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Abstract

The risk of many complex diseases is determined by a complex interplay of genetic and

environmental factors. Advanced next generation sequencing technology makes identifica-

tion of gene-environment (GE) interactions for both common and rare variants possible.

However, most existing methods focus on testing the main effects of common and/or rare

genetic variants. There are limited methods developed to test the effects of GE interactions

for rare variants only or rare and common variants simultaneously. In this study, we develop

novel approaches to test the effects of GE interactions of rare and/or common risk, and/or

protective variants in sequencing association studies. We propose two approaches: 1) test-

ing the effects of an optimally weighted combination of GE interactions for rare variants

(TOW-GE); 2) testing the effects of a weighted combination of GE interactions for both rare

and common variants (variable weight TOW-GE, VW-TOW-GE). Extensive simulation stud-

ies based on the Genetic Analysis Workshop 17 data show that the type I error rates of the

proposed methods are well controlled. Compared to the existing interaction sequence ker-

nel association test (ISKAT), TOW-GE is more powerful when there are GE interactions’

effects for rare risk and/or protective variants; VW-TOW-GE is more powerful when there

are GE interactions’ effects for both rare and common risk and protective variants. Both

TOW-GE and VW-TOW-GE are robust to the directions of effects of causal GE interactions.

We demonstrate the applications of TOW-GE and VW-TOW-GE using an imputed data

from the COPDGene Study.

Introduction

The etiology of many diseases is characterized by the interplay between genetic and

environment factors. For example, anthracyclines are one of the most effective classes of che-

motherapeutic agents currently available for cancer treatment. The therapeutic potential of
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anthracyclines, however, is limited because of their strong dose-dependent relation with pro-

gressive and irreversible cardiomyopathy leading to congestive heart failure. Both gene hyalur-

onan synthase 3 (HAS3) and gene CUGBP Elav-like family member 4 (CELF4) modify the risk

of anthracycline on the development of anthracycline-related cardiomyopathy [1, 2]. A

genome-wide gene environment interaction analysis indicates that gene EBF1 plays together

with stress associated with cardiovascular disease. Additionally, gene EBF1 not only shows

gene-by-stress interaction effect for hip circumference but also indicates gene-by-stress inter-

action effects for waist circumference, body mass index (BMI), fasting glucose, type II diabetes,

and common carotid intimal medial thickness (CCIMT) [3].

To date, most of the successful findings in gene-environment (GE) interactions are for

common genetic variants. There has been very limited success in findings for rare variants’ GE

interactions. This is often attributed to study design issues, such as sample size or population

heterogeneity [4]. Lack of statistical methodology on rare variants’ GE also contributes to the

limitations.

Rare variants, which are usually defined as genetic variants with minor allele frequency

(MAF) less than 5% (or 1%), may play an important role in studying the etiology of

complex human diseases. Numerous statistical methods have been developed for testing

the main effects of rare variants, such as the sequence kernel association test (SKAT) [5],

the combined multivariate and collapsing (CMC) method [6], the weighted sum statistic

(WSS) [7], and Testing the effect of an Optimally Weighted combination of variants

(TOW) [8].

To our knowledge, limited methods have been developed for testing GE interactions in

sequencing association studies. Existing methods for assessing common variants by environ-

ment interactions, such as the gene-environment interactions association test (GESAT) [9] are

less powerful when naively applied to rare variants [10]. To test rare variants by environment

interactions, [10] developed the interaction sequence kernel association test (ISKAT) to assess

the effects of rare variants by environment interactions. As ISKAT considers the special

weights Beta(MAF;1, 25), the beta distribution density function with parameters 1 and 25 eval-

uated at the sample MAF, which is the recommended weight for ISKAT when there is no prior

information, ISKAT may lose power when the MAFs of causal variants are not in the range

(0.01,0.035) [11].

In this article, to test for rare and/or common variants and environment interactions in

sequencing association studies, we develop two novel methods: 1) Testing the Optimally

weighted combination of GE interactions for rare variants (TOW-GE); 2) testing effects of

weighted combination of GE interactions for both rare and common variants (variable weight

TOW-GE, refer to this statistic as VW-TOW-GE). Both TOW-GE and VW-TOW-GE are

robust to directions of effects of causal GE interactions. We evaluate the performance of the

proposed methods via simulation studies and real data analysis using the imputed sequencing

data from the COPDGene Study.

Methods

Consider n unrelated individuals sequenced in a testing region with m genetic variants. In the

testing region, we are interested in testing the effects of p rare variants (p<m) by environment

interactions on a trait, which can be a quantitative or a qualitative trait. For ease of presenta-

tion, we only consider a single environmental factor. The method can be easily extended to the

case when there are multiple environmental factors. For individuals i = 1, . . ., n, let yi denote

the trait, Xi = (xi1, . . ., xiq)T denote the q covariates, Gi = (gi1, . . ., gip)T denote genotypes for the
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p rare variants in a genomic region (a gene or a pathway) and Ei as the environmental factor.

Let Si = (Ei gi1, . . ., Ei gip)T be a vector of variants by environment interaction terms for the ith

individual.

We use the generalized linear model (GLM) to model the relationship between the trait val-

ues yi and covariates Xi, genotypes Gi, environmental factor Ei and GE interactions, Si:

gðEðyijXi;Gi;EiÞÞ ¼ XT
i α1 þ Eia2 þ GT

i α3 þ ST
i β

¼ ~XT
i α þ ST

i β
ð1Þ

where g(�) is a canonical link function. Two commonly used models under the generalized lin-

ear model framework are the linear model with the identity link for a continuous or quantita-

tive trait, and the logistic regression model with the Logit link for a binary trait. α1, α2, α3, and

β are defined as q × 1 coefficient vector of covariate, the coefficient of environmental factor,

p × 1 coefficient vector of genotype and p × 1 coefficient vector of GE interactions for the ith

individual and the trait, respectively. Let ~X i ¼ ðX
T
i ;Ei;G

T
i Þ

T
and α = (α1, α2, α3)T. Testing the

association between the trait and the rare variants by environment interactions is equivalent to

testing the null hypothesis H0: β = 0.

We develop a score test by treating α as nuisance parameters and then adjust both the trait

value yi and Si for the covariates Xi, the genotypic score Gi, and the environmental variable Ei

by applying linear regression. Denote ~yi as the residual of yi and ~S i ¼ ð~si1; . . . ;~sipÞ as the resid-

ual of Si, regressed on ~X i. Then, the relationship between ~yi and ~S i can be modeled by the

GLM:

gðEð~yij
~S iÞÞ ¼ b

�

0
þ ~ST

i β
� ð2Þ

Testing H0: β = 0 in (1) is equivalent to testing H0: β� = 0 in (2) (Sha et al., [8]). Here, we uti-

lize a weight selection scheme proposed by Sha et al. [8] on our new model to test the effect of

a weighted combination of GE, ~si ¼
Pp

j¼1
wj~sij. Following Sha et al. [12], we propose the fol-

lowing score test statistic under the generalized linear model:

Sðw1; . . . ;wpÞ ¼ n
ð
Pn

i¼1
ð~yi �

�~yÞð~si �
�~sÞÞ2

Pn
i¼1
ð~yi �

�~yÞ2
Pn

i¼1
ð~si �

�~sÞ2

¼ n
ð
Pp

j¼1
wj

Pn
i¼1
ð~yi �

�~yÞð~sij �
�~s jÞÞ

2

Pn
i¼1
ð~yi �

�~yÞ2
Pn

i¼1
ð~si �

�~sÞ2

Because GE interactions for rare variants are essentially independent, we have:

Xn

i¼1

ð~si �
�~sÞ2 ¼

Xp

j¼1

Xp

l¼1

wjwl

Xn

i¼1

ð~sij �
�~s jÞð~sil �

�~s lÞ

�
Xp

j¼1

w2

j

Xn

i¼1

ð~sij �
�~s jÞ

2

Thus, as a function of (w1, . . ., wp), the score test statistic S(w1, . . ., wp) reaches its maximum

S0ðw0
1
; . . . ;w0

pÞ ¼ n
Pn

i¼1
ð~yi �

�~yÞð~s0
i �

�~s0Þ=
Pn

i¼1
ð~yi �

�~yÞ2 when w0
j ¼

Pn
i¼1
ð~yi �

�~yÞ�

ð~sij �
�~sjÞ=

Pn
i¼1
ð~sij �

�~sjÞ
2

and ~s0
i ¼

Pp
j¼1

w0
j ~sij.
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Similarly, we define the statistic to Test the effect of the Optimally Weighted combination

of GE interactions (TOW-GE),
Pp

j¼1
w0

j ~sij, as:

TTOW� GE ¼
Xn

i¼1

ð~yi �
�~y Þð~s0

i �
�~s0Þ ð3Þ

which is equivalent to S0ðw0
1
; . . . ;w0

pÞ, where
Pn

i¼1
ð~yi �

�~yÞ2 can be viewed as a constant when

we use a permutation test to evaluate p-values.

The optimal weight w0
j is equivalent to w0�

j ¼ rð~y;~sjÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ð~sij �

�~sjÞ
2

q

, where rð~y;~sjÞ is

the correlation coefficient between ~y ¼ ð~y1; . . . ; ~ynÞ and ~sj ¼ ð~s1j; . . . ;~snjÞ. From the expres-

sion of w0�
j , we can see that it is proportional to rð~y;~sjÞ and thus w0

j will put large weights to

the GE interactions that have strong associations with the trait and also adjust for the direction

of the association. Simultaneously, w0�
j is proportional to 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ð~sij �

�~sjÞ
2

q

and w0
j will put

large weights to GE interactions with small variations which are common in GE interactions

for rare variants.

TOW-GE focuses primarily on rare variants by environment interactions and it may lose

power because of the small weights on common variants by environment interactions. Thus,

to test the GE interactions’ effects of both rare and common variants, we propose the following

variable weight TOW-GE denoted as VW-TOW-GE. We first divide GE interactions into two

parts based on rare or common variants and then we apply TOW-GE to the two parts sepa-

rately. Let Tl ¼ l
Trffiffiffiffiffiffiffiffiffi
varðTrÞ
p þ ð1 � lÞ

Tcffiffiffiffiffiffiffiffiffi
varðTcÞ
p where Tr and Tc denote the test statistics of

TOW-GE for GE interactions’ effects of rare and common variants, respectively. λ is a tuning

parameter. Denote pλ as the p-value of Tλ, and then the test statistic of VW-TOW-GE is

defined as TVW−TOW−GE = min0�λ�1 pλ. In this study, we use a simple grid search method to

choose the tuning parameter λ and minimize the p-value. Divide the interval [0, 1] into K sub-

intervals of equal-length. Let λk = k/K for k = 0, 1, . . ., K. Then, min 0�l�1pl ¼ min 0�k�Kplk
.

The p-value of TVW−TOW−GE can be evaluated by permutation tests following similar per-

mutation tests for variable weight TOW (VW-TOW) proposed by [8]. Suppose that we per-

form B times of permutations. In each permutation, we randomly shuffle the trait values. Let

TðbÞr and TðbÞc denote the values of Tr and Tc, respectively, based on the bth permuted data,

where b = 0 represents the original data. Based on TðbÞr and TðbÞc (b = 0, 1, 2, . . ., B), we can cal-

culate TðbÞlk
for b = 0, 1, 2, . . ., B and k = 0, 1, 2, . . ., K, where var(Tr) and var(Tc) are estimated

using TðbÞr and TðbÞc (b = 0, 1, 2, . . ., B). Then, we transfer TðbÞlk
to pðbÞlk

by

pðbÞlk
¼

#fTðdÞlk : TðdÞlk > TðbÞlk for d ¼ 0; 1; 2; :::;Bg
B

Let pðbÞ ¼ min 0�k�Kp
ðbÞ
lk

. Then, the p-value of TVW−TOW−GE is given by

#fpðbÞ : pðbÞ < pð0Þ for b ¼ 0; 1; 2; :::;Bg
B

Simulation

We compared the performance of our proposed methods with the interaction sequence kernel

association test (ISKAT) [10], the modified WSS for testing the effects of GE interactions [7]

and the modified CMC method for testing the effects of GE interactions [6]. In this study, the
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rank sum test used by WSS and the T2 test used by CMC were replaced with the score test

based on residuals ~yi and ~sij. The empirical Mini-Exome genotype data provided by the

Genetic Analysis Workshop 17 (GAW17) is used for simulation studies. The dataset contains

genotypes of 697 unrelated individuals on 3,205 genes. Because gene ELAVL4 in GAW17 was

used to simulate GE interaction’s effect on quantitative trait Q1 which follows a normal distri-

bution, we chose gene ELAVL4 in our simulation study. Gene ELAVL4 has 10 variants, con-

taining 8 rare variants and 2 common variants. Rare variants in the simulation are defined

with MAF < 0.05.

To evaluate type I error, we generate trait values independent of GE interactions (e.g. β1 = 0

and βc = 0) by using the model:

Y1 ¼ 0:5X1 þ 0:5X2 þ Ea1 þ GTα2 þ STβ1 þ Scb
c
1
þ �1

where �1 follows a normal distribution with mean as 0 and variances as s2
1
¼ 1; α1 = 0.015; S is

GE interactions for rare variants and Sc is GE interaction for a common variant. We consider

two covariates: a standard normal covariate X1 and a binary covariate X2 with P(X2 = 1) = 0.5.

The environmental factor E is assumed to be continuous following a standard normal

distribution.

For type I error evaluation, we consider two different cases: 1) testing the effects of GE

interactions for rare variants; 2) testing the effects of GE interactions for both rare and com-

mon variants. For each case, we consider two scenarios: (a) with main effect; (b) without main

effect in the model. When the main effects exist, we set the magnitudes of vector α2 as 0.3 and

the sign of each coefficient is random sampled from (−1, 1). When main effects do not exist,

we set α2 = 0.

For power comparisons, the phenotype is generated using similar settings to type I evalua-

tion except for existing GE interactions’ effects. We compare the power of TOW-GE, ISKAT,

WSS and CMC to test rare variant GE interactions’ effects considering two scenarios: (a)

including main effects, α2 6¼ 0 for rare variants; (b) no main effects, α2 = 0 for rare variants.

We vary the number of non-zero in the vector βi, the proportion of non-zero in βi that are

positive, and the magnitudes of the non-zero βij. We set the magnitudes of the non-zero βij’s as

|βij| = c, and increase c from 0.1 to 0.5. In each simulation scenario, p-values are estimated by

10,000 permutations and 1,000 replicated samples.

Simulation results

The empirical type I error rates are shown in Tables 1 and 2. For 10,000 replicated samples, the

95% confidence intervals for type I error rates of nominal levels as 0.05, 0.01 and 0.001 are

Table 1. Type 1 error rates for testing the effects of GE interactions of rare variants in the presence of main effects (top panel) and in the absence of main effects

(bottom panel) (n = 2000).

With main effect

α-level TOW-GE ISKAT WSS CMC

n = 2000 0.05 0.042 0.066 0.047 0.027

0.01 0.01 0.017 0.011 0.005

0.001 0.001 0.009 0.000 0.000

Without main effect

n = 2000 0.05 0.054 0.066 0.050 0.043

0.01 0.006 0.014 0.012 0.012

0.001 0.000 0.004 0.000 0.000

https://doi.org/10.1371/journal.pone.0229217.t001
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(0.046, 0.054), (0.008, 0.012) and (0.0004, 0.0016), respectively. When there are (a) main

effects, e.g. α2 6¼ 0, TOW-GE, VW-TOW-GE, ISKAT and WSS control type I error rates well

and the burden test CMC tends to have very conservative type I error rates (top panel of Tables

1 and 2). When there are (b) no main effects. e.g. α2 = 0, all methods can control type I error

rates well (bottom panel of Tables 1 and 2).

The results for testing the effects of GE interactions of rare variants when including main

effect and no main effect are given in Figs 1 and 2, respectively. In both of these two scenarios,

we consider the sample size as 2000 without a GE interaction of a common variant. We do not

apply VW-TOW-GE here because it is designed for existing GE interactions’ effects of both

common and rare variants. The top, middle, and bottom panels in Figs 1 and 2 provide results

for three cases, e.g. when there are 2, 6 and 8 non-zero βij’s, respectively. The left and right pan-

els of Figs 1 and 2 present for two cases, e.g. 50% of the βij are positive and 100% of the βij are

positive, respectively. For each plot, we vary c, the magnitudes of the non-zero βij. As shown in

the four plots for the case when 50% of the βij are positive, TOW-GE is more powerful than

the other three tests. For the case when 100% of the βij are positive, WSS is relatively more

powerful than TOW-GE since all the GxEs have the same direction of effects. TOW-GE is

more powerful than the other two tests. However, WSS is very sensitive to the directions of

effects due to aggregation of GE interactions directly. Among the four tests (TOW-GE,

ISKAT, WSS and CMC) in the two different cases, CMC is the least powerful test. CMC loses

power as it gives GE interactions of common variants large weights, and thus GE interactions

of common neutral variants will introduce large noise.

Power comparisons of the five tests (TOW-GE, VW-TOW-GE, ISKAT, WSS and CMC)

for testing GE interaction effects for both rare and common variants are given in Fig 3. For

each scenario in Fig 3, we vary c from 0.02 to 0.1 and set 50% of the βij as positive. Simulta-

neously, we set the coefficient of a common variant by environment interaction b
c
i as positive

and the magnitudes of b
c
i as twice of βij which is the coefficient of a rare variant by environ-

ment interaction. From Fig 3, we can see that VW-TOW-GE is the most powerful test. CMC is

the second most powerful test as CMC puts large weights on GE interactions of common vari-

ants and gains power increment when the GE interaction of a common variant plays an

important role as the causal effect. WSS is the least powerful test, which loses power because it

puts very small weight on the GE interaction of the common variant.

TOW-GE, VW-TOW-GE, and ISKAT can all be considered as quadratic statistics which

have reasonable power across a wide range of alternative hypothesis. The three methods are

robust to the different directions of the GE interaction effects. We perform a further assess-

ment for the three methods. Fig 4 shows the results. When there are causal effects of GE inter-

actions for both common and rare variants, VW-TOW-GE outperforms TOW-GE and

Table 2. Type 1 error rates for testing the effects of GE interactions for both rare and common variants in the presence of main effects (top panel) and in the absence

of main effects (bottom panel) (n = 2000).

With main effect

α-level TOW-GE ISKAT WSS CMC VW-TOW-GE

n = 2000 0.05 0.053 0.062 0.055 0.040 0.052

0.01 0.007 0.013 0.017 0.009 0.011

0.001 0.002 0.002 0.001 0.000 0.002

Without main effect

n = 2000 0.05 0.051 0.056 0.048 0.049 0.058

0.01 0.006 0.012 0.012 0.011 0.014

0.001 0.001 0.003 0.001 0.001 0.002

https://doi.org/10.1371/journal.pone.0229217.t002
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Fig 1. Power comparisons of the four tests (TOW-GE, ISKAT, WSS and CMC) for testing GE interaction effects for rare variants on a

continuous outcome when there are main effects (n = 2000 and the significance level of α = 0.05).

https://doi.org/10.1371/journal.pone.0229217.g001
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Fig 2. Power comparisons of the four tests (TOW-GE, ISKAT, WSS and CMC) for testing GE interaction effects of rare variants on a

continuous outcome when there are no main effects (n = 2000, significance level of α = 0.05).

https://doi.org/10.1371/journal.pone.0229217.g002
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ISKAT. TOW-GE is more powerful than ISKAT except when the magnitude of the GE interac-

tions is less than 0.04.

Real data analysis

Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases

characterized by long term poor airflow and is a major public health problem [13]. It is a com-

plex disease which is influenced by genetic factors, environmental influences, and genotype-

environment interactions. We have known that cigarette smoking is the major environmental

Fig 3. Power comparisons of the five tests (TOW-GE, ISKAT, WSS, CMC and VW-TOW-GE) for testing GE interaction effects for both rare and common

variants on a continuous outcome (n = 2000 and the significance level of α = 0.05). Left panel: With main effect; Right panel: With no main effect.

https://doi.org/10.1371/journal.pone.0229217.g003

Fig 4. Power comparisons of the three quadratic tests (TOW-SE, iSKAT, and VW-TOW-SE) for testing GE interaction effects of both rare and common

variants on a continuous outcome (n = 2000, the significance of α = 0.05). Left panel: With main effect; Right panel: Without main effect.

https://doi.org/10.1371/journal.pone.0229217.g004
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determinant of COPD [14]. Several genes have been suggested to play a role in the presence of

a gene-by-smoking interaction term. Specifically, [15] reported that the 30-repeat allele of

HMOX1 was associated with COPD in presence of a gene-by-smoking (pack-years) interaction

term. [14] presented that the GSTM1 gene was associated with severe chronic bronchitis in

heavy smokers and an association of the TNF—308A allele with COPD was found in a Taiwan-

ese population. [15] reported that the SFTPB Thr131Ile polymorphism was associated with

COPD, but only in the presence of a gene with an environment interaction. The SNP

rs2292566 in gene EPHX1 was associated with COPD only in presence of a gene-by-smoking

(pack-years) interaction. [16] showed that two SNPs in the promoter region of TGFB1

(rs2241712 and rs1800469) and one SNP in exon 1 of TGFB1 (rs1982073) were significantly

associated with COPD among smokers in a COPD case control study.

The COPDGene Study is a multi-center genetic and epidemiologic investigation to study

COPD [17]. Participants in the COPDGene Study gave consent for the use of data collected

during the study in downstream analyses. This study is sufficiently large and appropriately

designed for analysis of COPD. In this study, we consider more than 5,000 non-Hispanic

Whites (NHW) participants where the participants have completed a detailed protocol, includ-

ing questionnaires, pre- and post-bronchodilator spirometry, high-resolution CT scanning of

the chest, exercise capacity (assessed by six-minute walk distance), and blood samples for gen-

otyping. The participants were genotyped using the Illumina OmniExpress platform. The

genotype data have gone through standard quality-control procedures for genome-wide

association analysis detailed at http://www.copdgene.org/sites/default/files/GWAS_QC_

Methodology_20121115.pdf. We imputed the COPD genotype data using the EUR haplotypes

from the 1000 Genome Project as references.

Based on the literature of COPD [18, 19], we selected 7 key quantitative COPD-related phe-

notypes, including FEV1 (% predicted FEV1), Emphysema (Emph), Emphysema Distribution

(EmphDist), Gas Trapping (GasTrap), Airway Wall Area (Pi10), Exacerbation frequency

(ExacerFreq), Six-minute walk distance (6MWD), and one qualitative phenotypes (case-con-

trol disease status denoted as COPD in following tables). 3 covariates, including BMI, Age and

Sex and one environmental factor (Pack-Years) were considered in our analysis. EmphDist is

the ratio of emphysema at -950 HU in the upper 1/3 of lung fields compared to the lower 1/3

of lung fields where we did a log transformation on EmphDist in the following analysis,

referred to [18]. In the analysis, participants with missing data in any of these phenotypes were

excluded.

To evaluate the performance of our proposed method on a real data set, we applied all of

the 5 methods (TOW-GE, ISKAT, WSS, CMC, and VW-TOW-GE) to six COPD associated

genes (HMOX1, GSTM1, TGFB1, TNF, SFTPB, and EPHX1) through an interaction with ciga-

rette smoking. In the analysis, we removed the extreme rare SNPs (MAF<0.001) in any geno-

typic variants and missing value in any of the 7 phenotypes and 3 covariates. We considered

three different scenarios: (1) main effect; (2) gene-by-smoking interaction with main effect

and (3) gene-by-smoking interaction without main effect. When we considered only the main

effect, we used five existing methods (TOW-GE, SKAT, WSS, CMC, and VW-TOW) which

are specifically designed for testing the main effect of a gene. We adopted 104 permutations for

our methods and used 0.05 as the significance level.

The results for testing association between COPD and gene HMOX1 and GSTM1 are sum-

marized in Tables 3 and 4 respectively. The results for testing association between COPD and

gene TGFB1, TNF, SFTPB, and EPHX1 are summarized in S1–S4 Tables. At gene HMOX1,

both TOW-GE and modified WSS verified significant GE intecation effects without main

effect for two traits Emph and Pi10. ISKAT and VW-TOW-GE verified significant GE inteca-

tion effects without main effect for trait Emph. At gene GSTM1, TOW-GE, VW-TOW-GE

PLOS ONE Testing gene-environment interactions in sequencing association studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0229217 March 10, 2020 10 / 15

http://www.copdgene.org/sites/default/files/GWAS_QC_Methodology_20121115.pdf
http://www.copdgene.org/sites/default/files/GWAS_QC_Methodology_20121115.pdf
https://doi.org/10.1371/journal.pone.0229217


and ISKAT verified GE interaction effect without main effect for trait EmphDist, while all

other methods failed in the verification tests. At gene TGFB1, TOW-GE, VW-TOW-GE and

ISKAT verified GE interaction effect without main effect for trait ExacerFreq (S1 Table). Gene

TNF was only identified by the modified CMC method and the modified WSS method for

gene-by-smoking interaction with main effect (S2 Table). Gene EPHX1 was only identified by

the modified WSS method for gene-by-smoking interaction with main effect (S4 Table). Four

genes with gene-by-smoking interaction effects (GSTM1, HMOX1, SFTPB, and TGFB1) were

identified by our methods (S1 and S3 Tables, Tables 3 and 4).

Discussion

Recent evidence shows that gene-environment interactions of rare variants may play an

important role in explaining the etiology of a complex disease. However, there are limited

methods that can be employed to test the effects of GE interactions for rare variants. In this

study, we propose two new methods for testing GE interactions for rare variants only or for

Table 3. Summary results of association analysis for HMOX1 based on the COPD dataset. The p-values are shown for testing the gene’s main effect (top panel), gene-

by-smoking interaction with main effect (middle panel), gene-by-smoking interaction without main effect (bottom panel).

Gene’s main effect

trait TOW SKAT WSS CMC VW-TOW

GasTrap 0.3917 0.542 0.2618 0.9038 0.5539

ExacerFreq 0.7050 0.6149 0.1922 0.9845 0.8155

Emph 0.0204 0.0328 0.0036 0.9155 0.0360

Pi10 0.0283 0.0266 0.0457 0.4501 0.0559

EmphDist 0.8083 0.7363 0.5172 0.7520 0.8888

6MWD 0.8299 0.8451 0.8526 0.9985 0.8642

FEV1 0.6825 0.6928 0.7057 0.6906 0.7691

COPD 0.8637 0.8277 0.8345 0.7540 0.8677

Gene-by-smoking interaction with main effect

trait TOW-GE ISKAT WSS CMC VW-TOW-GE

GasTrap 0.7432 0.8001 0.2610 0.8894 0.8033

ExacerFreq 0.5883 0.2389 0.2768 0.9964 0.3921

Emph 0.4024 0.2718 0.1140 0.9861 0.5696

Pi10 0.1208 0.4084 0.0821 0.9948 0.0651

EmphDist 0.5315 0.4794 0.6006 0.9892 0.4886

6MWD 0.6174 0.3624 0.4211 0.9929 0.6793

FEV1 0.8656 0.7748 0.4419 0.9575 0.9178

COPD 0.2302 0.3029 0.9089 0.9424 0.3394

Gene-by-smoking interaction without main effect

trait TOW-GE ISKAT WSS CMC VW-TOW-GE

GasTrap 0.3388 0.5724 0.1207 0.6040 0.4967

ExacerFreq 0.3818 0.2810 0.0915 0.9320 0.4513

Emph 0.0189 0.0487 0.0011 0.8288 0.0349

Pi10 0.0304 0.0532 0.0118 0.5587 0.0571

EmphDist 0.8166 0.8062 0.7610 0.8066 0.8217

6MWD 0.7253 0.3463 0.6810 0.9929 0.6811

FEV1 0.5604 0.7387 0.4519 0.3043 0.7280

COPD 0.8869 0.8877 0.8657 0.3204 0.9300

Note: The bold numbers represent p-values of significant tests (significance level = 0.05).

https://doi.org/10.1371/journal.pone.0229217.t003
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both rare and common variants. We employ a generalized linear model to model the relation-

ship between the trait and the GE interactions. Our model focuses on GE interactions by first

adjusting for genetic main effects, environmental main effects, and possible covariates. Two

methods are designed for different scenarios through specific weigh-selection mechanisms.

TOW-GE assigns the majority of weights on rare variants by environment interactions.

VW-TOW-GE balances common and rare variants by performing weight assignments sepa-

rately for common variants by environment interactions and rare variants by environment

interactions. Both methods achieve the best possible power with an adaptive weight selection

procedure.

In the application, we have tested genetic association for 7 traits of COPD. Our proposed

methods verified the most significant GE interactions, especially for gene-by-smoking interac-

tions without main effect and performs the best compared to other methods. In simulation

studies, we also demonstrated that our proposed methods perform better in different scenario:

with main effect and without main effect. Our results show that the proposed methods

Table 4. Summary results of association analysis for GSTM1 based on the COPD dataset. The p-values are shown for testing the gene’s main effect (top panel), gene-

by-smoking interaction with main effect (middle panel), gene-by-smoking interaction without main effect (bottom panel).

Gene’s main effect

trait TOW SKAT WSS CMC VW-TOW

GasTrap 0.2309 0.6152 0.6163 0.2479 0.2848

ExacerFreq 0.7198 0.7823 0.7677 0.9138 0.6594

Emph 0.1401 0.3901 0.8496 0.1686 0.2355

Pi10 0.0177 0.1069 0.1705 0.0749 0.0151

EmphDist 0.0077 0.0256 0.3545 0.0487 0.0082

6MWD 0.6011 0.6856 0.8401 0.9260 0.5707

FEV1 0.1190 0.5920 0.9013 0.2301 0.0866

COPD 0.2144 0.2178 0.4699 0.2078 0.3243

Gene-by-smoking interaction with main effect

trait TOW-GE ISKAT WSS CMC VW-TOW-GE

GasTrap 0.8652 0.7482 0.5358 0.1096 0.9158

ExacerFreq 0.7417 0.0867 0.3860 0.0599 0.5606

Emph 0.6829 0.9901 0.6833 0.2927 0.7207

Pi10 0.2757 0.5465 0.4808 0.1164 0.4506

EmphDist 0.1287 0.2314 0.6639 0.6781 0.1126

6MWD 0.8144 0.8769 0.8893 0.3781 0.8384

FEV1 0.9389 0.4145 0.6640 0.1277 0.9169

COPD 0.9944 0.8870 0.7842 0.2098 0.9878

Gene-by-smoking interaction without main effect

trait TOW-GE ISKAT WSS CMC VW-TOW-GE

GasTrap 0.5160 0.2723 0.8413 0.6725 0.5769

ExacerFreq 0.5887 0.7348 0.6194 0.2701 0.6796

Emph 0.1041 0.1114 0.6514 0.4787 0.1691

Pi10 0.0697 0.1112 0.1282 0.0844 0.0631

EmphDist 0.0071 0.0229 0.6162 0.1078 0.0131

6MWD 0.7759 0.9342 0.9903 0.8683 0.7867

FEV1 0.2833 0.4709 0.6934 0.2673 0.2254

COPD 0.3641 0.1615 0.4693 0.5593 0.4934

The bold numbers represent p-values of significant tests (significance level = 0.05).

https://doi.org/10.1371/journal.pone.0229217.t004
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TOW-GE or VW-TOW-GE demonstrate better power in most cases compared with compet-

ing methods.

The power of a test varies according to the number of GE interactions of rare or common var-

iants, the effect directions of GE interactions, and the MAFs of variants. When substantial of GE

interactions have opposite directions of effects, the quadratic statistics TOW-GE, VW-TOW-

GE, and ISKAT are powerful. When effects of GE interactions of common variants play a pri-

mary role, CMC is more powerful than ISKAT, WSS, and has similar power to VW-TOW-GE.

In our proposed method, the optimal weights of TOW-GE are derived analytically; thus the

computation cost is relatively small. On the other hand, TOW-GE is flexible and allows for

prior biological information to be incorporated by using flexible weights, such as weights

derived from the expression quantitative trait locus (eQTL), which may further improve the

power of TOW-GE. In addition, TOW-GE allows for adjustment of covariates. The covariates

could be demographic variables, environmental variables, clinical variables, and/or principle

components of genotype scores. The adjustment of covariates makes TOW-GE not only able

to eliminate the effect of confounders but also able to correct for possible population stratifica-

tion in admixed populations. One possible advantage of TOW-GE compared to ISKAT is that

TOW-GE utilizes the residuals of both the trait value and the GE interactions, which are

obtained by adjusting for covariates from linear regression models, respectively, while ISKAT

utilizes only the residual of the trait value.

The proposed test statistic TOW-GE does not have an asymptotic distribution and a per-

mutation procedure is needed to estimate its p-value, which is time consuming compared to

methods with asymptotic distributions. To save time when applying the proposed methods in

genetic association studies, we can use the “step-up” procedure [20, 21] to determine the num-

ber of permutations. This can show evidence of association based on a small number of per-

mutations first (e.g.1,000) and then a large number of permutations are used to test the

selected potentially significant genes. Specifically, the computation time of p-value estimation

of TOW-GE and VW-TOW-GE for a gene in the real data analysis was about 30 seconds using

our R program on 6 Dell PowerEdge C6320 servers. Each server has two 2.4GHz Intel Xeon

E5-2680 v4 fourteen-core processors and 600 MB average memory. We have uploaded the R

program onto GitHub at https://github.com/Jianjun-CN/Single-GE.
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