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ABSTRACT

This thesis studies the constrained motion for a spacecraft hovering over an

asteroid, where the Udwadia-Kalaba (UK) formulation is applied for nominal

control, and an adaptive controller is developed to account for unknowns in the

dynamics. Then, the formulation is extended in the geometric mechanics framework

to account for rigid body spacecraft asteroid hovering. Constraints are developed

and applied for fully constrained and under-constrained asteroid hovering.

The fully constrained solutions provided by the UK fundamental equation are

compared to an optimal linear quadratic regulator. An adaptive controller is

designed using the UK fundamental equation as a basis in the form of a model

reference adaptive controller. The controller is proven to have asymptotic tracking

of the reference system designed by the desired constraints on the spacecraft. The

convergence of the tracking error dynamics is studied using the Lyapunov’s direct

method. It is shown that the controller, with accurate estimation of the unknown

parameters, results in the minimum required control response due to its basis on

the UK equation. The parameters are successfully estimated using a finite-time

estimation method.

Furthermore, the extension of the UK formulation into the geometric mechanics

framework is developed to account for rigid-body spacecraft, where the formulation

also allows orientation constraints to be applied on the spacecraft. Constraints

with a basis on the Lie algebra of special Euclidean group SE(3) are developed to

fully constrain a spacecraft’s position and orientation for hovering over an asteroid.

The geometric mechanics UK formulation successfully gives the required angular
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and translational accelerations to maintain the desired configuration (pose) of

the rigid-body spacecraft. The developments above are discussed for a spacecraft

hovering over the asteroid Bennu and the closed-loop response of the system,

control inputs, and control efforts are provided and discussed.
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1. Introduction

Spacecraft operations over asteroids or small bodies are crucial for the

opportunities they present such as scientific observation, sample retrieval, and/or

asteroid mining. These missions will require the spacecraft to orbit or hover over

the surface, and/or do various other proximity operations about the asteroid.

Depending on the mission objectives, the spacecraft will be required to hover in

a fixed or non-fixed position. Asteroids are often irregularly shaped which affects

the gravitational field about them. Due to this fact, the dynamics analysis and

control design are complex. Typically, the objective of asteroid missions is to gather

data about the asteroid. In some cases, there are limited data available about the

asteroid, such as uncertainties about its mass, size, or shape. In these situations,

it is still necessary for the spacecraft to be able to perform maneuvers and conduct

operations without this information.

Some asteroid missions are currently underway. OSIRIS-REx is currently on

mission about the asteroid of Bennu with the ultimate goal of a sample return

(Lauretta et al., 2017). The OSIRIS-REx spacecraft successfully entered into a

stable orbit about the asteroid on December 31, 2018, and it continues to perform

its maneuvers in preparation for the sample acquisition and return (Wibben

et al., 2019). The Hyabusa 2 spacecraft is on mission at the asteroid Ryugu and

successfully landed on February 22, 2019 (Kikuchi et al., 2019). It is also on a

sample return mission and collected the sample when it was landing. Asteroid

operations will not stop with the above missions, but will continue with even more

complex missions than those such as mining the asteroids in lieu of small samples.

1.1. Asteroid Hovering and Proximity Operations

As shown with the current ongoing asteroid missions, various control schemes

and methods have been formulated and proven effective in asteroid operations with

and without unknowns in the system models. Hyabusa 2 used a passive reflective

marker along with an optics based controller to land within 3 meters of the desired
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landing site to avoid the boulder-strewn landscape of the asteroid Ryugu (Kikuchi

et al., 2019). Nazari et al. (2014) used an extended Kalman filter for the estimation

of gravitational parameters by utilizing ground stations on the asteroid. In addition

to that observer, optimal controllers were designed using a time-varying linear

quadratic regulator and Floquet theory to control a spacecraft to hover over a

tumbling asteroid. Gui and de Ruiter (2017) showed an extended state observer

with position-only measurements to design a controller for spacecraft asteroid

hovering that also rejects disturbances. The controller implemented velocity-free

hovering control by driving a full state feedback controller with the estimates from

the observer. Furfaro (2015) utilized higher-order sliding mode control theory to

design a two-sliding controller to control a spacecraft to hover about an asteroid.

Their controller was proven effective in maintaining the hover despite perturbing

accelerations.

1.2. Adaptive Control Methods

Adaptive control methods are often used to account for uncertain/unknown

parameters, unmodeled dynamics, disturbances, and/or noise. Adaptive control

methods have been commonly included when there are uncertainties and unknowns

in the system model. In general, adaptive control methods can be split into two

groups known as direct adaptive control and indirect adaptive control. Direct

adaptive control typically takes the form of directly adapting a feedback gain

that is added to the controller to account for the disturbance or unknowns,

whereas indirect adaptive control methods use adaptive parameters within the

feedback gains or controller to account for the disturbances and/or unknowns

(Kaufman et al., 1998). Some examples of various adaptive control methods are

adaptive regulation, disturbance accommodating control, adaptive output feedback

regulation, model reference adaptive control (MRAC), or combinations of these.

MRAC utilizes adaptive techniques to control a system to follow a known

desired reference model despite the system having disturbances and/or unknowns
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(Nguyen, 2018). A nonlinear adaptive controller using MRAC techniques was

developed to track reference orbits around asteroids with unknown gravitational

parameters (Tiwari et al., 2020). Lee and Vukovich (2015) developed an adaptive

sliding mode controller for asteroid hovering with uncertainties in the parameters as

well as disturbances. This method defined a sliding surface for relative position and

velocity between the asteroid and spacecraft to be achieved, while using adaptive

update laws for the uncertain parameter and disturbance estimations. Zhang

et al. (2019) used terminal sliding-mode control theory to develop a system where

only a saturation on the input was considered. An adaptive law was developed

for the controller to estimate the unknown upper bounds of the disturbances due

to asteroid irregularity and external forces, so that the controller can provide an

appropriate response to maintain hovering. Vukovich and Gui (2017) utilized

dual quaternions to develop a tracking controller for the coupled rotational and

translational dynamics for asteroid proximity missions such as hovering and

landing. Then, they introduced an adaptive algorithm to account for uncertainties

and disturbances in the model.

A method called the non-certainty equivalence (NCE) principle was proposed

by Seo (2015) for pose-tracking using dual quaternions and applied multiple

filters to estimate unknown parameters in the dynamics. The NCE method was

capable of adaptively estimate the parameters over time. Adetola and Guay (2008)

developed a finite-time parameter identification technique to estimate unknown

parameters in finite time, where a filter with dynamics that relies on the known

system dynamics was used. The proposed estimation method was used alongside an

adaptive controller for nonlinear systems and resulted in accurate estimation of the

parameters as long as an excitation condition was satisfied by the model.

1.3. Constrained Motion Analysis

A new constrained motion analysis technique was proposed in 1992 by

Udwadia and Kalaba (1992) to calculate the exact accelerations applied on a
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system for a given set of constraints (Udwadia & Kalaba, 2008). Their method

is capable of handling most equality constraints as long as they are differentiable

and linear in the accelerations terms after differentiation. The Udwadia-Kalaba

(UK) formulation can be used in nonlinear systems just as conveniently as linear

systems. The UK equations of constrained motion have been applied to some

aerospace missions so far. Lam (2006) used the UK framework applied to a

spacecraft orbiting an oblate body, in order to maintain a circular orbit and a

constant inclination. Cho and Udwadia (2010) used the UK formulation to find

the explicit solution to satellite formation keeping. The UK formulation was

used along with coulomb forces to control two charged spacecraft to maintain

formation in an elliptic orbit (Memon et al., 2019). The results with and without

the coulomb effects were compared to those obtained by the use of near-optimal

control schemes designed to achieve the same formation. The UK formulation

was applied for spacecraft station keeping in an unstable Lagrange point in the

Sun-Earth-spacecraft circular restricted three body problem (Patel et al., 2019).

1.4. Rigid Body Control and Analysis Using Geometric Mechanics

Control of spacecraft (and other aerospace vehicles), has to also account for the

rigid body of the vehicle in addition to just its position. However, the attitude of

the spacecraft is coupled with its orbital motion and thus the dynamics of both

are coupled. The geometric mechanics framework accounts for this coupling. Bullo

and Murray (1995) developed proportional derivative control methods on both the

Special Orthogonal group SO(3) for rigid body rotational motion and the Special

Euclidean group SE(3) for the combined rotational and translational motion.

Nazari et al. (2018) developed an almost asymptotically stable controller on SE(3)

to control both the rotation and translation of a rigid body simultaneously. Seo

and Nazari (2019) developed a NCE adaptive controller designed to control a rigid

body and used the NCE principle to reduce the effects of uncertain parameters.

Constraints were tested to see how they were satisfied through Munthe-Kaas
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integration in multibody systems when using the Lie group of SE(3), and concluded

that the integrator yielded perfect constraint satisfaction (Müller & Terze, 2014a;

Müller & Terze, 2014b). Udwadia and Schutte (2012) applied the UK formulation

to quaternions in order to develop the control torques required for rigid body

rotational dynamics.

1.5. Objectives

In this thesis first the required control inputs are obtained from the UK

formulation for spacecraft asteroid hovering for the cases of body-fixed asteroid

hovering and hovering in a desired trajectory above the asteroid with the spacecraft

modeled as a point mass. The control accelerations for the fixed hovering position

are compared to an optimal controller formed by an LQR. Next, the UK equations

are used as a basis of an adaptive controller to hover over an asteroid with

unknown gravitational parameters. Then, the UK formulation is extended and

used in the lie algebra, se(3), of SE(3) and applied to the geometric mechanics

framework to study dynamics and control of a rigid body spacecraft constrained

motion above the asteroid to achieve and maintain a desired hover configuration

(position and orientation) of the spacecraft.
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2. Theoretical Background and Preliminary Formulation

The background on the UK constrained motion analysis technique and problem

dynamics are discussed here. The basis of the UK formulation is presented along

with how they solve a set a constraints. The reference frames and dynamics of a

spacecraft about of rotating body are studied.

2.1. Constrained Motion Analysis

The accelerations of a system with constraints will deviate from the

accelerations of the same system with no constraints applied. The underlying

issue in analyzing these systems is being able to determine the deviation caused

by the constraints in the system. Udwadia and Kalaba developed a method based

on Gauss’s principle of least constraint to find the constraint accelerations in the

constrained motion of a system of particles (Udwadia & Kalaba, 1992; Udwadia &

Kalaba, 2008). Their method allows for the analysis of constrained systems and,

in control design, for calculating the necessary control accelerations in order to

maintain desired constraints.

2.1.1. Udwadia-Kalaba Formulation

The UK formulation follows a consistent algorithm for a system and a set of

constraints. Starting with a system of n particles with an impressed force acting on

the particles, the unconstrained equations of motion are,

q̈ = M�1F = a (2.1)

where q 2 R3n is the generalized position vector of the n particles, with q̈ being the

resulting acceleration vector relative to the reference frame of interest, M 2 R3n⇥3n

is the diagonal mass matrix of n particles, F 2 R3n is the impressed force vector on

the particles, and a is the unconstrained acceleration due to the impressed forces.

When a set of m constraints are applied on the system, the new dynamics become,

q̈ = a+ ac (2.2)
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where ac 2 R3n is the acceleration applied on the system due to the constraints.

The UK formulation accepts a broad range of constraints of the form,

�(q̇,q, t) = 0 (2.3)

where � 2 Rm is a vector of the m constraints. Equation (2.3) consists of both

holonomic and nonholonomic constraints without a need for them to be integrable.

However, there are some restrictions on the admissible constraints. The constraints

must be equality constraints and consistent (meaning the constraints do not

violate each other) so there exists a solution of q and q̇ that satisfies all of them

simultaneously. Also, after differentiation, the constraints must be linear with

respect to the acceleration terms. Note that while the constraints must not conflict,

they do not need to be linearly independent of each other.

The constraints from Equation (2.3) are then differentiated until the

acceleration terms appear. This typically entails differentiating twice for holonomic

constraints and once for nonholonomic constraints. After the constraints are

differentiated they are formulated into the constraint equation form:

A(q̇,q, t)q̈ = b(q̇,q, t) (2.4)

where A 2 Rm⇥3n, rank(A) = r, and b 2 Rm is the remaining term which

can be functions of the positions, velocities, and time. Thus, and in general, the

UK formulation can be applied for any constraint that can be put into the form of

Equation (2.4). Once this constraint equation is found, the constraint accelerations

are obtained by the UK fundamental equation:

ac = M�1/2
�
AM�1/2

�+
(b� Aa) (2.5)

where (·)+ is the Moore-Penrose (MP) generalized inverse. For the case of a system

with a single particle, n = 1, M = mpI3, where mp is the mass of the particle and
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Equation (2.5) reduces to,

ac = A+ (b� Aa) (2.6)

The constraint accelerations obtained by the UK fundamental equation in

Equation (2.5) are those that satisfy Gauss’s principle of least constraint. For

a fully constrained case (m = 3n), there is only one solution that satisfies the

constraints. However, in general, there may be infinitely many solutions that will

satisfy the constraints. In Section 2.1.2 the Moore-Penrose inverse of a matrix used

in Equations (2.5) and (2.6) is discussed.

2.1.2. Moore-Penrose Generalized Inverse

The UK formulation has a basis on the MP inverse as shown in Equation (2.5).

There are some important properties that the MP inverse satisfies similar to the

properties of a normal inverse. In this section, A is considered to be an m by n

matrix with rank r. Then A+ is the MP inverse of A if it satisfies four conditions

known as the MP conditions:

1. AA+A = A (2.7a)

2. A+AA+ = A+ (2.7b)

3. AA+ = (AA+)T (2.7c)

4. A+A = (A+A)T (2.7d)

Thus, if the four conditions above are satisfied by A+, then it is the MP inverse of

A. Other generalized inverses of A exist, but they do not satisfy all four conditions

in Equation (2.7).

Two important properties of the MP inverse of a matrix A are that it exists and

is unique. The singular value decomposition (SVD) of A can be taken so that,

A = W⇤V T (2.8)

where W 2 Rm⇥r is an orthonormal matrix, ⇤ 2 Rr⇥r is a diagonal positive definite
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matrix, and V 2 Rn⇥r is also an orthonormal matrix. Consider the symmetric

positive semi-definite matrix AAT . The eigenvalues and eigenvectors of AAT are

given by,

⇤AAT =

2

64
⇤2 0r⇥(m�r)

0(m�r)⇥r 0(m�r)⇥(m�r)

3

75 2 Rm⇥m, WAAT =


W W̃

�
2 Rm⇥m

where W̃ 2 Rm⇥(m�r) contains the remaining eigenvectors of AAT corresponding

to the m � r zero eigenvalues, so that the r eigenvectors in W corresponding to

the r nonzero eigenvalues in ⇤2 make up the SVD of A, ⇤ = +
p

(⇤2), and the ith

column of V is found by vi =
1
�i
ATwi, i = 1, 2, ..., r. Each element of ⇤ is known as

a singular value of A. Thus the MP inverse of A is,

A+ = V ⇤�1W T (2.9)

This SVD definition of A+ can easily be shown to satisfy the four MP conditions

in Equation (2.7), confirming that it is the MP inverse. Two other important

definitions of the MP inverse are:

A+ = AT
�
AAT

�+ (2.10a)

A+ =
�
ATA

�+
AT (2.10b)

When A has a rank of m or n, then Equations (2.10a) and (2.10b) respectively

reduce to,

rank(A) = m, A+ = AT
�
AAT

��1 (2.11a)

rank(A) = n, A+ =
�
ATA

��1
AT (2.11b)

By applying the definition of the MP inverse in Equation (2.10a) into the UK

equation given by Equation (2.5) the symmetric form of the UK equation is

obtained as,

ac = M�1AT
�
AM�1AT

�+
(b� Aa) (2.12)
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This avoids M�1/2 and the MP inverse in this equation also reduces to the regular

inverse if rank(A) = m.

2.1.2.1. Different Classes of Generalized Inverses and General Solution
of a Set of Equations

Let any generalized inverse of A be named the {i, j}-inverse and denoted by

A{i,j} if it satisfies the ith and jth MP conditions given in Equation (2.7). Since

the MP inverse satisfies each of the MP conditions, then the MP inverse is also a

{1, 3}-inverse and a {1, 4}-inverse, and all of those are also {1}-inverses.

Consider the set of equations:

Aq = b (2.13)

where A 2 Rm⇥n, q 2 Rn, and b 2 Rm. If the set of equations given in

Equation (2.13) is consistent, the solution q to this set of equations is given by,

q = A{1}b+ (In � A{1}A)h (2.14)

where h 2 Rn is an arbitrary vector (Udwadia & Kalaba, 2008). Extending this, the

solution given by,

q = A{1,4}b (2.15)

minimizes ||q|| such that ||q|| ||A{1}b + (In � A{1}A)h||. Therefore, any

{1, 4}-inverse of A provides the unique result of a minimized solution, even

though the {1, 4}-inverse of A is not unique itself. Now, consider the case where

Equation (2.13) is inconsistent such that there is no solution q that satisfies all the

equations. The solution that minimizes the quantity ||Aq� b|| is given by,

q = A{1,3}b+ (In � A{1,3}A)h (2.16)

Therefore, if Equation (2.13) is an inconsistent set of equations, the solution using

the MP inverse,

q = A+b (2.17)



11

is unique and it minimizes the norm of the solution ||q|| while also minimizing

||Aq � b||. For further details and proofs of the discussion above refer to Udwadia

and Kalaba (2008).

2.1.3. Gauss’s Principle of Least Constraint

Now that the MP inverse is studied, Gauss’s principle of least constraint can be

discussed. Gauss’s principle of least constraint states that of all the accelerations

that satisfy the constraints, only those that minimize the Gaussian, G, will actually

materialize within the system,

G(q̈) = (q̈� a)T M (q̈� a) =
�
M1/2q̈�M1/2a

�T �
M1/2q̈�M1/2a

�
(2.18)

For a system with constraints of the form of Equation (2.4), the resulting equations

of motion of the constrained system are found by applying Equation (2.5) to

Equation (2.2):

q̈ = a+M�1/2
�
AM�1/2

�+
(b� Aa) (2.19)

The resulting accelerations shown above are the accelerations of the system that

minimize the Gaussian. As discussed in Section 2.1.1, the constraint accelerations

obtained by the UK equation given in Equation (2.5) are those that cause the

resulting system accelerations q̈ given in Equation (2.2) to minimize the Gaussian,

G. It can be shown that q̈ in Equation (2.19) satisfies the constraint equation in

Equation (2.4). Now, consider any set of acceleration vectors ÿ = q̈ + z. If these

new accelerations are also a solution, then they must also satisfy Equation (2.4). It

can be shown that the Gaussian of those accelerations, G(ÿ), will always be greater

than the Gaussian of Equation (2.19), G(q̈), for z 6= 0. The details of the proof for

the discussion above is given in Appendix A.

2.1.4. Baumgarte’s Constraint Stabilization Method

Using the UK formulation discussed in Section 2.1.1, only the accelerations

required to maintain a given set of constraints are obtained. The control
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accelerations for an arbitrary set of initial conditions that do not satisfy the

constraints cannot be obtained using that technique. Thus, new constraints

should be created based on the original constraints to account for arbitrary initial

conditions when implementing the UK technique. For this purpose, Baumgarte

(1972) constraint stabilization method is used. In this method, the desired

constraints are applied into the form of a damped oscillator differential equation

(Cho & Udwadia, 2010):

�̈+K↵�̇+K�� = 0 (2.20)

where K↵, K� 2 Rm⇥m. If K↵ > 0 and K� > 0 are positive definite matrices,

then � asymptotically approaches zero, thus satisfying the desired constraints. As

mentioned above, Equation (2.20) describes a damped oscillator. The damping of

the constraints can be controlled through the relationship of K↵ and K�. Let K↵ =

diag{k↵1, k↵2, ..., k↵m}, K� = diag{k�1, k�2, ..., k�m} and k↵i, k�i > 0, i = 1, 2, ...,m.

The solution to the ith differential equation in Equation (2.20) is,

�i(t) = c1ie
⇠1it + c2ie

⇠2it

where,

⇠1i,2i =
1

2

✓
�k↵i ±

q
k2
↵i � 4k�i

◆

and c1i, c2i are constants that are obtained from the initial conditions.

Thus by appropriate selection of K↵ and K� the damping of the constraints

in Equation (2.20) can be adjusted to be underdamped, overdamped, or critically

damped. The three types of damping are achieved by,

underdamped : k2
↵i < 4k�i (2.21a)

overdamped : k2
↵i > 4k�i (2.21b)

critically damped : k2
↵i = 4k�i (2.21c)
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Therefore, in addition to satisfying the system constraints, a suitable selection

of the values k↵i and k�i determines how fast the ith constraint is satisfied. This

allows each constraint to be satisfied in a different way and time, and it allows for

the control effort and settling time to be adjusted for the desired control result.

Using the Baumgarte’s technique described above allows for arbitrary initial

conditions to be used while also guaranteeing that the constraints will be satisfied

over time.

2.2. Problem Formulation and Dynamics

Before delving into the application of the UK formulation, the dynamics of

the unconstrained system need to be analyzed and modeled. In the application

of asteroid hovering, this involves modeling the gravitational acceleration of the

asteroid. Since asteroids are typically much smaller bodies than planets or moons,

they are often irregularly shaped. This requires a better model than using the

general assumption of a point mass or spherical body. In general, the acceleration

of a system is obtained by taking the gradient of the potential U , i.e.,

Nd2r

dt2
= rU (2.22)

where r 2 R3 is the position vector of the point of interest and Nd(·)/dt denotes

the time derivative with respect to the inertial frame. In order to obtain the

gravitational potential of the asteroid, the reference frames and model of the

asteroid are obtained.

2.2.1. Reference Frames and Notation

Two references frames are defined here for the asteroid. The asteroid-centered

inertial (ACI) frame is centered at the center of the mass of the asteroid, oriented

with the z axis aligned with the orbital angular momentum of the asteroid,

non-rotating, and fixed. The asteroid-centered asteroid-fixed (ACAF) frame is also

centered at the center of the mass of the asteroid, but is aligned with the axes of

the principal moments of inertia of the asteroid, and rotating with the asteroid.
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The angular velocity of the asteroid is given as ⌦(t), and is expressed in the ACAF

frame. The angular velocity of the asteroid ⌦(·) 2 R3 is constant or time periodic

depending on whether the asteroid is uniformly rotating or tumbling, respectively.

The theoretical formulation in this thesis accounts for a general asteroid whether

it is uniformly rotating or tumbling asteroid with a time periodic angular velocity.

However, the simulations presented are for a uniformly rotating asteroid.

Now that the reference frames are established, the notation for reference frames

and time derivatives is discussed. The notation discussed here holds throughout the

rest of this thesis. When taking the time derivative of an expression the derivative

will always be taken with respect to the ACI frame. However, the use of the dot

notation ˙(·) represents the time derivative of (·) with respect to the reference frame

that (·) is expressed in. For some expression (·) that is expressed in the X reference

frame, the notation Yd(·)/dt will be the time derivative of (·) relative to the Y

reference frame, but expressed in the X reference frame. In the case of asteroid

hovering let r be the position vector of the spacecraft expressed in the ACAF

frame. The time derivative of this vector is written as,

Ndr

dt
= ṙ+⌦(t)⇥ r

where N is used to represent the ACI frame, Ndr/dt is the velocity of the

spacecraft relative to the ACI frame, but still expressed in the ACAF frame, and

ṙ is the velocity of the spacecraft relative to and expressed in the ACAF frame.

2.2.2. Modeling the Gravitational Potential of the Asteroid

The asteroid is now modeled in order to obtain the gravitational potential of the

asteroid. The asteroid is modeled as a tri-axial ellipsoid with major axes L1, L2,

and L3 aligned with the principal axes of the asteroid, which correspond to the x,

y, and z axes of the ACAF frame, respectively. Figure 2.1 shows the major axes of

the asteroid Bennu measured out in order to obtain an ellipsoidal approximation

of the asteroid. Thus using the ellipsoidal model, the gravitational potential of
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Figure 2.1 The major axes of the asteroid Bennu.

the asteroid experienced by a spacecraft can be modeled by spherical harmonics

of second degree and order (Scheeres, 2012):

U =
µ

r

⇢
1 +

⇣r0
r

⌘2

C20

✓
1� 3

2
cos2 �

◆
+ 3C22 cos

2 � cos (2�)

��
(2.23)

where µ = GmA is the gravitational parameter of the asteroid, G is the

gravitational constant, mA is the mass of the asteroid, r is the magnitude of r, the

position vector of the spacecraft, r0 = L1
2 is the reference radius of the asteroid, set

to be the equatorial radius along the x axis of the ACAF frame, and � and � are

the angles of latitude and longitude, respectively. The spherical harmonic constants

of second degree and order are,

C20 = �J2 =
1

5r20

✓
�2 � ↵2 + �2

2

◆
, C22 =

1

20r20

�
↵2 � �2

�
(2.24)

where ↵ = 1, � = L2
L1

, and � = L3
L1

are the dimensionless ratios of the major axes of

the asteroid.
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2.2.3. Spacecraft Dynamics About the Asteroid

The dynamics of the spacecraft motion about the asteroid are modeled through

Equation (2.22). Let r be the position vector of the spacecraft expressed in the

ACAF frame. Expanding out the dynamics of a spacecraft about the asteroid via

Equation (2.22) along with an added control input and expressed in the ACAF

frame yields,

r̈+ ⌦̇⇥(t)r+ 2⌦⇥(t)ṙ+ ⌦⇥2
(t)r = Ur + u (2.25)

where Ur = rU = @U
@r 2 R3 is the gradient of the gravitational potential

with respect to the spacecraft position vector, u 2 R3 is the control input, and

the skew-symmetric mapping (·)⇥ : R3 ! so(3) is defined for a vector w =

[w1, w2, w3]T 2 R3 as,

w⇥ =

2

66664

0 �w3 w2

w3 0 �w1

�w2 w1 0

3

77775
2 so(3) (2.26)

The latitude and longitude angles are naturally oriented with respect to the

ACAF frame. Therefore the trigonometric relations involving the latitude and

longitude in Equation (2.23) can be written as,

cos2 � =
rTT�r

r2
(2.27a)

cos2 � cos 2� =
rTT�r

r2
(2.27b)

where the matrices T� and T� are,

T� =

2

66664

1 0 0

0 1 0

0 0 0

3

77775
, T� =

2

66664

1 0 0

0 �1 0

0 0 0

3

77775
(2.28)

Substituting Equations (2.27) and (2.28) into the expression for the potential
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function given in Equation (2.23) and taking the partial derivative with respect

to r, the gravitational acceleration acting on the spacecraft due to the asteroid is

obtained as,

Ur = � µ

r3


I3 +

3C20r20
r2

F� �
3C22r20
r2

F�

�
r (2.29)

where F� and F� are

F� =

✓
I3 + T� �

5

2
r̂TT�r̂I3

◆
2 R3⇥3

F� =
�
2T� � 5r̂TT�r̂I3

�
2 R3⇥3

and r̂ = 1
rr is the unit vector in the direction of r. The equations of motion of a

spacecraft about the asteroid are now fully defined by Equations (2.25) and (2.29).
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3. Nominal Asteroid Hovering Control

In the case of asteroid hovering, the impressed force is the two body problem

along with any perturbations added. The UK formulation allows a simple and

consistent way to solve constrained motion problems, regardless of whether they are

under constrained, fully constrained, or over constrained. In Sections 3.1 and 3.2,

the fully constrained and under constrained asteroid hovering scenarios are studied

(Stackhouse et al., 2019).

3.1. Fully Constrained Scenario: Body-Fixed Asteriod Hovering

For a spacecraft (n = 1) to hover over an asteroid, m = 3 constraints are set

in order for the position of the spacecraft to be constant in the ACAF frame. In

this case with m = 3n = 3, the spacecraft is fully constrained so there is only one

solution to the constrained problem, although this problem can be solved through

other means.

Figure 3.1 The asteroid-fixed hover position displayed in the ACAF frame.
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3.1.1. Body-Fixed Asteroid Hovering via the UK Framework

The three constraints selected for the spacecraft to hover over the asteroid are

as follows:

� = r� r⇤ = 0 (3.1a)

where r⇤ is the desired hover location expressed in the ACAF frame. Note that

the desired hover location is constant in the ACAF frame. Figure 3.1 shows the

hovering position over the asteroid Bennu. The three constraints in Equation (3.1a)

are now differentiated twice, as they are all holonomic constraints, yielding,

�̇ = ṙ+ ⌦⇥(t) (r� r⇤) = 0 (3.1b)

�̈ = r̈+ ⌦̇⇥(t) (r� r⇤) + 2⌦⇥(t)ṙ+ ⌦⇥2
(t) (r� r⇤) = 0 (3.1c)

Equation (3.1) is then applied to Equation (2.20) and written in the form of the

constraint equation given in Equation (2.4):

r̈ = ⌦⇥2
(t)(r⇤ � r) + ⌦̇⇥(t)(r⇤ � r)� 2⌦⇥(t)ṙ�K↵�̇�K�� (3.2)

This results gives,

A = I3 (3.3a)

b =
⇣
⌦⇥2

(t) + ⌦̇⇥(t) +K↵⌦
⇥(t) +K�

⌘
(r⇤ � r)�

�
2⌦⇥(t) +K↵

�
ṙ (3.3b)

and K↵, K� 2 R3⇥3. Since the three constraints on the system explicitly define the

the position vector of the spacecraft, the matrix A = I3 is identity. The A matrix in

Equation (3.3a) can be applied to the UK equation in Equation (2.6) since n = 1,

which yields the simple result of:

ac = b� a (3.4)



20

where a = r̈ in Equation (2.25) when the control input u = 0:

a = �⌦̇⇥(t)r� 2⌦⇥(t)ṙ� ⌦⇥2
(t)r+ Ur (3.5)

which is the unconstrained/ uncontrolled dynamics. Since A is a square matrix, the

Moore-Penrose generalized inverse reduces to the normal inverse and, since A is the

identity matrix, it is eliminated from the equation altogether. Further applying b

and a, the constraint acceleration becomes (Stackhouse et al., 2019),

ac = ⌦⇥2
(t)r⇤ + ⌦̇⇥(t)r⇤ � Ur +

�
K↵⌦

⇥(t) +K�

�
(r⇤ � r)�K↵ṙ (3.6)

Over time, the constraint � is guaranteed to converge to 0, r ! r⇤, and ṙ ! 0, so

the constraint acceleration settles to the steady state value of maintaining the hover

position:

acss = ⌦⇥2
(t)r⇤ + ⌦̇⇥(t)r⇤ � U⇤

r (3.7)

where U⇤
r = limr!r⇤ Ur and Ur is given in Equation (2.29). Applying Equation (3.6)

as the control will drive the spacecraft from arbitrary initial conditions to the hover

position and maintain it.

3.1.2. Body-Fixed Asteroid Hovering via LQR

An optimal control law can be designed to achieve the same hover location.

The controller is designed by combining a feedforward controller and a feedback

controller (Nazari et al., 2014):

u = uff + ufb (3.8)

where uff and ufb are the feedforward and feedback controllers respectively. The

feedforward controller is used to maintain the hover position, while the feedback

controller is used to account for initial conditions. The feedforward controller for

asteroid hovering is set to be the dynamics of the desired hover position. This can
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be found, since it is a fully constrained system,

uff = �U⇤
r + ⌦̇⇥(t)r⇤ + ⌦⇥2

(t)r⇤ (3.9)

Note that Equation (3.7) is identical to Equation(3.9), thus the control for hover

maintenance will be identical between both controllers. This is expected, since

there is only a single solution to the constrained problem and the UK solution was

simply adding the desired dynamics and taking away the undesired dynamics.

Taking Equation (2.25), converting to state space form and linearizing the

system about the desired hovering point yields,

�ẋ = Ar⇤(t)�x+Bufb (3.10)

where x = [rT , ṙT ]T is the state space vector of the spacecraft’s postion and velocity

vectors, �x = x�x⇤ is the linearized state disturbance from the hover state, where,

Ar⇤(t) =

2

64
03⇥3 I3

�⌦̇⇥(t)� ⌦⇥2
(t) + U⇤

rr �2⌦⇥(t)

3

75 2 R6⇥6, B =

2

64
03⇥3

I3

3

75 2 R6⇥3

(3.11)

U⇤
rr =

@2U
@r2 |r=r⇤2 R3⇥3 is the Jacobian of U :

U⇤
rr =� µ

r⇤3
I3 +

3µ

r⇤5
r⇤r⇤

T

+
3C20µr20

r⇤3

"
�3(I3 + T�)

r⇤2
+

5(I3 + 2T�)

r⇤4
r⇤r⇤

T
+

5

2

r⇤
T
T�r⇤

r⇤4
I3 �

35

2

r⇤
T
T�r⇤

r⇤6
r⇤r⇤

T

#

� 3C22µr20
r⇤3

"
�2T�

r⇤2
+

20T�

r⇤4
r⇤r⇤

T
+

5r⇤
T
T�r⇤

r⇤4
I3 �

35r⇤
T
T�r⇤

r⇤6
r⇤r⇤

T

#

(3.12)

The feedback controller takes the form of the control law given by the solution of

the LQR as,

ufb = �K(t)�x (3.13)
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where the gain matrix K(t) is,

K(t) = R�1
c (t)BTP (t) (3.14)

where P (t) is the solution to the algebraic Riccati equation (ARE),

AT
r⇤(t)P (t) + P (t)Ar⇤(t)� P (t)BR�1

c (t)BTP (t) +Qc(t) = 0 (3.15)

and Qc(t) � 0 and Rc(t) > 0 are the weight matrices from the cost function, J ,

which is minimized by ufb,

Jc =
1

2

Z 1

0

�
�xTQc(t)�x+ uT

fbRc(t)ufb

�
dt (3.16)

The matrices Ar⇤(t), P (t), K(t), Qc(t), and Rc(t) are shown with a time

dependency. This accounts for if the asteroid is tumbling or not. In the case that it

is tumbling, the ARE must be solved at all times, and the control gain will be time

varying. Qc(t) and Rc(t) can be selected to be time-varying or not. In the case of a

uniformly rotating asteroid with a body-fixed hover position Ar⇤ , P , K, Qc, and Rc

all become constant in time, thus, giving a constant control gain.

3.1.3. Analytical Comparison Between the UK and LQR Control
Techniques

Prior to any simulation, there are similarities observed between the UK

formulation and the selected optimal controller. The feedforward controller in

Equation (3.9), selected for hovering maintenance, is exactly the same as the steady

state result obtained by the UK formulation in Equation (3.7). Therefore, there

is no difference between the methods for maintaining the hover. The differences

appear in the convergence to the hover location from the initial conditions. The

UK formulation utilizes an alternate constraint in the form of a critically damped

oscillator and the optimal controller utilizes a stabilizing LQR gain matrix applied

to a linearized system to regulate the disturbance from the hover position to zero.

As these methods are only dealing with the simple case of a body-fixed or constant

hover position, the derivation of the dynamics to input in the feedforward controller
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is relatively simple. Some more complex hovering scenarios can be observed and

achieved using the UK formulation, such as for under constrained hovering.

3.2. Under Constrained Scenario: Hovering in a Desired Trajectory

In some asteroid hovering missions, it may be desired that the spacecraft be

moving on a specific trajectory with respect to the body frame rather than in a

fixed position. This section deals with the cases where m < 3n so there are still

some degrees of freedom remaining. Suppose it is desired for the spacecraft to hover

within the vicinity of the desired hover position; this would allow for the spacecraft

to have bounded movement. Inequality constraints would give the most ideal

results as this would allow for that movement as long as the spacecraft remained

within the bounds; however, the UK formulation does not accept inequality

constraints. Therefore, some surfaces can be used to still allow some movement

about the desired hover potions. The case where the spacecraft has one degree of

freedom and is constrained to move on a circle parallel to the surface of the asteroid

is studied.

3.2.1. Spacecraft Constrained to Hover in a Circular Trajectory

The first situation where the spacecraft is to remain on a circle can be

accomplished by two constraints:

�1 =
rTc
rc

(r� rc) = 0 (3.17a)

�2 = (r� rc)
T (r� rc)� ⇢2 = 0 (3.17b)

where rc is the ACAF fixed vector to the center of the circle, rc is the magnitude

of rc, and ⇢ is the radius of the circle. �1 constrains r to remain on the plane

roughly parallel to the surface of the asteroid that passes through the end of rc

and �2 constrains the spacecraft to remain on a sphere centered at the end of rc.

The intersection of these two constraints is where the spacecraft is free to move.

Figure 3.2 displays both constraints along with their intersection. Both constraints
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Figure 3.2 Circular trajectory constraints visualized. The intersection of the plane
and the sphere defines the circular trajectory of the spacecraft.

together will keep the spacecraft on the circle roughly parallel to the surface of the

asteroid. Differentiating the above constraints in Equation (3.17) twice with respect

to time, as they are holonomic, results in,

�̇1 =
rTc
rc

ṙ = 0 (3.18a)

�̇2 = (r� rc)
T
⇥
ṙ+ ⌦⇥(t)(r� rc)

⇤
= 0 (3.18b)

�̈1 =
rTc
rc

r̈ = 0 (3.19a)

�̈2 = (r� rc)
T r̈+ ṙT ṙ+ (r� rc)

T ⌦̇⇥(t)(r� rc) = 0 (3.19b)

Applying Equations (3.17), (3.18), and (3.19) to Baumgarte’s method,

Equation (2.20) and reordering into constraint equation form shown in
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Equation (2.4) gives,

A =

2

64
rTc
rc

(r� rc)T

3

75 (3.20a)

b =

2

64
0

�ṙT ṙ� (r� rc)T ⌦̇⇥(t)(r� rc)

3

75�K↵

2

64
�̇1

�̇2

3

75�K�

2

64
�1

�2

3

75 (3.20b)

where A 2 R2⇥3, b 2 R2, and K↵, K� 2 R2⇥2 since there are only two constraints.

By obseriving the A matrix and b vector it can be clearly seen that each constraint

is represented by each row of A and b. This is useful since constraints can be added

or removed without reworking the previous constraints or the dynamics. The A

matrix and b vector found above in Equation (3.20) can be applied to the reduced

form of the UK equation shown by Equation (2.6) since there is only one particle.

The MP inverse of A can be found using Equation (2.10a), and if A remains full

rank, then Equation (2.11a). The symmetric positive semi-definite matrix AAT is,

AAT =

2

64
1 rTc

rc
(r� rc)

(r� rc)T
rc
rc

(r� rc)T (r� rc)

3

75 (3.21)

The determinant of AAT in Equation (3.21) is obtained,

det(AAT ) = (r� rc)
T (r� rc)�

1

r2c

⇥
rTc (r� rc)

⇤2 (3.22)

The determinant of the matrix AAT is nonzero if the initial position of the

spacecraft is parallel with the vector rc i.e. if r(0) ⇥ rc = 0. In the case the

initial position causes the AAT matrix to be singular, the MP inverse is required;

otherwise, the normal inverse can be used. For appropriate initial conditions,

A+ = AT (AAT )�1 =
1

det(AAT )


rc
rc

(r� rc)

�
2

64
(r� rc)T (r� rc) �rTc

rc
(r� rc)

�(r� rc)T
rc
rc

1

3

75

(3.23)

Thus, the required constraint accelerations can be found by applying
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Figure 3.3 Spacecraft trajectory in the ACI frame for an asteroid-fixed hover
position. After the initial convergence, the spacecraft moves around the asteroid
since the asteroid is rotating relative to the ACI frame.

Equations (3.20) and (3.23) to Equation (2.6).

Since this system is under constrained, there are infinitely many accelerations

that can be applied to maintain the desired constraints. The UK equation gives

the minimum accelerations required to maintain them. Observing the feedforward

and feedback controller previously used for a constant hover position, with these

new constraints, it is easily seen that the derivation of the feedforward controller

will not be as straightforward as before. Even for the case of a uniformly rotating

asteroid, the system will still be time-varying. However, using the UK formulation

enables the control accelerations required to maintain those constraints to be

obtained conveniently.

3.3. Numerical Simulation Results and Discussion

The control responses discussed previously are applied to a spacecraft to hover

over the surface of the asteroid Bennu over one full rotation of the asteroid. Bennu
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Figure 3.4 Spacecraft trajectory in the ACAF frame for an asteroid-fixed hover
position. After convergence to the desired hover position, the spacecraft remains
fixed relative to the asteroid.
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Figure 3.5 Spacecraft position components over time for the asteroid-fixed hover
position.
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has a gravitational parameter of µ = 5.2 m3/s2 with a density of ⇢ = 1.26

g/cm3 (Chesley et al., 2014). The shape of Bennu was determined and found to

have major axes as L1 = 565 m, L2 = 535 m, and L3 = 508 m, leading to

� = 0.9469, � = 0.8991, and r0 = 282.5 m (Nolan et al., 2013). From theses values

the spherical harmonic constants are found to be C20 = �3.5061 ⇥ 10�7 m�2 and

C22 = 6.4766 ⇥ 10�8 m�2. Bennu has an equatorial inclination of 175 degrees with

a constant rotation period of 4.297 hours and rotates about the z axis, meaning

Bennu has a retrograde spin with respect to its orbit about the sun (Chesley et al.,

2014).

3.3.1. Fully Constrained Asteroid Hovering

First, a simulation is performed for a body-fixed hovering position using

the UK formulation results and the optimal controller. The hover location is

set as r⇤ = [400, 0, 0]T m. The initial conditions of the spacecraft are set as

r(0) = [450,�75,�50]T m and dr
dt (0) = [0.5,�0.5,�0.2]T m/s in the body

frame. The matrices for incorrect initial conditions are selected for critical damping

with K↵ = 0.5I3 and K� = K2
↵/4 = 0.0625I3. The same initial conditions
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Figure 3.6 The transient control accelerations for asteroid body-fixed hovering.
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were used for the simulation of the LQR controller with a selection of Qc =

diag(1/902, 1/902, 1/902, 1/152, 1/152, 1/152) and Rc = 1/152I3.

The spacecraft trajectories in the ACI and ACAF frames are shown in

Figures 3.3 and 3.4. In these figures, the convergence of the UK method and the

LQR controller only have slightly different paths, but are very close together. The

maintenance of the hover position is the same, as the feedforward controller and the

steady state UK solutions are identical. Both methods achieve the desired result

of a body-fixed hover. Figure 3.5 shows the position components over time for

each method. The difference in the paths taken by the UK constraint stabilization

method and the LQR controller is more clearly seen here. For this selection of K↵,

K�, Qc, and Rc both methods cause the spacecraft to converge to 2% of the initial

displacement from the hover position in about 0.0015 revolutions or 24 seconds.

Each of the position components converges to a constant value, representing each

component of the desired hover position.

Figures 3.6 and 3.7 show the transient and steady state control accelerations

expressed in the ACAF frame, given by the UK equations and the optimal

controller. It can be seen in Figure 3.6, that the transient response of the LQR
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Figure 3.7 The steady state control accelerations for asteroid body-fixed hovering.
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Figure 3.9 The steady state integrated control effort to converge to and maintain
the hover position.

starts out with a larger required acceleration, but reduces more quickly than the

UK method’s accelerations. Both methods then settle down to the maintenance

control to remain at the hover position. The maintenance controls are constant in
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Figure 3.10 Spacecraft trajectory in the ACI frame for a trajectory based hover
position for two different initial conditions.

the ACAF frame, as they are both just accounting for gravity of the fixed hover

position and the rotation of the asteroid. The integrated control effort over time

is shown in Figures 3.8 and 3.9. For the chosen selection of control parameters,

the UK equations require a smaller transient integrated control effort of 19.7 m/s,

while the LQR controller requires 24.9 m/s. However, in Figure 3.9 the steady state

integrated control effort to maintain the hover over one revolution of the asteroid

is roughly equivalent at 0.5 m/s for both methods. This is expected since the

analytical expressions for the steady state maintenance were shown to be equivalent

in Section 3.1.3. Overall, the UK method requires less total control effort for a

spacecraft to move to and hover at a body-fixed position.

3.3.2. Under Constrained Asteroid Hovering

In the second case with the trajectory hover position, the vector to the center

of the circle is set as rc = [400, 0, 0]T m. The radius of the circle the spacecraft
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Figure 3.11 Spacecraft trajectory in the ACAF frame for a trajectory based hover
position for two different initial conditions.
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initial conditions.
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Figure 3.13 The steady state position components are plotted over time for the
two initial conditions.
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Figure 3.14 The transient control accelerations required for the trajectory hover
for each initial condition.

is constrained to is ⇢ = 50 m. The same initial conditions are used as above for

the UK formulation. Additionally, the under constrained hovering is given a second

initial condition where r(0) = [500, 0, 0]T m, which would cause the AAT matrix to
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Figure 3.15 The steady state control accelerations required for the trajectory
hover for each initial condition.

0 0.5 1 1.5 2 2.5 3

Number of Revolutions of the Asteroid 10-3

0

5

10

15

20

25

00
.0

0
3
 |
|u

(
)|

| 
d

, 
m

/s

Original IC

New IC

Figure 3.16 The transient integrated control effort for the trajectory hover.

be singular, but the MP inverse allows for this initial condition and UK equations

still give the control accelerations for the spacecraft. The matrices for damping of

the constraints are again selected for a critically damped case and are set as the

same values as in the first simulation, but they are a different size with K↵ = 0.5I2
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Figure 3.17 The steady state integrated control effort for the trajectory hover.

and K� = K2
↵/4 = 0.0625I2.

Figures 3.10 and 3.11 show the trajectories in the ACI and ACAF frames

respectively. As seen, the spacecraft moves to and remains on the circlular

intersection of the two constraints set. However, unlike before, now the spacecraft

has to assert additional control to remain on the circle since it is free to move

around on the circle. As mentioned before, since this is an under constrained

system, the constraints only control the position of the spacecraft, but not how the

spacecraft moves on the circle. The two initial conditions shown provide different

behaviors once the spacecraft is on the circle. The second initial condition does

not cause the spacecraft to move around the circle very quickly as the first initial

condition does. Figures 3.12 and 3.13 display the position components of the

spacecraft over time for both the transient and steady state response, respectively.

The period the spacecraft has as it moves on the circle can be observed in the

steady state response of the position. Figures 3.14 and 3.15 show the control

accelerations, while Figures 3.16 and 3.17 show the integrated control effort. The

second initial condition requires more initial control, but requires much less control
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to maintain the constraints, since it ends up moving much slower around the circle.

The integrated control effort for the maintenance of the time-varying hover position

is larger than for the body-fixed hover. This is due to the spacecraft requiring

additional control to account for its non-zero velocity since the spacecraft is

applying accelerations to maintain the trajectory as well as to maintain the hover.

The more quickly the spacecraft moves about the circular trajectory, maintaining

the trajectory requires more input.

3.4. Conclusions

In this chapter, the UK formulation was utilized for a spacecraft to hover over

an asteroid. An optimal controller was created using an LQR for a linearized

system. The two methods were compared, which showed they had the same

maintenance control, but different convergence paths from the initial conditions. A

simulation about the asteroid of Bennu showed that, for equivalent settling times,

the UK provided a lower total control response than the optimal LQR controller

for the given control parameters. The UK formulation was then applied for a

spacecraft to maintain a hover trajectory over Bennu.

As shown, the UK formulation can handle time-varying systems just as easily

as time-invariant systems. The time-variance may be introduced from a tumbling

asteroid or a time dependent hover position. The optimal controller shown here

gains complexity when dealing with a tumbling asteroid; however, the feedforward

controller incorporated becomes more difficult to derive for more complex hover

positions. The UK method does require the dynamics of the system to be known

in order to be applied, whereas the optimal controller includes the LQR feedback

control law, which has potential to deal with some unmodeled dynamics and/or

errors in the modeling. However, altering the uncontrolled system dynamics does

not change any of the derivations to do with the constraints and vice versa, which

allows for additional constraints, perturbations, or other forces to be accounted for

easily in the UK framework.
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4. Adaptive Asteroid Hovering Control

As shown in the Section 2.1 and Chapter 3, the UK formulation is a powerful

and accurate tool for constrained motion analysis. The dynamics of a spacecraft

about the asteroid are modeled in Section 2.2. The UK formulation is shown with

its application for asteroid hovering in Chapter 3. However, the system dynamics

must be known in order to get accurate results.

The goal of this chapter is to utilize the UK constrained motion analysis

technique to control a spacecraft to hover over an asteroid in the presence of

unknowns and/or parameter uncertainties in the system. Indirect adaptive control

methods are implemented to the UK equations in the form of adaptive estimations.

By augmenting those adaptive estimations with the UK technique, an adaptive

estimation of the unconstrained dynamics can be obtained. However, in order for

this augmented technique to give optimal results, the adaptive parameters need to

converge to the actual unknown parameters of the system. Persistence of excitation

(PE) is required for the adaptive estimates to converge to the true unknown values.

Therefore, excitation is desired within the system to gain enough information

from the dynamics of the system to be able to acquire the unknown parameters.

The method of finite-time parameter estimation is used to estimate some of the

parameters given assuming there is sufficient excitation in the system over a finite

period of time. After the parameters are accurately estimated, that excitation is no

longer necessary in the system.

4.1. Spacecraft Asteroid Hovering Dynamics with Unknown
Gravitational Parameters of the Asteroid

Since it is assumed that the system includes unknown gravitational parameters,

the dynamics need to be rewritten. In order to design the controller, the dynamics

are first be converted into state space form. In general, the nonlinear dynamics of a

system with unknowns can be expressed in state space form as,

ẋ = f(x,u, t) + Ḡ(x,u, t)⇥ (4.1)
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where x 2 R6n is the state vector, f (x,u, t) 2 R6n and Ḡ (x,u, t) 2 R6n⇥s make up

the dynamics of the system, and ⇥ 2 Rs is a vector of s unknown constants.

In the case of spacecraft asteroid hovering, the gravitational parameters of the

asteroid, µ, C20, and C22 are considered to be the unknown constants. Initially, it is

assumed that only the angular velocity of the asteroid ⌦(t), the reference radius r0,

and an initial guess of µ are known, but the mass and the shape of the asteroid are

unknown. Therefore, ⇥ in Equation (4.1) takes the form,

⇥ =


µ C20µr20 C22µr20

�T
(4.2)

Note that the reference radius, although assumed as a known value, is also included

in ⇥. Therefore, factoring the unknowns out of Equation (2.29) results in,

Ur = ḡ⇥ (4.3)

where,

ḡ =


� 1

r3 r � 3
r5F�r

3
r5F�r

�
2 R3⇥3 (4.4)

is the partitioned matrix of the gravitational acceleration vector.

Assuming the unknowns in the spacecraft asteroid hovering dynamics in

Equation (2.25) are given by ⇥ in Equation (4.2), Equation (2.25) can be written

in nonlinear state space form as in Equation (4.1), i.e.,

ẋ = A0x+Bu+Bḡ⇥ (4.5)

where x =
⇥
rT , ṙT

⇤T 2 R6 is the state vector of the spacecraft position and velocity

in the ACAF frame,

A0 =

2

64
03⇥3 I3

�⌦̇⇥(t)� ⌦⇥2(t) �2⌦⇥(t)

3

75 2 R6⇥6, B =

2

64
03⇥3

I3

3

75 2 R6⇥3

and the nonlinear terms are given by ḡ in Equation (4.4).
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4.2. Adaptive Control Design

Constrained motion analysis in the UK framework requires the exact dynamics

of the system to be known, as they are used to obtain the minimized solution.

Since ⇥ in Equation (4.2) is unknown, the UK equations cannot be used directly.

In order to apply the UK equations despite unknowns in the dynamics, adaptive

control techniques are implemented. The adaptive controller developed here uses

an indirect adaptive control formation and takes the form of a model reference

adaptive controller (MRAC).

4.2.1. Implementation of Adaptive Estimates Into the UK Equation

Let ⇥̂ be the adaptive estimate of ⇥. Since the unconstrained dynamics

in Equation (3.5) contain unknowns due to ⇥, an adaptive estimate of the

unconstrained acceleration â is developed by replacing the unknowns ⇥ with ⇥̂ in

Equations (4.3) and (3.5), i.e.,

Ur = ḡ⇥̂ (4.6)

â = �⌦̇⇥(t)r� 2⌦⇥(t)ṙ� ⌦⇥2
(t)r+ ḡ⇥̂ (4.7)

Replacing the unconstrained acceleration a in the point mass UK equation given

by Equation (2.6) with the adaptive estimate of the unconstrained acceleration in

Equation (4.7), the estimate of the constraint acceleration is obtained as,

âc = A+ (b� Aâ) (4.8)

This result can then be used as part of the control scheme as it replaces the

unknowns in the solution obtained by the UK formulation with the adaptive

estimates.

4.2.2. Reference System Modeling

Along with the dynamics of the system, a reference system needs to be created.

In the case of constrained motion under unknown dynamics, the reference system
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will be based on the dynamics required by the constraints. Let xr 2 R6 be the state

vector for the reference system. The reference system is then modeled as,

ẋr = Arxr +Bur (4.9)

where,

Ar =

2

64
03⇥3 I3

03⇥3 03⇥3

3

75 2 R6⇥6

and ur 2 R3 is the reference control input. In order to apply the same set

of constraints on the reference system as the real system, the UK equation,

Equation (2.6) is applied so ur = A+(b � Aar). However, the reference system’s

unconstrained acceleration is ar = 0. Hence, the reference system becomes,

ẋr = Arxr +BA+b (4.10)

4.2.3. Adaptive Control Law

With the reference system defined in Equation (4.10) and the dynamics given

in Equation (4.5), the controller is chosen to be in the form of (Stackhouse et al.,

2020):

u = âc �Kre = A+ (b� Aâ)�Kre (4.11)

where âc is given in Equation (4.8), Kr 2 R3⇥6 is a feedback gain matrix, and

e = x � xr 2 R6 is the error between the system states and the reference states.

This controller is chosen since the UK equations give the minimum accelerations

required to maintain a set of constraints. If ⇥̂ converges to ⇥, this controller

provides the minimum accelerations needed to maintain the hover position.

However, since ⇥ is unknown, the estimated UK solution will not be the correct

solution as long as the adaptive estimates are not correctly estimated. To account

for this error, the additional feedback gain is utilized to keep the system converging

to the desired dynamics. Thus, by applying the control law in Equation (4.11) to
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the dynamics in Equation (4.5), the closed-loop dynamics are obtained as,

ẋ = Arx� BKre+BA+b+By (4.12)

where y = (a� A+Aâ).

Pre-multiplying y in Equation (4.12) by A and using the first MP condition in

Equation (2.7a) yields,

Ay = A
�
a� A+Aâ

�
= Aa� AA+Aâ = A (a� â) (4.13a)

Applying Equation (3.5) and Equation (4.7) into Equation (4.13a) gives,

Ay = z (4.13b)

where z = Aḡ⇥̃ and ⇥̃ = ⇥ � ⇥̂ is the difference between the actual unknown

parameters and their adaptive estimates. Note that Equation (4.13b) is a consistent

equation, and recall from Section 2.1.2.1 that the solution to that equation with

minimum norm is:

y = A{1,4}z = A+z (4.13c)

where the last part in Equation (4.13c) follows since the MP inverse is also a

{1, 4}-inverse. According to Equation (4.13c) and the definitions for z given below

Equation (4.13b), it is obtained that,

y = A+Aḡ⇥̃ (4.13d)

Substituting y from Equation (4.13d) into Equation (4.12) the closed-loop

dynamics of the spacecraft over the asteroid are obtained as,

ẋ = Arx� BKre+BA+b+BA+Aḡ⇥̃ (4.14)

Subtracting Equation (4.10) from Equation (4.14) aboves gives the tracking error

dynamics as,

ė = Ace+BA+Aḡ⇥̃ (4.15)
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where,

Ac = Ar � BKr

Observing the error dynamics in Equation (4.15), the feedback gain matrix Kr can

be selected. This control gain matrix Kr needs to be selected such that the matrix

Ac is Hurwitz. Hence, if ⇥̃ = 0, then the error will converge to zero over time.

However, there is no guarantee that ⇥̃ converges to zero.

4.2.4. Lyapunov Stability Analysis

Since there is no guarantee that ⇥̃ converges to zero, Lyapunov’s direct method

is used to study stability of the tracking error dynamics. Let the Lyapunov

candidate function be of the form (Stackhouse et al., 2020):

V = eTSe+ ⇥̃T��1
⇥ ⇥̃ (4.16)

where S 2 R6⇥6 and �⇥ 2 R3⇥3 are symmetric positive definite matrices

(S, �⇥ > 0). Taking the time derivative of the Lyapunov candidate and applying

the error dynamics from Equation (4.15) results in,

V̇ = eT
�
AT

c S + SAc

�
e+ 2⇥̃T

⇣
ḡTA+ABTSe+ ��1

⇥
˙̃⇥
⌘

(4.17)

Since Ac is Hurwitz,

8Q = QT > 0 9S = ST > 0 | AT
c S + SAc = �Q (4.18)

In addition to the second part of Equation (4.17), the adaptation law can be found

as,

˙̂⇥ = � ˙̃⇥ = �⇥ḡ
TA+ABTSe (4.19)

This adaptation law causes the second term in V̇ to vanish, i.e.,

2⇥̃T
⇣
ḡTA+ABTSe+ ��1

⇥
˙̃⇥
⌘
= 0

Thus, for a selected positive definite matrix Q = QT > 0 and the adaptation law in
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Equation (4.19), Equation (4.17) becomes,

V̇ = �eTQe (4.20)

which is negative definite. Thus, from Lyapunov, it can be shown that e is

bounded, which means that ⇥̃ is also bounded. Therefore, it is shown that V̇ is

bounded and V̈ is bounded, meaning V̇ is uniformly continuous. According to

Barbalat’s lemma, this means that V̇ ! 0 as t ! 1 proving that e ! 0 and

⇥̃ ! ⇥̃ss as t ! 1 (Nguyen, 2018; Sastry, 1999). This guarantees that the states

asymptotically track the reference trajectory, and that the vector of estimated

parameters ⇥̂ converges to some constant vector. However, the components of that

constant vector are not necessarily the actual values of the system parameters ⇥.

In order for ⇥̂ to converge to ⇥, there needs to be PE within the system. The

problem, however, is that PE is not easily attainable within nonlinear systems.

Through a numerical simulation of the adaptive controller designed in this section,

it is shown through the natural dynamics of hovering in a constant relative position

with respect to the ACAF frame, along with the initial tracking convergence, that

µ converges to its actual value. However, as expected, the other values in ⇥̂ do not

converge to ⇥.

After a simulation of hovering over the asteroid for one revolution, the system

had enough information in it for the estimated µ to converge to its true value.

The other two unknowns, C20 and C22, only converged to incorrect constants. The

discussion in the next section takes place after the first revolution of the asteroid,

and accounts for its new knowledge of µ. The controller is restructured based on

this knowledge and a new estimation system is applied.

4.3. Restructuring the Adaptive Controller

Now that µ̂ converges to the actual value of µ of the asteroid via the adaptation

law, the controller and dynamics can be restructured to account for the other two

unknowns C20 and C22. Equations (3.5) and (4.3) are altered for the remaining
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unknown terms so that,

a2 = �⌦̇⇥(t)r� 2⌦⇥(t)ṙ� ⌦⇥2
(t)r� µ

r3
r+ ḡ2⇥2 (4.21a)

ḡ2 =


�3µr20

r5 F�r
3µr20
r5 F�r

�
, ⇥2 =


C20, C22

�T
(4.21b)

where ḡ2 2 R3⇥2 is the restructured matrix of ḡ, ⇥2 2 R2 is the new vector

of unknown parameters. The traditional equation for an unperturbed orbit � µ
r3 r

is given in Equation (4.21a), where only the perturbations of the gravitational

acceleration due to irregular shape remain inside of the ḡ2⇥2 term. Note in this

restructure of the controller, r0 is also pulled out of ⇥2 leaving only the spherical

harmonic constants C20 and C22. Originally, the reference radius r0 was put

into ⇥ as it affects the adaptation law. Factoring r0 out into ḡ2 changes how

the adaptation law propagates the vector of unknowns for the controller as g is

included in the adaptation law. This controller redesign requires that both µ and

r0 are factored out into ḡ2.

Continuing with the adaptive controller design, ⇥̂2 2 R2 is again the adaptive

estimate of ⇥2 so that,

â2 = �⌦̇⇥(t)r� 2⌦⇥(t)ṙ� ⌦⇥2
(t)r� µ

r3
r+ ḡ2⇥̂2 (4.22)

is the adaptive estimate of the unconstrained dynamics. The constraints, the

reference system, and the additional feedback gain in the controller do not need to

be altered at all. Hence, the dynamics of the altered system are now,

ẋ = Ax+Bu2 � B
µ

r3
r+Bḡ2⇥2 (4.23)

Applying Equation (4.22), the controller takes an identical form to that in

Equation (4.11), i.e.,

u2 = A+ (b� Aâ2)�Kre (4.24)
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Substituting the controller above into the dynamics in Equation (4.23) gives,

ẋ = Arx� BKre+BA+b+By2 (4.25)

where y2 = (a2 � A+Aâ2). Similarly to y, the minimum norm solution of y2 can be

obtained analogous to that in Equation (4.13d) and hence Equation (4.25) can be

rewritten as,

ẋ = Arx� BKre+BA+b+BA+Aḡ2⇥̃2 (4.26)

where ⇥̃2 = ⇥2 � ⇥̂2 is the difference between the actual unknown parameters and

the new adaptive estimates. Thus, the error dynamics between the system and the

reference system take the form:

ė = Ace+BA+Aḡ2⇥̃2 (4.27)

Thus, similar to that in Section 4.2.4, Lyapunov’s direct method is used to

study the stability of the closed-loop dynamics obatained using the restructured

controller. The Lyapunov function is defined as,

V2 = eTSe+ ⇥̃T
2 �⇥

�1
2 ⇥̃2 (4.28)

where �⇥2 2 R2⇥2 and �⇥2 = �⇥
T
2 > 0. By choosing the adaptation law for the new

adaptive estimates to be,

˙̂⇥2 = � ˙̃⇥2 = �⇥2ḡ
T
2 A

+ABTSe (4.29)

the time derivative of the Lyapunov function becomes,

V̇ = �eTQe (4.30)

which is negative definite. Therefore, as in Section 4.2.4, using Barbalat’s lemma,

asymptotic tracking of the reference states is guaranteed. However, the adaptive

estimates are, again, not guaranteed to converge to the actual parameters. In

order to guarantee the convergence of the estimator, instead of leaving the
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adaptive estimates to naturally adapt over time, the finite-time estimation method

introduced in Adetola and Guay (2008) is used, and sufficient conditions for PE

required to estimate the unknown parameters within a finite time are studied.

4.4. Finite-Time Parameter Estimation

The method of finite-time parameter estimation is useful since once the

parameters are estimated, they no longer need to be updated. Although this

method still requires PE, it allows estimation to occur over a finite time. In

addition, this method can also work if there is some temporary excitation in the

system. Once the parameters are estimated, the excitation is no longer needed. Let

x̂ be the state estimate with dynamics of (Adetola & Guay, 2008),

˙̂x = A0x+Bu2 +Bḡ2⇥̂2 + k✏+ w ˙̂⇥2 (4.31)

where k 2 R6⇥6, k = k1 + k2(t), k1 > 0 and k2(t) � 0, ✏ = x � x̂ is the error of the

estimated states, and w 2 R6⇥2 is a filter with dynamics of,

ẇ = Bḡ2 � kw, w(0) = 0 (4.32)

Note that in Equation (4.31) the dynamics of the estimated states x̂ are estimates

of how the actual states would propagate given the adaptive estimates. They are

not estimated states based on an estimate of the actual state such as with an

observer system. The error dynamics between the actual system and the estimated

system are:

✏̇ = Bḡ2⇥̃2 � k✏� w ˙̂⇥2 (4.33)

Let ⌘ = ✏� w⇥̃2. Then, it follows that ⌘ has dynamics of,

⌘̇ = �k⌘, ⌘(0) = ✏(0) (4.34)

Thus, for some Q̄ 2 R2⇥2 and C 2 R2 generated by,

˙̄Q = wTw, Q̄(0) = 0 (4.35)
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Ċ = wT (w⇥̂2 + ✏� ⌘), C(0) = 0 (4.36)

if there exists a time tc such that Q̄(tc) is invertible and positive definite,

Q̄(tc) =

Z tc

0

wT (⌧)w(⌧)d⌧ > 0 (4.37)

then the unknown vector ⇥2 can be found by,

⇥2 = Q̄�1(t)C(t), t � tc (4.38)

Thus, the exact value of ⇥2 can be found if the matrix Q̄ becomes positive definite.

The inequality condition given in Equation (4.37) indicates whether the system

has PE, i.e. if Q̄ is always positive definite after the finite time tc, then the system

contains PE.

This finite-time estimation method and the reconstructed adaptive controller in

Equation (4.24) are applied to the spacecraft hovering over the asteroid. However,

since staying in the fixed hover position does not provide enough excitation in

the system, artificial excitation is created by causing a disturbance in the hover.

This is achieved by applying some disturbance control acceleration shortly to

cause the spacecraft to have a nonzero velocity ṙ. Once the inequality condition

given in Equation (4.37) holds true for at least a temporary amount of time, the

adaptive estimate of the system parameters is set to ⇥̂2 = Q̄�1C, feeding the

correct parameters to the controller given in Equation (4.24). Since the controller

in Equation (4.24) is designed based on the UK constrained motion analysis, the

use of correct parameter estimates in the controller results in the minimum required

accelerations needed to maintain the desired constraints, in this case the desired

hover position.

4.5. Numerical Simulation Results and Discussion

The controllers developed above are applied in numerical simulations to

control a spacecraft to hover over the asteroid Bennu. As discussed in Section 3.3,

asteroid Bennu has a gravitational parameter of µ = 5.2 m3/s2 with a density
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of ⇢ = 1.26 g/cm3 (Chesley et al., 2014). The shape of Bennu has major axes

as L1 = 565 m, L2 = 535 m, and L3 = 508 m, leading to � = 0.9469 and

� = 0.8991 (Nolan et al., 2013). It is assumed that the actual values of C20 and

C22 are obtained using the relations given in Equation (2.24). From these relations,

the actual spherical harmonic constants are found to be C20 = �3.5061 ⇥ 10�7 m�2

and C22 = 6.4766⇥10�8 m�2. The initial parameter estimates are chosen as 130% of

the actual gravitational parameter (6.76 m3/s2) and assume the asteroids shape is a

perfect sphere (C20 = C22 = 0). Bennu has an equatorial inclination of 175 degrees

with a rotation period of 4.297 hours and rotates about the z axis, meaning Bennu

rotates retrograde with respect to its orbit about the sun. The hover location is set

as r⇤ = [400, 0, 0]T m.

The first controller developed, as given in Equation (4.11), is applied first for

the spacecraft to converge to the hover point and remain there. After µ has been

estimated through the natural convergence of the adaptive estimate, the perturbing

control is applied shortly to disturb the hover. Then, the restructured controller

given in Equation (4.24) is applied to find the remaining unknown parameters

to minimize the control accelerations for maintaining the hover position. Even if

the parameters are not estimated, the controller still completes its objective of

hovering. Additionally, the controller developed in Equation (4.11) is also applied

for the under constrained scenario explored in Section 3.2.

4.5.1. Model Reference Adaptive UK Control Law

For the spacecraft to hover at the desired hover position, the spacecraft

is fully constrained via the constraints in Equation (3.1a). The controller in

Equation (4.11) is given the A matrix and b vector derived in Section 3.1:

A = I3 (3.3a)

b =
⇣
⌦⇥2

(t) + ⌦̇⇥(t) +K↵⌦
⇥(t) +K�

⌘
(r⇤ � r)�

�
2⌦⇥(t) +K↵

�
ṙ (3.3b)
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The spacecraft initial position and velocity with respect to the ACAF frame are set

to be r(0) = [450, 75,�50]T m and ṙ(0) = [0.5, 0.1,�0.2]T m/s, respectively.

The control gain Kr in Equation (4.11) needs to be selected such that Ac

becomes Hurwitz. Several methods, such as the linear quadratic regulator, could

be applied to find an optimal gain. In this case, Kr is selected to be Kr =

[0.0001I3, 0.02I3], which turns Ac into that of a critically damped oscillator. Note

that the relatively slow convergence values selected here help with the estimation

of the unknown parameters as it allows more time while the spacecraft is still

converging to the desired hover position. This means the spacecraft is moving

relative to the asteroid and allows the controller to get more information from the

dynamics for the estimation. The gains for Baumgarte’s constraint stabilization

method are also selected to be critically damped with the same values as given in

Kr, K↵ = 0.02I3 and K� = K2
↵/4 = 0.0001I3.

The adaptation gain is chosen as �⇥ = diag{1, 100, 10}. The first element of the

Figure 4.1 Spacecraft trajectory in the ACI frame using the adaptive control law
in Equation (4.11).
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Figure 4.2 Spacecraft trajectory in the ACAF frame using the adaptive control
law in Equation (4.11).
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Figure 4.3 The adaptive estimates of the unknown parameters plotted over time.

adaptation gain �⇥ controls how the estimated value of µ changes. The choice of a

large value for that element will result in large jumps and oscillation. On the other

hand, the choice of a small value for that element will result in less oscillation, but
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Figure 4.4 Magnified figure of the first adaptive estimate of the unknown
parameters plotted over time.

it increases the settling time. In the Lyapunov stability analysis, the matrix Q in

Equation (4.20) is selected as Q = I6.

With these initial conditions and control settings, the controller was applied

to hover over the surface of Bennu. Figure 4.1 shows the spacecraft trajectories

in the ACI frame and Figure 4.2 is the trajectory in the ACAF frame. As can be

seen, the controller causes the spacecraft to track the reference trajectory, despite

only having an initial guess at the mass of the asteroid and not knowing the shape.

This result is expected as the controller was proven to have asymptotic tracking

of the reference system via the Lyapunov stability proof shown above starting at

Equation (4.16).

However, the adaptive estimates were not guaranteed to converge to the correct

values. In Figure 4.3, the adaptive estimates can be seen propagated over one full

rotation of the asteroid Bennu. The first value, i.e. the estimate of µ, has a large

jump, but then converges to the true value through the system dynamics’ natural

excitation. Figure 4.4 is a magnified picture of the convergence of the first adaptive

estimate. The system provided enough excitation within that time to allow for the
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Figure 4.5 The transient control accelerations of the adaptive controller compared
to the solution obtained by the UK equation.
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Figure 4.6 The steady state control accelerations of the adaptive controller
compared to the solution obtained by the UK equation.

convergence of the adaptive estimate µ̂. The first value in �⇥ determines the gain

that propagates µ̂ in the adaptation law. As mentioned before, making this value

larger causes an even larger jump, and causes oscillation of µ̂ before converging,

and a smaller value reduces the initial jump, but increases the time required for the
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parameter estimation to converge. The estimated values of second degree and order

spherical harmonics Ĉ20 and Ĉ22, however, converge to constant values that are not

necessarily the correct values of C20 and C22.

The required control input accelerations to control the spacecraft are displayed

in Figures 4.5 and 4.6. The controller given in Equation (4.11) is compared to the

solutions given by the UK constraint equations with the correct dynamics. The

transient response in Figure 4.5 is much larger in magnitude to start, to account

for the initial conditions, but, as shown the response settles down quickly. Since

the spacecraft is hovering in a body-fixed position relative to the asteroid, the

steady state response of the control accelerations settle down to constant values,

as the spacecraft is only accounting for the gravitational acceleration and the

rotation of the asteroid. It can be seen that the control settles down in the negative

r̂⇤ direction, which shows that the asteroid’s gravity is not enough to maintain

the height of the hover and the spacecraft needs to accelerate inward toward the

asteroid in order to stay in the desired hover position due to the rotation of the
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Figure 4.7 The transient integrated control effort required by the controller and
the UK equation.
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Figure 4.8 The steady state integrated control effort required by the controller
and the UK equation.

asteroid. Both the controller and the UK solutions converge to the same value as

they are both achieving the same result of hovering.

Figures 4.7 and 4.8 show the total integrated control effort over the full

revolution of the asteroid for both the adaptive controller and the UK constraint

equations. The adaptive controller requires more control effort in transient

response, due to the unknown parameters and the estimation period. The steady

state effort appears to have an identical slope for either method implemented. This

can be explained, as the spacecraft is fully constrained, so there is only a single

solution. However, since the natural propagation of the ⇥̂ does not result in the

convergence of C20 and C22, the adaptive controller has a slightly higher slope

during the maintenance of the desired hover as it has to account for the incorrect

estimates and thus an incorrect solution.

Overall, the total control used by both the adaptive controller and the UK

solutions are comparable and are within about 0.064 m/s of each other. The model

reference feedback gain included in the controller accounts for the tracking control

of the spacecraft, especially during the adaptive estimation period. Note that,
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Figure 4.9 Spacecraft trajectory in the ACI frame using the restructured
controller in Equation (4.24).

since µ is the largest factor in the gravitational acceleration of the asteroid, and

since it is accurately estimated through the hovering dynamics, the remaining

adaptive estimates will only account for a small perturbation to the gravitational

acceleration. The secondary objective however, is to achieve the minimum control

required, which requires the remaining parameter estimates to converge as well.

4.5.2. Restructured Controller and Remaining Parameter Estimation

Once the previous simulation ends, and µ is estimated correctly, the controller

is restructured as in Section 4.3 to account for only two remaining unknowns. The

next simulation represents the time immediately following the previous simulation,

so the spacecraft is now hovering at the desired hover position. Since estimation

of the unknown parameters is desired, the restructured controller in Section 4.3

and the finite-time estimation method discussed in Section 4.4 are implemented

to accurately estimate the remaining two unknown parameters. However, the
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Figure 4.10 The remaining adaptive estimates of the unknown parameters plotted
over time. The finite time estimation method is used in order to correctly estimate
the remaining two parameters.
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Figure 4.11 Magnified figure of the results of the finite time estimation method
used to correctly estimate the remaining two parameters.

natural dynamics of the closed-loop system do not provide enough excitation

within the system for the parameters to naturally converge or for the excitation
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condition given in Equation (4.37) to be satisfied. In order to introduce more

excitation into the system, a disturbance control input is applied shortly to create a

disturbance in the spacecraft’s hover. The disturbance acceleration applied is ud =

[0.1, 0, 0]T m/s2 for 2 seconds. This initial disturbance introduces initial excitation
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Figure 4.12 The transient control accelerations of the restructured adaptive
controller compared to the solution obtained by the UK equation.
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Figure 4.13 The steady state control accelerations of the restructured adaptive
controller compared to the solution obtained by the UK equation.
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into the system, causing Equation (4.37) to be satisfied, allowing the estimation of

the remaining two parameters. This simulation starts after one revolution of the

asteroid, Tp. The spacecraft is hovering, so it has an initial position and velocity

of r(Tp) = [400, 0, 0]T m and ṙ(Tp) = [0, 0, 0]T m/s. The feedback gain Kr

and the gains dictating Baumgarte’s constraint stabilization method, K↵ and K�,

remain the same as in the first controller. The new adaptation gain is chosen as

�⇥2 = diag{10, 1} ⇥ 10�6 with positive definite matrices Q and S the same

as in the previous case. The initial states of the estimated system are x̂(0) =

[400, 0, 0, 0, 0, 0]T , which correspond to the desired hover position and velocity. The

gain matrices for the finite-time estimation method are selected as k1 = I6 and

k2 =
1

4
Bḡ2�⇥2ḡ

T
2 B

T

The spacecraft is simulated for another rotation of the asteroid Bennu, using

the restructured adaptive controller and the initial conditions given above.

Figure 4.9 shows the spacecraft trajectory in the ACI frame. Again, it is seen that

even with the initial disturbance control input to the spacecraft, the controller

asymptotically tracks the reference system. The parameter estimates are again

not guaranteed, which is shown in the first part of Figure 4.10. At around 1.17

periods, the finite-time parameter estimation occurs and the adaptation law for the

estimated parameters used in the controller is overwritten. Figure 4.11 displays the

accuracy of the finite-time estimation method. Due to the artificial excitation in

the system, the last two unknown parameters are estimated accurately.

Now that the controller has all the correct parameters about the asteroid

of Bennu, and it is already implementing the UK constraint equations as part

of its control, it is using the minimum accelerations required to maintain the

desired constraints, which in this case is hovering. Figures 4.12 and 4.13 show the

input accelerations from the adaptive controller and the UK equations. Again,

in Figure 4.12 there is a larger transient response to account for the disturbance



59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
400

450

||
r|

|,
 m Initial Controller

Restructured Controller

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
400

450

r x
, 
m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20
40
60

r y
, 
m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of Revolutions of the Asteroid

-50

0

r z
, 
m

Figure 4.14 Spacecraft position components plotted over two revolutions of the
asteroid.
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Figure 4.15 Spacecraft velocity components plotted over two revolutions of the
asteroid.

introduced initially, but then in Figure 4.13 the control responses settle down to

constant values for the steady state response, which is to maintain the desired

hover position. The adaptive controller input accelerations will now match with

the results obtained by the UK constrained motion analysis for maintenance of

the desired hover. Using the parameters obtained, only the convergence of the

constraints due to the controller will be different from the results obtained by the

UK constrained motion analysis, due to the initial error of the estimates and the

feedback gain included with the controller.
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The full position and velocity components of the spacecraft over the two

revolutions of the asteroid are shown in Figures 4.14 and 4.15. In the first half, the

spacecraft tracks and converges to the reference trajectory while one of the adaptive

estimates converges naturally. Then there is the external disturbance applied by

the controller briefly, then the controller causes the spacecraft to converge again to

the reference while also acquiring the remaining unknown parameters.

4.5.3. Application of the Adaptive Controller to an Under
Constrained System

In this section it is assumed that the spacecraft is constrained to hover on the

circular trajectory provided by the constraints in Equation (3.17). Recall the A

matrix and b vector are obtained as,

A =

2

64
rTc
rc

(r� rc)T

3

75 (3.20a)

b =

2

64
0

�ṙT ṙ� (r� rc)T ⌦̇⇥(t)(r� rc)

3

75�K↵

2

64
�̇1

�̇2

3

75�K�

2

64
�1

�2

3

75 (3.20b)

Thus the adaptive controller in Equation (4.11) can be applied with A and b above

for the spacecraft to maintain the under constrained system despite the unknowns

in the dynamics. The spacecraft is given the same initial conditions and control

parameters as those specified in Section 4.5.1 above, i.e. the initial position and

velocity of r(0) = [450, 75,�50]T m and ṙ(0) = [0.5, 0.1,�0.2]T m/s. The control

matrices are set as Kr = [0.0001I3, 0.02I3], K↵ = 0.02I3, K� = K2
↵/4 = 0.0001I3,

�⇥ = diag{1, 100, 10}, and Q = I6. However, two different initial conditions are

explored for the reference system. First the reference system is also given the same

initial condition as the spacecraft above, i.e. rr1(0) = [450, 75,�50]T m and ṙr1(0) =

[0.5, 0.1,�0.2]T m/s. The second reference’s initial position and velocity are set to

already be satisfying the constraints with rr2(0) = [400, 50, 0]T m and ṙr2(0) =

[0, 0, 0.05]T m/s.



61

Figure 4.16 Under constrained spacecraft trajectory in the ACI frame using the
adaptive control law in Equation (4.11).

The above initial conditions are applied to the spacecraft and it is simulated

about the asteroid of Bennu. Figures 4.16 and 4.17 show the trajectories of the

under constrained spacecraft in both the ACI and ACAF frames, respectively.

Both figures show the trajectories of the spacecraft with the two different initial

conditions for the reference system. In the first trajectory, the reference starts

at the same position as the spacecraft, and thus it converges to the constraints

via Baumgarte’s stabilization method and keeps with the trajectory. The second

trajectory starts with the reference already satisfying the constraints, so the

spacecraft tracks that trajectory, which is different than if UK solutions were

applied to the spacecraft. Despite the fact that the references and trajectories

are different the controller causes both of them to satisfy the constraints despite

having unknowns in the dynamics. Figure 4.18 shows the position components for

each trajectory and reference over time. This figure, along with Figure 4.16, show



62

Figure 4.17 Under constrained spacecraft trajectory in the ACAF frame using the
adaptive control law in Equation (4.11).
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Figure 4.18 Under constrained spacecraft position components plotted over one
revolution of the asteroid.
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Figure 4.19 The adaptive estimates of the unknown parameters plotted over time.
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Figure 4.20 Magnified figure of the first adaptive estimate of the unknown
parameters plotted over time.

the difference between the trajectories, even though they are satisfying the same

constraints.

The adaptive parameters can be seen in Figures 4.19 and 4.20. Only the first



64

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.02

0.04

||
u

(t
)|

|,
 m

/s
2

Trajectory 1

Trajectory 2

UK solution

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-0.03

-0.02

-0.01

0

u
x
, 

m
/s

2

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-15

-10

-5

0
u

y
, 

m
/s

2

10-3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Number of Revolutions of the Asteroid

0

10

20

u
z
, 

m
/s

2

10-3

Figure 4.21 The transient control accelerations of the adaptive controller applied
to the under constrained hover trajectory compared to the solution obtained by the
UK equation.

adaptive parameter converges through the natural closed-loop dynamics. The other

estimates do not converge to the actual unknown values. In the first trajectory,

since the error between the system and its reference starts out as zero, the adaptive

estimates propogate more slowly, avoiding the large jump and it converges to the

actual value of the µ for Bennu. The second trajectory has an initial error between

the system and the reference which causes the larger jump in the adaptation, but

still converges to the actual value. The other adaptive estimates of the unknowns

do not converge as expected.

Even though they satisfy the constraints, the solutions given by the controller

do not exactly match that given by the UK equation. This is shown in Figures 4.21

and 4.22, which demonstrate the transient and steady state control accelerations,

respectively. The solution given by the UK equations with the correct parameters is

also shown in the figures as a comparison. The first trajectory’s control matches

the UK equation initially, but ends up drifting due to the unknowns, whereas

the second trajectory’s control is different from the beginning and throughout.
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Figure 4.22 The steady state control accelerations of the adaptive controller
applied to the under constrained hover trajectory compared to the solution
obtained by the UK equation.
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Figure 4.23 The transient integrated control effort required by the controller and
the UK equation applied to the under constrained hover trajectory.

This happens because the second reference is already satisfying the constraints, it

continues to satisfy them in the same way, and thus the second trajectory tracks
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Figure 4.24 The steady state integrated control effort required by the controller
and the UK equation applied to the under constrained hover trajectory.

that different solution of the constraints. Since the first adaptive estimate, which

accounts for the largest portion of the gravitational force from the asteroid is

obtained the control accelerations of the controllers at the end are only slightly

different from the solutions obtained by the UK equation given the same positions

and velocities. Note that the acceleration solutions given by the UK shown are

those as if the UK solution was used from the initial conditions.

Figures 4.23 and 4.24 show the total integrated control effort of each trajectory

and the UK solution over the revolution of the asteroid. The first trajectory

control effort matches the UK solution initially, but has a slightly steeper slope

and increases more quickly. The second trajectory has a greater transient required

control effort as shown in Figure 4.23, but in Figure 4.24, the second trajectory

requires much less control than the first trajectory of the UK solution. This is

because that trajectory was chosen through the initial conditions of the second

reference system. Although the system is under constrained, the end trajectory can

be chosen through the reference trajectory because the controller asymptotically

tracks the reference system.
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4.6. Conclusions

In this chapter, the results of the UK constrained motion formalism have

been implemented to control a spacecraft to hover over an asteroid with unknown

gravitational parameters, µ , C20, and C22. Since the UK equations of constrained

motion require for the exact dynamics to be known, indirect adaptive techniques

have been applied to create adaptive estimates of the unknown parameters to use

inside of the UK equations. This led to the design of an indirect model reference

adaptive UK controller. The challenge then became accurate estimation of the

unknown parameters of the asteroid, since the UK equations provide optimal

solutions only when the correct dynamics are used. Using the natural dynamics

of a spacecraft about an asteroid, along with a finite-time parameter estimation

method, the gravitational parameters of the asteroid were able to be correctly

estimated. Thus, the UK method was able to be successfully utilized for a system

with unknowns in the dynamics.

Correct parameter estimation only increases the efficiency of the controller

and is independent of the controller’s ability to track a reference. Even without

correct parameter estimation, the controller has been proven to asymptotically

track a desired reference trajectory. If none of the adaptive estimates converge to

the true values, this controller still achieves the desired hovering result with not

much more control effort required than those obtained using the UK equations.

Once the parameters are correctly estimated, the adaptive controller gains insight

about the mass and shape of the asteroid, and the accelerations needed to achieve

and maintain the desired hover are obtained through the use of the UK constrained

motion analysis. Thus, the controller designed via the UK formulation was able to

successfully maintain constraints in a fully constrained and an under constrained

system with unknowns in the dynamics.
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5. Rigid-Body Spacecraft Asteroid Hovering in Geometric
Mechanics Framework

As opposed to the previous chapters where the spacecraft was considered as a

point mass, in this chapter, it is considered as a rigid body with an orientation in

addition to the position of its center of mass. Since the translational and rotational

dynamics are often coupled through directional input and/or the external forces

and torques, it is advantageous to consider the coupling between their dynamics

using the geometric mechanics framework. Furthermore, geometric mechanics uses

rotation matrices for orientation, which avoids the singularities, discontinuities, and

non-uniqueness of the other attitude parameterization sets. The UK formulation

discussed in Section 2.1.1 is extended for rigid body constrained motion in the

geometric mechanics framework.

5.1. Geometric Mechanics Formulation Development

In the geometric mechanics framework, the configuration (orientation and

position) of a rigid body is expressed in Special Euclidean group SE(3) = SO(3) ⇥

R3, where SO(3) is special orthogonal group. The Lie group of SE(3), similar to

SO(3), is a group in multiplication, but not in addition, i.e. for g1, g2 2 SE(3),

(g1g2) 2 SE(3) and g�1
1 2 SE(3), g1g�1

1 = I4, but (g1 + g2) /2 SE(3). The orientation

and position of a rigid body is described by,

g =

2

64
R r

01⇥3 1

3

75 2 SE(3) (5.1a)

where R 2 SO(3) is the rotation matrix from the body frame of the rigid body to

the inertial frame, and r 2 R3 is the position of the rigid body’s center of mass

relative to and expressed in the inertial frame. The rigid body’s augmented velocity

vector is,

V =

2

64
!

v

3

75 2 R6 (5.1b)
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where ! 2 R3 is the angular velocity and v 2 R3 is the translational velocity of the

center of mass, both relative to the inertial frame, but expressed in the body frame

of the rigid body. Thus a rigid-body spacecraft can be compactly defined in space

by its orientation and position through g and its velocities in V. This state space

with state variables (g,V) is the tangent bundle TSE(3) = SE(3) ⇥ R6 (Lang, 1999;

Sastry, 1999).

Before discussing the dynamics of TSE(3), some mappings are discussed. The

wedge map V_ : R6 ! se(3), where se(3) is the Lie algebra of the Lie group SE(3),

is defined as,

V_ =

2

64
!⇥ v

01⇥3 0

3

75 (5.2)

The unwedge map is the inverse of the wedge map such that (·)| : se(3) ! R6. The

adjoint action map Adg : SE(3) ! R6⇥6 is defined as,

Adg =

2

64
R 03⇥3

r⇥R R

3

75 (5.3)

The adjoint operator adV : R6 ! R6⇥6 is defined as,

adV =

2

64
!⇥ 03⇥3

v⇥ !⇥

3

75 (5.4)

The co-adjoint operator ad⇤
V : R6 ! R6⇥6 is defined as,

ad⇤
V = adT

V =

2

64
�!⇥ �v⇥

03⇥3 �!⇥

3

75 (5.5)

The dynamics of a rigid body in SE(3) are described by the kinematic and kinetic

equations of motion (Bullo & Murray, 1995; Nazari et al., 2018):

ġ = gV_ (5.6a)

V̇ = I�1ad⇤
VIV+ I�1⌧ + I�1u (5.6b)



70

where I is inertia tensor of the rigid body given by,

I =

2

64
J 03⇥3

03⇥3 mbI3

3

75 (5.7)

where J 2 R3⇥3 is the moment of inertia matrix, mb is the mass of the rigid body,

⌧ 2 R6 is the external torques and forces applied on the rigid body expressed in its

body frame, and u 2 R6 is the control input torques and forces also expressed in

the body frame of the rigid body.

5.2. Dynamics of a Rigid-Body Spacecraft Hovering About an
Asteroid

As can be seen from Section 5.1, the spacecraft body (SCB) frame is added

to the set of coordinate frames previously established when the spacecraft was

considered a point mass. The SCB frame is oriented along the principle axes of

the spacecraft, with the x, y, and z axes being the major, intermediate, and minor

axes, respectively. The orientation of the SCB frame relative to the ACI frame

is expressed by the rotation matrix R. In this chapter, the position vector of the

spacecraft r is expressed in the ACI frame, instead of the ACAF frame, due to the

definition in g in Equation (5.1a).

With the new dynamics defined by Equation (5.6), the external forces need

to be defined. As opposed to the previous chapters where the spacecraft was

considered a point mass, both external forces and torques need to be expressed in

the SCB frame. The external forces and moments in Equation (5.6b) are expressed

by,

⌧ =

2

64
LG

FG

3

75 (5.8)

where LG 2 R3 is the external torques acting on the spacecraft and FG 2 R3 is the

external forces.
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5.2.1. External Forces Acting on the Spacecraft

For the gravitational forces acting on the spacecraft, the asteroid is still

modeled as a tri-axial ellipsoid as in Section 2.2.2. However, in addition,

MacCullagh’s approximation is used in lieu of spherical harmonics. Thus the

gravitational potential of the rigid-body asteroid becomes (Schaub & Junkins,

2018):

U =
µ

r
+

µ

2mAr3
⇥
tr(JA)� 3Ar̂TJA

Ar̂
⇤

(5.9)

where r = ||r|| is the magnitude of the position vector, mA is the mass of the

asteroid, JA 2 R3⇥3 is the moment of inertia of the asteroid expressed in the ACAF

frame, and Ar̂ = Ar/r is the unit vector of the spacecraft position expressed in the

ACAF frame. The moment of inertia of the asteroid is,

JA =
mAr20
5

2

66664

�2 + �2 0 0

0 ↵2 + �2 0

0 0 ↵2 + �2

3

77775
(5.10)

Let RA 2 SO(3) be the rotation matrix from the ACAF frame to the ACI frame.

Applying the relation Ar̂ = RT
Ar̂ into Equation (5.9) and using Equation (2.29),

the force applied to the spacecraft due to the gravitational field of the asteroid

expressed in the SCB frame is obtained as,

FG = mbR
T (rrU)

= �µmb

r3
RT


I3 +

3

mAr2

✓
RAJAR

T
A +

1

2

�
tr(JA)� 5r̂TRAJAR

T
Ar̂

�
I3

◆�
r (5.11)

where mb is the mass of the spacecraft. Note that the approximation of the gravity

force in Equation (5.11) only accounts for the perturbations due to the rigid body

properties of the asteroid and treats the spacecraft as a point mass. In this work,

the errors due to this approximation are neglected.



72

5.2.2. External Torques Acting on the Spacecraft

In addition to the external forces acting on the spacecraft, there also exist

external torques. The asteroid applies a gravity gradient torque on the spacecraft

due to the spacecraft being a rigid body. The gravity gradient torque applied on

the spacecraft and expressed in the SCB frame is (Schaub & Junkins, 2018):

LG =
3µ

r5
Sr

⇥
JSr (5.12)

where Sr is the position of the spacecraft expressed in the SCB frame and J is the

principle moment of inertia matrix of the spacecraft. Substituting the relations
Sr = RT r and

�
RT r

�⇥
= RT r⇥R into Equation (5.12) gives,

LG =
3µ

r5
RT r⇥RJRT r (5.13)

Note that this approximation of the gravity gradient torque in Equation (5.13)

assumes that the asteroid is a point mass and the errors due to this assumption are

neglected.

5.3. Udwadia-Kalaba Formulation in Geometric Mechanics Framework

With the geometric mechanics framework modeled, the UK formulation

discussed in Section 2.1.1 is extended from constrained particle motion to

constrained rigid body motion. In this case, instead of having particles position

vectors of 3n dimensions, there will be an attitude and position vector per

rigid-body resulting in a g and V per rigid body in geometric mechanics. This

results in 6n degrees of freedom. From Equation (5.6b) the equation of motion of

the unconstrained system is,

˙̄V = Ī�1 ¯ad⇤
VĪV̄+ Ī�1⌧̄ = ā

where the augmented velocity vector of the rigid bodies is,
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V̄ =

2

66666664

V1

V2

...

Vn

3

77777775

2 R6n (5.14)

and the extended inertia tensor matrix becomes,

Ī =

2

66666664

I1 06⇥6 . . . 06⇥6

06⇥6 I2
. . . ...

... . . . . . . 06⇥6

06⇥6 . . . 06⇥6 In

3

77777775

2 R6n⇥6n (5.15)

Both ⌧̄ and ¯ad⇤
V follow the same as V̄ and Ī respectively so that the unconstrained

accelerations of the system of rigid bodies is,

ā =

2

66666664

I�1
1 ad⇤

V1
I1V1 + I�1

1 ⌧1

I�1
2 ad⇤

V2
I2V2 + I�1

2 ⌧2
...

I�1
n ad⇤

Vn
InVn + I�1

n ⌧n

3

77777775

(5.16)

The orientation and the position of each rigid body is represented within their

respective g matrices. Note that the dynamics on SE(3) do not change for each

rigid body and remain as in Equation (5.6a). Thus when m constraints are applied

to the system of rigid bodies, the equations of motion become,

˙̄V = ā+ āc (5.17)

where āc is angular and translational constraint acceleration applied on the system.

Note that the equation above mimics Equation (2.2) for a system of particles. Most

equality constraints are applicable, except that they need to be linear in terms of
˙̄V. Hence, any consistent equality constraints of the form:

� (g1, g2, . . . , gn,V1,V2, . . . ,Vn, t) = 0 (5.18)
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can be expressed after differentiation with respect to time as,

A ˙̄V = b (5.19)

where A 2 Rm⇥6n and b 2 Rm are the resulting matrix and vector from

differentiation of the constraints. Thus identically to the system of particles, the

geometric mechanics Udwadia-Kalaba (GMUK) equation is:

ac = Ī�1/2
�
AĪ�1/2

�+
(b� Aa) (5.20)

Since Equation (5.20) mimics the original UK equation given by Equation (2.5),

so it can be shown to similarly minimize the Gaussian, guaranteeing that

Equation (5.20) gives the minimum accelerations required to satisfy the constraints

set on n rigid-body spacecraft. Alternatively, the symmetric form of the GMUK

equation given in Equation (5.20) is:

ac = Ī�1AT
�
AĪ�1AT

�+
(b� Aa) (5.21)

Since the particles are now being considered as rigid bodies, the case where there is

n = 1 rigid body does not reduce the UK equation as it did with particles.

5.4. Rigid-Body Spacecraft Asteroid Hovering Using the Geometric
Mechanics UK Formulation

The extension above for the GMUK formulation can be applied for the case

of a rigid body hovering over an asteroid. First, the constraints must be chosen.

The desired position can be expressed by rd = RAr⇤, where rd is the desired

position expressed in the ACI frame and r⇤ is the desired hover position expressed

in the ACAF frame as in the previous chapters. Now the desired orientation of the

spacecraft needs to be set. The spacecraft attitude is constrained such that the

x axis of the SCB frame points towards the center of the asteroid, its y axis is in

the x-y plane of the ACAF frame, and its z axis is oriented appropriately to obey

the right hand rule. Thus the desired rotation matrix from the SCB frame to the
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ACAF frame is defined as,

Rd/A =

2

4�
RT

Ar

r
�

A⇥
z R

T
Ar

(rTRATxyRT
Ar)

1/2

RT
Ar

⇥RAA⇥
z R

T
Ar

r (rTRATxyRT
Ar)

1/2

3

5 (5.22)

where Az = [0, 0, 1]T is the z axis of the ACAF frame, and,

Txy =

2

66664

1 0 0

0 1 0

0 0 0

3

77775

With the desired position and orientation defined, the desired configuration relative

to the ACAF frame in SE(3) can be defined by,

gd/A =

2

64
Rd/A r⇤

01⇥3 1

3

75 (5.23)

The equation above defines the desired configuration of the spacecraft relative to

the ACAF frame. So the desired configuration relative to the ACI frame is obtained

by,

gd =

2

64
RARd/A rd

01⇥3 1

3

75 (5.24)

Then the desired augmented velocity vector can be obtained from the desired

configuration given in Equation (5.24). Relative to the ACAF frame, the SCB

frame should remain constant such that Vd/A = 06⇥1. The desired velocity relative

to the ACI frame is obtained from,

Vd = Vd/A + Adg�1
d/A

VA (5.25)

where,

g�1
d/A =

2

64
RT

d/A �RT
d/Ar

⇤

01⇥3 1

3

75 , VA =

2

64
⌦(t)

03⇥1

3

75
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The desired inertial velocity and the desired accelerations expressed in the desired

reference frame are:

Vd =

2

64
RT

d/A⌦(t)

RT
d/A⌦

⇥(t)r⇤

3

75 , V̇d =

2

64
RT

d/A⌦̇(t)

RT
d/A⌦̇

⇥(t)r⇤

3

75 (5.26)

The constraints are defined in SE(3) for the spacecraft’s configuration to match

the desired configuration, i.e.,

g = gd (5.27a)

Using the Lie algebra, Equation (5.27a) can be converted into a vector equation

since g = exp (⇠_), where ⇠_ 2 se(3) (Sastry, 1999). Pre-multiplying both sides

of Equation (5.27a) by g�1
d , taking the matrix logarithm, and using the unwedge

mapping defined below Equation (5.2) results in,

⇥
logSE(3)

�
g�1
d g

�⇤|
= 06⇥1 (5.27b)

Since the constraints in Equation (5.27a) are holonomic constraints, they are

differentiated with respect to time twice. The first derivative results in,

gV_ = gdV_
d (5.28a)

Pre-multiplying both sides of Equation (5.28a) by g�1 and using the unwedge

mapping gives the vector expression:

V�
�
g�1gdV_

d

�|
= 06⇥1 (5.28b)

Now, taking the derivative again yields,

gV_2 + gV̇_ = gdV_
d
2 + gdV̇_

d (5.29)

Applying Baumgarte’s constraint stabilization method and putting the equations
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into the form of Equation (5.19) gives,

I6V̇ =
h
g�1gd

⇣
V_

d
2 + V̇_

d

⌘
� V_2

i|
�K↵

h
V�

�
g�1gdV_

d

�|i

�K�

⇥
logSE(3)

�
g�1
d g

�⇤| (5.30a)

where,

A = I6 (5.30b)

b =
h
g�1gd

⇣
V_

d
2 + V̇_

d

⌘
� V_2

i|
�K↵

h
V�

�
g�1gdV_

d

�|i

�K�

⇥
logSE(3)

�
g�1
d g

�⇤| (5.30c)

Since the position and orientation of the spacecraft are explicitly defined in

Equation (5.27a), A = I6 , similar to the case where the spacecraft was modeled

as a point mass in Equation (3.3a). Applying this to the GMUK equation given by

Equation (5.21) yields the simple result of,

ac = b� a (5.31)

This equation gives the translational and rotational accelerations required to

converge to and maintain the desired configuration of the spacecraft.

5.5. Numerical Simulation Results and Discussions

The GMUK formulation developed above is applied for a rigid-body spacecraft

to hover over the asteroid of Bennu. As in the previous chapters, Bennu has a

gravitational parameter of µ = 5.2 m3/s2, a mass of mA = 7.8 ⇥ 1010 kg, and a

density of ⇢ = 1.26 g/cm3 (Chesley et al., 2014). Bennu was determined to have

major axes of L1 = 565 m, L2 = 535 m, and L3 = 508 m, leading to � = 0.9469 and

� = 0.8991 (Nolan et al., 2013). The moment of inertia matrix can be found using

Equation (5.10) and is JA = diag([2.1227, 2.2514, 2.3613]) ⇥ 1015 kg m2. Bennu has

an equatorial inclination of 175 degrees with a rotation period of 4.297 hours and

rotates about the z axis of the ACAF frame.
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Figure 5.1 Spacecraft trajectory in the ACI frame.

Figure 5.2 Spacecraft trajectory in the ACAF frame.
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Figure 5.3 The angular acceleration control inputs required for achieving and
maintaining the desired orientation.
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Figure 5.4 The transient translational control accelerations obtained by the
GMUK equation.

The rigid-body spacecraft is given a mass m = 250 kg, with the moment of

inertia given as J = diag([175, 100, 75]) kg m2. The desired hover position expressed

in the ACAF frame is set as r⇤ = [400, 0, 100]T m, with the orientation given

by Equation (5.22). The initial position and velocity of the spacecraft are set as
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Figure 5.5 The steady state translational control accelerations obtained by the
GMUK equation.

r(0) = [450,�75, 50]T m and v(0) = [0.1818, 0.0366, 0.5154]T m/s. The initial

orientation of the spacecraft is set as a 3-2-1 sequence rotation matrix with angles

of ✓3 = 0.2618 rad, ✓2 = 0.7854 rad, and ✓1 = 0.5236 rad respectively. The initial

angular velocity of the spacecraft is given as !(0) = [0.0990, 0.9901, 0.0990]T ⇥

10�3 rad/s. The matrices for Baumgarte’s constraint stabilization method are set to

be critically damped with K↵ = 0.01I6 and K� = K2
↵/4 = 0.25⇥ 10�4I6.

Applying the GMUK formulation to the spacecraft results in the spacecraft

hovering over the asteroid with the desired orientation. Figure 5.1 shows the

spacecraft trajectory and orientations in the ACI frame, while Figure 5.2 shows

the trajectory in the ACAF frame. As shown in both figures, the spacecraft begins

with the initial conditions specified above, but converges to the correct position

and orientation, then maintains the desired state relative to the asteroid. Figure

5.3 shows the angular control accelerations expressed in the SCB frame. Since the

position vector of the spacecraft is oriented along one of the principal axes of the

spacecraft, the gravity gradient torque reduces to zero, so the required torque to

maintain the orientation is zero. Figures 5.4 and 5.5 show the transient and steady
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state control accelerations, respectively, required to maintain the hover. The control

is initially high to account for the initial conditions, but drops down to a constant

value to maintain the hovering position. The results of this numerical simulation

show that the UK constrained motion equations have been successfully applied in

the geometric mechanics framework for a spacecraft hovering over the surface of the

asteroid with a desired orientation.

5.6. Conclusions

The current Udwadia-Kalaba formulation is a simple and powerful tool. The

extension of the UK formulation into the geometric mechanics framework allows the

UK method to be used for constrained motion analysis of rigid bodies more easily

as well as accounting for any coupling between the translational and rotational

dynamics. The Geometric Mechanics Udwadia-Kalaba equations developed in this

chapter are a successful implementation of the UK formulation into the geometric

mechanics framework. However, there is still more testing that needs to be done in

order to extend this formulation to allow any quantity and/or types of constraints.

This chapter only simulated the fully constrained case hovering of a rigid body.

This new formulation would be useful in all cases of constrained motion analysis.

Despite the single use displayed here, the application of this formulation goes well

beyond that of asteroid hovering, opening pathways for more optimal rigid-body

controllers in the future.
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6. Conclusions and Future Work

Throughout this thesis, the constrained motion of a spacecraft about an

asteroid was studied. The Udwadia-Kalaba (UK) formulation was introduced to

analyze the constrained motion of a spacecraft over an asteroid. The first objective

was completed by applying the UK formulation to constrain the spacecraft to hover

over the asteroid, in both the fully constrained and under constrained cases. The

UK formulation provided the explicit solutions to both cases, allowing minimum

control input for maintaining the constraints.

The next objective was to develop an adaptive controller based on the UK

equation in order to apply the UK formulation despite unknowns in the dynamics.

The controller developed was proven to have asymptotic tracking of the constraints

despite the unknowns. Without estimation of the unknowns the controller

still provided close control responses to the minimum required. The controller

paired with persistence of excitation and/or other parameter estimation methods

guaranteed the minimum control input to maintain the desired constraints due to

its basis in the UK fundamental equation.

The last objective was to extend the UK formulation for the use of rigid-body

systems using geometric mechanics instead of particles. The geometric mechanics

UK (GMUK) formulation was developed and applied for a fully constrained

asteroid hovering case. The simulation proved the results successful. Although the

extension to under constrained cases was not explored and simulated, the theory for

it was provided through the generality of the extension.

Future research areas include; a) under constrained geometric mechanics UK

constrained motion analysis application; b) extending the UK formulation to the

case of inequality constraints; c) creating an adaptive controller for a rigid-body

spacecraft based on the GMUK formulation; and d) implementation of the adaptive

controller developed in this research to the case of space problems/missions other

than asteroid hovering.
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APPENDIX A. Satisfaction of Gauss’s Principle

In order to show that Equation (2.19) minimizes the Gaussian in

Equation (2.18), it is first shown to satisfy the constraints. Equation (2.4) discussed

in the main text:

Aq̈ = b (2.4)

is assumed to be consistent and can be rewritten as (Udwadia & Kalaba, 2008),

�
AM�1/2

�
M1/2q̈ = b (A.1)

Pre-multiplying both sides of Equation (A.1) by
�
AM�1/2

� �
AM�1/2

�+ results in,

�
AM�1/2

� �
AM�1/2

�+ �
AM�1/2

�
M1/2q̈ =

�
AM�1/2

� �
AM�1/2

�+
b (A.2)

Since
�
AM�1/2

�+ is a MP inverse, it satisfies the first MP condition in

Equation (2.7a),

�
AM�1/2

�
M1/2q̈ =

�
AM�1/2

� �
AM�1/2

�+
b (A.3)

The left hand side above matches the left hand side of Equation (A.1) so,

b =
�
AM�1/2

� �
AM�1/2

�+
b (A.4)

Therefore, if Equation (2.4) is consistent, then Equation (A.4) is true.

In the second part of the proof, it is shown that the resulting equations of

motion in Equation (2.19) satisfy the constraint equations in Equation (2.4):

Aq̈ = Aa+ AM�1/2
�
AM�1/2

�+
(b� Aa)

=
h
I � AM�1/2

�
AM�1/2

�+i
Aa+ AM�1/2

�
AM�1/2

�+
b (A.5)

The second term on the right hand side of the equation above can be simplified
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using Equation (A.4) since the constraints are consistent:

Aq̈ =
h
I � AM�1/2

�
AM�1/2

�+i
AM�1/2M1/2a+ b

=
h
AM�1/2 � AM�1/2

�
AM�1/2

�+
AM�1/2

i
M1/2a+ b

= b (A.6)

where the first term on the right hand side of the above equation is eliminated due

to the first MP condition in Equation (2.7a). Thus the resulting accelerations given

by the UK equation in Equation (2.19) satisfies Equation (2.4).

Lastly, assume that there is another solution ÿ that satisfies the constraints and

represents the resulting accelerations of the system. This solution can be written

ÿ = q̈ + z, where z is the difference between ÿ and q̈ obtained by the UK equation.

This solution must satisfy the constraints so,

Aÿ = b (A.7)

Aq̈+ Az = b (A.8)

Since q̈ satisfies the constraints, the first term on the left hand side can be replaced

by the results of Equation (A.6) giving,

b+ Az = b (A.9)

Az = 0 (A.10)

Pre-multiplying and post-multiplying by A+ and z+ respectively,

A+Azz+ = 0 (A.11)
�
A+Azz+

�T
= 0T (A.12)

zz+A+A = 0T (A.13)

The third and fourth MP conditions in Equations (2.7c) and (2.7d) are used to

obtain the last equation. Pre-multiplying and post-multiplying by z+ and A+

respectively and using the second MP condition given in Equation (2.7b), results
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in,

z+zz+A+AA+ = 0T (A.14)

z+A+ = 0T (A.15)

zTA+ = 0T (A.16)

The last result follows since for an n ⇥ 1 vector z, z+ = 1/
�
zTz

�
zT . Therefore if

Equation (A.10) is expressed as,

�
AM�1/2

� �
M1/2z

�
= 0 (A.17)

then the result from Equation (A.16) becomes,

�
M1/2z

�T �
AM�1/2

�+
= 0 (A.18)

This last expression is true if ÿ is a solution to the constraints in Equation (2.4).

The Gaussian of the solution ÿ becomes,

G(ÿ) =
⇥
M1/2 (q̈+ z)�M1/2a

⇤T ⇥
M1/2 (q̈+ z)�M1/2a

⇤
(A.19)

=
h�
AM�1/2

�+
(b� Aa) +M1/2z

iT h�
AM�1/2

�+
(b� Aa) +M1/2z

i
(A.20)

=
h�
AM�1/2

�+
(b� Aa)

iT h�
AM�1/2

�+
(b� Aa)

i

+
h�
AM�1/2

�+
(b� Aa)

iT �
M1/2z

�
+
�
M1/2z

�T �
AM�1/2

�+
(b� Aa)

+
�
M1/2z

�T �
M1/2z

�
(A.21)

Equation (A.18) eliminates the third term, and since the second and third terms

are the transpose of each other, the second is also elminated. This yields,

G(ÿ) =
h�
AM�1/2

�+
(b� Aa)

iT h�
AM�1/2

�+
(b� Aa)

i

+
�
M1/2z

�T �
M1/2z

�
(A.22)

= G(q̈) + zTMz (A.23)

� G(q̈) (A.24)
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Therefore, G(ÿ) > G(q̈) for all z 6= 0. This shows that the solution ÿ is only

minimized when z = 0 and ÿ = q̈, meaning the solution provided by the UK

equations minimizes the Gaussian from Gauss’s principle of least constraint.
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