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ABSTRACT

Store separation from aircraft and spacecraft has historically been a critical and in some

cases fatal issue for the aerospace industry. Given the severity of the issue much effort

has been spent on the development of processes to identify failure flight conditions for

store separation. The processes currently used for identifying potential failure conditions

however are both resource intensive and iterative processes. A potential remedy to

reducing resource use and improve turn around time in this process is the implementation

of a mode based reduced order model (ROM) for modeling store separation. The

objective of this study was to first identify the leading modes that can best be used to

model a store separating from an aircraft. To obtain these modes, two algorithms were

used; Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition

(DMD). The computational fluid dynamic (CFD) solver Ansys Fluent was employed to

obtain flow field data around a representative vehicle and store. Preliminary validation of

the numerical results was initially preformed and the results showed good comparison

of surface pressures and free-stream vorticity. The validated data-set was then used

to identify which modal method, POD or DMD, better resolves the known dominate

structures of the flow field. The results of this analysis showed the superiority of POD

in identifying both free-stream and surface pressure structures. A final representative

case of store separation was obtained at a flight speed of mach 0.8. POD was then used to

obtain leading modes that were used to reconstruct a ROM of the flow field. This ROM

was successful in predicting the store’s trajectory both inside and out of the training flight

profile.
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1. Introduction

The first question that might arise from reviewing this study’s abstract is simply:

what is store separation? Often an overlooked topic in aviation, store separation simply

refers to the task of releasing one body from another in flight. Perhaps the most intuitive

and seemingly elementary example of this is the releasing of an external fuel tank

mid-mission. The topic of store separation expands drastically from here. Examples are

numerous including the releasing of cavity missiles from stealth fighters at supersonic

speeds, separation of booster rockets from space shuttles, ejection of torpedoes from

submarines, etc..

Figure 1.1 Example of store separation (Israeli Computational Fluid Dynamics Center,
2010).

The next question to arise could potentially be: how challenging is the task of

store separation? While from a surface level observation the task of store separation

appears relatively benign, a closer observation unveils an almost unanticipated level of

complexity. Take the example of simply releasing a fuel tank from a military aircraft.

This might appear to be a simple case: nonetheless there is a high level of complexity to

this example.

Let us first isolate the aircraft. At high velocities as the flow moves along the length

of the aircraft, a significant turbulent boundary layer begins to form. This boundary layer

can in some cases contain turbulent structures which can often make separation difficult.

In addition, the store itself is also building its own equally complicated boundary layer. It

is difficult to predict the flight conditions for which the combined effect of these turbulent

boundary layers can be so great that a store will fail to smoothly break free. In mild cases,
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the store will have an erratic unpredictable trajectory. In the most extreme of cases, the

store can in fact be sucked back into the vehicle, resulting in the complete destruction of

the aircraft.

1.1. Store Separation Failure

Typically, these cases of failure to separate can be narrowed down to three potential

cases. In case one, there is an attempt to release multiple stores at once. In many cases,

the combined aerodynamic interaction of multiple stores causes complicated wake store

interactions, which leads to an extremely difficult to predict trajectory of the stores.

While this is potentially a case of high interest, due to its aerodynamic complexity it will

not be pursued in this study. The computational power and time required to analyze such

cases is beyond the time frame allowed for this study.

In case two, a single store is released from an aircraft. During the separation, the

store’s trajectory is altered by the aerodynamic influence of the fuselage’s boundary layer.

In these cases, the store follows an erratic path making precision targeting non-feasible.

In the third case, a single store is again separated from the aircraft. In this case,

the store becomes unstable once isolated from the aircraft. This is a result of an initial

perturbation influenced by the aircraft’s boundary layer. In this situation, rather then

being dominated by store-fuselage aerodynamic interactions, a failure to separate is

dominated by isolated stability characteristics of the store itself. This case is potentially

the most dangerous as the store can often collide with the aircraft at very high speeds,

causing significant damage. Cases two and three of a failed release of the store will be

the main focus of the study and as such the mechanisms of separation failure related to

fuselage-store interactions and an isolated store will be investigated.

The flight conditions which have most often led to failed store separation conditions

are associated with transonic and supersonic speeds. Generally speaking, at low speeds

the concern of safely releasing a device from an aircraft is relatively low as the mass

of the store generally can simply outweigh any aerodynamic loads that might be

experienced. This explains why pilots during the First World War would often simply
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toss munitions from the cockpit down onto enemy positions. For these low speed aircraft,

the store separation analysis was limited to simply testing a pilot’s arm strength. Yet as

the maximum velocities of military aircraft began to increase drastically both during the

Second World War and after the advent of the jet engine, the ability to safely separate

these stores became an issue which required much more attention.

Figure 1.2 A crew member of a British SS ‘Z’ Class airship about to throw a bomb from
the rear cockpit of the gondola (Imperial War Museums, 2014).

1.2. Trajectory Prediction Methods

In this subsection of the Introduction, the various methods currently used to study

store separation will be reviewed. Each of these methods have their own advantages

and disadvantages of which it is important to have a surface level understanding before

grasping both the objective of this work and its importance. Without understanding the

capabilities and limitations of the current store separation analysis methods, it will be

difficult to understand the need for and importance of constructing a reduced order model

(ROM).

As previously mentioned, the desire to truly begin investigating store separation

began after the Second World War in the early 1950s. Given the nearly complete lack of

computational power and limited experimental capabilities, the initial store separation

analysis was completed using a simple ‘Hit or Miss’ strategy (Cenko, 2010). In this
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strategy, a specific store would be released from an aircraft at increasing velocities until

it was deemed too dangerous to continue. While this method may seem crude, the ‘Hit or

Miss’ strategy still remains to this day the quickest method for identifying the dynamics

of separation. This ‘Hit or Miss’ method has been used as recently as Operation Iraqi

Freedom in which the United States Navy quickly needed to include an external fuel

tank to increase the range of their F-18C fighters. Given the immediate need to get the

fuel tank cleared for flight and the fact that the Navy had neither an experimental or

computational model available for analysis, it was decided that this ‘Hit or Miss’ method

would be used. Yet, despite its efficiency in clearing stores for flight in a timely manner,

the ‘Hit or Miss’ method is still highly dangerous and has resulted in the destruction of

many test aircraft over the years (Cenko et al., 1996).

It wasn’t until the 1960s that a new method was developed for the store separation

analysis. This method was called the Captive Trajectory System (CTS) (National

Aerospace Laboratories, 2018). In this method, a store, using a lever arm, is released

from a scaled down model aircraft in a wind tunnel. During the separation, the lever

arm creates a log of the forces and moments experienced by the store. These forces and

moments can then be used to build a 6-degree of freedom (6-DOF) model to predict the

trajectories of the stores. While this method greatly increases the safety of the analysis,

it also can become an extremely time consuming and expensive process. Additionally, as

with many wind tunnel experiments, difficulty arises in this method from concerns over

scale corrections to the flow. Often, it is the boundary layer around the aircraft which

leads to a failed separation. This boundary layer can be extremely difficult to accurately

reproduce around the aircraft to the proper scale and takes much time and care to do so.

Additional difficulties include acquiring the highly specialized equipment required for a

CTS experiment and running dozens of experiments to capture the many flight conditions

with a wide range of potential store configurations (Cho, Kang, Jang, Lee, & Kim, 2010).

Given the great expense associated with CTS, there has long been a desire to find

an alternative way of clearing stores for flight. As the computational power available



5

Figure 1.3 CTS (National Aerospace Laboratories, 2018).

to engineers began to expand exponentially in the 1970s, many engineers looked to

computational fluid dynamics (CFD) as a cheap alternative to wind tunnel experiments.

One of the first applications of CFD to store separation was through the use of panel

methods. Panel method codes rely on the use of summation of elementary flows (i.e.

vortex, sink, source, doublet) to form a full flow field around a body. At first, these codes

struggled to analyze a single store separation flight condition in under 24 hours. Yet,

given the explosion in computational power available to engineers since the 1970s, panel

codes have proven to be a capable tool in efficiently analyzing low Reynolds number and

minimal flow separation cases (Cenko & Tinoco, 1979). Codes such as USAERO and

Tornado have be used extensively to provide trajectory predictions throughout the years.

The two greatest advantages which have allowed panel codes to achieve such

success in this area is their speed in running cases and their robustness in dealing with

complex geometries. The store separation analysis requires the ability to examine tens, if

not, hundreds of flight conditions for various possible configurations of an aircraft. The

panel code algorithm allows for a simple matrix inversion of a relatively small matrix to

obtain a quick solution at each iteration in the simulation. This simple matrix inversion

leads to the second advantage to panel methods, robustness. Since there is no need for

the incorporation of finite difference/volume methods, this eliminates the need to worry

about convergence issues. Yet, panel method codes still have their disadvantages. By

remembering that these methods only use elementary flows, it is intuitively realized
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that there is a lack of ability to grow turbulent boundary layers (aside from boundary

layer corrections) and model highly separated regimes of flow. So despite these great

advantages panel codes are still greatly limited in their application to the topic of store

separation.

All hope is not lost, however, for CFD calculations to take a larger role in the store

separation analysis. As computational power has continued to grow ten fold every five

years, there has been a new potential for CFD applications (Zikanov, 2019). For high

Reynolds number/highly separated flows engineers have for the past twenty to thirty

years attempted to use Unsteady Reynolds Averaged Navier-Stokes (URANS) CFD

simulations to safely identify potentially dangerous separation scenarios (Panagiotopoulos

& Kyparissis, 2010). While URANS has been highly successful in analyzing specific

flight conditions, technology has not progressed to a point where run times are fast

enough to efficiently complete store separation analysis across an entire flight profile.

This leads to the critical challenge facing the aviation community today. We have

a method, through URANS, to obtain a good representation for the flow field during

store separation. Yet despite the fact that we now have hundreds, or even thousands, of

computer processors available for parallel computing, simulation times using URANS

still require multiple days for each flight condition. The issue of incorporating turbulence

modeling simulations into the preliminary design analysis has been a dominant issue

across multiple industries. Through the work of multiple groups across these industries,

it has been realized that often fluid flows which posses thousands, if not millions, of

degrees of freedom can be dominated by orders of magnitude fewer degrees of freedom.

This has led to the desire of obtaining a reduced order model (ROM) which can somehow

incorporate only these leading degrees of freedom of the flow field to make a simulation

capable of running orders of magnitude faster than URANS while still maintaining a high

degree of accuracy. Yet there remains many unknowns in this process of constructing a

ROM such as obtaining dominant fluid structures.

The identification of these fluid structures will be the first objective of this study.
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In essence, this objective is to use two of the leading methods for identifying fluid

structures, Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition

(DMD), to identify the capabilities of these methods to obtain leading fluid structures

(modes) which can then be used to reconstruct the original system. The second objective

will then be to apply this modal subspace to reconstruct a ROM which will then be used

to model store separation from the aircraft at a fixed flight condition. These objectives

aim to provide the field with a fast method for identifying an appropriate modal subspace

and a proof of concept that this subspace can be used to construct a ROM which operates

at low computational cost while still retaining a high degree of accuracy.

1.3. Summary of Simulations

The CFD simulations which were used in this study will be now summarized. The

first step for this study was to define a model for the store. After a literature review, it

was decided to use a 6:1 prolate spheriod. This body was chose for two reasons. First, the

body serves as a good representation for a large array of stores. A 6:1 prolate spheriod

draws a good representation to both an external fuel tank and an unpowered bomb,

objects of great interest in the store separation topic. Second, the 6:1 prolate spheriod is

a body which has had numerous well documented and reviewed experimental studies.

As with any computational model, before the study could progress it was essential that

there be a comparison to experimentation. For this study, the experiments used for

validation came from a series of studies completed by Wetzel in 1996 at Virginia Tech

University (Wetzel, 1998). The studies completed by Wetzel include measurements for

both steady-state and transient results and will be examined further in the Overview of

Experiment section of this thesis.

The first series of simulations which were completed in this study were all done

using steady-state assumptions. In these simulations, the store’s body had a length of

1.372m and was placed in sea level conditions with velocity of 45.7m/s. The store

was then held at a fixed pitch of 20 degrees. With the operating conditions fixed, the

study used multiple combinations of grids and turbulence models to identify the most
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computationally efficient method for modeling the store. In total 9 cases were examined.

After the steady-state cases were completed, two pitch up motion simulations were

run from 0 to 30 degrees pitch at a fixed pitch rate of 90 degrees per second. The same

operating conditions were used as in the steady-state simulation. A comparison was then

drawn to experimentation to validate the model. In addition to model validation, these

transient results were used to identify which modal method, POD or DMD, would best

resolve the known experimentally determined fluid structures.

Once the simulation model was validated and a modal method was selected, a

single transient simulation for store separation was completed. For reasons which will

be explained in the following subsection ‘Scope and Limitations’, it was decided that

the representation for the fuselage in this simulation would be the 6:1 prolate spheriod.

This fuselage was fixed at 1.372m. The store was then taken to be .343m or one quarter

the size of the original size of the store which was validated. The mass of the store was

fixed at 10 lbs. This store was then placed at .05m displacement from the surface of

the fuselage and released at a mach number of 0.8. The results from these simulations

was then used with the selected modal analysis algorithm to first identify a subspace for

store separation. The study then constructed a ROM for store separation based on this

subspace.

1.4. Scope and Limitations

As in any study this investigation had a series of limitations. The first of these

limitations came down to computational power and time available to complete the project.

The study was extremely fortunate to have access to the Embry-Riddle Aeronautical

University’s (ERAU) Vega Super Cluster Super Computer. Without access to the 360

2.3GHz CPUs available per graduate student, the work completed in this study would

not be possible. Yet, even with this large computational power available the study was

not unlimited in its resources. In this study, the average cell count was often found

to be between 8-15 million cells. Additionally, to model the proper fluid structures

required in the transient simulations time steps as small as 1e-5 seconds were used.
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The combination of these factors led to significant run times for transient simulations,

often needing between 5-7 days for each case. Given this large run time, much care was

needed to limit complexity whenever possible in the simulations to ensure both accurate

physics were being captured and total time between simulations was minimized. For

these reasons, when selecting the fuselage for the store separation trials it was decided

that the same 6:1 prolate spheriod as from the validation study would be used. This

selection has the significant advantage of providing the study with not only simple but

accurate representations for a generalized fuselage body, but also meant there would be

no additional requirement to validate the model for the fuselage.

An additional limitation of the study was access to experimental data. As mentioned

in the Trajectory Prediction Method subsection of the Introduction, experimental

analysis of store separation is an extremely time consuming and resource intensive task.

Much of the experimental data available for store-fuselage/store-store interactions or

complex geometries, such as through CTS, are currently held by private corporations

and not available to the public. As such, the study was limited to a very general

shape. Additionally, the experimental results which were available, while well

documented, did not account for body-body interactions. As such, a validation for

store-fuselage/store-store interactions would not be possible.

1.5. Organization of Paper

This thesis will be organized as follows. After the Introduction, a literature review

will be presented. In this section, the current state of the mode identification and

mode-based-ROM construction will be reviewed. Next, a Modal Analysis section will be

presented. In this section the bases for POD and DMD will be explained. Their respective

algorithms will be reviewed along with any inherent advantages or disadvantages

associated with them. In the next section the exact experiments completed by Wetzel

will be reviewed in more depth. Both the experimental setup and final results used for

comparison will be presented.

The CFD simulation case setup will be discussed in the proceeding section. In this
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discussion, the turbulence models selected in this study will be reviewed in addition to the

numerical schemes used. The generation of grids for all cases are also summarized here.

As a final step for this section, the 3-degree-of-freedom (3-DOF) model created by this

study will be reviewed.

From here, all results obtained in this study will be analyzed and discussed. These

results are first grouped as simulation or ROM results. From here they are further

decomposed into pitch up or store separation cases.

A final section is presented with the objective of outlining the conclusions of the

study. Additionally, future work building off of the study will be discussed.
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2. Literature Review

The main two objectives of this study are to first identify leading modes for store

separation and second, use these leading modes to construct a mode-based ROM. As

such, a literature review is reviewed to review relevant work in the field. This literature

review will be broken down into two sections, one where modes are identified and

another where the modes are used for a ROM.

2.1. Mode identification

Mode identification has been a topic of interest in a wide range of diverse fields for

several decades. This interest has been driven by the realization that very large data-sets

containing numerous degrees of freedom can often be defined by an extremely low

dimensional subspace. In other words, large data-sets can often be compressed into an

extremely small amount of data while still maintaining the original information. This

characteristic was first discovered in 1901 through the work of Karl Pearson. Pearson

(1901) developed the algorithm for Principle Component Analysis (PCA). PCA, Equation

1, is essentially a method for identifying representative subsets of data (modes) which

dominate the original data-set. In Equation 1, x is a vector of p random variables and αk

is a vector of k constants.

α′
kx = Σp

j=1αkjxj (1)

It was through this algorithm that the basis of modal analysis was later developed

and reformulated for numerous fields. The first application of modal analysis to

turbulence was initially introduced in Lumley (1981). In this study, Lumley showed how

a modal analysis could be successfully used to identify coherent turbulent structures in the

flow field. Since then, various studies have incorporated some form of modal analysis for

understanding the fluid dynamics of a system. A more in-depth review of the history of

mode identification in regards to POD and DMD will be presented in the Modal Analysis

section of this thesis.

Often, the objective of these works are centered on attempting to identify underlying
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flow structures of a recorded domain. In one such study completed by Iqbal in 2007,

POD was used to investigate coherent structures coming from an axial-symmetric

turbulent jet (Iqbal & Thomas, 2007). All of the data used in Iqbal’s study were obtained

experimentally.

Figure 2.1 The projection of the first POD mode,(u, w)-components (Iqbal & Thomas,
2007).

In a separate experiment completed by Lengani et al. (2017), both DMD and

POD were used to help analyze the laminar separation bubble found in ultrahigh-lift

low-pressure turbine blades. The objective was to identify the process by which the

laminar separation was occurring on the turbine blades through a modal analysis.

Leading modes were found from slices of the flow field obtained through Particle Image

Velocimetry (PIV) measurements. This information was then used to identify possible

ways of reducing the laminar separation bubble.

Figure 2.2 POD modes of the streamwise velocity component and their vectorial
representation (Lengani et al., 2017).

Numerous other examples can be found in the literature of groups attempting to
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identify modes in fluid dynamics. Some of the methods used in a typical modal analysis

along with their advantages and disadvantages will be discussed in the Modal Analysis

section of this thesis.

2.2. Reduced Order Model

Just as there have been numerous studies focused on analyzing fluid flows through

modal decomposition, there have been a similar number of studies focused on how best

to leverage these modes into a ROM. These studies tend to fall into two main categories,

interpolation models and governing equation reduction modeling.

The simplest of the interpolation models is where studies will simply project the

found modes back onto the original data-set with the objective of seeing how well a

limited number of modes represent the original system. An example of this methodology

can be found in a study completed by Liberge and Hamdouni (2010). In this study,

an oscillating cylinder was modeled using CFD. The data-set was then organized into

a snapshot matrix which was then analyzed using POD. Liberge and Hamdouni then

reduced this mode set down to as few modes as possible while still attempting to retain

as much of the original data’s information as possible. As a final step, the selected subset

of modes were projected back onto the original data-set and a comparison was made to

see if the Von Karman vortices still appeared correctly. The results of this study showed

that with only retaining 6 modes, the Von Karman vortices could be retained with a high

degree of accuracy.

Another methodology used to construct mode-based ROM’s is through an

interpolation of time coefficients. These time coefficients will be discussed in more detail

in the Modal Analysis section of this thesis. The main objective of this interpolation

method is to construct a function for the time coefficients which is based on a limited

number of inputs. A major question to arise in using this modeling method is how will

these interpolations be made. The methodology used to construct these interpolations

can usually be classified into two main approaches. The first is a simple least squares

regression and the other methodology used is called Kriging interpolation. Both of these
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methods are based on fitting a function to an under determined system. An example of a

study using Kriging interpolation can be found in a study completed by Mohammadi and

Raisee (2019). In this study, a method was proposed for developing a data-driven ROM

capable of analyzing turbulent channel flow simulations. This study found that with only

6 modes, an extremely accurate comparison could be made between the ROM and full

order simulation when comparing Nusselt numbers (Figure 2.3).

Figure 2.3 Comparison between mean values of Nusselt number obtained using POD
and POD–Kriging methods with various high-fidelity samples (Mohammadi & Raisee,
2019).

A final, and possibly most computationally expensive, technique used to construct

a ROM using modes is to use a projection-based ROM for the Navier-Stokes equations.

To model the evolution of the velocity field the process starts with the incompressible

Newtonian fluid.

∇u = 0 (2)

∂u

∂t
= ν∆u−∇(uu)−∇P (3)

The standard projection-based MOR apporach is then applied using the spatial basis
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functions found using POD (Noack, Morzynski, & Tadmor, 2011).

u(x, t) = u0 +
n∑

i=1

ai(t)ui(x) (4)

In Equation 4, ui(x) are the spatial basis functions found using POD, u0 is the

stationary mean flow pattern, and ai(t) are the reconstructing time coefficients. From

here, the Galerkin projection of this basis set is taken for the Navier-Stokes equations.

The projection yields the below ordinary differential equations in canonical form.

ȧi =
n∑

i=jk

Qijkajak +
n∑

i=j

Dijaj + bi (5)

For divergence free spatial basis functions with steady dirichlet boundary conditions,

the below Galerkin matrices are formed.

Qijk =< ui,∇(ujuk) >Ω (6)

Dij =< ui, ν∆uj −∇(u0uj)−∇(uju0) >Ω (7)

bi =< ui, ν∆u0 −∇(u0u0) >Ω (8)

Note that the matrices Qijk, Dij , and bi are computed at each time step where u0

is the first mode found in the POD algorithm. It is also important to note that this ROM

formulation only works for flow velocity. This form of a ROM is simply introduced in

this section so the reader is aware of all types of ROM used in academia.
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3. Modal Analysis

In this section, the two methods used to identify the leading modes of the system will

be reviewed. In this review, the algorithm for these two methods will first be presented.

Following this discussion, the various advantages and disadvantages of the two modal

analysis methods will be presented. However, before any discussion on these methods

can continue, some background information is necessary.

3.1. Snapshot Matrix

First, it must be covered as to what a snapshot matrix is and how to construct one.

Consider the example of having completed a transient simulation using a CFD solver.

At a specified time interval, ‘snapshots’ are taken of the flow field. These snapshots

simply provide the instantaneous solution for the flow field at set intervals of time. Once

a sufficient number of snapshots are obtained, a matrix can be formed as follows. First,

for each snapshot select a scalar value to analyze. Second, align all the element values

into a single row for each snapshot. For example, if the computational domain uses m

cells then the total number of rows for each snapshot array will be m. Last, combine

all the snapshot arrays into a single snapshot matrix. For example, if the computational

domain uses m cells and there are n snapshots, then the snapshot matrix will be m-by-n.

While the premise behind a snapshot matrix is relatively simple, much care needs to

be made in constructing this matrix as this will influence the effectiveness of the POD and

DMD algorithms. Keep in mind that the objective is to obtain the leading structures that

appear in the flow field. As such, it is essential to have a significant series of snapshots

so that all of the structures that define the physical system are captured. For instance, if

a large time step is used and only five snapshots of the flow behind a cylinder are used

then much of the information for the spatial correlations as they appear in the flow will be

missed. This means that any structures that appear in the flow field at low frequencies and

high growth rates will fail to appear during the modal analysis algorithms. Furthermore,

if there are a large number of snapshots but the time spacing is larger than the vortex

shedding frequency, then many of the temporal correlations that are present will be



17

Figure 3.1 Snapshot matrix (Paul & Chang, 2017).

missed. This means that any structures of the flow field that appear at fixed frequencies

will be missed. A general rule for resolving temporal correlations is to first identify the

period associated with the flow field. Then, attempt to obtain 10-50 snapshots per period.

This snapshot per period number will vary greatly depending on how many periods are

present in the data-set. If, for example, there is only 1 period in the data-set, the snapshots

per period will be much larger than 10. Yet, if the number of periods are closer to a

hundred, it is possible to resolve temporal correlations with fewer than 10 snapshots per

period.

In essence, a snapshot matrix is a matrix representation of any given system whether

it be from simulation or experiment. This matrix representation can contain orders of

hundreds of thousands or even millions of degrees of freedom, and it is the objective

of modal analysis algorithms to reduce the number of states in this system as much as

possible while still maintaining the physics of the full-state system.

3.2. Single Value Decomposition

The second important background knowledge to have going into this analysis

is on Single Value Decomposition (SVD). SVD is a matrix decomposition method



18

which is guaranteed not only to exist but be stable for every matrix. In this method,

there is an attempt to decompose the targeted data-set into its most dominant statistical

structures. Through this decomposition, a subspace is found which allows for an accurate

representation of the original matrix. It is for this reason that SVD has historically greatly

been used for image compression. Given the large success of SVD in this application,

it has since been applied to numerous other topics such as electric signal processing,

MRI data processing, internet search engine algorithms, and fluid dynamics. Possibly

the most remarkable aspect of this statement is that across multiple disciplines large

data-sets which typically contain a large number of degrees of freedom are dominated

by a relatively low-dimensional subspace.

The starting point the SVD analysis is a snapshot matrix composed of n snapshots:

X = [xt1 , xt2 , ..., xtn ] (9)

Through SVD X can be decomposed into a series of matrices.

X = UΣV T (10)

U and V are both square matrices which have orthonormal columns. The dimensions

of U are identical to X’s row dimension while the dimensions of V are determined by X’s

column dimension. The Σ matrix is then a diagonal matrix containing the singular values

of the X matrix ordered from largest to smallest. These singular values are often defined

as representing how much information of the full data-set is contained in each column of

the U matrix. By selecting a reduced rank r for these matrices and taking their product,

a reduced representation for the original data-set can be formed. Often, the objective

in data reduction is to select the optimal r to satisfy Equation 12. Figure 3.2 provides a

good representation as to how data-sets, in this case the image of a dog, can be reduced

significantly while still retaining much of the original information.

X̂r = ÛrΣ̂rV̂
T
r (11)

min[|X − X̂r|] (12)
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Figure 3.2 Image compression of Mordecai the snow dog, truncating the SVD at various
ranks r. Original image resolution is 2000 × 1500 (Brunton & Kutz, 2019).

A final note of importance with SVD which will become important when discussing

POD and DMD is the importance of orthogonality within the data-sets. Keep in mind

that SVD attempts to find statistical characteristics in the data-set through element

correlations. As such, for SVD to be as efficient as possible, the data-set should be

organized so that structures should appear inline with both the rows and columns. This

is not always possible as often SVD is needed to even identify correlations to begin with.

However, whenever possible, it is best practice to make the data-set as orthogonal as

possible. Take for example the case of simply taking SVD of an image of a square. If the

square is positioned with the previously mentioned recommendations, the whole image

can be compressed to a single rank. However, if the square is tilted by 10 degrees, the

rank required is significantly different. Figure 3.3 illustrates the importance and meaning

of orthogonality. While making the spatial correlations, SVD will only see a single

repeating nonzero structure when looking from either the rows or columns. Every row

or column which makes up the square has the same number of black and white spaces and

as such is the only dominant structure of the image. On the other hand, with the image
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tilted by 10 degrees, there are now many more ‘structures’ or columns/rows required to

define the square. Again, while it is not always possible to perfectly align data-sets, when

possible proper alignment of a data-set can led to a significant boost in performance of

SVD.

Figure 3.3 A data matrix consisting of ones with a square sub-block of zeros (a), and its
SVD spectrum (c). If we rotate the image by 10 degrees, as in (b), the SVD spectrum
becomes significantly more complex (d) (Brunton & Kutz, 2019).

3.3. Proper Orthogonal Decomposition

Now that a solid basis has been formed for the modal analysis a deeper look at

the modal methods can be taken. The first of these methods to be incorporated into the

fluid dynamics field was POD. The origins of POD can be traced back to 1901 through

the work of Karl Pearson. In Pearson’s work he established a method for identifying

correlations in data-sets called PCA. PCA eventually was altered and applied to various

fields of science and engineering. In signal processing, PCA became the Karhunen-Loeve

Transform (KLT), Hotelling transform in multivariate quality control, eigen value

decomposition in linear algebra, and in mechanical engineering POD (Jolliffe, 2002).

Even SVD, which is the basis for the POD method used in this study, is simply an

evolution of PCA. Despite the importance of this algorithm to scientists and engineers

today, for the first half of the 20th century PCA went largely unused because of the

vast computational power required to analysis practical data-sets. It was not until the

later half of the century that computational power began to become powerful enough to

allow for PCA to be practical. Once PCA was clearly seen as a practical and efficient
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method for classifying large data-sets many of the methods previously mentioned

began development. POD was eventually fine tuned from PCA to assist fluid-dynamics

engineers in identifying leading structures in physical systems of high degrees of

freedom.

The premise of this method is to attempt, through spacial correlations, to find a low

rank number of modes which can be use to reconstruct the original system. Since the

algorithm is only looking at spatial correlations, the only weighting for the modes will

be in terms of the total energy that they capture of the original system. Since the leading

objective of POD is to identify perturbed structures of a scalar, the first step is to subtract

out the averaged scalar term.

XP = X −Xm (13)

After obtaining this perturbation matrix the modes can quickly be obtained through

first finding the correlation matrix and then computing the SVD. This correlation matrix

can be found by simply multiplying the perpetuated matrix by the transpose of itself.

C = XPX
T
P (14)

To obtain the modes a simple SVD is taken of matrix C.

C = UΣV T (15)

From here the modes are extracted from the U matrix. From the Σ matrix the

singular values are extracted. The singular values in the Σ matrix are used to give insight

into how much of the total energy of the system is represented by each mode.

σr =
Diag(Σr)

sum[Diag(Σ)]
∗ 100% (16)

The objective of POD is to retain the number of modes from the U matrix so that

σr approaches a desired value. Typically, users will desire a σr convergence of around

90% with some desiring as high as 99%. The importance of these convergence criteria

depends on the application and whether the user desires accuracy or compression of data.
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Ultimately, in this investigation the desired convergence of the singular values was set to

be 90%.

Figure 3.4 Singular Values Percentage

This leads to one of the greatest advantages of POD. The POD algorithm allows

for a simple method for identifying not just the modes of a system, but more importantly

provides a straightforward method for ranking the weighting of each mode on the original

data-set. The ability to identify significant modes becomes of extreme importance as

the spatial dimensions of the data-set become significantly large, say between 100,000

and 10,000,000. At data-set sizes of these magnitudes, it becomes impractical to try to

visually identify structures in each mode and correlate their significant to the original

system. Rather there needs to be a robust algorithm for confidently making these

correlations. With POD there is such a method through simply using the Σ matrix.

Yet, despite the various advantages of the POD algorithm, there remains some

disadvantages that are necessary to discuss. One of these disadvantages comes from

the vast computational power required to complete a full SVD on a sufficiently large

data-set. The two issues become time and memory. Simply computing SVD on a
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50,000-by-50,000 matrix in MATLAB requires a total of 30 Gigabytes of RAM to

compute.

Another potential disadvantage to POD is its inability to resolve heavily time

dependent structures of the flow field. The POD algorithm is only looking to identify how

element values change in space and ignores any variation in frequency of the structures.

As such the ordering of snapshots in the snapshot matrix may not make a large impact

on the modes or mode ordering. For structures in the flow field which appear in fixed

growth rates this does not tend to lead to issues. However, when multiple structures begin

to appear at varying frequencies, POD tends to operate very poorly.

Once these modes are obtained one can use the below relationship to project the

selected subset of modes back onto the original perturbation matrix.

XP = Φrat (17)

In Equation 17 the newly introduced term at is called the time coefficient. In

essence, this term is simply a reconstructing term. In the event that it is desired to simply

obtain a best fit of the modes back onto the original data-set, the Equation 18 can be

used. For the modal analysis of the pitch up motion cases, this equation was used as the

objective was to simply identify the capability of POD/DMD in resolving free-stream and

surface pressure structures.

at = ΣrV
T
r (18)

After obtaining at, it becomes possible to construct a data-driven model for the

system by recognizing first that at will be an array for each mode. The array found in

Equation 18 will correspond to discrete points in time. At each of these points in time,

both free-stream and body motion characteristic are defined. By taking an expansion of

these terms, a function can be built relating these terms to at. This function now provides

a continuous representation of the coefficients at. This continuous function can be used to

build an aerodynamic model for a store at extremely low computational cost.

at = F (α, q, U∞, ρ∞, T∞...) (19)
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A interesting characteristic of at is the ability to identify a better understanding of

energy content of each mode. The energy content of these modes can be defined as below

(Lumley, 1981).

KE =< at >< at > (20)

In Equation 20,KE is the total kinetic energy contribution of each mode at each

time step. The rank ofKE is the total number of time steps present in the data-set. By

taking the FFT of this data-set, a spectrum for each of retained modes can be defined.

3.4. Dynamic Mode Decomposition

The other modal method used in this study was DMD. This method was developed

by Schmid in the mid-2000s as a build off of POD (Schmid & Sesterhenn, 2008). As

mentioned previously, POD undertakes no consideration of time dependency of structures

in data-sets as it is based entirely on SVD. Thus, the use of only spatial dimensions

has lead to a significant limitation in the application of POD to many fluid dynamics

problems. This limitation is what leads to the direct desire to develop an alternative

algorithm capable of resolving these temporal structures while still maintaining the

robustness of POD. Such an algorithm was eventually developed through DMD which

follows a similar path to that of the SVD based POD except that there is the additional

consideration for temporal frequencies through a Fast Fourier Transformation (FFT).

Since its inception, DMD has become an extremely popular tool for both its robustness

and flexibility in the fields of control theory, multi-resolution techniques, and compressed

sensing.

While many formulations of the DMD algorithm have been proposed since its

inception, in this study the exact DMD framework will be presented. This DMD

algorithm starts by first splitting the snapshot matrix into two matrices: one going from

the first snapshot to the second to last and the other going from the second snapshot to the

last.

ux = [u(t1), u(t2), ...u(tn−1)] (21)
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Figure 3.5 Overview of DMD illustrated by a cylinder (Brunton & Kutz, 2019).

uy = [u(t2), u(t2), ...u(tn)] (22)

The below equation is then used to relate each snapshot to the snapshot one time step

forward.

uy = Aux (23)

From here, the eigenvalues λ and eigenvectors ω of the A matrix are found. λ

become important later in the DMD algorithm when trying to correlate each mode back

to the original data-set. ω is used in Equation 26 to include a weighting of frequency into

the mode identification.

[ω,λ] = eig(A) (24)

Next, a SVD expansion of ux is taken. It is through this equation that the spatial

correlations are derived in the DMD algorithm.

SV D(ux) = UΣV T (25)

The final step is to combine Equations 23, 24, and 25 to obtain Equation 26.

Φ = uyV
Tω/Σ (26)

To summarize, time dependent correlations between each time step are first

identified. Then an expansion of the ux snapshot matrix using SVD is taken after which
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the A matrix is expanded through an eigenvalue decomposition. This all arrives at

Equation 26 for the DMD mode matrix. While this method includes more computation

than POD, the major advantage is that now the user is given a set of modes which can

potentially resolve high frequency structures in the flow field.

The biggest disadvantage of using DMD is that there is no longer a Σ matrix to

provide the singular values which efficiently produces a ranking for how well each

mode represents the original system. So now there is the non-trivial task of identifying

which modes out of many of thousands, if not millions, best represent the system. The

methods for efficiently identifying DMD modes are numerous, each having varying

degrees of fidelity. However, this study will use the one which is most widely used. This

method is often called the ‘Unit Circle’ approach. In this approach it is recognized that

the eigenvalues of the A matrix will consist of both imaginary and real components.

λ = λr + iλi (27)

The real components of lambda are taken to represent the growth/decay rates of the

modes while the imaginary components represent the frequency of oscillation. If these

eigenvalues are plotted in the complex plane, then a good visual is given to understand

how well each mode represents the original system. Typically, the closer the eigenvalue

aligns with the unit circle, the better the corresponding mode represents the system.

However, just having the modes align with the unit circle does not guarantee the mode

will represent the system well. Truly identifying the proper modes takes much time and

effort. How much of a limiting factor this challenge becomes varies depending on its

application.

For academic work, this tends not to be such a great issue. In academic, work the

users of this method tend to work on their own schedule and thus have more time to

look at multiple sets of modes. Yet in many industry applications, the DMD method can

potentially be a tricky method to implement. Take, for instance, the potential application

of this study. The eventual end goal of this study would be to develop a system which
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Figure 3.6 DMD eigenvalues plotted on the complex plane

could process store separation simulation data and export a robust mode-based ROM.

In order to be competitive with current methods of analyzing store separation, this

ROM must not only be more accurate than current models but must also be significantly

faster to construct. Given that a 6-DOF model will always lack accuracy compared to

a flight test, companies may feel that unless this new method of constructing a ROM is

significantly faster, there may not be a point in overhauling their current techniques in the

store separation analysis. In considering this, ability to identify modes quickly will be of

major significance in this study.

In addition to mode identification there are many more additional challenges

associated with DMD which can limit its application. To start with, DMD struggles to

reconstruct traveling waves. This largely comes from the separation of variables between

the time and spatial correlations. This separation of variables is a method which has

proven to not capture traveling waves particularly well.



28

4. Overview of Experiment

As in any computational based study, validation of results are key to ensuring the

findings of the study maintain a firm grounding in reality. However, being that this

study is centered around store separation, obtaining well documented peer-reviewed

experimental results is a significant challenge. As such, this study was not able to obtain

detailed validation results for the transonic speeds being simulated. Rather, the study

was required to validate its numerical models based of a series of subsonic experimental

results (Wetzel, 1998). While these results were taken at subsonic speeds, the results do

include extremely detailed documentation of not only experimental setup but also surface

pressure data across various segments of the store. In this section, the experimental setup,

flight conditions, and results will be summarized.

Figure 4.1 Virginia Tech Stability and Control Wind Tunnel (Wetzel, 1998).

The experiments completed by Wetzel were completed in the Virginia Tech Stability

and Control Wind Tunnel in 1996 (Figure 4.1). The experiment was completed on a 1.372

meter long 6:1 prolate spheriod at a constant velocity of 45.7 m/s and a Reynolds number

of 4.2 ∗ 106. The rear 10% of the store was removed to allow for the attachment of a

sting to the store. This sting was then attached to a system which allowed for pitching,

plunging, and rolling of the store (Figure 4.2).

For the transient validation between the numerical model and experiment, only one

of the actuator arms was allowed to move. This motion results in the pitching up of the
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Figure 4.2 Experimental setup of store in wind tunnel (Wetzel, 1998).

store in a range of 0 to 30 degrees from the horizontal center line of the wind tunnel. The

rate of pitch for this motion was 90 deg/s (Figure 4.3).

For the time averaged validation, only a single pitch angle was chosen. This angle

was at 20 degrees. For this time averaged comparison, the results found in Figure 4.4

were used to validate surface pressures for the numerical model. Figure 4.5 was used as

a comparison to ensure the proper vortex structures were being obtained.

For the transient model validation, the surface pressure coefficient results in Figures

4.6-4.8 were used. These results summarize the transient solutions as found by Wetzel for

a 6:1 prolate spheriod and are compared directly to the steady state solution for each angle

of attack. Here, the unsteadiness of the flow field can be observed as the instantaneous

measurements are taken.
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Figure 4.3 Pitch-up maneuver pitch angle position feedback verse time. Total motion
happening over the course of 1/3 seconds (Wetzel, 1998).

Figure 4.4 Time averaged coefficient of pressure verse angle across store for all x/L at a
pitch of 20 degrees. ‘Real’ refers to the measured data while ‘ideal’ refers to potential
flow solution (Wetzel, 1998).
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Figure 4.5 Primary and secondary separation locations along with free-stream structures
(Wetzel, 1998).

Figure 4.6 Transient coefficient of pressure verse angle across store for all x/L at a pitch
of 15 degrees (Wetzel, 1998).
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Figure 4.7 Transient coefficient of pressure verse angle across store for all x/L at a pitch
of 20 degrees (Wetzel, 1998).

Figure 4.8 Transient coefficient of pressure verse angle across store for all x/L at a pitch
of 25 degrees (Wetzel, 1998).
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5. Numerical Modeling

The numerical modeling used in this study was based around the compressible

flow variation of the Navier-Stokes (N-S) equations. These equations governing the

conservation of mass, three dimensional momentum, and energy for the model are

outlined in Einstein notations below in Equations 28, 29, and 30 (White & Corfield,

2006).
∂ρ

∂t
+

∂ρui

∂xi
= 0 (28)

(
∂ρui

∂t
+

∂ρujui

∂xj

)
= −∂P

∂xi
+

∂τij
∂xj

+ ρfi (29)

(
∂ρE

∂t
+

∂ρujE

∂xj

)
= −∂Puj

∂xj
+

∂uiτji
∂xj

+
∂qj
∂xj

(30)

In these equations fi serves to represent any source term adding or subtracting

momentum from the system, E serves as the total energy in the system, qi is the

conduction of heat through the system, and τij is the viscous stresses. The specific

equations for these variables are outlined below.

E = e+
1

2
uiui (31)

qj = −k
∂T

∂xj
(32)

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ
∂uk

xk
δij (33)

Here µ is viscosity, e is internal energy, and k is conductivity. The final stage of

these equations is to relate pressure to density and identify how to calculate laminar

viscosity. For relating pressure to density this is completed through the usage of the

ideal gas law. This provides an algebraic way to correlation not only between pressure

and density but also with temperature. Once these variables are identified the laminar

viscosity can be defined through use of Sutherland’s Law.

P = ρRT (34)

µ = µref

(
T

Tref

)3/2 Tref + S

T + S
(35)



34

5.1. Turbulence Modeling

One of the most daunting challenges of the past several decades has been to develop

computational methods for modeling turbulent flows. Part of the difficulty around

developing such models derived from the fact that turbulence is by nature extremely

chaotic, making it difficult to model in the traditional N-S equations. By reviewing

Equations 28, 29, and 30, it is quickly observed that there are now stochastic terms to

model turbulence in the traditional N-S equations. To model turbulence, a manipulation

of these equations must be undertaken called Reynolds averaging which transforms the

N-S equations into the Reynolds Averaged Navier Stokes equations (RANS).

Figure 5.1 Schematic representation of the distribution of energy of velocity fluctuations
over the length scales in a turbulent flow (Pope, 2001).

A common question may arise as to why the original form of the N-S equations

cannot be used. To answer this question, a concept called the energy cascade must first

be discussed. The energy cascade is an idea that turbulence first begins as large eddies

in the flow field. While there is no exact agreed upon definition for what these eddies

are, they can generally be understood as singular large coherent structures of the flow
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field. These large eddies contain the largest turbulent energy of the flow field. These

large eddies then devolve and breakdown into smaller eddies which then break down

to even smaller eddies, with each eddy containing less energy than the last. Eventually

these eddies break down to such a small size that, rather than breaking down any further,

they simply dissipate into heat. This cascade is represented in Figure 5.1. From here a

good understanding is obtained as to over why it is necessary to model turbulence. In

Figure 5.1, η represents the Kolmogorov scale, the scale at which an eddy will dissipate

into heat rather than cascade further down. In order to properly resolve turbulence in a

computational model using a grid, the ∆xi spacing of nodes must be of the same size as

η. The issue with this is quickly realized by starting with Equation 36.

L

η
= Re3/4 (36)

In Equation 36, assume L to be the one dimensional length of the computational

domain. This means that in just one dimension, the total number of nodes needed in the

computational domain is Re3/4. Note that this is simply for a singular dimension of the

domain; to resolve all three dimensions, this number becomes much larger as outlined in

Equation 37.
Lx

η
∗ Ly

η
∗ Lz

η
= Re9/4 (37)

This begins to illustrate the extreme difficulty is modeling even the most simple of

aerodynamic problems using the full N-S equations. It also highlights the need for use of

RANS modeling the for many fluid dynamic problems.

5.2. RANS Models

Rather than attempting to resolve all the scales of turbulence in the flow field,

RANS modeling attempts to solve only the largest eddies of the flow field. From here,

the remainder of the energy cascade is modeled with stochastic terms. It is because of

this that, through RANS modeling, the number of nodes in the computational grid can

be significantly reduced while still maintaining a large amount of the energy in the fluid

system. The process of developing the RANS equations begins with first introducing a
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new form of the ui velocity, Equation 38.

Φi = Φ̄i + Φ′
i (38)

Equation 38 simply states that for every state variable Φi there exists an average

term Φ̄i and a perturbation term Φ′
i. Equation 38 is then substituted into Equations 28, 29,

and 30. From here, a Favre-averaging is completed on the velocity and energy equations,

resulting in a new variable Θ which is a function of ρ and u.

Θi = Θ̃i +Θ′
i (39)

Θ̃i =
ρΘ

ρ̄
(40)

The resulting RANS formulas are presented in Equations 41, 42, and 43.

∂ρ̄

∂t
+

∂ρ̄ũi

∂xi
= 0 (41)

(
∂ρ̄ũi

∂t
+

∂ρ̄ũjũi

∂xj

)
= −∂P̄

∂xi
+

∂

∂xj

(
τij − ρu′

iu
′
j

)
(42)

(
∂ρ̄Ẽ

∂t
+

∂ρ̄ũjẼ

∂xj

)
= −∂P̄ ũj

∂xj
+

∂uiτji
∂xj

− ∂q̄j
∂xj

−
∂u

′′
jP

∂xj
−

∂ρu
′′
jE

′′

∂xj
(43)

From this expansion of the N-S equations, new terms appear which represent the

stochastic variables for turbulence. While there have been numerous models proposed to

solve for these stochastic variables, there will be two which are reviewed and used in this

study, the Spalart-Allmaras and the K-W SST turbulence models. Note, there are far more

turbulence models which exist outside of the Spalart-Allmaras and K-W SST model.

However, given the time limitations imposed on this study, these alternative models were

not investigated and thus will not be reviewed.

5.2.1. Spalart-Allmaras

The first of these two models to be developed was the Spalart-Allmaras single

equation turbulence model (Spalart & Allmaras, 1992). The model is known to be both

extremely robust and computationally efficient. Much of this derives from the fact that

there is simply a single equation used to model the turbulence in this model. In the

Spalart-Allmaras model, the turbulent eddy viscosity is calculated through the below
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transport equation.

νt = ν̃fv1 (44)

fv1 =
X3

X3 + C3
v1

(45)

X =
ν̃

ν
(46)

The Reynolds Stresses are then calculated.

−ρu′
iu

′
j = ρν̃fv1

(
∂ũi

∂xj
+

∂ũj

∂xi

)
(47)

Finally the transport equation is set up for ν̃ to solve for the eddy viscosity.

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1 [1− ft2] S̃ν̃ +

1

σ

[
∇ • [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2

]
(48)

Each variable in Equation 48 is defined below.

S̃ = S +
ν̃

k2d2
fv2 (49)

fv2 = 1− X

1 +Xfv1
(50)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6
(51)

g = r + Cw2

(
r6 − r

)
(52)

r =
ν̃

S̃k2d2
(53)

ft1 = Ct1gtexp

(
−Ct2

w2
t

∆U2

[
d2 + g2t d

2
t

])
(54)

ft2 = Ct3exp
(
−C4X

2
)

(55)

S =
√

2ΩijΩij (56)

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
(57)

The constants in this model are defined in Table 5.1.

5.2.2. K-W SST

The K-W SST model is a two equation turbulence model created by Menter (1998).
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Table 5.1

Constants used in the Spalart-Allmaras turbulent model

Constants Values
σ 2/3
Cb1 0.1355
Cb2 0.622
k 0.41
Cw1 Cb1/k2 + (1 + Cb2)/σ
Cw2 0.3
Cw3 2
Cv1 7.1
Ct1 1
Ct2 2
Ct3 1.1
Ct4 2

The K-W SST model incorporates two equations to solve for the eddy viscosity as

opposed to the single equation Spalart-Allmaras model. These two equations are based

around solving for the turbulent kinetic energy and the specific dissipation rate. The K-W

SST model, while more computationally expensive than the Spalart-Allmaras model, is

known to preform extremely well in adverse pressure gradients and in separating flow.

This makes the model of particular interest in this study where identifying flow structures

with the store at high angles of attack is of particular interest. In this model, the eddy

viscosity is found by the below relationship.

νT =
a1k

max (a1ω, SF2)
(58)

∂k

∂t
+ Uj

∂k

∂xj
= Pk − βkω +

∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
(59)

∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj

[
(ν + σkνT )

∂ω

∂xj

]
+ 2 (1− F1) σω2

1

ω

∂k

∂xi

∂ω

∂xi
(60)

F2 = tanh

⎡

⎣
[
max

(
2
√
k

βωy
,
500ν

y2ω

)]2⎤

⎦ (61)

Pk = min

(
τij

∂Ui

∂xj
, 10βkω

)
(62)
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F1 = tanh

⎡

⎣
[
min

[
max

(
2
√
k

βωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

]]4⎤

⎦ (63)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(64)

The constants in this model are defined Table 5.2.

Table 5.2

All constants used in the K-W SST turbulent model

Constants Values
α1 5/9
α2 0.44
β1 3/40
β2 0.0828
β∗ 9/100
σk1 0.85
σk2 1
σω1 0.5
σω2 0.856

5.3. ANSYS FLUENT

All simulations were completed using the CFD commercial solver FLUENT.

FLUENT is a finite volume based CFD code currently owned and maintained by the

computer software company Ansys Inc.. FLUENT allows for use of both structured

and unstructured meshes to assist in solving for a wide range of fluid dynamic based

problems. Some examples include, but are not limited too, steady-state/transient

problems, in-compressible/compressible flow, thermal analysis, and structural-fluid

coupling.

5.3.1. Finite Volume Method

To solve for the flow field, ANSYS uses a method called Finite Volume Method.

While there are other schemes for CFD solvers, the finite volume method is by far the

most commonly found method in commercial solvers. This is for two primary reasons:

convenience of use with unstructured grids, and its property of global conservation
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(Zikanov, 2019).

The finite volume method can be explained starting with the formal conservation

equation (Equation 65):

d

dt

∫

Ω

ΦdΩ = −
∫

S

ΦV · ndS +

∫

s

X∇Φ · ndS +

∫

Ω

dΩ (65)

In Equation 65,
d

dt

∫
Ω ΦdΩ is the rate of change of Φ within Ω, −

∫
S ΦV · ndS is the

convective flux and describes the convection of Φ by a velocity V , and
∫
s X∇Φ · ndS is

then diffusive flux. Finally,
∫
Ω dΩ is a source term.

This integral now needs to be discretized to allow for numerical integration. The

easiest way to do this is through a dot product between the cells volume |Ω| and the mean

value of the integral determined through grid point values (Equation 66).
∫

Ω

ΦdΩ = Φ|Ω| (66)

This discretized integral can then be applied to a wide variety of 1-d to 3-d grids

with both structured and unstructured cell types as illustrated by Figure 5.2.

Figure 5.2 Examples of finite volume method applied to a wide array of cell types
(Zikanov, 2019).
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5.4. Mesh Generation

All meshes generated for this study were completed using the modeling software

Pointwise. To maintain good orthogonality in the grid the meshes were constructed using

structured cells. To start, a curve was drawn which represented one half of a 6:1 ellipse.

This curve was lined with 300 axial nodes and revolved 360 degrees around the X-axis

using 180 circumference nodes.

Figure 5.3 Surface mesh used for 6:1 prolate spheriod.

A mesh refinement study was completed to ensure a mesh independent solution was

formed. In this mesh refinement the total number of circumference nodes was doubled to

360 nodes.

Figure 5.4 Forward quater view of both the coarse mesh, right, and the fine mesh, left.

5.4.1. Pitch Up Mesh

For the case of the pitch up motion the mesh was extruded 20 chord lengths away

from the store.
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Figure 5.5 Near field extruded mesh for the pitch up motion case.

Figure 5.6 Far field extruded mesh for the pitch up motion case.

5.4.2. Overset Meshing

An important technique used to construct the mesh for the store separation cases in

this study is called overset meshing. Overset meshing is a technique often used to help

maintain grid quality for meshes with multiple independent bodies. Examples include

fighter jets with complex store configurations, a full Space Shuttle model, detailed

modeling for sports car, etc.. In all of these examples, the issue of conjoining well

constructed meshes from each individual body becomes a non-trivial task. This issue is

exacerbated when the independent dynamics of these bodies are being considered as well.

In these cases, such as the case of store separation modeling, it becomes very difficult to

maintain proper mesh refinement without the use of the technique of overset meshing.

Overset meshing begins with considering two independent grids. One is the major

grid and one is the minor grid. These two grids are first overset on top of one another. A

hole is then cut in the major grid to allow room for the minor grid. This cut allows for

an overlap region in the mesh between the major and minor grids. As the simulation is

being run, calculations are completed on the minor and major grids. Information is passed

between the two grids through the overlap region of the grid through an interpolation.
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Figure 5.7 provides a visual summary of the concept of overset meshing.

It should be noted that there is an alternative method for mesh control under dynamic

modeling called Dynamic Meshing. In Dynamic Meshing the simulation first allows

the boundary of interest to move/deform. In each time step in the solution, the full

mesh is reconstructed. The previous solution is then interpolated on to the new grid

before moving onto the next time step. The major advantage in this solution is that grid

continuity is properly maintained. Meaning, traveling waves will not be deformed as they

travel across the overlap region of two separate meshes.

However, Dynamic Meshing was not used for the simple fact that this method alters

the spacial dimensions of the solution at each time step. This unfortunately leads to the

method being not practical for the case POD/DMD which require a constant spacial

dimension for the snapshot matrix.

Figure 5.7 Graphic summarizing the premise of overset meshing (Ramakrishnan &
Scheidegger, 2016).

5.4.3. Store Separation Mesh

For the store separation mesh, two independent meshes were first constructed and

then stitched together using the overset meshing technique. For the background mesh,

the study started with the coarse mesh which was used for the pitch up case. For the store
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separation cases, there needed to be a higher resolution to the mesh in the field which the

store would be traveling through. As such the only difference made between the store

separation background mesh and pitch up mesh was that the field nodes were constricted

closer to the wall (Figure 5.8).

To construct the stores mesh, the study first scaled the surface mesh for pod (Figure

5.3) down by a factor of 1/4. A mesh was then extruded from the surface of the store

(Figure 5.9). The background and store meshes were then combined together through

FLUENT’s overset meshing tool set (Figure 5.10).

Figure 5.8 Near field extruded mesh for the store separation case.

Figure 5.9 Near field extruded mesh for the store separation case.
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Figure 5.10 Near field extruded mesh for the store separation case.

5.5. 3-Degree of Freedom Modeling

As a final step for this study a 3-dof model was constructed using a limited number

of modes as the aerodynamic model. The study chose to construct a 3-dof instead of a

6-dof model as the simulation results indicated there to be a symmetry in the surface

pressures on the z-plane of the body. The body axis equations of motion used in this

model are presented below.

ẍ =
Fx

m
(67)

ÿ =
Fy

m
− g (68)

Θ̈ =
Mz

Iyy
(69)

The acceleration equations are then converted first into velocities and then into

positions through the below basic equations.

ẋk+1 = ẋk +∆tẍk (70)

xk+1 = xk +∆tẋk (71)

5.5.1. Aerodynamic Model

In this section the aerodynamic model used to obtain the forces and moments in this

3-dof model will be reviewed. This model begins with first selecting a limited number of
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surface pressure modes obtained through the modal analysis r.

Φr (72)

These modes are then projected back onto the original data-set through Equation 73.

P = Φrat (73)

For each r series of at a linear interpolated function is created which relates the time

coefficients at to the angle of attack α of the store.

Fr(α) = atr (74)

At each timestep in the 3-dof model the surface pressures are updated through Fr(α).

The surface pressures are then converted to forces and moments through the below

equations.

Fx = PAcellî (75)

Fy = PAcellĵ (76)

Mz = PAcellĵx− PAcellîy (77)

In these equations P is an array of cell centered pressures, Acell is an array consisting

of cell areas, x/y are x and y cell centered positions respectively, and î/ĵ are x and y

direction unit vector components respectively.
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6. Simulation

In this section of the report, all simulation results will be presented and discussed.

The pitch up case will be reviewed first. These cases will be broken down into

steady-state and transient results. The single store separation case at Mach 0.8 will be

reviewed next.

6.1. Pitch Up

Before looking at the pitch up results, the method for extracting the surface pressures

and how they are presented is reviewed. This was done by taking slices at four separate

chord lengths along the length of the store. These positions were 90%, 83%, 77%, and

69% chord length. From here, pressure measurements were taken from 0 degrees (the

bottom of the store) to 180 degrees (to top of the store). These pressures were then

normalized to find coefficients of pressure before being compared to the experiment. This

process is outlined for the reader in Figures 6.1 and 6.2.

Figure 6.1 Example of slice being taken at a normalized cord length of 0.77. Side view

Figure 6.2 Example of slice being taken at a normalized cord length of 0.77. Head on
view

6.1.1. Steady-State

To start, the steady-state solutions will be summarized and compared to the
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experimental results. In total, 8 steady-state cases were run at an α of 20 degrees and a

Reynolds number of 4.2 ∗ 106. The model selection of each case is summarized in the

table below.

Table 6.1

Summary of all eight cases run in the steady-state for initial validation.

Turbulence Model Curvature Correction Mesh Refinement
K-W SST Off Coarse
K-W SST Off Fine
K-W SST On Coarse
K-W SST On Fine
SA Off Coarse
SA Off Fine
SA On Coarse
SA On Fine

By using the coarse mesh (Figure 7.6) the effect of using the four turbulence models

were identified. When looking at the surface pressure results, an initial flat lining of the

graph between 100-120 degrees is observed. This is a result of the primary separation,

and the results show that in all models the primary separation location was accurately

identified. The following dip in pressure that is observed is a result of the secondary

separation location (reference Figure 4.5 for experimental secondary separation). At the

77% chord line, neither the S-A nor K-W SST models were able to accurately identify

the strength of separation or phase. However, with the curvature corrections turned on

both phase and magnitude of separation were nicely predicted. These results should

come as no surprise; the curvature corrections implemented in the turbulence models

are directly implemented to help model curvature of streamlines in the free-stream flow.

Without these corrections these turbulence models will often struggle to predict heavily

separated flow structures with large curvatures in streamlines. An additional important

conclusion from these results is that there appears to be an independent solution to using a

two equation turbulence model over a single equation model.

When observing the results from the mesh refinement it is observed in Figures
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6.4 and 6.5 that the effect of doubling the circumferential nodes in the model does not

provide any additional accuracy. This is to say that all structures that form in the Φ

direction are mesh independent.

It should be noted that one additional case was run in an attempt to better model the

secondary separation location on the store. Note that, at the x\L = 0.69 position, the phase

of the secondary separation is delayed in the model. It is believed that this is the result of

the simulation not properly modeling the boundary layer transition. This has historically

been an issue for CFD codes and would explain why the magnitude of the separation is

modeled correctly while the phase is not. In an attempt to better model this transition,

an additional case was run with the coarse K-W SST curvature correction model with an

additional transition model native to FLUENT turned on. The results shown in Figure 6.6

indicate that the addition of transition modeling considerations complicated the solution

rather than providing a more accurate solution.

Now that it has been shown that using the S-A curvature correction model with the

coarse mesh provides a good comparison with experimental results, it just needs to be

shown that the free-stream structures do in fact appear in the model. These structures

are shown in Figure 6.7. In this Figure, iso-surfaces of Q-criterion are shown passing

through slices of vorticity magnitude. Surface flow patterns are represented through oil

streaks. Here, the iso-surfaces of Q-criterion pass directly through the peaks of vorticity

magnitude. This gives backing to the claim that the structures shown in Figure 6.7 are

infact the desired primary and secondary vortex structures.
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Figure 6.3 Surface pressure for coarse and fine mesh simulations compared to
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Figure 6.4 Surface pressure for all S-A simulations compared to experiment. α = 20deg
Re = 4.2 ∗ 106
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Figure 6.6 Surface pressure for coarse and fine mesh simulations compared to
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Figure 6.7 Reconstruction of free-stream structures. Iso-surfaces of Q-criteria are shown
passing through slices of vorticity magnitude. α = 20deg Re = 4.2 ∗ 106

6.1.2. Transcient

Here the transient simulation results will be compared to that of the experiment.

These results at four angles of attack are presented below. While the majority of these

results compare quite nicely to experiments, there is a singular exception found at an

angle of attack of 20 degrees that should be mentioned. At this angle of attack, the

experimental results show that there is a strong secondary separation, yet the simulation

was not able to reproduce this feature until an angle of attack of 22 degrees. It is believed

that this discrepancy appears as a result of the simulation not properly modeling the

transition regions between laminar and turbulent boundary layers. This historically

has been an issue in turbulence modeling, with much effort being spent on efficiently

modeling such transitions. Yet, given that the end goal of this research is to produce a

ROM which can properly resemble forces for a 6-DOF model, a tolerance is allowed

in this study for such discrepancies in surface pressures between the simulation and

experiment.
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Figure 6.8 Surface pressure for compressible and incompressible simulations compared
to experiment experiment. α = 9.9deg Re = 4.2 ∗ 106
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Figure 6.9 Surface pressure for compressible and incompressible simulations compared
to experiment experiment. α = 14.9deg Re = 4.2 ∗ 106
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Figure 6.10 Surface pressure for compressible and incompressible simulations compared
to experiment experiment. α = 19.9deg Re = 4.2 ∗ 106
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Figure 6.11 Surface pressure for compressible and incompressible simulations compared
to experiment experiment. α = 24.8deg Re = 4.2 ∗ 106

Figure 6.12 Three images of store under going pitch up motion. Iso-surfaces of vorticity
magnitude colored by pressure.
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6.2. Store Separation: Mach 0.8

The final simulation used in this study was a full store separation case at a Mach

number of 0.8. The computational cost of running this simulation is provided in Table

6.2. Table 6.2 helps to illistrate the extreme difficulty in attempting to incorpate even

RANS modeling into the store separation analysis. Even for the significantly idealized

case of store separation considered in this study, computational time and expense begin to

become impractical for store separation analysis outside of limited flight conditions.

Table 6.2

Summary of computational expense in running Mach 0.8 simulation

Parameter Cost
Processors 20-E5-2697v4
Core 360-cores
Speed 2.3GHz
Run Time 168 hours

The motion of the store can be summarized through the four images shown in Figure

6.14. In the first image, at time 0.055 s, the store appears to be separating smoothly away

from the fuselage. This observation is reinforced through observing the first 0.055 s of

motion displayed in Figure 6.13. Figure 6.13 shows minimal change in pitch of the store

during separation initially. This is because the pitching moment acting on the store over

this time frame is extremely low. Yet, as is the case with many stores, the store used in

this study is a neutrally stable body with the center of mass located in the exact center

of the store. As such, the store’s downward pitching motion initiates between the first

and second image of Figure 6.14. From here it is observed that the pitching moment on

the store has an expected exponential relationship with angle of attack. This relationship

causes the noticeable unstable pitching of the store in the final two images of Figure 6.14.

It is of importance to note that the entirety of this motion can be traced back to the

initial pitching moment acting on the store. This moment is caused by an acceleration of

the flow behind the store’s center line. This leads to an imbalance of surface pressures

ultimately leading to the initial pitching moment.
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In Figure 6.15, surface pressure contours of the store are provided. These contours

will be used in the Reduced Order Modeling section of this report to draw comparison

between model and simulation.
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Figure 6.13 Time history of x-position, y-position, and α during simulation.
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Figure 6.14 Four snapshots in time of store undergoing separation. Store is colored by
pressure contours and three slices of vorticity magnitude are taken.

Figure 6.15 Four snapshots in time of store undergoing separation. Store is colored by
pressure contours.
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7. Reduced Order Model

In this section of the report, all modal analysis and ROM findings will be presented.

The pitch up motion case will be analysed first and a comparison will be drawn between

DMD and POD. The store separation case will then be analyzed and a complete ROM

will be constructed and compared to the original CFD data-set.

7.1. Pitch Up: DMD vs. POD

With the results validated a modal analysis can now be completed. This analysis will

consist of comparing the ability of POD and DMD to obtain modes which represent the

surface and free stream structures of the flow field. This will be done through analyzing

both surface pressures and a slice of vorticity magnitude taken at the 90% chord length of

the store.

7.1.1. POD: Surface Pressures

After running the transient pitch up case for the store, 144 snapshots were taken and

formed into a snapshot matrix. These snapshots consisted of surface pressure readings.

From here the algorithm outlined in the Modal Analysis Methods section of this report

was used to obtain modes. The first 12 singular values obtained through this algorithm

were taken and plotted. By observing the trend of the singular values, we can see that

the vast majority of the energy of the system is contained in just the first four modes.

These four modes show the following trend. The first mode represents the pressure

field for the vast majority of the store’s motion, a fully attached flow field. For the vast

majority of the store’s motion, there is no primary or secondary separation. It is not until

the much higher angles of attack that the flow actually begins to separate and form the

primary and secondary vortex structures. The second mode shows the beginning of the

formation of the primary separation regions. The third mode shows the fully formed

primary separation and the beginning stages of secondary separation. Finally, the fourth

modes includes both the fully formed primary and secondary separation on the store.

By using just these four modes, it is possible to re-project them back onto the

original snapshot matrix and see how well they represent the original data-set. This
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four mode subspace shows that not only are the original pressures modeled correctly,

but also the original forces. As a final step, a comparison was made between keeping

twelve modes and four modes for the ROM. These results show that there appears to be

no significant advantage in tripling the subspace to increase accuracy.

One conclusion from this analysis is the simplicity in using POD to process a

data-set into an extremely low-dimensional subspace. After pre-processing the data-set,

all that was needed was SVD to obtain modes. The only additional step was a simple

observation of the singular values. In just these three steps a well defined subspace was

identified for the pitch up motion of the store. As mentioned earlier in this report, in

order to have practiced mode-based-ROM’s, they should be not only be quick to run

but also reasonable to setup. A modal analysis of surface pressures for the pitch up case

contributes significantly to the point that POD can be a very quick algorithm to obtain a

well posed subspace.

Figure 7.1 POD surface pressure singular values.
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Figure 7.2 POD surface pressure first four modes.

Figure 7.3 ROM force comparison between using 12 and 4 modes.

7.1.2. DMD: Surface Pressures

Here, the results for DMD on surface pressures are presented. The results show

that many more modes are needed from DMD to accurately resolve the original system

when compared to POD. While the modes from DMD are able to resolve the latter

regime of the pitch up motion they are not able to accurately show the beginning stages.

These results are consistent with what should be expected. DMD attempts to find time

correlations which can be used to introduce frequency considerations into the results.

This step works great when attempting to model fluid bodies with both high energy and

strong time dynamics.

Yet, with the pitch up motion of the store there were not many frequency structures.



61

Rather, the system was dominated by structures with fixed growth rates. It is the result

of looking for time correlations where there are none which leads to DMD modes that

do not represent the system well. This is shown by the fact that not many of the DMD

eigenvalues align with the unit circle on the complex field. The only modes out of the

first twelve that do align with the unit circle are modes 9, 10, 11, and 12. These modes

appear in complex conjugate pairs and appear with very small imaginary eigenvalue

terms. This reaffirms the previous statement by showing that the modes which DMD

finds to correlate well to the system are associated with very small frequency rates.

One potential counter argument to the statements made in this section is that this

study only investigated an abnormally small subspace to replicate the data-set. This

argument is based on the idea that if the subspace was allowed to grow, say by 200

modes, then it is possible that a better replication of the original data-set could be made

with DMD than POD. The study will not attempt to counter the claim that a more exact

representation could be made with a larger subspace. However, the issue with this claim

is that it forgets that the objective of this work is to construct a ROM capable of running

full store separation simulation as fast as possible on as few computational resources as

possible. If the subspace is allowed to grow by too much, the computational cost of the

ROM will begin to quickly balloon. As such, it is essential that the subspace identified be

as small as possible.

These results should not be taken to mean that DMD is an inferior method to POD.

The results simply show that, for the system that was observed in this study, POD is better

suited to identify surface pressure structures.
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Figure 7.4 DMD eigenvalues.

Figure 7.5 Real and imaginary modes 9 and 10.
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Figure 7.6 Real and imaginary modes 11 and 12.

Figure 7.7 ROM force comparison between using 12 and 4 modes.

7.1.3. POD: Vorticity

When observing the capability of POD and DMD to identify free stream structures,

a similar story is told as with the surface pressures. Once again, with a limited number of

modes, the original data-set can be nicely reconstructed. With these results, only the first

four modes will be reviewed in how they re-project back onto the snapshot matrix. The

choice to only look at the first four modes becomes justified when looking at the singular

values for this section. It is clear that the vast majority of the energy in the system is held
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in these first four modes when compared to the singular values of the surface pressure

case.

When looking at contours of the eigenfunction values for these modes, we see

first that mode one is showing the mean flow around the store. Mode two shows the

primary vortex structures. Mode three shows both the primary and secondary vortex

structures and finally mode four attempts to show the intermediate locations of these

vortex structures. By simply using these four images, a nice reconstruction of the flow

field is produced at both low and high angles of attacks.

The findings of this section of the analysis show that not only can POD quickly find

a representative subspace for surface pressures but also for the much more complicated

free-stream structures. The ability to develop a subspace for free-stream structures was

particularly in question due to the presence of large and much more common scalar

gradients in the data-set matrix. Consider the image of the slice of vorticity. There is a

region of extremely large gradients which exist between the inner and outer core of the

primary vorticity.

Before this analysis, it was questioned how well POD would work in a space where

large gradients are present. Remembering from the discussion in ‘Modal Analysis’,

the modes which are acquired through POD can almost be taken as averages of energy

contents of the data-set. One possibility was that the modes would simply smooth out all

gradients in the complex flow field. However, these results show that they can in fact be

resolved very efficiently.
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Figure 7.8 POD Singular Values for vorticity magnitude slice (POD). Plot only showing
Singular Values for first twelve modes.

Figure 7.9 First four modes for POD. Contours are in-terms of eigenfunctions and are
unit-less.
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Figure 7.10 Comparison between ROM and simulation results.

Figure 7.11 Comparison between ROM and simulation results.

7.1.4. DMD: Vorticity

When the DMD algorithm was used to find the modes for the system it became

much more difficult to make meaningful correlations to the known structures. While,

unlike for surface pressures, DMD was able to find modes which aligned nicely on the

unit circle when plotting contours of the modes it became clear that the desired structures

were not being resolved. An attempt was still made to re-project four modes back onto

the original system. However, while these results are still presented below they show that

a much larger subspace is needed to accurately represent the original snapshot matrix.
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Just as with the surface pressure results, the inclusion of frequency terms in the

DMD algorithm results in an erroneous representation of the known structures of the flow

field. Mode one of the DMD best summarizes these results. Instead of representing the

modes as they appear in space, DMD attempts to produce the structures as they move in

time. As such the DMD algorithm attempted to locate elements in the original data-set

which contained a high amount of energy. After finding these element energy states the

algorithm then attempted to replicate the frequency in which they were changing. This

method of mode finding would have work excellently if the vortices where to have been

shedding at a fixed frequency.

However, the vortices which form never shed off the body and as such there was

no such frequency associated with their motion. Their motion is much better associated

with fixed/decay growth rates rather than a frequency. As such, it becomes much easier to

identify these structures in space rather than time.

In future work to this study, there may be scenarios in which DMD’s algorithm

my work better. One such scenario which might have allowed DMD to be better taken

advantage of is the case of increasing the maximum pitch of the store. At higher pitch

these primary vortices will become asymmetric and will oscillate as a result of global

instability of the flow field. This global instability may be better resolved by DMD.

However, this condition was out of the scope of this study.
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Figure 7.12 Eigenvalues for vorticity magnitude slice (DMD). Modes 1, 3, 5, and 6 are
called out. They are the four modes which were used to reconstruct the snapshot matrix.

Figure 7.13 First mode for DMD. Only the first mode is presented as all other modes
show a very similar trend of not representing physical structures. Contours are in terms of
eigenfunctions and are unit-less.
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Figure 7.14 Comparison between ROM and simulation results at 24.4 α.

Figure 7.15 Comparison between ROM and simulation results at 0.4 α.

7.2. ROM vs. Simulation: Mach 0.8

Up to this point in the report, much effort has been spent on reviewing how to

develop a low dimensional subspace from a high dimensional data-set. In this section

of the report, further steps will be taken to present the actual application of a new found

subspace to a data-driven interpolation ROM. The first step for constructing the desired

ROM for Mach 0.8 was to derive a representative subspace. The information found in

the Pitch Up ROM sections of this report point to the logic that POD is an extremely

efficient algorithm for converting to a subspace. As such, only POD was used to develop
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the desired subspace. After formulating a snapshot matrix from the Mach 0.8 simulation,

a POD modal analysis was completed for both free stream and surface pressure structures.

7.2.1. Singular Values

After observing Figure 7.16, which shows singular values for the store’s surface

pressures, it is observed that there are three main groupings of singular values. The first

grouping shows an exponential decrease in values between modes 1 and 4. The energy

levels then flat line between modes 5 and 7 before sharply decreasing around mode 8.

Being able to retain as much of this energy as possible is essential in reconstructing the

ROM. As will be shown later, in order to properly model the store’s trajectory a precise

aerodynamic model will need to be constructed. Even small differences in loads early

on in the store’s motion will ultimately cause a very different trajectory. As such, it was

determined that two ROMs would be constructed; one based on a subspace of 4 modes

and another with 8 modes.

When observing the singular values for the the free-stream vorticity magnitude, a

very similar trend is followed between Figures 7.17 and 7.16. Once again, there is an

exponential decay in the singular values from modes 1 to 4. From here, two notes of

importance need to be discussed for the free-stream ROM. First, it should be noted that

modeling of free-stream structures of the flow field comes at great computational cost.

Whereas with surface pressures which have a total spatial domain of 53,642 nodes, the

free-stream analysis instead included 5,364,200 nodes. This greatly increased the matrix

sizes and with it computational cost. This leads to the second note of importance. For

the case of this study, the object of constructing a free-stream ROM was to simply mimic

the free-stream structures of the flow field in both phase and magnitude with reasonable

accuracy. Free-stream structures being off by small margins would ultimately not affect

the stores trajectory. As such, only one ROM was constructed for the free-stream using

the first four modes.
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Figure 7.16 Singular Values for surface pressure (POD).
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Figure 7.17 Singular Values for vorticity magnitude (POD).

7.2.2. Modal Analysis

The first four modes found using POD on surface pressures are presented in Figures

7.19 and 7.20. The first four modes found in this case are very similar to that of the

pitch up motion cases. The first mode appears to provide an averaged value to the stores
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surface pressures. Mode 2 shows the influence of the primary separation while mode 3

shows both primary and secondary separation. Finally, mode 4 once again attempts to

model the separation traveling across the body.

While not exactly the same, the conclusion that the modal analysis appears to

derive similar surface pressure modes with both an isolated store and a store under the

influence of a fuselage is important. The first significant conclusion from this observation

is that the store’s motion undergoing separation is dominated by the same structures as

an isolated store. Initially, the fuselage-store interaction influences a perturbation on

the store. However, from here the store’s natural fluid structures which develop begin

to dominate the aerodynamic forces on the body. This conclusion lends credit to the

possibility of developing a ROM based on an isolated store’s motion. This ROM could

potentially then be given a perturbation to mimic the initial fuselage store interaction.

However, for the time being this topic is outside the scope of this study, as will be

addressed in the Future Recommendations section of this report.

The free-stream modes used in this study can be found in Figure 7.18. Mode 1 was

excluded from Figure 7.18 as no free-stream structures were present. Just as the surface

pressure modal analysis led to a similar comparison to the pitch up motion, so too does

the free-stream analysis. Once again, with a very limited subspace, the full data-set is

closely captured.

Figure 7.18 Iso-surfaces of POD free-stream for modes 2 through 4. Bottom up view of
store.
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Figure 7.19 Contours of POD surface pressure for modes 1 and 2. Includes bottom and
top views of store.

Figure 7.20 Contours of POD surface pressure for modes 3 and 4. Includes bottom and
top views of store.

7.2.3. ROM Comparison

The next step of the ROM study was to simply project the modes back onto the

original data-set and see how well they capture the lift and drag forces on the store.

The results of this first step can be found in Figures 7.21 and 7.22. These Figures show

that, while the 4 mode ROM does a good job of capturing the forces, there still remains

seemingly minor discrepancies between simulation and ROM. These seemingly minor

discrepancies end up becoming very important when attempting to predict trajectories

of the store. As such, it was important to expand the working subspace to 8 modes.

By doubling the subspace, a much better representation of the forces can be made and
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thereby a much more accurate trajectory prediction.

To construct the mode based ROM, an interpolation scheme was incorporated.

As stated in the Modal Analysis section, the first stage of this process is to undergo an

expansion of terms which could be used to create a function for the time coefficients.

Equation 19 is restated below:

at = F (α, q̇, U∞, ρ∞, T∞...) (78)

By recognizing that the data-set currently being used is limited to a single flight

condition, a vast reduction of terms can be assumed.

at = F (α, q, h) (79)

In Equation 79, h is the stores distance from the fuselage. A further reduction of

terms can be made by considering which terms most dominate the stores motion. By

comparing the change in magnitude for each of these variables, it becomes clear that the

most dominant variable to the stores motion is α. As such, the interpolation model will be

based strictly on α.

at = F (α) (80)

Given that, after the projection, a series of at and α data exist, a linear interpolation

model can be constructed. While higher order interpolation schemes could have been

used, the idea was to for now keep the development of this model as simple as possible

while still retaining high accuracy. If a higher order scheme was needed, then a new

model could quickly be derived.

The function described in Equation 80 was used with the first 8 surface pressure

modes and the first 4 free-stream modes to construct the ROM used to predict the store’s

trajectory. This ROM allowed the study to compute the full flow field about the store at

very little computational cost. The cost of these models are outlined in Table 7.1.

After constructing a series of functions for at, a 3-DOF model was developed

in MATLAB. This 3-DOF model was then coupled with the newly developed ROM.

As shown in Table 7.1, these newly constructed models operate at extremely low
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computational power compared to that of the full simulation. Instead of taking a week to

simulate 0.155 seconds of simulation time on hundreds of cores, the recently constructed

ROMs take mere seconds on a single, even slower core.

However, running the ROMs at low computational cost was only the first

requirement of the study. The study also needed to show that the ROM could operate

accurately within the data-set. Unfortunately, the results shown in Figure 7.25 show

that the 4-mode based ROM was not able to accurately model the store’s trajectory.

While close, small discrepancies in surface pressures result in very different x-position,

y-position, and α values by the end of the run. However, by expanding the subspace to 8

modes, the ROM was able to accurately model the trajectory of the store. An additional

note of importance is that the ROM was also able to make accurate predictions of the

trajectory of the store outside of the training data-set limit of 0 s to 0.145 s.

Table 7.1

Summary of computational expense in running both full simulation and 4/8 mode ROMS
at Mach 0.8

Full Simulation 4-Mode ROM 8-Mode ROM
Processors 20-E5-2697v4 1-E5-2620 1-E5-2620
Core 360-cores 1-core 1-core
Speed 2.3GHz 2.0GHz 2.0GHz
Run Time 168 hours 9.5 seconds 15.3 seconds
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Figure 7.21 Lift comparison between ROM and simulation results with 4 and 8 modes.
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Figure 7.22 Drag comparison between ROM and simulation results with 4 and 8 modes.
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Figure 7.23 Comparison between ROM and simulation results with 4 modes.
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Figure 7.24 Comparison between ROM and simulation results with 8 modes.
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Figure 7.25 ROM (left) and simulation (right) comparison. Surface pressures
reconstructed with 8 modes and free stream was reconstructed with 4 modes.

Figure 7.26 ROM (left) and simulation (right) comparison. Surface pressures
reconstructed with 8 modes.
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8. Conclusions and Future Recommendations

The first goal for this study was to compare POD and DMD to identify the better

method for moving to a well defined subspace. The study found that the best method to

use in identifying this subspace was POD. POD showed an incredible ability to quickly

reduced large sets of data down into their fundamental components. Further more, the

study also found that POD has an excellent capability to reduce the order of the system

of interest. Not only was POD able to identify modes which identified leading structures

of the flow, POD also was able to reduce the total system of 144 images down to simply

4 modes. This results in a 97% reduction in data. This should not be taken to mean POD

will always operate better than DMD. As stated in the modal analysis methods section of

this report, the capabilities of these methods to resolve structures that dominate a system

comes down to the structures themselves. The structures that are desired to be resolved

in this study are best associated with spatial correlations and not well defined with time

correlations. This makes the problem of identifying structures of the flow field around a

store very well suited for POD, but not well suited for DMD.

In attempting to show that this subspace could be used to construct a ROM for

accurate trajectory predictions, an important series of conclusions was made. First, the

study was able to identify a strong correlation between modes found in the pitch up

and store separation cases. This correlation points to the possibility that an appropriate

model for store separation could be constructed completely independent of obtaining

fuselage-store interaction data. Yet such a ROM, while potentially efficient to construct,

would be limited in application. While the results of this study show that, for this specific

store separation case, the store motion could be captured by such a ROM, this is not true

for all cases. Often, stores will fail to separate from their aircraft’s boundary layer. In

these cases, a ROM would potentially operate very poorly.

Another important conclusion is that it is possible to construct a ROM for store

separation which both accurately models trajectories (Figure 7.24) and runs orders of

magnitude faster than the original simulation (Table 7.1). Additionally, it was shown
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that this model was able to operate accurately even when operating outside of the training

data-set. These results indicate, that given a finite number of data points, it is feasible that

a ROM could be constructed to operate across an entire flight profile for an aircraft.

With limitations to time and computational resources many topics which were of

interest to this study ultimately had to be reserved for further work. A list of these topics

is presented below.

• Investigate capabilities of POD and DMD in resolving moving shocks

• Investigate capabilities of POD and DMD in reconstructing asymmetric flow field

(vortex shedding)

• Develop controller to assist in initial separation

• Develop ROM for an isolated store based on α and reduced frequency

• Validate that this ROM can operate outside of the original data-set

• Use this validated ROM to construct controller which can be used to assist in store

separation
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