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Abstract

The hydrodynamic instability of purely oscillating pipe flows is investigated in terms of

the quasi-steady formulation assuming the temporal changes of the laminar base flow rela-

tive to disturbances are slow. A simple model equation is introduced to compare the exact

solution of the current approach with those of the major theories dedicated for unsteady

flows. The results of the analysis show that the quasi-steady assumption and the multiple

scales method are more efficient and accurate than the formal Floquet theory in predict-

ing the transient instabilities within a period in addition to the long-term growth or decay

of disturbances. The most significant contribution of the present quasi-steady analysis is

the neutral stability curves, from which the critical Reynolds numbers are obtained for a

wide range of oscillation frequencies. The stability criterion pertains to the cycle-averaged

growth rates obtained from the eigenvalues of the parametric stability problem. Moreover,

the approximate accuracy of the quasi-steadiness is assessed by proposing a new math-

ematical relation, confirming the validity of the method for the stability analysis. The

theoretical findings are consistent with some experimental results although some others

show quantitative discrepancies, which can be attributed mostly to the deviations in the

second spatial derivative of base flow.

In the computational analyses of this research, direct numerical simulations (DNS) based

on the spectral element method are preformed to verify the theoretical predictions and to

accurately examine the transition to turbulence. The onset of transition in smooth pipe,

identified as a disturbed laminar flow after imposing small random perturbations as initial

conditions, qualitatively agrees with that estimated by the quasi-steady theory. The later



transition stage at which the turbulence and relaminarization phenomena first emerge is

detected from the high-amplitude velocity fluctuations. The turbulence intensity increases

with the Stokes number proportional to oscillation frequency. Furthermore, surface rough-

ness constructed utilizing the overset-grid technique is also considered as the triggering

mechanism to induce transition and turbulence with small wavy imperfections distributed

along the inner wall of a pipe. The influence of the surface roughness on flow stability is

evaluated and the critical Reynolds number is close to that of the smooth pipe unless the

roughness height is large. The friction coefficients at a few flow conditions for both smooth

and rough pipes are determined according to the maximum values of the wall shear stress

and found to be compatible with those shown by experiments in the literature.
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Chapter 1

Introduction

When the properties of fluid flow such as the velocity and pressure change with time, the

flow is simply called unsteady. Pulsating and oscillating flows are the conman terms of

unsteady/time-dependent flows. Examples are found in many engineering disciplines such

as the oil pressure supply systems, reciprocating engines, heat exchangers, and biologi-

cal systems etc. Basically, the second type (oscillating flows) with zero mean velocity is

a sub-branch of the pulsating flows, where the oscillations are superimposed on the base

flow. Although the two types of flow have been studied by many investigators with dif-

ferent tools, limited analytical and numerical solutions of the continuity, momentum, and

energy equations are found due to the complexity of these flows. The problems of analyz-

ing the flow become even more complicated if the fluid is non-Newtonian.

The analytical solution for the governing equations of an incompressible Newtonian fluid

flow subjected to the long-time oscillation of time-dependent pressure gradient, ∂ p∗/∂ z∗=

A∗eΩ∗t∗ , was obtained by Sexl (1930). Following a similar procedure of analysis, Womer-

sley (1955) used the same flow characteristics of Sexl (1930) in a biological perspective

to find a general formulation for the velocity. He represented the phase lag between the

pressure and velocity to that between the voltage and current in a conductor carrying an

alternating current, so that the relation can be expressed in one single non-dimensional

1
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parameter called Womersley number, or Wo = R∗
√

Ω∗/ν∗. The flow patterns of the lami-

nar pulsating flow are classified into quasi-steady, intermediate, and inertia dominant parts

by Ohmi et al. (1981). For the same flow, an experimental representation of the laminar

velocity profiles was conducted by Harris et al. (1969), and the results showed that the

peak of the flow becomes closer to the wall when the frequency of base flow increases.

Further measurements for the velocity profiles at different phases of oscillation cycle are

conducted by Ohmi et al. (1982) experimentally for a wide range of oscillation frequen-

cies. They confirmed that the turbulence in oscillating flows is comparable to that of the

steady flows in the sense of Blasius 1/7 law, but the relaminarized velocity in the accel-

eration phase is not like that of the theoretical long-time oscillation. However, the study

of Iguchi et al. (1987) showed that the periodic turbulence slugs do not resemble those

of the steady flows, albeit their velocity profiles at low oscillation frequencies outside the

slug were approximated to those of analytical solutions of the steady flows. The coherent

structures of turbulent flow were also captured by a camera installed on a gearing system

of the scotch yoke of Fishler & Brodkey (1991)’s experiment. They noticed that most of

the turbulence activity appears in the deceleration phase, and its intensity increases with

the Reynolds number.

In the literature, the determination of the critical Reynolds number for this type of flow

is questionable. The study of Çarpinlioğlu & Gündoğdu (2001) about the transition to

turbulence in the oscillating flows categorized the process into four stages: disturbed lam-

inar flow, finite-amplitude perturbation, first appearing of turbulence bursts, and persisting

turbulence bursts. Several strategies were employed to detect the onset of transition start-

ing from the visual observations (see, for example, Sergeev (1966)), electronic detections

of a hot wire anemometer (see, for example, Hino et al. (1976)), and possible develop-

ments of vorticity (see, for example, Merkli & Thomann (1975)). Some related the ap-

pearance of turbulence bursts to the variations of wall shear stress with time so that the
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critical Reynolds number can be evaluated (see, for example, Lodahl et al. (1998)). Since

the generation of turbulence for the oscillating and steady flows is defined similarly by the

well-known 1/7 power law, Ohmi & Iguchi (1982) found their critical Reynolds numbers

at the stage where the origin of the turbulence was built up in the flow field, which is the

same way usually used for the steady flows.

Regarding the stability problems, the quasi-steady assumption has been performed in

a few different forms to study the development of disturbance. Obremski & Morkovin

(1969) used the quasi-steady method to investigate the stability-transition process of un-

steady periodic boundary layer on a flat plate. Their criterion of instability depends on

the amplification of disturbance creating wave packets downstream. They found that the

theoretical results are consistent with some experimental observations, and they claimed

that their quasi-steady formulation needs more verifications to be considered as a working

tool. Another application of the quasi-steady method is found in the study of Mackley &

Stonestreet (1995), that introduced the flow oscillation in the tube side to enhance the heat

transfer for a shell-and-tube heat exchanger. In their study, the principle of frozen profiles

was assumed for the pressure, not for the velocity, and the power density was plotted at

different amplitudes of oscillation revealing that the quasi-steady prediction is in agree-

ment with the experimental data at large amplitudes of oscillation rather than other cases.

The order-of-magnitude analysis was utilized in the quasi-steady method of Jan et al.

(1989) in addition to the experimental data for a single bifurcation of lung-like geometry

to identify three flow regimes according to the influence of: unsteadiness, viscous, and

convective acceleration. The new assumption of Vilaina et al. (1989), which is essen-

tially based on the quasi-steady boundary layer theory, successfully described the flow

through the glottis, and the results were compared with measured data and showed a good

agreement except when the unsteady or viscous terms become predominant. A similar

technique of dealing with the base flow and its disturbances was carried out by Che & Jin
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(2017) on the stability analysis of oscillatory Taylor-Culick flow. The equations of lin-

earized motion for a flow combining the steady and periodic acoustic parts were solved

by the multiple time scale assumption, and the results showed that the maximum growth

rates are related to the frequency and amplitude of the acoustic oscillation.

The application of the linear stability analysis differs between the steady flows and un-

steady flows. For example, Davis (1976) reported that the stability results of steady flows

may not be suitable for unsteady flows unless a precise scale representation is fulfilled.

A similar conclusion was reached in the theoretical study of Tozzi & von Kerczek (1986)

about the linear stability of pulsating flows, and it was found that the flow becomes slightly

more stable to the axisymmetric disturbances if low-frequency oscillations are imposed

to the mean velocity. Although Young & Tsai (1973) emphasized that many of the ex-

perimental results of the steady flow are valid for the oscillating flows with some differ-

ences, their measurements revealed that the stability of oscillating flows is affected by the

amount of area constriction withtin the fluid flow. The unsteady flow was more stable than

the current flow at a mild area reduction, but the opposite scenario observed when the area

was extremely narrow.

A transition in the pipe flow driven by a time-dependent pressure gradient has attracted

many investigators for several decades. For example, Cooper et al. (1993) compiled data

collection of experimental studies in the period between 1954 to 1989, trying to determine

the onset of transition. Since the critical Reynolds numbers (Reδ ), based on the axial ve-

locity amplitude and Stokes thickness, depend on the flow characteristics including the

oscillation frequency, their reported levels were between 113 and 566 approximately for

high Stokes numbers, the ratio between the radius of the pipe to the Stokes thickness. It

is noticed that the complied numbers by Cooper et al. (1993) differ not only from one

experiment to another, but also between the experiments and theories. Some possible rea-

sons of these discrepancies were mentioned by Hino et al. (1976) who ultimately stated
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the following sentence: “there is no reason to believe that the experimental and the theo-

retical results should be precisely compatible”.

Oscillating flows may reach similar behaviors at high-frequency oscillations in the near-

wall region of the three main geometries: circular pipe, planer channel, and flat plate, re-

vealing that the frequency of base flow has the same role within the Stokes layer regard-

ing the wall-bounded flows (Lodahl et al. (1998)). On the other hand, the amplitude of

oscillation is not only an important factor for the shape of the flow in the different ge-

ometries, but also affects the values of the critical conditions. The experimental study of

Miller & Fejer (1964) conducted in a closed-circuit wind tunnel showed that the oscil-

lating boundary layer is very sensitive to the amplitude of oscillation at the transitional

stage, and the spatial locations and time periods of turbulent bursts are associated entirely

with the fluctuations of the free stream velocity.

At relatively high Reynolds numbers, the flow experiences highly disturbed waviness or

transient turbulence which could provide some advantages of being created in the flow

field. For instance, the importance of transition to turbulence can be found in the mech-

anism of heat transfer, where the heat transfer coefficient of oscillatory flows increases

with the turbulence. Similarly, the quality of fuel-air mixture is enhanced with turbulence

so that a high speed of oscillating piston is required. In contrast, transitional-turbulent

blood flow in arteries or in some stenosed areas is the most frequent cause of the cardio-

vascular diseases. However, for other purposes, the turbulent flow can be relaminarized

when the current flow is combined with oscillating waves, when they are dominated and

in the laminar regime (see, for example, Lodahl et al. (1998)).

The periodic turbulence and relaminarization within one oscillation cycle is a common

phenomenon observed in many experiments regarding this flow (see, for example, Hino

et al. (1976), Iguchi & Ohmi (1982), Kurzweg et al. (1989), Merkli & Thomann (1975),

Zhao & Cheng (1996)). The majority of investigators agrees that the repeated inertial
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forces are behind such behavior, mostly reported at the intermittent turbulent flow con-

ditions. However, the nature of turbulence bursts in the oscillating flows is still unclear,

although some including Wu et al. (1993) emphasized that the nonlinear interactions

induce the evolution of disturbances to cause an explosive growth leading to these sud-

den bursts. In order to show an example for this type of the flow behavior at turbulence

conditions, the magnitudes of axial velocity spatially probed at different positions by

Hino et al. (1976) are shown below in Fig. 1.1. The flow is obviously experiencing tur-

bulence and then relaminarizes within the oscillation cycle of length 2π , or ΩT with

a non-dimensionalized angular frequency Ω and a time period T . Note that ζ is a non-

dimensional coordinate in the radial direction.

Ω

  ζ

Figure 1.1: Axial velocity magnitudes (|u∗|) at five different radial positions (ζ ), taken from
Hino et al. (1976)’s experiment for one oscillation cycle.

Hino et al. (1976) identified two possible factors altering the stability limits of the purely

oscillating flow: the representation of the base flow profile and the flow sensitivity to fi-

nite amplitude disturbances. They reported that in a range from 70 to 550 of Reynolds

numbers, the flow is disturbed, whereas the turbulence effects start to strengthen at Reδ

= 550. Although Ramaprian & Muller (1980) could not find a critical Reynolds number,
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they stated that the disturbances can grow rapidly above Reδ = 370 as their experiment re-

vealed. Luo & Wu (2010) concluded that the nonlinearity of the oscillating channel flow

is very responsive to the surface roughness, for example 0.1 µm roughness height can

trigger the flow at Reδ≥300. The finding of Collins (1963), where the critical values of

Reδ changed considerably when the a non-smooth plate was used, was also reported in

Luo & Wu (2010)’s study.

Therefore, in spite of different strategies that have been used to study the behavior of

purely oscillating pipe flow (with zero-mean velocity) over many years, a robust tran-

sition criterion for this well-known flow is still unclear. The objectives of the proposed

research are to find the critical Reynolds numbers at which the flow undergoes periodic

disturbances or turbulence for a wide range of parameters and to provide a detailed de-

scription of the transition mechanism and the turbulence characteristics. In this regard, the

thesis will be divided into two main sections: the theoretical and computational study.

In Chapter Two, the major methods in the framework of the linear stability analysis, which

are the Floquet theory and the multiple scales approach, were compared with the quasi-

steady method of the current study. The solution of a model equation proposed for the lin-

ear stability equation was calculated and plotted for several oscillation cycles to explore

the main differences among those three theories. The assumption of the quasi-steady

method was tested to predict the transient instability for the hydrodynamic equation. The

conditions at which the quasi-steady theory is valid were determined with a new mathe-

matical basis, which can be used to produce the approximate accuracy of the theoretical

results at any flow condition.

In Chapter Three, critical Reynolds numbers at six different Stokes numbers have been

found by performing direct numerical simulations (DNS) using Nek5000 solver (based on

the spectral-element method) for two and three-dimensional flows. The two-dimensional

perturbations were introduced to the axisymmetric flow domain to find the minimum crit-

7



Chapter 1 Introduction

ical Reynolds numbers in line with the Squire’s theorem of the stability theory, although

the disturbances may be asymmetric and three-dimensional naturally in the smooth pipe.

That was also confirmed by simulating 3-D flows at a few flow conditions and predicting

the critical Reynolds numbers within small bounds. To give a comprehensive background

to the onset of transition, experiments and theories were compiled and compared with the

present DNS results showing a qualitative agreement.

Regarding the accuracy of the quasi-steady method, DNS results were used to validate

the assumptions and the relation created to predict the transient flow instability within a

cycle. In addition, critical Reynolds numbers for a planner channel flow were determined

in the two-dimensional domains at two Stokes numbers. A comparison was made against

the corresponding values of the pipe flow to highlight some remarks. The stability was

examined at relatively two high-frequency oscillations, and the results showed that the

Stokes number must be higher than 30 to consider that the predictions attributed to the

two flow geometries will not be affected by the surface shape.

In Chapter Four, additional numerical simulations were performed for turbulent flows. At

comparatively two high Reynolds numbers, the flows were studied to demonstrate the dif-

ferences and similarities between different quantities such as the axial velocity around the

time history of two consecutive cycles. Although most of the turbulence happens during

the deceleration phase, the grid resolution was increased for the whole oscillation cycle to

cover the smallest length scales of motion, which were calculated explicitly from the DNS

data. The existence of turbulence was also discovered in the profiles of the wall shear

stress, which were evaluated for the two flow conditions during the two cycles. Other

statistical quantities were produced such as the root-mean-square velocity fluctuations,

spatial autocorrelation functions, and one-dimensional energy spectra.

In Chapter Five, instability initiated by wall imperfections is one of the fundamental is-

sues that most oscillating flows deal with. In particular, the wall irregularities augment
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disturbances to develop during parts of the oscillation cycle when the deceleration phases

begin. Since the overshot velocity shifts toward the wall, especially at higher oscillation

frequencies, the surface shape is a significant factor of accelerating or even delaying the

transition and then turbulence. Regarding the computational approaches, unstructured

grids are not always a good representation for the surface roughness and thus they need to

be reshaped to capture the most significant features of the oscillatory flow. Herein, over-

set mesh or known as chimera was implemented to model the wall roughness in the ax-

ial direction and to reduce the computational cost required for the near-wall zone. This

methodology divides the whole domain into two partitions in which grids may be easily

constructed with maintaining their structured shapes. Accordingly, smoothly corrugated

roughness elements in the longitudinal direction were mounted at the outer domain and

combined with the inner one with interface boundaries. Examining this new approach in

details at three flow regimes and how the transition of the oscillatory flow can be caused

by the wall influence only have been investigated. In addition, friction losses, when turbu-

lence bursts clearly appear, were found and compared with multiple cases of the existing

experiments for smooth and rough walls, and the results showed a good agreement.
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Linear Stability Theories

2.1 Overview

Introducing two-dimensional perturbations with small amplitude to unsteady flows such

as the oscillating flows, where the pressure gradient is time-periodic, can lead to a lin-

ear instability at relatively low Reynolds numbers. This case is in contrast to the steady

Poiseuille flow with a constant pressure gradient, where the flow is found to be stable to

all axisymmetric infinitesimal disturbances in a wide range of Reynolds numbers as well

as wavenumbers (see, for example, Salwen & Grosch (1972)). However, some investiga-

tors noticed instabilities in the experiments of Poiseuille flow conducted at certain condi-

tions, and some of them attributed those experimental observations of unstable modes to

either finite-amplitude effects or a very slow rotation of the inlet flow (see, for example,

Drazin & Reid (1981)).

In the literature, there are two major methods that can solve the hydrodynamic stability

equation for oscillating flows: the Floquet theory and the multiple scales analysis. First,

the former is known as a rigorous approach, and it has been applied successfully in many
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problems involving stability. Nevertheless, the onset of transition as observed in experi-

ments was not achieved by some researchers who applied the formal Floquet method to

the Stokes layer problem (see, for example, Hall (1978), von Kerczek & Davis (1974)).

Second, the validity of the multiple scales approach in the stability problems was first

studied by Benney & Rosenblat (1964), and some who utilized this method for oscillating

flows were able to predict the transient growth rate inducing instability during an oscil-

lation cycle (see, for example, Cowley (1987), Monkewitz & Bunster (1987)). For a few

different unsteady planar flows (see, for example, Lee (2002), Lee & Beddini (1999)), a

special version of multiple scales approach to analyze the parametric flow stability was

also successful in showing the mechanism of transient disturbance growth.

The failure of the Floquet method conducted on a modulated planar channel flow by Singer

et al. (1989) was reported via comparing the theoretical results with those of direct nu-

merical simulations. The investigation of Yang & Yih (1977) did not show any instability

indicated by the Floquet exponents when two-dimensional disturbances were introduced

to the same flow investigated herein. In both axisymmetric and planar geometries, the

Floquet analysis of Blennerhassett & Bassom (2006) showed a linear instability at high

Reynolds numbers above 1000, revealing a big discrepancy against those of experiments.

At their flow conditions, where the analysis of Floquet theory led to stability, turbulence

was reported in the direct numerical simulations they cited, although the numerical data

were not directly related to the theoretical results. Therefore, it is clear that the Floquet

method is not capable of producing an accurate flow transition for this kind of flow un-

der the typical circumstances described in many studies (see, for example, Singer et al.

(1989)).

In this chapter, a quasi-steady formulation is applied to the linear stability equation of os-

cillating pipe flow by imposing two-dimensional axisymmetric disturbances. The basic

idea of this method is that the temporal changes of disturbance occur much faster than
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those of the base velocity so that the frozen profiles can be assumed. The Floquet analysis

and the multiple scales method are also compared to discuss the differences and similari-

ties among those two major theories and the quasi-steady assumption. Although different

attempts employing a similar theory with some modifications are found in other studies,

the accuracy of their results demands that the Reynolds number should be very large, but

how large it should be has not been determined in the literature. Therefore, depending

on the order-of-magnitude analysis, a simple formula is developed herein to evaluate the

approximate accuracy of the quasi-steady method at various flow conditions.

2.2 Analysis

In this chapter, an axisymmetric domain is considered with the x∗ and r∗ coordinates in

the axial and radial directions, respectively. Two components of velocity corresponding

to each axis are denoted by u∗ and υ∗ for the current analysis. The governing equations

according to the mass and momentum conservation laws for an incompressible flow with

constant transport properties are written as

1
r∗

∂

∂ r∗
(r∗υ∗)+

∂u∗

∂x∗
= 0, (2.1)

∂u∗

∂ t∗
+υ

∗∂u∗

∂ r∗
+u∗

∂u∗

∂x∗
=− 1

ρ∗
∂ p∗

∂x∗
+ν

∗
{

1
r∗

∂

∂ r∗

(
r∗

∂u∗

∂ r∗

)
+

∂ 2u∗

∂ (x∗)2

}
, (2.2)

∂υ∗

∂ t∗
+υ

∗∂υ∗

∂ r∗
+u∗

∂υ∗

∂x∗
=− 1

ρ∗
∂ p∗

∂ r∗
+ν

∗
{

1
r∗

∂

∂ r∗

(
r∗

∂υ∗

∂ r∗

)
+

∂ 2υ∗

∂ (x∗)2 −
υ∗

(r∗)2

}
, (2.3)
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where p∗, ρ∗, and ν∗ are the dimensional pressure, density, and kinematic viscosity. The

two momentum equations can be combined if differentiations are made to Eqn. (2.2) and

Eqn. (2.3) with respect to r∗ and x∗, respectively, as follows:

∂ 2u∗

∂ r∗∂ t∗
+υ

∗ ∂ 2u∗

∂ (r∗)2 +
∂u∗

∂ r∗
∂υ∗

∂ r∗
+u∗

∂ 2u∗
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+

∂u∗

∂x∗
∂u∗
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=− 1
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∂ 2 p∗

∂ r∗∂x∗

+ν
∗
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∂
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[
1
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∂
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∂ r∗

)]
+

∂ 3u∗

∂ r∗∂ (x∗)2

}
,

(2.4)

∂ 2υ∗

∂x∗∂ t∗
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(2.5)

The pressure term is eliminated after subtracting Eqn. (2.5) from Eqn. (2.4), thereby

∂
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∂x∗
+

∂ 2

∂ (x∗)2

(
∂u∗
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− ∂υ∗
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)}
.

(2.6)

The concept of stream function (ψ̃∗) satisfying the continuity Eqn. (2.1) can be applied,

and then the two velocity components are

u∗ ≡ 1
r∗

∂ψ̃∗

∂ r∗
υ
∗ ≡ − 1

r∗
∂ψ̃∗

∂x∗
.
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Thus, Eqn. (2.6) can be simplified in terms of ψ̃∗ by incorporating the following compo-

nent of the vorticity:

∂u∗

∂ r∗
− ∂υ∗

∂x∗
=

1
r∗

∆
∗
ψ̃
∗,

where the operator ∆∗ written as

∆
∗ ≡ ∂ 2

∂ (r∗)2 −
1
r∗

∂

∂ r∗
+

∂ 2

∂ (x∗)2 ,

is the same as the Laplace operator except the negative sign in the second term. Substitut-

ing the above velocities and their derivatives into Eqn. (2.6) yields the following equation

written in the cylindrical coordinate system for a non-dimensional stream function, ψ̃:

∂

∂ t
(∆ψ̃)− 1

r
∂ψ̃

∂x
∂

∂ r
(∆ψ̃)+

1
r

∂ψ̃

∂ r
∂

∂x
(∆ψ̃)+

2
r2

∂ψ̃

∂x
(∆ψ̃) =

1
Reδ

∆(∆ψ̃), (2.7)

where the velocity, length, and time are non-dimensionalized by the velocity amplitude at

the axis of symmetry, û∗, Stokes thickness, δ ∗, and δ ∗/û∗, respectively. Henceforth, the

parameter Reδ is the Reynolds number defined as

Reδ =

√
2 û∗√

ν∗Ω∗
,

where Ω∗ is the angular frequency of oscillation for the base flow, and the Stokes thick-

ness is

δ
∗ =

√
2ν∗

Ω∗
.
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To obtain a fully developed laminar flow, a low-amplitude sinusoidal pressure gradient

is imposed in the axial direction of a circular pipe, and accordingly, the solution derived

by Sexl (1930) will be used for this study. The base velocity, U(t,r), in the x-direction is

a 2π-periodic function, whereas the radial component of the base velocity is zero. The

stream function is decomposed as follows:

ψ̃(t,r,x) = Ψ(t,r)+ψ(t,r,x), (2.8)

where Ψ is the stream function of the unsteady laminar base flow, and ψ is that of the

axisymmetric disturbances. Equation. (2.8) can be substituted into Eqn. (2.7), and the lin-

earized stream function equation for disturbance is obtained by eliminating the equation

of Ψ from the final result, neglecting the nonlinear terms, and rearranging the equation to

∂

∂ t
(∆ψ) =−1

r
∂Ψ

∂ r
∂

∂x
(∆ψ)+

(
1
r

∂

∂ r
(∆Ψ)− 2

r2 ∆Ψ

)
∂ψ

∂x
+

1
Reδ

∆(∆ψ), (2.9)

where ∆Ψ≡ ∂ 2Ψ

∂ r2 − 1
r

∂Ψ

∂ r . The axial base velocity and its first and second derivatives based

on the definition of the stream function are

U ≡ 1
r

∂Ψ

∂ r
,

∂U
∂ r

=
1
r

∆Ψ,
∂ 2U
∂ r2 =

1
r

[
∂

∂ r
(∆Ψ)− 1

r
∆Ψ

]
,

respectively, being utilized to convert Eqn. (2.9) to

∂

∂ t
(∆ψ) =−U

∂

∂x
(∆ψ)−

(
1
r

∂U
∂ r
− ∂ 2U

∂ r2

)
∂ψ

∂x
+

1
Reδ

∆(∆ψ). (2.10)

The solution of Eqn. (2.10) is pursued by introducing the following assumption for the
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disturbance stream function:

ψ(t,r,x) = η(t,r)eikx, (2.11)

where the dimensionless parameter, k, represents the axial wave number of disturbance

nondimensionalized by 1/δ ∗, and i is the unit imaginary number. Note that the type of

disturbance is a traveling wave. After substituting Eqn. (2.11) into Eqn. (2.10), the latter

can be modified to

∂

∂ t
L(η) =−ik

{
U L(η)+

(
1
r

∂U
∂ r
− ∂ 2U

∂ r2

)
η

}
+

1
Reδ

L2(η), (2.12)

where the linear operator, L, is defined as

L≡ ∂ 2

∂ r2 −
1
r

∂

∂ r
− k2.

The boundary conditions are applied to the wall with a no-slip condition and to the axis of

symmetry with a bounded velocity at r = 0, i.e.,

η = 0 =
∂η

∂ r
,

at the two locations. For the spatial discretization of the partial differential Eqn. (2.12),

N×N derivative matrices mapping on the collocation points along the r-direction are im-

plemented. This spatial representation allows the solution to be a vector including the

values of η at each grid point. The higher-order derivative matrices in Eqn. (2.12) can be

constructed from the matrix multiplication of lower-order ones. Consequently, the partial
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differential Eqn. (2.12) may be converted into a first-order ordinary differential equation

written as

F
d
dt

ηηη(t) = {A(t)+B}ηηη(t), (2.13)

where ηηη(t) is an unknown N×1 column matrix, and F, A(t) and B are square matrices

of size N×N. The matrices of the operator L on the left side of Eqn. (2.12) are embedded

in the coefficient F. The function A(t) is a time-dependent matrix representing the terms

of time-dependent base flow velocity, and the derivative matrices from L2 and Reδ are

included in the term B. Note that both F and B matrices are time-independent, whereas

A(t) is a time-periodic matrix.

Applications of the Floquet theory (see, for example, Hall (1978), von Kerczek & Davis

(1974), Yang & Yih (1977)) and the method of multiple scales (see, for example, Cowley

(1987), Lee (2002), Monkewitz & Bunster (1987)), formulated as that shown in Eqn. (2.13),

are found in the literature regarding the linear stability problem of unsteady base flows. In

this study, these two methods are revisited analytically and compared with the assumption

of quasi-steady method. The differences among the Floquet theory, the multiple scales ap-

proach and the present method can be investigated via introducing a first-order ordinary

differential equation for a real scalar function, ξ (t), similar to Eqn. (2.13) obtained from

Eqn. (2.12) as follows:

d
dt

ξ (t) = {a(t)+b}ξ (t), (2.14)

where a(t)+ b is a T -periodic function since a(t) is a real T -periodic term and b is a real

constant. Note that the above problem can be extended simply with complex a(t)+b and

ξ (t).
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2.2.1 Floquet method for the model equation and its extension

The Floquet theory is a well-known method for many dynamic systems seeking a class of

solution to periodic linear differential equations. Herein, two time-dependent functions,

α(t) and β (t), are introduced to solve the differential Eqn. (2.14) (see, for example, Iooss

& Joseph (1990)) so that the exact solution is

ξ (t) = ξ (0)α(t) = ξ (0)β (t)eσt , (2.15)

where σ is the Floquet exponent by which the stability of flow can be examined. If the

solution in Eqn. (2.15) is substituted into the differential Eqn. (2.14), and then the result is

integrated by imposing the natural initial condition, α(0) = 1 = β (0), the function β (t) is

β (t) = exp
[∫ t

0
{a(s)+b−σ}ds

]
,

with a dummy variable, s, assuming that ξ (t)/ξ (0) and accordingly α(t) and β (t) are

positive. Thus, the solution for Eqn. (2.14) can be obtained from

ξ (t) = ξ (0)α(t) = ξ (0)exp
[∫ t

0
{a(s)+b}ds

]
.

since the function β (t) is a T -periodic function owing to α(t), which is the solution of the

differential equation with ξ (0) = 1, i.e., α(T) = exp[σT], the Floquet exponent can be

found explicitly from

σ =
1
T

ln[α(T )]+
2π ni

T
=

1
T

∫ T

0
{a(s)+b}ds+

2π ni
T
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for n = 0,±1,±2, · · · . Note that the exponential solution for ξ (t) approaches zero as t →

∞, if the real part of σ is negative. A time-integration during a full period T is required to

calculate σ .

Regarding the system of ordinary differential Eqn. (2.13), the Floquet analysis can be

implemented by incorporating a fundamental solution matrix, X(t), of size N×N. The

columns involved in X(t) are the N linearly independent solutions of Eqn. (2.13) satis-

fying the boundary conditions. The initial conditions are imposed to the system (2.13)

giving linearly independent solutions for a set of N. If the Floquet exponent, σ , and a T -

periodic column vector βββ (t) are considered, the solution of Eqn. (2.13) is

ηηη(t) = βββ (t)eσt .

In general, the fundamental solution matrix can be constructed by numerically solving

N initial value problems of Eqn. (2.13) with N columns of the N×N identity matrix as

the initial conditions. Note that the j-th column of X(t) is the solution related to the j-th

column of the identity matrix I presented as an initial condition. According to the gen-

eral aspects of the Floquet theory, the monodromy matrix can be formed by computing

the fundamental solution matrix at t = T , namely X(T ). The Floquet multipliers, γ j, may

be defined as the eigenvalues of X(T ) for j = 1, · · · ,N, and as a result, the Floquet expo-

nents, σ j , are determined by

σ j =
1
T

{
ln
∣∣γ j
∣∣+ i arg[γ j]

}
+

2πni
T

(2.16)

for n = 0,±1,±2, · · · , or γ j = exp[σ jT ]. In Eqn. (2.16), when Re[σ j] < 0 for j = 1, · · · ,N,

the solution decays exponentially as t → ∞. In addition, for all Floquet multipliers in the

spectrum of monodromy matrix, the solution is stable when
∣∣γ j
∣∣ < 1 (see Iooss & Joseph
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(1990)). In the case where there is only one unstable mode, Robichaux et al. (1999) dis-

cussed a method by which the magnitude of the largest Floquet multiplier can be calcu-

lated. However, in order to implement the Floquet theory numerically in any case, a very

high accuracy in both time advancement and spatial discretization should be achieved for

a good representation of the flow field.

2.2.2 Multiple scales method applied to the model equation

The analysis of the multiple scales method suggests that a uniformly valid expansion can

be achieved for all times of disturbance growth or decay. Since this technique deals with

the time scales very effectively, it has been used for unsteady flows to predict the tran-

sient behavior and the frequency of the system. To convert the linear stability equation

into an eigenvalue problem, the slow time scale is assumed for the base velocity whereas

the fast time scale represents the disturbance. Referring to other studies of Stokes flows,

Cowley (1987) and Monkewitz & Bunster (1987) utilized the modified multiple scales

formulation. The new technique of Lee (2002) converting the spatial multiple scales of

Saric & Nayfeh (1975) to temporal multiple scales was applied to the oscillatory planar

Poiseuille flows to study the linear instabilities. If the method of Lee (2002) is utilized to

Eqn. (2.14), the solution is

ξ (t) = ϕ(t1;ε)eiθ ,

where ε is a dimensionless parameter appearing as a factor in t1 ≡ ε t with a slow time,

t1, and a fast time, t. Note that both the multiple scales and the quasi-steady methods for

disturbed laminar flows tackle the fast variation of disturbance (see 2.3.1). Since a(t) in

Eqn. (2.14) resembles A(t), where the laminar flow in Eqn. (2.13) is contained, it can be

formulated in terms of t1, viz., a(t1). A part of the exponent, θ , is defined as
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θ =−1
ε

∫
ω(t1)dt1,

and then dθ/dt = −ω(t1) by which the chain rule associated with the time derivative of

Eqn. (2.14) is

d
dt

=
∂

∂θ

dθ

dt
+

∂

∂ t1

dt1
dt

=−ω(t1)
∂

∂θ
+ ε

∂

∂ t1
.

In order to convert the differential Eqn. (2.14) into an eigenvalue problem without con-

sidering any time-integration, ϕ(t1;ε) can be written in the form of series with a small

parameter ε as in

ϕ(t1;ε) = ϕ0(t1)+ ε ϕ1(t1)+ ε
2
ϕ2(t1)+ · · · ,

and this series expansion and other relations mentioned above are substituted into Eqn. (2.14)

so that the resulting zeroth-order equation for ϕ0(t1) produces the eigenvalue,

ω(t1) = {a(t1)+b} i,

for any nontrivial solution, ϕ0(t1). The solution errors of the eigenvalue and ϕ0(t1) can

be estimated to be on the order of ε , or O(ε). However, ω does not incorporate ε since

ε is not involved in the expansion of the eigenvalue. When Im[ω(t1)] > 0, the solution

is unstable, and it becomes stable if Im[ω(t1)] < 0. This special variation of the multi-

ple scales method is able to examine the flow stability by only calculating the eigenvalue

ω(t1), which is independent of ε , meaning that the first-order and higher-order equations

are not required to be solved. Note that, to achieve a high accuracy for ϕ(t1), the first-
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order equation involving the time derivative of ϕ0(t1) should be solved. In fact, one can

find a relation between the eigenvalue, ω(t1), and the Floquet exponent mathematically as

it will be presented in the following sections.

2.2.3 Present method for the model equation (quasi-steady method)

The linear stability of oscillating flows can be studied with a simpler method than those

of the Floquet theory and the multiple scales approach. In fact, the proposed quasi-steady

formulation is similar to those reported in the literature regarding the partial differential

equations of hydrodynamic stability problems, as it will be shown in the following anal-

yses. Recalling the simple model Eqn. (2.14), the assumption suggests that the equation

admits the solution of a complex form,

ξ (t) = ξ (0) exp
[
−i
∫ t

0
ω(s)ds

]
. (2.17)

By using this equation, the time-derivative of ξ in Eqn. (2.14) is eliminated, and the dif-

ferential equation can be transformed into an eigenvalue problem without requiring a tem-

poral integration. If the solution in Eqn. (2.17) is substituted into Eqn. (2.14), the eigen-

value of the system is

ω(t) = {a(t)+b} i.

It turns out that the result of Eqn. (2.17) and that of the Floquet theory in 2.2.1 regarding

the solution ξ (t) are the same, and the eigenvalue of Eqn. (2.17) is equivalent to that pro-

duced by the method of multiple scales in 2.2.2. Furthermore, the simplicity of Eqn. (2.17)

allows to add another time-dependent function to the solution of ξ (t), for example,
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ξ (t) = ξ (0) f (t)exp
[
−i
∫ t

0
ω(s)ds

]
,

from which the exact solution simply reveals that f (t)= 1. Therefore, the time-dependence

of ξ (t) can be sufficiently assessed by the exponential function of the quasi-steady formu-

lation, in contrast to the Floquet method. When Im[ω(t)]> 0, the solution grows instanta-

neously, whereas Im[ω(t)] < 0 indicates the decay of the solution. If a(t)+ b is periodic,

a relation between σ and ω can be extracted as follows:

Re[σ ] =
1
T

lnα(T ) =
1
T

∫ T

0
Im[ω(t)] dt,

since the equations of the Floquet theory yield

α(t) = exp
[∫ t

0
Im[ω(s)]ds

]
.

For the model equation in Eqn. (2.14), the real part of the Floquet exponent is equal to the

cycle average of Im[ω(t)] calculated either by the quasi-steady method or by the multiple

scales method in 2.2.2. In summary, the formulation presented herein gives the possibil-

ity of calculating the solution of the model Eqn. (2.14) more efficiently than the other two

methods discussed earlier. The technique is able to find the instantaneous growth as well

as the long-term growth of an oscillating function such as a(t) + b more easily at vari-

ous flow conditions. In addition, this method can be applied to aperiodic a(t)+ b, but the

interpretation may be unclear when extended to hydrodynamic stability problems.
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Figure 2.1: Exact solutions (blue solid and green dashed curves) of Eqn. (2.14) combined
with the growth rate, Im[ω(t)]×10−2, predicted using the quasi-steady method (red dash-
dotted curve) for a(t) = sin(t), ξ (0) = 0.01, and 0 ≤ t ≤ 10T : blue solid curve; b = −0.05,
green dashed curve; b = 0.

The exact solutions of Eqn. (2.14) are shown in Fig. 2.1 at 0 ≤ t ≤ 10T to highlight

some important information. The blue solid curve is for a(t) = sin(t), ξ (0) = 0.01 and

b =−0.05, and the green dashed curve is for the same a(t) and ξ (0) but b = 0. The com-

parison is made with the red dash-dotted curve representing Im[ω(t)]× 10−2, calculated

by the quasi-steady method for the blue solid curve with b = −0.05. The growth rate of

the green dashed curve was also produced, but not shown since it turns out to be nearly

the same as that of the red dash-dotted one. The equality in Re[σ ] = b denotes the decay

of solution for the blue solid curve in Fig. 2.1. The long-term decay of the solution indi-

cated by the Floquet exponent is equally estimated by the cycle-averaged growth rate of

the quasi-steady formulation. Although both Floquet and quasi-steady methods have ex-

actly the same prediction of the long-term or cycle-averaged growth rates of the simple

model Eqn. (2.14), there is no proof currently that the Floquet exponent of the partial dif-

ferential Eqn. (2.12) is equivalent to the cycle-averaged growth rates of the quasi-steady

solution for Eqn. (2.12).
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Furthermore, two important points can be described about the green dashed curve in

Fig. 2.1. First, the solution being considered is neutrally stable in the Floquet sense since

the Floquet exponent is zero, although there is a large magnitude of ξ continuing its ap-

pearance in a part of each cycle and indicating a possible transient instability. This be-

havior raises a question that the Floquet exponent alone may not be sufficient for a tran-

sient instability prediction during an oscillation cycle in spite of its ability to determine

the disturbance growth or decay over each cycle. Second, as clarified in Fig. 2.1, the

quasi-steady method also leads to a neutral stability, and in addition, it can explain the

large instantaneous growth of the solution within the cycle. Therefore, the quasi-steady

method may be more relevant than the Floquet exponent in detecting the periodic turbu-

lence bursts, although it requires an ad hoc stability criterion that ties with the magnitude

of disturbance amplitude. Additionally, the validity of the quasi-steady assumption must

be verified before it is used for the hydrodynamic stability equations, since the solution

may not be sufficiently accurate in certain problems as will be explained in 2.3.2.

2.2.4 Extension to the hydrodynamic stability problem

As demonstrated in the previous section, the current method is simpler in both formula-

tion and implementation than the Floquet theory and the multiple scales method in seek-

ing a solution for Eqn. (2.12). In order to extend the method to the hydrodynamic prob-

lem, it is proposed that

η(t,r) = φ(r) exp
[
−i
∫ t

0
ω(s)ds

]
, (2.18)

where φ and ω are complex functions. Equation (2.18), categorized as an ad hoc method

due to φ(r), is very close to the equation of Luo & Wu (2010) used in their quasi-steady

analysis for the stability of finite Stokes layer. Luo & Wu (2010) reported that their quasi-
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steady results are highly accurate when Reδ >> 1. Furthermore, direct numerical simula-

tions (DNS’s) were performed by Akhavan et al. (1991) for oscillatory Stokes flows, and

their results, showing the transient growth of infinitesimal disturbance, agree well with the

predictions of the quasi-steady theory for Reδ >> 1.

In Eqn. (2.18), the time dependence of φ is not shown explicitly, but the time-varying

eigenvalue, ω , allows the estimation of the corresponding eigenfunction, φ , at each in-

stant. The dependence of φ on time in the current quasi-steady analysis is parametric,

viz., φ(r; t). Drazin & Reid (1981) reported that the method of normal modes for steady

flows is not necessarily valid for unsteady base flows because the separation of the ex-

ponential time-dependence of disturbance cannot be attained due to time-dependent co-

efficients. However, the normal modes in the stability analysis of steady flows is not the

same as what Eqn. (2.18) implies, regarding the disturbance stream function, ψ , employ-

ing η proposed in Eqn. (2.18). In this regard, Drazin & Reid (1981) noted that a solution

had been obtained by Shen (1961) with the eigenfunction considered in the same way

for the stability analysis of a type of unsteady flow. Further discussion about the time-

dependence of φ will be given later in this study, and the accuracy of the quasi-steady as-

sumption in Eqn. (2.18) will be assessed in 2.3.1 because it can be estimated a posteriori.

When Eqn. (2.18) is substituted into Eqn. (2.12), the following stability equation appears:

L2(φ)− ik Reδ

{
(U− c)L(φ)+

(
1
r

∂U
∂ r
− ∂ 2U

∂ r2

)
φ

}
= 0, (2.19)

where c≡ ω/k. Equation (2.19) casts the generalized boundary-value eigenvalue problem

with four boundary conditions, φ = 0 = φ ′ at the wall and the axis of symmetry. The

parameter c is a complex eigenvalue and represents the wave velocity scaled by û∗, and

φ is the complex eigenfunction nondimensionalized by û∗ · (δ ∗)2. This equation, which

is a fourth-order ordinary differential equation for the disturbance amplitude φ , is Orr-
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Sommerfeld equation with time-dependent coefficients (parametric stability problem).

It is known that the hydrodynamic stability problem is classified into a spatial and/or a

temporal stability problem. The second type is chosen for this study, where the distur-

bance waves evolve with time. If the growth rate of disturbance, Im[ω] or Im[c] with a

real k and a complex ω , is positive, it means the flow has a locally unstable mode. Based

on this criterion, the flow is described monotonically stable if all the Im[ω] values decay

monotonically at each moment, whereas the flow is unstable if a disturbance grows over

a cycle. The importance of Im[ω] value is more manifested in the transient instability,

where some disturbances grow partly during the period but decay in the rest of the cycle

(see, Davis (1976), Monkewitz & Bunster (1987)).

The explicit time dependence of φ was included in the multiple scales formulation of Lee

& Beddini (1999) by employing a small expansion parameter for planar channel prob-

lems. They acquired the leading-order equation which is basically the planar counterpart

of Eqn. (2.19). Based on their analysis, the appearance of the time derivative of φ is only

in the first-order equation (but not in the leading-order equation). Since the eigenvalues

are independent of the expansion parameter, they were obtained only from the leading-

order equation. In other words, the eigenvalues evaluated by the multiple scales formula-

tion do not involve the explicit time-dependence of the eigenfunction, as a consequence of

converting the spatial multiple-scales analysis performed by Saric & Nayfeh (1975) into

a temporal one using multiple scales in time. Another implication that can be pointed out

is that if the multiple scales method of Lee & Beddini (1999) is utilized for the current

analysis, the zeroth-order equation will be equivalent to Eqn. (2.19) with φ replaced by

φ0 and will produce the same eigenvalues. Therefore, under those circumstances, the so-

lution accuracy for φ (but not the eigenvalue) in Eqn. (2.19) can be elucidated as being of

the order of a small expansion parameter similar to that used in 2.2.2. The reason for the

interpretation is that φ does not have an explicit time-dependence in Eqn. (2.18), which

27



Chapter 2 Linear Stability Theories

can be related to the frozen profiles of the laminar flow with respect to the fast variation

of disturbance. Recall that, the expansion parameter in 2.2.2 will be the ratio of the slow

time of laminar flow to the fast time of disturbance if it is applied to the hydrodynamic

stability.

2.2.5 Transformation of the hydrodynamic stability problem

The r-coordinate in Eqn. (2.18) and Eqn. (2.19) is now rescaled using ζ ≡ r/λ , where

λ =
R∗

δ ∗
(2.20)

is the nondimensional duct radius called Stokes number, or Womersley number that dif-

fers by a factor of
√

2, so that 0≤ ζ ≤ 1 since ζ = r∗/R∗ with R∗ representing the dimen-

sional duct radius. With this transformation, Eqn. (2.19) is rewritten as

L2(Φ)− iκ λ Reδ

{
(U− c)L(Φ)+

(
1
ζ

∂U
∂ζ
− ∂ 2U

∂ζ 2

)
Φ

}
= 0, (2.21)

where κ = k∗R∗ is the k∗ scaled by the pipe radius, Φ is φ∗ nondimensionalized by û∗ ·

(R∗)2, albeit the scaling of eigenfunction is insignificant, and the operator L is written as

L≡ ∂ 2

∂ζ 2 −
1
ζ

∂

∂ζ
−κ

2.

Note that, in Eqn. (2.21), Φ is a function of ζ , and U depends on both ζ and time. The

stability of unsteady flow characterized by U is determined by the three parameters, κ , λ

and Reδ . The boundary conditions at the pipe centerline (ζ = 0) and at the wall (ζ = 1)

are both given by
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Φ = 0 =
∂Φ

∂ζ
.

The solution of unsteady laminar velocity subjected to a long-time oscillation is normal-

ized by the velocity amplitude at the axis of symmetry and written in terms of the Stokes

number, λ , as follows (Sexl (1930)):

U(τ,ζ ) =

∣∣∣∣ J0(
√
−2iλ )

J0(
√
−2iλ )−1

∣∣∣∣ ·Re
[{

1− J0(
√
−2iλ ζ )

J0(
√
−2iλ )

}
e iΩτ

i

]
, (2.22)

where J0 is the Bessel function of the first kind, and Ω and τ are the angular frequency

and the time nondimensionalized by û∗/R∗ and R∗/û∗, respectively. As a remark, Eqn. (2.22)

with the parameter Ω = 2λ/Reδ is the base flow in this thesis. In addition, the reciprocal

of the dimensionless velocity amplitude at the axis of symmetry in Eqn. (2.22) becomes

unity when λ ≥ 12, i.e.,

∣∣∣∣ J0(
√
−2iλ )

J0(
√
−2iλ )−1

∣∣∣∣≈ 1.

The eigenvalue problem, Eqn. (2.21), with four boundary conditions can be solved by a

few different numerical methods. In this study, the Chebyshev pseudo-spectral matrix

(CPSM) approach is selected for the spatial discretization in ζ . This numerical scheme in-

corporates highly accurate spatial derivatives with a Chebyshev series spanning the global

domain, and the boundary conditions can be applied more efficiently than those of the

Galerkin spectral method.
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2.2.5.1 Chebyshev polynomials

There are two common types of interpolants regarding the orthogonal basis function that

can be utilized for the spatial discretization: Legendre and Chebyshev polynomials. The

former deals with the Legendre points of Gauss quadrature with an order of 2N–1, and the

following expression is usually used for the Chebyshev case:

P(xc) =
N

∑
n=0

acnTcn(xc) xc ∈ [−1,1], (2.23)

where P is a linear combination of Chebyshev polynomial (Tc) of degree N, and ac is a

coefficient which can be obtained from the discrete orthogonality condition. This type

of expansion is treated with Dirac delta functions which are centered at the collocation

points (xc) with a unit magnitude and zeros at other locations. The discrete points known

as Chebyshev points are

xci = cos
(

iπ
N

)
0≤ i≤ N.

The distribution of these points is demonstrated in Fig. 2.2, where evenly spaced points on

a unit semicircle are projected on a horizontal line to create the Chebyshev nodes.
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Figure 2.2: Chebyshev points obtained by the projection of radially equispaced points on a
horizontal line as shown by Trefethen (2000).

Thus, these collocation points, also called Gauss-Lobatto grid points, are the roots of the

Chebyshev polynomials of the first kind in the interval (−1,1). With an appropriate num-

ber of these points, especially in the near-wall region, the solution for problems involving

a small boundary layer thickness can be adequately evaluated (Fletcher (1991), Peyret

(1986)).

2.2.5.2 Chebyshev Derivatives

The stability Eqn. (2.21) is converted into a matrix eigenvalue problem via CPSM. The

explicit formulae for the lower order derivatives can be found in some references (see, for

example, Peyret (2002)). The first derivative matrix with the Gauss-Lobatto collocation

points in a domain (−1,1) is
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D(1)
i j =



ci(−1)i+ j

c j(xci−xc j )
, 0≤ i, j ≤ N, i 6= j

− xci
2(1−x2

ci
)
, 1≤ i = j ≤ N−1

D(1)
00 =−D(1)

NN = 2N2+1
6 ,

and the equation of the second derivative is

D(2)
i j =



(−1)i+ j(x2
ci
+xcixc j−2)

c j(1−xci)
2(xci−xc j )

2 , 1≤ i≤ N−1

0≤ j ≤ N, i 6= j

− (N2−1)(1−x2
ci
)+3

3(1−x2
ci
)2 , 1≤ i = j ≤ N−1

2(−1) j(2N2+1)(1−xc j )−6

3c j(1−xc j )
2 , i = 0, 1≤ j ≤ N

2(−1) j+N(2N2+1)(1+xc j )−6

3c j(1+xc j )
2 , i = N, 0≤ j ≤ N−1

N4−1
15 , i = j = 0,N

where ci = 2 for i = 0, N and c j = 1 for 1 ≤ j ≤ N− 1. The strategy of mapping the col-

location points on the axisymmetric domain of (0, 1) is to utilize the chain rule, where the

spatial discretization is performed with collocation points (ζ j) described by

ζi =
xci +1

2
ζ ∈ [0,1], for i = 0,1, . . . ,N,

and then the derivatives with respect to ζ can be found from
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∂

∂ζ
= 2

∂

∂xc
,

∂ 2

∂ζ 2 = 4
∂ 2

∂x2
c
,

where xc are the general Chebyshev collocation points between -1 and 1. Equation (2.21)

containing the third and fourth derivatives can be decomposed into two second-order dif-

ferential equations to minimize the numerical errors in constructing higher-order matrices.

Note that the singularity in Eqn. (2.21) can be avoided after applying the homogeneous

boundary conditions to the matrix equation.

2.3 Results and Discussions

2.3.1 Flow stability by the quasi-steady method

The eigenvalue problem represented by the boundary-modified matrix system of Eqn. (2.21)

was solved by utilizing LAPACK subroutines, adopting the generalized upper Hessenberg

and the generalized Schur decomposition (see Anderson et al. (1994)). The accuracy of

the numerical solution obtained using the CPSM and LAPACK routines was verified with

pre-calculated eigenvalues for the axisymmetric steady Poiseuille flow, and the results

showed a good agreement with those in the literature (see, for example, Drazin & Reid

(1981)). In this study, the eigenvalues produced from the numerical solution of the quasi-

steady method are either the most unstable ones with the highest growth rate, Im[ω], at

each instant of time or the cycle-averaged values of those least stable modes. Note that

the eigenvalues are complex numbers, and the growth rate of disturbance is calculated

from the imaginary part only. The numerical convergence of the solution was examined

at a few resolutions, and the number of collocation points was chosen to be 61 to ensure a

sufficient accuracy at various flow conditions.

Figure 2.3 shows the time-varying growth rates during one period of laminar flow oscilla-
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tion, computed at λ = 20 and κ = 8 for three different Reynolds numbers: Reδ = 80 (blue

dash-dot curve), 125 (green dashed curve) and 250 (red solid curve). It can be seen that

the flow is stable during the entire period of oscillation at the lowest Reynolds number,

although there are harmonic appearances in disturbance during the reversal times with

values less than zero. In contrast, these sudden increases of growth rate climb to posi-

tive values indicating the instability of flow at the other two Reynolds numbers (Reδ =

125, and 250). The shown behaviors are somewhat consistent with the phenomenon of

periodic turbulence and relaminarization within specific parts of the oscillation cycle, as

observed in many experiments such as those of Merkli & Thomann (1975), Hino et al.

(1976), Iguchi & Ohmi (1982), and Zhao & Cheng (1996).

In the bottom part of Fig. 2.3 (below the zero line), the variations of growth rates are so

small in the presented scale that the curves appear to be straight lines. The quasi-steady

method was also applied for Reδ of 500 and 1000, of which peaks of growth rates are rep-

resented by green circles and red squares, respectively, in Fig. 2.3. At a much higher Reδ

of 1000, the value of Im[ω] stays continuously positive during the whole cycle. How-

ever, at a low oscillation frequency with λ = 5.5 (and κ = 1.6, close to the most unsta-

ble wave number), the growth rates declined to negative values within the cycle even for

Reδ = 3×106, although they are not shown in the figure.
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Figure 2.3: Results of quasi-steady method represented by instantaneous growth rates dur-
ing a cycle at λ = 20 and κ = 8: Reδ = 80, 125 and 250 for blue dash-dotted, green dashed
and red solid curves, respectively. The green circles are the peaks at Reδ = 500, and the red
squares are the peaks at Reδ = 1000.

The relation between the velocity at the axis of symmetry and its first and second deriva-

tives evaluated at the wall is illustrated in Fig. 2.4 for one oscillation cycle. The maximum

magnitude of the second derivative represented by a red solid line in Fig. 2.4 is around the

time when the pressure gradient (∂ p/∂x) proportional to cos(Ωτ) reaches its extrema, as-

sociated with the zero velocity magnitude at ζ = 0, the flow reversal, and the maximum

tidal displacement of the fluid. Therefore, the peaks of disturbance growth in Fig. 2.3 oc-

cur at the aforementioned times, i.e., τ/T ≈ 0, 0.5, and 1. These results are in agreement

with the experimental observation of Monkewitz & Bunster (1987) stating that the distur-

bances of Stokes layer first appear shortly before and at the flow reversal.

The Richardson’s annular effect shown by circles in Fig. 2.4 varies similarly to U at ζ

=0 during the oscillation cycle with Reδ = 250 and λ = 20. The zero magnitude of them

seems to be slightly more in phase with the maximum growth rate of disturbance in Fig. 2.3,

and the behavior persists at somewhat smaller values of Stokes numbers, although not
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presented herein. Note that the phase difference between the laminar velocity and the

pressure can be calculated from Eqn. (2.22). For example, the phase of laminar velocity

at ζ = 0 is different from that of the pressure gradient by nearly 90 degrees at λ ≥ 4, and

this phase lag reverses at τ/T close to 0.5 and 1. In contrast, at smaller values of λ , the

phase shift becomes so small so that the velocity oscillates with a slowly varying ∂ p/∂x

at λ < 1 approximately.

At low oscillation frequencies, the velocity U and its spatial derivatives are of the same

order of magnitude compared with their profiles at large values of λ , where the second

derivative of U increases greatly owing to the thin boundary layer and dominates the

stability Eqn. (2.21). In Fig. 2.4, the first and second spatial derivatives of U at ζ = 1

are scaled by some factors so that their maximum values are almost 800 times and 30

times that of U evaluated at ζ = 0. The spatial derivatives of U are zeros at ζ = 0 due to

the symmetry, and the overshoot of velocity is closer to the wall than to the central axis

because of the Richardson’s annular effect, but the maximum of |U | is still not much

greater than unity at the laminar conditions. Therefore, Fig. 2.3 and Fig. 2.4 clarify the

role of the laminar velocity derivatives on the coefficients and eigenvalues of the stability

Eqn. (2.21), particularly the effect of the second derivative of velocity, of which extrema

are related to the maximum growth rates of disturbance.
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Figure 2.4: Time variation of the laminar base flow velocity at the axis of symmetry (blue
dash-dotted curve) and its derivatives at the wall (green dashed and red solid curves for the
first and second derivatives, respectively) for λ = 20 and Reδ = 250. The circles are the near-
wall velocity overshoot due to Richardson’s annular effect.

Discrepancy was noticed by Hino et al. (1976) between the laminar velocity distribution

in experiments and that of the theoretical solution, causing distortion with a significant

amount of phase lag in the central region of the duct. Note that a slight deviation from the

theoretical velocity distribution can consequently lead to a big difference in the magnitude

of the second spatial derivative of U . Thus, it is believed that the comparison between

experimental and theoretical results at the same conditions is not sufficiently meaningful

unless an agreement is verified between the derivatives of U as well as U itself for the two

approaches. For example, this accordance between the velocity derivatives is required to

find an accurate onset of transition as will be shown in the next figures.

Some experiments showed that the flow becomes turbulent during the decelerating phase

(see, Iguchi & Ohmi (1982), Zhao & Cheng (1996)) and then relaminarizes. However,

depending on the flow conditions, transition to weakly turbulent flows was observed in

the experiment of Hino et al. (1976) even when the velocity increases with time, whereas
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most of the turbulence bursts were still detected during the deceleration phase of the ve-

locity. Another distinctive remark was made by Merkli & Thomann (1975) that showed

turbulence bursts, followed by an immediate relaminarization, only at the times when the

velocity reached its peaks between the accelerating and decelerating phases. In contrast to

what Hino et al. (1976)’s experiment revealed at the flow condition of weak turbulence,

Kurzweg et al. (1989) could not find any sign of turbulence at the same conditions of

Hino et al. (1976). These differences in the experimental observations and the reasons

of a wide range of critical Reynolds numbers reported in the literature were attributed by

some researchers to a few reasons – asymmetric or three-dimensional disturbances, tur-

bulence detection techniques, dissimilarities in experimental conditions, and transition

criteria.

The peaks of Im[ω] shown in Fig. 2.3 for λ = 20 shift slightly toward the beginning of the

decelerating phase, where the flow begins to experience disturbance growths leading to

instability, increasing further with Reδ . However, at low Stokes numbers (approximately

less than 2), the increase in Im[ω] obtained by the quasi-steady method was completely in

phase with the deceleration of U , although the sign of Im[ω] was negative throughout the

whole cycle.
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Figure 2.5: Neutral stability curves for six values of λ ranging from 5.5 to 60, computed by
the cycle-averaged growth rates. Note the different scales in (a) and (b).

As mentioned previously in Chapter 1, there have been several attempts to provide a suit-

able stability criterion for the flow of interest, but none of them is quite satisfactory. For

instance, Hino et al. (1976) stated that the energy stability theory tends to produce rela-

tively low critical Reynolds numbers. Figure 2.5 displays two stability maps calculated by

1
T
∫ T

0 Im[ω(τ)]dτ = 0, a tentative criterion obtained from the cycle-averaged growth rate

of the quasi-steady method. Note that the curves representing the neutral stability shown

in Fig. 2.5 do not necessarily provide a proper stability criterion for the oscillating flows

because of the reasons explained for Fig. 2.1. Note that the cycle-averaged growth rate

from the simple model equation used in Fig. 2.1 is equivalent to the Floquet exponent, but

it is not certain that the statement is also true for the partial differential Eqn. (2.12). More

importantly, even if the flow is neutrally stable in the average, there is a possibility that

the disturbance reaches very high amplitudes during part of the cycle and causes instabil-

ity.

The stability maps are produced for large and small Stokes numbers: Fig. 2.5 (a) at 20, 40
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and 60 and Fig. 2.5 (b) at 5.5, 6 and 7. The first map has wide areas of instability zones

extending to higher wave numbers, which increase with the Stokes number while the crit-

ical Reynolds number remains almost the same. The trends of the neutral stability are

close to those of the planar channel flow shown by Lee (2002) at large Stokes numbers,

because the thin oscillatory boundary layer near the wall behaves similarly in the two

geometries. Another remark is that whenever the Stokes number increases, the instabil-

ity region becomes wider revealing that the flow sensitivity to disturbances with smaller

size becomes higher as the thickness of the boundary layer decreases. The relative dif-

ference between the neutral stability curves appearing in different scales, 0 < κ ≤ 5 and

100 ≤ Reδ ≤ 500, is more manifested in Fig. 2.5 (b) at λ < 10. The figure shows that the

critical Reynolds number varies inversely with λ , and the flow is more stable at the flow

conditions of Fig. 2.5 (b) than those of Fig. 2.5 (a). The reason for the increasing stabil-

ity at low Stokes numbers is because of the viscous effects dampening out the growth of

disturbances, as noted by Kurzweg et al. (1989).

Figure 2.6: Critical Reynolds numbers calculated by the cycle-averaged growth rates of
quasi-steady assumption (green circles) compared with those of Kurzweg et al. (1989)’s
experiment (blue solid curve), Floquet analysis of Blennerhassett & Bassom (2006) (red
squares), and ‘Other experimental data’ compiled by Cooper et al. (1993) (bounded area be-
tween the two arrows).
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By utilizing the quasi-steady analysis, the critical Reynolds numbers were determined

at different Stokes numbers and shown with green circles in Fig. 2.6. The experimen-

tal findings of Kurzweg et al. (1989), depicted by a blue solid line, are plotted to show

the transition in oscillating pipe flows. The theoretical results of the current study qual-

itatively agree with the stability trend of Kurzweg et al. (1989). Note that the extended

curve in the paper of Kurzweg et al. (1989) is not included in Fig. 2.6. It is clearly seen

that the value of the critical Reynolds number of the current study decreases rapidly in

5.5≤ λ < 7, whereas it slightly changes for 10≤ λ < 20 before it becomes nearly constant

(≈ 123) at large Stokes numbers, λ > 20. Note that the Reynolds number of Kurzweg

et al. (1989) has been converted into Reδ since their Reynolds number incorporates the

cross-stream averaged value of the velocity, of which the ratio to û∗ in Reδ is not a con-

stant but a function of λ , and the equation of that conversion will be shown in the next

chapter.

It should be mentioned that the hydrodynamic instability in the present analysis is pre-

dicted by the cycle-averaged growth rates, which is not necessarily an appropriate method

for the flow being studied. This may explain the differences between the values of the

present results and those of Kurzweg et al. (1989) shown in Fig. 2.6 despite the similar

trends of the critical Reynolds number with respect to the Stokes number. With the ten-

tative stability criterion proposed herein, it was found that the flow is stable even up to

Reδ = 2500 and λ = 5, and thus the critical Stokes number is approximately 5 and the

flow is stable for λ < 5. When Ω and λ decrease to zero, the laminar flow approaches the

parabolic steady Poiseuille flow. In this regard, it is known experimentally that the steady

Poiseuille flow in a pipe is stable with respect to all axisymmetric disturbances (see, for

example, Drazin & Reid (1981)), and that is fairly consistent with the current findings. In

addition, the resulting data of Cooper et al. (1993) located between the two horizontal ar-

rows displayed in Fig. 2.6 are to show the bounded zone of critical Reynolds numbers for

several experiments at λ ≥ 10.
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There is a similar formulation regarding the quasi-steady analysis presented in the study

of Das & Arakeri (1998), but with a different stability criterion. They considered that all

the positive growth rates indicate instability, declaring 82 as the critical Reynolds num-

ber at λ = 10. In Fig. 2.6, the current critical Reynolds number is around 123 at λ = 10,

somewhat higher than that of Das & Arakeri (1998). This discrepancy may be because

that they regarded all positive growth rates as the instability even for a very short time,

which are not likely sufficient for the flow to experience instability leading to transition

– consider Reδ slightly higher than 80 in Fig. 2.3, for example. A similar conclusion

was reached via the experiment of Das & Arakeri (1998) when they noticed that enough

time should be allowed for the disturbance growth to cause instability even if the critical

Reynolds number is exceeded.

Therefore, the onset of transition for the flow studied herein depends not only on the pos-

itive values of growth rate, but also requires a sufficient time during which the flow sus-

tains instability. Another point stated by Das & Arakeri (1998) was that their critical

Reynolds number is related to the onset of disturbed laminar flows rather than the in-

termittently turbulent flows. Their findings explain somewhat higher critical Reynolds

numbers of this study at turbulence condition, and they are also compatible with the ex-

perimental data reported in Fig. 2.6. Some of those experiments clearly revealed disturbed

laminar flows, and some of the declared turbulent flows were later considered as disturbed

laminar flows.

Shown in Fig. 2.6 with red square symbols, the study of Blennerhassett & Bassom (2006)

presented the linear instability of the flow by applying the Floquet method to find the crit-

ical Reynolds numbers at certain flow conditions. Neither their values nor their trends are

in agreement with those of Kurzweg et al. (1989) and the current quasi-steady results.

Blennerhassett & Bassom (2006) noticed that two direct numerical simulations had shown

turbulence at the conditions where their Floquet analysis indicates stability, albeit their
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results were not directly related to the two DNS results of Juárez & Ramos (2003) and

Cosgrove et al. (2003).

The Floquet instability of Blennerhassett & Bassom (2006) can be interpreted as the

global instability of disturbances growing over each cycle, different from the transient

instability by which the flow may be disturbed or the flow experiences periodic turbulence

bursts at the Reynolds numbers much lower than those of the global instability. This in-

terpretation is partly in line with the results of the simple model equation used in Fig. 2.1,

where the transient growth of the solution was not predictable by the Floquet method. In

addition, the direct numerical simulation of Singer et al. (1989) for a modulated chan-

nel flow showed that the instantaneous strength of disturbances can be high enough to

trigger transition even when the Floquet theory declares stability. Moreover, because the

linearization could be questioned if the large Reynolds numbers of Blennerhassett & Bas-

som (2006) are considered, Luo & Wu (2010) reported that the Floquet instability is not

necessarily more relevant than that of the quasi-steady method in the linear perspective,

even though it is mathematically more rigorous.

Furthermore, Feldmann & Wagner (2012) discussed the stability of this flow and reported

that the Floquet method can only be used to capture the long-term instability for unsteady

base flows because of its limitations in predicting the transient instability, as Zhao et al.

(2004) and Trukenmüller (2006) had stated. Note that the study of Trukenmüller (2006)

was also mainly about the quasi-steady method for the same flow considered herein, but

the results are not included in Fig. 2.6 because the critical Reynolds number curve was

found to be incompatible with the value obtained at a condition of the DNS results of

Feldmann & Wagner (2012).
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2.3.2 Approximate accuracy of the quasi-steady method

The explanation found in the literature review of Ghidaoui & Kolyshkin (2002) stated that

the quasi-steady approach can be interpreted as the first term in the asymptotic expan-

sion of WKB type. In their study, the instability of pipe flow subject to rapid acceleration

and/or deceleration was investigated and an important remark was made that, although the

quasi-steady approximation can be used successfully to predict transition, the accuracy of

the results may not be sufficient in certain cases. In fact, there are a few researchers who

studied the oscillating flow transition via the quasi-steady approximation, although the

validity of their applications and/or results may not be acceptable. The majority requires

two bases in order to verify the assumptions involved in the quasi-steady analysis. The

first is that Reδ should be large enough, but this assessment has uncertainty since the lim-

its are not provided. The second is that the growth rate of disturbance, Im[ω], should be

much higher than the angular frequency (or the rate of change) of laminar flow. In fact,

the latter can be evaluated only a posteriori, and the role of Re[ω], the frequency of dis-

turbance, in the stability analyses may be more important than Im[ω].

Hereafter, the above two conditions are combined in a more comprehensive criterion by

maintaining the time-derivative of φ on the left side of Eqn. (2.12) when Eqn. (2.18) is

substituted, i.e., by incorporating the time-dependence of φ . After the exponential func-

tion is canceled out, Eqn. (2.12) becomes

L
(

∂φ

∂ t
− i φ ω

)
=−ik

{
U L(φ)+

(
1
r

∂U
∂ r
− ∂ 2U

∂ r2

)
φ

}
+

1
Reδ

L2(φ). (2.24)

Under the assumption of the quasi-steady formulation, (∂φ

∂ t −iφω) is replaced with (−iφω),

by which Eqn. (2.18) through Eqn. (2.21) can be verified. This reduction is suitable as

long as the condition of O(∂φ

∂ t ) << O(iφω) is valid. After taking the medium value of t
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during an oscillation cycle with 0 ≤ t ≤ 2πλ/Ω and by using Ω = 2λ/Reδ , one can find

that ∂φ

∂ t is O( 2φ

πReδ
) in Eqn. (2.24). Note that the mean magnitude of 1/t equals 2/(πReδ ),

and if 2/(πReδ ) << |ω|, the term O( 2φ

πReδ
) can be omitted in the average sense. Based

on these details of Eqn. (2.24), the following inequality is introduced as a simple basis for

the quasi-steady assumption by accounting for the time variation of the complex ω:

2m
πReδ

≤ 1
T

∫ T

0
|ω|dτ, (2.25)

where the parameter m determines the size of O(∂φ

∂ t ) relative to that of O(iφω) in the av-

erage during an oscillation cycle. Therefore, the approximate amount of error encountered

in the quasi-steady analysis can be estimated by calculating the value of the parameter m.

For example, the error in ω of the quasi-steady method is on the order of one percent or

smaller if m = 100. Moreover, it can be seen that both Re[ω] and Im[ω] are involved in

the condition of Eqn. (2.25) since Eqn. (2.24) has ω and φ which are complex.

Consequently, according to the criterion in Eqn. (2.25), when Reδ is large, the magnitude

of ∂φ

∂ t will be small, and it is naturally related to a low frequency of the base flow, imply-

ing a small rate of change of the laminar flow. Thus, Reδ is not required to be infinitely

large to obtain accurate results as Luo & Wu (2010) confirmed, and Re[ω] is as signifi-

cant as Im[ω] for the quasi-steady assumption. In other words, the results produced from

the quasi-steady analysis are still accurate even if Im[ω] is small and Reδ is not very high,

when Re[ω] is sufficiently large to satisfy Eqn. (2.25). To provide some examples of the

approximate accuracy of the current theory, the presented Eqn. (2.25) was utilized and

some values are listed in Tab. 2.1. The approximate percent errors of ω in the average

during a cycle are also incorporated into Tab. 2.1 to show how the accuracy of the quasi-

steady method changes with the flow conditions. When Reδ = 1000, it turns out that the

error is reduced to 0.29 % at κ = 8 and λ = 20 in comparison with the error of 0.45 % at

45



Chapter 2 Linear Stability Theories

κ = 1.5 and λ = 5.5. In addition, the presented numbers in Tab. 2.1 show that the eigen-

values employed to create the critical Reδ curve plotted in Fig. 2.6 are reasonably accu-

rate. Note that, in Tab. 2.1, because the dimensional eigenvalue is normalized by û∗/δ ∗,

there is a small decrease in the cycle-averaged |ω| with increasing Reδ .

Table 2.1: Approximate percent errors of ω obtained according to the mathematical relation
in Eqn. (2.25) with various flow conditions.

λ = 20 and κ = 8

—————————

Reδ (1/T )·
∫ T

0 |ω|dτ m Error (%)

80 0.258 32.5 3.08

125 0.248 48.7 2.05

250 0.239 94.0 1.06

1000 0.220 346.2 0.29

λ = 5.5 and κ = 1.5

—————————

Reδ (1/T )·
∫ T

0 |ω|dτ m Error (%)

100 0.164 25.8 3.88

200 0.158 49.6 2.01

400 0.153 96.1 1.04

1000 0.141 221.5 0.45
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Transition in Purely Oscillating Pipe

Flow

3.1 Overview

Previous studies on the transition of oscillating flows showed several important remarks.

Because of its relevance of causing many engineering problems, investigators have made

tremendous efforts to explore all the scenarios involved in the transition process. The pre-

liminary signs of transition may appear as natural modes like Tollmien-Schlichting waves

or sometimes as forced modes like periodic unsteady wakes. Herein, to verify the theoret-

ical results of this study under various oscillation frequencies, a more sophisticated tool

such as direct numerical simulation (DNS) has to be utilized to fully understand the whole

process of transition.

The onset of flow instability is uncertain since it is not clearly determined under different

conditions in the previous studies. It is partly because there are several factors altering the

transition thresholds so that the critical conditions are not estimated accurately without
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defining a suitable criterion. Some experimentalists stated that the appearance of turbu-

lence bursts or shear stress fluctuations near the wall are the common ways to announce

the transition, and the critical conditions have been reported based on those evidences.

Controversially, “wiggles”or sometimes “weak puffs”were noticed even below Reδ ≈

500, depending on the equipments used to measure the velocity fluctuations, and the

above number has been cited as a critical value in general (see, for example, Hino et al.

(1976)). The study of Eckmann & Grotberg (1991) reported two occasions of instability

by immersing the wire probe at different radial positions. Some researchers stated that a

time-dependent wall shear stress can produce a transition signal once it is disturbed, al-

though this behavior may imply the existence of intense turbulence bursts at certain flow

conditions, but not necessarily the early stages of transition.

One of the important motivations of this study is to explore in depth the transition to

turbulence in the oscillating pipe flow, since there are discrepancies among various ap-

proaches regarding the issue of a suitable stability criterion for this type of flow. Fully

resolved direct numerical simulations (DNS’s) for the transition in purely oscillating pipe

flow were not found, and most of the experiments were not conducted to investigate the

stability for a wide range of oscillation frequencies at this stage of transition, where the

flow starts to deviate from the laminar flow.

3.2 Governing equations

All the computational works presented in this chapter are dedicated for the first stage of

transition which is defined herein as a disturbed laminar flow. A fully-developed oscillat-

ing flow in a straight circular pipe of the radius, R∗, and the length, 10R∗, is considered.

The flow is solely driven by a sinusoidal pressure gradient, (1/ρ∗)∂ p∗/∂ z∗ = −Ã∗e iΩ∗ t∗ ,

where Ã∗ is the oscillation amplitude of the pressure gradient, i is the unit imaginary

48



Chapter 3 Transition in Purely Oscillating Pipe Flow

number, and Ω∗ is the angular frequency. The non-dimensional quantities of the cur-

rent analysis are obtained by introducing the following parameters: Ã = Ã∗/(û∗2/R∗),

F̃ = F̃∗/(û∗2/δ ∗), and z = z∗/δ ∗, where F̃∗ is an axial force. The del operator is nondi-

mensionalized by 1/δ ∗, and after substituting all the relevant scales into the governing

equations, the continuity equation and the time-dependent Navier-Stokes equations for an

incompressible flow can be written as follows:

∇∇∇ ·u = 0, (3.1)

1
λ

∂u
∂τ

+(u ·∇∇∇)u =−∇∇∇p+
1

Reδ

∇
2u+ F̃, (3.2)

where u is the dimensionless velocity vector. Instead of applying the pressure forces di-

rectly in the current simulations, a body force, which is a driving force per unit mass, is

adopted, and its non-dimensional form is written as

F̃ = Ãe iΩτ . (3.3)

3.3 Numerical solver

To accurately solve Eqns. (3.1) and (3.2), a high-order spectral element fluid dynamics

solver called Nek5000 is employed. There are various applications that used this code for

turbulent flows as well as transitional flows (see, for example, Fischer et al. (2002)). The

basis function chosen in Nek5000 is the Legendre polynomial based on Gauss-Lobatto-

Legendre (GLL) points for the velocity of order 5 ≤ N ≤ 15 and on Gauss-Legendre

quadrature points for the pressure of order N-2, calculated by Poisson’s equation. Note
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that N can be changed as needed, but it was fixed at 7 in this investigation for transitional

flows. The temporal discretization of Eqn. (3.2) is semi-implicit in which the viscous

terms are solved implicitly with a third-order backward differencing (BDF3) and the non-

linear terms are solved explicitly by a third order extrapolation (EXT3). The extrapola-

tion is implemented to avoid the implicit treatment in some of the advection terms, where

an iteration of a non-symmetric system is performed. It is known that Nek5000 has the

flexibility of the finite element method and the high-order accuracy of spectral method of

molding a mesh with locally refined elements. In other words, the technique divides the

computational domain into hexahedral elements and collocation points (GLL) distributed

inside each element (Deville et al. (2002)).

3.4 CFD code validation

Since the pipe flow is fully developed in the axial direction, periodic boundary conditions

were imposed at the two ends of the pipe. The oscillating driving force was employed and

initiated at zero velocity condition to reach the long-time oscillation after several cycles

(approximately 16). The velocity profiles with overshoots near the wall at the oscillation

condition of Reδ = 100 and λ = 10 are plotted in Fig. 3.1. In this figure, at five different

times during one oscillation cycle, the computed velocity compared with the exact solu-

tion of laminar flow (Eqn. (2.22)) is shown in terms of ζ . The high accuracy for the 2-D

axisymmetric flow being considered is achieved by Nek5000, where the relative errors be-

tween the two velocity curves are very small along the radial coordinate at each instant.

The accuracy of the solution was also confirmed for the 3-D case, where the numerical re-

sults of the three-dimensional simulation were found to be equivalent to those of Fig. 3.1.
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Figure 3.1: The laminar velocity at the flow condition of Reδ = 100 and λ = 10 predicted by
Nek5000 using the driving force concept at five different times during a cycle, compared with
that of the exact solution of Sexl (1930).

3.5 Grid convergence analysis

Small random perturbations were superimposed on the exact solution of the laminar ve-

locity to cause instabilities in the flow. This strategy of triggering the flow transition is

common in the DNS community, by which the disturbance growth can be investigated in

accordance with the linear stability theory. The data statistics of the axial velocity pro-

duced by Nek5000 were found to be independent of the initial condition, and it is consis-

tent with the findings of Zhao et al. (2004) about the effect of perturbations. Therefore,

random white noises with the amplitude of 10−4× û∗ were imposed, which is close to that

of Singer et al. (1989) that investigated a modulated planar channel flow, where û∗ is the

velocity amplitude at ζ = 0.

The dimension of the geometry used in this chapter is 0.01 × 0.1 (m2) in a two-dimensional

axisymmetric plane (z-r plane). The adequacy of a mesh refinement for this domain was

tested at the very beginning stage of transition, where the velocity field starts deviating
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from that of the laminar flow, by increasing the number of elements (E) and setting N to

be 7. However, the realizations of the velocity are somewhat sensitive to the initial condi-

tions associated with the mesh resolution, so cycle-averaged statistics (second moments)

were chosen as criteria for the grid convergence study. DNS data showed that the velocity

of a disturbed laminar flow are symmetrical in the time history of oscillations. Thus, the

magnitudes of the cycle-averaged velocity (first moment) can be ignored, i.e., the value of

ū is nearly zero, and the RMS velocity equation for one complete cycle is Urms =
√

ū2.

Figure 3.2 shows the profiles of Urms evaluated with four different values of E and at a

fixed polynomial degree. The flow conditions of Fig. 3.2 are chosen slightly above the

critical levels so that the velocity is slightly different from the exact laminar flow solu-

tion. Note that the total grid points can be calculated from EN2 for the two-dimensional

mesh clustered near the wall, although it is not shown herein. With E = 40, the flow pat-

terns appear not to be well predicted by the mesh resolution at 0 ≤ ζ ≤ 0.85 compared

with that in the Stokes layer. In contrast, the rest of the meshes with three different grid

refinements, E = 63, 99, and 143, show approximately the same profile of Urms at 0 ≤ ζ ≤

1. Also, the relative errors between the RMS velocities decrease with the number of ele-

ments, E, although they are not shown herein. Based on the results of Fig. 3.2, it has been

determined that E = 99, for flow conditions at and near Reδ = 250 and λ = 10, is suffi-

cient to resolve the structure of the disturbed laminar flow. The time step is chosen to be

variable in this study, and its initial value was set at 10−4 sec, with a value of the CFL

number equal to 0.05. Note that aliasing errors are minimized when Nek5000 computes

the nonlinear terms in the Navier-Stokes equations using over-integration, which is a tech-

nique often employed for de-aliasing. In addition, the weight of stabilizing filter, used to

stabilize the computation, was controlled at 0.001 for all simulations performed at this

level of flow transition.
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Figure 3.2: The profiles of Urms produced by the two-dimensional axisymmetric simulations
of the oscillating flows performed at Reδ = 250 and λ = 10 using four different numbers of
elements, E, and a polynomial degree of N = 7. The velocity statistics are taken at the mid-
plane of the pipe.

Since Nek5000 is an iterative solver, the computational meshes can also be tested using

the residual of the velocity vector, u, for each time step. Let’s consider the approximate

solution of Eqns. (3.1) and (3.2) represented by f̃ (u), and accordingly the residual can be

easily obtained from the following explicit expression: ℜ(u) = f (u)− f̃ (u), where ℜ is a

quantitative measure of error between the solution f̃ and the exact solution f . To compute

such a difference between these solutions for the four presented resolutions in Fig. 3.2,

the residuals of the velocity u normalized with respect to volume, which is the summation

of the computational cells within the whole domain, are shown in Fig. 3.3. This process

was implemented implicitly in Nek5000 routines for each cell of the entire mesh.

53



Chapter 3 Transition in Purely Oscillating Pipe Flow

Figure 3.3: The normalized residuals of the velocity vector, u, in terms of the number of it-
erations with the polynomial degree of N = 7; two-dimensional axisymmetric simulations at
Reδ = 250 and λ = 10 with four different values of the number of elements, E.

It is obvious that the velocity residuals of the four elements have some rapid changes

within the early stages of simulations, around 1 ×104 of time steps. The first mesh of E=

40 is clearly insufficient for a solution convergence since its residual is relatively high

compared with the others and continues randomly changing even when the number of it-

erations is up to 8 ×104. Although the errors involved in the computations using E = 63

mesh do not change arbitrarily as seen in E = 40 case, except those during the initial it-

erations, the results seem to be varied with the resolution. For the high numbers of grid

elements, E= 99 and 143, the profiles of residual are fairly equivalent, which gives an-

other proof that the mesh with E= 99 is adequate for simulations of the transitional flows

in both r and z-directions.

The three-dimensional mesh employed for the simulations of flow transition is visualized

in Fig. 3.4 to highlight some important aspects of the hexahedral spectral elements. Nodes

near the wall are distributed according to a function used by Nek5000, as exhibited for

one quarter of the cross sectional area in Fig. 3.4 (a). The whole circular pipe of length
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10R∗ is depicted longitudinally in Fig. 3.4 (b), where periodic boundary conditions are

imposed at the ends. The total number of grid points is EN3 in the three-dimensional do-

main with N = 7 and 11× 16× 9 elements in the radial, azimuthal, and axial directions,

respectively. The presented mesh was utilized for a flow at Reδ = 200 and λ = 20, and

it was also found suitable for flows with close values of Reδ and a range of oscillation

frequencies from λ = 10 to 20. It is worth mentioning that the values of Urms shown in

Fig. 3.2 did not change significantly between the axisymmetric and the three-dimensional

simulations at flow conditions of which the first stage of transition begins.

Figure 3.4: Computational mesh used for three-dimensional flow simulations at Reδ = 200
and λ = 20 with the polynomial of degree 7, and the number of elements, E, are 11×16×9 in
the radial, azimuthal, and axial direction, respectively: (a) a quarter of a cross-sectional view
and (b) the longitudinal view.
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3.6 Results and Discussions

3.6.1 Critical Reynolds numbers estimated by DNS

In this section, the onset of transition obtained from the linear stability analysis is com-

pared with that predicted by the nonlinear direct numerical simulations at minimum crit-

ical values of the Reynolds number. Many 2-D simulations were performed at various

Stokes numbers ranging from 3 to 30 to obtain critical Reynold numbers by perturbing

the flow for the initial condition only. These numbers were identified based on the crite-

rion of the disturbed laminar flow, and they are plotted in Fig. 3.5 along with the present

theoretical results of the quasi-steady method. Figure 3.5 also shows a collection of criti-

cal Reynolds numbers taken from several sources such as theories, numerical studies, and

experiments. The flow parameters were converted to Reδ and λ as needed utilizing the

following conversion equation:

û∗(ζ=0)

û∗
(mean)

=

∣∣∣1− 1
J0(αλ )

∣∣∣∣∣∣1− 2
αλ

J1(αλ )
J0(αλ )

∣∣∣ , (3.4)

where α =
√

2e
3
4 πi as shown by Hino et al. (1976), and û∗(ζ=0) is the velocity ampli-

tude at the axis of symmetry whereas û∗(mean) is the amplitude of cross-sectional mean

velocity. The comparison study for this flow transition is intended to prove the validity

of the quasi-steady method, whose results are incorporated in Fig. 3.5 to show the differ-

ences and/or similarities with others including the present 2-D numerical data. Therefore,

Fig. 3.5 presents the transitional values, for which the flow is not expected to experience

turbulence bursts. First, all presented data demonstrate the relation between the critical

Reynolds number (Reδ ) and the Stokes number (λ ), with approximately similar trends for

various flow conditions, but different transition criteria and approaches. The flow at a very
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low value of λ behaves almost as a steady Poiseuille flow, and thus the critical Reynolds

numbers are high in that region. In contrast, the flow tends to be unstable when the Stokes

number increases with relatively low critical Reynolds numbers. Note that it is known the

steady Poiseuille flow is stable to all axisymmetric disturbances, which is confirmed at

low values of λ in the current results, especially that of the quasi-steady method employ-

ing axisymmetric disturbances.

Figure 3.5: A comparison of the critical Reynolds numbers: blue solid diamonds — present
DNS results (2-D), blue open circles — theoretical results of the present method (quasi-
steady), red open squares — Floquet analysis of Blennerhassett & Bassom (2006), red dash-
dotted curve — Floquet analysis of Thomas et al. (2012), blue dashed curve — experiments
of Kurzweg et al. (1989), blue open triangles — experiments of Lodahl et al. (1998) , green
solid triangle — turbulent flow (3-D DNS) of Feldmann & Wagner (2012), green open trian-
gle — laminar flow (3-D DNS) of Feldmann & Wagner (2012), red solid triangles — condi-
tionally turbulent flows of Hino et al. (1976), blue solid line — critical Reδ of weakly tur-
bulent flows of Hino et al. (1976). The experimental data compiled by Cooper et al. (1993)
for λ > 7.07 and those of Eckmann & Grotberg (1991) are located between the two black
horizontal arrows.

Secondly, the results of Floquet analyses of Blennerhassett & Bassom (2006) and Thomas

et al. (2012) represented by red open squares and a red dash-dotted line in Fig. 3.5, re-

spectively, indicate distinguished levels of transition. Despite that the study of Blenner-

hassett & Bassom (2006) considered axisymmetric disturbances only whereas three-
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dimensional perturbations were tested in the stability analysis of Thomas et al. (2012),

their analyses yielded approximately the same critical Reδ , except a small deviation ap-

pearing at low Stokes numbers. Moreover, since the critical Reynolds numbers of both

studies show a considerable amount of discrepancy against all the other data in Fig. 3.5, it

is believed that the Floquet method is not able to determine the accurate stability of oscil-

lating flows, where the transient instability occurs within a cycle.

Thirdly, the predictions of the quasi-steady method presented in Fig. 3.5 by blue open

circles show the same trends as those of the experimental results (the blue open trian-

gles) of Lodahl et al. (1998), another experiment (blue dashed curve) of Kurzweg et al.

(1989), and the present two-dimensional DNS results marked with blue solid diamonds.

The approximate solutions of the quasi-steady method as well as the DNS results of the

current study have critical Reynolds numbers located between the data of the turbulent

and laminar flows (the green solid and green open triangles indicating turbulent and lami-

nar flows, respectively) of Feldmann & Wagner (2012). In addition to the two data shown,

Feldmann & Wagner (2012) performed another DNS at Reδ = 4895.23 with λ = 3.54 and

found that the flow is turbulent. However, the latter data are not shown in Fig. 3.5 with the

presented scale.

The theoretical and numerical results of the current study are both two-dimensional in

Fig. 3.5. In this respect, Squire’s theorem states that two-dimensional disturbances are

sufficient to seek the minimum critical Reynolds number (see, for example, Drazin &

Reid (1981)). For the purpose of comparison, three-dimensional DNS’s were also per-

formed at two oscillation frequencies and compared with those of 2-D simulations. The

critical Reynolds numbers were not pursued in the same way as implemented for the 2-

D case, but the lower and upper bounds of those numbers were found and are listed in

Tab. 3.1.
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Table 3.1: Critical Reynolds numbers with respect to the Stokes number estimated by the two
and three-dimensional simulations. Only the possible ranges of critical Reδ are shown for the
3-D case at λ = 10 and 20.

λ

DNS (pipe flow) DNS (channel flow)

2-D 3-D 2-D

3 2195

4 967

6 523

10 213 210 ∼ 225

20 174 170 ∼ 180 225

30 158 160

The effect of the wall shape on the flow stability is examined to confirm that the critical

Reynolds numbers of different geometries may be the same when the oscillation fre-

quency of the base flow increases. Additional simulations were performed in 2-D planner

channel domains, and the results are combined with those of the circular pipe as shown

in Tab. 3.1 for comparison. The height of the 2-D planner channel is equivalent to 2R∗,

where R∗ is the radius of the pipe, and the length is 10R∗ in the axial direction. Also, the

boundary conditions are periodic in the streamwise direction with no-slip conditions at

the two channel walls.

The DNS results reveal that the critical Reynolds numbers of the planar channel are higher

than those of the pipe at λ = 20 and 30. At the lower oscillation frequency, λ = 20, the

critical Reynolds number turns out to be 225 for the non-circular duct, indicating that the

curvature of the pipe might destabilize the flow at some flow conditions. The difference

between the critical Reynolds numbers of the two flows reduces at λ = 30 due to the thin

boundary layer thickness, i.e., the flow stability becomes more independent of the wall in-
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fluence. Thus, it confirms that the critical flow conditions will be almost the same for the

flows in the two geometries at high Stokes numbers, higher than 30, in agreement with the

statement of Lodahl et al. (1998), especially at λ = 53.

Regarding the results presented in Tab. 3.1 for the three-dimensional simulations, it is

important to mention that, by citing Stuart (1987), White (1991) attributed the maxi-

mum wave amplification of the disturbances to the unstable flows owing to a non-zero

azimuthal wavenumber. In consequence, the critical Reδ evaluated by the 3-D DNS might

have a minor deviation from that predicted by the 2-D simulations. Probably, one pos-

sible way of explaining the effect of 3-D disturbances on the flow stability is by the dis-

crepancy between the results shown in Fig. 3.5 for the 2-D and 3-D cases of Blenner-

hassett & Bassom (2006) and Thomas et al. (2012), respectively. It should be pointed

out that DNS results of the current study become closer to the theoretical counterparts as

the Stokes number increases in agreement with some deductions from Eqn. (2.25) of the

quasi-steady method, that indicate gaining more accuracy at high values of λ .

Fourthly, the complied data of Cooper et al. (1993) show a possible range of critical

Reynolds numbers, whose limits are indicated by the two black horizontal arrows in Fig. 3.5.

It turns out that the predictions of the quasi-steady approach along with those of present

DNS are qualitatively compatible with those complied by Cooper et al. (1993) in addi-

tion to those produced by Kurzweg et al. (1989) and Lodahl et al. (1998). Note that the

data points of the latter experiments show a small amount of difference from the highest

numbers reported by Cooper et al. (1993). Also, the discrepancy between the theoreti-

cal and numerical data and those of the experiments, especially at large λ (i.e., high os-

cillation frequencies), is attributed to the role of the base flow velocity of which a small

deviation can create a considerable change in the results as described in Chapter 2. Fur-

thermore, for 10.6 ≤ λ ≤ 23.3, the experiment of Eckmann & Grotberg (1991) revealed a

nearly constant critical Reδ in agreement with those of Kurzweg et al. (1989) and another
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curve cited by Cooper et al. (1993). The experimental results of Zhao & Cheng (1996)

were found to be consistent with those of the three papers included in the review study of

Cooper et al. (1993). Moreover, the data of Lodahl et al. (1998)’s experiment were com-

pared with those of the linear stability theory of Tromans (1978) and they showed a good

agreement.

The comprehensive study of Hino et al. (1976) declared two stages of transition. The

first stage is represented by a blue solid line in Fig. 3.5 and stands for the division be-

tween the laminar and weakly turbulent flows. The second stage is associated with the

two data points depicted by red solid triangles in Fig. 3.5 and refers to the conditionally

turbulent flows, at which the turbulence appears only in the deceleration phase. Regarding

this stage of transition, Hino et al. (1976) stated that the critical Reδ appears to be con-

stant at λ > 1.6 based on some experimental indications. Note that Cooper et al. (1993)

did not include Hino et al. (1976)’s data in their table for λ ≥ 7, and other researchers

disputed Hino et al. (1976)’s results by mentioning that the critical Reδ of Hino et al.

(1976) was underestimated despite the good agreement between their trend and other data

shown in Fig. 3.5 at the low values of λ .

3.6.2 The onset of transition

The stability of the oscillating flow can be examined by perturbing the flow at a certain

Reynolds number and maintaining the Stokes number at one value, herein at λ =10. It

is somewhat consistent with the interpretation of Das & Arakeri (1998) regarding the

disturbed laminar flows. Further evolutions of these disturbances can lead to turbulence

bursts occurring suddenly during the deceleration phase, if the Reδ is sufficiently high.

This is in contrast with the idea that the beginning of turbulence bursts in the flow can be

detected by tracking the imperfections of the wall shear stress profiles, as determined by

Lodahl et al. (1998). Note that some explosive disturbance growths resembling the tur-
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bulence bursts may emerge at lower Reynolds numbers than what Lodahl et al. (1998)

reported, as will be shown later in the turbulence chapter.

Due to the sensitivity of the Stokes boundary layer to disturbances, the flow profiles are

affected mostly in the near-wall region even though the imposed perturbations are equally

distributed in the pipe at t∗ = 0. To show this flow behavior, the velocity curves are plotted

at four radial positions in Fig. 3.6 during one cycle at λ = 10 and Reδ = 213, which is the

current critical Reynolds number listed in Tab. 3.1 for the 2-D simulation. It is noticed

that the flow at ζ = 0 is equivalent to that of the exact solution of Grace (1928) and Sexl

(1930) in Eqn. (2.22). On the contrary, the flow experiences low-amplitude waves near the

wall region, which continue their appearances for several cycles, although they are shown

for one cycle only. The same scenario was observed in Eckmann & Grotberg (1991)’s

study, where the growth of disturbances was confined in the Stokes region, whereas the

flow was relatively stable near the central axis of the pipe.

The waviness of the velocity profiles shown in Fig. 3.6 is manifested in the decelerat-

ing phase,which agrees with many experimental observations (see, for example, Cooper

et al. (1993)). The flow underwent five and a half cycles of oscillation initiated at t∗ = 0

to develop a temporally periodic motion after imposing the random noises. Although it

is known that the introduced perturbations as an initial condition are necessary to induce

transition in a straight smooth pipe, additional simulations were performed with zero ini-

tial conditions to confirm it. This is essentially because the objective of this study is to

find the critical Reynolds numbers at various flow conditions, and it is possible that the

flow undergoes instabilities at a certain level of inertial forces without using any perturba-

tions as will be explained in the turbulence chapter.
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Figure 3.6: Time-dependent axial velocity obtained by the two-dimensional axisymmetric
DNS at the center plane between the two ends of the pipe and the exact laminar flow solution
for the critical condition of Reδ = 213 and λ = 10 (see Tab. 3.1).

At flow conditions somewhat above the critical levels, the behaviors of the flow in the

2-D axisymmetric and 3-D domains are plotted and shown in Figure 3.7 (a) and (b) for

two consecutive cycles. The initial conditions were treated in the same manner as those

employed for Fig. 3.6, where the random perturbations are superimposed on the exact

solution. Although the waviness in the velocity profiles is different in Fig. 3.7 (a) from

those of the 3-D simulations in Fig. 3.7 (b), they can still be found at all the radial posi-

tions and mostly during the deceleration phases in both figures. The other components of

the velocity were noticed to be very small compared with the axial velocity. The velocity

curves are shown for four radial positions, the same as those in Fig. 3.6 and at the same λ .

While the near-wall flow is highly disturbed during parts of the oscillation cycle as shown

in Fig. 3.7 (b), the flow appears to be stable at the center of the pipe with an exception

at the time when the velocity is at its maximum. It should be noted that this type of flow

behavior presented in Fig. 3.6 and Fig. 3.7 is not predictable by the Floquet theory since

the flow is considered transiently unstable. This means that the instability develops only
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during portions of the cycle, and the Floquet exponent will indicate stability or neutral

stability as explained for Fig. 2.1.

ζζ

ζ

ζ
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ζ

Figure 3.7: Time-dependent axial velocities at the center plane between the two ends of the
pipe for an unstable flow condition of Reδ = 250 and λ = 10 by: (a) the two-dimensional ax-
isymmetric DNS and (b) the three-dimensional DNS.

The contour plots of the three-dimensional flow domain, associated with the velocity
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curves in Fig. 3.7 (b), are depicted in Fig. 3.8. The sections on the left are the longitudi-

nal planes while those on the right are the cross-sectional views at the middle of the pipe.

Figure 3.8 (a) and (b) display the axial velocities captured during the accelerating and de-

celerating phases at τ/T = 1/8 and at τ/T = 3/8, respectively. As presented in Fig. 3.7

(b), the flow seems to be almost laminar at τ/T = 1/8, but the flow structure becomes

more complicated, especially near the wall, due to the very weak turbulence at τ/T = 3/8.

It can be seen that the axial velocity component is positive in the entire domain at both

instants of time, meaning that the flow direction is to the right of the longitudinal plane,

whereas the other velocity components behave randomly during the whole cycle. Note

that the radial and azimuthal components of the velocity illustrated in Fig. 3.8 (c) and (d)

at τ/T = 3/8 have small magnitudes indicating the size of the disturbances, since the base

velocities are zero in these directions. The periodic boundary conditions applied to the

two ends of the pipe were checked throughout the cycle.
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Figure 3.8: Longitudinal and cross-sectional contour plots of the three components of ve-
locity (m/s): (a) the axial velocity at τ/T = 1/8, (b) the axial velocity at τ/T = 3/8, (c) the
radial velocity at τ/T = 3/8, and (d) the azimuthal velocity at τ/T = 3/8. The flow conditions
are Reδ = 250 and λ = 10.
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Turbulence in Purely Oscillating Pipe

Flow

4.1 Overview

Turbulence generated by an oscillating pressure gradient has a significant role in many

engineering fields. For example, one of the coastal engineering problems is the erosion

caused by strong waves of turbulent flow hitting the shores. In the reciprocating engines,

the mechanism of turbulence production is crucial for the combustion characteristics,

chamber design, and intake/exhaust systems. The transitional and turbulent blood flows

in some stenosed areas or small branches increase the risk of cardiovascular diseases, as

shown by many of the bioengineering studies. The effects of the inertial shear force in

oscillating-flow heat exchangers exhibiting high turbulence energy are usually accompa-

nied by a rise in the pressure loss and the heat transfer.

In the literature, there are some difficulties that experiments encounter to accurately pre-

dict the initial occurrence of turbulence in the oscillating pipe flows. First, the base ve-
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locity distribution in space may not be equally represented in different experiments. For

instance, Hino et al. (1976) attributed most of the discrepancies between different flows

experiencing turbulence bursts to the effect of the base flow profile. Second, the onset

of turbulence in the radial profiles of flow velocity can be not easily identified by exper-

iments, which require a sustaining turbulence through several oscillation cycles. In this

regard, the study of Lodahl et al. (1998) investigated the initiation of turbulence through

the wall shear stress profiles after sampling 50 cycles in the turbulent flow regime. In ad-

dition, the experimental devices used to measure the velocity or the pressure can some-

times destabilize the flow via producing finite amplitude perturbations, especially at high

Stokes numbers, where the flow is very sensitive to disturbances. Therefore, performing

direct numerical simulation (DNS) by means of high-order numerical algorithms is rec-

ommended for accurate representations of the base velocity and its derivatives in space

and time.

In the DNS community, the numerical schemes that have been extensively employed for

the transition and turbulence studies are the spectral and finite volume methods, since the

spatial variations of dependent variables are well represented by those techniques in var-

ious geometries. The total number of grid points needed for mesh refinement using the

finite volume method is 8 times larger than that of the spectral method for the same flow.

More importantly, the global basis function of the spectral discretization is based on expo-

nential or orthogonal polynomial eigensolutions; thus, the solution convergence is faster

and more reliable than that of the finite volume method. The spectral analysis with a high

accuracy is enhanced by incorporating the finite element method in order to reduce the

limitations of the mesh modeling.

In this chapter, computations were performed by using Nek5000 at two Reynolds num-

bers which are Rδ = 400 and 800 with λ = 10. The flow undergoes periodic turbulence

and relaminarization (disturbed laminar flows) with different intensities during a cycle
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of the long-time oscillations. The profiles of the velocity, wall shear stress, and pressure

were produced for two consecutive periods, and the flow was examined considering the

amplitudes and frequencies of the fluctuations. Based on the present results, the flow con-

dition of Rδ = 400 is found to be somewhat close to the transition stage where the turbu-

lence bursts first appear. The initiation of these bursts was found to vary at relatively high

Stokes numbers, in contrast to other studies such as Lodahl et al. (1998).

4.2 Mesh modeling

The accuracy of DNS results is affected by three main factors: the domain size, the max-

imum grid space, and the time step. First, the size, shape and speed of the largest eddies

are determined by the Reynolds number and flow configuration, giving a challenge for

DNS to include all the large structures while using a fine mesh for the smaller scales (see,

for example, Coleman & Sandberg (2010)). Second, the distance between any two grid

nodes should be equal or less than the smallest dissipative scale. Finally, beside that the

different length scales of the turbulence are accompanied by a wide range of the time

scales, the temporal stability of the spectral method requires the time step to be very small.

All these restrictions lead to expensive computations. Therefore, the number of grid points

is a central issue for the DNS studies even at low Reynolds numbers, where the optimal

number of grid points can be estimated from Re9/4
τ , where Reτ is the friction Reynolds

number based on the pipe diameter (Coleman & Sandberg (2010)).

Nevertheless, various numbers of grid point denoted by GP in Tab. 4.1 were examined to

represent the flow at the conditions of Reδ = 400 and 800 with λ = 10. The computational

time was reduced since the resolutions listed in Tab. 4.1 were obtained either by increas-

ing N as for the GP1, GP2, and GP3 meshes or by interpolating the coarse mesh to the

finer GP4 mesh. Note that the total numbers shown in Tab. 4.1 were calculated from EN3
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for the three-dimensional domain. In contrast to the disturbed laminar flows, where the

exact solution was utilized, the zero value of the velocity was used as an initial condition

at the stage where the turbulence bursts are expected to grow. All the mesh independence

tests were performed at the same time during computation when the turbulence was devel-

oped, and the RMS velocities were examined for the purpose of grid convergence. In ad-

dition, because the simulations were performed for several oscillation cycles to investigate

the occurrence of turbulence, the post-processing data were exported once the desired res-

olution was achieved.

Table 4.1: The total number of grid points (GP) utilized for the pipe simulations at the flow
conditions of Reδ = 400 and 800 with λ = 10.

Domain (L∗ = 5·D∗) Reδ = 400 Reδ = 800

GP1 2.29×106 4.32×106

GP2 3.95×106 7.46×106

GP3 6.28×106 11.85×106

GP4 22.12×106 43.20×106

A spectral element mesh generator which is the Fortran 90 preprocessing program was

used to model the current meshes. The number of elements, E, was customized with a

constant mesh-size increment in both the axial and azimuthal directions, whereas the ra-

dial elements were made to be clustered toward the wall. The collocation points of order

N are distributed by the mesh generator inside each element of a domain (-1,1) in all di-

rections. Figure 4.1 displays a half cylinder of the GP3 computational mesh employed for

the flow condition of Rδ = 400 and λ = 10 from two different view angles. Note that the

interior penalties of the pipe curvature are located in the place close to the center of the

pipe, at 0 < ζ < 0.5, as shown in Fig. 4.1.
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Figure 4.1: Computational mesh with the GP3 resolution utilized for the flow condition of Rδ

= 400 and λ = 10: (a) a half of the cross-sectional view and (b) a half of the longitudinal view.

4.3 Implementation process

One of the customary methods to perform DNS at a turbulent flow condition is to impose

a fully developed turbulence at the inlet of the pipe. In this case, the simulation usually

begins at a defined initial condition such as statistically steady turbulent flow, and then the

turbulence advances with time accordingly. Another conman way is to initiate the simu-

lation with a very high Reynolds number until the flow becomes fully turbulent, and then

the flow velocity is reduced to the desired levels. Thus, the turbulence does not evolve

from zero initial velocity in the strategies described above in contrast to the current sim-

ulations, where the computations start from the rest, since a driving force was applied to

create oscillating flows, and the exact solution was not used as an initial condition.
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Overall, the onset of turbulence was investigated via two groups of simulation in this the-

sis. The first is that small random perturbations with an amplitude of 10−4× û∗ superim-

posed on the exact solution of Sexl (1930) were introduced to the flow at 100 ≤ Reδ <

400 and λ = 10. The second group is for Rδ = 400 and 800, when the flow evolves from

zero initial velocity. For those starting from the laminar solution, simulations of five and

a half cycles were sufficient in analyzing the results. For others with Rδ = 400 and 800,

the number of oscillation cycles was increased to more than 16 to achieve the long-time

oscillation of the flow driven by a body force and to produce a solution equivalent to that

reported by Sexl (1930). Turbulence associated with sudden bursts took place within the

cycles between 20 and 25. Overall, the simulations had to be implemented for more than

25 cycles to obtain the final results, and the data were collected after passing through all

those cycles. All levels of grid resolution shown in Tab. 4.1 were investigated after the

twenty oscillation regarding the smallest turbulence scales, turbulence statistics, and pipe

lengths.

4.3.1 Kolmogorov length scale

For the flow being studied herein, the smallest eddies exist during certain phases of the

oscillation cycle due to the turbulence and relaminarization phenomenon. Therefore, to

satisfy the mesh requirement on the Kolmogorov length scale (Λ ∗) for the present DNS,

the maximum grid spaces were compared with the smallest flow scales that appear during

the deceleration phase. The rate of dissipation of the turbulent energy per unit mass was

obtained for the 25-27th cycles by using the available Nek5000 tools, and the smallest

length scale, Kolmogorov (Λ ∗), was calculated from
(
ν∗3/ε∗d

)1/4, where ε∗d is a time-

dependent dissipation rate.

The time variation of Kolmogorov length scale was computed using the GP4 mesh and

plotted in Fig. 4.2 for one oscillation cycle. Note that the meshes with the highest reso-
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lution for the flow conditions of Reδ = 400 and 800 were constructed based on the mini-

mum values of Λ ∗ produced with the GP3 meshes. The smallest Kolmogorov length scale

was found to be nearly fixed at 187 µm when the mesh resolution changes for Reδ = 400.

However, the results showed a small change, roughly from 112 to 110 µm, in the min-

imum value of Kolmogorov length scale when the mesh was refined for the Reδ = 800

flow condition.

µ

µ

Figure 4.2: Kolmogorov length scales in µm from the simulations with the GP4 mesh resolu-
tion at λ = 10 and: (a) Reδ = 400 and (b) Reδ = 800.

Based on the obtaining values of Λ ∗, the maximum grid spaces in the three directions pre-

sented in Tab. 4.2 are small enough for the flow condition of Reδ = 400. Although the

number of grid points, GP4, for the flow condition of Reδ = 800 is almost as twice as that

of Reδ = 400, the mesh sizes in both azimuthal and axial directions shown in Tab. 4.2 are

slightly larger than the minimum Λ ∗. Due to the limited resources such as the number

of the available processors, the number of grid points was not increased beyond the GP4
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level for the Reδ = 800 flow condition. However, the spatial discretizations are consid-

ered sufficient regarding the resolution issue compared with other studies, such as Khoury

et al. (2013) that utilized the spectral element method for the DNS of statistically steady

pipe flow. Moreover, the distance to the nearest wall is the smallest grid spacing in the

r-direction, which is shown for the highest resolution in Tab. 4.2. The time step was cho-

sen to be variable at these two stages of flow condition with an initial value starting with

10−5. The amplitudes of the friction velocity were taken in turbulent regime, and the fric-

tion Reynolds numbers were calculated from Reτ = (û∗τD∗)/ν∗.

Table 4.2: DNS-database of the flow conditions at Reδ = 400 and 800 for λ=10.

Domain Reδ = 400 Reδ = 800

(L∗ = 5·D∗)

Total grid points GP4 GP4

∆r∗, ∆R∗θ , ∆z∗ (min, max) in µm (4.2, 140), (40, 177), (43, 167) (3.3, 112), (28, 160), (31, 135)

Kolmogorov length scale (Λ ∗) in µm 187 110

Initial time step (∆t∗) in sec 10−5 10−5

Maximum friction velocity (û∗τ ) in cm/s 1.9 2.5

Friction Reynolds number (Reτ ) 385.9 501.2

4.3.2 Grid convergence for turbulent flows

Turbulent velocity fluctuations were calculated for one complete cycle between the actual

velocity component in the z-direction (u) and its cycle-averaged velocity (ū). Thus, the

turbulence statistics in terms of root-mean-square fluctuation velocity (urms), normalized

by û∗, were averaged for a cycle at the turbulent flow condition, and the urms was obtained
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from

urms =

√
ū2− ū2. (4.1)

Different tests such as the grid convergence, the sufficiency of the domain length, and

the time step quantification were implemented depending on the profiles of urms. The re-

sults show a good convergence regarding the RMS velocities at the GP3 and GP4 reso-

lutions and the flow condition of Reδ = 400 as shown in Fig. 4.3 (a), where the relative

errors are negligible. A similar convergence was also noticed for urms at selected loca-

tions along the pipe for one complete cycle, i.e., the flow statistics are invariant along the

z-direction, confirming that the turbulent flow is fully developed, or statistically unstation-

ary homogeneous. The turbulence is also checked statistically axisymmetric with quanti-

ties exhibiting changes only along the radial direction, although their RMS figures are not

shown herein. Furthermore, the mesh with GP3 resolution used for a flow at λ = 10 was

increased by some percentages to implement computations for flows at λ = 20 and 25.

The number of elements was rearranged to comply with the flow behaviors near the wall

at those high oscillation frequencies, leading also to a good grid refinement.
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Figure 4.3: RMS fluctuation velocities with respect to ζ , showing the grid convergence for
the simulations performed with the four resolutions at λ = 10 and: (a) Reδ = 400 and (b) Reδ

= 800.

There are small discrepancies between all RMS velocities at Reδ = 800 as shown in Fig. 4.3

(b). Increasing the number of grid points improved the convergence of RMS velocities,

and the relative errors became very small among them using the GP3 mesh and others

with grid points above 10 ×106. Note that the duration at which the RMS velocities are

shown in Fig. 4.3 (b) is also for the 25th cycle. The turbulence at several locations of the

pipe was examined at this level and found to be statistically homogeneous, and their RMS
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values are equivalent to those presented in Fig. 4.3 (b) for the GP3 mesh. The turbulence

started impulsively from the rest at Reδ = 800 in contrast to that at the lower Reynolds

number, where the flow behaved as a disturbed laminar flow at the early oscillations be-

fore the turbulence developed. For both flow conditions, the curves of urms were invariant

at each flow cycle in the turbulent regime of the long-time oscillation.

4.3.3 Grid Resolution in terms of wall units

The sufficiency of the grid resolution for the wall-bounded flows can be verified in terms

of the kinematic viscosity and the friction velocity only (see, for example, Khoury et al.

(2013), Kim et al. (1987), Spalart (1988), Spalart & Baldwin (1989)). Regarding the

spectral element method, the recommended limits are ∆r+ ≈ ∆Rθ+ ≤ 5 and ∆z+ ≤ 10,

as reported according to the DNS performed for the steady Poiseuille flows. Nevertheless,

for this study, the maximum distance of the mesh is normalized by the friction velocity

amplitude, (τ̂∗w/ρ∗)1/2 where τ̂∗w is the wall shear stress amplitude. Table 4.3 shows the

mesh distances at the GP4 resolution normalized by the viscous lengths for the two cases

of turbulence with Reδ = 400 and 800 at λ = 10. The first grid point from the wall is less

than 1, and the first ten points are within r+ ≤ 10.

Table 4.3: 3-D mesh (GP4 resolution) information in terms of wall units for the flow condi-
tions of Reδ = 400 and 800 with λ = 10.

Reynolds number r+ ∆r+ (max) ∆Rθ+ (max) ∆z+ (max)

Reδ = 400 0.092 3.08 3.894 3.674

Reδ = 800 0.105 3.584 5.12 4.32
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4.3.4 The length of the computational domain

The driving force was applied to obtain an oscillating flow with periodic conditions at the

ends. It is known that this type of periodicity
(
u(0,τ) = u(L,τ)

)
creates unrealistic phys-

ical correlations at the ends of the pipe since the conditions are artificial, meaning that

they can be interpreted as a Fourier representation of the velocity field. Therefore, a suffi-

cient pipe length, larger at least a few times than the largest structure of turbulent eddies,

should be employed. To check the validity of these boundaries, the simulations were per-

formed in different computational domains. Three different lengths, 3.5·D∗, 5·D∗, and

7·D∗ were examined at Rδ = 800 and λ = 10 only, since the turbulence appears to be well

pronounced at this stage. The middle length, which is 5·D∗, was modeled at the GP3 res-

olution, and the two other lengths were changed in the number of grid points along the

axial direction by some percentages. The RMS velocities of the three lengths were fairly

invariant for one complete cycle, and they are similar to that shown in Fig. 4.3 (b) at the

GP3 resolution. The pipe with length 5·D∗ is chosen for this study incorporating different

flow conditions. On the other hand, the periodicity of the boundaries at the cross-sectional

areas was tested in terms of instantaneous velocities as shown in Fig. 4.4 and found to be

exactly equivalent.

Figure 4.4: Instantaneous axial velocities with Reδ = 800 and λ = 10 at two locations: (a) Z =
0 and (b) Z =10, where Z = z∗/R∗.
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4.4 Parallel computing

The high performance scaling properties that Nek5000 offers were utilized for every job

assigned to this study. The hardware used for the parallel computing is the Cray CS400

supercomputer cluster running CentOS Linux 7. It is infiniband and connected with 21TB

RAM, and it consists of 84 nodes encompassing 36 cores for each node. The computa-

tional domain is partitioned linearly over the available cores. To give an example for one

simulation performed herein, the number of cores provided for one job was 360 for simu-

lations with Rδ = 800 and λ = 10. The wall time per one time step was estimated to be 3.2

sec for simulations with the GP3 mesh resolution, whereas the process consumed 9.5 sec

per one time step for the simulations with the highest number of grid points. Regarding

the computations with the fine mesh, the number of days was approximately 35 to com-

plete one oscillation cycle in the turbulent regime. Note that the wall time is referred to

the actual time spent to execute one job, including the communication time between the

parallel CPU’s, and it does not account the queue, I/O, and post-processing times.

4.5 Results and discussions

4.5.1 Flow behavior at Reδ = 400

There are several studies attempting to determine the first appearance of turbulence bursts

for the purely oscillating flows. The majority agrees that the turbulence grows in the late

time of the acceleration phase and diminishes at the beginning of the flow reversal. The

reason why the turbulent structures disappear during the reversal times within the cycle

is because of the adverse pressure. In this study, before determining the initial stage of

the turbulence bursts, the flow was found to experience periodic waviness during the de-

celeration phase with relatively low-frequency fluctuations, for flow conditions at 250 <
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Reδ ≤ 400 and λ = 10. Note that the flow needs an external excitation such as a small

random perturbation (or wall roughness as will be explored latter in Chapter 5) to be dis-

turbed when Reδ ≤ 400, and after that the turbulence breaks down once the inertial forces

become relatively high.

With respect to time, there were no significant variations resembling the turbulence bursts

in the profiles of the axial velocity when Reδ ≤ 400 at all radial positions. However, sud-

den increases in velocity originating from the near-wall region were noticed during some

parts of the two consecutive cycles at the flow conditions of Reδ = 400 and λ = 10 with

ζ = 0.99 as shown in Figure 4.5. It can be noticed that these structures are not coherent,

and they exhibit low-frequency and high-amplitude fluctuations. Note that occurrence of

turbulence was tested at this stage for several oscillation cycles, which showed randomly

recurrent bursts at the same low intensities.

ζ

ζζ

ζ

Figure 4.5: The temporal evolutions of the axial velocity at different radial positions (ζ = 0,
0.9, 0.95 and 0.99) viewed at a cross section midway along the pipe with Reδ = 400 and λ =
10 and computed using the GP4 mesh.

The total number of grid points at the GP3 resolution was found to be sufficient to simu-

late a flow with conditions of Reδ = 400 and λ = 10, where the turbulence statistics were
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approximately constant between the results of GP3 and GP4 meshes. The refinement was

increased to make the mesh-size increment less or on order of Λ ∗, although fewer grid

points could be used at the same RMS velocity. The simulations performed using the fine

mesh (GP4) are believed to resolve all relevant turbulence scales, since the maximum grid

sizes in any direction are less than Λ ∗, as demonstrated in Tab. 4.2.

The computations were implemented for 25 cycles using the GP3 mesh, and the produced

data were interpolated to the GP4 mesh as an initial condition. However, the flows experi-

enced a fully developed turbulence between the 25th and 27th cycles in the two domains

with those different resolutions by obtaining the time-varying quantities in addition to the

averages. The intermittent appearance of turbulence emerges with high amplitudes dur-

ing the two cycles at ζ = 0.99 as shown in Fig. 4.5. It can be noticed that the second stage

of transition when the turbulence bursts occur appears to be around the flow condition of

Reδ = 400 as the current DNS data revealed. Due to the various criteria and approaches

used by others, the above claim may disagree with previous findings, which considered

the Reδ ≥ 500 flow condition at Stokes numbers from 10 to infinity is the stage of turbu-

lence bursts (see, for example, Lodahl et al. (1998)).

The critical Reδ at this initial stage of turbulence was not pursued as the way implemented

for the disturbed laminar flows. However, the degree of turbulence at three different val-

ues of λ which are 10, 20, and 25 was examined with the same Reδ , and the axial veloc-

ities at ζ = 0.99 were produced only. These velocities are shown for two cycles at Reδ =

400 in Fig. 4.6. The figure reveals that the turbulence intensity varies with λ , indicating

that the turbulence bursts may appear at a lower flow condition than Reδ = 400 at high os-

cillation frequencies, i.e., this stage is not at a constant Reδ as some have declared. Note

that the total number of grid points was also increased in order to comply with the new

flow conditions.
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Figure 4.6: The temporal evolutions of the axial velocities at one radial position (ζ = 0.99)
viewed at a cross section midway along the pipe for three different values of λ : (a) 10, (b) 20
and (c) 25.

The velocity contour plots are presented in Fig. 4.7 (a) and (b) captured during the accel-

eration and deceleration phases, respectively. In Fig. 4.7 (a), the low-amplitude waviness

of the velocity can barely be observed, and the flow appears to be completely laminar.

In contrast, turbulent slugs can be identified near the wall as displayed in the Fig. 4.7 (b)

with some turbulence amplitudes and frequencies along the pipe. Not that the contour

plots are from the simulations employing the GP4 mesh, which produced the time-varying

velocities in the middle of the pipe as presented in Fig. 4.5.
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Figure 4.7: The contour plots of the axial velocity at Reδ = 400 and λ = 10 using the GP4
mesh during: (a) the acceleration phase and (b) the deceleration phase.

4.5.2 Flow behavior at Reδ = 800

Other simulations were performed for the flow condition of Reδ = 800 to examine the in-

ertial effects on the flow behavior at one Stokes number (λ = 10). The initial time step

and Courant number were the same as those of Reδ = 400, whereas the total number of

grid points was doubled by some ratio, as provided in Tab. 4.2. The maximum mesh dis-

tances were reduced in size to be close to the value of Λ ∗ in all directions. By compar-

ing the two stages of turbulence, the dissimilarities between the two velocity profiles of

Fig. 4.8 and Fig. 4.5 are significant, especially in the Stokes boundary layer thickness.

The amplitudes and frequencies of the turbulence bursts are more prominent at Reδ = 800

than those at Reδ = 400.
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ζ

ζζ

ζ

Figure 4.8: The temporal evolutions of the axial velocity at different radial positions (ζ = 0,
0.9, 0.95 and 0.99) viewed at a cross section midway along the pipe with Reδ = 800 and λ =
10 and computed using the GP4 mesh..

In addition, the time when the turbulence occurs within the cycle is approximately simi-

lar in both cases of the flow conditions. The flow starts with low-frequency fluctuations

during the acceleration phase, and then the turbulence bursts grow during the deceleration

phase as presented in Fig. 4.5 and Fig. 4.8. The biggest effect of turbulence is noticed at ζ

= 0.95 and 0.99 near the wall. The kinetic energy is high in that region, and its maximum

value exists approximately in the middle of the deceleration phase. The flow relaminar-

izes once the flow reversal phase begins, and then the turbulence develops later again until

the end of the cycle.

The contour plots along the z-direction are presented in Fig. 4.9 at two times of an oscil-

lation cycle. The flow is relaminarized at τ/T = 1/8, although there are some very small

disturbances adjacent to the wall exhibited in Fig. 4.8 at that time. Thus, the visual obser-

vations may not reveal the instability of the flow during this phase, and the flow is con-

sidered laminar compared with that of the other phases. At τ/T = 3/8, the turbulence is

more pronounced than that of the corresponding Fig. 4.7, and this degree of turbulence is
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expected to be even higher at the same Reynolds number if λ increases.

Figure 4.9: The contour plots of the axial velocity at Reδ = 800 and λ = 10 using the GP4
mesh during: (a) the acceleration phase and (b) the deceleration phase.

4.5.3 Wall shear stress (WSS)

The fluctuations of the velocity derivative can be detected in the profiles of the wall shear

stress. This time-varying quantity was calculated by means of the built-in routines of

Nek5000. The accuracy of the computation was believed to be achieved near the wall

since the refinements are sufficient in that region for almost all the different numbers of

grid point. The analytical solution of the wall shear stress for a viscous laminar flow was

calculated from

τ∗w
ρ∗

= ν
∗du∗

dr∗
, (4.2)

where u∗ is the axial velocity of the exact solution (Sexl (1930)), and its phase was taken

according to the phase of the pressure gradient. The DNS results of WSS, which were ex-
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tracted for each 100 time steps, are shown for the flows at Reδ = 400 and 800 in Fig. 4.10

(a) and (b), respectively. Note that the time periods of the two oscillation cycles shown in

Fig. 4.10 are normalized by the time period of the laminar flow.

τ

τ ρ

τ

τ ρ

Figure 4.10: The time-dependent wall shear stresses at λ = 10 and: (a) Reδ = 400 and (b) Reδ

= 800; the DNS result (red curve) and the laminar solution (black curve).

Although the flow is periodic with time, an asymmetry may appear in the profiles of the

velocity, pressure, and wall shear stress at relatively high flow conditions (see, for exam-

ple, Feldmann & Wagner (2016)). As can be seen in Fig. 4.10, the signal of the wall shear

stress is influenced by this asymmetry making a phase shift or an amplitude change. In

this regard, the driving force which is a sinusoidal function leads to periodic oscillations

in the pressure gradient. Thus, the temporal periodicity can be identified clearly in the
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profiles of the axial velocity as presented in Chapter 3 for the laminar flow. However, the

turbulent flow may not necessarily follow this scenario since it is considered as a result of

that driving force, being affected by the flow random fluctuations and behaving aperiod-

ically. When the intensity of turbulence increases, the asymmetry becomes more visible;

therefore, the influence of this behavior was noticed to be weak at the low flow condition

compared with that at the high flow condition.

In addition, the instabilities and chaos are more reflected in the derivatives of the veloc-

ity than the velocity itself as explained in the stability analysis. For example, the velocity

curve shows slightly asymmetrical waviness during the two cycles presented in Fig. 4.5,

leading to small deviations in that of the wall shear stress shown in Fig. 4.10 (a). How-

ever, the asymmetry is more ascribed to the velocity curve at Reδ = 800 as appeared in

Fig. 4.8, especially near the wall (ζ = 0.95, and 0.99), which yields to significant imper-

fections in the profile of the wall shear stress as noticed in Fig. 4.10 (b), where the turbu-

lent shear stress is apparently aperiodic based on the present DNS results.

Regarding the indication of the initial stage of turbulence, the wall shear stress shows

some changes in the magnitudes and phases with respect to those of the laminar solu-

tion within the oscillation cycles, particularly during the phases when the turbulence was

recorded, and that can be observed in both WSS profiles at Reδ = 400 and 800. The WSS

differences between the laminar and turbulent flows are clearly shown in Fig. 4.10 (b),

where all WSS values of the turbulent flow increase significantly producing strong de-

flections compared with those of the laminar flow. Additionally, the amplitudes of τ∗w

within the two cycles are not equivalent in the case of Reδ = 800 in contrast to those of

Reδ = 400. Thus, these discrepancies can be attributed to the nature of turbulence since

the flow behavior is unpredictable and subjected to the change of the time history of ve-

locity derivative, where each cycle of the oscillation in the turbulent regime is affected by

the previous cycle.
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At high oscillation frequencies, a comparison was made between the profiles of WSS with

three different Stokes numbers for two oscillation cycles as shown in Fig. 4.11. The GP3

mesh was employed for the shear stress computations at λ = 10. Other fine meshes with

good refinements near the wall were used for the other flow simulations at λ = 20 and 25.

The statement claimed for the velocity profiles is confirmed herein, where the intensity of

turbulence increases with the oscillation frequency as the wall shear stress profiles reveal.

The amplitudes of τ∗w rise significantly with the Stokes numbers at the fixed Reynolds

number. The deflection curves of τ∗w are different in shape as shown in Fig. 4.11 (a), (b),

and (c) during the phases of deceleration. This is because that the waviness of the velocity

derivative increases with λ , and the high turbulence intensity causes a high asymmetry.
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Figure 4.11: The profiles of the wall shear stress at flow conditions of Reδ = 400 and three
Stokes numbers: (a) λ = 10, (b) λ = 20, and (c) λ = 25.

As explained earlier that the oscillating wall shear stress in the turbulent flow regime dif-

fers significantly from that of the laminar flow, especially when the flow experiences in-

tense turbulence bursts at high λ such as 53, as that conducted by Lodahl et al. (1998)

in their experimental investigation. For the sake of comparison, the current τ∗w of the

smooth pipe flow (blue curve) at Reδ = 600 and λ = 53 is compared with that of Lodahl

et al. (1998) (red curve) as shown in Fig. 4.12. It appears that the turbulent fluctuations
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and their phases are not equivalent between the two curves, but the friction coefficients

have shown excellent agreement between them throughout the oscillation cycles as those

shown in Fig. 4.12, with more results presented in Chapter 5. Note that, the DNS data

were scaled by a factor of 0.0165 since different geometry and flow characteristics were

used in the two approaches of analysis at the same Reynolds and Stokes numbers. Also,

the time series of the two curves is not simultaneous, where around 25 cycles were imple-

mented in the numerical computations relative to at least 50 cycles sampled in the study

of Lodahl et al. (1998).

τ

τ ρ

Figure 4.12: Experimental validation for the present DNS result in terms of the wall shear
stress utilizing Lodahl et al. (1998)’s data at flow conditions of Reδ = 600 and λ = 53 (red);
the wall shear stress of the present DNS (blue) is scaled by a factor of 0.0165.

4.5.4 Turbulence intensity

The degree of turbulence increases with the flow condition from Reδ = 400 to 800 as

shown in the previous figures, and it also varies among the radial positions of the pipe. In

this regard, the velocity fluctuations can be calculated with respect to the laminar solution,
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so that the level of turbulence for any flow condition can be estimated from

T I =

√
(u−U)2

|U |
, (4.3)

where the fluctuation of the axial velocity is u′ = u−U in a non-dimensional form, and U

is considered the velocity of the exact solution in Eqn. (2.22).

Table 4.4: Turbulence intensity (T I) appearing in Eqn. (4.3) at four radial positions for two
Reynolds numbers and λ = 10.

ζ Reδ = 400 Reδ = 800

0 0.237 0.249

0.90 0.275 0.350

0.95 0.444 0.665

0.99 0.944 0.967

Table 4.4 demonstrates the values of T I for flows experience turbulence variously among

the probed points. Since the disturbances in the center of the pipe are almost the same

for the two flow regimes, the difference between the turbulence intensity at Reδ = 400

and that at Reδ = 800 in Tab. 4.4 is small at ζ = 0. A relatively slight increase occurs in

the turbulence intensities at ζ = 0.9 for both flows with Reδ = 400 and 800, respectively.

The significant change in the turbulence is at ζ = 0.99 compared with that at ζ = 0.95 in

the case of Reδ = 400 flow condition, with a small difference from that at the condition

of Reδ = 800. The turbulence intensity at the two stages of turbulence becomes higher

within the very close region from the wall, ζ = 0.99, than those at other locations.
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4.5.5 Turbulence kinetic energy (TKE)

In the wall-bounded shear flows, the process of transferring energy from the large to small

eddies at the Kolmogorov scales plays the main role in sustaining turbulence. This energy

was calculated for the oscillating turbulent flows at the two Reynolds numbers and λ =

10. The RMS fluctuation velocities of the three velocity components were calculated for

one oscillation cycle using Equ. 4.1. The TKE per unit mass is defined to be half the sum

of the square of RMS velocities of the velocity components as follows:

TKE =
1
2
(u2

rms +υ
2
rms +w2

rms), (4.4)

where urms, υrms and wrms are RMS velocities in the axial, radial and azimuthal directions,

respectively. Figure 4.13 demonstrates the profiles of TKE with respect to the radial co-

ordinate during the 25th oscillation cycle. The turbulence energy at Reδ = 800 is clearly

higher than that at Reδ = 400, especially in the center of the pipe. Through the profiles

of TKE in Fig. 4.13, the mechanism at which the flow transfers most of its energy from

the core (ζ = 0) with large flow scales to the boundary layer region (ζ = 0.99) can be de-

scribed.

92



Chapter 4 Turbulence in Purely Oscillating Pipe Flow

ζ

δ

δ

Figure 4.13: Turbulence kinetic energy per unit mass computed at the two flow conditions of
Reδ = 400 and 800 for λ = 10.

4.5.6 Spatial autocorrelation function

Spatial correlations between the random fluctuations of any turbulent signal can reveal

some important features of the homogeneous turbulent flow. Mathematically, these func-

tions if found are not linked to the Navier-Stokes equations, instead they can be computed

from the provided turbulence information, herein the 3-D DNS data at Reδ = 800 and λ =

10. Thus, the time-averaged longitudinal autocorrelation function can be written as

R̄zz(l,ζ ) =
u′(Z0 + l,ζ ,τ)·u′(Z0,ζ ,τ)

(u′(Z0,ζ ,τ))2
, (4.5)

where Z0 is the reference point for any axial distance in the flow field such as l. This point

was taken in the middle of the pipe, Z = 5, where Z = z∗/R∗, and for two radial positions,

ζ = 0 and 0.9. The discrete data of the specified distance, represented under the overbar in

Eqn. (4.5), are averaged in time for three intervals at the AP (acceleration phase), DP (de-

celeration phase), and LD (late deceleration phase). Note that the sampling duration for

time averages is from π/6 to 2π/6 during the acceleration phase, 4π/6 to 5π/6 during
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the deceleration phase, and 5π/6 to π during the late deceleration phase of the oscillation

cycle with length 2π .

The eddies with relatively large spatial scales are correlated to that at the reference point

during the acceleration phase, when the flow is relaminarized, more than other phases

as shown in Fig. 4.14. In contrast, the eddies of the turbulent flow differ in sizes so that

those at the smallest scales with respect to the larger eddies are not well correlated to the

eddy at the reference point. However, this behavior may not be seen clearly in Fig. 4.14

(a) since the flow experiences low-amplitude fluctuations at ζ = 0 during the decelera-

tion phase, which are not different from those in the acceleration phase. Moreover, the

turbulence scales before the flow reversal at ζ = 0 with different sizes, are slightly more

decorrelated to the eddy at the reference point than those during AP and DP phases.

Since the turbulence intensity increases at ζ = 0.9 with more random fluctuations, low

values of the spatial correlation function were obtained from the various flow eddies near

the wall, as shown in Fig. 4.14 (b) and (c), where the last figure is for magnifying the be-

haviors of R̄zz near the reference point. The values of R̄zz in Fig. 4.14 for the flow field

during the acceleration phase at ζ = 0 and 0.9 are approximately the same, due to the na-

ture of disturbances in that phase, where the flow patterns tend to be quite correlated to

each other within the half pipe. In contrast to the deceleration phase where turbulence

bursts emerge, the flow exhibits eddies of different length scales in the late deceleration

phase, so that the profiles of R̄zz are different along the radial direction, showing a big dis-

crepancy of R̄zz at ζ = 0.9 than that at ζ = 0.
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Figure 4.14: Spatial autocorrelation functions for a turbulent signal taken along the z-
direction from Z = 5 to 10 at: (a) ζ = 0, (b) ζ = 0.9 and (c) ζ = 0.9; the flow conditions are
Reδ = 800 and λ = 10 for the time-averaged quantities of three intervals at: acceleration phase
(AP), deceleration phase (DP) and late deceleration phase (LD).
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It is known that R̄zz does not change with the cross-stream direction, due to the azimuthal

periodicity inside the pipe, so that the values shown in Fig. 4.14 are considered sufficient

to find the two-point correlations for different values of l. However, for the unsteady flow,

the fluctuation velocity is calculated after subtracting the velocity u from the that of the

laminar flow, U , meaning that most of the fluctuations are not about zero. Hence, the

three curves shown in Fig. 4.14 are not reaching zero in any case, although the turbulence

may contain all the relevant motion scales including the integral length scales. Note that if

the assumptions of Fig. 4.14 are considered, the integral length scale representing the area

under each curve in Fig. 4.14 is
∫

∞

0 R̄zz(l,0)dl.

4.5.7 One-dimensional energy spectra

The distribution of the kinetic energy among eddies of different sizes can be studied through

the behavior of the energy spectrum, which is defined to be the twice of the one-dimensional

Fourier transform of the velocity fluctuations as follows:

Ē∗zz(k
∗,r∗) =

1
π

∫
∞

−∞

u∗′(z∗0 + l∗,r∗, t∗)·u∗′(z∗0,r∗, t∗)·e
−ik∗l∗dl∗. (4.6)

The discrete Fourier transform (DFT) for a vector u∗′n of an order of Ne and a wavenumber

of k∗ is defined as

û∗′n (k
∗,r∗) =

1
Ne

Ne−1

∑
n=0

u∗′n (z∗n,r∗, t∗)·e
− 2πi

Ne k∗n for n = 0, . . . ,Ne−1, (4.7)

where i is the imaginary unit. The time-averaged energy spectrum function in terms of k∗
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and a radial distance (r∗) is

Ē∗zz(k
∗,r∗) = |û∗′n (k∗,r∗)|

2 for k∗ = 0, . . . ,
Ne

2
. (4.8)

Following the second hypothesis of Kolmogorov, the energy spectrum of −5/3 slop can

be used as a criterion for the DNS data of Ē∗zz(k
∗), particularly in the inertial subrange

of the flow length scales. Figure 4.15 shows nondimensionalized quantities of Ē∗zz which

are scaled by (ε̄∗d(ν
∗)5)1/4, where ε̄∗d is the time-averaged dissipation rate, and ν∗ is the

kinematic viscosity. Likewise, the wavenumber k∗ is scaled by the inverse of the time-

averaged Kolmogorov length scale (Λ̄ ∗). Note that the DNS data were interpolated on the

equispaced grid along the axial direction parallel to the axis of symmetry. Also, the three

time intervals were taken in the same way implemented for R̄zz, where the half cycle was

divided into six time divisions.

The turbulent signals of the in-line velocities along the z-direction at two radial positions

were considered, and the time-averaged values of Ēzz were calculated and are plotted in

Fig. 4.15 for the three phases of oscillation. It can be seen that the maximum energy spec-

trum of turbulence occurs during the deceleration phase at both ζ = 0 and 0.9. The eddies

move with relatively low turbulence energies inside the pipe during the acceleration phase

at the two probed locations according to the plots of Fig. 4.15. Note that the energy dis-

tribution occurring among the largest eddies or those at the Kolmogorov microscales can

not be seen clearly in Fig. 4.15. However, the slop in the energy profiles of the inertial

subrange eddies is almost equal to −5/3, especially for the flows with the high turbulence

intensities.
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Figure 4.15: Energy spectrum of a turbulent signal along the z-direction from Z = 5 to 10 at:
(a) ζ = 0 and (b) ζ = 0.9; the flow conditions are Reδ = 800 and λ = 10 for the time-averaged
quantities of three intervals at: acceleration phase (AP), deceleration phase (DP) and late de-
celeration phase (LD).

The coherent structure of turbulence cannot be easily sustained during the late decelera-

tion phase since the relaminarization starts to take place. As a result, the trends of Ēzz in

the late deceleration phase are a little different from those of other shown phases at both
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radial positions, where the amount of Ēzz changes significantly at the middle wave num-

bers as demonstrated in Fig. 4.15 (a). However, the presented values are still higher than

the those of the acceleration phase in the two figures. In comparison with those at ζ = 0,

it is clear that the amounts of energy are increased by some percentages since the level of

turbulence is high in the Stokes layer during almost all the oscillation phases. The mech-

anism for transferring energy at ζ = 0.9 tends to be similar to that at ζ = 0 with respect to

their slops.

4.5.8 Vortices in the turbulent flow

The effect of the vortical structures on the oscillating flows was found to be significant

since the successively increasing and decreasing magnitudes of the velocity can enhance

such vortexes. Figure 4.16 (a) and (b) show the time-averaged vortices during short inter-

vals of the acceleration and deceleration phases, respectively. There are some swirls with

small magnitudes when the flow accelerates, which indicate that the turbulence activity is

low throughout this part of oscillation in contrast to that of the deceleration phase.

Figure 4.16: The time-averaged axial vortices (rev/s) at the flow conditions of Reδ = 800 and
λ = 10 for two intervals of the: (a) the acceleration phase (AP) and (b) the deceleration phase
(DP).
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4.5.9 Velocity profiles in terms of wall units

In the inner layer, the time-averaged velocities for short intervals of the acceleration, de-

celeration, and flow reversal phases were obtained and are displayed in Fig. 4.17. The

vertical values represent

ū+ =
ū∗

ûτ
∗ , (4.9)

and the horizontal variable is

r+w = (R∗− r∗)(
û∗τ
ν∗

), (4.10)

where û∗τ is the amplitude of the friction velocity. The viscous sublayer at r+w < 5 is the

same for all the flows with different phases, although that averaged during the reversal

time has a negative sign. These behaviors at the high flow conditions of Reδ = 800 and

λ = 10 are consistent with the ū+ = r+w prediction. The divergences among the velocity

curves start to increase within the buffer layer at 5 < r+w < 30, especially for the flow

which is in the laminar regime. The discrepancy during the acceleration and flow re-

versal phases between the velocity profiles and that of the logarithmic law of the wall,

(1/0.41)ln(r+w )+ 5, is more manifested at r+w > 30 in comparison to that of the deceler-

ation phase, where an excellent agreement is achieved. This gives an indication that the

flow during the deceleration phase or at a turbulence condition has the same tendency as

that of the steady base flow in the near-wall region due to the high viscous effects.
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Figure 4.17: The time-averaged axial velocities in the near-wall region nondimensionalized
by the amplitude of the friction velocity for three intervals of the: acceleration phase (AP)
(Green), deceleration phase (DP) (red), flow reversal phase (RV) (blue), ū+ = r+w (black dot-
dashed curve) and log law (black dashed curve).

4.5.10 Oscillating pressure field

The time-dependent pressure is produced at two radial positions to show the turbulence

fluctuations through the pressure. Figure 4.18 (a) and (b) show the axial velocities and

their corresponding pressures, non-dimensionalized by (ρ∗û∗2), for two consecutive os-

cillation cycles with Reδ = 400 and λ = 10 at ζ = 0.95 and 0.99, respectively. It can be

noticed in Fig. 4.18 that there is a phase change between the pressure and the velocity

with a phase lead of approximately π/2 for the pressure.
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τ

τ

Figure 4.18: Axial velocity (u) and gauge pressure (p) for the flow conditions of Reδ = 400
and λ = 10 at: (a) ζ = 0.95 and (b) ζ = 0.99.

The profiles of the pressure appear to be close to those of the velocity regarding the de-

gree of turbulence during the deceleration phases. However, the frequencies of the flow

fluctuations are low around the velocity curves compared with those of the pressure as

shown in Fig. 4.18. Also, the pressure does not show significant changes as same as the

velocity at ζ = 0.99, where the disturbances exhibit some sudden high amplitudes. In ad-

dition, the figure reveals that the maximum values of the pressure fluctuations are seem-

ingly constant with respect to the radial positions. The turbulence activity of the pressure

at Reδ = 400 and λ = 10 gives an additional proof that the second stage of the transition

happens at about these flow conditions.
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Roughness-induced Transition and

Turbulence

5.1 Overview

There have been several studies to assess the influence of wall imperfections on fluid

flows, more specifically about disturbances initiated by small asperities distributed on

the wall. In some cases, where the flow is driven sinusoidally inside the pipe as observed

in heat exchangers, combustion chambers, thermoacoustic devices, etc., the wall effect

is important due to a few reasons. In particular, since the velocity overshoot of an oscil-

latory flow shifts toward the wall, especially at high frequencies, the surface roughness

is an important factor causing or even delaying the transition. Many investigations have

been conducted to examine the stability of the oscillatory flow on smooth and rough walls

in the literature. For example, the ratio of a/ks, where a is referred to as the amplitude of

the oscillatory free-stream flow and ks is the Nikuradse’s equivalent sand roughness, has a

significant role of intensifying turbulence and raising shear stresses as noticed by the ex-

periment of Jensen et al. (1989). More importantly, Sleath (1987) has related the defect
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velocity near the wall to a/ks values as he observed different flow behaviors with various

roughness heights. Studies of Zhou et al. (2018), Ghodke & Apte (2016) that employed

numerical methods for an oscillating flow to explore the effects of small spherical parti-

cles dispersed over a plate declared two important points. Firstly, Zhou et al. (2018) no-

ticed that the arrangements of the solid particles which represent the wall roughness have

no impacts on the friction factor in the numerical simulations, and secondly, Ghodke &

Apte (2016) reported that the roughness grants a spatial heterogeneity inducing turbulent

kinetic energy increment.

A typical method to incorporate the surface roughness in direct numerical simulations

(DNS’s) is to modify the locations of the cells near the wall or to introduce immersed

boundary layers as the case of Forooghi et al. (2018). The use of unstructured grids can-

not always model the surface roughness effectively and thus they need to be adapted to

capture the most significant features of the flow characteristics. Although turbulence sim-

ulations necessitate extra attention near the wall, the pipe wall roughness of the oscillating

flow requires even finer mesh adding more numerical challenges. Technically, one strat-

egy to overcome these difficulties is to apply overset mesh (also known as “Chimera”)

which has been used for a few different purposes. For instance, Merrill et al. (2016) as-

sessed the applicability, effectiveness, and even defects of this technique for pipe simu-

lations at different flow conditions providing acceptable results. In the light of surface

roughness, Fischer & Choudhari (2004) supplied some guidances on the accuracy of the

overlapped solution of the spectral element method for an array of roughness elements

mounted above a flat plate.

The aim of this chapter is to perform numerical simulations exploiting the high accuracy

of the spectral element method for overlapping meshes to represent the surface roughness

and also to reduce the computational cost required in the near-wall zone. Transition to tur-

bulence triggered by the wall roughness in purely oscillating flows in pipes has not been
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investigated, to the best of our knowledge. Therefore, the wall roughness will be intro-

duced as perturbations to examine the stability of the flow at different Reynolds numbers,

and the transient behavior of the velocity will be traced in more details up to turbulence

conditions. Finally, the analyses of the friction losses with and without roughness are pur-

sued in comparisons with available experimental data.

5.2 Overset grid

In pipe flow simulations where the curvature issue is present, the difficulty of produc-

ing a mesh with wavy layers near the wall and formal distributions elsewhere arises. The

overset mesh with interpolation capability can maintain the accuracy of the spectral el-

ement method for the main flow with an appropriate wall treatment. The computational

domain is decomposed into two partitions in which grids may be easily constructed. The

outer subdomain (Ωo) transfers the data to the inner one (Ωi) where the major data of the

simulations are collocated. The internal boundary conditions (int) are specified at the be-

ginning of the computations for each mesh as follows:

u(ζ ,τ)Ωi = u(ζ ,τ)Ωo
int , (5.1)

u(ζ ,τ)Ωo = u(ζ ,τ)Ωi
int , (5.2)

where u(ζ ,τ)int acts as a Dirichlet-type velocity at a specific radial position (ζ ) at the end

of each time-step for the inner and outer subdomains. Both the inner and the outer subdo-

mains extend for a specified distance through the interpolated zone, and the shared cells

of outer mesh are non-conforming. Consequently, the local solution is not as accurate as

that of the non-decomposed zone, and numerical errors in both spatial and temporal dis-
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cretizations occur most likely. A local iteration process is implemented to minimize these

errors and to achieve fast convergence in all the simulations presented in this study.

5.2.1 Surface roughness parametrization

The receptivity phase, disturbance growth, and vortex breakdown are the basic stages of

the typical transition to turbulence. The first stage is considered linear and it can be pre-

dicted in the two-dimensional domain. The transition process begins by inducing distur-

bances to evolve with time and propagate in the space, and then the effect of the three-

dimensionality starts dominating. Despite the roughness effect is usually confined in the

viscous region where the change of the velocity gradient (∂u/∂ r) is significant, the core

region may be also affected at some flow conditions. We consider 2-D surface roughness

for which the height and the length of each roughness element vary owing to the nature of

the spectral element configuration.

Figure 5.1 (a), (b) and (c) display the the entire mesh for the pipe geometry investigated

herein. One should consider a certain number of finite elements (E) and the GLL grid

points within each element to model a rough pipe in the spectral element method. Figure

5.1 (d), (e) and (f) magnify these elements in a portion of the pipe to highlight where the

inner mesh ends (e.g. ζ = 0.95) and the outer mesh begins (e.g. ζ = 0.89). Note that the

grid points of an N-degree polynomial inside each finite element are not shown in Fig. 5.1

(d), (e), and (f) for graphical simplicity. The main flow region away from the wall does

not have any distorted mesh, and it preserves its numerical accuracy with the interpolation

boundary condition (int) at the top (ζ = 0.95). The outer subdomain (Ωo) contains the

mesh waviness taking into account the grid points of the spectral element method from

the finite elements and GLL points.

The main objective of this study is not featuring the roughness elements according to their
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Figure 5.1: Computational meshes including the frames of finite elements and Gauss-
Lobatto- Legendre ( GLL) points: (a) outer mesh for Ωo, (b) inner mesh for Ωi, and (c) com-
bined mesh for Ωo+i. finite elements near the wall: (d) outer elements, (e) inner elements, and
(f) combined elements.

size, density, and height. Instead, it focuses on the outcomes of wall irregularity on tran-

sition and how instabilities can be generated by small roughness elements only. A corru-

gated surface along the z-direction parallel to the wall is constructed by using the follow-

ing equation:

f(Z) = 1− εsr

[
cos−1

(
cos
(

αZ
ι

))]
, (5.3)

where Z is equivalent to z/λ or z∗/R∗. Equation (5.3) is executed in a user-defined rou-

tine provided by NEK5000 modifying the shape of the outer mesh as a wavy wall, which

has smooth peaks and variable lengths depending on GLL point distributions along the
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z-coordinate. The values of α and ι selected in the present analysis are 2π and 0.02 re-

spectively, yielding a roughness density of 500 along the pipe which has the maximum in-

ner radius of 0.01 m and the length of 0.1 m. Three values of dimensional roughness (ε∗sr)

equivalent to the corrugation amplitudes are used in this study, and the effect of roughness

is characterized by εsr which is the ratio of the roughness height (ε∗sr) to the pipe radius

(R∗) for the given geometry.

5.2.2 Grid convergence study and implementation

The driving force (F) with zero initial velocity condition at τ = 0 is imposed for each sim-

ulation, and after several cycles of oscillations (15 to 16), the flow reaches a long-time

oscillation state. The accuracy of Nek5000 and the overset approach are validated with

the laminar flow against the exact solution of Sexl (1930). In the numerical simulations,

the grid resolution was controlled by changing the number of elements (E) and the poly-

nomial degree (N). The convergence was achieved by E = 576 and N = 8 in the laminar

flow, whereas the numbers had to be increased to E = 6400 and N = 12 at the highest

Reδ presented in this work. Despite the fact that the turbulent eddies at the Kolmogorov

length scale occur at certain times during the oscillation cycle, the total grid points (EN3)

we used is believed to be sufficient to capture all relevant scales, since the viscous sub-

layer is well resolved in line with other studies, see Liberto & Ciofalo (2009). The spec-

tral element method was able to simulate turbulence at relatively high Reynolds numbers

we attempted, ranging from 547.72 to 800 and the Stokes numbers between 9.19 to 25.

Three different computational lengths, 3.5·D∗, 5·D∗, and 7·D∗, were tested, and 5·D∗

was found to be sufficient to ensure fully-developed flows and to reveal all the turbulence

structures with periodic boundary conditions at the ends.
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5.3 Laminar flows with rough wall

Three different roughness heights (εsr = 0, 0.0075, and 0.0125) are implemented in a fully

developed laminar flow at Reδ = 100 and λ = 10. Figure 5.2 presents the velocity profile

at τ/T = 1/16 for one Stokes number (λ = 10) in the midsection of the pipe (Z = 5),

where τ/T is the phase time in a cycle after the long-time oscillatory solution is attained,

not the actual time starting from t∗ = 0. The exact solution of Sexl (1930) in Eqn. (2.22)

is plotted as a solid line in Fig. 5.2, and the symbols denote the numerical results calcu-

lated by the two combined meshes. For the smooth pipe in Fig. 5.2 (a), the numerical so-

lution is not distinguishable from the analytical solution even in the overlapped zone of

0.89 ≤ ζ ≤ 0.95. The rough pipe in Fig. 5.2 (b), however, generates a slight velocity de-

viation mostly near the wall in comparison with the smooth pipe solution. Because of the

computing limitations, only two cases of εsr = 0 and 0.0075 will be considered for further

investigations in transition and turbulence.
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Figure 5.2: The axial laminar velocity profile of the combined domain (Ωo+i) at Reδ = 100, λ

= 10, and τ/T = 1/16 compared with the exact solution of Sexl (1930) for the smooth pipe:
(a) εsr = 0 and (b) εsr = 0.0075 and εsr = 0.0125.

Based on the results shown above, the differences in flow stability between experiments

and theories found in the literature may be attributed to the precision of the laminar flow

representation in the laboratory compared with the theoretical exact solution. One pos-

sible explanation is that any disparity between the measured velocity and the exact solu-

tion can make a significant difference in the stability results owing to the fact that the sec-

ond derivative of the velocity, especially near the wall, directly impacts the flow stability

Lee & Abdulrasool (2018). In the pipes that are not smooth, the height of the roughness

element (εsr) may also play important roles. If this height is much less than the Stokes

thickness (δ ∗), it has a small amount of effect on the flow since the viscosity dominates

and dampens out the growth of disturbances generated by the wall. Small vortices were

formed near the relatively smooth wall, and no flow separation was found with the speci-

fied roughness parameters. However, for εsr > 0.0125, the flow will undergo adverse pres-
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sure gradient leading to flow separation and recirculation. In addition, the mesh density in

the z-direction has to be increased for a high εsr in order to avoid a mesh distortion.

5.4 Transitional flows with rough wall

This section closely follows the paradigm of Blondeaux & Vittori (1994) where the wavy

wall initiates disturbances. There are two stages of transition in the oscillatory flow, con-

sidering that the process begins from a disturbed laminar flow and proceeds to a weakly

turbulent flow. The surface roughness plays the main role of originating the transition in

this study, and the sensitivity to its influence exists in both laminar and non-laminar flows

with different degrees of freedom as other dynamic systems do at certain frequencies.

Two different roughness heights (εsr = 0 and 0.0075) were examined during the transi-

tional period, although εsr = 0 did not promote disturbed flows at λ = 10 and Reδ ≤ 250.

Figure 5.3 is plotted during one oscillation cycle at different Reynolds numbers and εsr

= 0.0075. Small disturbances began to develop in the near-wall zone first and then they

propagated away from the wall. The waiting time after passing the start-up periods was

25 oscillation cycles before the collection of the data. The effect of surface roughness was

to trigger the very first stage of transition at somewhat different times within the cycle,

depending on the flow conditions and the radial positions probed.
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Figure 5.3: The temporal evolution of the axial velocity at three radial positions (ζ = 0 (blue),
0.9 (green), and 0.99 (red)). the transition induced by surface roughness only at different
Reδ ’s ranging from 200 to 235 for λ = 10 and εsr = 0.0075.

It is observed in Fig. 5.3 that the wavy curves appear mostly in the decelerating phases

with different strengths across the radial positions (ζ = 0, 0.9, and 0.99), whereas the rest

of the cycle shows relatively more smooth curves. The time history of computational re-

sults affirms that the flow is completely laminar across the whole cross section at Reδ =

200, as shown in Fig. 5.3 (a). When the Reynolds number was increased to 223.5, the ir-

regular flow patterns were developed and followed by relaminarization as exhibited in

Fig. 5.3 (b), indicating the effect of surface roughness and the inertial force of fluid. A

similar trend is noticed at Reδ = 225 for the disturbances with slightly greater amplitudes

in Fig. 5.3 (c). At Reδ = 235, the flow experiences more fluctuations continuing their ap-

pearance, albeit only one cycle is plotted in Fig. 5.3 (d). This behavior can be described as

a disturbed laminar flow declaring the onset of transition.

The first stage of the transition in Fig. 5.3 indicates that a flow sustained by low-frequency
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fluctuations appearing in specific zones and phases during the oscillation cycle is tran-

siently unstable. The disturbed laminar flow affected by the wall interactions only may

have an inconsiderably different behavior from the flows disturbed by other types of per-

turbations. The critical Reynolds number (Reδ = 223.5) found here is attributed to the

roughness height, and our analysis of rough-wall representation is assumed to model the

physics reasonably well. In addition, the results were monitored for many oscillations

since the disturbances may decay after some cycles.

5.5 Turbulent flows with rough wall

The receptivity to small perturbations increases due to the nonlinearity of turbulent flow.

Physically, the flow can be disturbed by a variety of sources such as the vibrations of the

pipelines or the imperfect finishing on the internal pipe surface. In the numerical simula-

tions, a small change in the time-step, mesh resolution, or initial condition leads to some-

what different fluctuations of turbulence. Therefore, all results presented herein are ob-

tained after the time-averaged (ū) and root-mean-square (urms) velocities become invariant

to any changes made to the computational parameters. High-resolution DNS’s are per-

formed for the two cases of roughness (εsr = 0 and εsr = 0.0075) with all the other input

parameters remaining the same. The data were collected after passing the initial transient

period.

Table 4 presents some DNS parameters for the flow condition of Reδ = 800 and λ = 10 in

the smooth and rough pipes. The grid sizes are determined in compliance with the wall

status, and in the table the maximum values of ∆r∗, ∆R∗θ , and ∆z∗ are nondimensional-

ized by û∗τ/ν∗ in the radial, azimuthal, and axial directions, respectively, for the so-called

inner variables with the superscript +, while ∆t∗ is scaled with û∗2τ /ν∗. The rough sur-

face needs a high resolution near the wall to include all the roughness details influencing
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Table 5.1: DNS parameters used for a flow condition at Reδ = 800 and λ = 10.

Domain Smooth Wall Rough Wall
(L∗ = 5·D∗) (εsr = 0) (εsr = 0.0075)

Total grid points 10.2×106 11.1×106

Maximum grid space
(∆r+, ∆Rθ+, ∆z+)

5.76, 9.6, 6.4 6.3, 10.5, 7.0

Initial time step (∆t+) 0.01 0.012
Time interval for

acquired samples (time
steps)

100 100

Duration of samples
stored (τ/T )

[0, 2] [0, 2]

the flow. Splitting the computational domain into two parts can increase the efficiency in

the treatment of the surface roughness. For example, the DNS data were produced sep-

arately for the outer domain, which reduces the time and effort for the post-processing

procedures. In addition, the outer mesh of the combined domain has 24 extra grid points

than the inner one in the axial direction at the flow conditions presented in Table 4. How-

ever, the mesh resolution in the radial direction was increased by more than 40 percent to

sufficiently cover the roughness details in that direction. The time step was chosen to be

variable and was initialized at 10−5 sec, while the CFL number was fixed at 0.05. DNS

results were recorded at every 100 time steps for two consecutive oscillation cycles.

In Fig. 5.4 plotting turbulent flow results, one of the three flow conditions of Feldmann &

Wagner (2012)’s DNS showing turbulence bursts is taken and compared with the current

results at Reδ = 713.87 and λ = 9.19 for the smooth pipe to corroborate the accuracy of

our work. The numerical simulation of Feldmann & Wagner (2012) validated using the

experimental LDA data was initiated by a fully developed turbulent flow that is statisti-

cally stationary (λ = 0). The time-varying axial velocities of our and Feldmann & Wagner

(2012)’s DNS results are shown for a half cycle in Fig. 5.4 (a) and (b) respectively. Some-

what different velocity fluctuations appear between the two DNS’s, but the turbulence
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statistics show small variances among the three oscillation phases (ED, LD, and RV) as il-

lustrated in Fig. 5.4 (c) and (d). The phase-averaged velocity (ūp) and the associated RMS

fluctuation velocity,

up
rms =

√
(u2)p− (ūp)2, (5.4)

are plotted in terms of the wall distance,

r+w = (R∗− r∗)(
u∗p

τ

ν∗
), (5.5)

with phase-averaged friction velocity (u∗p
τ ). The phase averages involve the time from

the beginning of the cycle to ED, LD, and RV phases, after the long-time oscillation is

attained. The discrepancies in Fig. 5.4 (c) and (d) can be attributed to the role of the initial

conditions which are imposed differently between the two DNS’s.
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ττ

Figure 5.4: DNS comparisons for the smooth pipe: (a) instantaneous axial velocity of the
present dns, (b) instantaneous axial velocity of Feldmann & Wagner (2012)s’ DNS, (c) phase-
averaged velocity (ūp), and (d) RMS fluctuation velocity (up

rms). the curves in (a) and (b) are
at four radial positions: ζ = 0.02 (blue), 0.74 (orange), 0.94 (green), and 0.98 (red). mean
statistics are at the early deceleration (ED), late deceleration (LD), and flow reversal (RV)
phases.

Contour plots of turbulent flow at Reδ = 800, λ = 10 are depicted in Fig. 5.5 for the two

combined meshes. The results were taken at τ/T = 0.32 during an oscillation period. The

interpolated velocities are consistent between the two subdomains as shown in Fig. 5.5

(a), (b), and (c), and the coherent structures are also observed in the vorticity which will

be shown later for the combined mesh. Overall, the results indicate that the overset mesh

can be used to study laminar, transitional, and turbulent regimes in an oscillating pipe

flow even with high oscillation frequencies. Notice that the roughness height investigated

herein is small compared with the corrugation element’s length which is approximately

2% of that of Blackburn et al. (2007). The instantaneous velocities at three radial loca-

tions (ζ = 0, ζ = 0.9, and ζ = 0.99) for two consecutive cycles are presented in Fig. 5.6

(a) and (b) to demonstrate the effects of εsr = 0 and εsr = 0.0075 on the flow behavior.
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Figure 5.5: Contour plots of the axial velocity: (a) outer subdomain (Ωo), (b) inner subdo-
main (Ωi), and (c) combined domain (Ωo+i) at Reδ = 800, λ = 10 and τ/T = 0.32 for εsr =
0.0075.
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Figure 5.6: The time-varying axial velocities at Reδ = 800 and λ = 10 for two roughness
heights: (a) εsr = 0 and (b) εsr = 0.0075.

The turbulence induced by surface roughness of εsr = 0.0075 has greater intensity not

only near the wall but also at the center of the pipe, although turbulence bursts still ap-

pear in the decelerating phases similarly to the εsr = 0 case. Note that the flow was initial-

ized by a zero velocity condition in both cases of roughness. The turbulence bursts are not

symmetrical in the time history of random fluctuations. This phenomenon becomes even

more obvious in the case of rough wall. The reason is that the events of each oscillation

118



Chapter 5 Roughness-induced Transition and Turbulence

cycle are affected by those of the previous one. The spatial homogeneity of turbulence in

the axial and azimuthal directions was verified by calculating the RMS velocity (urms) at

various positions along the two coordinates. The cycle-averaged RMS fluctuations veloc-

ities are compared at different positions of the pipe, and the results showed a good agree-

ment as illustrated in Fig. 5.7.

ζ

θ
θ
θ
θ

ζ

Figure 5.7: Root-mean-square (RMS) velocity with respect to the radial direction at Reδ =
800 and λ = 10 for εsr = 0.0075: (a) azimuth direction and (b) axial direction.

5.6 Time-dependent wall shear stress (τ∗w)

The effect of wall roughness can be seen through not only the velocity curves but also

the wall shear stress profiles. The disturbance of the latter in the case of the rough wall

is due to the high gradient fluctuations of the velocity and pressure. The wall shear stress

(τ∗w) can be obtained from the solution of Eqn. (3.2) directly, and due to the special treat-

ment of using two meshes near the wall in this study, the wall velocity derivatives are be-
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lieved to be sufficiently accurate. The results of wall shear stresses shown in Fig. 5.8 were

computed in accordance with the velocity values of Fig. 5.6 for one cycle only. The solu-

tion accuracy of wall shear stress results has been confirmed with the exact solution of the

laminar flow, and an excellent agreement was achieved.

τ ρ

τ

ε

ε

Figure 5.8: The time-dependent wall shear stresses, τ∗w/ρ∗ (cm/s)2, at Reδ = 800 and λ = 10
for εsr = 0 (blue) and 0.0075 (red).

The turbulence may be predicted near the wall if there is a wall shear stress excitation,

and some investigators such as Lodahl et al. (1998) declared the second stage of tran-

sition to turbulence based on those measurements. The flow conditions of Fig. 5.6 are

used to calculate the wall shear stresses for the rough and smooth pipes in Fig. 5.8. The

wall shear stress profile encounters a significant change in the case of εsr = 0.0075 more

than in the smooth pipe, showing that the phases, fluctuations, and peaks are different be-

tween the two cases of roughness. The wall shear stress is higher and more fluctuating

when the flow reaches its maximum turbulence level, comparing Fig. 5.8 with the results

of Fig. 5.6. The figures also reveal that there is a phase difference between the velocity

120



Chapter 5 Roughness-induced Transition and Turbulence

and the wall shear stress. In the first stage of the transition, we analyzed samples of wall

shear stresses and the corresponding velocities taken at different Reδ ’s and λ ’s, albeit not

shown in this paper. The data showed that the flow disturbances of the velocity appear

during the deceleration phases, although the profiles of the wall shear stress are relatively

smooth because the velocity fluctuations have much smaller effect than the viscosity in

the vicinity of the wall. Therefore, it is uncertain whether the onset of transition can be

determined precisely by tracing the wall shear stress profiles only.

5.7 Friction coefficient (C f )

Friction associated with time-varying quantities is not uniquely defined in the literature.

For example, Pedocchi & Garcia (2009) established a new dimensionless relation to accu-

rately estimate the friction factor of the oscillatory flow since the existing friction factor

correlations may not be appropriate, especially in the second stage of transition to tur-

bulence. The influence of the pipe curvature is negligible in the near-wall region at high

oscillation frequencies (λ → ∞). Therefore, in the present study, the friction losses in the

pipe flows are collated with the existing experimental data of the planer oscillatory flows.

The friction coefficient is represented by using the wall shear stress amplitude (τ̂∗w), not

necessarily associated with the maximum turbulence energy. At three turbulent flow con-

ditions (Reδ = 800, 600, and 547.72 with λ = 10, 20, and 25, respectively), the friction

coefficients of the two roughness cases (εsr = 0 and εsr = 0.0075) are shown in Fig. 5.9.

The friction coefficient (C f ) was calculated according to the following equation:

C f =
τ̂∗w

1
2ρ∗û∗2

. (5.6)

One value of Lodahl et al. (1998)’s friction coefficients for a smooth pipe and the exper-
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imental data of Jensen et al. (1989), Sleath (1987) which studied a flat-plate boundary

layer of a purely oscillating flow, are compared in Fig. 5.9.

ε

ε

λ λ
λ

δ

Figure 5.9: The friction coefficients at different Reδ ’s, λ ’s, and εsr’s, presenting a compari-
son between the present dns for the smooth and rough pipes and the results of Jensen et al.
(1989), Lodahl et al. (1998), Sleath (1987).

The three experimental data are chosen in the turbulent regime where turbulence bursts

occur during parts of the oscillation cycle. The friction coefficient for the smooth wall of

Jensen et al. (1989) which apparently has a similar value to that of Lodahl et al. (1998)

as shown in Fig. 5.9 agrees well with the present DNS result of the smooth pipe at λ = 25.

It turns out that the result of Sleath (1987) with the roughness height of 0.2 mm has a sim-

ilar trend to that of the present DNS results with the roughness height of 0.075 mm. Since

the peak velocity tends to be close to the wall with a smaller Stokes thickness (δ ∗), the

friction coefficient increases with the Stokes number (λ ), indicating that the level of shear

stress is elevated at high frequencies. The viscous contribution begins to lessen every-

where at relatively high Reynolds numbers, and the friction coefficient reduces to small

values. Figure 5.9 clearly demonstrates the dependence of friction coefficient on the sur-
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face roughness and the Reynolds number.

5.8 Vorticity in the presence of surface roughness

The wall imperfections produce an intense turbulence and an additional formation of vor-

tices. These structures have been observed in experiments and characterized according to

their appearance during the oscillation cycle. For instance, Mujal-Colilles et al. (2016)

described the instantaneous vortices of a rough-wall oscillatory flow as coherent struc-

tures similar to turbulence bursts which emerge during a near-wall flow reversal and dis-

appear periodically. In this study, the bursting behavior is correlated with the vortex struc-

tures, particularly near the wall where the first turbulence bursts appear. Our simulation

at the critical Reynolds number also exhibited small vortices in the near-wall region. It

was noticed that these vortices propagated in the next step of transition toward the central

axis of the pipe (ζ = 0), and their strengths were enhanced by the appearance of turbu-

lence bursts at relatively higher Reynolds numbers. The vortices at Reδ = 800 and λ =

10 for the smooth and rough pipes are calculated and presented in Fig. 5.10. The results

of Fig. 5.10 (a) and (c) are taken at the early acceleration phase (near the beginning of

the flow reversal) when the vortices are firstly created according to Mujal-Colilles et al.

(2016). Turbulence bursts begin to evolve near the beginning of the deceleration phase

at which the vortices are shown in Fig. 5.10 (b) and (d) for the two cases with different

walls. The instantaneous vorticity shows that the surface roughness causes an increase in

disturbances owing to the velocity gradients which are smaller in the case of εsr = 0 than

those of εsr = 0.0075 in all phases.
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Figure 5.10: Cross-section contours of the instantaneous axial vorticity (rev/s) of the early
acceleration ( EA) and early deceleration (ED) phases at Reδ = 800, λ = 10, and z = 5 for the
two roughness heights: (a) and (b) for εsr = 0, (c) and (d) for εsr = 0.0075.
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Conclusions and Recommendations

6.1 Conclusions

This thesis is devoted to finding the critical Reynolds numbers both theoretically and

computationally using the quasi-steady method and the existing DNS code. The theory

is based on the frozen profiles to the temporal changes of the laminar base flow veloc-

ity transforming the Navier-Stokes equations for the axisymmetric domain into an Orr-

Sommerfeld equation with time-dependent coefficients. The presented results demon-

strated that the flow is unstable when the growth rate of disturbance is positive for a suffi-

cient time period as assessed by the current theory, whereas the instability was detected

from the waviness in the profile of the axial velocity and/or wall shear stress as deter-

mined from the computations.

By introducing a simple model equation, the solution of the quasi-steady method indi-

cated that there is a dominated transient growth within an oscillation cycle that cannot be

predicted by the Floquet theory, which is known as a rigorous tool for stability analysis.

The proposed model equation, resembling the first-order ordinary differential equation,
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revealed that the cycle-averaged growth rate of the quasi-steady analysis is analogous to

the Floquet exponent; however, the same equality was not confirmed in this study for the

hydrodynamic stability problem, which is a partial differential equation in time and space.

Also, it turns out that both theories of the quasi-steady method and the special variation of

the multiple scales method can reach the same solution with equivalent eigenvalues and

similar predictions.

The simplicity of the quasi-steady method was reflected into the neutral stability curves

of the linear stability problem, among which the critical Reynolds number varied sig-

nificantly at the low Stokes numbers and remained approximately the same for others.

By increasing the Stokes number, the instability regions extend to a wide range of wave

numbers, indicating the sensitivity of the flow stability to small disturbances when the

Stokes thickness becomes very thin. More importantly, considering the same criterion, the

critical values were compared with other available data, and the predictions of the quasi-

steady method qualitatively agreed with those of the experiments. However, the literature

shows discrepancies in the transition thresholds between theories and experiments, where

the accuracy of representing the base flow is believed to be the main reason. In this re-

gard, a comparison made between the laminar velocity and its derivatives demonstrated

that a small difference in the mount of the second spatial derivative dominating the sta-

bility problem causes the experimental results to deviate enormously from those of the

theories.

Since the stability analysis by the quasi-steady method deals with the laminar base flow

through acquiring the cycle-averaged growth rate of disturbance, it is not certain if this

theory can predict the turbulence and relaminarization happening within parts of an os-

cillation cycle at some flow conditions. However, the present assumption was employed

to compute the growth rates at certain Reynolds numbers, where the flow is expected to

experience turbulence, and the results showed positive values during the entire cycle. In
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contrast, at very low Stokes numbers and wave numbers corresponding to the most un-

stable modes, negative values of the growth rate were obtained even for high Reynolds

numbers.

The new mathematical relation formulated from the two terms related to the quasi-steady

method in the stability equation confirmed the approximate accuracy of the theoretical re-

sults. This inequality based on the order-of-magnitude analysis implies that the Reynolds

number needs not to be very high to validate the current theory for stability prediction.

Although the imaginary parts of the eigenvalues were interpreted as the growth rates of

disturbance, the real eigenvalues are still important in the quasi-steady assumption since

they represent the change rate of the laminar flow. After implementing the proposed as-

sessment at two Stokes numbers, the amounts of error estimated from the two terms of the

inequality changed with these conditions.

Nevertheless, Direct numerical simulations (DNS) were performed for a wide range of

flow conditions where a possible transition process may take place. The flow instabilities

were triggered by small random perturbations introduced as initial conditions at the first

stage of transition. This onset of transition from the laminar to disturbed laminar flow was

determined at various Stokes numbers prior to the stage where the turbulence bursts first

appear. It was confirmed that the results of the 2-D simulations are adequate to predict the

transient instability of the oscillating flow since they were approximately equivalent to

those of the 3-D simulations, in agreement with the Squire’s theorem. The numerical pre-

dictions were more contiguous to those of the quasi-steady assumption than the reported

data of the Floquet method. In addition, turbulence statistics of the first moment at differ-

ent computational lengths were tested and the 5-D pipe was found sufficient to include all

the relevant turbulence scales with periodic boundary conditions at the ends of the pipe.

A corrugated inner surface was constructed in the combination of the outer mesh model-

ing the vicinity of wavy wall and the uniform regular mesh of the main flow region. Tran-
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sition to turbulence initiated by these wall irregularities was studied by means of direct

numerical simulations incorporating the high-order spectral element method (SEM). Two

roughness heights were used in the laminar regime, and the transient growth of distur-

bance led to a disturbed laminar flow was identified at one Reynolds number, which is

defined here as the onset of transition for the rough pipe flow. At the highest Reynolds

number, the axial velocities exhibited turbulence bursts with high intensities, higher than

those of the smooth pipe. Although the shared grid points of the outer mesh are non-

conforming, turbulence structures were consistent across the interface boundaries. The

resulting wall friction coefficients are in agreement with the experimental results found

in the literature, and the amount of their increase due to the surface roughness diminishes

with the Stokes number of the flow.

6.2 Future work

There are growing interests in the oscillating flows exposed to a magnetic field to sup-

press or generate some forces in the flow. For example, the study of magnetohydrodynam-

ics (MHD) flows involved in many engineering applications, such as the cooling systems

of nuclear reactors, MHD generators, blood flow measurements, pumps, and accelera-

tors, is usually associated with the oscillating flows. For a brief description, the magnetic

field, which can be homogeneous and steady, can be applied on the flow field inducing

two forces: Lorentz force and electric force, different from the original one which creates

the magnetic field. If the flow of the electrically conducting fluid is unidirectional, the

current will be a direct current type (DC); otherwise like the case of oscillatory flow, the

resulting current will be alternative (see, for example, Domı́nguez-Lozoyaa et al. (2019)).

In this regard, the magnetic field itself can be used to control the stability of the flows

(see, for example, Anisur et al. (2019), Krasnov et al. (2004)) or to convert the unsteady
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to steady motions by vanishing the frequencies of the base flow. Therefore, the onset of

transition of the purely oscillating flows under the influence of a transverse-steady mag-

netic field with some intensity (H) can be investigated utilizing the results of the present

study. Usually, when a sufficient H is imposed, the viscosity of the fluid increases, lead-

ing to the flow stability. As Rem increases, the critical Re becomes high, where the mag-

netic Reynolds number (Rem) is the ratio of the inertial forces to the resistivity. However,

the strong magnetic field can alter the flow from the oscillating to steady current. Note

that there are numerical investigations on the pulsating flows enduring a magnetic field

in the literature as those in the study of Flores et al. (2019), but a few studies were con-

ducted on the purely oscillating flows. Thus, the effect of this external force on the flow

stability will be investigated in the future by means of direct numerical simulations.
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TRUKENMÜLLER, K. 2006. Stabilitätstheorie für die oszillierende rohrströmung. Ph.D. thesis,
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Appendix A

Chebyshev Derivatives (CPSM)

A fourth-order partial differential equation written as

∂

∂τ

(
∂ 2H
∂ζ 2

)
+U

∂ 3H
∂ζ 3 −

1
ζ

∂H
∂ζ
− ∂ 4H

∂ζ 4

= e−3τ

[
360.028cos(2πζ )+

{
−1.5708

ζ
+62.0126(ζ 2−1)cos(τ)

}
sin(2πζ )

]
,

(1)

was solved, where U = cos(τ)(1− ζ 2), and the function H satisfies the initial condition

with four homogeneous boundary conditions shown below:

H(0,τ) = H(1,τ) = 0,
∂H(0,τ)

∂ζ
=

∂H(1,τ)
∂ζ

= 0,

H(ζ ,0) = 0.25(1− cos(2πζ )).

Chebyshev matrices for the spatial discretization are compared with the theoretical deriva-

tives of function H, given by 0.25(1− cos(2πζ )). An excellent agreement is obtained

between the exact and numerical solutions as shown in Figure. 1 for the four derivatives

(DN , D2
N , D3

N , and D4
N).
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Figure 1: Chebyshev derivatives of the time-dependent function H appearing in Eqn. (1)
along the radial direction: the exact solution obtained from 0.25(1− cos(2πζ )), solid curves,
and the numerical representations, circles.

The results of H and GR are found to be equivalent to the exact solutions. Figures 2 and

3 show the numerical solutions of Eqn. (1).

ζ

ζ τ

τ

Figure 2: The instantaneous solution (H(ζ ,τ)) of Eqn. (1) utilized CPSM.

140



Appendix A

ζ

ζ τ

τ

τ

τ

Figure 3: The instantaneous solution (H(ζ ,τ)) of Eqn. (1), circles, compared with the exact
solution of 0.25e−3τ(1− cos(2πζ )), solid curves, at three different times.
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Turbulence DNS data

Table 1: The friction Reynolds numbers, three-dimensional components of the velocity,
gauge pressure fluctuations, Wall shear stresses, and Kolmogorov length scales at Reδ = 800
,λ = 10, 0 < Ez < 25 and τ/T = 3/8.

Reτ u∗ (m/s) υ∗ (m/s) w∗ (m/s) p∗′ (Pa) τ∗w (m2/s2) Λ ∗ (m)

501.169891 0.720685 -0.005313 0.00132 0.002875 0.000627928 0.000151407

501.16922 0.721063 -0.005245 0.001411 0.00287 0.000627926 0.000537784

501.168579 0.721949 -0.005084 0.001595 0.00286 0.000627925 0.00053778

501.167908 0.723279 -0.004848 0.001807 0.002846 0.000627923 0.000537776

501.167267 0.724838 -0.004595 0.001941 0.00283 0.000627922 0.000537771

501.166595 0.726285 -0.004389 0.00184 0.002814 0.00062792 0.000537767

501.165955 0.727318 -0.004256 0.001407 0.0028 0.000627918 0.000537763

501.165283 0.727863 -0.004184 0.000749 0.002788 0.000627917 0.000537759

501.164612 0.72806 -0.00415 0.000136 0.00278 0.000627915 0.000537755

501.163971 0.7281 -0.004138 -0.000176 0.002776 0.000627913 0.00053775

501.1633 0.720602 -0.005231 0.001332 0.002879 0.000627912 0.000537746

501.162628 0.720976 -0.005169 0.001424 0.002874 0.00062791 0.000537742

501.161987 0.721857 -0.005021 0.001612 0.002864 0.000627908 0.000537738

501.161316 0.723179 -0.004805 0.001831 0.00285 0.000627907 0.000537734

501.160675 0.724735 -0.004575 0.001976 0.002835 0.000627905 0.00053773

501.160004 0.726186 -0.00439 0.001891 0.002819 0.000627903 0.000537726

501.159332 0.727233 -0.004276 0.001477 0.002804 0.000627902 0.000537722

501.158691 0.727797 -0.004215 0.000836 0.002792 0.0006279 0.000537718

501.15802 0.728009 -0.004187 0.000235 0.002784 0.000627898 0.000537714

501.157349 0.728056 -0.004178 -0.000072 0.002781 0.000627897 0.00053771

501.156708 0.720428 -0.005027 0.001345 0.002889 0.000627895 0.000537707

501.156036 0.720796 -0.004979 0.001441 0.002884 0.000627893 0.000537703

501.155365 0.72166 -0.004863 0.001638 0.002874 0.000627892 0.000537699

501.154724 0.722962 -0.004693 0.001871 0.002861 0.00062789 0.000537695

501.154053 0.724502 -0.004516 0.002039 0.002845 0.000627888 0.000537692
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Table 2: The friction Reynolds numbers, three-dimensional components of the velocity,
gauge pressure fluctuations, Wall shear stresses, and Kolmogorov length scales at Reδ = 800
,λ = 10, 25 < Ez < 50 and τ/T = 3/8.

Reτ u∗ (m/s) υ∗ (m/s) w∗ (m/s) p∗′ (Pa) τ∗w (m2/s2) Λ ∗ (m)

501.153412 0.725956 -0.004383 0.001989 0.002829 0.000627887 0.000537688

501.15274 0.727031 -0.004309 0.001621 0.002814 0.000627885 0.000537684

501.152069 0.727634 -0.004277 0.001025 0.002803 0.000627884 0.000537681

501.151428 0.727881 -0.004264 0.000454 0.002794 0.000627882 0.000537677

501.150757 0.727946 -0.00426 0.000161 0.002791 0.00062788 0.000537674

501.150085 0.720215 -0.004689 0.001334 0.002903 0.000627879 0.00053767

501.149445 0.720571 -0.004661 0.001434 0.002899 0.000627877 0.000537667

501.148773 0.721407 -0.004593 0.001641 0.002889 0.000627875 0.000537663

501.148132 0.722667 -0.004493 0.001891 0.002876 0.000627874 0.00053766

501.147461 0.724169 -0.004397 0.002087 0.00286 0.000627872 0.000537657

501.14679 0.725611 -0.004341 0.002089 0.002844 0.00062787 0.000537653

501.146149 0.726713 -0.004331 0.001793 0.00283 0.000627869 0.00053765

501.145477 0.727369 -0.004342 0.001272 0.002818 0.000627867 0.000537647

501.144806 0.727666 -0.004354 0.000758 0.002809 0.000627865 0.000537643

501.144165 0.727755 -0.004359 0.00049 0.002806 0.000627864 0.00053764

501.143494 0.720022 -0.004227 0.001271 0.002921 0.000627862 0.000537637

501.142853 0.720361 -0.004224 0.001374 0.002917 0.00062786 0.000537634

501.142181 0.721155 -0.004213 0.001588 0.002908 0.000627859 0.000537631

501.14151 0.722349 -0.004198 0.001853 0.002895 0.000627857 0.000537628

501.140869 0.72378 -0.0042 0.002079 0.002879 0.000627855 0.000537624

501.140198 0.725182 -0.004239 0.002139 0.002864 0.000627854 0.000537621

501.139526 0.726293 -0.004307 0.001934 0.002849 0.000627852 0.000537618

501.138855 0.726998 -0.004374 0.001516 0.002836 0.00062785 0.000537615

501.138214 0.727351 -0.004419 0.001084 0.002828 0.000627849 0.000537613

501.137543 0.72747 -0.004437 0.000854 0.002824 0.000627847 0.00053761
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Table 3: The friction Reynolds numbers, three-dimensional components of the velocity,
gauge pressure fluctuations, Wall shear stresses, and Kolmogorov length scales at Reδ = 800
,λ = 10, 50 < Ez < 75 and τ/T = 3/8.

Reτ u∗ (m/s) υ∗ (m/s) w∗ (m/s) p∗′ (Pa) τ∗w (m2/s2) Λ ∗ (m)

501.136902 0.71989 -0.00369 0.001145 0.002941 0.000627845 0.000537607

501.13623 0.720207 -0.003711 0.001249 0.002937 0.000627844 0.000537604

501.135559 0.720948 -0.003757 0.001467 0.002928 0.000627842 0.000537601

501.134918 0.722056 -0.003827 0.00174 0.002915 0.000627841 0.000537598

501.134247 0.723389 -0.003929 0.00199 0.0029 0.000627839 0.000537595

501.133575 0.724716 -0.004065 0.002105 0.002884 0.000627837 0.000537593

501.132935 0.725809 -0.004214 0.001997 0.002869 0.000627836 0.00053759

501.132263 0.726546 -0.004342 0.001696 0.002857 0.000627834 0.000537587

501.131622 0.726946 -0.004424 0.001362 0.002848 0.000627832 0.000537585

501.130951 0.727093 -0.004458 0.001179 0.002844 0.000627831 0.000537582

501.13028 0.719827 -0.003154 0.000972 0.002959 0.000627829 0.00053758

501.129608 0.720122 -0.003195 0.001075 0.002956 0.000627827 0.000537577

501.128967 0.720803 -0.003289 0.001291 0.002947 0.000627826 0.000537575

501.128296 0.721818 -0.003431 0.001568 0.002935 0.000627824 0.000537572

501.127655 0.723038 -0.003617 0.001832 0.00292 0.000627822 0.00053757

501.126984 0.724271 -0.003837 0.001991 0.002904 0.000627821 0.000537567

501.126312 0.72532 -0.004058 0.00197 0.002889 0.000627819 0.000537565

501.125671 0.726065 -0.004241 0.001781 0.002877 0.000627817 0.000537562

501.125 0.726496 -0.004358 0.001543 0.002868 0.000627816 0.00053756

501.124329 0.726663 -0.004407 0.001408 0.002864 0.000627814 0.000537558

501.123688 0.719811 -0.002702 0.00079 0.002975 0.000627812 0.000537555

501.123016 0.720083 -0.002757 0.000891 0.002972 0.000627811 0.000537553

501.122345 0.72071 -0.002883 0.001102 0.002964 0.000627809 0.000537551

501.121704 0.721639 -0.003075 0.001377 0.002952 0.000627807 0.000537549
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Table 4: The friction Reynolds numbers, three-dimensional components of the velocity,
gauge pressure fluctuations, Wall shear stresses, and Kolmogorov length scales at Reδ = 800
,λ = 10, 75 < Ez < 100 and τ/T = 3/8.

Reτ u∗ (m/s) υ∗ (m/s) w∗ (m/s) p∗′ (Pa) τ∗w (m2/s2) Λ ∗ (m)

501.121033 0.722756 -0.003322 0.001649 0.002937 0.000627806 0.000537547

501.120361 0.723897 -0.003602 0.00184 0.002921 0.000627804 0.000537544

501.11972 0.724892 -0.003876 0.001884 0.002906 0.000627802 0.000537542

501.119049 0.725627 -0.004101 0.001783 0.002893 0.000627801 0.00053754

501.118378 0.726073 -0.004246 0.001626 0.002884 0.000627799 0.000537538

501.117737 0.726252 -0.004307 0.001531 0.00288 0.000627797 0.000537536

501.117065 0.71981 -0.002393 0.000645 0.002986 0.000627796 0.000537534

501.116394 0.720066 -0.002456 0.000743 0.002983 0.000627794 0.000537532

501.115753 0.720653 -0.0026 0.00095 0.002975 0.000627792 0.00053753

501.115082 0.721519 -0.00282 0.001221 0.002963 0.000627791 0.000537528

501.11441 0.722562 -0.003102 0.001496 0.002949 0.000627789 0.000537526

501.11377 0.723635 -0.003417 0.001706 0.002933 0.000627787 0.000537524

501.113098 0.724585 -0.003724 0.001792 0.002917 0.000627786 0.000537523

501.112427 0.725306 -0.003974 0.001749 0.002904 0.000627784 0.000537521

501.111755 0.725756 -0.004138 0.001645 0.002895 0.000627783 0.000537519

501.111115 0.725941 -0.004207 0.001577 0.002891 0.000627781 0.000537517

501.110443 0.71981 -0.002259 0.000576 0.002991 0.000627779 0.000537515

501.109802 0.720059 -0.002324 0.000672 0.002988 0.000627778 0.000537514

501.109131 0.720627 -0.002475 0.000877 0.00298 0.000627776 0.000537512

501.108459 0.721465 -0.002706 0.001146 0.002968 0.000627774 0.00053751

501.107788 0.722475 -0.003001 0.001422 0.002954 0.000627773 0.000537509

501.107147 0.723516 -0.00333 0.00164 0.002938 0.000627771 0.000537507

501.106476 0.724446 -0.003649 0.001743 0.002923 0.000627769 0.000537505

501.105835 0.725159 -0.00391 0.001725 0.002909 0.000627768 0.000537504

501.105164 0.725609 -0.004081 0.001643 0.0029 0.000627766 0.000537502

501.104492 0.725795 -0.004153 0.001587 0.002896 0.000627764 0.000537501
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