
m9%m RHODES UNIVERSITY

Department of Physics & Electronics

Finite Precision Arithmetic in Polyphase Filterbank Implementations

A thesis submitted in fulfilment of the
requirement for the degree of

Master of Science in Physics & Electronics

of

Rhodes University

by

Talon Myburgh

Supervised by:
Professor Justin Jonas

ii

Abstract

The MeerKAT is the most sensitive radio telescope in its class, and it is important that system
atic effects do not limit the dynamic range of the instrument, preventing this sensitivity from
being harnessed for deep integrations. During commissioning, spurious artefacts were noted in
the MeerKAT passband and the root cause was attributed to systematic errors in the digital
signal path. Finite precision arithmetic used by the Polyphase Filterbank (PFB) was one of the
main factors contributing to the spurious responses, together with bugs in the firmware. This
thesis describes a software PFB simulator that was built to mimic the MeerKAT PFB and allow
investigation into the origin and mitigation of the effects seen on the telescope. This simulator
was used to investigate the effects in signal integrity of various rounding techniques, overflow
strategies and dual polarisation processing in the PFB. Using the simulator to investigate a
number of different signal levels, bit-width and algorithmic scenarios, it gave insight into how
the periodic dips occurring in the MeerKAT passband were the result of the implementation
using an inappropriate rounding strategy. It further indicated how to select the best strategy
for preventing overflow while maintaining high quantization efficiency in the FFT.

This practice of simulating the design behaviour in the PFB independently of the tools used to
design the DSP firmware, is a step towards an end-to-end simulation of the MeerKAT system
(or any radio telescope using finite precision digital signal processing systems). This would be
useful for design, diagnostics, signal analysis and prototyping of the overall instrument.

iii

Declaration

I hereby declare that this thesis has not been submitted, either in the same or different form,
to this or any other university for a degree and that it represents my own work. I know the
meaning of plagiarism and declare that all of the work in the thesis, save for that which is
properly acknowledged, is my own.

Talon Myburgh

Supervised by:
Professor Justin Jonas

iv

Acknowledgements

I would like to thank:

My mother and father for their support and care throughout these two years of my Masters.

Andrew Martens for answering all of my questions regarding the MeerKAT F-Engine. I further
thank him for his assistance in developing the Simulink design files used to test the simulator.

Ludwig Schwardt for his help in the early development of the Python simulator and especially
his assistance with the developed Python fixed point number system.

Dr Jason Manley and the SARAO DSP team for giving me a desk in their office and always
being open to answering any of my questions.

Wesley New for teaching me how to get up and running with the CASPER tool-flow and for
his help in setting my machine up with Vivado and Simulink.

Marcel Gouws for sharing how his Python F-Engine simulator was developed and providing
the idea for the shift-scheme versus quantisation efficiency test as part of my research.

Francois Kapp for setting me up with the SARAO engineering crowd.

The CASPER community for being so interested in my research, inviting me to their many
conferences around the world and teaching me so much more than I could have ever learned if
I were doing this research outside their community.

Professor Oleg Smirnov and the RATT team from Rhodes University for funding my entire
Masters degree, keeping me in their midst and being interested in my work despite my research
move towards engineering.

This project garnered so much interest from so many professionals that listing them all here
would not be possible. However, my biggest thanks is reserved for last. Before being my
supervisor, Professor Justin Jonas was my DSP and Radio Astronomy lecturer. It was in his
classes that I developed such an interest for this research field. This degree took many twists
and turns which predominantly resulted in incredible opportunities. It was a privilege to have
a two-year-long dialogue with Professor Jonas about all things MeerKAT and DSP. Thank you
for having me as your student and for the time you took to carefully supervise my work.

Contents

Contents v

List of Figures vii

1 Introduction 1

2 Radio Interferometry 3
2.1 Radio A stronom y.. 4
2.2 Direct D ig itization ... 6
2.3 Analytic Signals... 7
2.4 The van Cittert-Zernike T h eorem .. 8
2.5 Simple Interferometer.. 10

2.5.1 Finite Bandwidths and Delay Tracking... 12
2.6 Wideband Correlators ... 13
2.7 Correlator D esign .. 15

2.7.1 XF correlator.. 15
2.7.2 FX correlator.. 16
2.7.3 Digital Delay Tracking.. 17

2.8 The X -E ngine... 19
2.9 Polyphase Filterbank.. 20

2.9.1 The FIR register operation.. 21
2.9.2 The DFT operation.. 22
2.9.3 Dual Polarisation Processing.. 24

2.10 Number S y ste m s.. 26
2.10.1 Fixed Point num bers... 26
2.10.2 Floating Point numbers ... 27
2.10.3 Posit numbers.. 27

2.11 Quantisation Schemes and Finite Precision Arithmetic ... 29

Contents vi

2.11.1 A ddition ... 29
2.11.2 Multiplication.. 29
2.11.3 R ou n d in g .. 29
2.11.4 Overflow and U nderflow ... 30
2.11.5 Exception Handling .. 31

3 The MeerKAT F-Engine 32
3.1 Field Programmable Gate A rra y s .. 33
3.2 CASPER ... 35
3.3 CASPER’s Polyphase Filterbank .. 36
3.4 S K A R A B ... 37
3.5 Arithmetic procedures in the MeerKAT F -E n g in e ... 38

3.5.1 Quantisation in the CASPER FIR Filterbank .. 38
3.5.2 Quantisation in the FFT ... 40

4 Implementing and testing the Python PFB Simulator 43
4.1 Floating point simulator ... 44
4.2 Fixed point Simulator ... 46
4.3 The CASPER PFB design .. 48

5 Results and Discussion 52
5.1 CASPER PFB versus Python Simulator PFB ... 53
5.2 Shift register regime versus Quantisation E ffic ien cy .. 64
5.3 Rounding scheme test ... 69
5.4 Dual polarisation test .. 77

6 Conclusion 82

A Appendix 84

Bibliography 111

List of Figures

2.1 Depiction of the MeerKAT receiver feed... 5
2.2 Second zone Nyquist sampling.. 6
2.3 Hilbert transformer producing analytic signal... 8
2.4 Illustrating the van Cittert-Zernike theorem.. 8
2.5 A two element interferometer with correlator.. 11
2.6 XF correlator design... 15
2.7 FX correlator design... 16
2.8 Signal flow for 2 dishes being correlated by and FX correlator...................................... 17
2.9 The Polyphase Filterbank architecture... 20
2.10 FIR filterbank signal flow.. 21
2.11 Time decimated FFT.. 23
2.12 Two point butterfly... 24
2.13 Posit vs Floating point decimal accuracy.. 28

3.1 Generic fabric of an FPGA.. 33
3.2 Simulink layout of pfb fir .generic and fft_wideband_real.. 36
3.3 Onboard layout of the SKARAB.. 37
3.4 4k, 8-tap F-Engine PFB FIR window coefficients... 39

4.1 Flow chart of Python PFB software behaviour.. 49
4.2 The simulink design of the 4k MeerKAT PFB used for testing...................................... 50
4.3 The simulink design of the 4k MeerKAT FFT used for testing...................................... 51

5.1 Magnitude of the three different FFT implementations’ output for a pure tone input. 54
5.2 Real and imaginary components of the fixed point FFTs output for a pure tone input. 55
5.3 FFT overflow result for CASPER and fixed point simulator FFTs............................... 56
5.4 Sequantial steps through simulator fixed point FFT overflow result............................. 57
5.5 Tone with noise result for the three different FFT implementations............................. 58
5.6 FFT impulse response result for the three different FFT implementations. 59

List of Figures viii

5.7 Magnitude of the three different PFB implementation results for a pure tone input. 60
5.8 Magnitude of the three different PFB implementation results for a noisy tone input. 61
5.9 PFB impulse response result for three PFB implementations............................... 62
5.10 Shift-register versus efficiency analysis for fixed point 1k FFT............................. 65
5.11 Shift-register versus efficiency analysis for fixed point 4k FFT............................. 66
5.12 Shift-register versus efficiency analysis for fixed point 32k FFT. 67
5.13 Shift-register versus efficiency analysis for fixed point 4k FFT............................. 67
5.14 Long integration of varying bit-width even-rounding fixed point FFTs..............................70
5.15 Long integration of varying bit-width even-rounding FFTs - zoomed............................. 71
5.16 Long integration of varying bit-width infinite-rounding FFTs. 72
5.17 Long integration of varying bit-width infinite-rounding FFTs - zoomed......................... 73
5.18 Long integration of varying bit-width truncating FFTs.. 74
5.19 Long integration of varying bit-width truncating FFTs - zoomed. 75
5.20 Dual polarisation comparison.. 78
5.21 Dual polarisation test for overflow leakage... 79
5.22 Dual polarisation test for rounding residue.. 80

cti
H
H
&H

<d

O

Introduction

The South African MeerKAT radio telescope is a precursor to the Square Kilometre Array
(SKA) telescope and is to be integerated into SKA Phase 1 [23]. The MeerKAT is the most
sensitive radio telescope in its class and it is essential that internal systematic effects do not limit
its ability to detect faint radio sources. Special effort has been made to ensure that the telescope
site has minimal Radio Frequency Interference (RFI) by mitigating both internal and external
emission. The digitiser and receiver are built to pass accurate, high dynamic range data to
the digital correlator/beamformer. Despite the high precision of the overall instrument, slight
systematic inaccuracies were noted in the MeerKAT passband and were attributed to errors in
the digital signal path. These were discovered to be as a result of the finite precision arithmetic
used by the Polyphase Filterbank (PFB) (a key component of the correlator/beamformer),
which prompted this research.

Two different effects were noticed during MeerKAT commissioning:

1. Small narrow-band dips in the receiver passband, occuring at regular frequency intervals.

2. Spurious bandpass distortions that were attributed to a loss in signal path dynamic range.

During the course of this investigation it was found that:

1. The dips in the spectrum noise floor returned by the MeerKAT F-Engine were caused by
the rounding scheme in use. This is a least significant bit (LSB) effect that only becomes
prominent with long time integrations.

2. The dynamic range of the signal path is sensitive to the input signal level, the spectral
shape of the signal and the strategy used to prevent arithmetic overflow caused by narrow
band RFI, in the signal processing chain. Overflow is a most significant bit (MSB) effect
that corrupts the PFB output since it leaks between channels.

Chapter 1. Introduction 2

Initially, these effects were to be tested by direct simulation of MeerKAT’s PFB design in
Simulink. It was realised however, that a far more valuable test would be conducted on an
independent platform that was designed to mimic the MeerKAT PFB. Not only would this test
the function of MeerKAT’s PFB, but it could be designed to make analysis and visualisation of
signal flow through the PFB possible. This lead to the development of two Python simulators
(one floating point and one fixed point) that were used for the majority of the tests conducted
for this thesis.

Besides testing varying rounding and shift schemes, these simulators allow for quick testing of
how these effects vary for different input signals and their levels as well as PFB designs. This is
mostly done by using the floating (which serves as the ideal) and fixed point (which introduces
finite precision effects) simulators in conjunction and comparing the results for the same input.
This way, one can discriminate between numerical effects and actual digital signal processing
(DSP) bugs.

This practice of simulating the design behaviour in the PFB independently is something that
could be extended to the entire MeerKAT data path. Should the designed simulator function
to within a certain accuracy, it could serve in an end-to-end simulation of the MeerKAT system
which would be incredibly useful for diagnostics, signal analysis and prototyping.

2

cti
H
H
&H
<d
ffi
O

Radio Interferometry

This Chapter starts by introducing the principles of observational radio astronomy with a focus
on the practice of radio interferometry. From this, the fundamental interferometric measure
ment quantity, the visibility, is introduced. Thereafter, we address instrumentation (specifically
that used by MeerKAT) and work to show the reader, that the correlator is fundamental to the
measurement of the visibility through the use of the two processes: frequency channelisation
and correlation.

Leaving radio astronomy momentarily, the concept of finite precision arithmetic is introduced.
This is done by first covering the theory of binary number systems and then the practices
used in mitigating inherent quantisation error in digital data. Having introduced the X and
F-Engines that perform correlation and frequency channelisation respectively in MeerKAT, we
isolate the F-Engine as being more sensitive to numerical inaccuracy due to coherent systematic
effects.

While both beamforming and cross-correlation operations make use of the F-Engine, the science
goals for the beamformer are not as sensitive to F-Engine error as the imaging process is. For
this reason, this thesis investigates the effects of finite precision error introduced by MeerKAT’s
F-Engine when performing auto- and cross-correlation.

Chapter 2. Radio Interferometry 4

2.1 Radio Astronomy
The four quantities that fully describe the polarisation state of an electromagnetic wave are
know as the Stokes parameters:

i (e,^ ,u , t)

Q (9 ,0 ,V t)
u (d ,^ ,v ,t)

V (9 ,0 ,v ,t) (2.1)

where 0 and 9 are sky coordinates, v the telescope observing bandwidth and t the time.

Since these parameters may be used to characterise the radio sky, polarisation is a very impor
tant measurement despite some astrophysical radio emissions being inherently un-polarised [1].
While some radio telescopes sense left and right circular polarisations, MeerKAT uses an ortho
mode transducer (OMT) to sense the two orthogonal linear electric field components:

Ex = ex (t) cos(^t + Sx)

Ey = ey (t) cos(^t + Sy) (2.2)

These may be manipulated to gain the four Stokes parameters I, Q, U and V as:

I = (ExEX + Ey E*)

Q = (ExEX - Ey Ey*)

U = (ExEy + Ey Ey*)

V = i(ExE* - Ey Ex) (2.3)

where (*) represents complex conjugation and (...) a time averaging. I is a measure of the waves
total power, the linearly polarized components are represented by Q and U and the circularly
polarized component by V [1].

For a single radio dish (depicted in figure 2.1), the antenna temperature is given by:

f f Tb (9,0)P n(9,0) sin 9d9d0
TA [K]f f Pn(9,0) sin 9d9d0

where Pn is the normalised power polar pattern of the antenna and

(2.4)

B
C2Iv
2kv 2 [K] (2.5)

is the sky brightness temperature. The antenna temperature for a single polarisation component
is defined to be:

Ta
Pa

fcAv
[K] (2.6)

Chapter 2. Radio Interferometry 5

where PA is the power at the appropriate OMT terminal.

The relationship shown in equation 2.4 implies that the observed antenna temperature is a
convolution of the sky brightness temperature with the beam pattern [2].

The angle between the half power points that specifies the angular width of the main beam of
the antenna, is referred to as the half-power beamwidth (HPBW) and is approximately given
by the relation:

9hpbw ~ d [rad] (2.7)

where A is the observing wavelength and D the diameter of the observing aperture [3]. Given
the relation in equation 2.7, the beam size dictates the angular resolution of the telescope.
Higher angular resolution (smaller 9HPBW) for a given observing wavelength depends on the
size of the dish/aperture. Practical constraints limit the size of single dish apertures and as
such, the theory of radio interferometry was introduced, and with it, much higher angular
resolution.

Figure 2.1: The MeerKAT receiver feed on each dish is sensitive to the two linear polarisation
components H and V. Each flows through a separate receiver RX, that contains a cryo-cooled
low-noise amplifier. Then, each passes through a band-pass filter (depending on the receiver
band under observation) and finally the two orthogonal polarisation signals are sampled at the
sampling frequency f s and digitised.

Chapter 2. Radio Interferometry 6

2.2 Direct Digitization
For a band-limited signal, the Nyquist theorem states that no information is lost by the sam
pling process, if the sampling frequency is high enough. Sampling a time-domain signal causes
aliasing in the frequency domain, which can cause detrimental effects if the aliased spectral
components overlap. For a baseband (low-pass) rectangular spectrum with upper cut-off fre
quency vc, the full spectrum width is 2vc (with negative frequencies included). Samples in time
of at most 2L- fully specify the function. This critical rate frequency of 2vc is known as the
Nyquist rate [4].

In some systems, frequency down-conversion is performed by using a mixer and local oscillator
at frequency vLO. This is referred to as heterodyning. MeerKAT is a non-heterodyne system
and instead uses aliasing to its advantage. Every frequency interval y (where f s is the sampling
frequency) starting at DC, is considered a Nyquist zone. By sampling in the 2nd Nyquist zone
as MeerKAT does, high frequency radio frequency (RF) signals are aliased into the first Nyquist
zone (see figure 2.2) [5]. This technique requires a band-pass Nyquist filter to prevent spectral
leakage, where the Nyquist criterion is that f > Av where A v is the bandwidth of the filter.
In this way, the original RF signal is converted to a baseband signal, as would be the case for
a heterodyne system.

Figure 2.2: Diagram illustrating the aliasing of negative and positive frequencies (row 1) into
the first Nyquist zone (row 3) by using second zone Nyquist sampling (see delta functions in
row 2). f s is the sampling frequency and zones are defined in increments of f s/2 from DC.
Copywrite: Dan Boschen, 2019.

Chapter 2. Radio Interferometry 7

2.3 Analytic Signals
A receiver outputs a real voltage VR(t) for each polarisation and therefore the digitiser records
associated real digital signals. Later calculations of correlation products require complex
valued voltages Vi(t) and V2(t). Therefore, the real signal produced by the digitiser must be
transformed to a complex signal whilst not losing/adding any additional information.

A real voltage signal may be represented by the standard Fourier synthesis equation:

v(v)e—2nivt dv (2.8)

Because V (r)(t) is real, its spectrum is Hermitian, i.e. v (—v) = v*(v) and hence it has redun
dancy. Discarding the negative frequency components, we can define a new complex-valued
voltage function

V(t) = 2 / v(v)e —2 nivt dv
J 0nOO

v(v)e 2niVt dv — i / i sgn(v)v(v)e —2 nivt dv

V (r)(t) + iV (i)(t) (2.9)

where V (i)(t) = — i sgn(v)v(v)e 2niVt dv is the Hilbert transform of V (r)(t).

Because v(v) is Hermitian, it is easy to show that i sgn(v)v(v) is also Hermitian and hence,
V (i) (t) is real valued.

It can be shown that:

V (i)(t)
1
n

V (r) (t)
t — T

dT (2.10)

where V (i) (t) and V (r) (t) are both real-valued. In this way, V(t) can be represented by two
real-valued voltages [6].

Examining equation 2.10, it can be seen that the Hilbert transform corresponds to a —90°
phase shift of the original signal. In physical electronic circuitry, the generation of an analytic
signal may be done as indicated by figure 2.3.

The generation of a complex-valued analytic signal is a natural consequence of the action of
the Fourier Transform in the F-Engine since a digital signal Fourier transform (DFT) can be
considered to be and I/Q mixer.

Chapter 2. Radio Interferometry 8

Figure 2.3: Hilbert transformer used to convert a real input signal to an analytic signal with
real in-phase part I and imaginary quadrature phase part Q. For heterodyne systems, the —90°
phase shift is accomplished using quadrature local oscillator signals and an I/Q mixer which
mixes with sinusoids —90° out of phase.

2.4 The van Cittert-Zernike Theorem
The practice of radio interferometry is based on the van Cittert-Zernike theorem, a result from
classical optics.

Figure 2.4: Illustrating the van Cittert-Zernike theorem. Sourced from: http://people.seas.
harvard.edu/~jones/ap216/lectures/ls_3/ls3_u6A/ls3_unit6A.html

Consider the geometry of figure 2.4 showing an extended radio source S (Z, n) and two receptors
Pi and P2 in a plane parallel to the source plane. The van Cittert-Zernike theorem states that:

eik(Ri —R2)
J (P i,P 2) = I(s) R R dS (2.11)

a R iR2

where = 2nz//c is the wave number in a vacuum and J(P1,P 2) is the mutual coherence of
the waves E 1(t) and E2(t) detected at Pi and P2 [7, Ch. 10]. This mutual coherence is also
calculated as:

J (P,.P2) = (Ei (í),E2(í)*) (2.12)

http://people.seas.harvard.edu/~jones/ap216/lectures/ls_3/ls3_u6A/ls3_unit6A.html
http://people.seas.harvard.edu/~jones/ap216/lectures/ls_3/ls3_u6A/ls3_unit6A.html

Chapter 2. Radio Interferometry 9

where (...> is a time average. In general, the quantity in equation 2.12 is complex-valued.

Under the Fraunhofer approximation i , using direction cosines as sky coordinates (1,m) and
u = |, v = |, equation 2.11 reduces to

J (Pl,P2)
/ L I(1, m)e-i2n(ul+vm) dl dm

/ / a I(l, m) dl dm
(2.13)

where ^ is a phase factor that depends on the origin chosen for the (1,m) coordinate system.

Equation 2.13 shows that under the required assumptions, the mutual coherence is equal to
the normalised Fourier transform of the intensity function of the source at a single point corre
sponding to the relative positions of Pi and P2 [7, Ch. 10]. By moving Pi and P2 around in the
(x, y) plane, the Fourier transform of the image can be sampled to arbitrary resolution. This
allows the source image to be derived via an inverse Fourier transform.

In practice, the radio interferometer records the complex measure

Vi2 = (Vi(i)V2*(t)> (2.14)

where Vi (t) and V2(t) are the voltages measured at the two receptors corresponding to the wave
E-fields E i (t) and E2(t). Equation2.14 is called the visibility and the following section details
this further.

1R > D 2/A, where R is the distance to the source, D , the largest aperture in the array and A, the wavelength
of the measured light

Chapter 2. Radio Interferometry 10

2.5 Simple Interferometer
The van Citter-Zernike theorem provides a basis for a method of using an array of radio
antennas observing simultaneously, to simulate a very large and incompletely-filled aperture.
This is known as radio interferometry [8]. Modern radio astronomy interferometers operate
over a frequency range of 10MHz to 1THz. Radio astronomy has the benefit of being able to
sample amplitudes and phases of waves rather than dealing with quantum phenomena. This is
as a result of the frequencies (v) under observation being such that hv < < kT 2. Hence, one
receives ample photons from sources > 10 K [3]. To simultaneously measure as many Fourier
components of the data as possible, a large number of diverse baselines are needed to sufficiently
sample the visibility plane and hence be able to reconstruct an image. For this reason, radio
interferometers employ arrays of antennas so that at any instant there are N (N —1)/2 baselines.

Single dish instruments have an angular resolution « A/D (see equation 2.7). With interferome
try, the angular resolution is estimated by A/B where B is the largest baseline (spacing) between
two elements in an array. Hence, observing with radio interferometers enables the imaging of
complex source morphologies with angular resolution scales ~ 10-4 arc-seconds. Such angu
lar resolution measures are significantly higher than that achievable with optical/near-infrared
astronomy [3].

For the analysis that follows it is sufficient to consider a single baseline defined by two arbitrary
receptors forming a two element interferometer. Consider the two-element interferometer shown
in figure 2.5. The correlator block implements equation 2.14. Working under the assumption
that the radio emission received by any two points in space is received as a plane wave (due to
the large distance between the source and observer), a time delay (rg) will occur between the
two measured signals. This is known as the geometric time delay and is given by

B ij • s (2.15)

where Bij is the baseline vector (pointing from dish i to dish j) and s = (l, m, V 1 — /2 — m2) is
the source unit vector with l and m being sky coordinates represented as direction cosines [9].

c

For a given frequency, it is convenient to describe the baseline in a new coordinate system
defined by:

B
(u, v, w) = — (2.16)

A
These dimensionless coordinates are measured in spatial frequencies and describe baselines in
the uv plane. For the purpose of this analysis, we will assume a co-planar array, and hence
assume w = 0. This is consistent with the assumptions made for the van Citter-Zernike theorem
(see section 2.4). Noting the time delay experienced between the two dishes, we may ascribe a
phase difference between the two dishes as:

B • s
0 = —2nirg v = —2ni—-— (2.17)

A
2where h is the Planck constant, k is the Boltzmann constant and T is the characteristic temperature of

objects being observed in Kelvin.

Chapter 2. Radio Interferometry 11

Figure 2.5: Two element interferometer with dishes i and j separated by baseline B j both
pointing in direction of source vector s. The correlator enclosed in the dotted line box, shows
the production of a visibility from the two signals si and Sj. Diagram sourced from:
https://www.researchgate.net/figure/Two-element-interferometer_fig2_51963705
on 13/02/2019.

The projection of the baseline vector (B) on the source direction unit vector (s) may be
expanded to

B • s = ul + vm
A

rendering equation 2.17 as

0 = — 2ni(u1 + vm) (2.18)

From equation 2.13:

Vij (v) a

a ei^

oc e^

I(0 m)e -i2n(ul+vm) da

I(1,m)e- i 2 n da

I (/, m)e-i2nr®v da (2.19)

https://www.researchgate.net/figure/Two-element-interferometer_fig2_51963705

Chapter 2. Radio Interferometry 12

The telescope component used to compute the visibility in equation 2.19 is known as the
correlator [10]. If the delay rij- = Tg for a given reference direction (phase centre 3, indicated
by s in figure 2.5), the output from the correlator is proportional to the visibility given in
equation 2.19. Therefore,

(si,s *)a V j(v) a J J I(l,m)e i2nATgv da (2.20)

where (si , s*) is the cross-correlation of signals si and Sj (shown in figure 2.5) and Arg = Tg — rij-
is the residual delay for directions away from the phase centre.

2.5.1 Finite Bandwidths and Delay Tracking
Equation 2.20 for quasi monochromatic interferometers does not allow for finite bandwidths
which are necessary for practical interferometers. For a constant source brightness and inter
ferometer response across a small frequency range A v centred on vc, equation 2.20 generalises
to:

V j (v)
wc+Av/2

(A v-1) / Iv(l, m)e-2niAr®v dv
J vc—Av/2

da

The integral in square brackets is the Fourier transform of a rectangle function and therefore:

V j(v) = / Iv(l, m)sinc(AvArg)e 2niTijVc da (2.21)

Equation 2.21 indicates how the fringe amplitude for a single baseline is attenuated by the factor
sinc(Avrij). Eliminating this attenuation for any phase centre (s), is done by introducing a
compensating delay To = rij- in the signal path of the reference antenna as shown by figure 2.5.
With varying phase centre, t0 must be continuously re-calculated to track Tj within a tolerance
|t0 — Tj | < < (Av) —1 [3]. This is usually done with digital electronics and is further explained
in subsections 2.7.3.1 and 2.7.3.2.

This delay tracking only applies to the phase centre. For positions away from the phase centre,
there is a residual geometric delay A t^ . Hence, to allow wide-field imaging, A v needs to be
small to ensure A t^ < < A v—1.

Following this, for wideband, wide-field interferometry, the signal needs to be channelised to
reduce A v to avoid decorrelation caused by the severe attenuation introduced by the sinc factor

[3].

3Where l = 0, m = 0.

Chapter 2. Radio Interferometry 13

2.6 Wideband Correlators
Mathematically, a correlation is defined as:

V*(t — t)V2(t)dt (2.22)

where V*(t) denotes the complex conjugate of the voltage at receiver 1. It is related to the
convolution function by

Vi(t) * V*(t) = Vi(t) *V>(t) (2.23)

If, for figure 2.5, we assume that both dishes deliver the same voltage V(t) to the correlator
and that one lags the other by time delay Tg — t, then:

sj = V (t)
si = V (Tg — t)

Should the correlator be a ‘lag’ correlator and should it integrate for 2T seconds, it will produce
the un-normalised auto-correlation:

1 rT

sj * si = lim — / V (t)V (t — Tg) dtt^ o 2T T
(2.24)

If the correlation is required in the frequency domain, the Fourier transform of sj * si from
equation 2.24 is taken. This is known as an X F4 or spectroscopic lag correlator.

The squared amplitude of a frequency spectrum is known as the power density spectrum, and
the power spectrum of a signal is the Fourier transform of the auto-correlation function of that
signal. This is known as the Wiener-Khinchin relation (see equation 2.25) and requires that
the input signals are deterministic or statistical in nature [4].

r(T)e—i2nvT dT

where

|H(v)|2ei2nvT dv

(2.25)

where H(v) is the amplitude (voltage) response, and hence |H(v)|2 is the power spectrum of
the signal input to the correlator [4].

However, more applicable to interferometry is the relation produced when cross-correlating two
differing waveforms:

4Where X is the multiply and integrate stage, and F the Fourier transform stage. Its ordering dictates
which operation is done first.

Chapter 2. Radio Interferometry 14

sj = Vi (t)
si = V2 (Tg — t)

where

Vi(t) = V2 (t)

Again, should a lag correlator, that integrates for 2T seconds be used, its response for a given
baseline would now be:

1 T
sj * si = Tm — J Vi*(t — T)V2(t)dt (2.26)

In practice, this integration time in equation 2.26 is a few seconds or minutes, but it is long
compared to both the period and reciprocal bandwidth of both waveforms [4].

A further result is explored where if,

Vi(v)e—2nivtdv

V2(v)e—2nivtdv

where V denotes the Fourier transform of V , then

Vi(t) * V2(t) V *(v)e—2nivt d W V2(v')e—2niV'(í+T) dv' dT
r* c© poo roc

V *(v) V2 (v ')e—2niT (v,—v)e—W i dTdvdv'
' —̂ d —̂ d —̂
ro c roc

' —̂ J—̂
/*CO /*CO

' —̂ V —̂
roc

e—2niT(v'—v) dTV *(v) V2 (v ')e—2niv

V*(v)V2(v')e—2niv,íí(v ' — v) dv' dv

I V*(v)V2(v)e—2nivt dv
J —̂
F —i [V*(v) V2 (v)]

dvdv'

The result of equation 2.27 is known as the correlation theorem [11].

By theorem 2.27, the following relation is observed:

F [V i(t) *V>(t)] = V *(v) x V2(v)

(2.27)

(2.28)

The left-hand side of equation 2.28 is an XF or spectroscopic lag correlator, while the right-hand
side is what is known as an FX correlator.

Chapter 2. Radio Interferometry 15

2.7 Correlator Design
The function of a correlator is to perform the auto or cross-correlation of voltage signals from
a single or pairs of antennas. Within an array of N dishes, there are N (N — 1)/2 pairs, and
as such, cross-correlation generates more output data streams than input, but generally at a
lower data rate [11].

Calculating spectral visibilities Vi,j(vk) involves a Fourier transform stage ‘F ’ and cross-correlation
stage ‘X ’ (see section 2.6). The relative ordering of these stages results in two correlator vari
ants: X F and FX correlators [11].

2.7.1 XF correlator

Figure 2.6: XF correlator design. Sourced from http://www.atnf.csiro.au/research/
radio-school/2011/talks/RAS-correlators.pdf

This correlator first cross-correlates the signals, then Fourier transforms the result (since spec
tral data is required by scientists). This operation is a direct implementation of equation 2.26
with a Fourier transform applied to the result. Figure 2.6 shows this operation as a spec
troscopic ‘lag’ correlation circuit. One signal is conjugated and delayed relative to the other,
before multiplying the two signals for differing values of A t/T . The result of each product is
then integrated for some amount of time and presented to a point on an N-point5 DFT, where
the ‘F ’ stage is applied [10].

Early correlators used the XF architecture because the bit-growth provided by the accumulators
allowed for very low precision input digital data (i.e. low resolution analogue to digital con
verters (ADCs) and multipliers), and the FFT only had to be calculated once per integration
time. This suited the limitations of the available hardware, i.e. ADCs and compute.

Given linear processing, equation 2.28 indicates that the two architectures are equivalent. In
practice, however, the XF correlator is often not RFI robust due to non-linear effects. These

5‘Point’ is the term used to refer to the size or length of the Fourier transform.

http://www.atnf.csiro.au/research/radio-school/2011/talks/RAS-correlators.pdf
http://www.atnf.csiro.au/research/radio-school/2011/talks/RAS-correlators.pdf

Chapter 2. Radio Interferometry 16

effects manifest due to the XF correlator not localising RFI to a single channel and allowing
it to corrupt the whole output spectrum. Furthermore, the XF correlator does not scale well
with many dishes. With the advancements in technology that enabled higher resolution ADCs
and compute logic as well as faster DFT algorithms, the FX correlator architecture became
largely adopted.

2.7.2 FX correlator

Figure 2.7: FX correlator design. Sourced from http://www.atnf.csiro.au/research/
radio-school/2011/talks/RAS-correlators.pdf

By equation 2.28, one is able to form a correlation in the frequency domain by multiplying
the Fourier transform and conjugate of Vi (t) with the Fourier transform of V2(t). Contrary to
the XF correlator, here the ‘F ’ stage is applied first and then the ‘X ’. Figure 2.7 represents
this. A desirable feature of this architecture, is that the output will inherently produce spectral
data (unlike the XF correlator with must be post Fourier transformed). Furthermore, in an FX
correlator all that is required for the ‘X ’ stage, is to multiply the spectrum from a single antenna
channel-wise with another antennas spectrum [11]. In large arrays, this property makes FX
correlators scale better than XF correlators. Furthermore, narrow-band RFI is localised to its
channel, enabling scientists to flag it and make use of the remaining channels for science. Since
MeerKAT makes use of an FX correlator, this thesis will only cover its operation in depth.

Figure 2.8 shows context as to how the FX correlator is situated for a given baseline in
MeerKAT. Ignoring the receiver and digitiser (see figure 2.1), from each antenna, two digi
tal streams are output (H and V polarisations). The antenna will have a coarse delay inserted
into its path to correct for the geometric delay relative to a reference antenna. Both feeds are
then passed into an F-Engine which performs the F-stage of the FX correlator. Thereafter, a
fine delay is performed on the signal to further correct for the geometric delay. Finally, the
multiply-accumulate (MAC) operation is performed in the X-Engine. Unlike a standard MAC
function, this one will output four values X lX 2, X lY2*, X2Yl and YiY2* which are used in the

http://www.atnf.csiro.au/research/radio-school/2011/talks/RAS-correlators.pdf
http://www.atnf.csiro.au/research/radio-school/2011/talks/RAS-correlators.pdf

Chapter 2. Radio Interferometry 17

recovering of the Stokes parameters I, Q, U and V (see equation 2.3). Each product is complex
because they are the cross-product between two complex spectra.

Figure 2.8: Digitised dual polarisation feeds H (t) and V (t) leave dishes 1 and 2. They are then
coarse-delayed and channelised by the F-Engine to produce complex signals X (v) and Y (v).
Following this, the signals are fine-delayed and then multiplied channel-wise and accumulated
to produce the products necessary for the recovery of the stokes parameters in the frequency
domain.

The input signals to the FFT are real, but the output spectral signals are complex-valued
and Hermitian. By ignoring the redundant negative frequency channels, the required complex
valued analytic signals are obtained [4].

2.7.3 Digital Delay Tracking
In the previous section, the process of correlation is described analytically. While the conversion
of equations 2.26 and 2.28 to electronic circuitry is shown in subsections 2.7.1 and 2.7.2, the
digital correlator process must calculate a corresponding t0 to correct for the geometric time
delay Tj (see section 2.5.1). This is done in two stages. First, coarse-delay tracking and then
fine-delay tracking. The delay applied in each of these stages is done according to the following
equation:

t0 — N x Ts + / x Ts (2.29)

where 0 < / < 1.

The coarse-delay operation computes a value for N and exacts delay N x Ts, while the fine-
delay operation computes a value for / £ [0,1) and exacts delay / x Ts. Recalling section 2.5,
the required delay is a function of the antenna position and phase centre of the observation [4].

Chapter 2. Radio Interferometry 18

2.7.3.1 Coarse-delay tracking
Coarse-delay tracking involves buffering up readings at the reference antenna to correct for the
geometric delay at the per-digital sample scale. Following equation 2.29, this means determining
a value for N, where N is the number of digital samples to buffer. This is a time-domain based
delay and hence is situated prior to the F-stage of the FX correlator as shown in figure 2.8.

2.7.3.2 Fine-delay tracking

Fine-delay tracking computes a value for / in equation 2.29, where / is the gradient of a linear
phase slope. This delay correction is implemented in the frequency domain (post F-Engine see
figure 2.8) by multiplying the complex spectral output of the F-Engine with a computed linear
phase slope. In order to avoid wrap-around, it is imperative that the coarse-delay correction
has reduced the delay to be contained within 1 sample i.e. fine-delay correction only corrects
for the geometric delay at an intra-digital sample scale.

Chapter 2. Radio Interferometry 19

2.8 The X-Engine
After passing through the receiver, digitiser, coarse-delay correction, F-Engine and fine-delay
correction, the X-Engine accepts two streams X and Y (representing the spectral result for
each polarisation) from each antenna as show by figure 2.8.

Essentially, these four frequency domain complex signals are multiplied pair-wise and integrated
in the X-Engine to produce the following matrices:

"X iX* X iY*' X iX2 X iY t'
YiY* YiX*

and
Y1Y2* YiX2

x 2x 2* X 2Y2* x 1X 2 X Y 2

y2y2* YX* _Yi*Y> Yi*X2_

(2.30)

The matrix on the left in equation 2.30 is the auto-correlation (see section 2.6), while the
matrix on the right is the cross-correlation. The auto-correlation matrix is used for bandpass
calibration [4]. Of the cross-correlation matrix, the first two rows can be shown to be the
conjugate of the bottom two rows. As such, only the results from the first two rows need be
outputted for the cross-correlation as shown by figure 2.8.

Chapter 2. Radio Interferometry 20

2.9 Polyphase Filterbank
Section 2.6 showed that for the ‘FX ’ architecture, the ‘F ’ stage performs a Fourier Transform,
while the ‘X ’ stage simply multiplies channel-wise and integrates. Channelisation by just an
FFT is problematic because of the implied sinc function shape of the spectral channels. This
causes spectral leakage between channels and scalloping loss [1]. Windowing of the time-domain
data is needed to obtain a more rectangular spectral channel. In practice, this is mitigated by
using a polyphase Finite Impulse Response (FIR) filter, followed by a DFT. This architecture
(detailed by figure 2.9) forms a PFB [1], which is an efficient use of multi-rate DSP techniques.
For this reason, many radio telescopes use a PFB for the ‘F ’ stage to perform the Fourier
Transform. The MeerKAT is one of them.

Given its complexity over the ‘X ’ stage, the ‘F ’ stage is more likely to produce mathematical
finite precision error. This thesis aims to document/investigate the F-Engines’ operation in
detail.

The PFB is situated in the F-Engine after the digitiser and coarse-delay tracking in the signal
chain (see figure 2.8). It receives samples of 2 time domain signals (2 polarisations) with coarse-
delay corrections to account for different geometrical delays for each antenna. This digital signal
is then passed to a commutator which distributes each value to a FIR register in the PFB FIR
sequentially. The output of each FIR register is then passed into a point on the DFT (see
figure 2.9). The following two subsections document the mathematical procedures performed
within the PFB FIR and DFT.

Figure 2.9: A PFB is formed by coupling a polyphase FIR filterbank with a DFT.
Sourced from [1].

Chapter 2. Radio Interferometry 21

2.9.1 The FIR register operation
A FIR filter acts as a moving window average for an input x(n) and computes the sum:

M-1
y (n) = E h(m)x(n — m) (2.31)

where h(m) is a set of M coefficients used for weighting. These coefficients are derived from
the time-domain window function. We refer to the value M as the number of taps.

Figure 2.9 shows P streaming FIR filters encapsulated in dashed-line boxes, which act to
decompose the input signal into P phases and down-sample the signal by ^ P . This technique
(mathematically shown by equation 2.32) is known as polyphase decomposition [1].

P-1 M-1
y(n') = ^ ^ hp(m)xp(n' — m) (2.32)

p=0 m=0

The data flow that occurs within the PFB FIR is illustrated by figure 2.10.

Figure 2.10: Graphical representation of the signal flow within a polyphase filterbank. Here,
P = 64 and M = 4 polyphase taps. Data is read in segments of length P until M x P samples
populate the FIR taps. The data and filter coefficients which are distributed across the M x P
taps are multiplied together and summed over taps per FIR filter. After this, a P-point DFT
is computed and another P input samples distributed in by the commutator.
Sourced from [1]

The commutator splits the input into P branches, feeding a different ‘phase’ of the signal to
each of the polyphase sub-filter. The commutator in essence acts to apply a z-p delay on each
branch before a ^ P downsampling.

Chapter 2. Radio Interferometry 22

The FIR filterbank buffers the values from the commutator until all taps (M) of each FIR filter
(P FIRs) are filled i.e. buffering M x P values.

A full window (typically hann or hamming) of length M x P coefficients is pre-computed and
stored in memory at build time (in the case of a Field Programmable Gate Array (FPGA) these
values are stored in BRAM, see section 3.1).

The values contained within the FIR filterbank are multiplied by these window coefficients
and summed along each FIR filter to present to a P-point DFT the signal y(n') shown by
equation 2.32 which is P values long [1].

2.9.2 The DFT operation
The DFT used in MeerKAT’s F-Engine is a time decimated (DIT), Radix-2, natural-order-in,
Fast Fourier Transform (FFT).

The basic DFT equation is given by equation 2.33,

N -1
x [k = E x[n]WN , 0 < k < N — 1 (2.33)

where N is the length of the signal being Fourier transformed and the coefficients
W^ = e-j2nnfc/N are known as the twiddle factors. This algorithm has an order of complexity
O (N 2), which has been reduced by a family of algorithms known as the FFT [12].

For even N , one can decimate the input time signal x[n] such that f [n] = x[2n] and g[n] =
x[2n + 1], and rewrite equation 2.33 as

(N/2)-1 (N/2)-1
x [k]= E f M w N/2 + E »[nlWN/’2+1)k

n=0 n=0
(N/2)-1 (N/2)-1

= E fMOWN)“ ‘ + WN E g[n](WN)nk (2.34)
n=0 n=0

Since WN = WN/2, equation 2.34 may be rewritten as

(N/2)-1 (N/2)-1
X [k]= E fH (W n/2)“* + WN E 9l” «W »/=)" ‘

n=0 n=0
= F [k] + WN G[k] (2.35)

where F [k] and G[k] are the Fourier transforms of f [n] and g[n] respectively [12].

Each of the sums in equation 2.35 is an (N/2)-point DFT as a result of the symmetric properties
of the DFT [13]. Continuing to expand the DFT, one eventually reaches N/2 terms of 2-point
DFT’s which is the Radix-2 algorithm [12].

Figure 2.11 gives a graphical representation of an 8-point, Radix-2, natural-order-in, DIT FFT.

Chapter 2. Radio Interferometry 23

Figure 2.11: Decimation-in-time, 8-point FFT with natural order in and bit-reversed order out.
Text at the top of the image indicates the ordering of the stages in the diagram. Post the third
stage, data will undergo a bit-reversal transformation to return the output in natural order.
Sourced from [13]

While other algorithms exist for the computing of the FFT, the Radix 2 decimation-in-time
algorithm is used as it more suited to buffered architectures [12]. Buffering is the technique
used in the MeerKAT FFT implementation, whereby the signals are buffered up and processed
in parallel as opposed to streaming the signals through the FFT structure. The algorithm
implemented in figure 2.11 is comprised of the three essential operations described below.

2.9.2.1 Bit-reversal:
There are two variants of the DIT FFT: natural-order-in and natural-order-out. Depending on
which, one either bit-reverses the FFT input or output data. MeerKAT makes use of a post
bit-reversing (or a natural-order-in) structure as shown by figure 2.11. The ordering follows a
ruling that the binary representation of the index of the sample is bit-reversed (i.e. 100 ^ 001,
110 ^ 011, 010 ^ 010 etc). The output in figure 2.11 is in bit-reversed order, and as such
needs to be bit-reversed again in order to have the X [n] values in natural order [12].

2.9.2.2 Butterfly:
Figure 2.12 shows the 2-point DFT structure (known as a butterfly) that the Radix-2 algorithm
is based on. f m(j) is multiplied by the complex factor WN before being added/subtracted
to/from f m(i) [13].

Chapter 2. Radio Interferometry 24

Each Radix-2 butterfly performs one subtraction, one addition and one multiplication. Given
that f m(i) and f m(j) are usually complex, this means that complex multipliers and adders must
be used.

Complex addition/subtraction is largely simple in that one sums/subtracts the imaginary and
real components respectively. For an N-point FFT, N log2 N = 24 complex additions are
required.

Complex multiplication however involves 4 individual multiplications and 2 additions. In gen
eral, the Radix-2 architecture uses N /2 butterflies per stage for log2(N) stages, requiring a
total of N /2log2(N) butterflies. This bounds the maximum number of multiplications to
N /2log2(N) bearing in mind that some of them involve twiddle factors of unity (which means
passing the signal through or negating it) [14].

Figure 2.12: Signals f m(i) and f m(j) being passed into a two-point DFT (known as a butterfly).
WN is multiplied with signal f m(j) prior to subtraction.

2.9.2.3 Twiddle factor:
The twiddle factor by which one of the inputs to the butterfly is multiplied, is calculated
using the value of N and k and depends on the stage of the algorithm as shown by figure 2.11
[12]. Since these twiddle factors are constant per FFT algorithm and size, they need not be
calculated on the fly. If these twiddle factors are pre-computed at design time and stored in
look-up tables, this offers a computational speed-up. For the natural-order-in DIT FFT, these
twiddle factors need to be stored (or accessed) in bit-reversed order.

2.9.3 Dual Polarisation Processing
A single complex Fourier transform can simultaneously compute the spectrum for two real
signals g(t) and h(t) by invoking the following Fourier transform properties [15]:

1. The Fourier transform of a real signal is guaranteed to be Hermitian.

Chapter 2. Radio Interferometry 25

2. A purely real signal has a complex spectrum composed of a symmetric real and asym
metric imaginary part.

3. A purely imaginary signal has a complex spectrum composed of a asymmetric real and
symmetric imaginary part.

4. Fourier transforms obey the linearity principle i.e F [a#(t) + bh(t)] = aF[g(t)] + b F [h(t)]
where a, b G R .

So, if we combine g(t) and h(t) so that they form the complex signal:

x(t) = g(t) + ih(t)

then their spectra (X (k)) will be the sum of their individual transforms. By invoking points 2
and 3, one may produce the split operation (equation 2.36), and use it to extract the spectra:
H(k) and G(k), which correspond to each of the real signals h(t) and g(t) [16].

G(k) = 2[X (k) + X *(N - k)]

H(k) = 2 - [X(k) - X *(N - k)]

k = 0 ,1 , . . . , N - 1

(2.36)

Since both polarisations H and V have the same geometric delay Tg, MeerKAT is able to use
operation 2.36 to compute the spectra for both polarisations coming from a single antenna
simultaneously.

Chapter 2. Radio Interferometry 26

2.10 Number Systems
The representation of real numbers in hardware has an affect on the accuracy, precision and
speed with which mathematical operations are computed. The choice of which number system
to use is often hardware limited and only of concern to high performance or high accuracy
projects (nuclear research, deep learning, finance etc.).

Before proceeding, it is necessary to define a quantitative comparison technique for a number
system. We define decimal accuracy as - log10(| log10(x/y)|) where x and y are the correct and
computed value respectively [17]. Precision is the number of bits given to representing a number
(i.e. the more bits, the higher the precision). Dynamic range is the ratio between the largest
to smallest value a number can assume given a certain number of bits. Measured in decibels,
the dynamic range is calculated as 20log10(2nbits) for fixed point binary representations, while
numbers with scaling (which increases dynamic range) measure dynamic range differently [1].

Digitally, integer numbers are typically recorded as two’s complement binary at the machine
level. This enables the representation of signed/unsigned numbers and re-use of hardware for
performing addition and subtraction [18]. Two’s complement signed and unsigned numbers
have a range of

_2(bits—1) 2(bits-1)

2 2 ~
and

0 ,2(bits) ^

respectively, where the signed range is asymmetric as there is one more negative number than
positive representable [18].

2.10.1 Fixed Point numbers
Fixed point numbers typically store real numbers in signed/unsigned binary, with the use of
a ‘binary point’ [18]. This binary point acts as a divider between the integer and fractional
parts.

A signed fixed point number is stored as a signed integer according to equation 2.37.

(- 1) s(integer bits)2(fraction bits) (2.37)

A fixed point number is parametrised by its total number of bits and number of fraction bits.
The notation used in this thesis will be ‘ (w, f) ’ where w is the full bit length, f the fraction
length and w - f is the integer length. By equation 2.37, the storing of a rational number
is done by scaling the number and storing it as an integer (remembering its scaling). For
example, storing 0.245771 in a (16,10) fixed point number with an infinite-rounding scheme
means performing the following operation:

fixednum(16,10) = (int) (0.245771 x 210) = (int) 251.669504 = 252

Chapter 2. Radio Interferometry 27

where ‘ (int)’ denotes the casting of a rational number to an integer while invoking the specified
rounding scheme.

Turning fixednum back into a rational number means dividing it by 210. This effectively reverses
the scaling and returns 0.24609375. Since fixednum only has 10 fractional bits available, the
lack of precision resulted in a decimal accuracy of ~ 3.244165. The better utilisation of bits to
increase precision and dynamic range is the primary motivation for floating point numbers.

2.10.2 Floating Point numbers
Floating point numbers store a normalised signed or unsigned rational number. The format
used for floating point numbers is:

(- 1)s(1.f)^E (2.38)

where 1.f is the normalised significand, /3 the base and E the exponent. In the early 1980’s
the IEEE produced a binary standard known as the 754 standard for floating point (see latest
revision [19]). This means /3 = 2.

The 754 floating point standard (referred to as floats from here on) dictates how the full bit
length should be split with regards to fraction and exponent bit length. The following example
shows the conversion of a rational number to a ‘half-precision’ (16 bit) float. This standard
sets aside one bit for the sign, five bits for the exponent and ten bits for the significand [19].
The following example shows how 0.245771 would be stored in floating point

floatnum in binary(16) = 0b0011001111011101

where the leading 0 indicates the number is positive, the five following bits indicate an E =
12 and the last 10 bits indicate a significand = 989. Floating point numbers make use of a
bias (2k-1 - 1) where k is the bits allocated to the exponent. Biasing enables the exponents
to be ‘signed’ so as to represent both small and large values while allowing for numbers to be
compared lexicographically.

Adding a ‘ 1.’ to the significand and dividing by the scaling (2E) will give back floatnum =
0.2457. This yields a decimal accuracy of ~ 3.901425, which is significantly higher than that
achieved with the fixed point representation.

2.10.3 Posit numbers
Posit numbers are a direct drop-in replacement for the float and offer a larger dynamic range,
higher accuracy, better closure, bitwise identical results across systems, simpler hardware and
simpler exception handling [17]. The posit format is

(- 1)suseedk 2es1.f (2.39)

where useed = 22es. What this translates to is a composite scaling factor of SF = (2es)k + es.

Chapter 2. Radio Interferometry 28

Qualitatively, posits have no ‘NaN’ (not-a-number) representations, no separate ± ro , no ‘neg
ative zero’ and equality and ordering of posits is done in the same way as for binary integers.
This translates to very simple circuitry for posit manipulation, unlike for floats [17].

Figure 2.13 shows the decimal accuracy of posits vs floats. As can be seen, close to 0, posits
have a higher decimal accuracy, and tapered precision. Floats on the other hand have gradual
underflow, and asymmetric precision. Since numbers in use are typically near 0, the tapered
precision offered by posits is preferable [17].

If again we were to store the value 0.245771 in a 16-bit posit number we would have:

positnum in binary(16) = 0b0001111110111011

and the value returned would be 0.24578857. This yields a decimal accuracy of ~ 4.508 which,
in turn, is significantly higher than that achieved with floats.

Since posits are a relatively new creation (published in 2017), they lack the supported hard
ware and software to be used in any correlator structures as yet. Perhaps, for future SKA
implementations these numbers will be considered.

Chapter 2. Radio Interferometry 29

2.11 Quantisation Schemes and Finite Precision
Arithmetic

Finite precision number systems require a set conditions for how a real number is represented
within its domain. This involves developing procedures for exception handling, boundary con
ditions, precision and arithmetic. While every number system has its own set of rules, this
section will explicitly look at those used by fixed point binary since this is what is used in the
MeerKAT correlator.

Within the F-Engine, the only arithmetic operations used are that of addition and multipli
cation (see section 2.6), both of which induce bit growth as shown by the below subsections
2.11.1 and 2.11.2.

2.11.1 Addition
Consider fixed point numbers A = (10, 6) and B = (10, 6) (recall notation from section 2.10).
Computing C = A + B will mean C = (11,6), since for every addition, one must account for a
carry in the integer length. Note that one may only add together two fixed point numbers of the
same fraction length (i.e. same scaling) [20]. As long as overflow does not occur, the addition of
fixed point numbers will not cause inaccuracy in representing the summation. However, since
overflow may occur, dynamic range constraints must be considered in system development [21].

While some methods exist for rectifying overflow after it has been detected, they are not reliable
techniques because of the non-linearity of the processing following overflow [21]. The methods
discussed in subsection 2.11.4 will look at the general practice in choosing scale factors to
prevent overflow and maintain the largest possible signal-to-roundoff noise ratio.

2.11.2 Multiplication
Again, considering A = (10,6) G R and B = (10,6) G R, computing C = A x B renders
C = (20,12) G R. Furthermore, for (A, B) G C, C = A x B means C = (21,12) G C. This
is as a result of complex multiplication invoking an inherent addition. Multiplication cannot
cause overflow if both numbers are properly scaled. Where quantisation will occur however, is
in re-quantising the result [21]. Subsection 2.11.3 will study the typical rounding operations
applied when re-quantising the result and the side affects thereof.

2.11.3 Rounding
The finite representation of a real number will often require that the precision of the number
is reduced to fit within a given length of digits (or in the case of computers, bits). When
selecting a round-off scheme, one must consider how it affects the accuracy and the cost of
implementation [18].

Chapter 2. Radio Interferometry 30

Consider x and y G R and let F () be the machine representation when rounding. The following
machine representations must then be satisfied [18]:

1. F(x) < F(y) whenever x < y.

2. If x G F then F(x) = x.

3. If Fi and F2 are consecutive numbers in F such that Fi < x < F2, then either F(x) = Fi
or F(x) = F2.

The three rounding options most in use are truncation, bankers or even-rounding and infinite
(±ro) rounding.

Truncation (round-to-zero) is the simplest scheme in which the extra digits are removed with no
change to the remaining digits. While this method is fast and does not require any additional
hardware, its numerical performance is poor. The value 2.99 would be truncated to 2.

Infinite rounding (round-to-nearest ro) is a more accurate scheme than truncation and adds
0.5 (if positive) or subtracts 0.5 (if negative) to the value before truncating. The maximum
precision error is approximately half that of the truncation error, but the operation does require
a full addition be performed. 2.5 would be rounded to 3, while -2.5 would round to -3. This
scheme will introduce a bias since we consistently round away from zero.

Finally, Bankers rounding (round to nearest even) avoids the bias introduced by infinite round
ing. For positive values, it adds 0.5 and truncates only if the significand is odd. Else it will
subtract 0.5 and truncate. The reverse applies for negative numbers. 2.5 would then round
to 2, while 3.5 would round to 4. In this way, half the time the value is rounded away from
zero and half the time towards zero. This scheme requires a full addition and checking of the
significands least significant bit (LSB) to see whether it is odd or even. Again, the maximum
error is approximately half that of the truncation error and it reduces the infinite rounding
bias.

While the ‘round-to-nearest’ schemes have a better numerical performance than truncation,
their main disadvantage is that they require a complete add operation since the carry may
propagate across the entire significand. Look-up tables holding the rounded results are a
possible solution to this [18].

2.11.4 Overflow and Underflow
While in the previous subsection 2.11.3 we addressed the issue of storing values with a precision
exceeding that representable by a number system, this section deals with the treatment of values
that exceed the minimum and maximum values of the number type.

Underflow is simply when the number is too small to be represented by the number system and
is nearly always just represented by the number 0.

Chapter 2. Radio Interferometry 31

Overflow is the opposite. For numbers too large to be represented by the number system, two
options are usually employed.

The first is to wrap the value from +max to -max and visa versa for signed numbers and from
max to 0 for unsigned numbers. Binary arithmetic does this wrap automatically i.e. for a
4-bit unsigned system, 0b1111 + 0b0001 = 0b10000 ^ 0b0000. Hence, wrapping requires no
additional compute and is used where overflow is unexpected (since wrapping is unatural) and
speed is of the essence.

The second is to saturate. For the same 4-bit unsigned system, 0b1111 + 0b0001 = 0b10000 ^
0b1111. This is a more natural approach (as 4 is closer to 5 than 0 is), but requires additional
compute to compare the result to the max and min of the system before setting the value to
either the max or min.

A popular means to prevent overflow is to free up the most significant bit (MSB) of both
operands before the arithmetic procedure. This is done by applying a right-shift operation.
An example of this is when performing 0b0011 + 0b1111, we would first right-shift each before
summing: 0b0001 +0b0111 = 0b1000. Later when transferring to a number system of a higher
dynamic range, the right-shift would be recalled and reversed with a left-shift to get the result
0b10000. This is not equal to 0b10010 but is closer than simply saturating the result to 0b1111
or wrapping it to 0b0001.

Recall that division by two corresponds to a single bit right-shift of a fixed point binary number
and as such right-shifting by N bits corresponds to division by 2N. The reverse applies for left-
shift where one is multiplying by two.

2.11.5 Exception Handling
Fixed point number systems have no special bit patterns reserved for exceptions like NaN or
Inf in floating point. For every N bit fixed point number, all possible bit patterns are reserved
for a valid number [22]. However, since fixed point number systems are usually deterministic,
mathematical anomalies are mostly avoidable.

3

cti
H
H
&H
<d
ffi
O

The MeerKAT F-Engine

The MeerKAT is a 64 dish interferometer with an F-Engine design built using the CASPER
architecture and tool-flow.

This Chapter introduces CASPER, the DSP blocks: pfb-fir-generic and ffLwideband-real that
are used in the building of the PFB, the CASPER supported hardware on which the design is
implemented and finally the finite precision considerations made in building the F-Engine.

Chapter 3. The MeerKAT F-Engine 33

Figure 3.1: Generic fabric of an FPGA detailing the placement of Logic Blocks, Interconnects
and I/O. Sourced [25]

3.1 Field Programmable Gate Arrays
High clock-rate, large input/output (I/O) applications require silicon solutions that are not
always realisable on Graphical Processing Units or Central Processing Units [24]. Radio tele
scope correlators are one such application that often require many high speed interfaces and
customisable high speed DSP. For this, FPGAs are perfectly suited.

The fine-grained reconfigurable fabric used in an FPGA is made of logic blocks, I/O blocks,
interconnects and several integrated circuits (hard-cores) for DSP, encryption, arithmetic, mem
ory etc. Logic blocks are cells comprised of look-up tables (LUT’s) and serve to provide one-to-
one mapping from inputs to outputs. Figure 3.1 details a generic fabric layout for an FPGA.

Defining the layout of the FPGA fabric is done largely through the use of Hardware Descrip
tion Languages (HDL) like Verilog and VHDL. FPGA vendors often provide a tool-chain for
mapping the design to the fabric as well as IP cores that contain pre-built designs for serial
interfaces, FFTs, MAC functions etc. Xilinx, the manufacturer of the FPGA used in the
MeerKAT correlator, provides the ISE and Vivado tool-chains. The tool-chain maps a design
to the FPGA fabric by several steps: logical synthesis, translation, technology mapping and
placement and routing. Following these steps, the tool-chain will return a bit-stream that may
be loaded onto the FPGA for physical operation [25].

MATLAB provides the tool Simulink that lets a user draw out a design by connecting up pre
built ‘blocks’ that contain IP cores or HDL to speed up design. An example of this is shown in
figure 3.2 where the CASPER PFB FIR has been connected up to the CASPER FFT to create
a PFB. At build-time Simulink calls on system generator (a feature of the Xilinx toolflow) to
begin the process of mapping the Simulink design to the FPGA fabric.

Some aspects of FPGA development are relatively simple, while other issues that might be

Chapter 3. The MeerKAT F-Engine 34

dealt with at a software level like finite precision arithmetic, wordlength optimisation, on-chip
routing delays (latencies) and memory interfacing are harder [24].

On-board memory (BRAM), I/O and hard-cores are limited. This means that for large builds
like the correlator, special considerations for memory utilisation (like storing FFT twiddle fac
tors in BRAM), I/O interfaces (like ethernet connections) and hard-core usage (like multipliers
for the FFT butterflies) must be made else the design will not fit on the FPGA chip. Further
more, the builds must usually meet timing constraints for reconfiguration and processing.

All these considerations were made when building the correlator designs for MeerKAT.

Chapter 3. The MeerKAT F-Engine 35

3.2 CASPER
CASPER is a collaboration that aims to minimise time-to-science with its open source hard
ware, software and tool-flow. The community builds and refines DSP tools that are commonly
used throughout radio astronomy. Coupled with their supported open-source hardware plat
forms, CASPER hopes to enable the scientist to develop a complex back-end to their radio
telescope [26].

Designs and protocols for FIR filters, FFTs, ADCs, Ethernet etc. are written in HDL or built
up from Simulink blocks by FPGA engineers and packaged in the development suite mlib-devel,
which is maintained by CASPER. Then, in conjunction with MATLAB & Simulink, a user is
able to lay these designs and connect them in the manner required for their system. An example
of this is shown in figure 3.2.

Having the design for their system, a user parses this Simulink file to Xilinx’s Vivido or ISE
system generator for the production of a .fpg file which contains the bitstream and metadata
required for the programming of the FPGA on the target board.

Finally, by way of the casperfgpa python package, a user may upload the .fpg file and program
it to a CASPER supported hardware platform. Once programmed, the casper_fpga package
wraps the firmware on the board and allows you to read/write to its software registers.

Chapter 3. The MeerKAT F-Engine 36

3.3 CASPER's Polyphase Filterbank
The primary CASPER DSP blocks that combine to form the PFB used in MeerKAT’s 1k1,
4k and 32k F-Engines are the pfb-fir-generic and ffLwideband-real blocks contained within the
CASPER DSP Blockset library. Figure 3.2 shows a rudimentary PFB design that uses these
blocks in Simulink.

The FIR block is customisable at design time to scale in size, tap length, windowing type,
overflow handling, bit-widths, rounding scheme and bin widths. It furthermore offers options
on how to build the design into FPGA fabric in terms of latency and coefficient storage.

The FFT block lets the user decide point size, number of simultaneous inputs, bit-widths of
the input data, output data and twiddle factors, rounding schemes and overflow handling. It
similarly offers the user some control on how the design is built into the FPGA fabric by giving
control over BRAM usage, latencies and DSP core usage.

Figure 3.2: Simulink layout of pfb-fir-generic and ffLwideband-real. 8 real simultaneous inputs
are accepted by the FIR and FFT blocks and 4 simultaneous complex outputs are supplied by
the FFT block. The FFT block also accepts an integer from its shift port that will dictate the
shift scheme of the FFT. These 4 complex outputs are split into 4 real and 4 imaginary signals
and passed out.

1 Note, the size mentioned dictates the spectral channel size. For example, a 1k FFT has 211 inputs and 210
output spectra (since half the output channels are discarded - see section 2.7).

Chapter 3. The MeerKAT F-Engine 37

3.4 SKARAB
In practice, correlators are implemented in hardware for speed and timing consistency. The
typical approach is to either use dedicated circuitry, or, as with MeerKAT, to implement the
correlator on an FPGA [11].

The FPGA hardware boards used in MeerKAT’s F- and X-Engines are known as The Square
Kilometre Array Reconfigurable Application Board (SKARAB). This board supports an FPGA,
4 high speed serial transceivers, Ethernet interfaces, Hybrid Memory Cubes and ADC mezza
nine cards. For MeerKAT, the ADC mezzanines are not used because the digitiser is situated
on the antenna. With no onboard Central Processing Unit (CPU), the SKARAB requires a
Microblaze soft-core CPU be programmed to the FPGA fabric [27]. The onboard FPGA is
a Xilinx Virtex 7 FPGA and it is to this chip that all F-Engine and X-Engine designs are
programmed. A schematic layout of the board is seen in figure 3.3.

u u u u
□ C l Q C l< < < <

Quad 3GSPS ADC
Mezzanine

Module
(optional)

Í 16x10.3125Gbps
SERDES

Virtex7 (XC7VX690T) FPGA

1 16x10.3125 Gbps
, SERDES

i +
■ ■ ■

+ +
CL O - a. Q_ 1

CO t/1 t o COa c f a a

Quad Q5FP+
Mezzanine

Module

a

16x10.3125 Gbps
SERDES

Boot
Memory

16x10.3125 Gbps
SERDES

Hybrid Memory
Cube Mezzanine

Module
(optional)

Hybrid Memory
Cube Mezzanine

Module
(optional)

Figure 3.3: Onboard layout of SKARAB. Sourced [27]

Chapter 3. The MeerKAT F-Engine 38

3.5 Arithmetic procedures in the MeerKAT
F-Engine

FPGAs use digital logic, constraining the data processed to be represented by either fixed
or floating point numbers. As mentioned, both number systems have their own arithmetic
procedures (see section 2.10).

MeerKAT’s FX correlator uses signed, 2’s compliment, fixed-point numbers, since these num
bers allow for faster arithmetic and more deterministic results. As mentioned in section 2.11,
the two primary arithmetic procedures used in its operation are addition and multiplication.

For the X-Engine, a channel-wise multiplication and accumulation is performed (see 2.6). The
multiplication will induce bit-growth, but no overflow (see 2.11.2). Re-quantising the product
will cause a loss in precision, but it is localised to the channel in which the multiplication was
performed. The accumulation will also introduce bit-growth and in order to avoid overflow,
the values are accumulated using larger bit-width fixed point numbers (typically 32-bit). If
overflow does occur, the channel will saturate but not leak into neighbouring channels. The
loss in re-quantising the product and effects of saturation in the accumulation are fairly well
understood and mostly unavoidable without altering the number system or bit-widths. For this
reason, the focus of this thesis is on the effects of finite precision arithmetic in the F-Engine
and more specifically, the Polyphase Filterbank.

The MeerKAT F-Engine studied within this thesis was an (18,17) bit fixed-point CASPER
design. Therefore, numbers represented in this system lie in the bounds [— 1,1). Three F-
Engine variations are in action, namely a 1k, 4k and 32k. (10, 9) fixed-point data is fed into the
F-Engine from the 10-bit ADC in the Digitizer (D-Engine). The ADC has an effective number
of bits value of 7.6 and root mean square (RMS) of 17 counts. This corresponds to 4-bits being
toggled 50% of the time on a cold sky (no RFI). Signals are set at this level as a trade between
quantisation efficiency and headroom for RFI [5]. These 10 bits are parsed into the upper 10
bits of an (18,17) fixed-point number for processing by the PFB. This leaves the lower 8-bits
free for growing precision during multiplication. The trade-off is that one needs to scale in the
FFT immediately since no head-room is left for overflow. This 18-bit precision is maintained
through the FIR and FFT. Below, we discuss the concerns and considerations in both the FIR
and FFT processing.

3.5.1 Quantisation in the CASPER FIR Filterbank
As seen in figure 2.9, the FIR stage of the F-Engine performs a multiply-accumulate operation
pointwise on a decimated time signal. In filtering, two forms of quantisation are of concern.
First, is in coefficient representation and second is in finite arithmetic operations [21].

The windowing coefficients are generated at build-time according to equation 3.1

W = (H (P x M) x sinc(fwidth x ((P x M) /(P) - M /2))) (3.1)

Chapter 3. The MeerKAT F-Engine 39

where H () is the windowing function (Hann, Hamming, Bartlett etc...), P is the size of the
FFT, M is the tap size and fwidth is the scaling of the bin width (where 1 is normal). These
values are then stored in the FPGAs’ BRAM and indexed as needed during its operation.

A plot of the windowing coefficients generated for a 4k, 8-tap PFB FIR using Hann windowing
and fwidth = 1 is shown in figure 3.4.

Coefficients are usually stored as the same type as the input data. Since the coefficient values
don’t exceed the bounds [-1 ,1) (see section 3.5) and 17-bits represent the values with sufficient
precision, there is no real concern of inaccurate representation.

Figure 3.4: Plot of 8-tap, 4k F-Engine PFB FIR window coefficients using Hann windowing
with fwidth = 1. P is FFT-length = 213. The boundaries at intervals of P indicate the coefficient
values applied across taps 1 ^ 8.

These coefficients shown in figure 3.4 are multiplied with the real and imaginary parts of
input data individually. No overflow would occur from the product and the extra precision
is sliced away. While this may introduce some round-off noise, the primary concern is in the
accumulation that occurs thereafter.

Typically, the worst case bit-growth when accumulating N numbers is 1og2 (N). So, in this
PFB FIR instance, where the tap length is 8, the largest bit-growth that could occur would
be 3. If as an extreme, the input data were a series of -1’s (the value of largest magnitude
representable by the system), the data stored in the PFB FIR would be equal to the inverse
of the window coefficient values (shown in figure 3.4). Recalling that fwidth = 1 normalises the
coefficients, given this input, the maximum value the summation could be is 1. Furthermore,
if one takes the absolute sum (to account for an input of values varying between « 1 and -1) ,
one would see the largest this value could be is < 2 (since the number system cannot represent
+ 1). This indicates that for the 8-tap PFB FIR the maximum bit-growth that could occur is
1-bit as opposed to 3.

Chapter 3. The MeerKAT F-Engine 40

This prediction can be made at design-time and is calculated for each FIR as shown below:

firscale = nextpow2(max(S8=0(|coeffsi|)))

where nextpow2() determines the next power of 2 greater than its input, max() returns the
maximum value in a vector and the summation is over the FIR for its taps 0 ^ 8. For a full
PFB FIR, this sum is performed for each FIR and from the absolute maximum of all those
sums, a value for firscale is chosen.

This scale value is then applied to the output of the 8-tap PFB FIR before restoring the data
to an (18,17) number and passing it on to a point on the FFT.

The decision to right shift down after the accumulation as opposed to before (as this would
prevent overflow), is made by considering that saturation in any of the FIRs cannot leak into
any of its neighbours (as with the FFT see subsection 3.5.2). Therefore, it is more beneficial
to let the values in the FIR have access to full dynamic range when accumulating despite the
possibility of overflow.

3.5.2 Quantisation in the FFT
Building an FFT in hardware means considering the effects of representing the data and twiddle
factors with finite precision. This includes the round-off noise in compensating for the bit-
growth caused by multiplication, scaling the data to prevent overflows caused by addition and
inaccurate transformation due to incorrect finite representation of the twiddle factors [21].

If x(n) is an N-point sequence and X (k) the discrete Fourier transform thereof, Parseval’s
theorem states that:

N-1 1 N-1
^ x2(n) = n ^ |X(k)|2 (3.2)
n=0 fc=0

Equation 3.2 indicates that the mean square value of the transform X (k) is N times the mean
square value of x(n). By equation 3.2, it can be shown that for a purely white noise signal, the
channel amplitude growth is v N , i.e. 2 log2(N) bits. For a mono-chromatic tone, the growth
for the channel it is placed in is N , i.e. log2(N) bits. This significant magnitude increase
for mono-chromatic tone inputs, indicates the need to avoid overflow by introducing scaling
procedures in fixed point arithmetic [21].

Bit growth can also be examined at the level of an individual butterfly. Consider figure 2.12,
/ m(i) and / m(j) are the inputs to the DIT butterfly with twiddle factor coefficient W k. The
outputs, fm+1 (i) and fm+1 (j), are then

f m+1(i) = f m(i) + X /m (j)

/m+1(j) = f m(i) - X (j) (3.3)

Chapter 3. The MeerKAT F-Engine 41

By equation 3.3, it can be shown that the maximum modulus of the complex numbers is
non-decreasing from stage to stage such that:

max{|/m(i) 1, |/m(j)!} < max{ |/m+1(i)1, |/m+1(j)|}

< 2 |/m(j)|} (3.4)

Equation 3.4 shows that the magnitude of the signal level grows at a rate less than or equal to
one bit per stage (i.e. a factor of 2) [21].

To avoid overflow caused by the growth detailed above, three scaling techniques are mentioned
by [21]:

1. Shift right by one bit every stage. That way, if |/0(i)| < 2 for all i and the data is right
shifted once after each stage (except the last) there will be no overflows.

2. Control the sequence such that |/m(i)| < 2 for all i. At each stage, / m(i) is computed
and if its absolute value exceeds 1, the entire array is right-shifted once.

3. Test for overflow. Scale the initial sequence such that |Re{/0(i)}| < 1 and | /m {/0(i)}| < 1
rather than one half like techniques 1 and 2. If an overflow occurs during a butterfly
operation, the entire sequence at that stage is right-shifted by one bit beginning with the
butterfly at which the overflow occurred. In this way more than one overflow may occur
per stage, but no more than two.

Technique 1 is the fastest and simplest to program, but can be largely inaccurate due to the loss
in precision for inputs where aggressive2 scaling is not required. Technique 2 is time-consuming
and still slightly (though less than technique one) inaccurate since the sequences are always
scaled to be less than one-half (i.e. half the dynamic range is never used). The third technique
is the most accurate, but is exhaustive since it requires the re-processing of the sequence each
time an overflow is detected [21].

The CASPER complex FFT makes use of technique 1 and allows for the passing of an integer
that, when translated to a binary sequence, indicates at each stage whether to right shift or not.
For example, passing the integer 1935 to a 1k FFT which has 11 stages, translates to binary as
0b11110001111. This scheme dictates that a right-shift be applied on stages 1 ^ 4, no right-
shift on stages 5 ^ 7 and more right-shifts on stages 8 ^ 11. This mapping of right-shifts to
integer is non-obvious. A higher integer value does not necessarily indicate more right-shifting
i.e. the integer 7 implies 3 right-shifts, while the integer 8 implies a single right-shift.

Important to note however, is that while the magnitude of the signal may not grow by more than
2 from stage to stage (as shown by equation 3.4), the individual imaginary and real components
may. An example of this can be seen for W^ = 0 .7 0 7 .. . -0.707j. . . and / m(i) = / m(j) = — 1 — 1j,

2 The use of the term aggressive scaling/shifting in this thesis will indicate a scheme whereby one right shifts
the data at every stage of the FFT.

Chapter 3. The MeerKAT F-Engine 42

then:

/m+1(i) = -2.414 . . . - 1j

and

/m+1(j) = 0.4142 .. . - 1j

Measuring growth for / m(i) as / m+1(i) / /m(i) and magnitude growth as |/m+1(i)|/|/m(i)| shows
that the output magnitude of / m+1(i) = 2.613 . . . , which implies a magnitude growth of 1.848 . . .
and therefore a magnitude bit-growth of log2(1.848...) = 0.886... bits. This magnitude bit-
growth is less than one, and as such a single right-shift is sufficient scaling. However, the real
components’ growth for / m(i) is 2.414... which corresponds to a bit-growth of log2(2.414 . . .) =
1.272 . . . bits. This growth is greater than one bit and as such a single right-shift is not sufficient
scaling. This could indicate that scaling the output by two once per stage is not sufficient in
avoiding overflow and that under certain circumstances, scaling by four (right-shifting twice) is
required to prevent the individual real and imaginary components from overflowing. However,
since the CASPER FFT does not allow for alternative scaling, this issue is not further addressed
in this thesis.

cti
H
H
&H
<d
ffi
O

Implementing and testing the Python
PFB Simulator

Studying MeerKAT’s F-Engine and more specifically the CASPER DSP blocks used in its
development, required an understanding of the CASPER tool-flow and the behaviour of its
DSP. As such, the foundation of this project was learning how to create a design in Simulink,
simulate its behaviour, synthesise it and deploy it to CASPER supported hardware. From
there, research was done into how the tool-flow is implemented, what the differing hardware
platforms offer and how they are used in radio astronomy.

However, in looking to test the finite precision effects present in the MeerKAT PFB, it be
came apparent that analysing the system from the Simulink framework was time consuming,
difficult and required software licenses for both Simulink and Vivado. Furthermore, it was
deemed important to study these effects through an independent framework. Therefore, in
order to conduct this research more effectively, a full fixed and floating-point PFB simulator
was developed in Python3. This provided the benefits of:

• Assisting/Attesting in/to the understanding of the system under study.

• Simplifying debugging since there is more control over the input vectors, operation of the
simulator and no real requirement of a SKARAB board once the simulator is proven to
be functioning correctly.

• Speeding up the prototyping of PFB designs and testing the effects of varying shift,
rounding and overflow schemes for a variety of inputs.

• Being written in Python means that for many who read the code, the operation of the
CASPER PFB will be easier to understand.

Chapter 4. Implementing and testing the Python PFB Simulator 44

4.1 Floating point simulator
The floating point implementation was developed first, primarily, since NumPy (a popular
mathematical package in Python) natively supports floating point.

A Radix-2, natural order in, DIT FFT that may be staged in its operation was developed.
Staging is a feature of the floating and fixed-point simulators that will save a copy of the
data at each stage of the FFT. This allows for a unique analysis (since this is not done in the
CASPER FFT) of the signal flow through the FFT, which is especially useful when analysing
where and why error was introduced in the result.

This FFT accepts a data vector that is a power of two in length and a bit-reversed array of
twiddle factors (see subsection 2.9.2). Typically, FFT algorithms are implemented recursively
in software, but for this research, an iterative design was used since it was a requirement to
identically mimic the action of the CASPER FFT design.

Algorithm 1 from [28], details the iterative Radix-2 FFT structure (in pseudocode) used. Fur
ther functions to perform b itrev were developed as well as functions to generate the twiddle
factors in vector w, but, given that they were more trivial by comparison, the reader is left
to inspect the code in the appendix to see how they operate. The actual code does contain
modifications to algorithm 1 to have it be more parallel in its operation and hence better utilise
the strength of NumPy arrays.

Algorithm 1 In-place iterative Radix 2, natural order in, DIT FFT
Require: N is of power 2

1: Input: Real or Complex vector data (length N) and vector w containing N /2 bit-reversed
twiddle factors

2: Output: Complex vector (length N)
3: PairslnGroup := N/2
4: NumO/Groups := 1
5: Distance := N /2
6: while NumO/Groups < N do
7: for K = 0 to NumO/Groups — 1 do
8: J /irs t = 2 x K x PairslnGroup
9: JLast = J /irs t + PairslnGroup — 1

10: Jtwidd/e = K
11: W = w[Jtwidd/e]
12: for J = J /irs t to Jlast do
13: Temp = W x data[J + Distance]
14: data[J + Distance] = data[J] — Temp
15: data[J] = data[J] + Temp
16: end for
17: end for
18: PairslnGroup = PairsInGroup/2
19: NumO/Groups = NumO/Groups x 2
20: Distance = Distance/2
21: end while
22: data = bitrev(data)
23: return data

Chapter 4. Implementing and testing the Python PFB Simulator 45

Extending from this, the full PFB object was built. This object depends on the FFT length,
tap length, FIR windowing coefficients, whether to process a complex or real vector (for dual
polarisation processing, see subsection 2.9.3), whether to stage the FFT, bin-width scaling fwidth
(see subsection 3.5.1) and whether to integrate/accumulate the outputs. Figure 4.1 shows a
high-level design flow of the PFB object.

Inputs accepted to the PFB are a real or complex vector, while outputs are either a single
complex vector (given a real input), or two complex vectors that are the spectrum of the real
and imaginary parts, given a complex input. If the PFB is told not to accumulate the outputs,
the output will be a two-dimensional matrix of N by the number of spectra.

Should staging have been chosen, a two-dimensional matrix of /og2 (N) + 2 by N will be supplied
that contains the input data, the data at each stage of the FFT and the bit-reversed output
data. Again, should the PFB be told not to accumulate, the output will be a three-dimensional
matrix of N by the number of spectra by the number of stages.

Chapter 4. Implementing and testing the Python PFB Simulator 46

4.2 Fixed point Simulator
Extending from the floating point implementation, this software object looks to mimic the
quantisation effects experienced in the CASPER PFB by using the same number system: fixed
point numbers. This meant studying how the MeerKAT implementation handled bit-growth
and copying this for the simulator. So while it has the same parameters and input and output
formats as the floating point implementation, it has additional parameters for handling the
processing of fixed point numbers.

Since NumPy did not support fixed point numbers, a fixed point number system was built. It
is declared for a specific bit-length, fractional bit-length and rounding scheme and allows for
the user to pass it real numbers (double precision floats) for conversion to fixed point numbers
following the procedure outlined in subsection 2.10.1. The result of this procedure is stored
as 64-bit integer value and constrained by the fractional bit-width (that limits precision) and
integer bit-width (that limits dynamic range). Inbuilt into the object are functions governing
how arithmetic is performed, mimicking a fixed point like way (see section2.11). The numbers
were also designed to allow for several rounding schemes and made to saturate rather than
wrap when overflowing1.

Extending from the fixed point number class is a complex fixed point number class. This
class declares a real and imaginary fixed point number and similarly accepts a double precision
complex number for conversion. Arithmetic is altered to do complex arithmetic whilst using
the underlying fixed point arithmetic, rounding and overflow behaviour.

These number systems were built with a NumPy back-end for ease of use and to try have the
floating and fixed point simulators be comparable. This meant that the prominent differences
in operation would be owing to precision and overflow handling (where these effects in the
floating-point simulator are negligible in this thesis).

Obeying the bit growth handling from section 3.5, the FIR and FFTs were implemented using
fixed point numbers. Alterations to the FFT algorithm 1 are shown below in algorithm 2,
where now, steps are included to control bit-growth and shift.

Lines 15 and 16 of algorithm 2 control the fractional bit-growth incurred through multiplication.
W./racbits is the number of bits allocated to the fractional part of the twiddle factors, while
the normalise() function clips the data to lie within its dynamic range (which is bit-width
dependant). The right-shift applied in line 15 slices away this fractional bit-growth. This
correction will produce quantisation noise that is dependant on the rounding scheme used by
the numbers as well as their precision. Lines 21 - 24 treat the effects of overflow in the FFT by
right-shifting if for stage i, swreg is a 1. While a fraction of the quantisation noise introduced
here will be owed to the rounding scheme used, should this if -statement be by-passed and
overflow occurs in the following iteration, the quantisation noise caused by saturation and
channel leakage will be dominant.

1 since wrapping is only used when not anticipating overflow - and we look to test the effects of overflow:
see subsection 2.11.4.

Chapter 4. Implementing and testing the Python PFB Simulator 47

Algorithm 2 In-place iterative Radix 2, natural order in, DIT fixed-point, FFT
Require: N is of power 2

1: Input: Real or Complex vector data (length N), vector w containing N /2 bit-reversed
twiddle factors and shiftregister swreg.

2: Output: Complex vector (length N)
3: PairslnGroup := N/2
4: NumO/Groups := 1
5: Distance := N /2
6: i = 0
7: while NumO/Groups < N do
8: for K = 0 to NumO/Groups — 1 do
9: J /irs t = 2 x K x PairslnGroup

10: JLast = J /irs t + PairslnGroup — 1
11: Jtwiddle = K
12: W = w[Jtwiddle]
13: for J = J /irs t to Jlast do
14: Temp = W x data[J + Distance]
15: Temp > > W./racbits
16: normalise(Temp)
17: data[J + Distance] = data[J] — Temp
18: data[J] = data[J] + Temp
19: end for
20: end for
21: if swreg[i] = = 1 then
22: data > > 1
23: end if
24: normalise(data)
25: PairslnGroup = PairsInGroup/2
26: NumO/Groups = NumO/Groups x 2
27: Distance = Distance/2
28: i = i + 1
29: end while
30: data = bitrev(data)
31: return data

Prior to the fixed point FFT, quantisation control is done in the FIR to remove the bit-growth
incurred by the summation and multiplication as described in subsection 3.5.1.

Chapter 4. Implementing and testing the Python PFB Simulator 48

4.3 The CASPER PFB design
The above simulators are only valuable insofar as they mimic the behaviour of the CASPER
PFB. The operation of these simulators were tested against a 4k CASPER PFB (as used within
the MeerKAT F-Engine) shown in figure 4.2. While originally these designs were implemented
on SKARAB hardware and data was passed to and from it using software registers in the
FPGA fabric, this was prone to error in data conversions and collecting data correctly.

Supplying input to the PFB design shown in figure 4.2 is done by connecting the input signal to
the cwg80 bus. cwg80 is an eight-value-wide bus accepting eight 18-bit values simultaneously
from the input signal. Collection of the output is done by recording the eight 18-bit values
that are simultaneously present on the pfb0 to pfb7 lines. The process of testing, was then to
insert various Simulink generated signals into cwg80, simulate the full design for some time,
save the input signals to file and save the corresponding outputs to file. When comparing with
the software simulators, this made it simpler to ensure that the inputs and outputs to both
PFB designs were the same.

The same was done for just the 4k FFT alone (see figure 4.3), since the finite precision effects
that this research aims to investigate occur in the FFT process. Therefore, it was more impor
tant that the simulator FFTs mimicked the CASPER FFT than the simulator PFBs mimicking
the CASPER PFB. As such, testing began with the FFT and would only progress to the PFB
once the software simulated FFTs comfortably mimicked the CASPER FFT.

Chapter 4. Implementing and testing the Python PFB Simulator 49

Figure 4.1: Flow chart detailing the operation of the PFB simulator. On initialisation, param
eters regarding the size of FFT, taps etc. are passed to the PFB and used in the generation
of twiddle factors, fir windowing coefficients and variable space for outputs. Given data and
instructed to ‘run’ , the PFB object will segment the data into portions of length N . Each
segment is then loaded into the first taps of the PFB FIR, which will then return the FIR out
put £ hp(m)xp(m — n). This output is passed on to the N-length Radix-2 FFT. The output
spectra are then stored, and if there are more data segments to process, the cycle repeats. Else,
the complex FFT output data is split if dual polarisations were processed and summed and
accumulated if specified.

Chapter 4. Implementing and testing the Python PFB Simulator 50

Figure 4.2: The Simulink design of the 4k MeerKAT PFB used for testing. The cwg80 terminals
connect to the input source which outputs 8 samples of the signal simultaneously. The upper
terminal passes these samples to workspace variables cwg0 - cwg8, while the bottom terminal
expands the signals and passes them to the CASPER PFB block. This block accepts a shift
register, a data valid and sync signal for timing. The PFB outputs 8 values simultaneously
which are saved to workspace variables pfb0 - pfb8. After simulation, a MATLAB script is run
to extract the data from all the workspace variables and re-order them into a single input vector
and real and imaginary output vector. The system generation blocks are there for build-time
to build for a SKARAB.

Chapter 4. Implementing and testing the Python PFB Simulator 51

Figure 4.3: The simulink design of the 4k MeerKAT FFT used for testing. The cwg80 terminals
connect to the input source which outputs 8 samples of the signal simultaneously. The upper
terminal passes these samples to workspace variables cwg0 - cwg8, while the bottom terminal
expands the signals and passes them to the CASPER FFT block. This block accepts a shift
register, a data valid and sync signal for timing. The FFT outputs 8 values simultaneously
which are saved to workspace variables fft0 - fft8. After simulation, a MATLAB script is run to
extract the data from all the workspace variables and re-order them into a single input vector
and real and imaginary output vector. The system generation blocks are there for build-time
to build for a SKARAB.

5

cti
H
H
&H
<d
ffi
O

Results and Discussion

This chapter reports the results of running the various simulations and tests for a variety of
scenarios in order to test the simulators and to investigate the systematic effects observed in
the MeerKAT data.

In this thesis, the SNR is measured as:

SNR 20 X log]_0
(1^ /2) X (max(tone)2)

(mean((noise)2)) (5.1)

where max() selects the maximum value of the input vector and mean() calculates the mean
of an input vector.

For fixed precision integer signals, such as the digital representation of voltages provided by an
ADC, it is convenient to introduce a decibel measure that characterizes the peak amplitude of
the signal relative to the maximum amplitude allowed by the number of bits used to represent
the number (e.g. the resolution of an ADC). This measure is decibels relative to full-scale,
abbreviated by dBFS and defined by:

dBFS = 20 X log,0 (^ 2 «) (5.2)

where “data” is the digital signal and 2”biis_1 is the maximum allowed amplitude span.

Chapter 5. Results and Discussion 53

5.1 CASPER PFB versus Python Simulator PFB
The primary test is to show that the developed fixed point Python PFB simulator correctly
mimics the behaviour of the CASPER PFB. To do this, we test a 4k, 8-tap, Hann filtered,
even-rounding PFB design in Simulink (see section 4.3) against a 4k, 8-tap, Hann filtered,
even-rounding PFB design in the fixed and floating point Python simulator. This is done in
two parts: first, test the FFTs alone and then the full PFB.

The fixed point PFBs and FFTs (CASPER and Python simulator) receive an (18,17) fixed
point number input. They then both process at that same precision and output an (18,17)
complex fixed point number (the CASPER outputs the real and imaginary separately - see
section 4.3). The input signal levels for the white gaussian noise is chosen so that the lower
4-bits of the input data is occupied more than 50% of the time (see section 3.5). Input tone
levels are set so that the amplitude takes 16-bits of the available 18, signifying strong RFI but
not so strong that overflow is caused in the first butterfly.

First, a pure tone is loaded into the 4k FFT Simulink design and simulated. The output is
collected and saved to disc. The same pure tone is then processed in a 4k Python fixed and
floating point FFT simulator and its results are saved to disc. Both CASPER and the simulator
fixed point FFT use aggressive shifting and even rounding. The absolute values of the results of
the CASPER, and simulator fixed and floating point FFTs are compared in figure 5.1, while the
real and imaginary components of the CASPER and simulator fixed point FFT are inspected
separately in figure 5.6.

The same pure tone input is then again processed through the CASPER 4k FFT and fixed
point simulator 4k FFT, but this time, a non-aggressive scheme (0b101010101010) is used. A
comparison between their results is shown in figure 5.3, while the data from each stage of the
fixed point FFT simulator for this same run are shown in figure 5.4.

Next, the same pure tone but now with added gaussian noise is used as an input to all the 4k
FFTs (simulated float, fixed and CASPER FFT). The input SNR is ~ 19dB and the outputs
are recorded. The absolute output of each FFT is shown in figure 5.5.

The final FFT test checks the 4k FFTs response to an impulse input, where the simulator fixed
point FFT and the CASPER FFT use a shift-scheme of 0 (no shifting). The real and imaginary
components of each FFT are compared in figure 5.9.

Having tested the 4k FFTs for varying input and shift-register configurations, the 4k PFBs
are then compared. To begin, the same pure tone from the first FFT test is loaded into each
4k PFB. Each of the 4k PFBs use Hann windowing and 8 taps. Both fixed point PFBs (the
CASPER and Python simulated one) use even rounding and aggressive shifting (integer value
of 8191). Their absolute results are shown in figure 5.7.

Gaussian noise is then added to the same pure tone so that the signal has an SN R « 19dB,
and the same PFBs (with their configurations maintained from the previous test) are tested.
These absolute results are shown in figure 5.8.

Chapter 5. Results and Discussion 54

Finally, an impulse signal is input to each PFB where now the fixed point PFBs (CASPER and
the simulated one) use a shift-scheme of 0. All other configuration parameters are unchanged
from the previous test. These even and imaginary results are compared in figure 5.9.

350 400 450 500 550 600 350 400 450 500 550 600 350 400 450 500 550 600

channels

Fixed point FFT result CASPER FFT resu t Floating point FFT result
for pure tone input for pure tone input for pure tone input

0.16

1200
0.14

10000.12

0.10 800

0.04

0.00

1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

0.040 0.040

0.015 -

0.010 0.010 -

Figure 5.1: Top row is the magnitude of the FFT output for a pure tone input for the three
different FFT implementations. The input tone had an amplitude of 1. The delta spike sits
in channels 478 and 479 for all FFTs. CASPER and the Simulated fixed point FFTs are 213
times smaller in magnitude than the Simulated floating point FFT owing to the scaling of
8191 (0b1111111111111) applied in the CASPER and fixed point FFTs. The bottom row is
a magnification of both the vertical and horizontal scale in order to note details in the spike
produced.

Re
(F
v)

Chapter 5. Results and Discussion 55

channels

Figure 5.2: Real and imaginary components of the two fixed point FFT outputs for a pure tone
input. The tone had an amplitude of 2. Both FFTs used a scaling of 8191 (0b1111111111111).
The top row displays the imaginary components, while the bottom displays the real.

Chapter 5. Results and Discussion 56

Figure 5.3: Pure tone input result for simulator fixed point and CASPER FFTs. This tone
is the same as used in figure 5.1, but here, the FFTs overflow and saturate during operation
due to a lack of shifting. The shift scheme used here is 2322 (0b100100010010). This shows a
similarity in the overflow behaviour of both FFTs. The plot on the right shows the difference
of the Python simulator FFT against the CASPER FFT.

Chapter 5. Results and Discussion 57

1 .2 5

1.00

channels

Figure 5.4: Sequential stages of the fixed point FFT processing a pure tone input shown in
figure 5.3. This exhibits the functionality of the fixed point simulator and indicates where in
the process overflow is occurring. Relating to figure 2.11 which details the location of stages of
an 8-point FFT, here we display the result of each stage as data travels through a 8192-point
FFT. The stages are read from top left to bottom right starting with the output of the PFB
FIR, then the 13 stages of the FFT and ending with the bit-reversal of the output in stage
13. The root cause of spectral leakage can be investigated using this feature of the fixed point
simulator.

Chapter 5. Results and Discussion 58

Fixed point FFT result CASPER FFT result Floating point FFT result
for tone + noise input for tone + noise input for tone + noise input

1200

1000

800

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

0 .0 4 0 0 .0 4 0

0 .0 1 5

0.010

0.000
4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

channels

Figure 5.5: Tone with gaussian noise FFT result for the three different FFT implementations.
The input signal has an SNR of 18.97dB. The delta spike sits in channels 478 and 479 for all
FFTs. CASPER and the fixed point FFTs are 213 times smaller in magnitude than the floating
point FFT owing to the scaling of 8191 (0b1111111111111) applied in the CASPER and fixed
point FFTs. The bottom row is a magnification of both the vertical and horizontal scale in
order to note details in the noise and spike.

Chapter 5. Results and Discussion 59

Figure 5.6: Impulse input result for the three different FFT implementations. Top row displays
the imaginary components of each FFT output, whilst the bottom row displays the real com
ponents of each FFT output. The shift scheme used here is 0 (0b0000000000000) and as such,
the fixed point and CASPER FFT are the same size as the floating point. This test shows that
the various FFTs’ outputs don’t differ in phase.

Chapter 5. Results and Discussion 60

Figure 5.7: Top row is the magnitude of the three different PFB implementation results for a
pure tone input. The bottom row is a magnification of both the vertical and horizontal scale in
order to note details in the spike produced. The input tone had an amplitude of 1. The delta
spike sits in channels 478 and 479 for all PFBs. CASPER and the Simulated fixed point PFBs
are 214 times smaller in magnitude than the Simulated floating point PFB owing to the scaling
of 8191 (0b1111111111111) in the FFT and the scaling by 2 in the FIR of the CASPER and
fixed point PFBs.

Chapter 5. Results and Discussion 61

1000 20 00 30 00 40 00 1000 20 00 30 00 4000 1000 20 00 30 00 40 00

400 45 0 500 550 400 45 0 500 550 400 450 500 550

channels

Fixed point PFB result CASPER PFB result Floating point PFB result
for tone + noise input for tone + noise input for tone + noise input

1000

0.05

0.04
600 -

0.01 0.01

0 .0 04 0 .0 04

0.003 0.003 40 -

0.001 0.001

0.000 0.000

Figure 5.8: Top row is the magnitude of the three different PFB implementation results for a
noisy tone input. The bottom row is a magnification of both the vertical and horizontal scale
in order to note details in the noise and spike produced. The input tone had an amplitude
of 2 and the input an SNR of 19.06dB. The delta spike sits in channels 478 and 479 for all
PFBs. CASPER and the Simulated fixed point PFBs are 214 times smaller in magnitude than
the Simulated floating point PFB owing to the scaling of 8191 (0b1111111111111) in the FFT
and the scaling by 2 in the FIR of the CASPER and fixed point PFBs.

Chapter 5. Results and Discussion 62

Figure 5.9: Impulse input result for 3 PFBs. Top row displays the imaginary components of
each PFB output, whilst the bottom row displays the real components of each PFB output.
The shift scheme used here is 0 (0b0000000000000) and as such, the fixed point and CASPER
PFB are half the size of the floating point PFB owing to the scaling of 2 in the fixed and
CASPER FIRs. This test shows that the various PFBs’ outputs don’t differ in phase.

Chapter 5. Results and Discussion 63

Discussion
It appears that the Simulated fixed point FFT mimics the CASPER fixed point FFT well.
Furthermore, as confirmation that both fixed point FFTs are producing a correct result, they
match with the floating point implementation when shifting aggressively (except for in mag
nitude as a result of said shifting). This is indicated by figures 5.1, 5.2 and 5.5. Figure 5.6
further confirms this, since the results produced are in-phase when given a impulse as input
(else we would expect to see a differing frequency between the sinusoidal results).

Where the fixed point FFTs differ notably is in figure 5.3. This was of concern since this thesis
in part looks to address the issues of overflow in the CASPER PFB. This difference proved very
hard to fix and is likely the result of negligible differences in simulators and data conversions.
Overall, the characteristic ‘4 humps’ and the saturating ‘3 peaks’ do indicate a comfortable
mimicry of the overflow to be expected in the CASPER fixed point FFT. Figure 5.4 shows the
staged output of the fixed point Python simulator for the overflow case in figure 5.3. It further
shows that overflow starts in stage 3 and from there propagates.

The PFB results are noted to differ in both the sharpness of the base of the spike for figure 5.7
and the noise in figure 5.8. The FIRs in each simulator are confirmed to generate their coeffi
cients according to equation 3.1 and scale in the same way. The only differences likely to occur
are owed to differences in how complex arithmetic is performed. This is unlikely to cause such a
difference however. Rather, it is supposed that the output taken from the CASPER PFB does
not correspond with the input vector used to test the other PFBs. While efforts were made to
ensure that the input processed by all PFBs was the same through the use of sinks and timing
constraints in the Simulink design, it proved very difficult. The CASPER blocks are really in
tended for streaming processing and not to process discrete vectors and view the corresponding
outputs. Hence, proof that the simulated PFB behaves the same as the CASPER instance is
given by the approximately equal SNR of the outputs (in figure 5.8) and equal magnitudes of
the output spike (in both figures 5.7 and 5.8).

Chapter 5. Results and Discussion 64

5.2 Shift register regime versus Quantisation
Efficiency

A staff member of SARAO, Marcel Gouws, ran a study where for a software PFB simulator of
their own, they varied the contents of the FFT shift register when processing a white gaussian
input and calculated the output quantisation efficiency by comparing it with a floating point
equivalent [internal communication]. They calculated the quantisation efficiency using the
following equation from [4]:

* \ 2
Vshift

(x, X*} (5.3)
(x, x*}(X, X*}

Here x denotes the output from the floating point FFT simulation and X denotes the output
from the fixed point FFT simulation. The operator (a, b} denotes the mean N i aibi of
complex vectors a and b and ()* denotes the complex conjugate.

Here, the aim is to repeat their test and check for a matching result before exploring the
quantisation efficiencies attained for a selection of un-tested shift-regimes. While they ran
these tests off a full PFB, it was deemed sufficient to run these tests on the FFTs alone, since
the FIR is unaffected by the shift-register setup.

The quantisation efficiency is calculated for 1k, 4k and 32k FFT designs for noise inputs of
varying dBFS values. For the initial test, each simulated fixed point FFT had their shift scheme
varied from no shift to a full aggressive shift.

Input noise vectors of ~ -1 5 , -2 0 ,-2 5 and —30dBFS were used since these were the ones
Marcel used. Furthermore, for the input to the fixed point FFT simulator, the noise input was
an (18,17} fixed point number (the format used by the PFB instance studied in this thesis).
The fixed point FFT processes at this same precision and outputs a fixed point complex value at
this precision. The floating point FFT simulator used double precision float inputs, processed
with double precision and outputted a double precision complex value.

The quantisation efficiency results for the 1k, 4k and 32k FFTs are shown in figures 5.10, 5.11
and 5.12 respectively.

Recalling subsection 3.5.2, for a white gaussian noise input, a bit growth of 2 log2(N) bits is
expected. For the 1k fixed point FFT then, a growth of at most 5.5 bits is expected. For
this FFT, we’ve considered 6 and more right-shifts ‘over-shifting’ and 5 and less right-shifts
‘under-shifting’ .

For the 4k fixed point FFT, a growth of at most 6.5 bits is expected. For this FFT, we’ve
consider 7 and more right-shifts ‘over-shifting’ and 6 and less right-shifts ‘under-shifting’.

Finally, for the 32k fixed point FFT, a growth of at most 8 bits is expected. While 8 right-shifts
is then critically shifting, we’ve grouped it with the ‘under-shifting’ plot, and have 9 right-shifts
or more considered as ‘over-shifting’.

Figure 5.13 shows the efficiencies produced when testing alternative shift schemes for the 4k

Chapter 5. Results and Discussion 65

FFTs.

Under-shifting Over-shifting
1.0000

0.9986

log2(shift-register value)

— dB F s = -15 .

- d B F s = -21 .

0
o

— dB F s = -25 .

d B F s = -33 .

0

0

-----------------1l-----------------1.___________

Figure 5.10: Shift-register versus efficiency analysis for fixed point 1k FFT. For varying in
put signal dBFS levels of —15dBFS, —21dBFS, —25dBFS and —33dBFS several shift register
regimes are employed. The plot on the left is for under-shifting (< 5 shifts) while the plot on the
right is for over-shifting (> 6 shifts). Under-shifting uses shift-register values: [0,1,3,7,15,31],
while over-shifting uses: [63,127,255,511,1023,2047].

Chapter 5. Results and Discussion 66

Under-shifting Over-shifting
1.000 —

0.999

0.998

0.997

0.996

0.995

d B F s = -1 5 .0
0.994

d B F s = -2 1 .0

d B F s = -2 5 .0

d B F s = -3 1 .0 0.993

log2(shift-register value)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

/
/

/f

— dB F s = -

d B F s = -

— dB F s = -

■15.0

2 1 .0

2 5 .0

d B F s = -■31.0

1

Figure 5.11: Shift-register versus efficiency analysis for fixed point 4k FFT. For varying in
put signal dBFS levels of — 15dBFS, —21dBFS, —25dBFS and —31dBFS several shift register
regimes are employed. The plot on the left is for under-shifting (< 6 shifts) while the plot on the
right is for over-shifting (> 7 shifts). Under-shifting uses shift-register values: [0,1,3,7,15,31,63],
while over-shifting uses [127,255,511,1023,2047,4095,8191].

Chapter 5. Results and Discussion 67

Under-shifting Over-shifting
1.00

0.99

0.98

0.97

0.96

d B F s = -1 5 .0

d B F s = -2 0 .0

d B F s = -2 5 .0
0.95

d B F s = -3 1 .0

log2(shift-register value)

Figure 5.12: Shift-register versus efficiency analysis for fixed point 32k FFT. For varying in
put signal dBFS levels of — 15dBFS, —20dBFS, —25dBFS and —31dBFS several shift register
regimes are employed. The plot on the left is for under-shifting (< 8 shifts) while the plot on the
right is for over-shifting (> 9 shifts). Under-shifting uses shift-register values: [0,1,3,7,15,31,63],
while over-shifting uses [63,127,255,511,1023,2047,4095,8191].

+9.999e-l
0.00010

0.00009

0.00008 --

0.00007

0.00006

4(f-------w

» - dBFs = -15

)
o

w

f t f t• — dBF
» - dBF
» - dBF

s - -21
s = -25
s = -31 o

o
c

27 2 8 2 9 2 ®̂ 2 11

log2(shift-register value)

Figure 5.13: Shift-register versus efficiency analysis for fixed point 4k FFT. For varying in
put signal dBFS levels of —15dBFS, —21dBFS, —25dBFS and —31dBFS several shift register
regimes are employed. Differing from figure 5.11 however, rather than test the effect of under
and over-shifting, here some mixed shift schemes are tested namely: [1782,2730,3564,5461,7695]

Chapter 5. Results and Discussion 68

Discussion
The results displayed for the various length FFTs in figures 5.10, 5.11 and 5.12 are in line with
the findings Marcel made and with what is expected. Rather than have one contiguous graph,
the plots are split into ‘under’ and ‘over’-shifting since the loss in efficiency for under-shifting
is substantially worse than for over-shifting and in sharing a y-axes, the effects for over-shifting
would not have been very pronounced.

As anticipated, higher dBFS inputs are more efficient with more shifting than lower dBFS and
visa versa. The higher the dBFS of the input signal, the more bits it will occupy and as such
less precision is lost with over-shifting than lower dBFS inputs. Similarly, larger dBFS are more
prone to overflow with under-shifting and are as such less efficient leading to a less efficient
result.

Larger FFTs look to gradually perform worse when over-shifting. Comparing the largest shift
scheme efficiency result for each FFT, it appears that compared to the 1k FFT, the 4k FFT
is ~ 0.005 less efficient while the 32k FFT « 0.05 less efficient. This is likely due to the input
dBFS levels chosen being suited to the 1k FFT and not necessarily to the other FFTs. This
is apparent when noting that the efficiency yielded for the 211 — 1 shift scheme of each FFT is
approximately equal. Shifting any more for the same input (as the 4k and 32k do) is bound to
gradually deteriorate the quantisation efficiency of the result.

Similarly, larger FFTs look to gradually perform worse when under-shifting. However, unlike
with the over-shifting scenario where each FFT has a differing max shift-scheme, here all the
FFTs have the same minimum shift-scheme of 0. The reason larger FFTs produce worse
efficiencies then, is likely explained by them having more stages i.e. given less shifts, more
stages leads to an increased loss of quantisation efficiency due to overflow.

Figure 5.13 is an interesting scenario tested only for the 4k FFT. Unlike the 3 other plots
before, here the shifts (apart from shift value 31) are split up and don’t all occur contiguously.
When comparing the other results with the result for 31 (which was seen as having the highest
quantisation efficiency in the previous 4k FFT test), it is apparent that while 4 of them compare
better overall, two are vastly more efficient. These two are the scheme 2730 (0b0101010101010)
and 5461 (0b1010101010101). Furthermore, shift scheme 2730 has the same number of shifts
as shift-scheme 31, suggesting that an alternating shift-scheme performs better for a given
number of shifts than having them contiguously placed. Finally, while the previous plots may
have alluded to a smooth relation between quantisation efficiency and shift-scheme, this plot re
iterates the point made in subsection 3.5.2 about a non-obvious mapping between shift-scheme
and quantisation efficiency/number of shifts.

Recall that over-shifting affects the quantisation efficiency by corrupting the LSB with rounding
and that under-shifting affects quantisation efficiency by corrupting the MSB with overflow.
This is visible by how the quantisation efficiency loss is far more affected by under-shifting than
over-shifting. Hence, it has been generally remarked that an aggressive scheme be used (even
at the risk of over-shifting) - especially in the presence of RFI.

Chapter 5. Results and Discussion 69

5.3 Rounding scheme test
The effects of rounding are not really relevant when looking at a single output since it is the
least-precision bits that are affected. Rather, the effects become prevalent when integrating
the results.

For this test, nine 4k Python simulator fixed point FFTs are used. There are three 10-bit,
three 14-bit and three 18-bit FFTs. Within each bit-width category, each FFT will use a
different rounding scheme: even-rounding, infinite-rounding and truncation. Accompanying
the fixed point FFT results is a double precision floating point FFT result so as to highlight
finite precision error caused in the fixed point processing.

Across each bit-width category, the same input vector is used to ensure that any differences
noted in outputs are owed to ‘round-off’ noise from the varying rounding schemes.

The input used for all FFTs is a single tone with added white gaussian noise. The tone has
an amplitude of 1/4 and the noise has a standard deviation of 0.044... This gives an SNR
of ~ 30dB. Each FFT produces an output of bit-width equal to its input bit-width (i.e. the
10-bit test takes a 10-bit input, processes at 10-bits and produces a 10-bit output etc.). The
shift-scheme used in all fixed point FFTs is 0b1111111111111 since the tone is large and any
overflow would dominate the effect under study (recalling that rounding is a LSB effect and
overflow is a MSB effect).

For each fixed point FFT, thirty three thousand absolute outputs are accumulated as dou
ble precision floats (since we are not testing finite precision affects in accumulation) and are
referenced against thirty three thousand accumulated floating point FFT absolute outputs.

By comparing the fixed and floating point results, the first test is to check whether there
are any differences in the outputs produced based on the differing rounding schemes. The
second test will investigate whether an increased precision over 10, 14 and 18-bits mitigates
the effects of the differing rounding schemes. The results for the even rounding scheme are
shown in figures 5.14 and 5.15. The infinite rounding scheme in figures 5.16 and 5.17. And the
truncation in figures 5.18 and 5.19.

ï\
F{

v)
\

Chapter 5. Results and Discussion 70

Figure 5.14: Summing 33000 even-rounding fixed point FFT absolute outputs and referencing
them against 33000 summed floating point FFT absolute outputs for an uncorrelated noise
with tone input signal.

ï\
F{

v)
\

Chapter 5. Results and Discussion 71

Figure 5.15: Summing 33000 even-rounding fixed point FFT absolute outputs and referencing
them against 33000 summed floating point FFT absolute outputs for an uncorrelated noise
with tone input signal. This is a vertical scaling to inspect the noise floor in figure 5.14.

ï\
F{

v)
\

Chapter 5. Results and Discussion 72

Fixed
Floating

10-bit

channels

Figure 5.16: Summing 33000 infinite-rounding fixed point FFT absolute outputs and referencing
them against 33000 summed floating point FFT absolute outputs for an uncorrelated noise with
tone input signal.

ï\
F{

v)
\

Chapter 5. Results and Discussion 73

Figure 5.17: Summing 33000 infinite-rounding fixed point FFT absolute outputs and referencing
them against 33000 summed floating point FFT absolute outputs for an uncorrelated noise with
tone input signal. This is a vertical scaling to inspect the noise floor in figure 5.16.

Chapter 5. Results and Discussion 74

Fixed
Floating

10-bit
1 5 0 0 0 0 0

1 2 5 0 0 0 0

1000000

7 5 0 0 0 0

5 0 0 0 0 0

2 5 0 0 0 0

0
- 2 5 0 0 0 0

1 5 0 0 0 0 0

1 2 5 0 0 0 0

1000000

3 7 5 0 0 0 0

|/s| 5 0 0 0 0 0

2 5 0 0 0 0

0
- 2 5 0 0 0 0

1 5 0 0 0 0 0

1 2 5 0 0 0 0

1000000

7 5 0 0 0 0

5 0 0 0 0 0

2 5 0 0 0 0

0
- 2 5 0 0 0 0

I>l
V

r Hr f Ur irfV iyyi

14-bit

■
-

18-bit

-

-

2000

channels

Figure 5.18: Summing 33000 truncating fixed point FFT absolute outputs and referencing them
against 33000 summed floating point FFT absolute outputs for an uncorrelated noise with tone
input signal.

ï\
F{

v)
\

Chapter 5. Results and Discussion 75

Fixed
Floating
Diff

10-bit
1 5 0 0 0 0 0 -

1 2 5 0 0 0 0 -

1000000 -

7 5 0 0 0 0 -

5 0 0 0 0 0 -

2 5 0 0 0 0 -

0 -
- 2 5 0 0 0 0 -

14-bit

Figure 5.19: Summing 33000 truncating fixed point FFT absolute outputs and referencing them
against 33000 summed floating point FFT absolute outputs for an uncorrelated noise with tone
input signal. This is a vertical scaling to inspect the noise floor in figure 5.18.

Chapter 5. Results and Discussion 76

Discussion
Rounding is an error that is directly proportional to the precision of the fixed point number.
This is clearly indicated in every rounding scheme case by the substantial drop in quantisation
noise with higher bit-widths.

The studying of the results in each rounding scheme reveals unique characteristics in their
behaviour.

Beginning with the even-rounding scheme (figures 5.14 and 5.15), at low bit precision (10-bits)
two characteristics are observable: the upward spikes induced (mirroring the tone spike in some
way) and the symmetric rippling in the noise floor. The 14-bit instance repeats this ripple effect
(as shown by the ‘clumping’ of quantisation noise) but the spikes appear to have been removed.
At the 18-bit precision these effects have become largely negligible, although close inspection
of the red error does reveal the ripple in the quantisation noise floor.

The infinite-rounding scheme too reveals a symmetric ripple in the quantisation noise floor, but
its prominent effect is the downward ‘dips’ (see figures 5.16 and 5.17). These dips are repeated
in spacings approximating the space from the DC channel to the sinusoid spike (and hence are
anticipated to occur as the result of the input tone).

The final rounding scheme tested is that of truncation. Given the loss in precision this scheme
induces, this was expected to produce the worst result (see subsection 2.11.3). Inspecting
figures 5.18 and 5.19 this scheme clearly introduces substantial finite precision error to the
spectral floor. Most obvious is the gradual slope toward the DC channel which is prevalent
throughout each bit-width. Second to this are the discontinuous ‘dips’ in the spectrum. These
are more severe than the infinite-rounding scheme and occur more frequently around the tone
spike.

Ideally, future tests would outline the relation between these rounding characteristics and the
input signal. Does the frequency and magnitude of the input tone affect the periodicity and
magnitude of the dips and spikes in the quantisation noise? Similarly, do they affect the
frequency of the rippling effect seen in the noise floor of the even and infinite rounding schemes?
Finally, do they affect the slope surrounding the DC channel of the truncation scheme?

Chapter 5. Results and Discussion 77

5.4 Dual polarisation test
The above tests use a real input vector i.e. they process only one receiver feed. This is unlike
the MeerKAT setup where two receiver feeds are fed into the correlator see section 2.6.

For this test, a 4k, 8-tap, even rounding, Hann, dual-polarisation fixed point PFB is used that
accepts two 10-bit complex fixed point inputs and produces two complex fixed point 18-bit
outputs.

The first test proves that the dual polarisation splitting works. To do this, two signals, one a
white noise signal and the other a noisy tone signal, are inserted as the real and imaginary parts
into the dual polarisation Python PFB simulator. The output of this is compared with the
results of processing the same two inputs through a 4k, 8-tap, Hann dual-polarisation floating
point PFB.

The next test checks whether the effects of overflow in one polarisation leak into the other if
the tone in the one polarisation is sufficiently strong and overflows. This is done by comparing
the fixed and floating point PFB results.

The final test will then check whether in a non-overflow scenario, there is any residue due to
rounding.

Chapter 5. Results and Discussion 78

Figure 5.20: Dual polarisation processing of a real noisy two-tone vector of SNR~ 30dB and
an added imaginary noise vector. Here, the fixed point simulator and floating point simulators
are compared. The last row indicates the difference |Float PFB| — |Fixed PFB| for both G(k)
and H(k). Here an aggressive shift scheme 0b1111111111111 is used to avoid overflow in the
polarisation containing the tones.

Chapter 5. Results and Discussion 79

Fixed-point G(k)

Floating-point G(k)

______________________________JLi________ _____________ _________ *_____ _____
i------------------------ 1------------------------ r

Difference: G(k)

Fixed-point H(k)

Floating-point FH(k)

-i------------------------ 1------------------------ 1------------------------ 1------------------------ r

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0

channels

Figure 5.21: Dual polarisation processing of a real noisy two-tone vector of SNR^ 30dB and an
added imaginary noise vector. The last row indicates the difference |Float PFB| — |Fixed PFB|
for both G(k) and H(k). Here the shift scheme 0b101010101010 is used with the intention of
allowing the polarisation containing the tones to overflow.

Chapter 5. Results and Discussion 80

Figure 5.22: One hundred and fifty integrations of dual polarisation results. The input was a
real two-tone vector of SN R« 30dB with an added imaginary noise vector. Every integration
used a new noise vector (for both real and imaginary parts), thereby ensuring the noise was
uncorrelated. The first row is the result for G(k) and H(k) when using even-rounding, the
second row for infinite-rounding and the final row for when using truncation. The black plot is
the floating point result, cyan the fixed point result and red the difference (float - fixed). Both
G(k) and H(k) plots are vertically scaled to give a close-up of the noise floor.

Chapter 5. Results and Discussion 81

Discussion
Figure 5.20 tests the effectiveness of dual polarisation plotting. Recalling that the real part of
the signal contained two tones with added noise, whilst the imaginary part contained the noise
vector alone, the result produced has accurately split the output transform into its respective
transforms. Furthermore, it is to be noted that the quantisation noise for G(k) and H(k) are
of the same level (note the absolute difference in the bottom row).

Following that, the results of figure 5.21 indicate a definite spectral leakage between the polari
sations. Given that overflow could only occur due to the tones inputted in the real component,
any presence of overflow in the fixed point H(k) spectrum must be a result of leakage from the
G(k) polarisation. The absolute difference in the H(k) plot shows overflow remnants and so we
may conclude that negligence of a single polarisation that overflows, can corrupt the results of
the other polarisation when processing two polarisations simultaneously.

The final set of plots show just 150 integrations of the G(k) and H(k) spectra for a real uncor
related noise input with two tones added to an imaginary uncorrelated noise input. This result
was expected to be no different to the earlier rounding tests since both polarisations will use
the same rounding when being processed. The even-rounding scheme notably performs well,
the infinite-rounding scheme overshoots the floating point result and the truncation result has
some serious quantisation error around the spikes. However, the small bumps around channel
150 and channel 1850 seem to indicate that the even-rounding H(k) result has rounding residue
from its G(k) result. None of the other schemes appear to have rounding residue leakage, but
future tests would integrate for much longer and perhaps reveal such effects.

6

cti
H
H
&H
<d
ffi
O

Conclusion

This thesis work confirmed the speculation that the spurious spectral features seen in the
MeerKAT passband were as a result of the rounding scheme adopted. Specifically, since switch
ing from infinite-rounding to even-rounding, the periodic dips that were present in the MeerKAT
passband are gone.

This work further confirmed that the shift strategy adopted for the FFT is important in order
to set the quantisation efficiency n ~ 1. It indicated, that while monochromatic tone signals
require aggressive shifting, in the event of a white gaussian noise input, non-aggressive strategies
should be used. As such, careful treatment of when to shift (i.e. apply all contiguously or
alternate etc.) does effect the quantisation efficiency.

In the event that overflow does occur in the FFT, the built fixed point Python simulator
provides insight into the effects of overflow, how it propagates and how it can leak between
polarisations. It stresses the need to set the shift-register to accommodate the polarisation
most likely to overflow, since the other polarisation will not be exempt in the event that it
does.

In doing this research, a lot of work went into learning observational radio astronomy and
instrumentation. It was not sufficient to just understand the F-Engine but rather, practical
research into receivers, digitisers, delay tracking and cross-correlation was required. Further
more, an understanding of FPGAs was paramount. A lot of work was first done on ROACH
2’s (the FPGA board used for KAT7 - a MeerKAT precursor) and then on SKARAB’s to
understand how they are programmed, interacted with and used for scientific instrumentation.
Thereafter, careful study of the CASPER toolflow was done in order to understand the relation
between Xilinx and Simulink and how the DSP blocks were created. Given that the Python
PFB simulators being developed for this research were only useful insofar as they mimicked the
CASPER PFB sufficiently, careful scrutiny of the MeerKAT PFB in Simulink and onboard a
SKARAB was done.

Chapter 6. Conclusion 83

This research was very well received by the CASPER community at several conferences, since
while it was focussed on studying the effects present in MeerKAT, it is applicable to any other
radio instrument using the CASPER PFB. Not only are these results useful to other members
of the collaboration, but the simulator is generically implemented to suit whatever fixed and
floating point implementation of the CASPER PFB other members might be using. Further
more, being developed in Python (a language used in the CASPER toolflow) means many
members could understand the working of this simulator and perhaps extend its functionality.

Future research into finite precision arithmetic in the PFB would largely involve running the
same tests as outlined in this thesis but for different scenarios. Rounding techniques should be
tested for longer integrations, larger or smaller bit-widths (MeerKAT uses (22, 21) fixed point
numbers now), many tone inputs and pure gaussian noise to see how the quantisation noise
differs. Further quantisation efficiency studies should be done for a variety of shift schemes and
input signal levels. Finally, a better understanding of overflow in the FFT could be had if a
more careful study of the individual stages when overflowing were made.

Research into the DSP behaviour of the PFB (though largely understood) is possible by using
the floating point implementation to check for the effect of larger tap sizes, different window
functions (this thesis only used Hann, but the simulator allows for others), larger FFTs and
for coherent effects when accumulating a large number of outputs.

In conclusion, this work has aimed to document and study the CASPER PFB as it is used in
MeerKAT. It is expected that the results, being the simulators produced and the insight into
the finite precision effects present in the MeerKAT passband, will serve to educate and inform
where necessary, thereby assisting in the building of more accurate radio telescopes.

Q
£
H
&H
&H
<1

X

A

Appendix

This appendix provides the four main Python scripts used for the simulation work done in this
thesis. These are the fixpoint.py file that provides the fixed-point number system class required,
the pfbfloating.py file that contains the floating-point PFB simulator, the pfbfixed.py file that
contains the fixed-point PFB simulator and pfb_coeff_gen.py file that contains a function used
to generate the PFB FIR coefficients and necessary FIR scale factor for both PFB simulators.

All code is available on the github repository: https://github.com/talonmyburgh/F-Engine_
python_sim where in addition, guides showing how to use the simulators are provided.

https://github.com/talonmyburgh/F-Engine_python_sim
https://github.com/talonmyburgh/F-Engine_python_sim

Appendix A. Appendix 85

Listing A.1: fixpoint.py - The fixed-point Python number system class.

C r e a t e d o n T u e M a y 2 9 1 3 : 4 5 : 2 0 2 0 1 8

© a u t h o r : t a l o n m y b u r g h

" " "

I M P O R T S #

i m p o r t n u m p y a s n p

i m p o r t n u m b a a s n b

c l a s s f i x p o i n t (o b j e c t) :

" " " T a k e s n u m b e r b i t s i n f u l l , n u m b e r o f f r a c t i o n a l b i t s , m i n i m u m a n d

m a x i m u m n u m b e r r e p r e s e n t a b l e , u n s i g n e d o r s i g n e d i n t e g e r , r o u n d i n g m e t h o d

a n d o v e r f l o w m e t h o d " " "

d e f _____i n i t ______(s e l f , b i t s , f r a c t i o n , m i n _ i n t = N o n e , m a x _ i n t = N o n e ,

u n s i g n e d = F a l s e , m e t h o d = " R O U N D ") :

s e l f . m e t h o d = m e t h o d

s e l f . r a n g e = 2 * * b i t s # T h e

d y n a m i c r a n g e o f t h e n u m b e r

s e l f . s c a l e = 2 * * f r a c t i o n # T h e

f r a c t i o n a l d y n a m i c r a n g e b y w h i c h t h e n u m b e r w i l l b e s c a l e d

s e l f . u n s i g n e d = u n s i g n e d

s e l f . _____s e t b n d s _____ (m i n _ i n t , m a x _ i n t) # S e t s

s e l f . m i n a n d s e l f . m a x o f n u m b e r

s e l f . d a t a = N o n e

d e f _____s e t b n d s _____ (s e l f , m i n _ i n t = N o n e , m a x _ i n t = N o n e) :

i f m i n _ i n t i s N o n e : # d e c i d e s

m i n i m a l v a l u e

s e l f . m i n = 0 i f s e l f . u n s i g n e d e l s e - s e l f . r a n g e / / 2

e l s e :

s e l f . m i n = m i n _ i n t

i f m a x _ i n t i s N o n e : # d e c i d e s

m a x i m u m v a l u e

s e l f . m a x = s e l f . r a n g e - 1 i f s e l f . u n s i g n e d e l s e s e l f . r a n g e / / 2 - 1

e l s e :

s e l f . m a x = m a x _ i n t

© p r o p e r t y

d e f b i t s (s e l f) : # b i t s

p r o p e r t y

r e t u r n i n t (n p . l o g 2 (s e l f . r a n g e))

© b i t s . s e t t e r

Appendix A. Appendix 86

d e f b i t s (s e l f , v a l) :

i f (t y p e (v a l) ! = i n t) :

r a i s e V a l u e E r r o r (" ’ b i t s ’ a r g u m e n t m u s t b e o f t y p e i n t e g e r ")

e l s e :

s e l f . r a n g e = 2 * * v a l

s e l f . _____s e t b n d s _____ ()

© p r o p e r t y

d e f f r a c t i o n (s e l f) :

p r o p e r t y

r e t u r n i n t (n p . l o g 2 (s e l f . s c a l e))

© f r a c t i o n . s e t t e r

d e f f r a c t i o n (s e l f , v a l) :

i f (t y p e (v a l) ! = i n t) :

r a i s e V a l u e E r r o r (" ’ f r a c ’ a r g u m e n t m u s t b e o f t y p e i n t e g e r ")

e l s e :

s e l f . s c a l e = 2 * * v a l

© p r o p e r t y

d e f u n s i g n e d (s e l f) :

a s p r o p e r t y

r e t u r n s e l f . m i n = = 0

© u n s i g n e d . s e t t e r

d e f u n s i g n e d (s e l f , v a l) :

i f (t y p e (v a l) ! = b o o l) :

r a i s e V a l u e E r r o r (" ’ u n s i g n e d ’ a r g u m e n t m u s t b e o f t y p e b o o l "

e l s e :

s e l f . m i n = 0 i f v a l e l s e - s e l f . r a n g e / / 2

s e l f . m a x = s e l f . r a n g e - 1 i f v a l e l s e s e l f . r a n g e / / 2 - 1

© p r o p e r t y

f o r s i g n e d a n d 6 4 b i t u i n t f o r u n s i g n e d

d e f F P T Y P E (s e l f) :

i f (s e l f . u n s i g n e d) :

r e t u r n n p . u i n t 6 4

e l s e :

r e t u r n n p . i n t 6 4

d e f _ _ r e p r _ _ (s e l f) :

w i l l b e s h o w n w h e n u s i n g ’ p r i n t ’

r e t u r n ’ F P r e a l % s (% d , % d) , s h a p e % s ’ % \

(’ u n s i g n e d ’ i f s e l f . u n s i g n e d e l s e ’ s i g n e d ’ ,

f r a c

u n s i g n e d

)

6 4 b i t i n t

h o w t h i n g s

Appendix A. Appendix 87

s e l f . b i t s , s e l f . f r a c t i o n , n p . s h a p e (s e l f . d a t a))

d e f g e t i t e m (s e l f , k e y) : # m e t h o d o f

s l i c i n g f i x p o i n t a r r a y s

n e w f p t = f i x p o i n t (s e l f . b i t s , s e l f . f r a c t i o n , u n s i g n e d = s e l f . u n s i g n e d ,

m e t h o d = s e l f . m e t h o d)

n e w f p t . d a t a = s e l f . d a t a . c o p y () [k e y]

r e t u r n n e w f p t

d e f s e t i t e m (s e l f , k e y , v a l) : # m e t h o d f o r

p o p u l a t i n g s l i c e s o f a r r a y s

s e l f . d a t a [k e y] = v a l . d a t a . c o p y ()

d e f n o r m a l i s e (s e l f) : # h o w t o f i t

a l l d a t a v a l u e s w i t h i n t h e m i n / m a x s p e c i f i e d

s e l f . d a t a = n p . c l i p (s e l f . d a t a , s e l f . m i n , s e l f . m a x)

d e f f r o m _ f l o a t (s e l f , x) : # t a k e i n

f l o a t v a l u e s # d e t e c t o v e r f l o w m e t h o d u s e d

i f (s e l f . m e t h o d = = " R O U N D ") : # i f w e ’ r e

r o u n d i n g o f f d e c i m a l v a l u e s b a n k e r s s t y l e

s e l f . d a t a = n p . c l i p (n p . r o u n d (x * s e l f . s c a l e) . a s t y p e (s e l f . F P T Y P E) ,

s e l f . m i n , s e l f . m a x)

e l i f (s e l f . m e t h o d = = " T R U N C A T E ") : # i f w e ’ r e

t r u n c a t i n g o f f d e c i m a l

s e l f . d a t a = n p . c l i p (n p . t r u n c (x * s e l f . s c a l e) . a s t y p e (s e l f . F P T Y P E) ,

s e l f . m i n , s e l f . m a x)

e l i f (s e l f . m e t h o d = = " R O U N D _ I N F T Y ") : # r o u n d t o

d e c i m a l a s r o u n d u p - m u c h s l o w e r b u t o n l y o p t i o n n o w .

s e l f . d a t a =

n p . c l i p (s e l f . _____r o u n d i n f t y _____ (x * s e l f . s c a l e) . a s t y p e (s e l f . F P T Y P E) ,

s e l f . m i n , s e l f . m a x)

e l s e :

r a i s e V a l u e E r r o r (" N o r e c o g n i s a b l e q u a n t i s a t i o n m e t h o d s p e c i f i e d ")

d e f t o _ f l o a t (s e l f) : # f o r p l o t t i n g e t c

r e t u r n (s e l f . d a t a . a s t y p e (s e l f . F P T Y P E)) / s e l f . s c a l e

d e f s u m (s e l f , * a r g s , * * k w a r g s) : # r e w r i t e

t h e s u m m e t h o d

r e s = s e l f . d a t a . s u m (* a r g s , * * k w a r g s) # u s e n u m p y

s u m m e t h o d

b i t s = s e l f . b i t s + i n t (n p . c e i l (n p . l o g 2 (s e l f . d a t a . s i z e / r e s . s i z e)))

r e s u l t = f i x p o i n t (b i t s , s e l f . f r a c t i o n , u n s i g n e d = s e l f . u n s i g n e d ,

Appendix A. Appendix 88

m e t h o d = s e l f . m e t h o d)

r e s u l t . d a t a = r e s

r e s u l t . n o r m a l i s e () # c l i p a n d

s t u f f

r e t u r n r e s u l t

d e f _____m u l _____ (s e l f , w) :

r e s = s e l f . d a t a * w . d a t a

r e s u l t = f i x p o i n t (s e l f . b i t s + w . b i t s ,

s e l f . f r a c t i o n + w . f r a c t i o n ,

u n s i g n e d = s e l f . u n s i g n e d a n d w . u n s i g n e d ,

m e t h o d = s e l f . m e t h o d)

r e s u l t . d a t a = r e s

r e s u l t . n o r m a l i s e ()

r e t u r n r e s u l t

d e f _____a d d _____ (s e l f , y) :

i f (s e l f . s c a l e ! = y . s c a l e) :

r a i s e V a l u e E r r o r (" A d d i t i o n p e r f o r m e d b e t w e e n t w o n u m b e r s o f d i f f e r i n g

s c a l e s ! ")

r e s = s e l f . d a t a + y . d a t a

a d d s t o g e t h e r , a n d a c c o u n t s f o r c a r r y b i t

r e s u l t = f i x p o i n t (m a x (s e l f . b i t s , y . b i t s) + 1 ,

m a x (s e l f . f r a c t i o n , y . f r a c t i o n) ,

u n s i g n e d = s e l f . u n s i g n e d a n d y . u n s i g n e d ,

m e t h o d = s e l f . m e t h o d)

r e s u l t . d a t a = r e s

r e s u l t . n o r m a l i s e ()

r e t u r n r e s u l t

d e f _____s u b _____ (s e l f , y) :

i f (s e l f . s c a l e > y . s c a l e o r s e l f . s c a l e < y . s c a l e) :

r a i s e V a l u e E r r o r (" S u b t r a c t i o n p e r f o r m e d b e t w e e n t w o n u m b e r s o f d i f f e r i n g

s c a l e s ! ")

r e s = s e l f . d a t a - y . d a t a

s u b t r a c t s t o g e t h e r , a n d a c c o u n t s f o r c a r r y b i t

r e s u l t = f i x p o i n t (m a x (s e l f . b i t s , y . b i t s) + 1 ,

m a x (s e l f . f r a c t i o n , y . f r a c t i o n) ,

u n s i g n e d = s e l f . u n s i g n e d a n d y . u n s i g n e d ,

m e t h o d = s e l f . m e t h o d)

r e s u l t . d a t a = r e s

r e s u l t . n o r m a l i s e ()

Appendix A. Appendix 89

r e t u r n r e s u l t

d e f q u a n t i s e (s e l f , b i t s , f r a c t i o n , m i n _ i n t = N o n e , m a x _ i n t = N o n e , u n s i g n e d = F a l s e ,

m e t h o d = " R O U N D ") :

r e s u l t = f i x p o i n t (b i t s , f r a c t i o n , m i n _ i n t , m a x _ i n t , u n s i g n e d ,

m e t h o d = m e t h o d)

r e s u l t . f r o m _ f l o a t (s e l f . t o _ f l o a t ())

r e t u r n r e s u l t

d e f _____r s h i f t _____ (s e l f , s t e p s) : # s l i c i n g

a n d r i g h t s h i f t i n g t e c h n i q u e - a l l o w s f o r r o u n d i n g

i f (s e l f . m e t h o d = = " R O U N D ") :

s e l f . d a t a = n p . r o u n d (s e l f . d a t a / (2 * * s t e p s)) . a s t y p e (s e l f . F P T Y P E)

e l i f (s e l f . m e t h o d = = " R O U N D _ I N F T Y ") :

s e l f . d a t a = s e l f . _____r o u n d i n f t y _____ (s e l f . d a t a / (2 * * s t e p s)) . a s t y p e (s e l f . F P T Y P E)

e l i f (s e l f . m e t h o d = = " T R U N C A T E ") :

s e l f . d a t a > > = s t e p s

e l s e :

r a i s e V a l u e E r r o r (" N o r e c o g n i s a b l e q u a n t i s a t i o n m e t h o d s p e c i f i e d ")

r e t u r n s e l f

d e f _____l s h i f t _____ (s e l f , s t e p s) :

s e l f . d a t a < < = s t e p s

r e t u r n s e l f

d e f c o p y (s e l f) : # m e t h o d f o r

m a k i n g a c o p y o f f i x p o i n t t y p e (e l s e g e t r e f e r e n c i n g i s s u e s)

t m p f x p t = f i x p o i n t (s e l f . b i t s , s e l f . f r a c t i o n , u n s i g n e d = s e l f . u n s i g n e d ,

m e t h o d = s e l f . m e t h o d ,

m i n _ i n t = s e l f . m i n , m a x _ i n t = s e l f . m a x)

t m p f x p t . d a t a = s e l f . d a t a . c o p y ()

r e t u r n t m p f x p t

d e f p o w e r (s e l f) :

r e t u r n s e l f . d a t a * s e l f . d a t a

" " " T h i s m e t h o d r o u n d s v a l u e s i n a n a r r a y t o + / - i n f i n i t y " " "

@ n b . j i t

d e f _____r o u n d i n f t y _____ (s e l f , a r r a y) :

a = a r r a y . c o p y ()

f = n p . m o d f (a) [0]

d e c i m a l v a l u e s f r o m d a t a

i f (a . n d i m = = 1) :

g e t

f o r 1 D

Appendix A. Appendix 90

a r r a y

f o r i i n r a n g e (l e n (a r r a y)) :

i f ((f [i] < 0 . 0 a n d f [i] < = - 0 . 5) o r (f [i] > = 0 . 0 a n d f [i] < 0 . 5)) :

a [i] = n p . f l o o r (a [i])

e l s e :

a [i] = n p . c e i l (a [i])

e l i f (a . n d i m = = 2) : # f o r 2 D

a r r a y

f o r i i n r a n g e (a r r a y . s h a p e [0]) :

f o r j i n r a n g e (a r r a y . s h a p e [1]) :

i f ((f [i , j] < 0 . 0 a n d f [i , j] < = - 0 . 5) o r (f [i , j] > = 0 . 0

a n d f [i , j] < 0 . 5)) :

a [i , j] = n p . f l o o r (a [i , j])

e l s e :

a [i , j] = n p . c e i l (a [i , j])

e l i f (a . n d i m = = 3) : # f o r 3 D

a r r a y

f o r i i n r a n g e (a r r a y . s h a p e [0]) :

f o r j i n r a n g e (a r r a y . s h a p e [1]) :

f o r k i n r a n g e (a r r a y . s h a p e [2]) :

i f ((f [i , j , k] < 0 . 0 a n d f [i , j , k] < = - 0 . 5) o r

(f [i , j , k] > = 0 . 0 a n d f [i , j , k] < 0 . 5)) :

a [i , j , k] = n p . f l o o r (a [i , j , k])

e l s e :

a [i , j , k] = n p . c e i l (a [i , j , k])

r e t u r n a

_____s t r _____ = _____r e p r _____ # r e d u n d a n c y

f o r p r i n t

" " " F i x e d - p o i n t c o n t a i n e r f o r c o m p l e x v a l u e s w h i c h m a k e s u s e o f e x i s t i n g

f i x p o i n t . A d d i t i o n a l p a r a m e t e r s h e r e a r e t o s p e c i f y t w o f i x p o i n t n u m b e r s a s

r e a l a n d i m a g , b y w h i c h c f i x p o i n t w i l l e x t r a c t a l l o t h e r p a r a m e t e r s . " " "

c l a s s c f i x p o i n t (o b j e c t) :

d e f _____i n i t ______(s e l f , b i t s = N o n e , f r a c t i o n = N o n e , m i n _ i n t = N o n e , m a x _ i n t = N o n e ,

u n s i g n e d = F a l s e , m e t h o d = " R O U N D " , r e a l = N o n e , i m a g = N o n e) :

i f b i t s i s n o t N o n e : # i f b i t s

a r e s u p p l i e d (i . e n o t r e a l a n d i m a g)

s e l f . r e a l = f i x p o i n t (b i t s , f r a c t i o n , m i n _ i n t , m a x _ i n t , u n s i g n e d ,

d e c l a r e a r e a l a n d i m a g f i x p o i n t

m e t h o d)

s e l f . i m a g = f i x p o i n t (b i t s , f r a c t i o n , m i n _ i n t , m a x _ i n t , u n s i g n e d ,

Appendix A. Appendix 91

m e t h o d)

e l i f r e a l i s n o t N o n e : # e l s e u s e

r e a l a n d i m a g f i x p o i n t s u p p l i e d

s e l f . r e a l = r e a l

s e l f . i m a g = i m a g

e l s e :

r a i s e V a l u e E r r o r (" M u s t e i t h e r s p e c i f y b i t s / f r a c t i o n o r p a s s t w o f i x p o i n t

n u m b e r s t o r e a l / i m a g . ")

© p r o p e r t y # b i t s

p r o p e r t y

d e f b i t s (s e l f) :

r e t u r n i n t (n p . l o g 2 (s e l f . r e a l . r a n g e))

© b i t s . s e t t e r

d e f b i t s (s e l f , v a l) :

s e l f . r e a l . b i t s = v a l

s e l f . i m a g . b i t s = v a l

© p r o p e r t y # f r a c t i o n

p r o p e r t y

d e f f r a c t i o n (s e l f) :

r e t u r n i n t (n p . l o g 2 (s e l f . r e a l . s c a l e))

© f r a c t i o n . s e t t e r

d e f f r a c t i o n (s e l f , v a l) :

s e l f . r e a l . f r a c t i o n = v a l

s e l f . i m a g . f r a c t i o n = v a l

© p r o p e r t y # r a n g e

d e f r a n g e (s e l f) :

r e t u r n s e l f . r e a l . r a n g e

© p r o p e r t y # s c a l e

d e f s c a l e (s e l f) :

r e t u r n s e l f . r e a l . s c a l e

© p r o p e r t y # u n s i g n e d

p r o p e r t y

d e f u n s i g n e d (s e l f) :

r e t u r n s e l f . r e a l . m i n = = 0

© u n s i g n e d . s e t t e r

d e f u n s i g n e d (s e l f , v a l) :

Appendix A. Appendix 92

s e l f . r e a l . u n s i g n e d = v a l

s e l f . i m a g . u n s i g n e d = v a l

© p r o p e r t y

p r o p e r t y

m i n

d e f m i n (s e l f) :

r e t u r n s e l f . r e a l . m i n + 1 j * s e l f . i m a g . m i n

© p r o p e r t y

d e f m a x (s e l f) : # m a x

p r o p e r t y

r e t u r n s e l f . r e a l . m a x + 1 j * s e l f . i m a g . m a x

© p r o p e r t y

d e f d a t a (s e l f) : # d a t a h e l d

i n c f i x p o i n t (w i l l b e i n t e g e r)

r e t u r n s e l f . r e a l . d a t a + 1 j * s e l f . i m a g . d a t a

© p r o p e r t y

d e f m e t h o d (s e l f) : # r o u n d i n g

m e t h o d i n u s e

r e t u r n s e l f . r e a l . m e t h o d

© m e t h o d . s e t t e r

d e f m e t h o d (s e l f , v a l) :

s e l f . r e a l . m e t h o d = v a l

s e l f . i m a g . m e t h o d = v a l

d e f _____r e p r _____ (s e l f) : # p r i n t i n g

r e t u r n ’ F P c o m p l e x % s (% d , % d) , s h a p e % s ’ % \

(’ u n s i g n e d ’ i f s e l f . u n s i g n e d e l s e ’ s i g n e d ’ ,

s e l f . b i t s , s e l f . f r a c t i o n , n p . s h a p e (s e l f . r e a l . d a t a))

d e f _____g e t i t e m _____ (s e l f , k e y) : # r e t u r n i n g

s l i c e s o f a r r a y

t m p c f p t = c f i x p o i n t (r e a l = s e l f . r e a l [k e y] , i m a g = s e l f . i m a g [k e y])

r e t u r n t m p c f p t

d e f _____s e t i t e m _____ (s e l f , k e y , v a l) : # s e t t i n g

s l i c e s o f a r r a y

s e l f . r e a l [k e y] = v a l . r e a l

s e l f . i m a g [k e y] = v a l . i m a g

Appendix A. Appendix 93

d e f f r o m _ c o m p l e x (s e l f , x) :

c o m p l e x a r r a y a n d p o p u l a t e s t o d a t a w i t h s c a l i n g

s e l f . r e a l . f r o m _ f l o a t (x . r e a l)

s e l f . i m a g . f r o m _ f l o a t (x . i m a g)

a c c e p t s

d e f t o _ c o m p l e x (s e l f) :

d a t a t o c o m p l e x a r r a y

r e t u r n s e l f . r e a l . t o _ f l o a t () + 1 j * s e l f . i m a g . t o _ f l o a t ()

c o n v e r t s

d e f s u m (s e l f , * a r g s , * * k w a r g s) :

r e s u l t = c f i x p o i n t (r e a l = s e l f . r e a l . s u m (* a r g s , * * k w a r g s) ,

i m a g = s e l f . i m a g . s u m (* a r g s , * * k w a r g s))

r e t u r n r e s u l t

d e f _____m u l _____ (s e l f , w) : # c o m p l e x

m u l t i p l i c a t i o n

d e f c o m p l e x _ m u l t (a , b , c , d) :

" " " R e t u r n s c o m p l e x p r o d u c t x + j y = (a + j b) * (c + j d) . " " "

R e a l p a r t x = a * c - b * d

x = (a * c) - (b * d)

I m a g i n a r y p a r t y = a * d + b * c

y = (a * d) + (b * c)

r e t u r n x , y

o u t _ r e a l , o u t _ i m a g = c o m p l e x _ m u l t (s e l f . r e a l , s e l f . i m a g , w . r e a l , w . i m a g)

r e s u l t = c f i x p o i n t (r e a l = o u t _ r e a l , i m a g = o u t _ i m a g)

r e t u r n r e s u l t

d e f a d d (s e l f , y) : # c o m p l e x

a d d i t i o n

r e s u l t = c f i x p o i n t (r e a l = s e l f . r e a l + y . r e a l ,

i m a g = s e l f . i m a g + y . i m a g)

r e t u r n r e s u l t

d e f s u b (s e l f , y) : # c o m p l e x

s u b t r a c t i o n

r e s u l t = c f i x p o i n t (r e a l = s e l f . r e a l - y . r e a l ,

i m a g = s e l f . i m a g - y . i m a g)

r e t u r n r e s u l t

d e f n o r m a l i s e (s e l f) : # n o r m a l i s e

t h e r e a l a n d i m a g d a t a

s e l f . r e a l . n o r m a l i s e ()

s e l f . i m a g . n o r m a l i s e ()

Appendix A. Appendix 94

q u a n t i s e t h e d a t a t o b o u n d s r e q u i r e d .

d e f q u a n t i s e (s e l f , b i t s , f r a c t i o n , m i n _ i n t = N o n e , m a x _ i n t = N o n e ,

u n s i g n e d = F a l s e , m e t h o d = " R O U N D ") :

o u t _ r e a l = s e l f . r e a l . q u a n t i s e (b i t s , f r a c t i o n , m i n _ i n t , m a x _ i n t ,

u n s i g n e d , m e t h o d)

o u t _ i m a g = s e l f . i m a g . q u a n t i s e (b i t s , f r a c t i o n , m i n _ i n t , m a x _ i n t ,

u n s i g n e d , m e t h o d)

r e s u l t = c f i x p o i n t (r e a l = o u t _ r e a l , i m a g = o u t _ i m a g)

r e t u r n r e s u l t

d e f _____r s h i f t _____ (s e l f , s t e p s) :

s h i f t d a t a b y s t e p s

s e l f . r e a l > > s t e p s

s e l f . i m a g > > s t e p s

r e t u r n s e l f

r i g h t

d e f _____l s h i f t _____ (s e l f , s t e p s) :

d a t a b y s t e p s

s e l f . r e a l < < s t e p s

s e l f . i m a g < < s t e p s

r e t u r n s e l f

l e f t s h i f t

d e f c o p y (s e l f) :

m a k i n g a c o p y o f c f i x p o i n t t y p e

m e t h o d f o r

t m p c f x p t = c f i x p o i n t (r e a l = s e l f . r e a l . c o p y () , i m a g = s e l f . i m a g . c o p y ())

r e t u r n t m p c f x p t

d e f c o n j (s e l f) :

c o n j u g a t e o f c f i x p o i n t

i _ r e s = s e l f . i m a g . c o p y ()

i _ r e s . d a t a = - s e l f . i m a g . d a t a . c o p y ()

r e s = c f i x p o i n t (r e a l = s e l f . r e a l , i m a g = i _ r e s)

r e t u r n r e s

r e t u r n s

d e f p o w e r (s e l f) :

p o w e r a s a x a * o f c f i x p o i n t

r e s = s e l f . c o p y () * s e l f . c o n j ()

r e t u r n r e s . r e a l

r e t u r n

_ _ s t r _ _ = _ _ r e p r _ _

Appendix A. Appendix 95

Listing A.2: pfb_floating.py - The floating-point Python PFB simulator class.

C r e a t e d o n T h u A u g 1 6 1 5 : 2 1 : 4 3 2 0 1 8

© a u t h o r : t a l o n m y b u r g h

" " "

i m p o r t n u m p y a s n p

f r o m p f b _ c o e f f _ g e n i m p o r t c o e f f _ g e n

=

B i t r e v e r s a l a l g o r i t h m s u s e d f o r t h e i t e r a t i v e f f t ’ s d a t a r e - o r d e r i n g

=

" " " A r r a n g e s c h r o n o l o g i c a l v a l u e s i n a n a r r a y i n a b i t r e v e r s e d f a s h i o n " " "

d e f b i t _ r e v (a , b i t s) :

a _ c o p y = a . c o p y ()

N = 1 < < b i t s

f o r i i n r a n g e (1 , b i t s) :

a > > = 1

a _ c o p y < < = 1

a _ c o p y | = (a [:] & 1)

a _ c o p y [:] & = N - 1

r e t u r n a _ c o p y

" " " T a k e s a n a r r a y o f l e n g t h N w h i c h m u s t b e a p o w e r o f t w o " " "

d e f b i t r e v a r r a y (a r r a y , N) :

b i t s = i n t (n p . l o g 2 (N)) # n u m b e r o f

b i t s t o r e p r n u m b e r s i n a r r a y

A = n p . e m p t y (N , d t y p e = n p . c o m p l e x 6 4)

a = n p . a r a n g e (N)

A [b i t _ r e v (a , b i t s)] = a r r a y [:]

r e t u r n A

=

F F T : n a t u r a l d a t a o r d e r i n , b i t r e v e r s e d t w i d d l e f a c t o r s , b i t r e v e r s e d

o r d e r o u t .

=

" " " G e n e r a t e a r r a y o f n e e d e d t w i d d l e s " " "

d e f m a k e _ t w i d d l e (N) :

i = n p . a r a n g e (N / / 2)

a r r = n p . e x p (- 2 * i * n p . p i * 1 j / N)

r e t u r n a r r

" " " N a t u r a l o r d e r i n D I T F F T t h a t a c c e p t s t h e d a t a , t h e t w i d d l e f a c t o r s

(b i t r e v e r s e d) a n d a l l o w s f o r s t a g i n g " " "

d e f i t e r f f t _ n a t u r a l _ i n _ D I T (D A T A , t w i d , s t a g e d = F a l s e) :

Appendix A. Appendix 96

d a t a = n p . a s a r r a y (D A T A , d t y p e = n p . c o m p l e x 6 4)

N = d a t a . s h a p e [0]

i s d a t a s t r e a m

h o w l o n g

i f (s t a g e d) :

s t g d _ d a t a = n p . z e r o s ((N , i n t (n p . l o g 2 (N)) + 2) , d t y p e = n p . c o m p l e x 6 4)

s t g d _ d a t a [: , 0] = d a t a [:]

n u m _ o f _ g r o u p s = 1

g r o u p s - h o w m a n y s u b a r r a y s a r e t h e r e ?

n u m b e r o f

d i s t a n c e = N / / 2

b e t w e e n e a c h f f t a r m ?

h o w f a r

s t g = 1

c o u n t e r

s t a g e

w h i l e n u m _ o f _ g r o u p s < N :

i t e r a t e s t h r o u g h s t a g e s

b a s i c a l l y

f o r k i n r a n g e (n u m _ o f _ g r o u p s) :

t h r o u g h e a c h s u b a r r a y

i t e r a t e

j f i r s t = 2 * k * d i s t a n c e

b e g i n n i n g o f a g r o u p

i n d e x t o

j l a s t = j f i r s t + d i s t a n c e - 1

i n d e x p l u s o f f s e t - u s e d t o i n d e x w h o l e g r o u p

W = t w i d [k]

s l c 1 = s l i c e (j f i r s t , j l a s t + 1 , 1)

s l c 2 = s l i c e (j f i r s t + d i s t a n c e , j l a s t + 1 + d i s t a n c e , 1)

t m p = W * d a t a [s l c 2]

d a t a [s l c 2] = d a t a [s l c 1] - t m p

d a t a [s l c 1] = d a t a [s l c 1] + t m p

n u m _ o f _ g r o u p s * = 2

d i s t a n c e / / = 2

f i r s t

i f (s t a g e d) :

r e c o r d i n g s t a g e s

i f w e a r e

s t g d _ d a t a [: , s t g] = d a t a [:]

s t a g e d a t a t o a r r a y

s t g + = 1

l o g e a c h

i f (s t a g e d) :

s t g d _ d a t a [: , - 1] = b i t r e v a r r a y (s t g d _ d a t a [: , - 2] , N)

b i t - r e o r d e r i n g f o r l a s t s t a g e - a d d e d a s e x t r a s t a g e

r e t u r n s t g d _ d a t a

e l s e :

p o s t

A = b i t r e v a r r a y (d a t a , N)

b i t - r e o r d e r i n g

p o s t

r e t u r n A

Appendix A. Appendix 97

=

F l o a t i n g p o i n t P F B i m p l e m e n t a t i o n m a k i n g u s e o f t h e n a t u r a l o r d e r i n f f t

l i k e C A S P E R d o e s .

=

c l a s s F l o a t P F B (o b j e c t) :

" " " T h i s f u n c t i o n t a k e s p o i n t s i z e , h o w m a n y t a p s , w h a t p e r c e n t a g e o f t o t a l

d a t a t o a v e r a g e o v e r ,

t o g e t d a t a f r o m a f i l e o r n o t , w h a t w i n d o w i n g f u n c t i o n , w h e t h e r y o u ’ r e

r u n n i n g d u a l p o l a r i s a t i o n s ,

w h e t h e r y o u ’ d l i k e d a t a f r o m a s t a g e , a n d i f s o w h i c h s t a g e - s t a g e 0 b e i n g

t h e d a t a i n " " "

d e f _____i n i t ______(s e l f , N , t a p s , d a t a s r c = N o n e , w = ’ h a n n ’ , d u a l = F a l s e ,

s t a g e d = F a l s e , f w i d t h = 1 , c h a n _ a c c = F a l s e) :

s e l f . N = N # h o w m a n y

p o i n t s # w h a t a v e r a g i n g

s e l f . d u a l = d u a l # w h e t h e r

y o u ’ r e p e r f o r m i n g d u a l p o l a r i s a t i o n s o r n o t

s e l f . r e g = n p . z e r o s ([N , t a p s]) # o u r f i r

r e g i s t e r s i z e f i l l e d w i t h z e r o s o r i g n a l l y

s e l f . i n p u t d a t a d i r = N o n e

s e l f . s t a g e d = s t a g e d

s e l f . f w i d t h = f w i d t h

s e l f . c h a n _ a c c = c h a n _ a c c

i f (d a t a s r c i s n o t N o n e a n d t y p e (d a t a s r c) = = s t r) : # i f i n p u t

d a t a f i l e i s s p e c i f i e d

s e l f . i n p u t d a t a d i r = d a t a s r c

s e l f . o u t p u t d a t a d i r = d a t a s r c [: - 4] + " o u t . n p y "

s e l f . i n p u t d a t a = n p . l o a d (d a t a s r c , m m a p _ m o d e = ’ r ’)

e l s e :

s e l f . i n p u t d a t a = N o n e

s e l f . w i n d o w = c o e f f _ g e n (N , t a p s , w , s e l f . f w i d t h) [0]

c o e f f i c i e n t s a n d s c a l i n g

s e l f . t w i d s = m a k e _ t w i d d l e (s e l f . N)

s e l f . t w i d s = b i t r e v a r r a y (s e l f . t w i d s , l e n (s e l f . t w i d s))

n a t u r a l o r d e r i n F F T

G e t w i n d o w

f a c t o r t o

u s e i n

F I R

r e g i s t e r s .

f o r

Appendix A. Appendix 98

" " " T a k e s d a t a s e g m e n t (N l o n g) a n d a p p e n d s e a c h v a l u e t o e a c h f i r .

R e t u r n s d a t a s e g m e n t (N l o n g) t h a t i s t h e s u m o f f i r c o n t e n t s * w i n d o w c o e f f s " " "

d e f _ F I R (s e l f , x) :

s e l f . r e g = n p . c o l u m n _ s t a c k ((x , s e l f . r e g)) [: , : - 1] # p u s h a n d

p o p f r o m F I R r e g i s t e r a r r a y

X = n p . s u m (s e l f . r e g * s e l f . w i n d o w , a x i s = 1) # f i l t e r a n d

s c a l e

r e t u r n X

" " " F o r d u a l p o l a r i s a t i o n p r o c e s s i n g , w e n e e d t o s p l i t t h e d a t a a f t e r

F F T a n d r e t u r n t h e i n d i v i d u a l c o m p l e x s p e c t r a " " "

d e f _ s p l i t (s e l f , Y _ k) :

R _ k = n p . r e a l (Y _ k)

R _ k f l i p = R _ k . c o p y ()

R _ k f l i p [1 :] = R _ k f l i p [: 0 : - 1]

I _ k = n p . i m a g (Y _ k)

I _ k f l i p = I _ k . c o p y ()

I _ k f l i p [1 :] = I _ k f l i p [: 0 : - 1]

s e l f . G _ k = (1 / 2) * (R _ k + 1 j * I _ k + R _ k f l i p - 1 j * I _ k f l i p) # d e c l a r e s

t w o v a r i a b l e s f o r 2 p o l s

s e l f . H _ k = (1 / 2 j) * (R _ k + 1 j * I _ k - R _ k f l i p + 1 j * I _ k f l i p)

" " " H e r e w e t a k e t h e p o w e r s p e c t r u m o f t h e o u t p u t s . C h a n _ a c c d i c t a t e s

i f o n e m u s t s u m o v e r a l l o u t p u t s p r o d u c e d . " " "

d e f _ p o w (s e l f , X) :

i f (s e l f . c h a n _ a c c) : # i f

a c c u m u l a t i o n s p e c i f i e d

p w r = X * n p . c o n j (X)

p w r = n p . r e a l (n p . s u m (p w r , a x i s = 1))

r e t u r n p w r

e l s e : # i f n o

a c c u m u l a t i o n s p e c i f i e d

p w r = n p . r e a l ((X * n p . c o n j (X)))

r e t u r n p w r

" " " H e r e o n e p a r s e s a d a t a v e c t o r t o t h e P F B t o r u n . N o t e i t m u s t b e

n u m p y a r r a y o f l e n g t h N i f a d a t a f i l e w a s n o t s p e c i f i e d b e f o r e " " "

d e f r u n (s e l f , d a t a = N o n e) :

i f (d a t a i s n o t N o n e) :

u s i n g a n i n p u t d a t a a r r a y

i f w e a r e

Appendix A. Appendix 99

s e l f . i n p u t d a t a = d a t a

e l i f (s e l f . i n p u t d a t a i s N o n e) :

r a i s e V a l u e E r r o r (" N o i n p u t d a t a f o r P F B s p e c i f i e d . ")

s i z e = s e l f . i n p u t d a t a . s i z e

o f d a t a s t r e a m

g e t l e n g t h

s t a g e s = s i z e / / s e l f . N

c y c l e s o f c o m m u t a t o r

h o w m a n y

i f (s e l f . s t a g e d) :

s t a g e d d a t a

X = n p . e m p t y ((s e l f . N , s t a g e s , i n t (n p . l o g 2 (s e l f . N)) + 2) ,

d t y p e = n p . c o m p l e x 6 4)

i f s t o r i n g

w i l l b e

t a p s i z e

x

d a t a l e n / p o i n t

x s t a g e s

f o r i i n r a n g e (0 , s t a g e s) :

s t a g e , p o p u l a t e a l l f i r s , a n d r u n F F T o n c e

i f (i = = 0) :

X [: , i , :] = i t e r f f t _ n a t u r a l _ i n _ D I T (s e l f . _ F I R (

s e l f . i n p u t d a t a [0 : s e l f . N]) , s e l f . t w i d s ,

s e l f . s t a g e d)

e l s e :

f o r e a c h

X [: , i , :] = i t e r f f t _ n a t u r a l _ i n _ D I T (s e l f . _ F I R (

s e l f . i n p u t d a t a [i * s e l f . N : i * s e l f . N + s e l f . N]) , s e l f . t w i d s ,

s e l f . s t a g e d)

e l s e :

s t a g e d d a t a

X = n p . e m p t y ((s e l f . N , s t a g e s) , d t y p e = n p . c o m p l e x 6 4)

i f s t o r i n g

w i l l b e

t a p s i z e

f o r i i n r a n g e (0 , s t a g e s) :

s t a g e , p o p u l a t e a l l f i r s , a n d r u n F F T o n c e

i f (i = = 0) :

X [: , i] = i t e r f f t _ n a t u r a l _ i n _ D I T (s e l f . _ F I R (

s e l f . i n p u t d a t a [0 : s e l f . N]) ,

s e l f . t w i d s)

e l s e :

x s t a g e s

f o r e a c h

X [: , i] = i t e r f f t _ n a t u r a l _ i n _ D I T (s e l f . _ F I R (

s e l f . i n p u t d a t a [i * s e l f . N : i * s e l f . N + s e l f . N]) ,

Appendix A. Appendix 100

s e l f . t w i d s)

" " " D e c i d e o n h o w t o m a n i p u l a t e a n d d i s p l a y o u t p u t d a t a " " "

i f (s e l f . d u a l a n d n o t s e l f . s t a g e d) :

p r o c e s s i n g b u t n o t s t a g e d

s e l f . _ s p l i t (X)

s e l f . G _ k _ p o w = s e l f . _ p o w (s e l f . G _ k)

s e l f . H _ k _ p o w = s e l f . _ p o w (s e l f . H _ k)

I f d u a l

e l i f (n o t s e l f . d u a l a n d s e l f . s t a g e d) :

p o l p r o c e s s i n g a n d s t a g e d

s e l f . X _ k _ s t g d = X

s e l f . X _ k _ p o w = s e l f . _ p o w (X [: , : , - 1])

s e l f . X _ k = X [: , : , - 1]

I f s i n g l e

e l i f (s e l f . d u a l a n d s e l f . s t a g e d) : # I f d u a l

p o l a n d s t a g e d

s e l f . X _ k _ s t g d = X

s e l f . _ s p l i t (X [: , : , - 1])

s e l f . G _ k _ p o w = s e l f . _ p o w (s e l f . G _ k)

s e l f . H _ k _ p o w = s e l f . _ p o w (s e l f . H _ k)

e l s e : # I f s i n g l e

p o l a n d n o s t a g i n g

s e l f . X _ k = X

s e l f . X _ k _ p o w = s e l f . _ p o w (X)

Appendix A. Appendix 101

Listing A.3: pfb_fixed.py - The fixed-point Python PFB simulator class.
M M M

C r e a t e d o n T h u A u g 1 6 1 6 : 1 3 : 4 0 2 0 1 8

© a u t h o r : t a l o n m y b u r g h

M M M

i m p o r t n u m p y a s n p

f r o m f i x p o i n t i m p o r t f i x p o i n t , c f i x p o i n t

f r o m p f b _ c o e f f _ g e n i m p o r t c o e f f _ g e n

=

B i t r e v e r s a l a l g o r i t h m s u s e d f o r t h e i t e r a t i v e f f t ’ s

=

" " " A r r a n g e s c h r o n o l o g i c a l v a l u e s i n a n a r r a y i n a b i t r e v e r s e d f a s h i o n " " "

d e f b i t _ r e v (a , b i t s) :

a _ c o p y = a . c o p y ()

N = 1 < < b i t s

f o r i i n r a n g e (1 , b i t s) :

a > > = 1

a _ c o p y < < = 1

a _ c o p y | = (a [:] & 1)

a _ c o p y [:] & = N - 1

r e t u r n a _ c o p y

" " " T a k e s a n a r r a y o f l e n g t h N w h i c h m u s t b e a p o w e r o f t w o " " "

d e f b i t r e v f i x a r r a y (a r r a y , N) : # t a k e s a n

a r r a y o f l e n g t h N w h i c h m u s t b e a p o w e r o f t w o

b i t s = i n t (n p . l o g 2 (N)) # h o w m a n y

b i t s i t t a k e s t o r e p r e s e n t a l l n u m b e r s i n a r r a y

A = a r r a y . c o p y ()

a = n p . a r a n g e (N)

A [b i t _ r e v (a , b i t s)] = a r r a y [:]

r e t u r n A

=

F F T : n a t u r a l d a t a o r d e r i n , b i t r e v e r s e d t w i d d l e f a c t o r s , b i t r e v e r s e d

o r d e r o u t .

=

d e f m a k e _ f i x _ t w i d d l e (N , b i t s , f r a c t i o n , m e t h o d = " R O U N D ") :

t w i d s = c f i x p o i n t (b i t s , f r a c t i o n , m e t h o d = m e t h o d)

t w i d s . f r o m _ c o m p l e x (n p . e x p (- 2 * n p . a r a n g e (N / / 2) * n p . p i * 1 j / N))

r e t u r n t w i d s

" " " N a t u r a l o r d e r i n D I T F F T t h a t a c c e p t s t h e d a t a , t h e t w i d d l e f a c t o r s

(m u s t b e b i t r e v e r s e d) , a s h i f t r e g i s t e r , t h e b i t w i d t h a n d f r a c t i o n

Appendix A. Appendix 102

b i t w i d t h t o p r o c e s s a t , t h e t w i d d l e f a c t o r b i t s a n d a l l o w s f o r s t a g i n g " " "

d e f i t e r f f f t _ n a t u r a l _ D I T (D A T A , t w i d , s w r e g , b i t s , f r a c t i o n , t w i d f r a c , s t a g e d = F a l s e) :

d a t a = D A T A . c o p y ()

N = d a t a . d a t a . s h a p e [0] # h o w l o n g

i s d a t a s t r e a m

i f (t y p e (s w r e g) = = i n t) : # i f i n t e g e r i s p a r s e d

r a t h e r t h a n l i s t

s h i f t r e g = [i n t (x) f o r x i n b i n (s w r e g) [2 :]]

i f (l e n (s h i f t r e g) < i n t (n p . l o g 2 (N))) :

f o r i i n r a n g e (i n t (n p . l o g 2 (N)) - l e n (s h i f t r e g)) :

s h i f t r e g . i n s e r t (0 , 0)

e l i f (t y p e (s w r e g) = = l i s t a n d t y p e (s w r e g [0]) = = i n t) : # i f l i s t o f i n t e g e r s i s

p a r s e d

s h i f t r e g = s w r e g

e l s e :

r a i s e V a l u e E r r o r (’ S h i f t r e g i s t e r m u s t b e t y p e i n t o r b i n a r y l i s t o f i n t s ’)

i f (s t a g e d) :

s t g d _ d a t a = D A T A . c o p y ()

s t g d _ d a t a . f r o m _ c o m p l e x (n p . z e r o s ((N , i n t (n p . l o g 2 (N)) + 2) ,

d t y p e = n p . c o m p l e x 6 4))

s t g d _ d a t a [: , 0] = d a t a [:]

s t a g e s = i n t (n p . l o g 2 (N))

i f (l e n (s h i f t r e g) ! = s t a g e s a n d t y p e (s h i f t r e g) i s n o t l i s t) :

r a i s e V a l u e E r r o r (" S h i f t r e g i s t e r m u s t b e o f t y p e l i s t , a n d i t s l e n g t h "

+ " m u s t b e l o g 2 (d a t a l e n g t h) ")

n u m _ o f _ g r o u p s = 1

g r o u p s - h o w m a n y s u b a r r a y s a r e t h e r e ?

d i s t a n c e = N / / 2

b e t w e e n e a c h f f t a r m ?

s t g = 1

c o u n t e r

w h i l e n u m _ o f _ g r o u p s < N :

i t e r a t e s t h r o u g h s t a g e s

f o r k i n r a n g e (n u m _ o f _ g r o u p s) :

t h r o u g h e a c h s u b a r r a y

j f i r s t = 2 * k * d i s t a n c e

b e g i n n i n g o f a g r o u p

j l a s t = j f i r s t + d i s t a n c e - 1

i n d e x p l u s u s e d t o i n d e x w h o l e g r o u p

W = t w i d [k]

n u m b e r o f

h o w f a r

s t a g e

b a s i c a l l y

i t e r a t e

i n d e x t o

f i r s t

Appendix A. Appendix 103

s l c 1 = s l i c e (j f i r s t , j l a s t + 1 , 1)

s l c 2 = s l i c e (j f i r s t + d i s t a n c e , j l a s t + 1 + d i s t a n c e , 1)

t m p = W * d a t a [s l c 2]

t m p > > t w i d f r a c # s l i c e o f f

l o w e r b i t g r o w t h f r o m m u l t i p l y (c a u s e d b y f r a c t i o n o n l y)

t m p . b i t s = b i t s

t m p . f r a c t i o n = f r a c t i o n # f r a c t i o n

w i l l = (f r a c 1 + f r a c 2) - h e n c e r i g h t s h i f t b y f r a c 2

t m p . n o r m a l i s e ()

d a t a [s l c 2] = d a t a [s l c 1] - t m p

d a t a [s l c 1] = d a t a [s l c 1] + t m p

i f s h i f t r e g . p o p () : # i m p l e m e n t

F F T s h i f t a n d t h e n n o r m a l i s e t o c o r r e c t a t e n d o f s t a g e

d a t a > > 1

d a t a . n o r m a l i s e ()

n u m _ o f _ g r o u p s * = 2

d i s t a n c e / / = 2

i f (s t a g e d) : # i f w e a r e

r e c o r d i n g s t a g e s

s t g d _ d a t a [: , s t g] = d a t a [:] # l o g e a c h

s t a g e d a t a t o a r r a y

s t g + = 1

i f (s t a g e d) :

s t g d _ d a t a [: , - 1] = b i t r e v f i x a r r a y (s t g d _ d a t a [: , - 2] , N) # p o s t

b i t - r e o r d e r i n g f o r l a s t s t a g e - a d d e d a s e x t r a s t a g e

r e t u r n s t g d _ d a t a

e l s e :

r e t u r n b i t r e v f i x a r r a y (d a t a , N) # p o s t

b i t - r e o r d e r i n g

=

F l o a t i n g p o i n t P F B i m p l e m e n t a t i o n m a k i n g u s e o f t h e n a t u r a l o r d e r i n f f t

l i k e C A S P E R d o e s .

=

c l a s s F i x P F B (o b j e c t) :

" " " T h i s f u n c t i o n t a k e s p o i n t s i z e , h o w m a n y t a p s , w h e t h e r t o i n t e g r a t e

t h e o u t p u t o r n o t , w h a t w i n d o w i n g f u n c t i o n t o u s e , w h e t h e r y o u ’ r e

r u n n i n g d u a l p o l a r i s a t i o n s , w h a t r o u n d i n g a n d o v e r f l o w s c h e m e t o u s e ,

f w i d t h a n d w h e t h e r t o s t a g e . " " "

Appendix A. Appendix 104

d e f _____i n i t ______(s e l f , N , t a p s , b i t s , f r a c ,

t w i d b i t s , t w i d f r a c , s w r e g ,

b i t s o f a c c = 3 2 , f r a c o f a c c = 3 1 , u n s i g n e d = F a l s e ,

c h a n _ a c c = F a l s e , d a t a s r c = N o n e , w = ’ h a n n ’ ,

f i r m e t h o d = " R O U N D " , f f t m e t h o d = " R O U N D " , d u a l = F a l s e ,

f w i d t h = 1 , s t a g e d = F a l s e) :

" " " P o p u l a t e P F B o b j e c t p r o p e r t i e s " " "

s e l f . N = N # h o w m a n y

p o i n t s

s e l f . c h a n _ a c c = c h a n _ a c c # i f s u m m i n g

o u t p u t s

s e l f . d u a l = d u a l # w h e t h e r

y o u ’ r e p r o c e s s i n g d u a l p o l a r i s a t i o n s

s e l f . t a p s = t a p s # h o w m a n y

t a p s

s e l f . b i t s o f a c c = b i t s o f a c c # h o w m a n y

b i t s t o g r o w t o i n i n t e g r a t i o n

s e l f . f r a c o f a c c = f r a c o f a c c

s e l f . b i t s = b i t s # f f t d a t a b i t l e n g t h

s e l f . f r a c = f r a c

s e l f . f w i d t h = f w i d t h

n o r m a l i s i n g f a c t o r f o r f i r w i n d o w

i f (t y p e (s w r e g) = = i n t) : # i f i n t e g e r

i s p a r s e d r a t h e r t h a n l i s t

s e l f . s h i f t r e g = [i n t (x) f o r x i n b i n (s w r e g) [2 :]]

i f (l e n (s e l f . s h i f t r e g) < i n t (n p . l o g 2 (N))) :

f o r i i n r a n g e (i n t (n p . l o g 2 (N)) - l e n (s e l f . s h i f t r e g)) :

s e l f . s h i f t r e g . i n s e r t (0 , 0)

e l i f (t y p e (s w r e g) = = l i s t a n d t y p e (s w r e g [0]) = = i n t) : # i f l i s t o f

i n t e g e r s i s p a r s e d

s e l f . s h i f t r e g = s w r e g

e l s e :

r a i s e V a l u e E r r o r (’ S h i f t r e g i s t e r m u s t b e t y p e i n t o r b i n a r y l i s t o f

i n t s ’)

s e l f . u n s i g n e d = u n s i g n e d # o n l y u s e d

i f d a t a p a r s e d i n i s i n a f i l e

s e l f . s t a g e d = s t a g e d # w h e t h e r t o

r e c o r d f f t s t a g e s

s e l f . t w i d b i t s = t w i d b i t s # h o w m a n y

b i t s t o g i v e t w i d d l e f a c t o r s

s e l f . t w i d f r a c = t w i d f r a c

s e l f . f i r m e t h o d = f i r m e t h o d # r o u n d i n g

Appendix A. Appendix 105

s c h e m e i n f i r s

s e l f . f f t m e t h o d = f f t m e t h o d # r o u n d i n g

s c h e m e i n f f t

D e f i n e v a r i a b l e s t o b e u s e d :

s e l f . r e g _ r e a l = f i x p o i n t (s e l f . b i t s , s e l f . f r a c , u n s i g n e d = s e l f . u n s i g n e d ,

m e t h o d = s e l f . f i r m e t h o d)

s e l f . r e g _ r e a l . f r o m _ f l o a t (n p . z e r o s ([N , t a p s] , d t y p e = n p . i n t 6 4)) # o u r f i r

r e g i s t e r s i z e f i l l e d w i t h z e r o s o r i g n a l l y

s e l f . r e g _ i m a g = s e l f . r e g _ r e a l . c o p y ()

i f (d a t a s r c i s n o t N o n e a n d t y p e (d a t a s r c) = = s t r) : # i f i n p u t

d a t a f i l e i s s p e c i f i e d

s e l f . i n p u t d a t a = c f i x p o i n t (s e l f . b i t s , s e l f . f r a c , u n s i g n e d =

s e l f . u n s i g n e d ,

m e t h o d = s e l f . f i r m e t h o d)

s e l f . i n p u t d a t a d i r = d a t a s r c

s e l f . o u t p u t d a t a d i r = d a t a s r c [: - 4] + " o u t . n p y "

s e l f . i n p u t d a t a . f r o m _ c o m p l e x (n p . l o a d (d a t a s r c , m m a p _ m o d e = ’ r ’))

e l s e :

s e l f . i n p u t d a t a d i r = N o n e

t h e w i n d o w c o e f f i c i e n t s f o r t h e f i r f i l t e r

s e l f . w i n d o w = f i x p o i n t (s e l f . b i t s , s e l f . f r a c , u n s i g n e d = s e l f . u n s i g n e d ,

m e t h o d = s e l f . f i r m e t h o d)

t m p c o e f f , s e l f . f i r s c = c o e f f _ g e n (s e l f . N , s e l f . t a p s , w , s e l f . f w i d t h)

s e l f . w i n d o w . f r o m _ f l o a t (t m p c o e f f)

t h e t w i d d l e f a c t o r s f o r t h e n a t u r a l i n p u t f f t

s e l f . t w i d s = m a k e _ f i x _ t w i d d l e (s e l f . N , s e l f . t w i d b i t s , t w i d f r a c ,

m e t h o d = s e l f . f f t m e t h o d)

s e l f . t w i d s = b i t r e v f i x a r r a y (s e l f . t w i d s , s e l f . t w i d s . d a t a . s i z e)

" " " T a k e s d a t a s e g m e n t (N l o n g) a n d a p p e n d s e a c h v a l u e t o e a c h f i r .

R e t u r n s d a t a s e g m e n t (N l o n g) t h a t i s t h e s u m o f f i r c o n t e n t s * w i n d o w " " "

d e f _ F I R (s e l f , x) :

p u s h a n d p o p f r o m F I R r e g i s t e r a r r a y

s e l f . r e g _ r e a l . d a t a = n p . c o l u m n _ s t a c k (

(x . r e a l . d a t a , s e l f . r e g _ r e a l . d a t a)) [: , : - 1]

s e l f . r e g _ i m a g . d a t a = n p . c o l u m n _ s t a c k (

(x . i m a g . d a t a , s e l f . r e g _ i m a g . d a t a)) [: , : - 1]

X _ r e a l = s e l f . r e g _ r e a l * s e l f . w i n d o w

r e a l a n d i m a g p r o d u c t s

c o m p u t e

Appendix A. Appendix 106

X _ i m a g = s e l f . r e g _ i m a g * s e l f . w i n d o w

p r o d g r t h = X _ r e a l . f r a c t i o n - s e l f . f r a c # - 1 s i n c e

t h e w i n d o w c o e f f s h a v e - 1 l e s s f r a c t i o n

X = c f i x p o i n t (r e a l = X _ r e a l . s u m (a x i s = 1) , i m a g = X _ i m a g . s u m (a x i s = 1))

X > > p r o d g r t h + s e l f . f i r s c

g r o w t h

r e m o v e

X . b i t s = s e l f . b i t s

t o c o r r e c t b i t a n d f r a c l e n g t h

n o r m a l i s e

X . f r a c t i o n = s e l f . f r a c

X . n o r m a l i s e ()

X . m e t h o d = s e l f . f f t m e t h o d

t h a t i t n o w u s e s F F T r o u n d i n g s c h e m e

a d j u s t s o

r e t u r n X # F I R o u t p u t

" " " I n t h e e v e n t t h a t t h a t d u a l p o l a r i s a t i o n s h a v e b e e n s e l e c t e d , w e n e e d t o

s p l i t o u t t h e d a t a a f t e r a n d r e t u r n t h e i n d i v i d u a l X _ k v a l u e s " " "

d e f _ s p l i t (s e l f , Y k) :

r e v e r s e t h e a r r a y s f o r t h e s p l i t t i n g f u n c t i o n c o r r e c t l y

R _ k = Y k . r e a l . c o p y ()

I _ k = Y k . i m a g . c o p y ()

R _ k f l i p = R _ k . c o p y ()

R _ k f l i p [1 :] = R _ k f l i p [: 0 : - 1]

I _ k f l i p = I _ k . c o p y ()

I _ k f l i p [1 :] = I _ k f l i p [: 0 : - 1]

s e l f . G _ k = c f i x p o i n t (r e a l = R _ k + R _ k f l i p , i m a g = I _ k - I _ k f l i p)

d e c l a r e s t w o v a r i a b l e s f o r 2 p o l s

s e l f . G _ k > > 1 # f o r b i t

g r o w t h f r o m a d d i t i o n

s e l f . G _ k . b i t s = s e l f . b i t s

s e l f . G _ k . n o r m a l i s e ()

s e l f . H _ k = c f i x p o i n t (r e a l = I _ k + I _ k f l i p , i m a g = R _ k f l i p - R _ k)

s e l f . H _ k > > 1

s e l f . H _ k . b i t s = s e l f . b i t s

s e l f . H _ k . n o r m a l i s e ()

" " " H e r e w e t a k e t h e p o w e r s p e c t r u m o f t h e o u t p u t s . C h a n _ a c c d i c t a t e s

i f o n e m u s t s u m o v e r a l l o u t p u t s p r o d u c e d . " " "

d e f _ p o w (s e l f , X) :

Appendix A. Appendix 107

i f (s e l f . c h a n _ a c c) : # i f

a c c u m u l a t i o n s p e c i f i e d

t m p = X . p o w e r () # X t i m e s X *

p w r = X . c o p y ()

p w r . b i t s = s e l f . b i t s o f a c c

p w r . f r a c = s e l f . f r a c o f a c c

p w r . n o r m a l i s e () # n o r m a l i s e

m u l t i p l i c a t i o n

p w r . d a t a = n p . s u m (t m p . d a t a , a x i s = 1) # a c c u m u l a t e

r e t u r n p w r

e l s e : # i f n o

a c c u m u l a t i o n s p e c i f i e d

p w r = X . p o w e r ()

p w r . b i t s = s e l f . b i t s o f a c c

p w r . f r a c = s e l f . f r a c o f a c c

p w r . n o r m a l i s e () # n o r m a l i s e

m u l t i p l i c a t i o n

r e t u r n p w r

" " " H e r e o n e p a r s e s a d a t a v e c t o r t o t h e P F B t o r u n . N o t e i t m u s t b e

c f i x p o i n t t y p e i f a d a t a f i l e w a s n o t s p e c i f i e d b e f o r e " " "

d e f r u n (s e l f , D A T A , c o n t = F a l s e) :

i f (D A T A i s n o t N o n e) : # i f a d a t a

v e c t o r h a s b e e n p a r s e d

i f (s e l f . b i t s ! = D A T A . b i t s) :

r a i s e V a l u e E r r o r (" I n p u t d a t a m u s t m a t c h p r e c i s i o n s p e c i f i e d "

+ " f o r i n p u t d a t a w i t h b i t s ")

s e l f . i n p u t d a t a = D A T A

e l i f (s e l f . i n p u t d a t a i s N o n e) : # i f n o d a t a

w a s s p e c i f i e d a t a l l

r a i s e V a l u e E r r o r (" N o i n p u t d a t a f o r P F B s p e c i f i e d . ")

s i z e = s e l f . i n p u t d a t a . d a t a . s h a p e [0]

o f d a t a s t r e a m w h i c h s h o u l d b e m u l t i p l e o f N

d a t a _ i t e r = s i z e / / s e l f . N

c y c l e s o f c o m m u t a t o r

X = c f i x p o i n t (s e l f . b i t s , s e l f . f r a c , u n s i g n e d = s e l f . u n s i g n e d ,

m e t h o d = s e l f . f f t m e t h o d)

i f (s e l f . s t a g e d) : # i f a l l

s t a g e s n e e d b e s t o r e d

X . f r o m _ c o m p l e x (n p . e m p t y ((s e l f . N , d a t a _ i t e r , i n t (n p . l o g 2 (s e l f . N)) + 2) ,

g e t l e n g t h

h o w m a n y

Appendix A. Appendix 108

d t y p e = n p . c o m p l e x 6 4)) # w i l l b e

t a p s i z e x d a t a l e n / p o i n t x f f t s t a g e s + 2

(i n p u t a n d

r e - o r d e r e r d

o u t p u t)

f o r i i n r a n g e (0 , d a t a _ i t e r) : # f o r e a c h

d a t a _ i t e r , p o p u l a t e a l l f i r s , a n d r u n F F T o n c e

i f (i = = 0) :

X [: , i , :] =

i t e r f f f t _ n a t u r a l _ D I T (s e l f . _ F I R (s e l f . i n p u t d a t a [0 : s e l f . N]) ,

s e l f . t w i d s , s e l f . s h i f t r e g . c o p y () , s e l f . b i t s _ , s e l f . f r a c ,

s e l f . t w i d f r a c , s e l f . s t a g e d)

e l s e :

X [: , i , :] = i t e r f f f t _ n a t u r a l _ D I T (

s e l f . _ F I R (s e l f . i n p u t d a t a [i * s e l f . N : i * s e l f . N + s e l f . N]) ,

s e l f . t w i d s , s e l f . s h i f t r e g . c o p y () , s e l f . b i t s ,

s e l f . f r a c , s e l f . t w i d f r a c , s e l f . s t a g e d)

e l s e : # i f s t a g e s

d o n ’ t n e e d t o b e s t o r e d

X . f r o m _ c o m p l e x (n p . e m p t y ((s e l f . N , d a t a _ i t e r) ,

d t y p e = n p . c o m p l e x 6 4)) # w i l l b e

t a p s i z e x d a t a l e n / p o i n t

f o r i i n r a n g e (0 , d a t a _ i t e r) : # f o r e a c h

s t a g e , p o p u l a t e a l l f i r s , a n d r u n F F T o n c e

i f (i = = 0) :

X [: , i] =

i t e r f f f t _ n a t u r a l _ D I T (s e l f . _ F I R (s e l f . i n p u t d a t a [0 : s e l f . N]) ,

s e l f . t w i d s , s e l f . s h i f t r e g . c o p y () , s e l f . b i t s , s e l f . f r a c ,

s e l f . t w i d f r a c , s e l f . s t a g e d)

e l s e :

X [: , i] = i t e r f f f t _ n a t u r a l _ D I T (

s e l f . _ F I R (s e l f . i n p u t d a t a [i * s e l f . N : i * s e l f . N + s e l f . N]) ,

s e l f . t w i d s , s e l f . s h i f t r e g . c o p y () , s e l f . b i t s ,

s e l f . f r a c , s e l f . t w i d f r a c , s e l f . s t a g e d)

#

" " " D e c i d e o n h o w t o m a n i p u l a t e a n d d i s p l a y o u t p u t d a t a " " "

i f (s e l f . d u a l a n d n o t s e l f . s t a g e d) : # I f d u a l

p r o c e s s i n g b u t n o t s t a g e d

s e l f . _ s p l i t (X)

s e l f . G _ k _ p o w = s e l f . _ p o w (s e l f . G _ k)

s e l f . H _ k _ p o w = s e l f . _ p o w (s e l f . H _ k)

Appendix A. Appendix 109

e l i f (n o t s e l f . d u a l a n d s e l f . s t a g e d) : # I f s i n g l e

p o l p r o c e s s i n g a n d s t a g e d

s e l f . X _ k _ s t g d = X

s e l f . X _ k _ p o w = s e l f . _ p o w (X [: , : , - 1])

s e l f . X _ k = X [: , : , - 1]

e l i f (s e l f . d u a l a n d s e l f . s t a g e d) : # I f d u a l

p o l a n d s t a g e d

s e l f . X _ k _ s t g d = X

s e l f . _ s p l i t (X [: , : , - 1])

s e l f . G _ k _ p o w = s e l f . _ p o w (s e l f . G _ k)

s e l f . H _ k _ p o w = s e l f . _ p o w (s e l f . H _ k)

e l s e : # I f s i n g l e

p o l a n d n o s t a g i n g

s e l f . X _ k = X

s e l f . X _ k _ p o w = s e l f . _ p o w (X)

Appendix A. Appendix 110

Listing A.4: pfb_coeff_gen.py - The FIR coefficient and FIR scale generator.

C r e a t e d o n T u e S e p 3 1 1 : 4 1 : 0 1 2 0 1 9

© a u t h o r : t a l o n m y b u r g h

i m p o r t n u m p y a s n p

d e f c o e f f _ g e n (N , t a p s , w = ’ h a n n ’ , f w i d t h = 1) :

W i n D i c = { # d i c t i o n a r y

o f v a r i o u s f i l t e r t y p e s

’ h a n n ’ : n p . h a n n i n g ,

’ h a m m i n g ’ : n p . h a m m i n g ,

’ b a r t l e t t ’ : n p . b a r t l e t t ,

’ b l a c k m a n ’ : n p . b l a c k m a n ,

}

a l l t a p s = N * t a p s

w i n d o w v a l = W i n D i c [w] (a l l t a p s)

t o t a l c o e f f s = (w i n d o w v a l * n p . s i n c (f w i d t h * (n p . a r a n g e (a l l t a p s) / (N) -

t a p s / 2))) . r e s h a p e ((t a p s , N)) . T

s c a l e f a c = n e x t p o w 2 (n p . m a x (n p . s u m (n p . a b s (t o t a l c o e f f s) , a x i s = 1)))

r e t u r n t o t a l c o e f f s , i n t (s c a l e f a c)

d e f n e x t p o w 2 (v a l) :

i = 0

w h i l e (T r u e) :

i f (2 * * i > = v a l) :

r e t u r n i

e l s e :

i + = 1

Bibliography

[1] D. C. Price, Spectrometers and polyphase filterbanks in radio astronomy, arXiv preprint
arXiv:1607. 03579 (2016).

[2] J. Jonas, Fundamentals of radiation and radio sources, Department of Phyics and
Electronics, Rhodes University, 2017.

[3] J. J. Condon and S. M. Ransom, “Radio telescopes and radiometers.”
https://www.cv.nrao.edu/~sransom/web/Ch3.html. Accessed: 31/01/2019.

[4] A. R. Thompson, J. M. Moran, G. W. Swenson, et. al., Interferometry and synthesis in
radio astronomy. Wiley New York et al., 1986.

[5] J. Jonas et. al., The meerkat radio telescope, in MeerKAT Science: On the Pathway to
the SKA, vol. 277, p. 001, SISSA Medialab, 2018.

[6] A. V. Oppenheim, A. S. Willsky, and H. Nawab, Signals and Systems. Prentice Hall,
2 ed., 1996.

[7] M. Born and E. Wolf, Principles of Optics. Cambridge University Press, 7 ed., 1999.

[8] “Radio interferometer.”
http://astronomy.swin.edu.au/cosmos/R/Radio+Interferometer. Accessed:
31/01/2019.

[9] G. Foster, “van cittert-zernike theorem.”
http://math_research.uct.ac.za/~siphelo/admin/interferometry/lectures/
4-VisibilitySpace/vanCittert-Zernike.pdf. Accessed: 04/02/2019.

[10] G. B. Taylor, C. L. Carilli, and R. A. Perley, Synthesis imaging in radio astronomy ii, in
Synthesis Imaging in Radio Astronomy II, vol. 180, 1999.

https://www.cv.nrao.edu/~sransom/web/Ch3.html
http://astronomy.swin.edu.au/cosmos/R/Radio+Interferometer
http://math_research.uct.ac.za/~siphelo/admin/interferometry/lectures/4-VisibilitySpace/vanCittert-Zernike.pdf
http://math_research.uct.ac.za/~siphelo/admin/interferometry/lectures/4-VisibilitySpace/vanCittert-Zernike.pdf

Bibliography 112

[11] A. Parsons, “Radio astronomy: Tools and techniques.”
https://casper.ssl.berkeley.edu/astrobaki/index.php/Radio_Astronomy:
_Tools_and_Techniques. Accessed: 13/02/2019.

[12] A. Sallab, H. Fahmy, and M. Rashwan, Optimized hardware implementation of fft
processor, .

[13] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, second edition.
Pearson Education, 1999.

[14] V. Madisetti, The digital signal processing handbook. CRC press, 1997.

[15] B. Osgood, The fourier transform and its applications, Electrical Engineering
Department, Stanford University.

[16] R. Matusiak, Implementing fast fourier transform algorithms of real-valued sequences
with the tms320 dsp platform, Application Report SPRA291 (2001).

[17] J. L. Gustafson and I. T. Yonemoto, Beating floating point at its own game: Posit
arithmetic, Supercomputing Frontiers and Innovations 4 (2017), no. 2 71-86.

[18] I. Koren, Computer arithmetic algorithms. AK Peters/CRC Press, 2001.

[19] I. Committee et. al., 754-2008 ieee standard for floating-point arithmetic, IEEE
Computer Society Std 2008 (2008).

[20] R. Yates, Fixed-point arithmetic: An introduction, Digital Signal Labs 81 (2009), no. 83
198.

[21] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing.
Prentice-Hall International, 1975.

[22] “Fixmath user’s manual.” http://www.nongnu.org/fixmath/doc/. Accessed:
19/09/2019.

[23] “Skarab.” https://www.ska.ac.za/science-engineering/meerkat/about-meerkat/.
Accessed: 05/11/2019.

[24] R. Woods, J. McAllister, G. Lightbody, and Y. Yi, FPGA-based implementation of signal
processing systems. John Wiley & Sons, 2008.

[25] J. Tarango, “Introduction to fpgas.”
http://www.cs.ucr.edu/~jtarango/cs122a_intro_to_fpgas.html. Accessed:
16/12/2019.

[26] “Casper - about the collaboration.”
https://casper.berkeley.edu/index.php/about/. Accessed: 25/08/2019.

[27] “Skarab.” https://github.com/casper-astro/casper-hardware/blob/master/FPGA_
Hosts/SKARAB/README.md. Accessed: 05/11/2019.

https://casper.ssl.berkeley.edu/astrobaki/index.php/Radio_Astronomy:_Tools_and_Techniques
https://casper.ssl.berkeley.edu/astrobaki/index.php/Radio_Astronomy:_Tools_and_Techniques
http://www.nongnu.org/fixmath/doc/
https://www.ska.ac.za/science-engineering/meerkat/about-meerkat/
http://www.cs.ucr.edu/~jtarango/cs122a_intro_to_fpgas.html
https://casper.berkeley.edu/index.php/about/
https://github.com/casper-astro/casper-hardware/blob/master/FPGA_Hosts/SKARAB/README.md
https://github.com/casper-astro/casper-hardware/blob/master/FPGA_Hosts/SKARAB/README.md

Bibliography 113

[28] E. Chu and A. George, Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. CRC Press, 1999.

