

SCHOLARLY COMMONS

Undergraduate Student Works

Prescott Campus

4-24-2020

Zenith Propulsion

Bryce Smoldon Embry-Riddle Aeronautical University, smoldonb@my.erau.edu

Matthew Boban Embry-Riddle Aeronautical University, bobanm@my.erau.edu

Maxwell Kauker Embry-Riddle Aeronautical University, kaukerm@my.erau.edu

Jonathan Noble Embry-Riddle Aeronautical University, noblej5@my.erau.edu

Stefan Johnson Embry-Riddle Aeronautical University, johns112@my.erau.edu

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/pr-undergraduate-works

Part of the Aeronautical Vehicles Commons, and the Propulsion and Power Commons

Scholarly Commons Citation

Smoldon, B., Boban, M., Kauker, M., Noble, J., Johnson, S., Lucka, A., & Wright, N. (2020). Zenith Propulsion. , (). Retrieved from https://commons.erau.edu/pr-undergraduate-works/1

This Presentation without Video is brought to you for free and open access by the Prescott Campus at Scholarly Commons. It has been accepted for inclusion in Undergraduate Student Works by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Authors

Bryce Smoldon, Matthew Boban, Maxwell Kauker, Jonathan Noble, Stefan Johnson, Andrew Lucka, and Nicholas Wright

This presentation without video is available at Scholarly Commons: https://commons.erau.edu/pr-undergraduateworks/1

ZENITH PROPULSION

Final Presentation

April 24, 2020

Primary objective of Zenith Propulsion

The objective of Zenith Propulsion is to successfully launch and recover a liquid bi-propellant rocket.

Top level design requirements

- Successful launch must leave the launch rail.
- Successful recovery must deploy the parachutes and lands with minimal damage.
- The team shall meet all safety requirements put forth by the Friends of Amateur Rocketry

PROPIII STON

Team members & roles

Name	Primary Role
Bryce Smoldon	Design Team Lead, Structures RE
Matt Boban	Feed System RE
Jonathan Noble	Engine Redesign RE
Andrew Lucka	Propellant Tanks RE
Stefan Johnson	Avionics RE
Nicholas Wright	Aeroshell RE
Max Kauker	Ground Support Equipment RE

RE: Responsible Engineer

Agenda

- Review project background
- Discuss design and predicted performance
- Provide vehicle status update
- Provide budget and timeline status update

Project Background

Stefan Johnson

Friends of Amateur Rocketry (FAR)

- Put forth a challenge to universities to develop and launch bipropellant launch vehicles
 - FAR-Mars Competition (2017)
 - Dollar Per Foot (DPF) Challenge (2019)
- Offering substantial amounts of money to successful teams
 - FAR-Mars: \$50,000-\$100,000
 - DPF: \$1 \$328,084

FAR-Mars qualification requirements

- Target Apogee: 30,000 feet above mean sea level (MSL).
- Ground-hit velocity: 20 ft/s or less with minimal damage.
- Total impulse limit: 9,208 lbf-s.

5/1/2020

• The team shall meet all safety requirements put forth by the Friends of Amateur Rocketry

Tiber Designs (2018-2019)

• Developed ERAU-Prescott's first successful bi-propellant rocket engine in response to FAR-Mars challenge.

Altair Design Overview & Predicted Performance

Nicholas Wright

Design parameters to reach target altitude

Design Parameter	Value
Engine Thrust Curve	-9.04*t+900 lbf
Engine Burn Time	10 seconds
Propellant Mass	45.7 lbm
Altair's Diameter	6.2 inches
Nose Cone Length	30.7 inches
Altair's Length	250 inches
Engine Nozzle Exit Area	18.9 in ²
Fin Planform Area	200 in ²
Fin Sweep Angle	70°
Inert Mass Limit	112.8 lbm
Max Acceleration	7 gees
Max Structural Loading	(See next slide)

Max structural loading

ZENITH

Altair design overview

Seven subsystems

- Engine Propel the rocket
- Propellant tanks Hold required propellant
- Feed system Deliver required propellant to engine
- Structure Support internal components during flight
- Aeroshell Protect payload and improve aerodynamic performance
- Recovery system Provide a safe descent and landing for rocket
- Ground support equipment (GSE) Control prop loading, pressing, launch sequence PROPULSTON

ZENIT

Current mass rollup & engine performance

Component	Mass (lbm)
Engine	14.0*
Feed System	31.0**
Tanks	30.0*
Structure	20.0*
Aeroshell	17.3**
Recovery	11.6**
FAR Payload	2.2*
INERT MASS	126.1**
Propellant	45.7**
TOTAL MASS	171.8**

- * = Known Values
- ****** = Estimated Values

Mass rollup comments

- Current design 13.3 Ibm of inert mass over budget
- Aggressive schedule limited redesigns to reduce mass

Current engine performance

- Average thrust curve of -21.45*t + 756.7 lbf
- Capable of 10 second burntime

Predicted performance of Altair

Trajectory Model Inputs	Trajectory Model Outputs	90.01	• ECO
Inert Mass 126.1 lbm	Total Engine Impulse 6494 lbf-s		
Propellant Mass 45.7 lbm	Max Altitude (no wind) 18.4 kft	deg)	
Engine Thrust -21.45*t Curve +756.7 lbf	Max Altitude (worst- case wind scenario)	Pitch (\backslash
Engine Burntime 10 seconds	Max Acceleration 3.4 g's		
Altair's Length 277 inches	Max Mach Number 0.92	0.16	
Altair's Diameter 6.2 inches		0 10 20 30 Time (s))
Nose Cone Length 30.7 inches			
Nozzle Exit Area 18.9 in^2		No tumbling despite performance	;e
Fin Planform Area 206 in^2		decrease, thus primary objective) İS
Fin Sweep Angle 69.9°		still achievable.	1

ZENI

PROPULSION

Vehicle Status

Andrew Lucka

Vehicle integration

Subsystem	% Complete
Propellant Tanks	100%
Structure	95%
Feed System	95%
Ground Support Equipment	95%
Engine	90%
Aeroshell	60%
Recovery	40%
Total	82%

ZENITH

Propellant tank fabrication

Tank main bodies after being cut to length

LOX (top) & Fuel (bottom) tank main bodies on lathe

Turning OD of LOx Tank

CNC machining of a top endcap

Propellant tank fabrication

Tensile test specimens

Hydrostatic pressure testing

 Analyzed welds internally using borescope

5/1/2020

- Lox and Fuel tanks tested to 1.5MEOP (1.5 x 550 = 825 psi)
- Extra "boomie" tank fabricated and tested to 1900psi
 - Need to test to failure

Propellant tanks – successes and downfalls Successes: Downfalls:

•

- Structurally sound at 1.5x working pressure
- Simple design of components
- No risk of leaks at endcaps
- Under original weight projection
- Under budget

Unable to be opened for cleaning

Overbuilt, weight penalty

Structure fabrication

Raw Material

Milling C-channel

Post machining cleanup

Waterjet Bulkheads

Structure assembly

First physical visualization of Altair

5/1/2020

Engine mounting

Engine Mount - Post Weld

Structure - successes and downfalls

- Successes:
 - Simple design
 - Easy to assemble
- Downfalls:
 - Heavy
 - Overbuilt

5/1/2020

Feed system fabrication

Pressurant Gas Storage

PROPULSION

5/1/2020

Cavitating venturi installation

Venturi fits inside flared fitting

Flared sealing surface is replaced by venturi flare

Fuel venturi installed below fuel tank

Left = Fuel Venturi Right = LOx Venturi

Feed system- successes and downfalls

• Successes:

5/1/2020

- Simple, functional design
- Easy to change out or add parts as needed
- Downfalls:
 - Some oversight for last-minute changes
 - Sub-optimal layout
 - Better planning could have reduced some mass

Ground support equipment

Console view of test article

Low pressure GN2 for pneumatics

GSE in test configuration

Ground support equipment

Success:

- Interface with vehicle smooth
 and consistent
- REDS system works
 beautifully
- Ground plumbing simple and quick

Difficulties:

- DAQ box documentation
 - Floating ground
 - Common positive terminals
 - Inputs / outputs not marked

Quick release connection

DAQ box mobile

Combustion chamber fabrication

Blank silicaphenolic throat insert Machining the throat contour

Throat insert ready for silica wrap

Throat insert on mandrel

Mandrel Extension Completed chamber

Throat insert reduces thrust-loss rate by slowing erosion of the engine's throat.

31

Aeroshell body shell status & to-do items

Status update

- Necessary materials to fabricate acquired
- All 6 lower layer composite segments made
- Began joining the segments together

To-do items

- Bond upper composite layer to lower layer to complete body shell
- Validate that body shell will handle expected aerodynamic loads

5 lower layer segments with nose cone, fins, & engine

PROPULSION

Aeroshell fin can status & to-do items

Status update

• All 3 fin cores fabricated

To-do items

- Attach fins to body shell once body shell design is validated
- Validate that the fin can will handle expected aerodynamic loads

3 fin cores of aft swept leadingedge trapezoid shape

Approximate layout of fins on aeroshell body

Recovery housing

Recovery next steps

• To-do items:

- Vacuum chamber test of microcontrollers
- Finish cover on housing to accommodate CD3
- On-ground test of recovery
 - Off-vehicle test of CO2 system
 - Fully integrated on vehicle test of just CO2 system
 - Cable cutter testing with parachute bundle
 - Fully integrated on vehicle test of harnessing and parachute deployment
 - Trial-and-error nature of packing

PROPULSTON

Vertical test stand fabrication

Thrust takeout after welding

I-beam support holes being drilled

Assembly in Test Cell 2

Vertical test stand – shortcomings

Issues of design:

- Being designed based on • Janus 2 feed line layout
- Blast pan •

PROPULSION

Testing & Launch

Jonathan Noble

5/1/2020

Test cell 3 test campaign

Tests completed

- 1A Low pressure GN2 activation
- 1B-1D LN2 cold flow
- 1E-1F Water cold flow
- 1G-1H Snow flows
- 2A 4 sec hotfire
- 2B Chamber Failure
- 2C Flight-duration attempt, manual abort
- 2D Flight-duration hotfire

Chamber Failure

Flight Qualification

October 2019:

 Successful ten second burn leading to proven flightreadiness

Vertical Lift Operation

Vertical lift rehearsal on 02/27/2020 lessons:

- Orientation of the vehicle for access to quick-disconnects.
- Placement of pneumatic actuators.
- Uninhibited positioning of guy wires.

Final vertical lift on 03/04/2020

Vertical cold flows

Vehicle control	
Propellant loading and offloading	
Tank pressurization	
Valve sequencing	
Expected flowrates and pressures	
<image/>	

Film cooling flow rate is low due to pressure loss in elbow fittings.

Plans for vertical hot fire

- After success of cold flows to prove film cooling a hot fire could follow
- One hot fire in Fall 2020 for a burn with full tanks, lasting approximately 10 seconds
 - Thrust vs time plot and video can be sent to FAR after a successful hot fire
 - After success of hot fire, 30 days until launch

PROPULSION

Plans for launch

• Contingency plan for the fall

- Like the hot fire, launch delayed until Fall 2020 at the earliest
- Knowledgeable students still at Embry-Riddle to complete the project
- Back up all of the content on the team drive and putting on a portable hard drive so knowledge base of decisions on project are saved

Budget & Timeline Update

Bryce Smoldon

Project budget & resources

Initial Project Cost Prediction: \$15,000

Total Project Expenses as of 3/4/2020: \$20,784

Average: \$113 per day for 184 days

PROPULSION

ZENITH

Pre-COVID-19 Timeline

Conclusions

Bryce Smoldon

Conclusions

- Confident that objective will be meet
- Most subsystems are validated with minor oversights that will be fixed
- We were on track to meet deadlines before pandemic.
- Due to the generosity from the URI and ME Department Chairperson all funding necessary was provided and used.

Special Thanks / Acknowledgements

- Professor Gerrick
- Dr. Haslam
- Dr. Dannelley
- Dr. Boettcher
- Dr. Bryner
- Dr. Fabian
- Dr. Haven

- Virginia MacGowan
- Jared Vanatta
- Jeff Hyatt
- Patrick Lavelle
- Director Michael Brady
- Stellar Exploration
- Triton Space Technologies

Questions?

Supplemental Slides

Vertical test stand (VTS)

- FAR-Mars competition requires a test of the vehicle in the flight configuration.
- Test cell 2 allows testing on campus
- Currently no thrust takeout or flame deflector is installed
- I-Beam structure with vehicle cradle and thrust takeout
- Winch structure supports from above
- Three load cells measure thrust

Level 1.0 requirements - vehicle design

- 1.1 The launch vehicle shall use a bi-propellant rocket engine.
 1.2 The launch vehicle shall utilize dual-deployment parachute recovery with a drogue parachute deployed at apogee and main parachute deployment below 1,000 feet.
- **1.3** The launch vehicle shall not have active guidance.
- **1.4** The launch vehicle shall have fixed fins.
- **1.5** The launch vehicle shall carry a payload provided by FAR that will monitor the launch vehicle's altitude at apogee. (see Level 3.0 Requirements Payload)
- **1.6** The payload compartment shall be radio transparent.
- **1.7** The payload compartment shall be vented to the atmosphere.
- **1.8** The payload compartment shall be attached to the main body of the launch vehicle.
- **1.9** The payload shall be attached to the main body of the launch vehicle.

Level 1.0 requirements - vehicle design

- **1.10** Relief values on tanks shall be rated at 1.25 times the maximum operating pressure.
- **1.11** Propellants shall be filled and drained from the bottom of the launch vehicle.
- **1.12** Propellant fill and drain valves shall be accessible from ground level.
- **1.13** Manual vent valves shall be accessible from ground level.
- **1.14 Propellant tanks shall have the Rocket Emergency Depressurization System (REDS).**
- **1.15** Tanks shall have remote electronic pressure instrumentation for tank pressures.
- **1.16** Fluid umbilicals shall release from the launch vehicle through electromechanical, pneumatic, or lift-off release mechanisms.
- **1.17** Electrical umbilicals for remote vent controls and pressure instrumentation shall have lift-off or pull-release mechanisms.
- **1.18** The electrical ignition shall have a key lock-out on the pad with the same key lock-out at the main launch controller.

Level 2.0 requirements - competition

2.1	The team shall submit a video recording of the static firing by February 1, 2020.
2.2	The team shall submit a thrust-versus-time plot of the engine system by February 1, 2020.
2.3	The launch vehicle shall be assembled for the on-site safety inspection on the launch date.
2.4	The launch vehicle shall pass a safety inspection conducted by FAR before launch.
2.5	The launch vehicle shall be mounted on the launch rail, loaded with propellants, and successfully flown within a 2-hour time limit.
2.6	The team shall complete the Safety Form on the FAR website.
2.7	The team shall complete the Qualification Form on the FAR website.
2.8	The team shall register for the competition by February 1, 2020 on the FAR website.
2.9	The team shall confirm intent to launch and select a launch day by March 20, 2020 on the FAR website.

Level 3.0 requirements - payload

3.1	The launch vehicle shall accommodate a payload with a weight of 2.2 lbf (1 kg).
3.2	The launch vehicle shall accommodate a payload with a diameter of 3 inches and a length of 5 inches.
3.3	The launch vehicle shall accommodate a payload that utilizes a GPS and an altimeter that are powered by an internal battery.

Predicted Performance Graphs

Matt Boban

5/1/2020

Worst case wind scenario

5/1/2020

Predicted flight condition plots

Predicted drag plots

Position, velocity, & acceleration plots

Pitch & angle of attack plots

Risk Reduction

Matt Boban

Project contingencies

• Janus 2

- Meeting project objective of flight
- Integrate Janus 1 into design
- Proceed with Janus 2 fabrication
- Vertical Test Stand
 - FAR-MARS vertical test requirement
 - Deadline of 2/1/20
 - Point of no return: end of November
 - Decision: hot fire at FAR

67

GSE extended BOM

Item	Vendor	Descriptio Cost		QTY	EXT Cost	
CPC 37 Pin		uncer the sec				
connector FMLE	Digikey	PT / VLVE	6.20	2	\$	12.40
SD-130 Connector	î		· · · · · · · · · · · · · · · · · · ·			
MALE	Digikey	quick rls	3.15	2	\$	6.30
SD-130 Connector						
FMLE	Digikey	vhcl side	5.20	2	\$	10.40
Diode 1kv 1a	Digikey	DIODE	0.10	16	\$	1.60
20awg wire 16ft						
spools	Digikey	PT / VLVE	28.42	1	\$	28.42
Key Lockout	Digikey	Lockout	3.46	2	\$	6.92
Cat 6 MOLEX	Digikey	Connect	1.57	2	\$	3.14
Cat 6 Boot	Digikey	strn releif	0.37	10	\$	3.70
CONN RCPT MALE		lg sens ig				
2POS SOLDER CUP	Digikey	volt	3.66	1	\$	3.66
CONN PLUG FMALE 2POS SOLDER CUP	Digikey	lg sens ig volt	5.96	1	S	5.96
Wire for base						
valves	Digikey	Gnd valves	12.15	1	\$	12.15
SD-130 Inline						
connect	Digikey	Quick rls	5.47	2	\$	10.94
REDS ConnecTOR					_	
pins	Mcmaster	Crimp pins	10.76	1	\$	10.76
REDS Connector						
MALE	Mcmaster	REDS	1.75	1	\$	1.75
REDS Connector						
	Adamaster	PEDS	2.5	1	5	3 50

TOTALS Allocated Budget \$ 200.00 % Budget Used

61%

Buckling equations

•
$$P_{CR} = \frac{\pi^2 * E * I_{yy}}{l_e^2}$$

• $\sigma_{CR} = \frac{\pi^2 * E}{\left(\frac{l_e}{r}\right)^2}$
• $r = \sqrt{\frac{I_{yy}}{A}}$

- P_{CR} = Critical Load
- σ_{CR} = Critical Stress
- $l_e = Effective Length$
- r = Radial Gyration

Bolt sizing equations

Shear in Bolt:

• $\tau_{max} = \frac{P * F.S.}{2 * A_{Fastener}}$

Bearing:

•
$$\sigma_{Br} = \frac{P * F.S.}{A_{Hole}}$$

Shear in Plate:

•
$$\tau_T = \frac{P * F.S.}{2 * C * t}$$

Tear Out:

•
$$\tau_{TO} = \frac{P * F.S.}{(w-d) * t}$$

- T = Shear Strain
- $\sigma =$ Shear Stress
- P = Loading
- A = Cross Sectional Area of Fastener
- F.S. = Factor of Safety
- C = Distance From hole to edge of plate
- t = Plate Thickness
- w = Width of Plate
- d = Diameter of hole

Buckling calculations

- Pin-pin support
- Effective Length (Le) = 36 in
- Critical Stress = 29.49 ksi
- Applied Stress = 3.357 ksi

5/1/2020

Bolt sizing

	Ribs	Margin of Safety	Rail Guides	Margin of Safety
Bolt Dia (in.)	10-32		8-32	
Shear of Bolt (ksi)	10.485	6.630	22.159	2.159
Bearing Stress (ksi)	12.912	5.351	23.599	1.839
Tear Out (ksi)	2.531	14.015	4.000	9.500
Shear of Plate (ksi)	8.325	2.123	6.051	4.784

Extruded part selection

Standard Dimensions Used:

- Width: 1 in
- Height: 1 in
- Length: 15 ft

Parameter	T-Bar	I-Beam	C-Channel
Moment of Inertia (in^4)	0.011	0.0526	0.0526
Total Weight (lb)	3.4277	5.027	5.027
Cost Per Foot	\$2.84	N/A	\$3.57

• C-Channel was chosen

Material selection

Parameter	6061-T6 Aluminum	6063-T5 Aluminum	304 Stainless Steel
Ultimate Strength (ksi)	42	27	73.2
Density (lbm/in^2)	0.0975	0.0975	0.285

- 6061-T6 Aluminum was chosen for the rib supports
- 6063-T6 Aluminum was chosen for the extruded parts

Stress calculations

Buckling Calcs:

- Effective Length (Le) = 36 in
- Critical Stress = 29.49 ksi
- Applied Stress = 3.357 ksi

Bolt Sizing:

- Size: 10-32
- Driving M.S. = 2.123 (Shear of Plate)
- Size: 8-32
- Driving M.S. = 1.839 (Bearing)

Bending of Plate:

- Max Displacement: 0.000154 in
- Max Stress: 158 psi

Rocket propulsion analysis program outputs

Thrust and mass flow rates

(opt):	996.59627	lbf
(vac):	289.94109	S
(vac):	1120.45935	lbf
(opt):	257.88906	S
rate:	3.86444	lbm/s
rate:	2.72449	lbm/s
rate:	1.13995	lbm/s
	(opt): (vac): (vac): (opt): rate: rate: rate:	(opt): 996.59627 (vac): 289.94109 (vac): 1120.45935 (opt): 257.88906 rate: 3.86444 rate: 2.72449 rate: 1.13995

Geometry of thrust chamber with parabolic nozzle

	Dc	=	3.63	in	b	=	30.00	deg		<u> </u>	<u> </u>	
	R2	=	2.94	in	R1	=	1.28	in			_ Lcy	
	L*	=	35.00	in	L .						_	
	LC	=	8.85	in	Lcyl	=	6.05	in				
	Dt	=	1.71	in								
	Rn	=	0.33	in	Tn	=	19.99	deg				
	Le	=	4.53	in	те	=	8.00	deg				
	De	=	3.93	in	L							
Ae	/At	=	5.28									
Le,	/Dt	=	2.65									
Le/	c15	=	108.12	olo	(relative	e t	o length	ı of	cone nozzl	e with	Te=15	deg)

Janus 2.0 thrust vs. altitude

77

PROPULSION

ZENITH

Janus 2.0 I_{SP} vs. altitude

78

PROPULSION

ZENITH

Pressurant gas selection

	GN2	GHe
Cost (\$/ft^3)	0.015	0.086
Reqd Tank Vol (ft^3)	0.1778	0.2065
Density (Ibm/ft^3)	0.078	0.011
Total Mass Reqd	2.578	0.4278

Cavitating venturis for mass flow regulation

Parameter	Value
Total Fuel Flow Rate	1.54 lbm/s
Fuel Film Cooling Flow Rate	0.21 lbm/s
Oxygen Flow Rate	3.21 lbm/s
Pressurant Flow Rate	175.9 scfm
Injector Pressure	360 psi
Venturi Inlet Pressure	520 psi

Cavitating venturis for mass flow regulation

Specifications			
Cost (QTY 2)	\$O		
Mass flow rate (fuel)	1.54 lbm/s		
Mass flow rate (lox)	3.21 lbm/s		

5/1/2020

Ball valves

Feed system mass

ltem	Mass
Pressurant Tank	12.3 lbm
Regulator	2.87 lbm
Pyro Valve	2.23 lbm
Main Valves	2.2 lbm
Relief Valves	2.1 lbm
Vent Valves	1.5 lbm
Fittings & Tubing	7.8 lbm
TOTAL	31.0 lbm
BUDGET	29.1 lbm

GN2 tank sizing equations

0.07374759 ft^3/s Vol flow rate regd Mass flow rate regd Reg set pressure Burn time Usable mass reqd GN2 tank pressure **Residual mass** Total mass regd Tank vol regd D Н Vol approx

0.1982205 lbm/s 550 psi 79200 psf 10 seconds 1.98220498 lbm 0.06160881 slug 3000 psi 432000 psf 0.01383055 slug 0.07543936 slug 0.16738109 ft^3 5.25 in 19.48 in 421.694018 in^3 0.24403589 ft^3

 $\dot{V}_{GN2} = \dot{V}_{fuel} + \dot{V}_{lox}$ $\dot{m}_{GN2} = \dot{V}_{GN2} * \rho_{GN2 \otimes 550}$

 $m_{GN2} = \dot{m}_{GN2} * t_{burn}$

$$\begin{split} m_{res} &= m_{GN2}/(p_{tank}/p_{reg}-1) \\ m_{tot} &= m_{GN2} + m_{res} \\ V_{tank} &= m_{tot} R_{GN2} T/p_{tank} \end{split}$$

$$V_{tank} = \pi \frac{D^2}{4} H$$

Effect of acceleration on cavitating venturis

Fuel		LOX	X		
Parameter	Calculation	Parameter	Calculation		
Max acceleration	7 g _E	Max acceleration	7 g _E		
Delta inlet pressure	262 psf	Delta inlet pressure	3572 psf		
Excess mass flow	0.028 lbm/s	Excess mass flow	0.066 lbm/s		
Excess mass total	0.254 lbm	Excess mass total	0.610 lbm		

Excess thrust: ~20 lbf

Vertical test stand (VTS) requirements

System Requirements

- Support full-duration vertical test fire (Requirement 2.1)
- Measure engine thrust during test fire (Requirement 2.2)
- Integrate with ground support equipment

5/1/2020

Vertical test stand (VTS)

Overview of vehicle control

Capability

- C++ in Arduino integrated development environment (IDE)
- Auto sequence and Labview-powered abort

Utilization

- Modular when used with the IDAQ box present in Test Cell 3
- Modifications to original code make use in Vertical Testing and launch vehicle possible

Vehicle recovery system selection

Parachute recovery

- Drogue deployment at apogee
- Main deployment at 1000 ft AGL
- Data logging

5/1/2020

• Running off a 9V battery

• Telemega chosen as primary

[12]

Avionics housing views

Engine Redesign

Jonathan Noble

Engine design requirements

- 6" Maximum Overall Diameter
- Maintain Janus 1.0 performance

Janus 2.0 PROPULSION

ZENIT

Engine design overview

Thrust	1000 lbf
Specific Impulse	257 s
0/F	2.39
Chamber Pressure	300 psi
Injector Pressure	360 psi
Total M	3.71 lbm/s
L*	40in

16"

Ablative chamber design

- Rocket Propulsion Analysis (RPA)
- Increased L*
- Undersized contour
- High temp epoxy & silica strips

Ablative chamber performance

- Success: Full Duration Test
- Post Analysis

5/1/2020

• Ablative improvements

Composite overwrap evolution

- Chamber Failures
- Quality Control

5/1/2020

- Bi-directional fibers
 - Axial & circumferential retention

Janus 1 test data

- Not meeting design performance
- 750lbf @ 250psi
- Projected 200lbf loss (20lbf/s)
- Full thrust curve (11/24)

5/1/2020

Comparison of Janus 1.0 & Janus 2.0

Seals

- 7 sealing surfaces
- 2 face & 5 radial seals
- (1) Teflon O-rings (3/4")
- (6) Viton O-rings (3/8", 15/16", 2", 4³/₄")

Critical fit

- Maintain .016" (\pm .0005") concentric annular gap
- Cryogen Compatible
- Tapered Fit
- 1 5/16" 28 Class 2 UN Threads

Assembly of Janus 2.0

PROPULSION

5/1/2020

Test 2B still frames of chamber failure

https://www.youtube.com/watch?v=XuWL5tYr21A

Preliminary weld testing

Filler Rod Material	Avg Yield Strength (PSI)	Avg Ult Strength (PSI)
4043, un-aged	11,000	12,435
4047, un-aged	10,837	11,110
5356, un-aged	10,838	13,622
4043, aged	11,660	12,367
4047, aged	14,900	16,247
5356, aged	13,130	14,201

