1423–1451, 2008.

BIBLIOGRAPHY 282

S. Fortmann-Roe. Understanding the bias-variance tradeoff. 2012.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. In International conference on machine learning, pages

1050–1059, 2016.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings

of the fourteenth international conference on artificial intelligence and statistics, pages

315–323, 2011.

C. Gong, M. Travers, H. Astley, L. Li, J. Mendelson, D. Goldman, and H. Choset. Kine-

matic gait synthesis for snake robots. The International Journal of Robotics Research,

35(1-3):100–113, 2016.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

D. Gray. Doing research in the real world. Sage, 2009.

J. Grefenstette and C. Ramsey. An approach to anytime learning. In Machine Learning

Proceedings 1992, pages 189–195. Elsevier, 1992.

J. Hallam and A. Ijspeert. Using evolutionary methods to parameterize neural models: a

study of the lamprey central pattern generator. In Biologically inspired robot behavior

engineering, pages 119–142. Springer, 2003.

I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary robotics: the

sussex approach. Robotics and autonomous systems, 20(2-4):205–224, 1997.

I. Harvey, E. Paolo, R. Wood, M. Quinn, and E. Tuci. Evolutionary robotics: A new

scientific tool for studying cognition. Artificial life, 11(1-2):79–98, 2005.

S. Hasanzadeh and A. Akbarzadeh. Development of a new spinning gait for a planar snake

robot using central pattern generators. Intelligent Service Robotics, 6(2):109–120, 2013.

S. Hasanzadeh and A. Tootoonchi. Ground adaptive and optimized locomotion of snake

robot moving with a novel gait. Autonomous Robots, 28(4):457–470, 2010.

BIBLIOGRAPHY 283

Y. Hong and B. Lee. Evolutionary optimization for optimal hopping of humanoid robots.

IEEE Transactions on Industrial Electronics, 64(2):1279–1283, 2017.

G. Hornby, S. Takamura, T. Yamamoto, and M. Fujita. Autonomous evolution of dynamic

gaits with two quadruped robots. IEEE Transactions on Robotics, 21(3):402–410, 2005.

D. Hu, J. Nirody, T. Scott, and M. Shelley. The mechanics of slithering locomotion.

Proceedings of the National Academy of Sciences, 106(25):10081–10085, 2009.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic

depth. In European conference on computer vision, pages 646–661. Springer, 2016.

L. Iocchi, F. Libera, and E. Menegatti. Learning humanoid soccer actions interleaving

simulated and real data. In Second Workshop on Humanoid Soccer Robots, 2007.

N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive

behavior, 6(2):325–368, 1997.

N. Jakobi. Minimal simulations for Evolutionary Robotics. PhD thesis, University of

Sussex, 1998a.

N. Jakobi. Running across the reality gap: Octopod locomotion evolved in a minimal

simulation. In European Workshop on Evolutionary Robotics, pages 39–58. Springer,

1998b.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of simulation

in Evolutionary Robotics. In Advances in artificial life, pages 704–720. Springer, 1995.

A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and S. Kokaji. Auto-

matic locomotion design and experiments for a modular robotic system. Mechatronics,

IEEE/ASME Transactions on, 10(3):314–325, 2005.

S. Kamio and H. Iba. Evolutionary construction of a simulator for real robots. In Evolu-

tionary Computation, 2004. CEC2004. Congress on, volume 2, pages 2202–2209. IEEE,

2004.

BIBLIOGRAPHY 284

S. Kamio and H. Iba. Adaptation technique for integrating genetic programming and

reinforcement learning for real robots. Evolutionary Computation, IEEE Transactions,

9(3):318–333, 2005.

R. Kaushik, K. Chatzilygeroudis, and J. Mouret. Multi-objective model-based policy

search for data-efficient learning with sparse rewards. arXiv preprint arXiv:1806.09351,

2018.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

G. Klaus, K. Glette, and J. Tørresen. A comparison of sampling strategies for parameter

estimation of a robot simulator. In International Conference on Simulation, Modeling,

and Programming for Autonomous Robots, pages 173–184. Springer, 2012.

S. Koos, A. Cully, and J. Mouret. Fast damage recovery in robotics with the T-resilience

algorithm. The International Journal of Robotics Research, 32(14):1700–1723, 2013a.

S. Koos, J. Mouret, and S. Doncieux. The transferability approach: Crossing the reality

gap in evolutionary robotics. Evolutionary Computation, IEEE Transactions on, 17(1):

122–145, 2013b.

J. Koza. Genetic programming: on the programming of computers by means of natural

selection, volume 1. MIT press, 1992.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncer-

tainty estimation using deep ensembles. In Advances in Neural Information Processing

Systems, pages 6402–6413, 2017.

J. Lee, M. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. Srinivasa, M. Stilman, and C. Liu.

DART: Dynamic animation and robotics toolkit. The Journal of Open Source Software,

3(22):500, 2018.

T. Lee, U. Nehmzow, and R. Hubbold. Mobile Robot Simulation by Means of Acquired

Neural Network Models. In ESM, pages 465–469, 1998.

BIBLIOGRAPHY 285

T. Lee, U. Nehmzow, and R. Hubbold. Computer simulation of learning experiments with

autonomous mobile robots. Proceedings of TIMR, 99, 1999.

J. Liang and C. Xue. Self identification and control of four-leg robot based on biological

evolutionary mechanisms. In 2010 5th IEEE Conference on Industrial Electronics and

Applications, pages 958–961. IEEE, 2010.

H. Lipson and J. Pollack. Automatic design and manufacture of robotic lifeforms. Nature,

406(6799):974–978, 2000.

H. Lipson, J. Bongard, V. Zykov, and E. Malone. Evolutionary robotics for legged ma-

chines: From simulation to physical reality. In IAS, pages 11–18, 2006.

D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic Gait Optimization with

Gaussian Process Regression. In IJCAI, volume 7, pages 944–949, 2007.

H. Lund. Co-evolving control and morphology with LEGO Robots. In Morpho-functional

Machines: The New Species, pages 59–79. Springer, 2003.

H. Lund and O. Miglino. From simulated to real robots. In Evolutionary Computation,

1996., Proceedings of IEEE International Conference on, pages 362–365. IEEE, 1996.

L. Mainini and K. Willcox. Surrogate modeling approach to support real-time structural

assessment and decision making. AIAA Journal, 53(6):1612–1626, 2015.

A. Maren, C. Harston, and R. Pap. Handbook of neural computing applications. Academic

Press, 2014.

M. Matarić and D. Cliff. Challenges in evolving controllers for physical robots. Robotics

and autonomous systems, 19(1):67–83, 1996.

K. Melo, M. Hernandez, and D. Gonzalez. Parameterized space conditions for the definition

of locomotion modes in modular snake robots. In Robotics and Biomimetics (ROBIO),

2012 IEEE International Conference on, pages 2032–2038. IEEE, 2012.

O. Miglino, K. Nafasi, and C. Taylor. Selection for wandering behavior in a small robot.

Artificial Life, 2(1):101–116, 1994.

BIBLIOGRAPHY 286

O. Miglino, H. Lund, and S. Nolfi. Evolving mobile robots in simulated and real environ-

ments. Artificial life, 2(4):417–434, 1995.

R. Moeckel, Y. Perov, A. Nguyen, M. Vespignani, S. Bonardi, S. Pouya, A. Sproewitz,

J. van den Kieboom, F. Wilhelm, and A. Ijspeert. Gait optimization for roombots

modular robots - matching simulation and reality. In Intelligent Robots and Systems

(IROS), 2013 IEEE/RSJ International Conference on, pages 3265–3272. Ieee, 2013.

J. Montanier and N. Bredeche. Surviving the tragedy of commons: emergence of altruism

in a population of evolving autonomous agents. 2011.

J. Mouret and K. Chatzilygeroudis. 20 years of reality gap: a few thoughts about simula-

tors in evolutionary robotics. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference Companion, pages 1121–1124. ACM, 2017.

J. Mouret, S. Koos, and S. Doncieux. Crossing the reality gap: a short introduction to

the transferability approach. In In Proceedings of the ALIFE workshop ”evolution in

physical systems”, 2012.

V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In

Proceedings of the 27th international conference on machine learning (ICML-10), pages

807–814, 2010.

S. Nakamura and S. Hashimoto. Hybrid learning strategy to solve pendulum swing-up

problem for real hardware. In 2007 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pages 1972–1977. IEEE, 2007.

S. Nakamura, R. Saegusa, and S. Hashimoto. A hybrid learning strategy for real hardware

of swing-up pendulum. Journal of Advanced Computational Intelligence & Intelligent

Informatics (JACIII), 11(8), 2007.

U. Nehmzow, D. Kerr, and S. Billings. Accurate robot simulation. Technical Report ACSE

Research Report no. 992, University of Sheffield, 2009.

D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey. Cognitive

processing, 12(4):319–340, 2011.

BIBLIOGRAPHY 287

S. Nolfi, J. Bongard, P. Husbands, and D. Floreano. Evolutionary robotics. In Springer

Handbook of Robotics, pages 2035–2068. Springer, 2016.

R. Olson, A. Hintze, F. Dyer, D. Knoester, and C. Adami. Predator confusion is sufficient

to evolve swarming behaviour. Journal of The Royal Society Interface, 10(85):20130305,

2013.

G. Parker. Co-evolving model parameters for anytime learning in evolutionary robotics.

Robotics and Autonomous Systems, 33(1):13–30, 2000.

G. Parker. Punctuated anytime learning for hexapod gait generation. In IROS, pages

2664–2671, 2002.

J. Pollack, H. Lipson, S. Ficici, P. Funes, G. Hornby, and R. Watson. Evolutionary

techniques in physical robotics. In Evolvable Systems: from biology to hardware, pages

175–186. Springer, 2000.

D. Pratihar. Evolutionary robotics - A review. Sadhana, 28(6):999–1009, 2003.

C. Pretorius. Artificial Neural Networks as simulators for behavioural evolution in Evolu-

tionary Robotics. MasterâĂŹs thesis, Nelson Mandela Metropolitan University, 2010.

C. Pretorius, M. du Plessis, and C. Cilliers. Towards an Artificial Neural Network-based

simulator for behavioural evolution in Evolutionary Robotics. In Proceedings of the 2009

Annual Research Conference of the South African Institute of Computer Scientists and

Information Technologists, pages 170–178. ACM, 2009.

C. Pretorius, M. du Plessis, and C. Cilliers. Simulating robots without conventional

physics: A neural network approach. Journal of Intelligent & Robotic Systems, 71(3-4):

319–348, 2013.

C. Pretorius, M. du Plessis, and J. Gonsalves. A comparison of Neural Networks and

physics models as motion simulators for simple robotic evolution. In Evolutionary Com-

putation (CEC), 2014 IEEE Congress on, pages 2793–2800. IEEE, 2014.

BIBLIOGRAPHY 288

C. Pretorius, M. du Plessis, and J. Gonsalves. Neuroevolution of inverted pendulum

control: a comparative study of simulation techniques. Journal of Intelligent & Robotic

Systems, 86(3-4):419–445, 2017.

J. Pretorius, M. du Plessis, and J. Gonsalves. Evolutionary robotics applied to hexapod

locomotion: a comparative study of simulation techniques. Journal of Intelligent &

Robotic Systems, pages 1–23, 2019.

M. Quinn, L. Smith, G. Mayley, and P. Husbands. Evolving controllers for a homogeneous

system of physical robots: Structured cooperation with minimal sensors. Philosophical

Transactions of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, 361(1811):2321–2343, 2003.

S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.

S. Russell and P. Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited„ 2016.

E. Şahin, S. Girgin, L. Bayindir, and A. Turgut. Swarm robotics. In Swarm intelligence,

pages 87–100. Springer, 2008.

M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.

Science, 324(5923):81–85, 2009.

H. Schwefel. Evolution and optimum seeking: the sixth generation. John Wiley & Sons,

Inc., 1993.

O. Shmakov. Snakelike robots locomotions control. Mechatronics–Foundations and Appli-

cations, 2006.

F. Silva, M. Duarte, S. Oliveira, L. Correia, and A. Christensen. The case for engineering

the evolution of robot controllers. In Artificial Life Conference Proceedings 14, pages

703–710. MIT Press, 2014.

F. Silva, M. Duarte, L. Correia, S. Oliveira, and A. Christensen. Open issues in evolution-

ary robotics. Evolutionary computation, 24(2):205–236, 2016.

BIBLIOGRAPHY 289

R. Smith. Open dynamics engine. 2005.

D. Sofge, M. Potter, M. Bugajska, and A. Schultz. Challenges and opportunities of evo-

lutionary robotics. In Proceedings of the Second International Conference on Computa-

tional Intelligence. Robotics and Autonomous Systems, 2003.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958, 2014.

J. Togelius, R. De Nardi, H. Marques, R. Newcombe, S. Lucas, and O. Holland. Nonlinear

dynamics modelling for controller evolution. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation, pages 324–333. ACM, 2007.

L. Wang. A hybrid genetic algorithm - neural network strategy for simulation optimization.

Applied Mathematics and Computation, 170(2):1329–1343, 11 2005.

S. Wischmann, D. Floreano, and L. Keller. Historical contingency affects signaling strate-

gies and competitive abilities in evolving populations of simulated robots. Proceedings

of the National Academy of Sciences, 109(3):864–868, 2012.

S. Wittmeier, M. Jäntsch, K. Dalamagkidis, and A. Knoll. Physics-based modeling of

an anthropomimetic robot. In 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 4148–4153. IEEE, 2011.

G. Woodford. Concurrent Controller and Simulator Neural Network Development in the

Evolutionary Robotics Process. Masters thesis, Nelson Mandela University, 2016.

G. Woodford and M. du Plessis. Robotic snake simulation using ensembles of artificial

neural networks in evolutionary robotics. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 173–180. ACM, 2018.

G. Woodford and M. du Plessis. Complex morphology neural network simulation in evo-

lutionary robotics. Robotica, pages 1–17, 2019.

BIBLIOGRAPHY 290

G. Woodford, M. du Plessis, and C. Pretorius. Evolving snake robot controllers using arti-

ficial neural networks as an alternative to a physics-based simulator. In Computational

Intelligence, 2015 IEEE Symposium Series on, pages 267–274. IEEE, 2015.

G. Woodford, C. Pretorius, and M. du Plessis. Concurrent controller and simulator neural

network development for a differentially-steered robot in evolutionary robotics. Robotics

and Autonomous Systems, 76:80–92, 2016.

G. Woodford, M. du Plessis, and C. Pretorius. Concurrent controller and simulator neu-

ral network development for a snake-like robot in evolutionary robotics. Robotics and

Autonomous Systems, 88:37–50, 2017.

J. Zagal and J. Ruiz-del Solar. Combining simulation and reality in evolutionary robotics.

Journal of Intelligent and Robotic Systems, 50(1):19–39, March 2007. ISSN 0921-0296.

J. Zagal, J. Delpiano, and J. Ruiz-del Solar. Self-modeling in humanoid soccer robots.

Robotics and Autonomous Systems, 57(8):819–827, 2009.

A. Zavoianu, E. Lughofer, G. Bramerdorfer, W. Amrhein, and E. Klement. An effective

ensemble-based method for creating on-the-fly surrogate fitness functions for multi-

objective evolutionary algorithms. In 2013 15th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing, pages 235–242. IEEE, 2013.

V. Zykov, A. Chan, and H. Lipson. Molecubes: An open-source modular robotics kit. In

IROS-2007 Self-Reconfigurable Robotics Workshop, pages 3–6, 2007.

Appendix A

Research Output by the Author

Conference proceedings:

• Woodford, G., du Plessis, M. and Pretorius, C. Evolving snake robot controllers

using Artificial Neural Networks as an alternative to a physics-based simulator, IEEE

Symposium Series on Computational Intelligence, 267-274, 2015.

• Woodford, G., and du Plessis, M. Robotic snake simulation using ensembles of ar-

tificial neural networks in Evolutionary Robotics, In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO), ACM, 173-180, 2018.†

• Leonard, B., du Plessis, M. and Woodford, G. Damage recovery for evolved au-

tonomous agents using Bootstrapped Neuro-Simulation, International Conference

on Computer Science and Information Technology (ICCSIT), 2018.†

Peer-reviewed journal publications:

• Woodford, G., Pretorius, C. and du Plessis, M. Concurrent controller and Simula-

tor Neural Network development for a differentially-steered robot in Evolutionary

Robotics, Robotics and Autonomous Systems, 76: 80-92, 2016.

• Woodford, G., du Plessis, M. and Pretorius, C. Concurrent controller and Simula-

tor Neural Network development for a snake-like robot in Evolutionary Robotics,

Robotics and Autonomous Systems 88: 37-50, 2017.
†produced as a result of research for this thesis

291

APPENDIX A. RESEARCH OUTPUT BY THE AUTHOR 292

• Woodford, G. and du Plessis, M. Complex morphology neural network simulation in

Evolutionary Robotics, Robotica, Cambridge University Press, pages 1-17, 2019.†

• Woodford, G. and du Plessis, M. Bootstrapped Neuro-Simulation for complex robots,

Robotics and Autonomous Systems, 2019. Under review.†

• Leonard, B., du Plessis, M. and Woodford, G. Bootstrapped Neuro-Simulation as

a method of Concurrent Neuro-Evolution and Damage Recovery, Robotics and Au-

tonomous Systems, 2019. Accepted.†

Appendix B

Experimental Results

Benchmarking results for identifying the ideal Snake robot SNN architectures and the

Simulated Experimental trial results for the Hexapod and Snake robots can be found

here: https://github.com/gwwoodford/PhD

For the tested SNS adaptations, the performance measurements of the 30 trial runs for

the Hexapod and Snake robots are given in Tables B.1 and B.3, respectively. Similarly,

the transferability measurements for the Hexapod and Snake robots are given in Tables

B.2 and B.4, respectively.

The performance and transferability values for each trial run of the Hexapod Validation

BNS Experiments are given in Tables B.5 and B.6, respectively. The performance and

transferability values for each trial run of the Snake Validation BNS Experiments are

given in Tables B.7 and B.8.

The adaptation performance and transferability statistics for the Hexapod Simulated

BNS Experiments are given in Tables B.9 and B.10, respectively.

The adaptation performance and transferability statistics for the Snake Simulated BNS

Experiments are given in Tables B.11 and B.12, respectively.

293

APPENDIX B. EXPERIMENTAL RESULTS 294

HBE HBN HDE HDN HEE HEN HME HMN HSE HSN

46.7 41.8 52.5 39.9 44.0 47.9 66.5 51.3 50.3 49.7

69.9 41.2 45.8 57.3 62.7 37.1 54.3 36.2 46.7 53.8

51.6 55.4 44.3 33.3 30.2 47.2 54.7 51.7 54.9 50.1

57.7 42.5 69.9 31.3 30.8 33.4 54.2 49.4 60.1 29.0

57.5 54.6 59.1 50.3 42.5 50.3 72.0 27.4 55.2 46.9

57.4 30.4 57.0 16.2 62.5 41.1 58.3 37.3 47.4 47.9

49.2 40.7 49.3 40.0 49.0 37.9 50.6 32.4 46.8 39.3

39.3 45.8 52.2 51.4 56.5 42.0 66.9 30.9 60.1 38.3

61.9 36.5 43.2 26.4 46.8 33.4 69.8 41.1 57.2 30.9

33.4 40.5 55.4 36.4 61.4 57.7 67.1 27.3 52.9 41.5

60.7 42.2 65.1 56.4 52.7 23.7 62.2 35.8 67.1 33.4

49.5 36.4 38.9 31.0 45.1 34.8 64.1 42.2 49.9 43.6

47.7 49.6 67.3 44.2 60.0 39.1 51.0 48.2 53.6 30.6

63.0 40.8 58.9 24.5 63.7 34.4 63.3 38.4 39.1 49.4

74.7 51.1 52.0 27.3 38.8 35.8 58.0 50.7 70.8 37.1

63.0 40.8 30.0 27.7 74.1 32.6 59.1 46.6 56.3 44.7

67.3 58.6 52.0 42.5 50.9 51.9 71.3 35.7 67.1 40.8

46.9 29.5 44.4 41.9 49.9 27.0 68.3 32.1 55.7 42.4

61.7 34.2 58.9 33.4 68.2 27.6 62.2 40.8 54.9 47.8

46.6 31.7 59.7 62.5 48.1 42.5 67.4 43.3 54.6 32.6

52.3 46.9 71.9 38.4 52.0 59.4 78.5 33.1 39.5 45.9

60.1 53.6 18.3 55.0 61.0 38.0 42.9 50.1 55.4 40.0

29.5 39.9 54.7 51.8 55.2 49.6 53.7 32.7 77.5 52.7

52.5 51.5 53.3 46.8 55.2 40.1 58.4 36.6 60.5 31.7

53.9 31.1 48.2 42.1 56.1 38.0 55.7 47.3 59.7 28.7

47.4 49.2 39.0 33.9 50.9 46.9 60.0 41.2 68.2 34.2

53.3 40.2 69.4 42.6 53.4 26.1 62.9 46.4 47.8 37.3

46.2 38.7 36.4 39.6 49.7 24.7 49.4 24.9 52.6 36.9

55.3 38.7 62.3 34.9 57.1 38.0 63.7 47.1 55.6 52.6

58.5 16.3 54.3 37.4 72.6 32.5 39.7 50.1 52.6 41.7

Table B.1: Performance results for the SNS approach applied to the Hexapod robot

APPENDIX B. EXPERIMENTAL RESULTS 295

HBE HBN HDE HDN HEE HEN HME HMN HSE HSN

1.29 0.71 0.56 0.93 1.07 0.54 0.18 0.04 0.67 0.17

0.44 1.05 0.84 0.13 0.56 0.93 0.64 0.50 0.74 0.11

0.97 0.50 0.87 0.84 1.95 0.36 0.37 0.27 0.48 0.20

0.99 0.68 0.27 1.01 1.64 1.04 0.35 0.23 0.32 0.83

0.84 0.46 0.63 0.40 1.26 0.37 0.28 0.78 0.55 0.18

0.83 1.18 0.67 2.68 0.48 0.62 0.39 0.39 0.74 0.31

1.16 0.62 0.86 1.02 1.04 0.63 0.44 0.58 0.81 0.55

1.38 0.43 0.85 0.61 0.80 0.25 0.43 0.63 0.36 0.49

0.82 0.94 1.34 2.15 1.02 0.84 0.24 0.41 0.49 0.71

1.90 0.84 0.46 0.70 0.62 0.23 0.41 1.18 0.43 0.37

0.49 0.29 0.52 0.36 0.83 1.46 0.50 0.53 0.28 0.54

0.95 0.76 1.37 1.12 1.06 1.10 0.34 0.28 0.70 0.29

0.84 0.71 0.41 0.64 0.74 0.57 0.56 0.40 0.56 0.60

0.81 0.80 0.69 1.23 0.67 1.04 0.47 0.25 1.03 0.30

0.32 0.28 0.90 0.90 1.65 0.86 0.50 0.20 0.25 0.27

0.72 0.87 2.07 1.49 0.33 0.98 0.58 0.15 0.42 0.12

0.55 0.28 0.82 0.69 0.77 0.39 0.12 0.47 0.10 0.41

1.43 1.08 1.11 0.92 0.96 1.32 0.22 0.58 0.56 0.33

0.38 0.99 0.43 1.12 0.44 1.31 0.49 0.49 0.53 0.19

1.08 1.28 0.41 0.35 0.98 0.67 0.51 0.49 0.43 0.65

0.70 0.82 0.35 0.66 0.80 0.20 0.11 0.61 0.78 0.22

0.65 0.55 2.95 0.16 0.57 0.66 0.50 0.18 0.49 0.26

1.82 0.79 0.61 0.35 0.68 0.44 0.53 0.47 0.25 0.12

0.95 0.24 0.50 0.68 0.81 0.65 0.35 0.10 0.36 0.88

0.74 0.92 0.78 0.46 0.68 0.78 0.33 0.26 0.48 0.75

1.13 0.54 1.24 0.89 0.83 0.42 0.43 0.29 0.27 0.32

0.66 0.73 0.39 0.42 0.79 1.22 0.41 0.27 0.70 0.45

1.08 1.09 1.09 0.88 0.95 1.44 0.63 0.97 0.45 0.41

0.93 0.47 0.41 0.69 0.67 0.92 0.24 0.29 0.60 0.22

0.58 2.93 0.70 0.74 0.45 1.08 0.98 0.13 0.66 0.57

Table B.2: Transferability results for the SNS approach applied to the Hexapod robot

APPENDIX B. EXPERIMENTAL RESULTS 296

SBE SBN SDE SDN SEE SEN SME SMN SSE SSN

-16.0 110.9 -54.4 68.0 54.7 36.6 14.7 7.6 23.5 0.6

65.5 5.6 -8.3 34.2 74.6 25.3 12.4 5.2 12.1 43.1

30.8 22.2 76.7 34.6 -30.8 25.2 -21.4 49.2 -4.4 5.4

-100.0 68.8 68.9 72.4 33.9 -2.9 6.9 24.3 -6.8 11.6

62.0 64.7 19.6 76.1 48.7 39.3 8.9 0.4 -2.6 21.7

64.8 6.4 -7.0 13.8 62.0 -22.3 26.1 33.3 19.6 -0.6

-1.3 2.6 14.0 2.1 52.8 38.1 6.8 15.3 28.8 14.7

66.1 64.7 92.5 48.8 85.8 56.3 71.4 3.4 8.3 8.0

32.0 55.1 11.1 -18.4 76.2 58.1 20.0 25.4 -0.8 3.2

-19.9 73.3 40.9 -1.5 79.9 -7.7 34.5 -1.1 23.3 10.5

39.1 44.3 56.9 45.9 5.9 -3.6 9.7 13.4 -1.6 6.9

79.7 70.8 17.4 0.7 49.8 -3.4 19.0 8.3 97.0 10.1

-19.5 44.2 13.3 54.7 9.5 58.2 46.1 40.3 -4.3 67.3

-2.7 42.9 75.8 74.1 46.9 27.6 50.4 35.7 2.0 49.0

44.9 17.3 54.2 45.4 87.1 66.7 14.2 1.8 13.7 -8.6

66.5 42.8 69.2 68.3 18.6 -1.6 35.4 52.3 7.0 7.1

2.4 -15.1 58.2 44.2 60.2 93.2 39.5 10.9 17.9 1.6

93.1 31.7 45.0 1.7 35.5 61.9 16.8 3.8 10.1 23.2

45.4 -4.7 38.5 41.3 49.6 63.8 34.4 23.9 11.4 29.7

24.5 73.1 7.8 40.7 25.9 87.6 -1.4 6.6 6.6 4.5

-64.4 20.8 35.1 -19.9 31.3 -11.5 12.9 23.4 8.6 -6.4

58.9 -9.0 34.0 18.3 20.4 41.8 20.5 13.6 42.3 27.9

25.6 23.8 -6.4 69.9 64.6 21.9 11.3 6.4 7.3 7.6

65.1 41.5 51.7 42.9 18.5 48.3 4.6 16.3 -0.4 16.5

74.7 47.0 81.0 37.8 65.7 69.3 48.3 26.0 28.7 5.1

0.2 -61.0 4.2 -34.7 52.1 -10.2 44.2 6.0 22.1 12.9

4.8 32.8 50.6 74.0 106.4 73.4 23.9 4.9 0.2 23.6

1.2 13.3 87.3 68.0 -22.2 60.4 1.1 11.1 -1.6 -1.9

76.6 9.5 -4.6 43.5 58.2 -5.9 21.5 53.4 5.6 -1.5

-15.6 27.9 85.0 61.8 -44.8 18.4 1.5 5.2 17.6 15.2

Table B.3: Performance results for the SNS approach applied to the Snake robot

APPENDIX B. EXPERIMENTAL RESULTS 297

SBE SBN SDE SDN SEE SEN SME SMN SSE SSN

12.61 0.45 3.53 1.06 2.20 1.61 3.43 4.58 4.25 7.63

4.16 3.95 31.24 1.84 2.59 3.73 4.64 2.97 10.45 0.60

10.95 1.28 2.17 2.09 6.38 2.65 9.41 0.56 7.79 4.85

4.75 0.55 1.88 1.13 4.65 8.31 5.89 0.99 5.21 3.55

4.31 1.41 13.58 0.66 1.74 2.01 3.51 4.02 28.94 1.26

7.75 8.58 29.32 9.98 3.36 2.15 2.78 0.98 5.78 4.00

144.00 23.89 12.72 6.77 2.48 0.90 3.60 1.67 3.07 2.47

3.84 0.63 2.45 1.13 1.51 0.96 0.60 2.90 14.48 8.13

13.43 1.36 2.87 8.50 1.47 2.26 4.25 1.16 3.19 6.31

10.80 0.66 6.45 6.23 2.20 14.11 1.55 36.69 3.21 4.52

6.33 2.31 3.73 2.04 7.03 25.59 9.17 3.52 5.74 1.62

2.99 1.04 15.51 151.14 2.25 11.04 2.55 8.13 0.57 3.92

18.17 1.64 3.36 0.57 14.05 0.86 1.22 1.60 8.97 0.62

46.22 1.39 2.60 0.37 2.75 1.25 0.81 0.89 72.91 0.57

7.07 3.42 3.71 1.49 1.70 0.10 4.57 5.07 9.35 6.35

6.42 2.00 2.36 0.58 6.86 4.20 1.25 0.33 8.33 6.21

36.82 2.04 3.42 0.44 3.00 0.30 1.57 1.44 4.08 10.04

2.62 2.40 1.87 9.16 2.61 0.68 4.04 12.88 14.68 1.09

3.75 15.52 6.17 1.66 3.55 1.08 1.97 1.47 8.68 1.73

15.93 0.70 27.44 2.89 4.56 0.56 3.52 2.60 5.77 3.38

8.75 3.17 7.28 6.40 4.36 8.27 3.95 1.60 6.87 9.01

4.39 12.86 4.65 3.52 2.28 1.09 2.39 4.01 2.05 1.42

9.23 4.47 3.09 0.49 1.09 2.99 6.07 3.04 20.92 2.89

7.43 4.11 4.10 2.03 8.57 1.04 5.14 2.43 6.62 3.44

2.94 1.23 2.10 2.03 2.84 0.36 0.88 1.10 4.07 2.34

113.56 3.40 75.28 2.56 2.37 6.32 1.01 5.45 7.31 2.69

66.11 1.91 2.77 1.09 1.29 0.68 2.40 5.39 3.51 1.35

43.48 5.20 2.41 1.05 11.79 0.80 45.89 2.80 18.33 7.02

3.74 7.26 30.10 1.55 2.65 9.63 1.82 0.57 24.91 8.47

9.20 2.62 2.00 0.78 2.91 4.78 47.78 6.36 3.41 2.65

Table B.4: Transferability results for the SNS approach applied to the Snake robot

APPENDIX B. EXPERIMENTAL RESULTS 298

HBSET HBSNT HESEU HESNU HMSEU HMSNU

53.1 55.6 67.6 50.1 36.8 41.2

39.1 73.0 41.0 81.3 51.9 50.8

42.8 61.7 46.3 49.1 38.3 50.8

69.5 65.8 62.1 38.0 44.6 63.2

52.6 20.6 57.7 31.7 59.5 40.0

Table B.5: Validation performance results for the Hexapod robot

HBSET HBSNT HESEU HESNU HMSEU HMSNU

0.54 0.09 0.09 0.50 0.35 0.78

0.41 0.12 0.66 0.22 0.45 0.41

0.48 0.42 0.72 0.38 0.55 0.57

0.16 0.28 0.13 1.05 0.30 0.21

0.50 1.34 0.47 0.88 0.06 0.73

Table B.6: Validation transferability results for the Hexapod robot

SBSNT SESNU SESEU SBSET SMSNU SMSEU

84.5 33.7 78.5 87.0 85.8 6.7

43.3 45.6 144.7 45.1 53.8 49.2

39.5 14.8 30.7 49.4 -13.1 53.2

34.1 46.4 83.3 109.7 62.2 70.7

-16.3 22.3 8.1 13.7 61.5 37.2

Table B.7: Validation performance results for the Snake robot

SBSET SBSNT SESEU SESNU SMSEU SMSNU

2.45 0.45 0.94 1.28 10.70 0.38

2.39 0.55 0.59 0.15 0.11 0.34

3.20 1.29 2.59 1.34 0.61 6.98

1.13 0.70 0.97 0.53 0.49 0.78

4.87 3.78 3.51 0.94 0.47 0.58

Table B.8: Validation transferability results for the Snake robot

APPENDIX B. EXPERIMENTAL RESULTS 299

Mean Median First Quartile Third Quartile Standard Deviation

HBBET 27.8 28.0 22.2 30.9 14.3

HBBNT 26.6 24.8 14.7 29.5 17.2

HBCET 19.5 18.6 13.1 22.8 12.0

HBCNT 14.3 13.6 8.0 19.3 8.4

HBNET 13.9 9.6 7.3 18.4 11.6

HBNNT 13.8 13.4 8.2 16.5 9.5

HBSET 37.4 37.3 24.8 47.0 16.5

HBSNT 33.7 28.9 21.4 41.3 17.3

HDBET 11.9 12.5 6.7 16.2 8.0

HDBEU 13.2 12.7 10.5 16.6 5.3

HDBNT 10.7 11.4 7.9 14.7 5.6

HDBNU 13.2 13.0 9.6 15.7 6.3

HDCET 7.7 8.3 2.4 12.3 5.8

HDCEU 9.9 9.2 5.6 14.4 6.0

HDCNT 9.2 9.3 5.5 13.2 5.0

HDCNU 10.7 10.5 7.6 14.0 6.8

HDNET 9.2 8.0 3.5 14.3 7.2

HDNEU 8.3 8.9 4.3 12.6 5.4

HDNNT 8.5 8.2 5.7 10.9 4.5

HDNNU 7.5 7.2 5.2 10.7 4.9

HDSET 21.6 21.9 13.9 28.5 14.1

HDSEU 23.9 23.1 17.2 27.5 12.2

HDSNT 22.5 23.6 14.1 28.1 11.1

HDSNU 26.7 23.6 18.0 32.4 12.5

HEBET 24.6 22.5 16.0 33.9 12.6

HEBEU 27.0 24.8 20.8 35.3 13.3

HEBNT 16.1 17.8 8.2 22.2 9.3

HEBNU 16.2 13.8 10.3 18.7 7.8

HECET 17.7 18.4 12.3 23.0 8.0

HECEU 16.1 15.2 9.7 21.9 8.0

HECNT 11.8 11.8 8.3 14.3 5.4

HECNU 13.3 13.7 7.8 17.1 6.8

HENET 17.0 14.0 10.3 18.9 11.7

HENEU 17.0 15.4 11.9 20.7 11.9

HENNT 8.3 7.7 2.8 13.4 6.9

HENNU 11.0 9.2 6.0 15.6 8.2

APPENDIX B. EXPERIMENTAL RESULTS 300

HESET 45.9 41.6 34.0 59.7 18.0

HESEU 47.9 42.0 35.3 61.2 17.1

HESNT 35.8 34.3 23.3 45.7 18.1

HESNU 32.1 32.4 19.4 37.5 16.6

HMBET 37.0 37.3 25.4 45.0 15.1

HMBEU 40.7 36.7 28.4 52.9 17.5

HMBNT 24.1 22.2 13.7 27.7 16.6

HMBNU 23.1 22.3 18.0 28.8 10.2

HMCET 25.2 24.7 21.7 30.4 9.8

HMCEU 21.7 19.3 13.6 31.3 12.5

HMCNT 16.5 17.9 12.2 23.0 7.3

HMCNU 15.8 15.7 12.6 18.3 4.9

HMNET 23.1 20.0 14.5 28.6 14.9

HMNEU 21.4 17.0 11.6 26.8 15.4

HMNNT 14.4 14.6 7.7 21.1 8.2

HMNNU 16.2 15.3 11.3 20.2 12.2

HMSET 43.1 40.0 32.1 52.5 13.5

HMSEU 42.7 42.6 30.2 49.7 19.6

HMSNT 37.0 32.6 26.5 47.2 17.0

HMSNU 36.8 35.7 27.4 43.6 17.3

HSBET 36.4 35.9 23.7 40.1 19.0

HSBNT 26.4 23.6 13.7 33.9 17.0

HSCET 17.3 16.4 11.3 23.5 9.5

HSCNT 15.9 15.8 11.0 20.0 9.3

HSNET 18.3 18.0 8.9 24.2 12.2

HSNNT 15.8 14.6 9.9 23.2 8.9

HSSET 37.4 32.9 20.8 42.6 23.2

HSSNT 30.9 31.9 16.9 38.9 17.0

Table B.9: Performance summary for the simulated BNS experiments of the Hexapod

robot

Mean Median First Quartile Third Quartile Standard Deviation

HBBET 1.14 0.87 0.60 1.16 0.96

HBBNT 1.15 0.88 0.59 1.27 0.84

HBCET 2.40 2.13 1.32 3.06 1.44

APPENDIX B. EXPERIMENTAL RESULTS 301

HBCNT 3.28 2.48 1.84 3.35 2.43

HBNET 4.82 3.86 1.75 6.92 3.59

HBNNT 4.42 2.94 1.84 5.19 3.88

HBSET 0.70 0.54 0.24 0.94 0.65

HBSNT 0.77 0.72 0.37 0.92 0.62

HDBET 3.96 2.87 1.82 5.28 3.25

HDBEU 3.41 2.94 1.82 3.35 2.69

HDBNT 5.06 3.13 1.90 4.48 7.40

HDBNU 2.95 2.23 1.80 3.61 1.92

HDCET 8.16 4.24 2.85 8.93 9.35

HDCEU 4.85 4.00 2.73 5.76 2.81

HDCNT 5.21 4.78 2.82 6.17 3.43

HDCNU 4.83 3.76 2.61 4.87 4.13

HDNET 6.02 5.41 2.97 7.95 4.05

HDNEU 9.72 4.87 3.41 7.38 13.67

HDNNT 6.17 4.27 3.06 6.53 6.48

HDNNU 8.72 5.66 3.91 9.20 9.60

HDSET 2.34 1.28 0.93 2.17 2.49

HDSEU 1.50 1.22 0.87 1.63 1.23

HDSNT 1.78 1.05 0.77 1.82 1.98

HDSNU 1.22 1.07 0.83 1.60 0.61

HEBET 1.19 0.77 0.52 1.33 1.27

HEBEU 1.15 0.63 0.43 1.12 1.57

HEBNT 2.13 1.17 0.55 1.88 3.92

HEBNU 1.33 1.30 0.56 1.87 0.86

HECET 2.26 1.49 1.17 2.25 1.93

HECEU 2.59 1.88 1.06 3.12 2.22

HECNT 3.57 2.81 1.86 3.34 3.40

HECNU 3.03 2.25 1.49 3.93 2.39

HENET 2.89 2.70 1.17 3.50 2.32

HENEU 2.78 1.88 1.38 3.95 2.22

HENNT 8.13 3.63 1.94 5.53 13.19

HENNU 4.90 3.52 1.76 5.64 6.05

HESET 0.40 0.38 0.17 0.53 0.27

HESEU 0.39 0.36 0.18 0.55 0.24

HESNT 0.56 0.35 0.17 0.69 0.57

APPENDIX B. EXPERIMENTAL RESULTS 302

HESNU 0.68 0.49 0.36 0.83 0.54

HMBET 0.65 0.47 0.32 0.94 0.48

HMBEU 0.61 0.47 0.32 0.75 0.53

HMBNT 1.02 0.84 0.45 1.38 0.83

HMBNU 1.37 0.73 0.41 1.07 2.65

HMCET 1.42 1.28 0.79 1.63 0.99

HMCEU 2.42 1.51 0.86 2.31 3.02

HMCNT 3.77 1.60 1.17 2.78 8.14

HMCNU 2.20 1.93 1.56 2.64 1.24

HMNET 2.30 1.73 1.01 2.35 2.56

HMNEU 2.39 2.20 0.95 3.09 1.75

HMNNT 2.92 2.10 1.61 3.53 2.28

HMNNU 3.05 2.29 1.32 3.28 4.10

HMSET 0.50 0.44 0.31 0.65 0.28

HMSEU 0.96 0.49 0.25 0.77 2.35

HMSNT 0.90 0.49 0.32 0.79 2.19

HMSNU 0.63 0.51 0.21 0.75 0.70

HSBET 0.87 0.54 0.38 1.15 0.79

HSBNT 1.44 0.88 0.40 1.85 1.57

HSCET 2.98 2.38 1.43 3.64 2.11

HSCNT 5.17 2.65 1.76 4.62 9.64

HSNET 3.20 2.71 1.20 3.65 2.67

HSNNT 3.55 2.51 1.76 4.95 2.76

HSSET 0.97 0.62 0.36 1.35 0.91

HSSNT 1.06 0.64 0.32 1.27 1.21

Table B.10: Transferability summary for the simulated BNS experiments of the Hexapod

robot

Mean Median First Quartile Third Quartile Standard Deviation

SBBET 55.9 54.7 45.5 69.9 33.8

SBBNT 33.2 31.6 21.7 45.7 18.1

SBCET 59.8 59.3 37.6 76.0 32.9

SBCNT 37.8 37.2 21.3 50.2 21.6

SBNET 88.5 74.0 50.9 117.8 54.7

SBNNT 37.0 36.1 21.2 53.7 30.7

APPENDIX B. EXPERIMENTAL RESULTS 303

SBSET 63.6 60.1 42.1 79.0 44.0

SBSNT 41.9 43.6 26.7 56.0 22.6

SDBET 40.4 41.9 22.8 56.3 26.3

SDBEU 43.4 40.0 26.7 53.1 20.4

SDBNT 45.0 43.1 22.2 64.0 29.3

SDBNU 36.5 35.4 20.9 49.4 21.9

SDCET 36.6 35.1 25.6 44.9 17.2

SDCEU 37.5 35.4 29.0 46.9 21.2

SDCNT 33.5 37.8 20.6 44.3 24.2

SDCNU 39.4 39.7 25.4 51.4 20.7

SDNET 53.6 54.5 35.8 70.0 25.2

SDNEU 55.6 53.0 40.2 70.5 23.4

SDNNT 46.8 46.6 30.3 63.7 23.5

SDNNU 43.6 44.4 30.0 56.3 22.2

SDSET 45.5 44.4 30.9 61.4 26.0

SDSEU 52.8 42.3 35.9 71.3 28.4

SDSNT 38.9 35.3 21.7 52.1 25.6

SDSNU 47.4 44.2 31.5 61.7 21.0

SEBET 46.2 40.9 29.3 66.4 25.6

SEBEU 55.6 54.0 34.8 76.0 33.2

SEBNT 39.7 36.9 31.3 49.7 17.4

SEBNU 39.1 36.8 28.8 53.4 18.3

SECET 44.1 44.3 32.5 53.8 27.3

SECEU 47.0 42.1 29.5 65.2 22.3

SECNT 43.4 37.1 28.4 58.3 24.5

SECNU 30.6 31.8 16.8 45.7 17.4

SENET 80.7 83.4 57.6 101.4 41.0

SENEU 84.7 88.1 65.8 110.2 41.2

SENNT 43.7 47.1 29.2 54.8 21.8

SENNU 42.4 43.6 33.8 53.0 21.5

SESET 87.3 84.7 73.0 117.5 50.4

SESEU 98.6 97.0 76.4 130.5 44.1

SESNT 45.6 39.3 24.2 62.5 29.0

SESNU 48.1 45.1 29.5 64.8 25.5

SMBET 56.6 54.9 39.4 72.8 25.4

SMBEU 52.6 50.1 38.4 65.1 21.3

APPENDIX B. EXPERIMENTAL RESULTS 304

SMBNT 43.6 42.6 35.4 53.3 16.9

SMBNU 35.3 33.0 22.4 46.5 17.0

SMCET 57.3 55.8 36.6 70.3 27.3

SMCEU 53.7 44.7 29.5 67.9 31.3

SMCNT 43.5 43.9 35.2 51.1 21.5

SMCNU 38.9 35.3 25.5 51.8 22.1

SMNET 71.1 60.3 53.0 73.7 41.2

SMNEU 75.2 66.0 38.9 105.8 42.0

SMNNT 43.7 41.8 27.9 58.3 21.6

SMNNU 44.2 40.5 31.3 51.7 24.1

SMSET 82.2 73.8 56.7 112.5 41.8

SMSEU 78.0 78.6 52.0 103.0 35.7

SMSNT 38.9 39.5 29.6 49.8 21.8

SMSNU 42.7 41.6 34.3 53.5 15.2

SSBET 73.4 69.4 46.1 85.5 42.1

SSBNT 30.4 32.0 16.4 43.9 18.4

SSCET 69.8 67.9 45.8 92.9 30.8

SSCNT 40.7 41.3 25.6 51.7 19.8

SSNET 130.7 113.5 68.2 172.6 89.7

SSNNT 41.9 36.8 28.1 57.0 21.7

SSSET 95.7 78.5 59.6 115.3 65.1

SSSNT 42.0 38.8 28.8 48.7 21.5

Table B.11: Performance summary for the simulated BNS experiments of the Snake robot

Mean Median First Quartile Third Quartile Standard Deviation

SBBET 1.78 1.39 1.02 2.08 1.23

SBBNT 1.48 1.09 0.77 1.82 1.56

SBCET 1.91 1.59 1.08 2.36 1.18

SBCNT 1.89 1.40 0.84 2.65 1.51

SBNET 1.49 1.43 1.12 1.69 0.77

SBNNT 1.93 1.55 0.94 2.55 1.48

SBSET 1.76 1.34 0.85 1.68 1.66

SBSNT 1.73 1.21 0.68 1.80 2.67

SDBET 1.97 1.51 1.22 2.68 1.28

SDBEU 1.76 1.72 1.13 2.27 0.99

APPENDIX B. EXPERIMENTAL RESULTS 305

SDBNT 1.02 0.86 0.58 1.16 0.74

SDBNU 1.63 1.13 0.74 2.11 1.42

SDCET 1.87 1.64 1.32 2.19 1.25

SDCEU 1.82 1.72 1.07 2.32 1.01

SDCNT 1.51 1.10 0.74 1.64 1.66

SDCNU 1.51 1.50 0.78 2.07 1.03

SDNET 1.68 1.29 0.85 1.58 1.42

SDNEU 1.30 1.19 0.77 1.70 0.69

SDNNT 1.26 1.09 0.72 1.36 1.03

SDNNU 1.24 1.08 0.76 1.44 0.69

SDSET 1.65 1.58 1.23 2.18 0.72

SDSEU 1.65 1.38 0.94 1.97 1.11

SDSNT 1.94 1.50 0.91 2.13 1.61

SDSNU 1.22 1.12 0.76 1.37 0.73

SEBET 1.86 1.66 1.18 2.18 1.39

SEBEU 1.71 1.51 1.13 1.99 0.98

SEBNT 1.01 0.86 0.48 1.28 0.71

SEBNU 1.22 1.07 0.67 1.53 0.76

SECET 1.75 1.49 1.29 2.22 0.75

SECEU 1.94 1.55 1.29 2.40 1.14

SECNT 1.19 0.98 0.71 1.16 1.00

SECNU 1.45 1.38 0.92 1.63 0.89

SENET 1.11 0.94 0.78 1.35 0.55

SENEU 1.11 0.91 0.60 1.34 0.78

SENNT 1.16 0.90 0.56 1.57 0.81

SENNU 1.24 1.10 0.73 1.40 0.79

SESET 0.93 0.85 0.59 1.00 0.47

SESEU 0.94 0.92 0.55 1.20 0.54

SESNT 1.25 0.97 0.58 1.30 1.46

SESNU 1.13 0.84 0.55 1.34 0.99

SMBET 1.01 0.89 0.53 1.21 0.63

SMBEU 1.06 1.01 0.68 1.29 0.55

SMBNT 0.86 0.68 0.45 1.02 0.71

SMBNU 1.11 0.89 0.61 1.28 0.98

SMCET 1.16 0.97 0.55 1.74 0.75

SMCEU 1.53 1.19 0.67 1.91 1.38

APPENDIX B. EXPERIMENTAL RESULTS 306

SMCNT 0.91 0.78 0.46 1.14 0.60

SMCNU 1.30 1.01 0.57 1.64 1.23

SMNET 0.97 0.90 0.73 1.20 0.46

SMNEU 1.02 0.86 0.63 1.47 0.60

SMNNT 1.05 0.87 0.63 1.41 0.61

SMNNU 1.35 0.78 0.45 1.40 2.28

SMSET 0.74 0.68 0.39 0.97 0.57

SMSEU 0.79 0.58 0.38 0.90 0.81

SMSNT 0.95 0.76 0.46 1.16 0.79

SMSNU 0.74 0.70 0.40 0.97 0.40

SSBET 0.94 0.69 0.35 1.20 0.78

SSBNT 1.54 1.18 0.70 1.93 1.31

SSCET 1.36 1.22 0.88 1.72 0.81

SSCNT 1.17 1.13 0.79 1.48 0.67

SSNET 0.89 0.75 0.46 1.07 0.82

SSNNT 1.27 0.91 0.66 1.69 0.96

SSSET 0.84 0.67 0.37 1.26 0.57

SSSNT 1.03 0.97 0.58 1.29 0.68

Table B.12: Transferability summary for the simulated BNS experiments of the Snake

robot

