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ABSTRACT 
 

In this work, the connection between topology optimization and load transfer has been 

established. New methods for determining load paths in two dimensional structures, 

plates and shells are introduced. In the two-dimensional space, there are two load paths 

with their total derivative equal to the transferred load, their partial derivatives related to 

stress tensor, and satisfying equilibrium. In the presence of a body load the stress tensor 

can be decomposed into solenoidal and irrotational fields using Gurtin or Helmholtz 

decomposition. The load path is calculated using the solenoidal field. A novel method for 

topology optimization using load paths and total variation of different objective functions 

is formulated and implemented. This approach uses the total variation to minimize 

different objective functions, such as compliance and norm of stress subjected to 

equilibrium. Since the problems are convex, the optimized solution is a global optimum 

which is found by solving the Euler-Lagrange optimality criteria. The optimal density of 

a structure is derived using optimality criteria and optimized load paths. To attain the 

topology of the microstructure, the principal load paths that follow the optimal principal 

stress directions are calculated. Since the principal stress vector field is not curl free, a 

dilation field is multiplied to extract the curl free component of principal stress vectors. 

The principal vector field has singularities which are removed by an interpolation scheme 

that rotates the vectors by n to construct a coherent vector field. The optimal periodic 

rectangular microstructure is constructed using the load functions and microstructure 

dimensions. The advantage of this scheme is that using the load path reduces the 

equilibrium constraints from two to one, and the variables are reduced from three stresses 

to two load functions. The non-linear elliptic partial differential equations which are 
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derived from the total variation equations (Euler-Lagrange) are solved using the Gauss-

Newton method which has a quadratic convergence, speeding up the convergence 

towards the optimal structure.  
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1 INTRODUCTION 

In structural mechanics, the knowledge of the load paths could provide critical 

insights into the performance, functionality, and efficiency of the structure. The load 

paths in a structure help the designer to understand how the loads flow throughout the 

structure and ensure that the loads are transmitted and distributed according to the desired 

structural responses. In fact, the use of loads in design optimization can be traced back to 

the Michell structure, which was designed based on the total tension and total 

compression loads (Michell, 1904). After the emergence of numerical methods, mainly 

the finite element method (FEM), the design process has moved away from the 

calculation of internal forces and focused to a greater extent on the approximation of 

stress. The local stresses are aggregated into a single relationship and used as a constraint 

or as an objective function in most of the current design methods.  

These types of approximations cause the loss of physics in the design process, 

which sometimes results in difficulty in determining the optimal design. Indeed, it has 

been proven that approximations based on internal forces in the design optimization 

process, which are more invariant than stresses and strains are more accurate than stress- 

or strain-based approximations (Vanderplaats et al., 1989; Vanderplaats et al., 1993). 

Despite the importance of load paths in structural mechanics, the computational structural 

methods (e.g., FEM, the Ritz method, and the meshless method), and as a result the 

commercial software (e.g., ANSYS, MSC Nastran, and ABAQUS), do not provide 

information regarding the load transformation throughout the structure. The existing 

approaches used to identify and visualize load paths are discussed in the following.  
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Principal stress trajectories formed the basis of the first method used to determine 

the load paths in structures. The principal stresses are directed along axes with null shear 

stresses. In this method, load paths are assumed to be tangent to the vector field of the 

compressive and tensile principal stresses. Although the tension and compression forces 

may be made constant on the principal stress trajectories with proper equivalent 

thicknesses, the paths along them do not, in general, describe the load transfer from 

applied load to reaction points.  

Another method for identifying the load paths uses the direction and the trajectory 

of the stress pointing vectors (Kelly et al., 2011; Kelly et al., 1995; Kelly et al., 2000; 

Waldman et al., 2002). In this approach, the load paths are defined as curves along ‘load 

tubes’ that carry a constant load. The continuity in the load path is ensured by using the 

equilibrium of forces acting on the load tube. It has been shown that the stress applied on 

the walls of the force tubes does not contribute to the equilibrium, meaning that the sum 

of all forces acting on the walls is equal to zero. The Runge-Kutta algorithm is used in 

this method to trace the contours of the vector field.  

The concept of transferred forces and potential transferred forces is also used to 

investigate load paths in structures (Harasaki et al., 2001). To find the transferred force in 

an element using this method, first the displacements of the whole structure and the load 

transferred to the support are calculated. The next step is to remove the element and apply 

the displacements that were calculated in the first step and then calculate the load that is 

transferred to the support. The difference between the transferred loads in these two steps 

is the load that is transferred through the element. Since the number of analyses is equal 

to the number of elements in the structure in which the transferred load is of interest, this 
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method requires many simulations and extensive computation time to calculate the load 

transfer in the entire structure. A method for load path determination was also proposed 

based on a compliance energy that is calculated using the transferred forces (Hoshino et 

al., 2003; Sakurai et al., 2007). In this method, the compliance energy was obtained 

according to the ratio of the reactive force with an arbitrary point in the structure unfixed 

and the reactive force with the point fixed when force is applied to the structure.  

Therefore, the defined compliance energy quantifies the connective strength 

between the loading point and an arbitrary point. Recently, this method has been 

extended to rotational and translational six degrees of freedom instead of three 

translational degrees of freedom (Wang, Telichev, et al., 2017). Same authors extended 

this method to orthotropic composites and nonlinear materials (Wang, Pejhan, et al., 

2017; Wang et al., 2016). The experimental validation of this method has also been 

carried out (Pejhan et al., 2017), and it has been used for different applications such as 

public transportation vehicles (Pejhan et al., 2018), and submarines (Shang et al., 2018).  

In recent years, physical descriptions of load paths have been used to synthesize 

optimal compliant mechanisms (Lu et al., 2005; Santer et al., 2009). The load paths in 

compliant mechanisms are defined using geometric descriptions for the connectivity of 

the point of application and the point of support. Optimization of the compliant 

mechanism uses binary variables to indicate the presence or absence of a load path. This 

method may have a limited range of applications due to the difficulties in presenting the 

load paths by connectivity for continuum structures (Venkataraman et al., 2009). 

In this research, the definition and formulations for load functions are introduced 

and the theoretical and computational foundation of an efficient and robust load path 
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algorithm based on the load functions are established. The proposed load function 

method can define the load paths and obtain the load flow using an Airy stress function 

for problems with available closed form solution, and can be easily integrated into the 

numerical approaches to provide load path contours and load flow for complex problems. 

Since the load paths are represented using a load function, the algorithm can provide 

information for sensitivity analysis in the design process. Additionally, the method 

introduced in this work does not need starting points to define the load paths, as are 

required in vector-based methods; the load paths are obtained from only a single 

computational analysis; and heuristic optimization is not needed in the process of 

determining the load paths. 

Next, the load function method is extended to plates and shells. The significant 

difference from load function method in 2D, plates and shells is that the equilibrium 

equations are not divergence-free. Therefore, Helmholtz decomposition is used to 

decompose the stress field to divergence and curl free components to calculate the load 

function and find load paths. Mathematical formulations are presented to support the 

proposed method, and numerical and analytical examples show the application of this 

method.  

Finally, the similarities of load path trajectory and Michell structure motivates an 

investigation to find the relationship of load path and structural optimization (Bouchitté et 

al., 2008; Kelly et al., 2000). The purpose of topology optimization is to determine the 

material distribution or shape and lay-out that minimizes an objective function e.g. 

compliance, and satisfies certain constraints such as equilibrium. The topologically 

optimized designs can be achieved by restricting the design space to obtain the solid-void 
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material distribution or relaxing the design space using microstructures or composite 

materials. The relaxation of the design variables is the direct results of homogenized 

macroscopic properties of microstructures. 

The relaxation of the design variables to obtain optimized structural response was 

suggested by (Kohn et al., 1986a, 1986b, 1986c), and implemented in topology 

optimization process by (Bendsøe et al., 1988), and (Allaire et al., 1993) by using square 

cell with a rectangular hole and rank-two laminates, respectively. Bendsoe and Kikuchi 

used the strain based formulation, and Allaire and Kohn used stress based formulation to 

optimize structural stiffness. While for rank-two laminates the homogenized material 

properties can be obtained analytically, the homogenized material properties for square 

cell with a rectangular hole are obtained using numerical homogenization (Guedes et al., 

1990).  

Later, the homogenization-based topology optimization method was extended to 

maximize the macrostructure performance with an optimization of the microstructure 

using inverse homogenization through a hierarchical computational scheme (Fujii et al., 

2001 ; Rodrigues et al., 2002; Sivapuram et al., 2016; Zhang et al., 2006; Zhu et al., 

2016). In this method, the macroscopic distribution of material is obtained in the outer 

loop, while the optimized microstructures and their corresponding homogenized 

properties are found in the inner optimization loop. The disconnectivity between 

microstructures of adjacent elements arises in this method, as the connectivity of 

microstructures is not considered as a constraint in the optimization process.  

One solution could be addressing disconnectivity issue in post-processing step, 

which is not only a tedious task, may result in unintended effect on objective function 
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and/or violating the constraints, and a structural design that would not perform as 

expected. Another disadvantage of separation of scales is the computational cost 

associated with finite element analysis for microstructure of each element. To alleviate 

the computational costs, parallel processing has been suggested. After determining the 

macroscopic distribution of material, each element can be separately analyzed to establish 

the optimized microstructure (Aage et al., 2017; Aage et al., 2014; Coelho et al., 2011). 

The use of parallel processing in multiscale topology optimization have been extended to 

non-linear materials (Nakshatrala et al., 2013) and laminated composites (Coelho et al., 

2015). An interesting application of parallel processing in topology optimization is its 

application for an airplane wing with resolution of two orders of magnitude higher than 

usual microstructure, which resembles the bone structure of birds (Aage et al., 2017).  

To address the computational issues in topology optimization of microstructures is 

multi scale finite element methods (MsFEM). The MsFEM has the capability of solving 

the equilibrium equations of composite microstructures equations with high accuracy on 

coarse mesh. The heterogonous nature of the composite structures causes the stiffness 

change drastically from one point to another, i.e. fiber to matrix. This periodic behavior 

can create noisy solutions. The idea is to use shape functions that capture small scale 

information within each element. Small scale information is brought into large scale 

through coupling of the global stiffness (Hou et al., 1997). The MsFEM method has been 

improved by (Allaire & Brizzi, 2005) through the change of variables for construction of 

the finite element basis, which allows a simple extension to high order finite element 

methods. 
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(Pantz et al., 2008) introduced a post-processing step to find the optimized 

microstructures and address the disconnectivity and computational cost issues in 

multiscale optimization. In this post-processing step the optimized homogenized density 

is determined on the macroscale and then projected on the fine mesh to find the 

optimized microstructures. The optimized structure is constructed as periodic square 

microstructure with its edges oriented in the directions of the principal stress directions. 

A Lagrangian is minimized for the post processing step to find two mapping functions 

according to the principal stress directions. Since the principal stress directions have 

singularities and possible sudden changes in the direction, Pantz et al. (2008) used several 

constraints in the Lagrangian to circumvent the principal stress directions singularities 

which resulted in a complex formulation. 

(Groen et al., 2018) modified the method by implementing the labeling method for 

the principal stress directions, and thus simplifying the process of obtaining the mapping 

functions. In both studies, while the mapping functions are determined by minimizing the 

norm of gradient of the mapping functions and principal stress directions, a conformal 

mapping may not be generated as the principal stress direction is not necessarily a curl-

free vector field. To resolve this issue, (Allaire et al., 2018) recently included the curl-

free condition in the optimization process and uses covering space to address the 

singularities of the optimized orientation. The above mentioned post-processing methods 

decrease the computational costs significantly by performing the homogenization on the 

coarse mesh, and construction of the microstructure on the fine mesh through one finite 

element analysis for each mapping function. 



8  

The focus of the current study is on the optimized periodic micro-lattices that are 

obtained for minimized compliance and norm of stress. A lattice is a network of struts 

connected for the purpose of creating stiff, strong load-bearing structures using as little 

material as possible, to be as light as possible (Ashby, 2006). The optimization of lattice 

structures can be traced back to Michell truss (Graczykowski et al., 2007; Hemp, 1966; 

Michell, 1904) which is designed based on maximum compression and tension loads. 

While the Michell structures are, the optimized lattice lay-outs that transfer the load from 

point of application to point of support (i.e. load paths), the relationship between load 

paths and optimized lattice lay-outs has not been established. As mentioned earlier, 

understanding the load flow within a structure provide valuable insight about the 

performance and efficiency of the structure and can serve as a tool to measure the 

structural functionality of a design. However, the load flow and load paths show the 

existing structural functionality and are not necessary optimal for a given structure. 

Therefore, in this work three important questions will be studied:  

(1) what is the definition of optimized load paths  

(2) how optimized load paths are determined  

(3) how the lattice lay-out is obtained from optimized load paths 

To address these questions, the objective and constraint functions for the optimized 

lattice structures must be defined. Two objective functions are considered, the structural 

stiffness and the norm of stress, and the results are compared. The constraints include the 

equilibrium equations and the traction boundary conditions. Then, the stiffness of 

structures, norm of stress, and equilibrium equation are written in term of the load 

functions. 
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It will be shown that by using the load functions as intermediate variables the 

number of design variables will be reduced to two and the constraints decreased to one 

which result in a lower computational cost. This process will clarify the calculation of 

optimized load paths. Since the derived optimization formulation is convex, total 

variation is used to find the stationary or global optimum. Total variation of Lagrangian 

leads to Euler-Lagrange optimality partial differential equations (PDEs), and will lead to 

non-linear PDEs that are solved using finite element, and Gauss-Newton method. The 

convergence of the Gauss-Newton method is quadratic compared to iteratively solving 

the compliance problem. Next, the principle load paths are defined and linked to the 

optimized load paths, and utilized to find the material orientation.  

In order to find the lattice layout using the principle load paths, rank-2 laminates 

are considered and the associated homogenized properties are written with respect to the 

principle stresses. To construct a mapping function from the principal load function, the 

singularities in the principal vector field are fixed and the vector field is converted to a 

coherent vector field using the tensor interpolation methods (Hotz et al., 2010). A dilation 

field is also used to establish the curl-free component of the principal vector field (Allaire 

et al., 2018). To construct the optimal orientation, the principal load paths are obtained 

along the reconstructed coherent vectors. Then, the principle load functions are used to 

project the material distribution to finite size micro-lattices, and a post processing step is 

implemented to remove small size members that are not manufacturable.  
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2 LOAD PATH IN TWO DIMENSIONAL STRUCTURES 

2.1 Methodology 
 
In this section, the derivation of the new load path identification and visualization 

method for plane elasticity problems is discussed. First, the structural load flow and load 

paths are defined. Then, the numerical approaches to solve the load functions to 

characterize and visualize load paths are discussed.  

Definition 1. Structural load flow is the component of internal loads, ∆FP	qr	∆FQ, 

that is transferred from-and-to external and reaction load application points throughout 

the structure. 

Definition 2. Structural load paths are the paths that trace the structural load flow 

(sP	qr	sQ enters or leaves only through the load path ends). 

To illustrate the above two definitions, consider a 2D continuum structure 

subjected to a traction (tu) on the ∂Dv	boundary of surface and supported on the 

∂Dw	boundary of surface shown in Figure 2.1 (a). The supports are removed and instead 

the reaction traction (tx) is shown in Figure 2.1 (b). As can be seen Figure 2.1 (c), the 

reaction force is transferred to another reaction point through  region Ω_ between paths 

y_	and	y`, and to the external force application points through region Ω`; the external 

force is also divided and transferred to another external force application point through 

region Ωz, and to the reaction point through region Ω`.  
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(a) (b) (c) 

 
Figure 2.1 (a) Continuum structure model (b) external and reaction loads (c) load transfer 
in the model 

 
Consider a plane elasticity problem subjected to boundary tractions tu	and	tx and 

body force b, but with no stress couples, or concentrated or distributed couples within the 

body. The equilibrium equations can then be written as, 

IJK,K + LJ = 0		in	Ω, IJK = IKJ (1) 

when referred to a rectangular Cartesian frame { = (}J). Here and in the sequel, italic 

indices take the values 1 or 2, the summation convention applies, Ω is the domain and 

(∙),J ≡ T(∙) T}J. In addition, we assume that the domain to be possibly multiply-

connected with N interior boundaries TΩ = TÅΩc
ÅÇ_ , that are subject to resultants of 

force, sJ
(Å), and moment, É(Å). 

Such stress tensor admits Gurtin’s decomposition of a symmetric rank two tensor 

(Admal et al., 2016; Fosdick et al., 2005; Fosdick et al., 2003; Gurtin, 1963): 

IJK = IJKM + IJKN , (2)  

where IJKM  is the following totally self-equilibrated stress 

IJKM = ÑJzmÑKzÖÜ,mÖ (3)  
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with Ü the Airy function and ÑJKá the permutation symbol; and IJKN  is a second order 

tensor (Gurtin, 1963), 

IáàN = âá,à + âà,á − !áàâJ,J (4)  

where !áà is the Kronecker delta, with âJ = âJ
ã + âJå such that 

âá,JJ
ã + Lá = 0		in	Ω 

âá
ã = 0	on	TΩ 

and, 

âáå =
1
2n sá

Å ln { − { Å −
c

ÅÇ_

1
4n É(Å) − ÑJK{(Å)sK

Å
ÑáK }K − }ç

(Å)

{ − { Å `  

(5)  

where, 

sJ
(Å) ≡ −sJ

Å − âJ,K
ã éKèê

	

ëíì
 

É	
(Å) ≡ −É	

Å − ÑJK}J
(Å)âK,á

ã éá − ÑKJâJ
ãéK èê

	

ëíì
 

(6)  

If the domain is simply connected, then âJå = 0, and if the body force is null, 

Gurtin’s representation reduces to the usual Beltrami one. In the case of simply connected 

domain where âJå = 0, the tangential derivative èâJ	/èï = 0, and âJ	 is tangent to the 

boundary. 

In analogy to the Helmholtz representation of vector fields, these equations 

describe two components of the stress field: a solenoidal and an irrotational. The 

component IJKM  is analogous to the solenoidal component of a vector field in a Helmholtz 

representation and is called solenoidal (Admal et al., 2016). A solenoidal vector field, for 

instance in fluid mechanics, admits a stream function and accompanying streamlines; and 
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streamlines have become the staple of fluid flow visualization, especially for complex 

flows. The flow portrayed by streamlines let an analyst quickly locate recirculating zones, 

separation lines, high shear regions, stagnation points, stagnant regions, etc. For the rank 

two stress field IJKM , not one but an infinite number of similar stream functions exist: one 

for each traction associated to a fixed direction ñJ, óJò = IJKM ñK, ñJñJ = 1. Among that 

infinite possibilities, we single out the two stream functions corresponding to tractions 

that are aligned with }ô	frame axes. The load functions are defined by the following 

equations: 

yP =
TÜ
Tô , yQ = −

TÜ
T}  

(7)  

and, 

IPPM =
TyP

Tô , IPQM 	
= −

TyP

T} , IQQM = −
TyQ

T} ,			 					IQPM =
TyQ

Tô ,				 

using Cauchy stress symmetry, 

			
TyQ

Tô = −
TyP

T}  

(8)  

The integration of total differential of yP }, ô 	and	yQ(}, ô) between two 

consecutive paths (paths 1 and 2) gives, 

∆ΨP = ΨP` − ΨP_ =
TΨP

T} è} +
TΨP

Tô èô
`

_
 

∆ΨQ = ΨQ` − ΨQ_ =
TΨQ

T} è} +
TΨQ

Tô èô
`

_
 

 

(9) 

 

By substituting Eq. (8) into Eq. (9):  
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∆ΨP = ΨP` − ΨP_ = −IPQM è} + IPPM èô
`

_
 

(10) 

∆ΨQ = ΨQ` − ΨQ_ = −IQQM è} + IPQM èô
`

_
 

(11) 

From Figure 2.2, Eqs. (10) and (11) can be written as: 

∆ΨP = −IPQM è} + IPPM èô
`

_
= ∆sPM 

(12) 

∆ΨQ = −IQQM è} + IPQM èô
`

_
= ∆sQM 

(13) 

Similarly, if the total differential of ΨP and ΨQ	are evaluated on the lines which ΨP =

öqéïñ and ΨQ = öqéïñ  

0 = −IPQM è} + IPPM èô = ∆sPM
	

õúÇkùmMò
 (14) 

0 = −IQQM è} + IPQM èô = ∆sQM
	

õûÇkùmMò
 (15) 

Eqs. (12-15) show that paths of constant load functions (ΨP and ΨQ) represent 

constant force component lines and the changes in ΨP and ΨQ between their two constant 

paths are equal to the constant load flow of the totally self-equilibrated component of the 

force that is transferred between those two paths. Indeed, we have shown the following 

result. 

There exist load functions, yP	héè	yQ, such that the changes in them between their 

two constant paths, ∆yP	héè	∆yQ, equals to the constant load flow of the totally self-

equilibrated stresses, ∆sPM	héè	∆sQM, that is transferred between those two paths. 

Therefore,  yP and yQ can be used to plot the structural load paths due to the totally 

self-equilibrated component of the load. In addition, in the case of a totally self-
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equilibrated stress, author’s load path definition and load functions agree with those of 

Kelly et al. (Kelly et al., 2011), who defined the load path as the field lines of the 

tractions óP = σ ∙ i = IPP† + IPQ°,	and	óQ = σ ∙ j = IPQ† + IQQj. 

 

 
    (a)    (b) 
Figure 2.2 Load flow and load functions 
 
To determine the load paths using Eq. (8), first the stress components IJKM  in the 

structure should be calculated. As will be shown later in the result section, if the Airy 

stress function is determined for a problem, then the load functions, and subsequently the 

load paths, can be easily obtained using Eq. (7). However, for complex problems, such as 

those with irregular geometry, computing the closed form of the Airy stress function 

might not be feasible. In these problems, usually numerical approaches (e.g. finite 

element method) are used to calculate the stresses. Therefore, a more desirable approach 

is to develop a numerical method to compute the load functions from the stress 

components. To do so, we use the weighted residual method. By taking the derivative of 

normal stress and shear stress with respect to y and x in Eq. (8) and using the weighted 

residual method, the following equation can be derived, 
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T`ΨP

T`ô +
T`ΨP

T`} Sè}èô = (
TIPPM

Tô −
TIPQM

T}dd
)Sè}èô	 

T`yQ

T`ô +
T`yQ

T`} Sè}èô = (
TIQPM

Tô −
TIQQM

T}dd
)Sè}èô 

(16) 

where Φ is the weight function. The major issue in Eq. (16) is computing the derivative 

of the stress components (ë£úú
§

ëQ
,			ë£úû

§

ëQ
, and	 ë£ûû

§

ëQ
). These stresses are computed from the 

first derivatives of the displacements, multiplied by the elasticity matrix, and are not 

continuous in general over the structural domain. Since the stress field is not continuous, 

determining its derivatives is a challenge. A possible solution is to remove the derivatives 

on stresses and place them on the weight function (S) by using integration by parts on 

both sides of Eq. (16): 

−
T	ΨP

T	ô
T	S
T	ô+

T	ΨP

T	}
T	S
T	} è}èô

	

d
+ −

T	ΨP

T	ô Sè} +
T	ΨP

T	} Sèô
	

•¶

= − (IPPM
TS
Tô − IPQM

TS
T}u

)è}èô

+ −IPPM Sè} − IPQM Sèô
	

•¶
 

−
T	ΨQ

T	ô
T	S
T	ô+

T	ΨQ

T	}
T	S
T	} è}èô

	

d
+ −

T	ΨQ

T	ô Sè} +
T	ΨQ

T	} Sèô
	

•¶

= − (IPQM
TS
Tô − IQQM

TS
T})u

è}èô

+ −IPQM Sè} − IQQM Sèô
	

•¶
 

(17) 

By using the definition given in Eq. (8), Eq. (17) can be written as: 
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T	ΨP

T	ô
T	S
T	ô+

T	ΨP

T	}
T	S
T	} è}èô

	

d
= (IPPM

TS
Tô − IPQM

TS
T}d

)è}èô 

T	ΨQ

T	ô
T	S
T	ô+

T	ΨQ

T	}
T	S
T	} è}èô

	

d
= (IPQM

TS
Tô − IQQM

TS
T})d

è}èô 

(18) 

Now that the derivatives on the stress components are removed, solutions in the 

form of yP = ßSJOPJ and yQ = ßSJOQJ are used for Eq.(18). By substituting the weight 

function and load functions in Eq. (18), OPJ and OQJ, can be determined, 

[VP] yPJ = tP  

[VQ] yQJ = tQ  
(19) 

where VP and VQ are the load-path coefficient matrices that are functions of stress and 

SJ	; yPJ and yQJ are the load function nodal values, and tP and tQ are the force vectors 

that are functions of the stress components and SJ. 

The second component of the stress in Eq. (2) is the irrotational component–so 

named because of its analogy with the homonymous component in the Helmholtz 

decomposition of a vector field. For a vector field, the irrotational component is defined 

by the gradient of a function, whereas the symmetric rank-two tensor IJKN  is defined by the 

symmetric part of the gradient of a vector. In that sense, as recognized in (Admal et al., 

2016), regardless of the origin of the stress, this component is akin to the elastic stress of 

a small strain field. 

The irrotational component accounts for two effects: multiply-connected domains 

and body forces. Let us consider the case of a simply connected domain under body 

force. In this case Eq. (5) needs to be solved. Like the load function, the weighted 

residual method is used to solve Eq. (5): 
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−
T	âP
T	ô

T	S
T	ô+

T	âP
T	}

T	S
T	} è}èô

	

d
+

T	âP
T	é Sèï

	

•¶
= − LP

d
Sè}èô	 

−
T	âQ
T	ô

T	S
T	ô+

T	âQ
T	}

T	S
T	} è}èô

	

d
+

T	âQ
T	é Sèï

	

•¶
= − LQ

d
Sè}èô	 

(20) 

 

For the general case of multiply connected domains with body forces, we must 

compute the irrotational component  IJKN  from Eqs. (4)- (6). From its definition in Eq. (4) 

the irrotational component is analogous to an elastic stress resulting from the small strain 

associated with the “displacement” âJ for an isotropic pseudo-material with Lamé 

constants ™ = −1	and	´ = 1 (note that in a more general form of the Gurtin 

representation (Admal et al., 2016) these values can be set to different numbers). 

This pseudo displacement is itself made of two contributions: âJ
ã reflects the effects 

of the body force, whereas âJå the effects of the multiply connectedness of the domain. 

The first is obtained by solving the Poisson’s equation Eq. (5), and is thus analogous to 

the transverse displacement of a membrane subject to a pressure field; the second, is 

harmonic and is chosen in the form above for concreteness (Fosdick et al., 2003). 

The proposed approach using Gurtin’s decomposition works for both conservative 

and non-conservative body loads. Another approach to study the case of a simply 

connected domain under conservative body force is using the body force potential 

function. If b is conservative, L = −Ñ	¨, where ¨ is the potential function. The 

equilibrium equations (Eq. (1)) can be written as (Timoshenko et al., 1951), 

T
T} (IPP − ¨) +

TIQP
Tô = 0 

 

(21) 
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TIPQ
T} +

T
Tô (IQQ − ¨) = 0 

The irrotational and solenoidal components are defined as: 

IPN = ¨					IQN = ¨ 

IPPM = IPP − ¨ =
TyP

Tô =
T`Ü	

Tô` , IPQM = IPQ = −
TyP

T} =
T`Ü	

T}	Tô	,	 

IQQM = IQQ − ¨ = −
TyQ

T} =
T`Ü	

T}` , IQP = IQPM =
TyQ

Tô =
T`Ü	

T}	Tô	,							 

TyQ

Tô = −
TyP

T}  

 

(22) 

2.2 Results and Discussion 
 

2.2.1 Cantilever Beam Subjected to Shear Load and Body Force 
 
A cantilever beam with a rectangular cross section (height 2b, and length L=20b) 

subjected to a shear force [ at its free-end, and its weight (XY) is considered (Figure 2.3). 

The potential function associated with the weight is ¨ =–XYô. Based on the boundary 

conditions and ¨, the following Airy stress function is used. 

R = ö_ôÆ + ö`ô}` + özôz}` + öØôz + öÆ}ô + ö∞}ôz (23)  

The boundary conditions are: 

IPQ QÇ±k
= 0,						IQ QÇ±k

= 0 

IPQ PÇå
= [,				 IPô

k

≤k
èô

PÇå
= 0 

(24)  

The constants (ö_	ñq	ö∞) can be determined by substituting Eq. (23) in Eq. (22), (24) 

and (1): 
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ö_ =
XY
20L` ,						ö` =

3XY
4 ,						öz = −

XY
4L` 

öØ =
XY
15 ,						öÆ = −

3[
4L,						ö∞ = −

[
4Lz 

(25)  

The final stress field is therefore 

IPP =
XYôz

L` −
3XYô
5 +

3≥}ô
2Lz −

3XY}`ô
2L`  

IPQ = −
3XY}
2 +

3[
4L −

3≥ô`

4Lz +
3XY}	ô`

2L`  

IQQ =
XYô
2 −

XYôz

2L`  

(26)  

Let’s first neglect the effect of body forces (XY = 0). From Eqs. (7) and (23), the 

load functions are found. Figure 2.4 (a) and (b) shows the six load paths plotted in x (ΨP) 

and y (ΨQ) directions. The change in the		ΨP between two consecutive load paths is 

∆ΨP = −2.14	[. By substituting IPP, and IPQ from Eq. (26) in Eq. (10), and taking the 

integral on a section between any pairs of load paths, we find that the x-direction load 

flow between each pair of load paths is also ∆FP = −2.14	[. As shown in the x-direction 

load paths (ΨP), the load flows from one support point to another support point, and it is 

positive above the x-axis and negative below the x-axis. Since the load flow is equally 

divided between six load paths, the load flow from above and below the x-axis cancels 

out each other and the net x-direction load flow is zero.  

The moment created by the equal load flow between each pair can be calculated by 

multiplying the load flow by the distance to the x-axis, which is found to be equal to the 

moment at the right edge boundary (É = 20≥L	). Therefore, the x-direction load paths 

clearly indicate the development of bending moment and show how the load is 
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transferred in the structure to create it. On the other hand, the change in the		ΨQ between 

two y-direction load paths is ∆ΨQ = [/7. By substituting Eq. (23) in Eq. (11), the y-

direction load flow between each pair of load paths is also found to be [/7. This finding 

shows how the shear load is equally divided and transferred between load paths from 

application edge to the support edge. Since there are six load paths plotted in Figure 2.4 

(b), the applied load (p) is divided by 7, and equal load ([/7) is transferred from point of 

application to the point of support.  

Next, the effect of body force in the absence of shear load is studied. The load 

functions and the load paths in x (ΨP) and y (ΨQ) directions can be obtained using Eqs. 

(7) and (23). The load paths in } −direction are shown in Figure 2.5 (a). The self-

equilibrated component of the body force (∆FP = 10.71	XY) flows between paths. 

Although the load paths shape in this direction are like those of shear force, the paths are 

closer to the fixed end due to the changes in IPP	and	IPQ. The load paths in ô −direction 

(Figure 2.5 (b)) are different than the ô-direction load paths of shear load (Figure 2.4 (b)) 

due to the existence of IQQ. By substituting IQQ, and IPQ from Eq. (26) in Eq. (11), we 

find that the y-direction load flow is 1.42	[. 

Finally, both shear load and body force are considered. The load paths in x (ΨP) 

and y (ΨQ) directions are shown in Figure 2.6. The } −direction self-equilibrated 

component of the body force and shear force (Figure 2.6 (a)) is found to be ∆FP =

8.67	[. This approximately equals to the superposition of the two load flows from shear 

load (Figure 2.4 (a)) and body force (Figure 2.5 (a)) in } − direction (∆FP = 10.71[ −

2.14[). The small difference is a round-off error which can be reduced by increasing the 

number of contour lines. Similarly, for the ô − direction load flow, the total load (Figure 
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2.6 (b)) can be found by subtracting the shear force load flow (Figure 2.4 (b)) from body 

force load flow (Figure 2.5 (b)). 

The load paths for the beam subjected to the shear load and its weight can also be 

obtained using the Gurtin’s decomposition Eqs. (3-4). First, âQ is obtained using Eq. (20) 

(Figure 2.7 (a)), and then the irrotational stress components are calculated from Eq. (4). 

Finally, the solenoidal stress components are found by subtracting the irrotational stress 

from total stress, and the load paths are determined by using Eq. (18). As can be seen in 

Figure 2.7 (b) and (c), the load paths corresponding to the totally self-equilibrated stress 

field are similar to those found using potential function (Figure 2.6). The small 

discrepancies between the load flows (∆ΨQ and ∆ΨP) of potential function and Gurtin 

decomposition methods are due to the use of numerical procedure (Eqs. (18) and (20)) in 

latter. 

 

Figure 2.3 End-loaded cantilever beam 
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(a)  

(b)  

Figure 2.4 Load paths in (a) x-direction (ΨP) and (b) y-direction (ΨQ) for a cantilever 
beam subjected to shear load in absence of body forces 

 

(a)  

(b)  

Figure 2.5 Load paths in (a) x-direction (ΨP) and (b) y-direction (ΨQ) for a cantilever 
beam subjected to its weight 
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(a)  

(b)  

Figure 2.6 Load paths in (a) x-direction (ΨP) and (b) y-direction (ΨQ) for a cantilever 
beam subjected to shear force and its weight  

(a)  

(b)  

(c)  

Figure 2.7 Cantilever beam subjected to shear force and its weight (a) irrotational part in 
ô −direction (âQ); (b) load paths in x-direction (ΨP); and (c) load paths y-direction (ΨQ) 
using Gurtin’s decomposition 
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2.2.2 Plate with Hole Under Uniaxial Tension 
 
For the second test case with a closed form solution, a plate with a small traction-

free circular hole of radius a subjected to uniform tension of magnitude S in x-direction is 

considered (Figure 2.8). The boundary conditions imply that for large r the stress field 

approaches a uniaxial tension of magnitude S (i.e. IPP = µ, IQQ = 0, IPQ = 0). The Airy 

stress function and the corresponding stresses for this test case are (Timoshenko et al., 

1951): 

Ü = µ
r`

4 −
h`∂é r

2 + µ −
r`

4 −
hØ

4r` +
h`

2 cos 2∫  

Iªª =
µ
2 1 −

h`

r` +
µ
2 1 +

3hØ

rØ −
4h`

r` cos 2∫  

Iºº =
µ
2 1 +

h`

r` −
µ
2 1 +

3hØ

rØ cos 2∫  

Iªº = −
µ
2 1 −

3hØ

rØ +
2h`

r` sin	(2∫) 

(27) 

By using Eq. (3) and then the chain rule to transform the partial derivatives of the 

Airy stress function to polar coordinates, the load functions can be written as: 

yP =
TÜ
Tô =

TÜ
Tr ï†é∫ +

TÜ
rT∫ öqï∫ 

			yQ = −
TÜ
T} = −

TÜ
Tr öqï∫ +

TÜ
rT∫ ï†é∫ 

 

(28)  

The load paths in the x and y directions (yP and yQ) are shown in Figure 2.9. As 

was mentioned earlier, for large r the only available stress on the outer boundaries is IPP; 

the hole surface is traction-free, therefore, the external load can only be transferred 

through x-direction load paths. This can be seen in Figure 2.9, as the load path in the y 
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direction has wide circulations which indicates that there is no load transfer in this 

direction. It is quite interesting to note that the ô −direction load paths resemble the 

potential fluid flow around a circular cylinder. 

 

 

Figure 2.8 Plate with a hole under axial load 

  

Figure 2.9 Load path in x-direction (ΨP) and y-direction (ΨQ) for a plate with hole under 
uniaxial tension 
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2.2.3 Square Plate Under Shear Load 
 
As was mentioned earlier, the stress components cannot be presented using an 

analytical expression for a complex system, and the load functions may not be derived 

using analytical approaches. In these problems, usually numerical approaches such as 

FEM are utilized. The present formulation associated with the determination of the load 

paths can be integrated into a finite element package to provide load path contours. To 

test and validate this, a one-sided, clamped, square plate subjected to a shear load on the 

right corner (Figure 2.10) was solved using FEM and the stress components are 

determined.  

Then the stresses are substituted in Eq. (18) and load functions are obtained. To 

verify the accuracy of the proposed load-path functions, the plots of IPP and 

ëõú
ëQ

		(Figure 2.11 (a)), IPQ and −ëõú
ëP

 (Figure 2.11 (b)), and IQQ and −ëõû

ëP
 (Figure 2.11 

(c)) were compared. The comparison of the results of the load function derivatives (ëõú
ëQ

	, 

ëõú
ëP

, and ëõû

ëP
)	with the results of the stresses determined by the finite element method 

(IPP, IPQ, and IQQ) showed the accuracy of the approximation of ΨP	and	ΨQ. 

After verification of the proposed numerical method, the load paths were 

determined by finding the load functions. The load functions, which demonstrate the load 

paths for equilibrium in the } and ô directions, are shown in Figure 2.11 (d). The load 

paths in the ô direction (ΨQ) show how the concentrated load at the right corner is 

transferred and distributed to the points of support on the left edge. The ΨQ contours also 

indicate that the load paths near the right corner line up with IQQ, since it is the dominant 
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stress in this region, and as we get further from the point of application, the IPQ 

contribution increases and the orientation angle decreases.  

As we get closer to the top and bottom left corners, the load paths are further under 

the influence of IQQ and the orientation angle increases. The load paths in the } direction 

also provide physical insight into the load transfer and aid in understanding how various 

resultant stresses are developed inside the structure. As can be seen in Figure 2.11 (d)-

	ΨP, the load flows from one support point to another support point. As we get further 

from the support edge, the load paths bend towards the point of application at the right 

corner, and, at some point, they even reach the location of the concentrated load. These 

two observations explain how the bending moments due to normal and shear stresses are 

developed inside the structure.   

 

 

Figure 2.10 Clamped plate under shear load 

P

L

L

y
x
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 (a)    (b)   (c)   (d) 

Figure 2.11 (a) Comparison of  ëõú
ëQ

 and IPP; (b) Comparison of -ëõú
ëP

 and IPQ; (c) 

Comparison of -ëõû

ëP
 and IQQ; (d) Load paths in the y and x directions 

 
Next, a square plat restrained at top and bottom left corners and subjected to a 

concentrated load at 45-degree at bottom right corner is considered (Figure 2.12). The 

stress components IPP, IPQ, héè IQQ are compared with ëΩú
ëQ

, ≤ëΩú
ëP

 , and ≤ëΩû

ëP
	in 

Figure 2.13 (a), (b), and (c), respectively, and the x and y direction load paths are shown 

in Figure 2.13 (d). As can be seen in Figure 2.13 (d), the load paths start from the load 

application point and end at one of the support points instead of the entire left edge. It is 

also noted from Figure 2.13 (d), that the hole is deflecting the load paths, compared to 

those derived for the plate without hole in Figure 2.11 (c). Since the load is applied at 45-

degree, the load paths in x and y directions are very similar to each other except close to 

the support where the x direction load paths show the bending close to the bottom corner 

of plate. 
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Figure 2.12 Square plate with a hole 

 

    

 

   

(a) (b) (c) (d) 

Figure 2.13 (a) Comparison of  ëõú
ëQ

 and IPP; (b) Comparison of -ëõú
ëP

 and IPQ; (c) 

Comparison of  -ëõû

ëP
 and IQQ; (d) Load paths in the y and x directions 

  

P

L

L
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2.2.4 Superposition of Load Functions 
 
Since the load functions and load paths are obtained from the Poisson’s equation 

presented in Eq. (18), the superposition principle can be applied to them. Therefore, if the 

load functions for two sets of loadings and boundary conditions are (yP_
	

	, yQ_
	 ) and 

(yP`
	 , yQ`

	 ), then the superposition of the two load functions (yP_
	 + yP`

	 , yQ`
	 + yQ`

	 ) are 

the load functions for the combination of two sets and satisfies the corresponding Poisson 

equations:  

T`(yP_
	 + yP`

	 )
T`ô +

T`(yP_
	 + yP`

	 )
T`} =

T(IPP_	 + IPP`	 )
Tô −

T(IPQ_	 + IPQ`	 )
T} 		 

	
T`(yQ_

	 + yQ`
	 )

T`ô +
T`(yQ_

	 + yQ`
	 )

T`} =
T(IPQ_	 + IPQ	 )

Tô −
T(IQQ_	 + IQQ`	 )

T}  

 

(29)  

An application of the method of superposition is illustrated for the plate with a hole 

when the concentrated 45-degree load is decomposed into vertical and horizontal loads 

(Figure 2.14). The load paths in the x and y directions for two loading conditions are 

shown in Figure 2.15 (a) and (b). By applying the superposition principle, the load paths 

for the combined loading are determined. As can be seen in Figure 2.15 (a)-(b) and 

Figure 2.13 (d), the superposed load paths are identical to the load paths determined for 

the 45-degree load. The ability to use the superposition method for the load functions 

provides the capability to break the loading into simpler components to simplify the load 

path calculation of complex problems. 
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 +  =  
Figure 2.14 superposition of vertical and horizontal loads for the square plate with a hole 

 

 +   =  

(a) 

 +   =  

(b) 

Figure 2.15 (a) x-direction and (b) y-direction load paths produced by the method of 
superposition 

 

  

P
√
2
2

L

L

P
√
2
2

L

L

P

L

L



33  

2.2.5 L-Bracket Under Shear Load 
 
To further check the accuracy of the present formulations the load paths for an L-

shaped cantilever bracket (Figure 2.16) are determined and compared with those obtained 

by (Kelly et al., 2011). As can be seen in Figure 2.17 (a) and (b) both load paths in the x 

and y directions are in good agreement with Kelly et al.’s results. The load paths in the x 

direction (yP) have wide circulations at the top and bottom of the L-shaped domain. 

These circulations show the regions that do not contribute to the load transfers in the x 

direction, and the load transfer in the x direction is primarily through the regions above 

and below the circulations. There are two sets of load paths in the y direction (yQ), one 

set in the right region that shows how the applied load is transferred from the application 

point to the middle corner, and another set in the left region from one support point to 

another that implies the bending moment in the domain. 

 

 

Figure 2.16 L-shaped domain under transvers load 

 

y

x



34  

              

                  (a) 

 

                   (b) 

Figure 2.17 Load path in an L-bracket (a) using load paths functions (b) presented by 
(Kelly et al., 2011) 
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2.2.6 Wing Subjected to Aeroelastic Load 
 
Because the loading and boundary conditions have not been used in any stages of 

the theoretical or computational development, the proposed load path algorithm should 

also be able to provide the load paths for any type of loading and boundary conditions, 

such as mechanical, thermal, and aerodynamic loads. If the numerical solver can 

calculate the stress components in the structure, the proposed load path algorithm can 

determine the load flow and load paths. 

We plan to validate this through an example of a generic supersonic fighter wing 

under Aeroelastic loading (Locatelli, 2012). The wing plan-form is shown in Figure 2.18. 

The Aeroelastic analysis is conducted using the Doublet-Lattice Method and MSC-

Nastran’s Aeroelastic Trim analysis. The Aeroelastic pressure distribution on the 

aerodynamic mesh is presented in Figure 2.19 (a). The load paths in the x and y 

directions (i.e. yP }, ô 	 and 	yQ }, ô ) are determined by using Eq. (18) and are shown 

in Figure 2.19 (b) and (c). The load path in the x direction (yP) starts from the leading 

edge on the left side of the wing with small angle in the region close to the wing root.  

The angle starts increasing closer to the wing tip, which means close to the root, 

IPP has a larger contribution to the load flow in the x direction, whereas, close to the tip, 

the load flow is the resultant of both IPP and IPQ . The load path in the y direction (yQ) 

starts from the leading edge with approximately 45-degree angle, which means the IPQ 

and IQQ have the same contribution in the y directional load transfer. It is also quite 

interesting to note that the pattern in the x and y directions load-paths resembles the spars 

and ribs patterns in a wing box. 
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Figure 2.18 Generic supersonic fighter wing plan-form 

 

   
 
  (a)    (b)    (c) 

Figure 2.19 (a) Aeroelastic pressure distribution on the Aerodynamic mesh; Load paths in 
(b) x direction and (c) y direction for a wing plane 
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3 LOAD PATH IN PLATES AND SHELLS 

3.1 Methodology 
 
In the previous chapter, the load function formulation was presented for two-

dimensional structures loaded in a state of plane stress and is derived from the 

equilibrium equations in terms of stresses (Tamijani et al., 2016). The stresses are written 

in terms of the load functions, and the load flow is calculated using the load function 

level sets. However, A problem is raised; if the stress varies with thickness so would the 

load paths, i.e. multiple load paths through the thickness would exist. This problem is 

solved by writing the equilibrium equations based on the stress resultant equilibrium 

equations (Gharibi et al., 2017), as in Eq. (30). 

TZP

T} +
TZPQ

Tô + [P = 0 

(30) 
TZPQ

T} +
TZQ

Tô + [Q = 0 

T\P

T} +
T\Q

Tô + [] = 0 

where ZP, ZPQ, ZQ, are in plane stress resultants, \P	and \Q are transverse shear stress 

resultants, and [P, [Q,and [] are applied pressures on surface in x, y, and z directions 

(Ugural, 1999). Next, the load field with respect to rectangular frame is defined as 

follows: 

æ_ = ZP† + ZPQ° 

(31) æ` = ZPQ† + ZQ° 

æz	 = \P† + \Q° 
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Using this definition, the equilibrium equations can be written as: 

∇. æ + [	 = 0		 (32) 

where æ = [æ_	æ`	æz], and [ = [[P	[Q	[]]	. The load vector field is decomposed into 

divergence-free and curl-free components using the Helmholtz decomposition: 

æ = ∇S	 + ∇×O	 (33) 

The decomposition concept is shown in Figure 3.1. Any vector field æ, can be 

decomposed to irrotational ∇S	, and solenoidal ∇×O	 vector fields. 

 

 

Figure 3.1 The visual representation of decomposition into solenoidal ∇×O	 and 
irrotational fields ∇S	 

 

In Eq. (33) the first component (∇S	) is the irrotational component	(æ	
N), and the 

second component (∇×O) is self-equilibrated or solenoidal component (æ	
M). The 

solenoidal vector field admits a load function (O =	 [yP	yQ	y]]) and accompanying load 

paths. The changes in O between their two paths equals to the constant load flow of the 

totally self-equilibrated stress resultants	ΔæM that is transferred between those two paths.  

Using the Helmholtz decomposition, first the divergence-free component (æ	
M) is 

solved for the given boundary conditions and then the curl-free component is determined 

as the residual (æ	
N = æ	

	 − æ	
M).  Given a stress resultant field, Eq. (33) can be written as:  

= +

R = +r� r ⇥  
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∇×æ = ∇×∇S	 + ∇×(∇×O)			 (34) 

where ¿×¿S is zero by definition and the second term according to the vector calculus 

identity is as follows: 

∇×(∇×O)	 = ∇(∇. O	) − ΔO (35) 

Hence, using Eqs. (34) , and (35), Eq. (36) is as follows: 

∇×æ = ∇(∇. O	) − ΔO	 (36) 

By using the weighted residual method, Eq. (36) can be written as: 

− ¡O ¬èe
	

√
= ¿×æ¬èe

	

√
 (37) 

where ¬	is the weight function, and the boundary condition associated with Eq. (37) is: 

TO
Té = −æ×é (38) 

Using the boundary conditions, and integration by part, Eq. (37) can be written as: 

¿O ¿¬èe
	

√
= æ¿×¬èe

	

√
 (39) 

The field lines of solenoidal components (æM) are the level sets of O. After 

obtaining O, then solenoidal components can be written as: 

æM = ∇×O	 (40) 

by using the irrotational components (æN), S can be found  

∇S	 = æN = æ − æM (41) 

 

The integration of total differential of each load function, f. Y. OP,	between two 

consecutive paths (paths 1 and 2) is as follows: 
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ΔΨ{ = èyP =
`

_

TΨP	
T} è} +

TΨP	
Tô èô

`

_

= −ZPQ
M è} + ZP

Mèô =
`

_
ΔsPM 

(42) 

If the differential of load function is evaluated on its constant lines, then ΔsPM =

0,	which means the solenoidal component of a load vector field in a Helmholtz 

representation does not pass through the level sets of load function. 

 

 

Figure 3.2 The change in OP between two consecutive level sets is equivalent to the 
change in force between them. 

 

For the case of general thin-shell structures, e.g. the wing or fuselage skin of an 

aircraft, where the normal stress through the thickness is negligible (because of plane 

stress in a thin walled shell), the resultant stresses (i.e.	ZPQ, ZP, ZQ, \P, \Q) must be 

transformed to the canonical coordinate system x-y-z (i.e.		ZPQ, ZP, ZQ, \P, \Q) from 

curvilinear shell coordinate system. Assuming the shell’s mid surface can be presented as 

ƒ = t }, ô . The transformation is as follows: 

ZPQ = (ZPQ cos ∫ −	\P sin ∫ cosR)/	öqï∫ 

(43) ZQP = 	 (ZQP cosR −	\Q sinR cos ∫)/öqïR 

ZP = 	 (ZP cosR −	\P sinR cos ∫)/öqï∫ 
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ZQ = (ZQ cos ∫ −	\Q sin ∫ cosR)/öqïR 

\P = 	 (\P cosR cos ∫ +	ZP sinR +	ZQP sin ∫) /öqïθ 

\Q = 	 (\Q cosR cos ∫ +	ZQ sin ∫ +	ZPQ sinR)/öqïR 

where,  

ñhé R = 	
Tƒ
T} 						and				 ñhé ∫ = 	

Tƒ
Tô (44) 

and, ƒ = t }, ô  represents the shell mid-surface and R, and ∫ are the shell surface slope 

with respect to canonical axis x-y as seen in Figure 3.3. 

 

 

Figure 3.3 The projection of shell forces onto the x-y plane 

The equilibrium equations based on the projected forces on the x-y-z plane are: 

TZP

T} +
TZPQ

Tô + [P = 0 

(45) 
TZQP

T} +
TZQ

Tô + [Q = 0 
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T\P

T} +
T\Q

Tô + [] = 0 

By using the projected forces in Eq. (43), the load field can be defined as: 

∆« = ZP† + ZPQ° 

(46) ∆» = ZPQ† + ZQ° 

∆…	 = \P† + \Q° 

Then, similar to Eq. (33), the irrotational and solenoidal components as well as load 

function can be obtained.  

The shear force field (\ = \P† + \Q°) for any plates and shells, in general, can be 

decomposed as:  

\ = 	¿S] 	+ 	¿×y] (47) 

By comparing Eq. (33), the shear force components for any plate or shell can be 

written as follows:   

\P =
TS]

T} +
Ty]

Tô , \Q =
∂S 

∂y −
∂y 

∂}  (48) 

When Eq. (19) is inserted into the equilibrium equation Eq. (30), the following 

expression is yielded, 

 

T`S]

T}` +
T`S]

Tô` = 	−	[] (49) 

There is an especial case of plates and not shells that will be discussed here, where 

\P = \P		, \Q = \Q		, ZP = ZP, ZQ = ZQ, ZPQ = ZPQ, [P = [P, [Q = [Q, and [] = [], 

and Eq. (49) is similar to the plate moment equilibrium as seen in Eq. (50).  
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T`É	

T}` +
T`É	

Tô` = 	−	[],				where	É =
ÉP +ÉQ

1 + Œ  (50) 

By comparing Eqs. (49), and (50), it is evident that the potential function, S], is 

mathematically equivalent to the moment. Therefore, the values of ÉP and ÉQ can be 

used as boundary conditions for solving Eq. (49). In this situation, the contours of S] are 

similar to the level sets of moment function. 

3.2 Results and Discussion 
 

3.2.1 Plate Under Uniform Pressure 
 
Assume two plates subjected to a uniform pressure, [], one with simply-supported 

edges and the other with clamped edges (Figure 3.4). By assuming Kirchoff-Love plate 

theory, we can utilize Navier’s plate solution for the lateral deflection (Ugural, 1999, p. 

433), œ, of the simply-supported plate as, 

œ =
16[]
Un∞ 	

sin –n}
h 	 sin énô

L

–é –
h

`
+ é

L
` `

—

lÇ_,z,Æ

—

mÇ_,z,Æ

 (51) 

where U is the flexural rigidity of plate. The transverse shear resultants can be found as, 

\P = −U
T
T}

T`œ
T}` +	

T`œ
Tô`

= 	
16[]
nØ 	

–π
h cos –n}

h 	 sin énô
L

–é –
h

`
+ é

L
`

—

lÇ_,z,Æ

—

mÇ_,z,Æ

	 

 

(52)  
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\Q = −U
T
Tô

T`œ
T}` +	

T`œ
Tô`

= 	
16[]
nØ 	

éπ
L sin –n}

h 	 cos énô
L

–é –
h

`
+ é

L
`

—

lÇ_,z,Æ

—

mÇ_,z,Æ

	 

 

Additionally, the total moment sum, É, can be found as, 

É =
ÉP +ÉQ

1 + ν 	= −U
T`œ
T}` +

T`œ
Tô`

=
16[]
nØ 	

sin –n}
h 	 sin énô

L
–é –

h
`
+ é

L
`

—

lÇ_,z,Æ

—

mÇ_,z,Æ

 

(53) 

In this example, the author’s focus is on the z equilibrium equation Eq. (45) 

because of the special case of plates happens only in the z equilibrium. The load paths in 

x, and y are using the same formulation in all plates and shells structures. By using the 

transverse shear resultants of Eq. (52) we can see that ∇×æz = 0, which means ∇×∇×y] 

is also zero. It can then be concluded that the vector field, æz, only has an irrotational 

component, æN.  The potential function can be found by using Eq. (41) by allowing æN =

	æz, and æM = 0. Figure 3.5(a) shows the potential functions level sets compared to 

Figure 3.5(b), the level sets of moment function. The change in Φ] between two level 

sets, (ΔΦ]), is 0.01229[], and the ΔÉ is 0.01227[].  

Again, by utilizing Eq.(41), the potential function for plate with clamped boundary 

conditions can be determined. Figure 3.6(a) shows the potential function level sets 

compared to (b) the level sets of moment function. The gradient of Φ] represent the curl-

free component of the æz. The ΔS] between consecutive sets of contours is 0.01430[] 

and the ΔÉ is 0.01406[].  
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This example shows three important intuitions. First, the shear resultant stresses 

(\ = \P† + \Q°) create an irrotational field ∇×æz = 0. It can be seen in Figure 3.5, and 

Figure 3.6 that the potential function which is caused by pressure [], see Eq. (49), has a 

non-zero gradient, i.e. ∇S] ≠ 0, and it is not solenoidal. This is expected since the source 

term [] generates the non-solenoidal field ¿. ∇S] ≠ 0. Which can be seen in Eq. (49), i.e. 

¿. ∇S] = []. The Second intuition is that physical equivalent of the potential function is 

the total moment transfer, i.e. É = ÷ú◊÷û

_◊ÿ
, in the structure. Third, in the case of simply 

supported plate, the moment is not transferred to the supports as seen in Figure 3.5, 

whereas in clamped plate the moments are transferred to the supports as seen in 

Figure 3.6.  

  

(a) (b) 

Figure 3.4 A plate subjected to a uniform pressure, [], with (a) simply-supported edges 
and (b) clamped edges.  
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(a) (b) 

Figure 3.5 The (a) potential function level sets and (b) the level sets of total moment 
function for a simply-supported plate under uniform pressure, []   

 

  

(a) (b) 

Figure 3.6 The (a) potential function level sets and (b) the level sets of total moment 
function for a clamped plate under uniform pressure, []   
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3.2.2 Roof Structure Subjected To Body Load 
 
A set of panels following the form of a hyperbolic-paraboloid are pieced together to 

form a membrane roof structure. Figure 3.7 shows the geometry of stitched roof panel. 

The roof is subjected to its own weight, [] = XY.  The projected membrane forces can be 

described as follows (Ugural, 1999, p. 433), all edges are clamped. 

ZP = 	−
XYô
2 ln	(

} + }` + ô` + ö`

ô` + ö`
) 

(54) ZQ = 	−
XYô
2 êé(

} + }` + ô` + ö`

}` + ö`
)	

ZPQ =
XY
2 }` + ô` + ö`	

where ö = ⁄¤

‹
. The projected resultant stresses are plotted onto the geometry in 

Figure 3.8. Using Eq. (39), the load functions for the divergence-free membrane forces 

can be found. Figure 3.9 (a) and (b) shows the load paths for the load functions  ΨP and 

ΨQ respectively. Figure 3.10 (a) and (b) shows the contours of the potential functions ΦP 

and ΦQ. The gradient of the potential functions, i.e. ∇SP, and ∇SQ  are curl free or 

irrotational. Also, the curl of load functions i.e. ∇×yP, and ∇×yQ are divergence free or 

solenoidal.  

As can be seen in Figure 3.9, the load paths (level sets of load functions ΨP and 

ΨQ) transfer the load from one edge to the opposite side. This is shown mathematically in 

Eq. (42), also proofs and theorems of how load function represents load transfer can be 

found in previous chapter. Since the load functions i.e. ΨP and ΨQ are related to the 

divergence free part of the equilibrium equation, and the potential functions i.e. ΦP and 

ΦQ	are related to the divergent part of the equilibrium, the former represents the transfer 
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of load due to traction on the boundary which is caused because of clamped boundary 

conditions, and the latter represents the load transfer due to the applied pressure. As can 

be seen in Figure 3.10,  the level sets of potential functions ΦP and ΦQ are transferring 

load from the applied pressure at the middle of the roof to the supports, whereas in 

Figure 3.9, the load functions ΨP and ΨQ transfer load from application of traction forces 

on one support to another. 

 
 

(a) (b) 

Figure 3.7 The geometry of (a) a quarter-panel and (b) the full surface of a hyperbolic-
paraboloid roof structure. 
 

   
(a) (b) (c) 

 
Figure 3.8 The projected shell forces from Eq. (54) showing (a) ZP, (b) ZQ, and (c) ZPQ 
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(a) (b) 

Figure 3.9 Load paths in (a) x-direction and (b) y-direction for the membrane forces of a 
hyperbolic-paraboloid roof under its own weight.  

 

  

(a) (b) 

Figure 3.10 Potential function contours for (a) x-direction and (b) y-direction membrane 
forces of a hyperbolic-paraboloid roof under its own weight. 

 

3.2.3 Skin Panel Subjected to Aerodynamic Loads 
 
Assume an arbitrary wing skin panel, capable of supporting bending and membrane 

loads, subjected to an aerodynamic pressure load acting normal to the surface. The 

geometry and pressure distribution are shown in Figure 3.11. All edges are clamped. This 

numerical example, and one that follows, also show how the present formulation can be 

incorporated into numerical structural methods e.g. finite element method. Furthermore, 

it demonstrates that the formulation can be used regardless of the specific loading or 
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boundary conditions which include the possibility of internal and external loads from 

thermal, mechanical and aerodynamic loads. This example will also be used as a 

validation to show that the stress field has been decomposed into curl-free and 

divergence-free components. The structural solution was solved using displacement 

based finite element method using a pressure distribution found from vortex-lattice 

method. The material selected has an elastic modulus of 107 psi and a Poisson’s ratio of 

0.3. 

The load functions ΨP, ΨQ, and Ψ] can be found by solving equation Eq. (39) using 

the stress field æ which is determined by displacement based finite element. The curls of 

load functions represent the solenoidal component of the stress field æM. Helmholtz 

decomposition implies that the curl-free forces can be found by subtraction (æ	
N = æ	

	 −

æ	
M). Figure 3.12 shows the decomposition of the (a) stress field (æ) into the (b) solenoidal 

(æM = ¿×O) and (c) curl-free (æN = ¿S) components. Furthermore, it can be shown in 

Figure 3.12 (d) that the decomposed stress field is equivalent to the total stress field 

æ	
	 − (æ	

N + æ	
M) = 0. The validation of the decomposition is to take the curl of curl-free 

forces (∇×æ	
N) and the divergence of the divergence-free forces (∇ ⋅ æ	

M) to ensure they 

are zero (Figure 3.13). The load paths of ΨP, ΨQ, and Ψ] are presented in Figure 3.14 and 

the potential function contours of ΦP, ΦP, and ΦP are presented in Figure 3.15. The load 

paths ΨP, ΨQ, and Ψ] are representing the solenoidal part of the solution, which is solving 

the equilibrium equation assuming the source term pressure is zero. The load paths i.e. 

level sets of ΨP, and ΨQ	in Figure 3.14 are transferring the load from one edge to another, 

and Ψ] is transferring the moment. ΨP, and ΨQ are representing the transfer of traction 
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loads from edge to edge. Whereas, the level sets of potential functions ΦP, ΦQ, and S]  

are representing the divergent equilibrium i.e. when pressure term is not zero.  

 

Figure 3.11 Arbitrary wing skin panel subjected to aerodynamic loading.  
 

    

    

    

   
 

   
 

(a) (b) (c) (d) 

Figure 3.12 Demonstrating the decomposition of the stress field, (a) the total force, (b) 
the self-equilibrated component, (c) the irrotational component, and (d) the verification 
that they add to zero.  
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(a) (b) (c) 
Figure 3.13 Verifying that the self-equilibrated components are divergence-free and that 
irrotational components are curl-free for (a) x-direction, (b) y-direction, and (c) z-
direction forces.  

   

(a) (b) (c) 
Figure 3.14 Load paths in (a) x-direction, (b) y-direction, and (c) z-direction for a skin 
panel subjected to aerodynamic loading.  
 

   
(a) (b) (c) 

Figure 3.15 Potential function contours in (a) x-direction, (b) y-direction, and (c) z-
direction for a skin panel subjected to aerodynamic loading. 
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3.2.4 Palazzetto Dello Sport Upper Dome Structure  
 
The Palazzetto dello Sport was designed as indoor sporting arena by Pier Luigi 

Nervi for the 1960 Olympic games in Rome, Italy.  The upper dome structure was 

engineered as a thin-shell made of reinforced concrete with the inner surface overlaid 

with a lattice of concrete stiffeners in a radial pattern (Cutrì, 2015 ). The example is 

presented below as a thin shell dome of constant thickness, omitting the stiffeners, and 

supporting its own weight. A tensile modulus of 6×10∞ psi and a Poisson’s ratio of 0.15 

were used as material properties to model the concrete. The load paths of the functions of 

fi are shown in Figure 3.18 and the contours of the potential functions fl are shown in 

Figure 3.19.   

 

 

Figure 3.16 Side view of the Palazzetto dello Sport (Cutrì, 2015 ) . 

 

 

Figure 3.17 Geometry of the dome of the Palazzetto dello Sport arena. 
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(a) (b) (c) 

Figure 3.18 Load paths in (a) x-direction, (b) y-direction, and (c) z-direction for the dome 
of the Palazzetto dello Sport arena under its own weight. 
 

   
(a) (b) (c) 

Figure 3.19 Potential function level sets in (a) x-direction, (b) y-direction, and (c) z-
direction for the dome of the Palazzetto dello Sport arena under its own weight. 

 
The level sets of load functions ΨP, and ΨQ show the transfer of the membrane 

forces. The contours of the load function for the transverse shear resultants show the 

transfer of the bending loads from application to support. Inspection of Figure 3.18(c) 

shows that the level sets of the load function are similar to the stiffener reinforcement 

scheme selected by Nervi during design (Cutrì, 2015 ). 
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4 TOPOLOGY OPTIMIZATION USING LOAD PATH & 

HOMOGENIZATION 

4.1 Load Path Based Optimization 
 
The goal of this section is to develop the norm of stress and stiffness based 

optimization using the load function as the intermediate variables. Therefore, the 

optimized load paths are defined as the load paths that minimize the norm of stress or 

compliance objective functions. Assume the structure in the domain Ω is under traction 

loads t, and no body loads. The boundary Γ is union of Neumann,	Γc and Dirichlet 

boundary conditions Γd. The problem statement to find the optimal structure for 

minimum norm of stress subjected to the equilibrium equations is as follows: 

min
£

	 _̂ = |I|èΩ
ì

 

S. t. 	¿. I = 0		†é	Ω 

I. é = t	qé	Γc 

(54) 

The norm of stress tensor is I = I:	I (i.e. 	 IJK = IJKIKJ; †, ° = 1,2), the 

integral _̂ is on the fixed design domain Ω, and the constraints include the equilibrium 

equations ¿. I = IJK,K = 0, and the traction boundary conditions on Γc, I. é = t,	(i.e. 

IJKéK = tJ	), where é is the outward normal vector to the boundary Γc.  
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Figure 4.1 Domain e , the boundry conditions bd, and	bc. Normal é and tangent ñ vectors 
to boundry 

To find the optimized lattice lay-out for maximum stiffness, or alternatively 

minimum compliance, it is assumed each strut carries the maximum failure loads in 

tension or compression, and are in equilibrium. As a result, the cross section of each 

member is adopted to the amount of stress it is carrying, the higher the stress, the higher 

the cross section. Hence, the thickness of each member in the structure is proportional to 

the magnitude of principal stresses, |I_|, and |I`| (Graczykowski et al., 2006). Therefore, 

to minimize the volume of the truss with the same limit stresses at compression and 

tension in the two-dimensional domain Ω, the objective function can be written as: 

min
£

^å = I_ + I` èΩ
ì

 (55) 

subjected to equilibrium constraints,  

¿. I = 0		†é	Ω (56) 

and satisfying the traction boundary conditions, 

I. é = t	qé	Γc (57) 

If the limit stresses at compression and tension are equal, then the objective 

function in Eq. (55) can be written in terms of deviatoric stress tensor, and its principal 

stresses (Strang et al., 1983). In continuum mechanics, the hydrostatic pressure changes 

⌦

f �N

�D

n

t
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the volume, and deviatoric stress causes the shape change. Therefore, only deviatoric part 

of stress is used to calculate the deformation energy (^¤
`
). The compliance objective 

function (^`)	written in terms of deviatoric principal stresses subjected to equilibrium can 

be stated as follows: 

min£		
^` = I_d + I`d èΩ

ì
 

S. t. 	¿. I = 0		†é	Ω 

I. é = t	qé	Γc 

(58) 

Based on the our load path formulation (Tamijani et al., 2017; Tamijani et al., 

2018), the stresses are written in terms of load functions in Eq. (59). This reduces the 

equilibrium equations from two to one, and the variables from three stresses (IP, IQ, IPQ) 

to two load functions (OP	héè	OQ).  

IPQ = −
TOP

T} , IP =
TOP

Tô  

IQ = −
TOQ

T} , IPQ =
TOQ

Tô  

(59) 

By using Eq. (59) the norm of stress and deviatoric principal stresses objective 

functions are written in terms of load functions: 

|I|` = IP` + IQ` + 2IPQ`  

= |¿OP|` + |¿OQ|` 

(60) 

I_d + I`d = IP − IQ
` + 4óPQ` =

TOP

Tô +
TOQ

T}

`

+ 4
TOQ

Tô

`

 
(61) 

Then, the minimization problem of norm of stress tensor, in terms of load functions 

becomes: 
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min
„ú,„û		

_̂ = |¿OP|` + |¿OQ|`
ì

èΩ 

µ. ñ. 			
TOP

T} +
TOQ

Tô = 0 

OP = Y_	qé	bc 

OQ = Y`	qé	bc 

™ = 0	qé	bd 

(62) 

For the stiffness based optimization, the formulation becomes: 

min
„ú,„û		

^` =
TOP

Tô +
TOQ

T}

`

+ 4
TOQ

Tô

`

èΩ
ì

 

µ. ñ.		
TOP

T} +
TOQ

Tô = 0 

OP = Y_	qé	bc 

OQ = Y`	qé	bc 

™ = 0	qé	bd 

(63) 

To solve these two minimization problems, total variation of the Lagrangian must 

be stationary which leads to Euler-Lagrange optimality equations. The Lagrangian 

corresponding to the norm of stress _̂, and stiffness based optimization formulation ^` 

are constructed as follows: 

 

‰_ OP, OQ, ™ = |¿OP|` + |¿OQ|` − ™
TOP

T} +
TOQ

Tô  
(64) 



59  

‰` OP, OQ, ™ =
TOP

Tô +
TOQ

T}

`

+ 4
TOQ

Tô

`

− ™
TOP

T} +
TOQ

Tô  

(65) 

and the Euler-Lagrange equations for ‰_ and ‰` are: 

T
T}

TOP
T}

|¿OP|` + |¿OQ|`
− ™ +

T
Tô

TOP
Tô

|¿OP|` + |¿OQ|`
= 0 

	
T
T}

TOQ
T}

|¿OP|` + |¿OQ|`
+

T
Tô

TOQ
Tô

|¿OP|` + |¿OQ|`
− ™ = 0 

TOP

T} +
TOQ

Tô = 0 

(66) 

 

T
T}

2 TOP
T}

TOP
Tô +

TOQ
T}

`
+ 4

TOQ
Tô

`
− ™

+
T
Tô

TOP
Tô +

TOQ
T}

TOP
Tô +

TOQ
T}

`
+ 4

TOQ
Tô

`
= 0 

(67) 
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T
T}

TOP
Tô +

TOQ
T}

TOP
Tô +

TOQ
T}

`
+ 4

TOQ
Tô

`

+
T
Tô

2
TOQ
Tô

TOP
Tô +

TOQ
T}

`
+ 4

TOQ
Tô

`
− ™ = 0 

TOP

T} +
TOQ

Tô = 0 

In order to solve the Euler-Lagrange equations, the boundary conditions are 

converted from stresses to load functions (i.e. OP, and OQ) as elaborated in the following: 

I. é = t 

IP IPQ
IPQ IQ

éP
éQ =

tP
tQ

 

TOP

Tô −
TOP

T}
TOQ

Tô −
TOQ

T}

éP
éQ =

tP
tQ

 

(68) 

The vector normal to the edge is é = (éP, éQ) and the vector tangent to é	is ñ =

(−éQ, éP), thus Eq. (68) is rewritten as: 

¿OP. ñ
¿OQ. ñ

=
tP
tQ

	 

OP ï = tPèï
M

MÂ
		qé	bc	 

OQ ï = tQèï
M

MÂ
	qé	bc 

 (69) 
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On Dirichlet boundaries, no boundary conditions are specified for OP and OQ. The 

boundary conditions for third variable, Lagrange multiplier ™, on the whole boundary is 

™ = 0. The two sets of PDEs in Eqs. (66) and (67) along with the boundary conditions of 

Eq. (69) are solved using finite element method with 6 nodded triangular elements to 

determine the optimized load functions (i.e. OP, and OQ) that lead to minimized 

deviatoric and stress norm objective functions. Next, the optimal density distribution for 

rank-two laminates in terms of principle stresses is as follows (Allaire, 2001; Jog et al., 

1994): 

X = min	(1,
I_ + I`

2Êê
) 

(70) 

The principles stresses are derived from optimal stress tensor I using the optimized 

load paths, OP and OQ	and Eq. (59. Lagrange multiplier ê is for enforcing the volume 

constraint (Allaire, 2001; Jog et al., 1994) . If ê is very large the density distribution will 

represent the Michell structure (Allaire et al., 1993).  

The developed optimization formulation based on load paths lead to two important 

observations. The first one is as follows: 

If the boundary conditions are solely represented in terms of traction, the 

minimization of squared von Mises stress will be equivalent of minimization of squared 

norm of stress.  

Squared von Mises stress can be written in terms of squared stiffness based 

objective function, and determinant of stress tensor: 

^Ø = IÁ`èe =
√

I_ + I` ` − 2	|I_I`| − I_I`
	èe

√
 (71) 
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The first integrand in the right side of Eq. (71) can be written as norm of stress and 

its determinant: 

I_ + I` ` = I ` + 2 |èfñ I | (72) 

Considering the load path functions OP		and	OQ, the determinant of stress tensor is 

as follows:  

èfñ I = −
TOQ

T}
TOP

Tô +
TOP

T}
TOQ

Tô = −
TOQ

T} Ë +
TOQ

Tô È .
TOP

Tô Ë −
TOP

T} È

= − ¿´ OPÍ . (¿OQ) 

(73) 

Therefore, the integral of èfñ I  is written as 

	
√
èfñ I èe = 	

√
− ¿´ OPÍ . ¿OQ èe

= ¿. OPÍ´ −¿OQ èe
√

+ OPÍ. (¿´(−¿OQ)èe
√

 

(74) 

The second term in the right side of Eq. (74) is zero, and the first term is written as:  

¿. OPÍ´− ¿OQ èe = OPÍ´ −¿OQ . é	èb
Î

= OP
TOQ

Tñ 	èb
Î√

 
(75) 

The last integral is on the boundary and it is dependent on OP and OQ on the 

boundary. When the traction boundary conditions are applied solely, the load functions 

OP and OQ are known on the boundary according to Eq.(69). Hence, the load functions 

are not changing during the optimization because the traction does not change. For this 

reason, the term èfñ I èe√  is not changing during the optimization, and it is called 

null Lagrangian. Therefore, ^Ø	only depends on the norm of stress tensor and it is 

equivalent of squared stress tensor norm minimization because all the terms on the right 
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side of Eq. (71) can be written as èfñ I , i.e. èfñ I = I_I`. This conclusion is along 

with those stated by (Allaire et al., 1993). 

The second observation is : The difference between optimized load paths resulted 

from norm of stress, and compliance minimization can be explained using Coarea 

formula (Strang et al., 1983). Under certain conditions the optimized load paths for norm 

of stress are shorter than the ones for minimum compliance, and vice versa. 

Norm of stress minimization is, 

min
£

	 _̂ = |I|èΩ
ì

 (76) 

Replacing the stress tensor components ( IJK ) by load path functions (OP, and OQ) 

using Eq. (59 , and algebraic manipulations yields to,  

min
„ú,„û

	 _̂ = min
„ú,„û		

|¿OP|` + |¿OQ|`
ì

èΩ

= min
„ú,„û		

T OP + OQ

T}

`

+
T OP + OQ

Tô

`

− 2(
TOP

T}
TOQ

T} +
TOP

Tô
TOQ

Tô )èe
√

 

(77) 

If the last term of the above equation is negligible in some parts of e,  

min
„ú,„û

	 _̂ = min
„ú,„û

|¿ OP + OQ |èe
√

 (78) 

Using the Coarea formula, the norm of gradient of any function (O = OP + OQ) on 

domain Ω is equal to the sum of the lengths of its level sets γ O  as follows:  

min
„ú,„û

	 _̂ = min
„ú,„û

|¿ OP + OQ |èe
√

= min
„ú,„û

	 Ì OP + OQ èñ
◊—

≤—
 

(79) 

To minimize _̂, according to Eq.(79) the lengths of the level sets of their sum 

(O = OP + OQ ) must be minimized. This observation is dependent on the magnitude of  
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ë„ú
ëP

ë„û

ëP
+ ë„ú

ëQ
ë„û

ëQ
 which is equal to IPQ(IP + IQ). If IPQ is small, or IP = −IQ this term 

is negligible, and the optimized load paths for norm of stress become shorter that the ones 

for compliance minimization. A similar argument can be made for the opposite case, 

when the compliance load paths become shorter if the term IPQ IP + IQ + det	(I) 

becomes negligible. 

4.2 Microstructure Construction 

4.2.1 Principal Load Paths 
 
It has been proven that the optimal microstructure is aligned with the principal 

stress direction in (Pedersen, 1987, 1989). To construct the optimal microstructure, the 

load functions, with their curls are in the direction of the principal vectors should be 

found. Principal load paths are level sets of load path functions that are tangent to the 

principal stress directions (f	= f	P† + f	Q°) in the optimal design.  

−
TO_

T} = f_
Q,

TO_

Tô = f_P 
(80) 

−
TO`

T} = f`
Q,

TO`

Tô = f`P 
(81) 

Since the gradient of O_ and O` are equal to a vector field in Eqs. (80) and (81), it 

means the vector fields are curl free according to Helmholtz theorem (Larson et al., 2013, 

p. 347). However, the principal direction vectors are not necessarily curl free. In order to 

find the curl free vector field, the principle directions are multiplied by eª in Eq. (82) 

(Allaire et al., 2018).  
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−
TO_

T} = f_
Qeg 

	
TO_

Tô = f_Peg 

−
TO`

T} = f`
Qeg 

	
TO`

Tô = f`Peg 

(82) 

where r can be found by setting the curl of the principal vector field to zero as follows: 

¿×eg −f`
Q† + f`P° = 0 ¿×eg −	f_

Q† + f_P° = 0 (83) 

After some algebraic manipulation, Eq. (83)  will lead to Eq.(84),  

¿f` + ¿r. f` = 0 ¿f_ + ¿r. f_ = 0 (84) 

where the projection of ¿r on fJ , ¿r. fJ	is determined to be −¿fJ. Hence, ¿r can be 

written as sum of its projections on f_, and f` as follows: 

¿r = −¿. f_ f_ + −¿. f` f` (85) 

To find r we minimize the following Lagrangian,  

‰ = ¿r + ¿f_ f_ + ¿f` f` `

ì
dΩ (86) 

Using Euler-Lagrange optimality criteria leads to the following equation that is solved by 

FEM. 

¿`r = ¿. ( −¿f_ f_ + −¿f` f`) (87) 

The following Lagrangian ‰J is then minimized to obtain O_, and O`. 

‰J = 	
ì

−
TOJ

T} − fJ
Qeª

`

+
TOJ

Tô − fJPeª
`

dΩ 
(88) 

Lagrangian ‰J 	is minimized using Euler-Lagrange optimality criteria leading to 

Eq.(89). 

¿`OJ = ¿×(eªfJ) (89)  

The second issue with the principal stress vector fields is of it is not coherent and 

the direction can change by n which leads to singularities in the vector field. To address 
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this issue, the inconsistency in the flow of cell propagation is first captured to modify the 

vector field. The edge labeling which is the dot product of the vectors of two vertices 

identifies the irregularities in the local element (Hotz et al., 2010); if the product of all dot 

products between pairs of vectors is non-positive, then the element contains degenerate 

points; otherwise, if some dot products are negative, there is a n difference in orientation.  

The edge labelings ê fJ , ê fK , ê fá  are found for a triangular finite element mesh 

with vertices †, °, Í and edges fJ fK, and fá (see Figure 4.2) using the following:  

ê fJ =
0		†t					¬K. ¬á = 0			
−1			†t		¬K. ¬á < 0
1				†t			¬K. ¬á > 0

 

(90) 

 
Figure 4.2 The principal vector directions and edge labeling on a finite element mesh 

 
The next step is to interpolate the new coherent vector field after rotating some 

vectors by n radians. The rotation of the vectors is ensured by multiplying the vectors to 

the corresponding edge labels. The new vector field at any point , W  can be found as 

follows: 

¬mÒÚ , W = ZJ , W ¬J + ZK , W ê(fá) + Zá , W ê(fK) (91) 

In Eq. (91), ZJ, ZK, Zá are linear finite element shape functions for 3 nodded 

triangular elements, and	ê(fJ), ê(fK), ê(fá) are edge labeling.  

¬J ¬K 

¬á 

fJ 

fá 

fK 
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4.2.2 Microstructure Dimensions  
 
While the density distribution is represented for rank-two laminates in Eq. (70), the 

fabrication of such microstructure using the existing 3D printing technology is 

complicated because of different length scales. Therefore, the rank-two laminates are 

replaced with square cells with rectangular holes (see Figure 4.3). Considering a unit cell 

with unit thickness with a hole volume of h_h`, the density of the solid area is:  

1 − h_h` = X (92) 

If the cell is aligned with the principal stress direction, then following equation can 

be derived, 

I_
1 − h`

=
I`

1 − h_
 

(93) 

and h_ and h` are determined by solving Eqs. (92) and (93) simultaneously (Pantz et al., 

2008). To construct the cell with rectangular hole h_h` as seen in Figure 4.3(a), the 

following set is used.  

Û = (}_, }`) ∈ 0,1 `	 cos 2n}_ > cos	(n 1 − h_ )		 ∪ 		cos 2n}`

> cos	(n 1 − h` )} 

(94)  

In set Û, the coordinates of any points in a unit square domain (}_, }`) are changing 

from zero to one, and the cosine functions cos 2n}J  are constructing one period of a 

cosine function as 2n}J changes from zero to 2n. Parts of the cosine wave that are more 

than threshold cos	(n 1 − hJ )	are solid parts of the structure, and the rest are void. The 

threshold cos	(n 1 − hJ )	is varying between -1 to 1 as hJ is changing from zero to one, 

and creates different periodic square based on the value of hJ. 



68  

The periodic unit square cell in set Û, Eq.(94) is extended to a host of periodic cells 

creating a lattice structure on domain U with periodicity i using set eå as in Eq. (95). 

eå = (}_, }`) ∈ U	 cos
2n}_
i > cos	(n 1 − h_ )		 ∪ 		cos

2n}`
i

> cos	(n 1 − h` )} 

(95) 

Since h_, and h` vary with cell locations, the holes in the periodic squares have 

different dimensions. Set eå is creating a lattice structure in direction of }_}` coordinate 

system. This set can be extended to a lattice structure on curvilinear directions O_O`	that 

are the level sets of the principal load functions found using Eq.(89), as seen in Eq.(96). 

In set e÷ the cosine waves are constructed along O_ , and O` with periodicity i and the 

threshold is based on the size of the hole h_ and h`. 

e÷ = (}_, }`) ∈ U	 cos
2nO_(}_, }`)

i

> cos	(n 1 − h_ )		 ∪ 		cos
2nO` }_, }`

i

> cos	(n 1 − h` )} 

(96) 

 
(a)   (b) 

Figure 4.3 The periodic microstructure, (a) before mapping and (b) after mapping to the 
principal directions 

h_  

h` 
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4.2.3 Post-Processing  
 
Some parts of optimal structures are not manufacturable due to the existence of thin 

bars, and small members. These members can be removed or changed to manufacturable 

members by post processing. The post processing used here has been used previously 

(Allaire et al., 2018). A Heaviside function approach can also be utilized in the post-

processing (Groen et al., 2018). The minimum width is set to ℎlJm. The size of the 

original unit cells is i. After the projection using the principal vector field, the size of 

each cell becomes ℎk = if≤ª. Hence the size of bars at each cell is 1 − h_ ℎk and 

1 − h` ℎk. The geometry is modified based on how small the cells are, if the cells are 

too small (ℎk < 2ℎlJm), they should be either void or solid: if hJ < 0.5 then hJ = 0 is 

assigned, and if hJ > 0.5 then hJ = 1 is assigned. Whereas, if the cells are large enough, 

ℎk > 2ℎlJm, only the bars that are smaller than ‹˜¯˘
`‹˙

 are removed, and the bars with their 

widths larger than 1 − ‹˜¯˘
`‹˙

 are projected to 1. Figure 4.4 shows all the post-processing 

procedure for two different regimes based on ℎk, and 2ℎlJm. 

 
Figure 4.4 Post-processing of the optimal design (Allaire et al., 2018)  
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4.3 Numerical Examples 

4.3.1 Square Plate Under Axial Load 
 
The square plate under axial load (Figure 4.5) is selected to test the observation of 

Eqs. (71)-(75). According to Eq. (75) the determinant of stress tensor is not changing 

during the optimization when only traction boundary conditions are applied. Hence, the 

optimizing variables (i.e. OP , and OQ) of objective function ^Ø	 in Eq. (71) are equivalent 

to ones for square of norm of stress when only traction boundary conditions are applied. 

The optimized load paths are determined for  I_ + I` `èe√  as shown in Figure 4.6 

(a), and (b). The minimization of I	 `èe√  is carried out and optimized load paths are 

plotted in Figure 4.6 (c), and (d). As can be seen in Figure 4.6, the optimized load paths 

are identical for both cases.  

 
Figure 4.5 Axial tractions on a square plate 
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(a) (b) 

 
 

(c) (d) 
Figure 4.6 Optimized load paths for I_ + I` `èe√  minimization, (a) optimized load 
paths OP, (b) optimized load path OQ. Optimized load paths for I	 `èe√ 	minimization, 
(c) optimized load path OP, (d) optimized load paths OQ. 

 

4.3.2 Cantilever Beam with Load At the Center 
 
In this example, the optimized load paths are found by minimizing the compliance, 

and norm of stress subjected to the equilibrium for a rectangle cantilever beam with 

length 2, and unit height and thickness. The non-linear system of PDEs that are derived 

by Euler-Lagrange optimality criteria using Eqs. (66), and (67) are solved using finite 

element method. Second order polynomial shape function is used on 6 nodded triangular 

structured mesh. In this model, 13,000 nodes and 6,400 elements are used.  

The unit load tQ = −1 applied on the right edge, as shown in in Figure 4.7, 

determines the boundary conditions on OQ using Eq.(69). The traction free surfaces on 
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top, bottom, and right edge lead to constant OP, and OQ using Eq. (69). Since there are no 

traction boundary conditions on the clamped edge, no boundary conditions are specified 

for  OP, and OQ. Lagrange multiplier ™	is zero on the whole boundary. Gauss-Newton 

method takes 20 iterations to solve the problem with quadratic convergence.  

The initial guess used to solve the non-linear PDEs ( Figure 4.8 (a), and (b)) are 

determined by finding the load path in the fully solid design (Figure 4.7) using authors’ 

load function method (Tamijani et al., 2017; Tamijani et al., 2018). However, due to the 

convexity of the problem, any initial load functions that satisfy the boundary conditions 

can lead to the global optimal (Svanberg, 1981). After optimization, as seen in Figure 4.8 

(c) and (d), the optimized load functions OP and OQ become flat (i.e. ¿OP = 0, and 

¿OQ = 0) in areas that the optimal stresses are close to zero.  

In Table 4.1, the value of each objective function at the optimal for each 

minimization, and its initial value are shown. As expected for norm of stress 

minimization, the value of compliance is slightly higher than its value in compliance 

minimization. This is the case for compliance minimization as well. However, both 

values are significantly lower than the initial values. In Figure 4.9, the difference between 

the optimized load paths for compliance and norm of stress is evident. According to the 

second observation in Eqs. (76)-(79), the length of the norm of stress optimized load 

paths are reduced in regions at the center of domain e that IPQ(IP + IQ) becomes 

negligible. 

To construct the optimal microstructure, the optimal stresses are determined from 

optimized load paths using Eq. (59. The derivative of OP, and OQ are smoothed with a 

radius of two element length using the weighted average filtering method (Guest et al., 
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2004). Principal stresses are also found from stresses, and Eq. (70) is used to determine 

the homogenized density hï seen in Figure 4.10(a). Module of elasticity is Ê = 1, and 

Lagrange multiplier for volume fraction is ê = 20. As can be seen in Figure 4.10(a), the 

density is high at the top and bottom of domain e because of the high stress values, and 

gradients of load functions. Whereas, the low-density areas are located at flat load 

function areas at the center and corners on the right edge seen in Figure 4.8 (c-f).   

The dimensions of microstructure 1 − h_, and 1 − h` are determined by solving 

Eqs. (92), and (93) simultaneously as seen in Figure 4.10 (b), and (c). Each of them are 

representing the solid parts of a periodic square that is aligned with its corresponding 

principal stress direction. The higher IJ, the higher 1 − hJ. The areas with high 1 − hJ in 

one direction, and low in other direction resemble a solid square cell, while the gray areas 

resemble the periodic microstructure with holes h_h`. 

The next ingredient for constructing the microstructure is the optimal orientation 

(Figure 4.11 (a), and (b)) which is proven to be the direction of principal stresses 

(Pedersen, 1989). As seen in Figure 4.11 (a), and (b), the principal stress directions can 

rotate by n and create a singular vector field. To solve this problem an interpolation using 

Eq. (91) is used which removes the singularity and creates a coherent vector field seen in 

Figure 4.11 (c), and (d). The coherency of the vector field is required to successfully 

establish smooth principal load paths (O_, and O`) and construct the microstructure.  

To make the principal stress vectors curl free, a dilation field is calculated using 

Eq.(85) to ensure solution of Eq. (89) are tangent to the vector field eªfJ. Otherwise the 

solution of Eq. (89) for O_, and O` would have a larger error, and would not represent the 

vector field eªf_, and eªf`.	Principal load functions (O_, and O`) are calculated using 
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finite element method on a finer mesh with 25400 elements, and 64000 nodes using Eq. 

(89) as seen in Figure 4.12. 

Level sets of  O_, and O` are principal load paths that create the Michell like lattice 

as shown in Figure 4.13. Using load functions OJ, microstructure dimensions hJ, and Eq. 

(96) the optimized structure is determined as seen in Figure 4.14 with 500,000 nodes and 

250,000 elements to achieve a higher resolution. Post processing of the structure to 

remove the non-manufacturable features is carried out by removing the features smaller 

than 	ℎlJm = .03i for all examples in Figure 4.14. 

As expected the microstructure is aligned with principal load path directions seen 

in Figure 4.13, According to Eq. (96), the regions with no holes hJ = 0 will make the 

öqï	(n 1 − hJ )	to become -1, and öqï `˚„¯(P¸,P¤)
˝

 becomes always larger than 

öqï	(n 1 − hJ )	which makes e÷ solid. Different periodicity or cell size i are used in 

Figure 4.14. Fine microstructure seen in Figure 4.14(a) has a better stiffness than a coarse 

one seen Figure 4.14(b).  

Table 4.1 Objective function values at optimal for each optimization 
 

 
_̂ = |I|èΩ

ì
 ^` = I_d + I`d èΩ

ì
 

Values of	 _̂, and ^`after  

min
£

	 _̂ = |I|èΩ
ì

 

6.52 7.36 

Values of	 _̂, and ^`after 

min£		
^` = I_d + I`d èΩ

ì
 

6.63 7.17 

Initial values of _̂, and ^` 7.41 8.02 
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Figure 4.7 Cantilever beam with point load at the center of right edge 
 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 
Figure 4.8 Initial load functions at the beginning of optimization, (a) load function in 
}	direction, OP_,	and (b) load function in y direction, OQ_, Optimal load functions after 
optimization, (c) optimal load path OP, (d) optimal load path OQ. Optimal load functions 
after stress minimization, (e) optimal load function OP, (f) optimal load function OQ 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.9 Initial load paths at the beginning of optimization, (a) load path in }	direction, 
OP_,	and (b) load path in y direction, OQ_, Optimized load paths after compliance 
optimization, (c) optimized load path OP, (d) optimized load path OQ. Optimized load 
paths after stress minimization, (e) optimized load path OP, (f) optimized load path OQ 
 

   

(a) (b) (c) 

Figure 4.10 (a) The homogenized density for minimum compliance, Microstructure 
dimensions (b), 1 − h_ , and (c), 1 − h` 
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(a) (b) 

  
(c) (d) 

 
Figure 4.11 Principal stress direction before reconstructing to coherent vector field for 
compliance minimization (a) f_ ,and (b) f` .Reconstructed principal stresses to coherent 
vector field (c) f_ ,and (d) f` .  
 

  
Figure 4.12 Principal Load functions O_, and O` for minimum compliance 
 

 
Figure 4.13 Union of principal load paths for minimum compliance O_ ∩ O`. 
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(a) 
 
 

 
(b) 

Figure 4.14 Optimized structures with two different periodicities (a), i = 0.8, and ^` =
82.64, (b) i = 	2.86, and 	^` = 84.23. 
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4.3.3 L-Shape Structure 
 
Same as previous example, the optimized load paths are found by minimizing the 

compliance, and norm of stress subjected to the equilibrium for a L-beam with unit 

length, height, and thickness. In this model, 5000 nodes and 2500 elements are used to 

solve Euler-Lagrange optimality criteria Eqs. (66), and (67).  

The unit load tQ = −1 applied on the center of right edge in  Figure 4.15 

determines the boundary conditions on OQ using Eq.(69). Gauss-Newton method takes 30 

iterations to solve this problem with quadratic convergence. The initial guess used to 

solve the non-linear PDEs (Figure 4.16 (a), and (b)) are determined by finding the load 

path in the fully solid design. The optimized load paths for compliance are shown in 

Figure 4.16 (c), and (d). 

To construct the optimal microstructure, module of elasticity is Ê = 1, and 

Lagrange multiplier for volume fraction ê = 70 are selected. The optimized density and 

the dimensions of microstructure 1 − h_, and 1 − h` are shown in Figure 4.17. Using 

load functions OJ and microstructure dimensions hJ, the optimized structure is 

determined as seen in Figure 4.18. Post processing of the structure to remove the non-

manufacturable features is carried out by removing the features smaller than 	ℎlJm =

.05i for all examples in  Figure 4.18.  Figure 4.19 shows the convergence of 

microstructures to the homogenized design for various sizes (i). As expected, the higher 

stiffness is achieved for lower i. 
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Figure 4.15 L-shaped beam with load on the right edge at center 
 

  
(a) (b) 

  
(c) (d) 

 
Figure 4.16 Initial load paths at the beginning of optimization, (a) load path in 
}	direction, OP_,	and (b) load path in y direction, OQ_, Optimized load paths for 
compliance minimization, (c) optimized load path OP. 
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(a) (b) (c) 

Figure 4.17 (a) The homogenized density for compliance minimization, Microstructure 
dimensions (b), 1 − h_ , and (c), 1 − h` 

   
(a) (b) (c) 

Figure 4.18 Optimized structures for minimum compliance with three different 
periodicity (a) i=0.15, and ^` = 200, (b) i=0.3, and ^` = 255, (c) i=0.5, and ^` = 330 

 

 
Figure 4.19 Change in objective function ^` based on size of microstructure i 
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4.3.4 Power Pylon structure 
 

A Power Pylon which consist of two horizontal, and vertical 2 by 1 rectangles is 

considered here. For Power Pylon, first the initial load path ( OP_ , and OQ_ ) are found as 

seen in Figure 4.21 (a), and (b), then the compliance minimization is solved by using 

Euler-Lagrange optimality conditions to find the optimized load paths. Using the 

optimized load paths ( OP , and OQ) ( Figure 4.21 (c), and (d)) the principal stresses and 

principal directions are calculated, and the coherent construction is carried and the 

principal load functions and load paths are calculated as seen in Figure 4.22. Next, the 

dimensions of the periodic microstructure are calculated using Eqs. (92), and (93), as 

seen in Figure 4.23, and the optimized structure is constructed (Figure 4.24).  

An important numerical step in nonlinear optimization is the choice of parameter 

!`, which plays a significant role in convergence of Gauss-Newton method. Since the 

integrand of compliance objective function is the sum of absolutes of deviatoric principal 

stresses, 

I_d + I`d =
TOP

Tô +
TOQ

T}

`

+ 4
TOQ

Tô

`

 
(97) 

derivative of this term does not exist at zero. To fix this issue !` is added under the 

square root, 

!` +
TOP

Tô +
TOQ

T}

`

+ 4
TOQ

Tô

`

 
(98) 

The value of !`	affects the convergence rate based on distance to the solution ˛      

( fJ = }J − ˛ ) in iteration † of any function t(}) is as follows (Gerald, 2004): 
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fJ◊_ =
1
2
tˇˇ ˛
tˇ ˛ fJ` 

( 99) 

For t } = !` + }, the convergence rate _
`
!"" P
!" P

 would be _
#¤◊P

 . Hence, the 

higher !` the lower fJ◊_	the distance to solution ˛, which means a faster convergence as 

seen in Table 4.2. The value of !`	cannot be increased more than needed for timely 

convergence because it will change the nature of the objective function as !` becomes 

much larger than additional terms in Eq. (98). Hence, to achieve the correct solution of 

optimization problem ^` with a reasonable number of iterations, !`	must be kept as small 

as possible. For example, in Table 4.2 choosing !` = 0.04 is a reasonable option. 

Table 4.2 Rate of convergence based on ! 

!` Number of iterations ^` 

0.01 78 60.83 

0.04 42 60.75 

0.09 28 60.70 

0.16 27 60.67 

 

 
 

Figure 4.20 Power Pylon with applied loads and boundary conditions 
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(a) (b) 

 
 

  
(c) (d) 

Figure 4.21 Initial load paths at the beginning of optimization, (a) load path in 
}	direction, OP_,	and (b) load path in y direction, OQ_, Optimal load paths for compliance 
minimization, (c) optimal load path OP, (d) optimal load path OQ. 
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Figure 4.22 Union of principal load paths O_ ∩ O`. 

 
 
 
 

(b)     (c) 
Figure 4.23 (a) The homogenized density, Microstructure dimensions (b), 1 − h_ , 

and (c), 1 − h` 
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(a) 
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(b) 
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(c) 

Figure 4.24 Optimized structures with three different periodicity (a) i=0.375, (b) 
0.5, and (c)1. 
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5 CONCLUSIONS 

A new method for load flow determination in two-dimensional space was 

developed by taking advantage of the load function partial derivatives being equal to the 

stresses and satisfying the equilibrium equation automatically (similar to the Airy stress 

function in solid mechanics). The total derivative of load functions is equal to the amount 

of load flow similar to streamlines in fluid mechanics. No assumption for loading and 

boundary conditions are made in theoretical or computational development. The load 

paths for various plane stress structures with different boundary conditions and loadings 

were determined. The results were compared with those available in the literature.  

The four main advantages of the proposed load path method are its computational 

efficiency, requiring only a single structural analysis; computational simplicity, which 

makes possible the easy integration into a computational software; elimination of post-

processing to show the load contours, and its capability to obtain both load paths and the 

amount of load flow.  

Secondly, the load function for plate and shell structures was formulated and 

determined. Load function was used to find the trajectory of load flow and the amount of 

transferred load between level sets (contours) of the load function. The expansion of the 

load function method in-plane elasticity to plate and shells is carried out using the 

Helmholtz decomposition. Because of the existence of the source term (pressure) in 

equilibrium equations, similar to body force in plane elasticity, it is necessary to 

decompose the resultant stress field to solenoidal and irrotational parts. It has been shown 

that the solenoidal part represents the load function in plates and shells and for the special 

case of plate, the irrotational part is equivalent of the moment transfer in the structure.  
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Finally, the closed mathematical form of the load functions in two-dimensional 

space was used as a tool to formulate optimization problems in terms of load functions. 

This approach has distinct advantages as it reduces the number of variables and 

constraints in compliance and stress minimization problems leading to computational cost 

savings. The stresses are replaced with load functions that represent the load transfer in x 

and y directions. Since the load path functions satisfy the equilibrium equations, the 

replacement reduces the number of optimization constraints, as well as the number of 

variables. Using the optimized load functions, the optimal stresses, principal stresses, 

principal directions, and density are determined.  

The dimensions of the square periodic microstructure were also determined using 

the optimal density and optimal principal stresses. The orientation of the periodic 

microstructure was determined using principal load paths that are aligned with the 

principal stress eigenvectors. Because of singularities in the principal stress vector field 

(angle rotation by n), an interpolation scheme is used to reconstruct a coherent vector 

field. The numerical scheme to determine the principal load paths considers the principal 

vector field curl free. Since this is not always the case, a dilation field is used and 

multiplied by the principal stress field to obtain the curl free component. The optimal 

structure is constructed using the principal load paths and the microstructure dimensions 

using cosine wave functions. The resulting optimal structure resembles the lay-out in the 

Michell lattice design.  
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6 RECOMMENDATIONS FOR RESEARCH 

Considering the computational efficiency of the load path optimization method, it 

can be extended to 3D structures. Since the load path function that satisfies equilibrium 

does not exist in 3D, the optimization with respect to stresses can be done directly 

without using any load function in the optimization process. The post processing and 

determination of the periodic cubic microstructure can be carried out in the same manner 

as in 2D. The author intends to expand this method to 3D wing structure in the future to 

show the application of load path optimization in aerospace structures. 

Other future work would be using other microstructure geometry, such as hexagon 

or triangle, for structural optimization. The main challenges for non-square 

microstructures are that the number of variables would increase for non-regular 

microstructures. However, since this method performs the optimization on a coarse mesh, 

and then projects to the fine mesh, the computational burden of adding variables is not 

significant. 

Another extension of this work could be using the level set method with load path 

and variational methods as explained in Appendix for optimization. In this scheme, the 

load functions would be the new variables and the boundary of the structure is varied 

based on the sensitivity of the objective function (e.g, compliance). The sensitivity of the 

objective function determines the variation of the level set function which propagates 

using the Hamilton-Jacobi PDE. 
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APPENDICES 

To develop load path based topology optimization, mastery of some structural 

optimization methods was required. The author explored truss optimization, and level set 

gradient based optimization, and evolutionary optimization. 

A. Truss Optimization 

For the minimum weight design, the weight of the structure is minimized subject to 

the constraints such as maximum allowable stress and the equilibrium equations of the 

truss. The mathematical representation of this optimization scheme is as follows: 

–†é hKêK
l

KÇ_

 

ï. ñ. $KéJK
m

JÇ_

+ tJ = 0 

−˛hK < $K < ˛hK 

In these equations, ° represents the index for bars, † is the index for number of 

vertices, hK is the cross section of each bar,		êK is the length of each bar, $K is the load in 

each bar, 	éJK is the directional cosine matrix of each bar, tJ is the applied load on each 

vertex, and	˛ is the maximum allowable stress in each bar. The variables in this problem 

are the cross section area of each bar and this problem is linear meaning that the objective 

function and the constraint are linear. Hence, this problem is convex and a global optimal 

can be determined using linear programming. The results are as follows and they are 

identical to the results in the literature (Bendsøe et al., 1994; Bendsoe et al., 2003). 
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Figure 6.1. Minimum-weight optimal truss in 9 by 5 grid verified based on 

(Bendsøe et al., 1994; Bendsoe et al., 2003) 
 
 

 
Figure 6.2. Minimum-weight optimal truss in 6 by 9 grid verified based on 

(Bendsøe et al., 1994; Bendsoe et al., 2003) 
 
 

 
Figure 6.3. Minimum-weight optimal truss in 9 by 13 grid verified based on 

(Bendsøe et al., 1994; Bendsoe et al., 2003) 
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Figure 6.4. Minimum-weight optimal truss in 9 by 19 grid verified based on 

(Bendsøe et al., 1994; Bendsoe et al., 2003) 
 
 

 
Figure 6.5. Minimum-weight optimal truss in 9 by 9 grid verified based on 

(Bendsøe et al., 1994; Bendsoe et al., 2003) 
 
 

 
Figure 6.6. Minimum-weight optimal truss in 9 by 25 grid verified based on 

(Bendsøe et al., 1994; Bendsoe et al., 2003) 
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B. Evolutionary Structural Optimization Using Level Set 

The formulation of level set method is derived in this section. If we consider the 

high dimensional surface R	(}, ô), the zero-level set of this function will create a curve 

on z=0. The topological changes in this curve are generated by moving the higher order 

function or by changing the speed of the higher order function. In other words, the zero 

level set curve of this function will change or move when R	 }, ô 	moves or changes. 

This representation has great advantage over conventional front propagating methods 

(Sethian, 1999). It can determine sharp edges and preserve the geometry in corners, 

whereas using the conventional methods of front propagation the corners and sharp edges 

will disperse with time. The initial value formulation of level set is as follows: 

Rò + s ¿R = 0 

In this equation R is the higher order level set function, F is the velocity of the level 

set function at every point on the level set function, ¿R  is the direction of vector normal 

to the surface at each point on the level set function, and ñ is the time. The initial 

condition for this PDE is the following: 

R ñ = 0, }, ô 	†ï	Y†¬fé 

The initial conditions are usually the initial shape of the structure or the holes in the 

structure at the first step of optimization. The level set is initialized based on the initial 

shape of the structure. Usually the signed distance function is used for initialization. The 

areas that are void or holes are having a negative value of distance to the curve, and the 

areas that are not void have positive value of distance to the propagating curve. The 

initialization is as follows: 



104  

									R ñ = 0, }, ô = è }, ô 							è > 0			éqñ	¬q†è
R ñ = 0, }, ô = −è }, ô 				è < 0		¬q†è 		 

The distance function è }, ô  is the distance between every point in the x-y plane to 

the propagating front or the curve that creates the hole. An initialized level set function is 

shown in the following: 

 
Figure 6.7 The level set function is shown in green and the zero level set is shown in red 

 
Now that the level set is initialized, this PDE, Rò + s ¿R = 0 must be solved. 

There are various methods for solving this Hyperbolic PDE such as forward in time 

backward in space (FTCS), Lax method, Lax-Wandroff, MacCormeck method. These 

methods cannot capture the shape of shock or sharp edges of the propagating front. In 

other words, these methods do not consider the direction of information propagation. The 

Upwind method can capture and determine these sharp edges; hence upwind method is 

used to solve the level set PDE. The discretizing scheme of the PDE based on upwind 

method is as follows (Sethian, 1999): 

RJ
m◊_ = RJ

m − ¡ñ(max sJK, 0 ¿◊ + min sJK, 0 ¿≤) 

where, 

¿◊ = max UJK
≤P, 0 ` + min UJK

◊P, 0 ` + max UJK
≤Q, 0 ` + min UJK

◊Q, 0
`
 

¿≤ = max UJK
◊P, 0 ` + min UJK

≤P, 0 ` + max UJK
◊Q, 0

`
+ min UJK

≤Q, 0 `
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where,  

UJK
≤P = (RJ,K − RJ≤_,K )/¡}	; UJK

◊P = (RJ◊_,K − RJ,K )/¡} 

UJK
≤Q = (RJ,K − RJ,K≤_ )/¡ô; UJK

◊Q = (RJ,K◊_ − RJ,K )/¡ô 

This discretized scheme is used to find the level set at each time step and the zero-

level set can be found which represents the propagating front. The Courant-Fredrick-

Levy (CFL) conditions of stability must be satisfied in each time step to have the accurate 

and relevant results. The proof of CFL can be found in numerical method books (Gerald, 

2004). The CFL condition for level set can be written as follows: 

max	(s)¡ñ ≤ ¡} 

In other words, the speed of propagation of level set must not exceed passing one 

element on mesh at each time step. This ensures the numerical stability of the level set 

function. A simple example of the level set propagation is shown in the following: 

  
(a) (b) 

Figure 6.8 The evolution from (a) to (b) of the level set function (black), and the 
propagating front (red) 

As can be seen in Figure 6.8, the zero-level set of the higher order 3D level set 

function on left is represents the geometry in 2D. Another important step is to reinitialize 

the level set in every five time-step to avoid flat or steep level set. Reinitializing will 

make the gradient level set function one by using the distance function as level set every 

five time-time step (Sethian, 1999).  
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Velocity Extension of Level set method 
 
In previous sections, the level set formulation and numerical scheme to solve the 

Level set hyperbolic PDE was discussed. In this section, the Level set velocity F is 

discussed. The velocity of the level set depends on how the physical problem is related to 

level set. For example, in fluid dynamics the level set velocity is the velocity of the fluid. 

In aircraft collision avoidance, the velocity is the velocity of the aircraft. In structural 

optimization, the velocity can be the von Mises stress (Sethian et al., 2000) or the 

sensitivity of objective function to the topology (Allaire et al., 2004). In this research, I 

have used the von-misses stress as the velocity of level set as it has been used by Sethian 

to verify the results. To calculate the von Mises stress at each time step the equilibrium 

equations are solved using finite element method and the von Mises stress is calculated in 

the design domain.  

−´ 2&PP + &QQ + ¬PQ − ™ &PP + ¬PQ = t' 

−´ 2¬QQ + &PQ + ¬PP − ™ &PP + ¬QQ = tÁ 

where, 

™ =
ÊŒ

(1 + Œ)(1 − 2Œ) 

´ =
Ê(1 − Œ)

(1 + Œ)(1 − 2Œ) 

Also & and ¬ are displacements, t' and tÁ are external forces, Ê	and Œ are module 

of elasticity and poisons ratio. After solving these equations using finite element method, 

the von Mises can be found using the following: 

I =
´ ¿& + ¿&(

2 + ™ñrhöf ¿& ) 
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Then the velocity of the level set is chosen based on the von Mises stress. The 

relationship is as follows. This relation is based on ESO. Basically, if the stress is higher 

than a threshold, the level set front will propagate to increase the hole, and if the stress is 

more than a threshold, moving the level set fronts backwards will decrease the hole. 

s = 1		†t															10 >
I*+,

I > I*-.

s = 0		†t										20 >
I*+,

I > 10

s = −1		†t									I*+, >
I*+,

I > 20

 

Numerical Examples  
 
Level set method was used to find the optimal topology using the ESO inspired 

approach. The results are conforming to the ones in literature (Allaire et al., 2004; 

Bendsoe et al., 2003; Sethian et al., 2000; Wang et al., 2003). All the aforementioned 

literature use levels set method except one, which uses SIMP (Bendsoe et al., 2003). The 

results agree with level set methods that used sensitivity analysis of compliance energy, 

ESO approach level set, and SIMP method. It is important to mention, all of the level set 

methods find the local optimal and finding the global optimal is not guaranteed because 

these problems are non-convex. Only convex problems are guaranteed to reach global 

optimal such as minimum weight problem in truss optimization. However, there are 

several methods to find the global optimal of non-convex problems such as sequential 

linear programing (SLP), interior point penalty, and moving asymptotes method (MMA) 

(Svanberg, 1987). The level set optimal shapes that are shown in Figure 6.9, Figure 6.10, 

Figure 6.11, and Figure 6.12 are all benchmark problems of topology optimization. A 

concentrated load is applied on the right-hand side and the left-hand side is clamped to 

create a cantilever plate.  
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The most important factors in reaching the optimal in levels set methods are initial 

conditions, the mesh density of level set function, and the order of elements in finite 

element solver. Since level set method is based on a hyperbolic PDE with prescribed 

initial conditions, the solution is highly dependent on the initial conditions and the 

velocity of propagation. The initial shape can have multiple holes or single hole, with 

different shapes such as elliptical, circular, square, rectangle, or any arbitrary shape. In 

the author’s experience, there is an optimal value of number of initial holes that can lead 

to the optimal design faster than others. Another important factor is the speed of level set 

which is based on the stress in the structure. The speed must be chosen in a manner to 

satisfy the CFL conditions to maintain numerical stability of level set. If the stability is 

not maintained, the level set behaves abnormal with abrupt changes. 

The other important factor is the density of the mesh on the level set function; this 

is the mesh that the value of level set function is determined on. This mesh is different 

with finite element mesh, and ensures the accuracy of the level set function and 

consequently the zero-level set which is the propagating front. The order of finite element 

that is used to calculate the structural response is essential to calculate the stress 

accurately. Using the quadratic element versus linear elements make a lot of difference, 

and quadratic elements ensure the convergence to the optimal design. 

The differences between author’s approach and Sethian’s approach (Sethian et al., 

2000) are as follows. First, the outer boundary of the rectangle design area is not 

changing in author’s approach and through these simulations and results it has been 

proven to reach to optimal. Second, in author’s approach there is no new hole generation, 

and the holes are the evolution of the initial holes and no new holes are added. This also 
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has been proven to reach the optimal design. Third, Sethian used immersed method to 

calculate stresses and I used finite element method. Forth, Sethian uses narrow band level 

set, whereas, I used the original levels set. Fifth, in author’s approach is reinitialized and 

Sethian does not reinitialize the level set because of using velocity extension method. 

When velocity extension is parallel to the boundaries the level set does not need re-

initialization. The similarities are using level set and ESO approach together for topology 

optimization. 

 

 
 
 

 
Figure 6.9. The optimal topology of a 8 by 16 cantilever plate under concentrated 

load at the tip verified (Allaire, Gournay, et al., 2005) 
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Figure 6.10. The optimal topology of a 8 by 12 cantilever plate under concentrated 

load at the tip (Bendsoe et al., 2003) 
 
 

 
 
 

 
Figure 6.11. The optimal topology of a 1 by 3 cantilever plate under concentrated 

load at the tip (Wang et al., 2003) 
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Figure 6.12 The optimal topology of a 2 by 1 cantilever plate under concentrated 

load at the tip (Sethian et al., 2000) 
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C. Gradient Based Topology Optimization Using Level Set 

The optimization problem can be posed as follows. The objective function / can be 

written as follows (Allaire et al., 2004): 

/ = / ¬ è} + ê ¬
ëì

èï
	ì

 

The constraints are as follows: 

−¿. 0f ¬ = t 

¬ = 0	qé	Γd 

0f ¬ é = Y	qé	Γc 

∂ Ω, ¬, $, ™_, ™` = / ¬ è} + ê ¬
ëì

èï
	ì

 

¿. 0f ¬ = t 

−$¿. 0f ¬ è} 
ì

= ∫ $tè} 

Using integration by part and divergence theorem: 

−$¿. 0f ¬ è} = −∫ ¿. ($0 f ¬ è} + ∫ ¿$0 f ¬ è} 
ì

 

− ¿. ($0 f ¬ è}
ì

= − $0 f ¬ é	èï − $0 f ¬ é	èï
2324

 

Hence, 

$0 f ¬ é	èï +
2

 ∫ ¿$0 f ¬ è}=∫ $tè} 

Hence, the equilibrium constraint can be written in week form as follows: 

$0 f ¬ é	èï +
25

 $0 f ¬ é	èï + f $ 0 f ¬ è}ì26
= $tè} ì  

Replacing the Neumann boundary conditions in the above equation. 
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0f ¬ é − Y = 0 

$Yèï +
25

 $0 f ¬ é	èï + f $ 0 f ¬ è}ì26
= $tè} ì  

The Dirichlet constraint can be written as follows in week form as follows using the 

Lagrange multiplier: 

™_¬èï = 0
23

 

Using the Cea’s example (Céa, 1986), you can see that ™_ = − ëÖ
ëm

 

0™_¬èï = − 0¿$	¬
23

èï
23

= − 0e($)	¬èï
23

  

We derived The Lagrangian as seen above 

The next step is to find the derivative of Lagrangian with respect to the variable u 

and the Lagrange multipliers.  

The Lagrangian after the above calculations is as follows: 

∂ Ω, ¬, $ = ° ¬ è} + ê ¬ èï
ëìì

+ ∫ 0f ¬ . f $ è} − $. tè}
ì

− $. Yèï − $.0f ¬ é + ¬.0f $ éèï
2324

 

The next step is to find the derivative of Lagrange with respect to the variable v and 

the Lagrange multiplier $. 

The Fréchet derivative is defined as follows:  

<
Ts
T0 ,7 >= sˇ 0;7 = lim

s(0 + XB) − F(A)
X

																																					:→å

 

We use the Fréchet derivative concept to find the optimality conditions.  

Basically, we are perturbing variable A in the direction of Vector B, and we find 

the derivative in the direction of vector B. 
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Let’s find the derivatives with respect to q (Lagrange multiplier) term by term as follows: 

s = $.0f ¬ é 

<
Ts
T$ , R >=

lim
‹→å

s $ + ℎR − s $

ℎ =
∫ 0f ¬ . f $ + ℎR è} − ∫ 0f ¬ . f $ è}

ℎ  

Since,  

f(¬) =
¿¬ + ¿(¬

2  

where e is a linear operator,  

f $ + ℎR =
¿ $ + ℎR + ¿< $ + ℎR

2 =
¿$ + ℎ¿R + ¿($ + ℎ¿<R

2 = f $ + ℎf R  

Replace it in Fréchet derivative: 

∫ 0f ¬ . f $ + ℎR è} − ∫ 0f ¬ . f $ è}
ℎ =

∫ ℎ0f ¬ f R è}
ℎ = ∫ 0f ¬ f R è} 

Let’s simplify it more, 

0f ¬ f R è}
ì

= ∫ A(
¿¬ + ¿(¬

2 )(
¿R + ¿(R

2 ) 

We can only calculate the following term the rest are similar to the following by 

using integration by part: 

0¿¬¿Rè}
ì

= ¿ ¿¬	R − ¿`¬	R è} = ¿¬R. éèï − ¿`¬	R	è}
ì2ì

 

¿¬R. éèï − ¿`¬	R	è} =
ì2

¿¬R. éèï + ¿¬R. éèï
23

− ¿`¬	R	è}
ì25

 

Let’s find the derivative of other terms. 

s̀ = − $. tè} − $. Yèï
25ì

− ($.0 ¬ é + ¬.0f $ é	)èï
26

 

<
Ts̀
T$ , R >= − R. tè}

ì
− R. Yèï 

24

− R.0 ¬ é + ¬0(f R é
26
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Adding all the Fréchet derivatives together yields the Fréchet derivative of the Lagrangian 

< ë=
ëÖ

, R >=< ë>¤
ëÖ

, R > +< ë>
ëÖ

, R >=  

− R. tè}
ì

− R. Yèï 
24

− R.0 ¬ é + ¬0(f R é
26

¿¬R. éèï + ¿¬R. éèï
2325

− ¿. ¿¬ R	è}
ì

= ¿. ¿¬ − t
ì

Rè} + R ¿¬ − Y èï
24

+ ¿¬. 	R
23

− ¿¬. 	R − ¬¿Réèï
26

= 0
23

 

We can do the same for ¿(¬ and will get the same results then we can add the 

results together and find the same equation for e. 

Now let’s find the Fréchet derivatives with respect to variable v (displacement) 

∂ Ω, ¬, $ = ° ¬ è} + ê ¬ èï
ëìì

+ ∫ 0f ¬ . f $ è} − $. tè}
ì

− $. Yèï − $.0f ¬ é + ¬.0f $ éèï
2324

 

Let’s find derivative for the first term 

/ = ° ¬ è}
ì

 

<
T/
T¬ , R >= 	 lim

‹→å

∫ / ¬ + ℎR è} − / ¬ è}
ℎ =

lim
‹→å

∫ / ¬ + /ˇ ¬ ℎR − / ¬
ℎ

= /ˇ ¬ Rè}
ì

 

Let’s find derivative for the third term.  
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Note: Since strain is f ¬ = ?Á◊?@Á
`

  we can find the derivatives for ¿¬ and ¿(¬, 

and then add them and divide by 2. Hence here we just show the procedure to get 

derivative of ¿¬. ¿ $  

/ = ¿ ¬ . ¿ $ è}
ì

 

<
T/
T¬ , R >= 	 lim

‹→å

¿ ¬ + ℎR ¿$è} − ¿ ¬ ¿$è}ì
ℎ =

lim
‹→å

¿(ℎR)¿$ì

ℎ = ¿R¿$
ì

è} 

The next term is $¿¬ 

Its Fréchet derivative is as follows: 

/ = 	$¿ ¬ è}
ì

 

<
T/
T¬ , R >= 	 lim

‹→å

¿ ¬ + ℎR $è} − ¿ ¬ $è}ì
ℎ =

lim
‹→å

ℎq¿ R + q¿¬ − $¿¬ì

ℎ

= $¿R
ì

è} 

After adding all the derivatives of all the terms of the Lagrangian, the derivative of 

the Lagrangian can be written as follows: 

<
T∂
T¬ 	, R >= /ˇ u Rè} + êˇ & Rèï + ¿R¿[ − [¿R + R¿[ 	éèï

26ìëì
	

ì
 

Now let’s work on the second term. 

¿R¿[èΩ = ¿ R¿[ è} − R¿`[è}
ììì

= R¿[èï − R¿`[è} = R¿[èï + R¿[èï
24

− R¿`[è} =
ì26ì2

 

Then, 
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<
T∂
T¬ 	, R >= /ˇ u R − R¿. (¿[)è}

ì

+ êˇ & R − [¿Réèï + êˇ & R + R¿[é	èï
2423

	 

To find the adjoint state the derivative of the Lagrangian must be zero. Hence, 

°ˇ & = ¿. ¿[  

Rêˇ & = [¿R 

êˇ & = −¿[ 

From the last two equations, we get: 

−R¿[ = [¿R 

Hence, 

−R¿[ − [¿R = 0		ℎféöf, 	¿ [R = 0, 		 [Rèï = 0
2

, hence [ = 0	qé	Γ 

There for the adjoint state can be found from 

°ˇ & = ¿. ¿[ 	qé	Ω 

[ = 0	qé	Γ 

Also from 

êˇ & R + R¿[é	èï
24

= 0 

We get 

¿[é = −êˇ &  

Converting all ¿[	ñq	0f([) we get,  

°ˇ & = ¿. Ae([) 	qé	Ω 

[ = 0	qé	Γ¶ 

0f [ é = −êˇ & 		qé	Γc 
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Now according to adjoint sensitivity formulation we need to find the derivative of 

the Lagrangian with respect to shape Ω, 

/ Ω = ∂(Ω,& Ω , [(Ω) 

The Fréchet derivative of J with respect to Ω in the direction of vector ∫ is, 

/ˇ(Ω)(∫) =
T∂(Ω,&, [)

TΩ (∫)  

To get the derivative of the Lagrangian we need some more knowledge. 

The Lagrangian is as follows: 

∂ Ω, ¬, $ = ° ¬ è} + ê ¬ èï
ëìì

+ ∫ 0f ¬ . f $ è} − $. tè}
ì

− $. Yèï − $.0f ¬ é + ¬.0f $ éèï
2324

 

It can be proven that the shape derivative of Lagrangian is as follows: 

T∂
TΩ Ω,&, [ ∫

= ∫. é ° & + 0f & . f [ − [. t èï + ∫. é(
Tê &
Té + Cê & )

ëìëì
ds

− ∫. é
T Y. [
Té + CY. [ èï − ∫. é

Tℎ
Té + Cℎ èï

2324

 

Where H is ¿. é	 , and ℎ = &.0f [ é + [.0f & é 

To prove the above Lagrangian the following must be proven. 

Assume we have a function on the domain D (Simon, 1980), 

/ D = D(& U )
¶

 

Another function that 

V D = E(& U )
ë¶
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If we perturb or change the domain D by a perturbation vector of ∫, then these 

integrals will change to new domain I+ ∫ U, 

/ ∫ = D(& ∫ )
G◊º d

 

V ∫ = E(& ∫ )
G◊º d

 

Since the new domain after perturbation changing with perturbation ∫, when 

getting the derivative with respect to ∫	from the integral / ∫ , the derivative can not enter 

the integral if the domain is a function of ∫. Hence, the domain needs to change to the 

original domain or Lagrangian domain from Eulerian domain.  

/ ∫ = D & ∫ =
G◊º d

D & ∫ . ) + ∫ /hö() + ∫)
d

 

Now that we converted the domain to Lagrangian we can take the derivative into 

the integral hence, 

We use the chain rule and because the derivative of the Jacobian is ¿. ó in which ó 

is the perturbation vector,  

T/ ∫
T∫ 0 ó =

T D & ∫ . ) + ∫
T∫d

0 ó + D & 0 ¿. ó 

Let’s calculate the derivative of Jacobian here, since the Jacobian represents the 

following matrix of transformation from one coordinate to another, from } to }ˇ 

coordinate system, in which } is the Lagrangian coordinate and }ˇ is the Eulerian. 

}_ˇ = }_ + ó_ℎ 

}`ˇ = }` + ó`ℎ 

The Jacobian is determinant of F (i.e. the transformation matrix), 
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F=ëP¯
"

ëPK
=

ëP¸"

ëP¸

ëP¸"

ëP¤
ëP¤"

ëP¸

ëP¤"

ëP¤

=
ë(P¸◊H¸‹ )

ëP¸

ë(P¸◊H¸‹) 
ëP¤

ë(P¤◊H¤‹) 
ëP¸

ë(P¤◊H¤‹) 
ëP¤

=
1 + ‹ëH¸

ëP¸

‹ëH¸
ëP¤

‹ëH¤
ëP¸

1 + ‹ëH¤
ëP¤

 

/ = det s = 1 +
ℎTó_
T}_

1 +
ℎTó`
T}`

−
ℎTó`
T}_

ℎTó_
T}`

 

If there is no transformation the Jacobian will be as follows: 

så =
T}Jˇ

T}° =

T}_
T}_

T}_
T}`

T}`
T}_

T}`
T}`

= 1 0
0 1  

/å = det så =1 

Frechet derivative of the F in the direction of vector ó is,  

<ëI
ëº

, ó > 	 = lim
‹→å

I JKL > )≤I JKL >Â
‹

= lim
‹→å

_◊MNO¸
Nú¸

_◊MNO¤
Nú¤

≤ MNO¤
Nú¸

MNO¸
Nú¤

≤_

‹
=

	ëH¸
ëP¸

+	ëH¤
ëP¤

= ¿. ó 

Now going back to the derivative of the integral over the domain, 

T/ ∫
T∫ 0 ó =

T D & ∫ . ) + ∫
T∫d

0 ó + D & 0 ¿. ó 

Let’s calculate the first term using chain rule. Since this term is in Eulerian 

coordinates D & ∫ . ) + ∫  , its derivative with respect to ∫, can be written as its 

derivative with respect to theta, plus its derivative with respect to the Eulerian 

coordinates multiplied by the derivative of the Eulerian coordinates. You have learned it 

in continuum mechanics. 

T D & ∫ . ) + ∫
T∫ 0 ó =

T D & ∫ 	
T∫ 0 ó + ó. ¿C(u 0 ) 

Also the first term of the above equation is as follows: 
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T D & ∫ 	
T∫ 0 ó =

TD
T&

T& ∫
T∫ 0 ó =

TD
T& &

ˇ 

T/ ∫
T∫ 0 ó =

TD
T& &

ˇ +
d

ó. ¿C u 0 + D & 0 ¿. ó 

The theory is Proven. 

Now finding the derivative of integral on a surface in Lagrangian domain (initial 

shape coordinate system). 

V D = E(& U )
ë¶

 

In terms of the perturbation ∫, in the Eulerian domain (after shape is perturbed by ∫ 

to (I+ ∫)D, 

V ∫ = E(& ∫ )
ë(G◊º)¶

 

To get the derivative •Q
•R

 since the domain is changing with θ, we can not take the 

derivative inside the integral, so we first change the Eulerian domain to Lagrangian, 

hence we need to multiply the integrand to the Jacobian of surface. 

V ∫ = E & ∫ I+ ∫ /höëd() + ∫)	
ë¶

 

Now the derivative in the direction of ó is calculated as follows: 

TV
T∫ 0 ó =

T E & ∫ I+ ∫ /höëd ) + ∫
T∫ 	 0 ó

ë¶
 

Using the chain rule,  

TV
T∫ 0 ó =

T E & ∫ I+ ∫
T∫ 	 0 ó +

T(/höëd ) + ∫ ) 
T∫ 	E(& 0 )

ë¶
 

It can be shown that the ë(I⁄kN3 S◊º ) 
ëº

= ¿ëd. (ó) 
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Also from continuum mechanics we know that the Jacobian term on the surface is 

	/höëdÇ/höd s≤_ ( in which s = ëP¯
ëTK

 , and }J is the Eulerian coordinate system and UKis 

Lagrangian.  

Also in continuum mechanics, we have learned that the,  

¿ëd. ó = ¿. ó − óé. é 

TV
T∫ 0 ó =

T E & ∫ I+ ∫
T∫ 	 0 ó +

T(/höëd ) + ∫ ) 
T∫ 	E & 0

ë¶

=
T E & ∫ I+ ∫

T∫ 	 0 ó + ¿ëd. (ó) E & 0
ëd

 

Using the chain rule, we can right the partial in Eulerian in terms of partial in Lagrangian, 

T E & ∫ . ) + ∫
T∫ 0 ó =

T E & ∫ 	
T∫ 0 ó + ó. ¿G(u 0 ) 

Also, using the chain rule 

T E & ∫ 	
T∫ 0 ó =

TE
T&

T& ∫
T∫ 0 ó =

TE
T& &

ˇ 

TV
T∫ 0 ó =

TE
T& &

ˇ + ó. ¿ E &(0) + ¿ëd. ó E(& 0 )
ëd

 

Now we decompose the ¿ E &  into normal and tangential components according 

to the following equation: 

¿ëdY = ¿Y − é
TY
Té 

Where Y is the level set of Y. 

You can see this in the following example. 

Y: }` + ô` = 1 

Y:W = }` + ô` − 1 



123  

As you can see Y is the zero-level set of Y, 

¿ëd	g = 2x	i + 2y	j 

¿g = 2x	i + 2y	j − k 

é
TY
Té = −k 

As can be seen the equation is satisfied. 

¿ëdY = ¿Y − é
TY
Té 

TV
T∫ 0 ó =

TE
T& &

ˇ + ó. ¿ E &(0) + ¿ëd. ó E(& 0 )
ëd

 

Decomposing	ó. ¿ E &(0) , 

TV
T∫ 0 ó =

TE
T& &

ˇ + ó. ¿ E &(0) + ¿ëd. ó E(& 0 )
ëd

= ó¿ëdE & 0 + ó. é
TE & 0

Té +
TE
T& &

ˇ + ¿ëd. ó E & 0
ëd

 

The sum of these terms is, 

ó¿ëdE & 0 + ¿ëd. ó E & 0 = ¿ëd. (óE(& 0 ) 

	ó. é
TE & 0

Té +
TE
T& &

ˇ + ¿ëd. (óE(& 0 ) 
ëd

= 	 

To find divergence on the boundary consider the following: 

¬ëd = ¬ − é é. ¬  

¿. ¬ëd = ¿. ¬ − ¿. é(é. ¬) 

We call H = ¿. é 

Using the equation above, 

¿ëd. (óëdE(& 0 ) =¿. (óE & 0 − ó. éCE(& 0 ) 
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¿. (óE & 0 = ¿ëd. (óëdE & 0 + ó. éCE(& 0 ) 

Then, 

	ó. é
TE & 0

Té +
TE
T& &

ˇ + ¿ëd. (óëdE & 0 + ó. éCE(& 0 ) 
ëd

 

The term, 

¿ëd. (óëdE & 0
ëd

= 	(óëdE & 0 . é
ëd

= 0 

Because óëd. é = 0, because óëd is tangent to the curve and perpendicular to é .  

TV
T∫ 0 ó = 	ó. é

TE & 0
Té +

TE
T& &

ˇ + ó. éCE(& 0 ) 
ëd

 

proved. 

We can use these proven equations to find the shape derivative of the Lagrangian,  

∂ Ω, ¬, $ = ° ¬ è} + ê ¬ èï
ëìì

+ ∫ 0f ¬ . f $ è} − $. tè}
ì

− $. Yèï − $.0f ¬ é + ¬.0f $ éèï
2324

 

as follows: 

T∂
TΩ Ω,&, [ ∫

= ∫. é ° & + 0f & . f [ − [. t èï + ∫. é(
Tê &
Té + Cê & )

ëìëì
ds

− ∫. é
T Y. [
Té + CY. [ èï − ∫. é

Tℎ
Té + Cℎ èï

2324

 

where H is ¿. é	 , and ℎ = &.0f [ é + [.0f & é 

After also applying the boundary conditions  

& = [ = 0	qé	Γd 
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0f & . f [ = ´
T&
Té

T[
Té + ´ + ™

T&
Té . é

T[
Té . é 	qé		Γd 

Then, 

T∂
TΩ Ω,&, [ ∫

= ∫. é ° & + 0f & . f [ − [. t −
T Y. [
Té − CY. [ èï

24

+ ∫. é
Tê &
Té + Cê & èï

ëì
+ ∫. é ° & − 0f & . f [ èï

23

 

Example 1- Compliance of Structure with Body Force and Pressure 
 

/z Ω = t.&è} + [åé.&	èï
25ì

 

For the proved equation which is on page 367 of (Allaire et al., 2004), equation 8, 

/ Ω = t.&è} + Y.&èï
24ì

 

Subject to 

−¿. 0f & = t	qé	Ω 

& = 0	qé	Γd 

(0f & )é = Y	qé	Γc 

The shape derivative was proven to be as follows: 

/	
ˇ Ω = 2

T Y.&
Té + CY. é + t.& − 0f & . f & ∫. éèï + 0f & . f & ∫. é

2324

 

Now for this problem,	Y = [åé, replacing this into the proven shape derivative equation: 
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/z	
ˇ Ω = 2

T [åé.&
Té + C[åé. é + t.& − 0f & . f & ∫. éèï

24

+ 0f & . f & ∫. é
23

 

Then replacing: 

T [åé.&
Té = ¿ [åé.& . é, 	and	H = ¿. é 

/z	
ˇ Ω = 2 ¿ [åé.& . é + ¿. é [åé. é + t.& − 0f & . f & ∫. éèï

24

+ 0f & . f & ∫. é
23

 

Then we can replace as follows: 

¿. [åé.& é + ¿. é [åé. é = ¿. [åé.&. é = ¿. [å&  

Then, 

/z	
ˇ Ω = 2 ¿. [å& + t.& − 0f & . f & ∫. éèï + 0f & . f & ∫. é

2324

ds 

Proved. 

Example 2, Cantilever Beam with Force at The Edge 
 
The compliance added to the area multiplied with Lagrangian can be written as 

follows: 
 

/ Ω = Y.&èï + ∂ è}
ìëd4

 

Using the proven formula of shape derivative, 

∂ = ° & è} + ê & èï
ëìì
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T∂
TΩ Ω,&, [ ∫

= ∫. é ° & + 0f & . f [ − [. t −
T Y. [
Té − CY. [ èï

24

+ ∫. é
Tê &
Té + Cê & èï

ëì
+ ∫. é ° & − 0f & . f [ èï

23

 

As you can see we can use the formula by first replacing ê & = Y.&	héè	° & = ∂ 

Also since this problem is self adjoint because using the adjoint state equations, 

°ˇ & = ¿. Ae([) 	qé	Ω 

[ = 0	qé	Γ¶ 

0f [ é = −êˇ & 		qé	Γc 

Since °ˇ & =L’=0 and êˇ & =g, the adjoint equations will be,  

0 = ¿. Ae([) 	qé	Ω 

[ = 0	qé	Γ¶ 

0f [ é = −Y	qé	Γc 

Compare these with the equilibrium equation which are, 

0 = −¿. Ae(&) 	qé	Ω 

& = 0	qé	Γ¶ 

0f & é = Y	qé	Γc 

It is seen that u=-p , this problem is self adjoint then. We replace p=-u, also we 

know f=0 because no body force is applied. 
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T∂
TΩ Ω,&, [ ∫

= ∫. é ∂ − 0f & . f & + &. t +
T Y.&
Té + CY.& èï

24

+ ∫. é
T Y.&
Té + C Y.& èï

ëì
+ ∫. é ∂ + 0f & . f & èï

23

 

Dividing the boundary to Dirichlet Γ¶, non-Homogenous Neumann Γ[ and 

homogeneous Neumann Γå, the Dirichlet boundary and the non-homogenous Neumann 

are not moving because the load location and the clamped boundary are fixed. Hence all 

terms on Dirichlet Γ¶, non-Homogenous Neumann Γ[, are goanna vanish because ∫. é=0. 

Hence, 

T∂
TΩ Ω,&, [ ∫

= ∫. é ∂ − 0f & . f & +
T Y.&
Té + CY.& èï

2Â

+ ∫. é
T Y.&
Té + C Y.& èï

2Â

 

Also on homogeneous Neumann Γå, g=0 hence, 

T∂
TΩ Ω,&, [ ∫ = ∫. é ∂ − 0f & . f & èï

2Â

 

Proved. 

As you saw in the previous slides, you can see that the general form of the shape 

derivative is as follows: 

/ˇ Ω ∫ = ¬∫. é	èï
ëì

 

As can be seen to get to the minimum, the shape derivative should be negative to decrease. 
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Choosing the perturbation as ∫ = −¬é will ensure the negativity of the derivative 

/ˇ Ω ∫ = ¬ −¬é . é	èï = −¬`èï
ëìëì

 

/ˇ Ω ∫ < 0 

If either ¬ or ∫ is not smooth it is desirable to smooth them. 

One way is to solve the following to get the smooth ∫: 

−¿`∫ = 0			qé		Ω 

T∫
Té = −¬é		on	TΩ 

which means ∫ is a decent direction. 

Because ¿∫ `è} = −∫ ¬∫. éèïì >0 

Hence, ∫ ¬∫. éèï<0 

Proof: 

¿∫ `è} = ¿∫. ¿∫è} = ¿ ¿∫. ∫ − ¿`∫. ∫
ììì

= ¿∫. ∫. éèï − ¿`∫. ∫è}
ìëì

 

If  		 − ¿`∫ = 0			qé		Ω and ëº
ëm

= −¬é		on	TΩ then 

¿∫. ∫. éèï − ¿`∫. ∫è}
ìëì

= − ¬∫. é 
ì
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Numerical Examples 
 
The following examples are the results of above gradient based shape optimization 

method similar to example 2 above. For different initial conditions, different optimal 

structures are achieved because gradient based methods find local minima that is near to 

the initial design as seen in Figure 6.14. Level set method and shape derivative has been 

used based on legendary work of Allaire et al. (Allaire et al., 2004) .The compliance 

minimization with weight constraint is carried out in all the examples. This shows how 

the final design is dependent on the initial design. This can be alleviated by using the 

topology derivative, which creates holes in the design when the topology derivative is 

negative. Analytical derivation of topology derivative for different objective functions 

has been derived in (Sokoƒowski et al., 2001). 

 

 
 

Figure 6.13 Load case of a two by one cantilever beam 
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(a) (b) (c) (d) 
 
 

    

50 40 39 17 

(e) (f) (g) (h) 
 

Figure 6.14 Different Initial designs (a-c) with different hole sizes, and (d) initial design 
based on principal stress vectors. Different optimal designs (e-f), with different number 
of iterations to achieve the optimal. 
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