
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Michigan Tech Publications 

1-30-2020 

Extending complex conjugate control to nonlinear wave energy Extending complex conjugate control to nonlinear wave energy 

converters converters 

David G. Wilson 
Sandia National Laboratories 

Rush D. Robinett III 
Michigan Technological University, rdrobine@mtu.edu 

Giorgio Bacelli 
Sandia National Laboratories 

Ossama Abdelkhalik 
Iowa State University 

Ryan Coe 
Sandia National Labs 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Other Engineering Commons 

Recommended Citation Recommended Citation 
Wilson, D. G., Robinett, R. D., Bacelli, G., Abdelkhalik, O., & Coe, R. (2020). Extending complex conjugate 
control to nonlinear wave energy converters. Journal of Marine Science and Engineering, 8(2). 
http://doi.org/10.3390/jmse8020084 
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/1835 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p 

 Part of the Other Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.3390/jmse8020084
https://digitalcommons.mtu.edu/michigantech-p?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p%2F1835&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of

Marine Science 
and Engineering

Article

Extending Complex Conjugate Control to Nonlinear
Wave Energy Converters

David G. Wilson 1,* , Rush D. Robinett III 2, Giorgio Bacelli 3 , Ossama Abdelkhalik 4 and
Ryan G. Coe 3

1 Electrical Science & Experiments Department, P.O. Box 5800, Sandia National Laboratories, Albuquerque,
NM 87185-1152, USA

2 Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University,
1400 Townsend Dr., Houghton, MI 49931, USA; rdrobine@mtu.edu

3 Water Power Technologies Department, P.O. Box 5800, Sandia National Laboratories, Albuquerque,
NM 87185-1124, USA; gbacell@sandia.gov (G.B.); rcoe@sandia.gov (R.G.C.)

4 Department of Aerospace Engineering, Iowa State University, 2241 Howe Hall, 537 Bissell Road, Ames,
IA 50011, USA; ossama@iastate.edu

* Correspondence: dwilso@sandia.gov; Tel.: +1-505-845-7257

Received: 12 December 2019; Accepted: 14 January 2020; Published: 30 January 2020
����������
�������

Abstract: This paper extends the concept of Complex Conjugate Control (CCC) of linear wave
energy converters (WECs) to nonlinear WECs by designing optimal limit cycles with Hamiltonian
Surface Shaping and Power Flow Control (HSSPFC). It will be shown that CCC for a regular wave is
equivalent to a power factor of one in electrical power networks, equivalent to mechanical resonance
in a mass-spring-damper (MSD) system, and equivalent to a linear limit cycle constrained to a
Hamiltonian surface defined in HSSPFC. Specifically, the optimal linear limit cycle is defined as a
second-order center in the phase plane projection of the constant energy orbit across the Hamiltonian
surface. This concept of CCC described by a linear limit cycle constrained to a Hamiltonian surface
will be extended to nonlinear limit cycles constrained to a Hamiltonian surface for maximum energy
harvesting by the nonlinear WEC. The case studies presented confirm increased energy harvesting
which utilizes nonlinear geometry realization for reactive power generation.

Keywords: nonlinear control; wave energy converter; complex conjugate control

1. Introduction

Most recently extracting power from ocean waves is receiving much attention. Many different
devices and control strategies have been proposed. A simple point absorber wave energy converter
(WEC) consists of a floating buoy connected to vertical hydraulic cylinders (spar) which are attached
at the bottom to the seabed or to a large body whose vertical motion is negligible relative to the float.
When the float moves due to waves, the hydraulic cylinders drive hydraulic motors which in turn
drive a generator [1]. Regarding the WEC control, most of the existing literature presents controls that
are designed using a linear dynamic model, e.g., [2,3]. For instance, reference [1] implements dynamic
programming while reference [4] uses a gradient-based algorithm in searching for the optimal control.
A model predictive control (MPC) can be used as in [5]. Reference [6] utilized the pseudospectral
method whereas references [7,8] developed a shape-based approach that needs a fewer number of
approximated states compared to the pseudo-spectral method [9]. In the presence of limitations on the
control actuation level, a bang-bang suboptimal control was proposed in [10].

Most often, WEC devices have been based on simple on/off or simple resonant frequency
operation. Conventional WEC devices generate power over a small band of the full-wave frequency
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spectrum. Typically these designs resonate at a frequency matching the dominant wave frequency.
When a wave impacts the WEC device at the resonance frequency, the device can absorb a significant
amount of energy from the wave very efficiently. However, when the WEC is off-resonance with the
impacting waves the WEC operates much less efficiently. To be competitive with other energy market
technologies and maximize economic return in the form of energy and electrical power, the WEC
must be capable of operation and energy capture over the full range of sea states. The full sea state
range includes highly nonlinear sea state conditions during the power production mode [11]. A large
reduction in buoy sizes and improvements in year around power capture through multi-resonance
will be required to make the location deployments independent. By focusing on multi-resonance a
large increase in power will show both a reduction in size and weight making modern WEC designs
more efficient.

There are multiple sources of possible nonlinearities in the WEC dynamic model [12]. For example,
if the buoy shape is not perpendicular near the water surface then the hydrostatic force is nonlinear.
The hydrodynamic forces can also be nonlinear in the case of large motion [13]. Control strategies
that aim at maximizing the harvested energy will increase the motion amplitude and hence amplify
these nonlinearities. In reference [14] the optimized system’s nonlinear force is assumed to drive the
design of the WEC resulting in increased energy capture with reduction in reactive power. In [15] HSS
nonlinear control with nonlinearities due to the geometry and/or the PTO were taken into account
and resulted in increased harvesting of energy.

Complex Conjugate Control (CCC) has been developed in many references [4,16]. The one
referenced in this paper is the Proportional Derivative CCC or PDC3 [17–19]. PDC3 applies the
principle of superposition of linear systems and solves for the optimal PD feedback controller to
approximate the CCC for a regular wave or an irregular wave approximated by a Fourier series.
In the context of Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) [20], the PD
feedback controller is shaping the Hamiltonian (energy surface) to make the linear WEC resonate and
emulate an electrical power network with a power factor of one at all frequencies approximated by the
Fourier series.

The goal of this paper is to show desirable characteristics for nonlinear control design that
demonstrate; (1) no required reactive power or energy storage system due to the geometry buoy
shape, (2) no cancellation of nonlinear terms that consume power, (3) the nonlinear resonator increases
the capture width by including sub/super harmonics in the input waves, (4) by increasing the draft
and speed of the nonlinear buoy more energy is harvested, and (5) the nonlinear buoy shape creates
equivalent wave height and buoy motion measurements that are naturally incorporated. This paper
begins by presenting the equivalences of CCC which are a power factor of one in electrical power
networks, a mechanical resonance in an mass-spring-damper (MSD) system, and a linear limit cycle
constrained to a Hamiltonian surface defined in HSSPFC (Sections 2 and 3). Next, in Section 4 a
nonlinear WEC controller is designed by reviewing nonlinear feedback linearization to eliminate
the nonlinear terms followed by applying PDC3. In Section 5, HSSPFC is applied to the nonlinear
WEC to develop a nonlinear resonating WEC which creates a nonlinear limit cycle constrained to the
Hamiltonian surface to maximize power extraction from the waves. Case studies are reviewed in
Section 6 for both regular and irregular wave conditions. Finally, in Section 7 the results are discussed
and concluded.

2. CCC and PDC3

This section presents a practical CCC algorithm realization in the time-domain that targets both
amplitude and phase through feedback that is constructed from individual frequency components
that can come from the spectral decomposition of the measurement signal. This feedback strategy
focuses on decomposing the WEC output response to the wave input, into a sum of individual
frequencies for which a PD feedback controller is designed for each frequency. The proportional gain is
designed [17,18] for each feedback channel to produce resonance and the derivative channel produces
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the maximum absorbed power. Since this investigation is focused on isolated microgrid connected
WECs, an energy storage device will need to be employed in combination with the PD controller to
realize the specified reactive power between cycles. A multi-channel equalizer type amplifier can be
realized to capture multiple frequencies that span the entire sea state.

Initially, a right circular cylinder (RCC) WEC device (see Figure 1 for example) can be modeled as
a simple MSD plant dynamics with a sum of multiple frequency content input excitation forces and
the controller input force [17,21] or

mz̈ + cż + kz =
N

∑
j=1

Fexj sin Ωjt + Fu, (1)

where the PDC3 controller [21] is defined as

Fu = FuPDC3 =
N

∑
j=1

Fuj =
N

∑
j=1

[−KPj zj − KDj żj]. (2)

The issues with the PDC3 controller is the required reactive power and the associated energy
storage system. The nonlinear WEC described in Section 5.1 will eliminate these issues.

Figure 1. Right circular cylinder (RCC) wave energy converter (WEC) buoy geometry.

3. Electrical Power Networks, Mechanical Oscillators, and Linear Limit Cycles

This section will demonstrate that CCC for a regular wave is equivalent to a power factor of one
in electrical power networks, equivalent to mechanical resonance in a MSD system, and equivalent to
a linear limit cycle constrained to a Hamiltonian surface defined in HSSPFC. Specifically, the optimal
linear limit cycle is defined as a second-order center in the phase plane projection of the constant
energy orbit across the Hamiltonian surface [20,22].

A linear limit cycle is a strange concept to most people since limit cycles are typically associated
with nonlinear systems [22]. A limit cycle is defined by [23] as a closed trajectory in phase space having
the property that at least one other trajectory spirals into it either as time approaches infinity or as time
approaches minus infinity. In particular, a center [24] of a second-order system can be interpreted as a
linear limit cycle, for example, the goal of power engineering.

The Hamiltonian for natural systems is the stored energy, and its time derivative is the power flow
into, dissipated within, and stored in the system [20,22]. For a conservative system, the time derivative
of the Hamiltonian is zero which leads to a constant energy orbit constrained to the Hamiltonian
surface. This constant energy orbit also occurs when the power flow into the system is balanced by the
power being dissipated by the load [20,22].
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3.1. Electrical Power Networks

The energy storage terms of the Hamiltonian for electrical systems are typically associated with
the capacitance, C and inductance, L of the electrical network such as

He = Te + Ve =
1
2

Lq̇2 +
1

2C
q2, (3)

where Te is the electrical kinetic energy, Ve is the electrical potential energy, q̇ is the electrical charge-rate
or current and q is the electrical charge. These terms are equivalent to mechanical kinetic and potential
energy terms depending upon whether the network is voltage-controlled or current-controlled [20,22].
The equation of motion for an RLC electrical network is

Lq̈ +
1
C

q = −Rq̇ + V0 cos Ωt, (4)

with the corresponding electrical schematic shown in Figure 2.

Figure 2. RLC electrical network schematic.

The time derivative of the Hamiltonian is

Ḣe =

[
Lq̈ +

1
C

q
]

q̇ = [−Rq̇ + V0 cos Ωt] q̇. (5)

CCC is called impedance matching which occurs for electrical systems (and an equivalent for
mechanical systems) when the Hamiltonian is constant,

Ḣe = 0, (6)

which implies the forcing frequency of the sinusoidal voltage, Ω, is equal to the natural frequency of
the circuit, ω̄ or

ω̄2 =
1

LC
= Ω2 (7)

and the power factor is equal to one [25], or

Rq̇ = V0 cos Ωt. (8)

As one will note next, this situation is equivalent to the MSD system resonating in response to the
sinusoidal forcing function.

3.2. Mechanical Systems

The Hamiltonian defines the energy storage terms for the mechanical systems in terms of the
kinetic and potential energies given as

Hm = Tm + Vm =
1
2

Mẋ2 +
1
2

Kx2, (9)
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where Tm is the mechanical kinetic energy, Vm is the mechanical potential energy, M is the mass, K is
the stiffness, ẋ is the velocity and x is the displacement. The equation of motion for a MSD system is

Mẍ + Kx = −cẋ + F0 cos Ωt (10)

with the corresponding mechanical schematic shown in Figure 3.

Figure 3. Mass-spring-damper (MSD) mechanical system schematic.

The time derivative of the Hamiltonian is

Ḣm = [Mẍ + Kx] ẋ = [−cẋ + F0 cos Ωt] ẋ. (11)

Equation (11) is equivalent to Equation (5). The idea of resonating a mechanical system is
equivalent to designing a vibration isolator [26,27] that is attempting to minimize the vibration
response of the main structure such as an airplane engine. An exception is the WEC resonator design
which intentionally excites the mechanical system to increase power/energy capture.

3.3. Linear Limit Cycles

The optimal power/energy capture for an unconstrained linear WEC is a linear limit cycle
(constant energy orbit across the Hamiltonian surface) which is also known as a second-order center.
The optimal linear limit cycle, as well as non-optimal limit cycles for non-resonating circuits and power
engineering applications, are discussed in [20,28]. The optimal and non-optimal limit cycles for the
RCC WEC (Figure 1) are shown in Figure 4 along with the corresponding limit cycle comparisons
shown in Figure 5, respectively. For the purposes of this discussion, a linear RCC WEC equation of
motion for a single sinusoidal frequency can be stated as

mz̈ + kz = −cż + F0 cos Ωt + Fu, (12)

where z and ż are the heave displacement and velocity, respectively. The natural frequency of the
system is ω =

√
k/m. For the condition Ω ≡ ω the system will resonate.

Figure 4. For a single frequency the resonance ω = Ω, (left) and off-resonance ω 6= Ω, (right) plots.
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The off-resonant case is equivalent to a parameter mis-match which could represent differing
material properties or unaccounted mass properties. A simple change of a 15% offset in stiffness
or ω̃ =

√
k̃/m with k̃ = 0.85k is shown in the corresponding plots (Figure 5) for the off-resonance

condition. This results in a reduction in heave displacement and heave velocity. As an example,
assume a simple rate feedback controller, Fu = −Ropt ż then for the off-resonance versus resonance
case the real power, Preal = Fu ż will have a reduction in power/energy capture. The harvested energy
is given as the integral of real power. The reactive power is defined as Preac = Freac ż.

Figure 5. For a single frequency the resonance ω = Ω and off-limit cycle ω 6= Ω comparisons, 3d (left)
and phase-plane (right) plots.

4. Nonlinear Feedback Linearization and PDC3

A straightforward way to apply CCC to a nonlinear WEC is to apply feedback linearization [29].
A nonlinear WEC controller is designed by applying nonlinear feedback linearization to eliminate
the nonlinear terms followed by applying PDC3 to the remaining linear system. A typical nonlinear
WEC model for a regular wave could include nonlinear damping (Coulomb friction [29], Chapter 4
and typical square law drag [29], Chapter 1) and nonlinear stiffness (Duffing oscillator, hardening
spring [29], Chapter 1) resulting in

Mz̈ + Kz + KNLz3 = −cż− cNL1 sign(ż)− cNL2 ż|ż|+ F0 cos Ωt + Fu. (13)

A nonlinear feedback controller can be implemented as

Fu = FuNL + FuPDC3 , (14)

where
FuNL = ĉNL1 sign(ż) + ĉNL2 ż|ż|+ K̂NLz3, (15)

and FuPDC3 is a PDC3 linear feedback controller (see Equation (2)). After applying the nonlinear
feedback controller with perfect parameter cancellation or ĉNL1 = cNL1 , ĉNL2 = cNL2 , and K̂NL = KNL
and perfect sensor measurements the remaining system is a linear WEC for a regular wave or

Mz̈ + Kz = −cż + F0 cos Ωt + FuPDC3 . (16)

This controller can be easily extended to irregular waves. The performance results of this nonlinear
controller are given for an electrical system in [20,28]. A special case of nonlinear control that utilizes
cubic spring feedback only is developed for a WEC and compared with PDC3 in [30]. The issues with
the nonlinear feedback linearization controller are the required reactive power and the associated
energy storage system as well as the power being consumed by the cancellation of the nonlinear terms.
In the next section, the cubic spring controller is realized as a nonlinear geometric buoy to eliminate
the issues of reactive power, energy storage, and nonlinear feedback linearization.
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5. HSSPFC and Nonlinear Limit Cycles

HSSPFC can be applied to nonlinear WECs to design nonlinear resonators which take advantage
of the nonlinear dynamics instead of eliminating them [30]. References [20,22] describe the process to
extend the concepts of linear limit cycles to nonlinear limit cycle design. In particular, the goal of this
section is to maximize the power/energy capture of the nonlinear WEC by properly shaping the buoy
to produce reactive power from the water and generating super- and sub-harmonics that resonate at
the desired wave frequencies.

5.1. Hour-Glass (HG) WEC Design Model Development

A cubic hardening spring discussed in the previous section can be created by shaping the buoy
into an hour-glass (HG) geometry as shown in Figure 6. The corresponding buoy geometric parameters
for both the HG and RCC designs are given in Table 1, respectively.

Figure 6. Hourglass nonlinear geometry WEC design.

Table 1. Hour-glass (HG) and RCC buoy geometric parameters.

Parameter Symbol HG Range RCC Value Unit

Radius r 5.72− 10.0 4.47 m
Height h 8.18− 2.68 4.47 m
Angle α 50− 70 0.00 deg

The HG and RCC (dashed line) cross-sections are presented in Figure 7 and will be modeled using
a small body approximation [16,31]. Note, the volume of the HG and RCC are constrained to be equal.

The hydrostatic force is caused by the submerged volume of the HG. The volume of one cone is

Vcone =
1
3

πr2h =
1
3

πᾱ2h3 (17)

for
r = h tan α = hᾱ. (18)

Assuming the neutral buoyancy line is located at the apex of the cones, the volume as a function
of position of the center of volume is

V(z) =
1
3

πᾱ2h3 − 1
3

πᾱ2z3 =
1
3

πᾱ2
[

h3 − z3
]

. (19)
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The hydrostatic force for the buoy staying in the water is

Fh = Fg + Fbuoy = −mg + ρgV(z) = −1
3

πρgᾱ2z3. (20)

The potential function for this hydrostatic force is

Vbuoy =
1

12
πρgᾱ2z4. (21)

The nonlinear WEC model for the HG is developed from [16,31] where the excitation force in
heave is dominated by the hydrostatic component

Fex ≈ ρgSw A. (22)

This is essentially the hydrostatic force. The non-uniform water plane area, Sw, for the cone is

Sw(ζ) = πr(z)2 = πᾱ2 [z− ζ]2 , (23)

where ζ is the vertical position of the center of volume of HG (see Figure 7). The hydrostatic force is
proportional to the submerged volume of the body, and for very long waves, the wave profile can be
considered as having the same value of the vertical coordinate across the cone (see Figure 7). That is,
z ≈ η and where η is the wave elevation. The submerged volume is

Vsub = Vcone +
∫ η

ζ
πᾱ2(z− ζ)2dz

= Vcone +
∫ η

ζ
πᾱ2(z2 − 2ζz + ζ2)dz

= Vcone + πᾱ2
[

1
3

η3 − ζη2 + ζ2η − 1
3

ζ3
]

. (24)

Figure 7. WEC HG and RCC buoy geometry 2D cross-sectional schematic.

Assuming the added mass and radiation damping are constant with frequency [19,21] then

mζ̈ = −bζ̇ −mg + ρgVsub + Fu. (25)

Upon substitution of Vsub from Equation (24) gives the equation of motion as
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mζ̈ + bζ̇ + ρgπᾱ2
[

1
3

ζ3 − ηζ2 + η2ζ

]
=

ρgπᾱ2

3
η3 + Fu, (26)

which contains the cubic hardening spring with Fu = −Ropt ζ̇. The Hamiltonian for the HG WEC is

Hbuoy = Tbuoy + Vbuoy =
1
2

mζ̇2 +
1

12
πρgᾱ2ζ4, (27)

where Tbuoy and Vbuoy are the kinetic and potential energies of the buoy, respectively. To fully
understand the value of the HG WEC design, a RCC WEC design with nonlinear feedback control will
be developed in the next section. The simulation results and comparisons for the HG and RCC models
and controllers will be presented in Section 6.

5.2. RCC WEC Design Model Development

For the RCC buoy the hydrostatic force is caused by the submerged volume of the RCC
(see Figure 7). The volume of one-half the RCC buoy is

VRCC =
1
2

r2h. (28)

The volume as a function of position of the center of volume is

V = V(z) = VRCC +
∫ η

ζ
πr2dz = VRCC + πr2(η − ζ). (29)

The equation of motion becomes

mζ̈ = −bζ̇ −mg + ρgV + Fu. (30)

Substitute Equation (29) into Equation (30) yields

mζ̈ = −bζ̇ −mg + ρgVRCC + πr2(η − ζ) + Fu. (31)

The equilibrium position is
mg = ρgVRCC, (32)

which then yields after simplification

mζ̈ + bζ̇ + ρgπr2ζ = ρgπr2η + Fu. (33)

Note that ζ is the vertical position of the center of the RCC buoy geometry and η is the wave
elevation or driving input to the system (see Figure 7) for either regular or irregular waves.

An additional nonlinear (NL) restoring force can be introduced to the equation of motion
(Equation (33)) as

mζ̈ + bζ̇ + kLIN2ζ = Fex + Fu + FNL, (34)

where kLIN2 = ρgπr2 and the external wave force input is Fex = kLIN2η. For the purposes of this study
a nonlinear restoring force can be introduced as a regulatory cubic spring along with resistive damping
(rate feedback) control or

FNL = −kNL2ζ3 (35)

Fu = −Ropt ζ̇. (36)

The Hamiltonian for the RCC WEC design is
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Hbuoy = Tbuoy + Vbuoy =
1
2

mζ̇2 +
1
4

kNL2ζ4. (37)

This RCC WEC design dynamic model and control version will be utilized to contrast and
compare with the HG WEC design discussed in Section 5.1.

The final RCC WEC design modification explores a nonlinear feedback control with position error
and rate feedback defined as

FNL = 0 (38)

Fu = kNL2(η̂ − ζ̂)3 − Ropt
˙̂ζ. (39)

When the cubic term is expanded to

Fu = kNL2(η̂
3 − 3η̂2ζ̂ + 3η̂ζ̂2 − ζ̂3)− Ropt

˙̂ζ (40)

demonstrates that the individual terms compare similar to the HG WEC design interaction with the
waves (see Equation (26)).

This nonlinear feedback strategy focuses on nonlinear oscillations to multiply and/or magnify
the energy and power capture from the WEC device. By introducing a cubic spring in the feedback
loop a significant increase in power capture results. This can be realized as a mechanical nonlinear
spring in combination with an energy storage device to help transmit reactive power between cycles
or geometric modifications. Alternatively, the cubic hardening spring can be realized by shaping the
buoy to produce reactive power from the waves.

In contrast to the HG WEC design with resistive damping feedback, the RCC WEC design with
nonlinear feedback control, the following exceptions are required; (i) estimated wave elevation η̂ and
(ii) measured vertical buoy position ζ̂. The elegance of the HG WEC design is that the reactive power
and energy storage system requirements are inherently embedded in the nonlinear buoy geometry
which only requires simple rate feedback control. In addition, the estimated wave elevation and
vertical buoy position are intrinsic to the HG WEC design.

6. Case Study Simulation Results

In this section, the case studies and simulation results are discussed for; (i) nonlinear resonator,
(ii) single frequency inputs, and (iii) multi-frequency spectrum inputs. A simplified optimal HG WEC
design (optimize α subject to volumetric constraints leading to draft limits) is contrasted with an RCC
WEC design, respectively. A volume constraint on displaced fluid was imposed on both the RCC and
HG WECs to be equivalent or

VHG = VRCC. (41)

The position constraints for the RCC and the HG WECs resulted in draft limits shown in Table 2.
The simplified optimization, used for the Bretschneider spectrum, for the HG WEC is a function of
α which constrains the heave motion and the wave height. Note that α will be sea state-dependent
and would be adapted to meet each specific condition for the actual application. The buoy [14]
effective mass is m = 1.76× 105 kg, linear damping coefficient is b = 170 N s/m, and linear stiffness
coefficient is k = 4.544915× 105 kg/s2. The nonlinear stiffness coefficient used for the RCCNL case
is KNL = 1.41 × 104 N/m3. Note the damping and nonlinear stiffness for the RCCNL buoy are
from reference [30]. To constrain the maximum displacement for the RCC buoy, the linear damping
coefficients were increased as given in Table 2. This prevents the RCC buoy from coming out of the
water or totally submerging causing over-topping.
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6.1. Nonlinear Resonator Results

The goal of this section is to show the design characteristics that started from a simple RCC
with nonlinear control design (utilizing a cubic spring [30]), that was initially employed to evaluate
a NL geometric shape, resulted in the HG WEC design. The nonlinear limit cycles constrained to
the Hamiltonian surface, for the HG WEC design as compared to the RCC NL cubic spring WEC
design and are shown in Figure 8. The corresponding nonlinear limit cycle comparisons are shown in
Figure 9, respectively.

Figure 8. For a single frequency utilizes RCC with nonlinear (NL) cubic spring (left) and NL HG
(right), respectively.

Figure 9. NL limit cycle comparisons, 3d (left) and phase-plane (right), respectively.

The differences in the shapes and responses can be traced back to the comparison of
Equations (26), (34) and (40), respectively. Initially, the HG WEC design includes the cubic expansion
and interaction between the device and the fluid media whereas the initial RCC WEC design does
not. However, the key highlight—a nonlinear control design was employed to design a nonlinear
geometric HG WEC with the desired effects and characteristics associated with providing reactive
power that is intrinsic to the design.

6.2. Single Frequency Results

Numerical simulation results are presented for each of the variations considered. The RCC WEC
design included both a PDC3 (RCC) and nonlinear cubic spring (RCCNL) controllers. Initially, the HG
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WEC design (HG) used an α value to match the corresponding PDC3 RCC WEC design. These three
designs are considered as the baseline designs during the numerical simulation results. Note that the
full draft potential for the HG WEC design was investigated by comparing the HG and RCC WEC
designs for incrementally increasing wave heights (10%, 20%, 30%). These are also noted as subscripts
in the numerical results (RCC10, HG10, RCC20, HG20, RCC30, HG30). All results were performed over a
100 s time window. A 0.111 Hz single frequency wave input was employed for all cases. The first 30 s
of the 100 s duration are shown in Figure 10.

Figure 10. External wave input for the first 30 of 100 s duration.

The harvested energy for all buoy designs is shown in Table 2 and Figure 11, respectively. Table 2
includes; (1) α, steepness angle limit, (2) R̄opt, effective optimal damping for the RCC buoys, (3) hlimit
draft for all buoys, and (4) Emax, the maximum harvested energy, for the 100 s duration, used as a
metric of performance for all buoy designs. The harvested energy was determined between 30 and
100 s to avoid initial transients, such that all buoys are in steady state operation. Overall the HG
buoy designs resulted in increased harvested energy; 6.9%, 13.9%, and 23.5%, for increased waves;
10%, 20%, 30%, in comparison to the RCC buoy designs, respectively.

Figure 11. Harvested energy for all cases.
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Table 2. Single frequency numerical results.

Parameter Unit RCCNL RCC HG RCC10 HG10 RCC20 HG20 RCC30 HG30

α deg N/A N/A 59.5 N/A 56.5 N/A 53.5 N/A 50.9
R̄opt (N s

m ) · 105 3.844 4.456 N/A 4.848 N/A 5.242 N/A 5.746 N/A
hlimit m 4.47 4.47 4.53 4.47 4.896 4.47 5.274 4.47 5.614
Emax MJ 129 146 146 160 171 173 197 183 226

The external forces and control forces for all cases are shown in Figures 12 and 13, respectively.
Note that after an initial 10 s period the transient responses converges to steady-state operation.

Figure 12. External wave forces for the first 30 s of 100 s duration for all cases, respectively.

Figure 13. Control forces for the first 30 s of 100 s duration for all cases, respectively.

The RCC with PDC3 reactive power responses are symmetric and cancel point-by-point [20,22]
(linear) at resonance. For the more general solution the point-by-point force balance is replaced by a
cyclic balance between the power flowing into the system versus the power being dissipated within
the system (or equal area under the reactive power curve) or

Hcyclic =
∮

τ
Ḣdt = 0, (42)
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where τ is over the cycle time. For the nonlinear responses, the RCC with nonlinear feedback and
the HG will have equal areas over the respective cycles. The reactive power for all cases is shown
in Figure 14.

Figure 14. Reactive powers for the first 30 s of 100 s duration for all cases, respectively.

The real power for all cases is shown in Figure 15. Note that for increasing wave input, the HG
buoys increase in real power production at a higher rate than the equivalent RCC buoy designs.

Figure 15. Real powers for the first 30 s of 100 s duration for all cases, respectively.

The corresponding buoy position and velocity responses for all cases are shown in Figures 16
and 17, respectively. Each buoy design position response observes the hlimit parameter given in Table 2.
For increasing wave inputs, the corresponding velocity responses also increase, resulting in higher
speeds and real power production (primarily for the HG buoy).
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Figure 16. Buoy positions for the first 30 s of 100 s duration for all cases, respectively.

Figure 17. Buoy velocities for the first 30 s of 100 s duration for all cases, respectively.

6.3. Bretschneider Multi-Spectrum Results

A Bretschneider multi-spectrum containing multi-frequency content includes four varying sea
states with five minute durations. These were generated for the HG buoy design to fully evaluate
the power/energy capture extraction. These varying sea states were derived based on actual buoy
data from Nags Head, NC with a scale factor of 3 applied to boost the wave height Hs to provide
sufficient amplification for the HG buoy to be evaluated. The spectrum was generated with the
Bretschneider and corresponding time domain data by spec2dat Matlab functions from the toolbox
in [32]. The varying sea state parameters are given in Table 3 with the corresponding Bretschneider
spectrum in the frequency domain shown in Figure 18.

Table 3. Sea state parameters

Sea State Hs (m) Tp (sec) Duration (sec)

1 5.7 8.0 300.0
2 6.6 6.6 300.0
3 7.8 7.8 300.0
4 6.9 11.0 300.0
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Figure 18. Bretschneider spectral density for all sea states.

The HG design was evaluated with a volumetric constraint given by Equation (41). The steepness
angle, α, shown in Figure 6, was swept from 55–75 degrees to define the design space for each varying
sea state. The energy captured at the end of the 5 min duration was recorded and the results are given
in Table 4.

Table 4. HG buoy Bretschneider spectrum sea state results.

Angle Draft Sea State 1 Sea State 2 Sea State 3 Sea State 4
α hhal f Emax Emax Emax Emax

deg m MJ MJ MJ MJ

55 5.084 26.485 23.935 174.63 32.230
60 4.470 43.240 39.235 SAT 48.564
65 3.8767 67.170 61.550 − 69.790
70 3.2864 SAT 92.752 − SAT
75 2.680 − SAT − −

Note: for all Sea States R̄opt = 4.4044(N s
m ) · 105.

A SAT (saturation) recorded in the table column indicates the HG buoy for the corresponding
α angle saturated the geometric upper/lower vertical displacement limits and the previous angle
is considered the maximum energy capture result. Saturation indicates that the HG buoy is either
completely out of the water or totally submerged/over-topping. The maximum energy captured for
each sea state is plotted in Figure 19.

The complete time simulation results for sea state 4 (SS4) are shown in the following figures
(color code noted as green in all plots). The corresponding Bretschneider wave input (left) and external
force (right) are shown in Figure 20. The control force (left) and reactive power (right) are shown
in Figure 21. Note that the reactive power is generated intrinsically by the NL HG buoy geometry.
The real power (left) and harvested energy (right) are shown in Figure 22. Positive values represent
power and harvested energy generated from the WEC devices. The final harvested energy value at the
end of the 5 min duration (Figure 22 right) corresponds to the tabulated value 69.790 MJ in Table 4.
The WEC buoy position (left) and velocity (right) are given in Figure 23. The trend shows for increased
α the power and harvested energy increases. However, given the volume constraint on the HG WEC
design, the draft decreases as α increases which constrains upper limit on the maximum power/energy
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capture since the motion of the HG WEC buoy is constrained. For these realistic wave forms, the HG
WEC buoy shows desirable characteristics.

Figure 19. Harvested energy for all varying sea states.

Figure 20. SS4 external Bretschneider wave input (left) and external wave force (right), respectively.

Figure 21. SS4 control force (left) and reactive power (right), respectively.
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Figure 22. SS4 real power (left) and harvested energy (right), respectively.

Figure 23. SS4 position (left) and velocity (right), respectively.

7. Conclusions

This paper extends the concept of CCC of linear WECs to NL WECs by designing optimal limit
cycles with HSSPFC. It was shown that CCC for a regular wave is equivalent to a power factor of one
in electrical power networks, equivalent to mechanical resonance in an MSD system, and equivalent to
a linear limit cycle constrained to a Hamiltonian surface defined in HSSPFC. Specifically, the optimal
linear limit cycle is defined as a second-order center in the phase plane projection of the constant energy
orbit across the Hamiltonian surface. This concept of CCC described by a linear limit cycle constrained
to a Hamiltonian surface was extended to NL limit cycles constrained to a Hamiltonian surface to
maximize energy harvesting by the NL WEC design. Numerical simulations verified these cases.
This current HG WEC design and case study show desirable characteristics; (1) no required reactive
power or energy storage system due to the geometry buoy shape, (2) no cancellation of nonlinear
terms that consume power, (3) the nonlinear resonator increases the capture width by including
sub/super harmonics in the input waves, (4) by increasing the draft and speed of the HG buoy more
energy is harvested, and (5) the NL WEC buoy shape creates equivalent wave height and buoy motion
measurements that are naturally incorporated. Future work will include a refined optimization of the
HG WEC design with respect to varying and site-dependent sea state conditions.
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Nomenclature

Symbol Description SI Units
ˆ Estimate of parameter -
A Cross-sectional area m2

α HG buoy geometry cone steepness angle deg
b Linear damping coefficient N s/m
c Linear damping coefficient N s/m
cNL1 Nonlinear damping coefficient N
cNL2 Nonlinear damping coefficient N/(m/s)2

C Electrical capacitance F
Emax Maximum harvested energy MJ
η Wave elevation m
Fex External force N
Fu Control force N
FuNL Nonlinear control force N
FuPDC3 PDC3 control force N
Freac Reactive force N
Freal Real force N
Fh Hydrostatic force N
Fg Gravitation force N
Fbuoy Buoy force N
Fpi Bretschneider ith sea state spectral peak frequency Hz
F0 External force magnitude N
g Gravitational constant m/s2

Hs Bretschneider significant wave height parameter m
h Buoy height, HG, RCC m
hhal f Height of buoy and one-half of total draft m
Hcyclic Hamiltonian over a cycle J
H Hamiltonian, total energy with subscripts; electrical (e), mechanical (m) J
Ḣ Hamiltonian rate, power flow with subscripts; electrical (e), mechanical (m) W
j Sum index for number of force components -
k, K Stiffness coefficient N/m
kLIN2 Linear stiffness coefficient N/m
kNL Nonlinear stiffness coefficient N/m3

kNL2 Nonlinear stiffness coefficient N/m3

Kp Proportional control gain kg/s2

Kd Derivative control gain kg/s
L Electrical inductance H
m, M Mass of system kg
N Maximum number of force components -
ω Mechanical system natural frequency rad/s
Ω Extern force excitation frequency rad/s
ω̄ Electrical system natural frequency rad/s
Preac Reactive power MW
Preal Real power MW
q Electrical charge C
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q̇ Electrical charge rate (equal to current) C/s
q̈ Electrical charge acceleration C/s2

r Buoy radius, HG, RCC m
R Electrical resistance Ohms
Ropt Optimal damping coefficient N s/m
R̄opt Effective optimal damping coefficient = Ropt + b N s/m
ρ Buoy material density kg/m3

Sw Non-uniform water plane area m2

S(w) Bretschneider spectral density m2s/rad
τ Cycle time sec
t time sec
T Kinetic energy with subscripts; electrical (e), mechanical (m) J
Tp Bretschneider spectral peak period parameter sec
V Volume with subscripts; cone, buoy, RCC, HG m3

V(z) Volume as a function of heave displacement m3

v0 External voltage magnitude V
V Potential energy with subscripts; electrical (e), mechanical (m) J
x Displacement m
ẋ Velocity m/s
ẍ Acceleration m/s2

x̂ x-coordinate -
ŷ y-coordinate -
ẑ z-coordinate -
z Heave displacement m
ż Heave velocity m/s
z̈ Heave acceleration m/s2

ζ Vertical position of the center of volume of buoy m
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