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well, except in Cambodia where FES were well represented. Countries that expanded PA networks during the
study period also increased representation of forests, BPAs, and ES; in Cambodia and Madagascar these increases
were substantial. Representation could be improved across all five countries, however, indicating that additional
efforts are needed to safeguard biodiversity and ecosystem benefits to people in these countries.

1. Introduction

In 2020, governments will convene under the UN Convention on
Biological Diversity (CBD) to set a post-2020 global biodiversity fra-
mework, which is expected to influence conservation action and in-
vestment for the next decade. In order to set meaningful targets, it is
necessary to understand whether countries are achieving past con-
servation commitments. Protected areas (PAs) have long been the pri-
mary mechanism for conserving biodiversity (Lewis et al., 2017). There
is also a growing interest in the capacity of PAs to secure the sustained
delivery of ecosystem services (ES), the benefits that ecosystems pro-
vide to people (Ferraro and Hanauer, 2014). Protected areas provide
benefits including provision of fresh water (Harrison et al., 2016),
carbon storage (Ferraro et al., 2015), and provision of food and liveli-
hoods for local communities (Ivanic¢ et al., 2017). Recognition of these
benefits is evident in government commitments such as the CBD and
specifically Aichi Target 11, under which 196 countries pledged to
protect at least 17 percent of their terrestrial and inland waters,
“especially areas of particular importance for biodiversity and eco-
system services” (Convention on Biological Diversity, 2010). These
commitments have resulted in an expansion of the global PA network
from 8.5% of land and inland waters in 2004 to 14.7% in 2015 (Lewis
et al., 2017). Area-based indicators are recognized as insufficient
measures of conservation progress, however (Barnes, 2015). Other in-
dicators such as ecological representation and status of key elements of
biodiversity are also important (Visconti et al., 2019). Also, while it is
often assumed that PAs provide both biodiversity conservation and ES
benefits, we have limited knowledge of the extent to which areas im-
portant for ES are protected (UNEP-WCMC et al., 2018). The spatial
relationship between biodiversity and ES is complex and varies de-
pending on the location and the measures of biodiversity and ES used
(Larsen et al., 2012; Naidoo et al., 2008). Therefore, the ability of PAs
to achieve both goals is still poorly understood.

PAs have historically been designated for purposes ranging from
recreation, aesthetic value, and protection of charismatic wildlife
(Phillips, 2004) but their location and configuration has often been
driven by opportunity and political expedience (Joppa and Pfaff, 2009).
As a result, PA networks in many countries do not adequately represent
the highest priority areas for biodiversity (Butchart et al., 2015) nor
threatened species (Venter et al., 2014). To be effective at conserving
wildlife, PAs must be appropriately resourced and managed (Nolte
et al., 2013). Yet even if global PA area targets are met, they will be
insufficient to achieve effective conservation of biodiversity and ES
(Butchart et al., 2015; Larsen et al., 2014; Venter et al., 2014). The gap
in PA coverage is of particular concern in the tropics, which contain
large numbers of species at risk of extinction (Rodrigues et al., 2004). In
addition, while global PA coverage has increased overall, PA extent has
actually declined in some countries due to legal protected area down-
grading, downsizing, and degazettement (PADDD) (Qin et al., 2019).

Formal designation of protected areas is a core conservation
strategy in diverse political and ecological contexts (Lewis et al., 2017).
Understanding whether national PA networks are currently meeting
government commitments under the CBD and setting new more
meaningful indicators and targets beyond global coverage for the post-
2020 biodiversity framework requires spatial information on the loca-
tion and configuration of biodiversity and ecosystem services. For many
countries, national-scale spatial information on biodiversity is patchy
and incomplete, and information on ES is nonexistent (Guerry et al.,
2015). Spatial data on ES are critically needed, particularly in

developing countries where large numbers of people depend directly on
ecosystems for food, water, and livelihoods (Naidoo et al., 2019). While
PAs clearly play an important role in providing ES, research on the
spatial relationship between PAs and important areas for ES is still re-
latively sparse, particularly in developing countries.

To begin closing this information gap, we mapped biodiversity
priority areas and key ecosystem services in five tropical, developing
countries: Cambodia, Guyana, Liberia, Madagascar, and Suriname.
These countries were selected because they all contain globally sig-
nificant biodiversity, have human populations with a high level of de-
pendence on natural ecosystems, and represent a diversity of geo-
graphic contexts and historic trajectories of protection. All five
countries are signatories to the CBD and several of them (Cambodia,
Liberia, Madagascar) made additional, explicit commitments to pro-
tected area expansion in 2003. We sought to address three questions: 1)
Do PA networks spatially represent biodiversity priority areas, forest
areas, and important areas for ES? 2) Has spatial representation im-
proved over time? 3) Could PAs represent these areas better, if they had
been designed to prioritize these values? While our results cannot be
generalized across all countries, they are indicative of some of the
trends and challenges facing tropical developing countries as they
prepare for the post-2020 conservation agenda. Due to data limitations
we rely on spatial representation as an important indicator of overall
protection. We recognize that representation does not necessarily
translate into effective management (Chape et al., 2005) and that other
measures are needed (Watson et al., 2016); nonetheless spatial re-
presentation is one of the few measures that can be assessed with
currently available data. We hope future research will enable a more
complete assessment of the effectiveness of PAs in achieving desired
biodiversity and ES outcomes.

2. Materials & methods

We compared the level of spatial representation of biodiversity
priority areas (BPAs), forest cover, and areas important for maintaining
several ecosystem services (ES) within national protected area networks
at two points in time. We mapped these values in five countries:
Cambodia, Madagascar, Guyana and Suriname, and Liberia. Each
country (or region, in the case of Guyana and Suriname) was mapped
independently in a series of case studies designed to inform conserva-
tion investment and action in each of the countries, but with similar
methods. All five countries contain globally significant biodiversity: for
example Cambodia, Liberia and Madagascar all fall within biodiversity
hotspots (Myers et al., 2000), while Guyana and Suriname lie within a
high-biodiversity wilderness area (Mittermeier et al., 2003). All five
countries also have large populations of poor, rural, and/or indigenous
people who rely on natural ecosystems for food, water, and livelihoods
(Turner et al., 2012). The countries represent different geographic
contexts (Asia, Africa, Americas), different forest cover contexts, from
large intact forest areas to highly fragmented forest, and different
human population densities. They also have different socio-political
contexts, threats to biodiversity and ecosystem integrity, and factors
determining PA design and land allocation. Looking across these dif-
ferent countries provides preliminary insights about the trends in pro-
tected area coverage in a developing, tropical country context. We fo-
cused on the period 2003-2017, which captures the time period
following commitments to PA expansion made by Madagascar, Cam-
bodia, and Liberia in 2003, and protection goals established by Sur-
iname (2006) and Guyana (2010; Appendix 1). The most recent data
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available at the time of this analysis were for 2017.

To assess the extent to which ecosystem values are represented, we
first compared the observed percentage of BPAs, forest areas, or ES
contained within PAs to the percentage of land area encompassed by
PAs for each country at two points in time (2013 and 2017). For each
point in time, we also compared the observed percentages to a hy-
pothetical maximum percentage which could have been achieved with
an equivalent land area under protection. This was calculated by
summing the highest value pixels for each ecosystem value (BPAs,
forest areas, or ES) until an area equal to the land area under protection
was reached. These analyses did not account for PA size or shape and
therefore are not intended to represent a realistic protection scenario;
they were for comparison purposes only. Though our results are not
representative of all tropical nations, we observed trends in PA re-
presentation which may hold for other countries. In the future, we hope
that greater data availability on ES will enable pan-tropical and even
global analyses.

2.1. Mapping PA networks

We collected officially recognized, national government PA data
from each country, and identified PAs which had been established as of
2003 and 2017. Data was provided by Conservation International staff
from each country, as PA data from the World Database on Protected
Areas was in some cases inaccurate or out of date. We selected 2003
because it corresponded to several policy commitments to expand
protected areas in Madagascar (Gardner et al., 2018) Cambodia (ICEM,
2003), and Liberia (Ministry of Foreign Affairs, 2003). Guyana also
pledged to protect 10% of forested land as part of its Low Carbon De-
velopment Strategy (Office of the President, Republic of Guyana, 2010)
and Suriname set general protected area representation goals in 2006
and 2013 (Ministry of Labour, Technological Development and
Environment, 2013, 2006). We selected 2017 as it was the most recent
year for which data was available at the time of our analysis. A com-
plete list of data sources for each country, and maps, can be found in the
Appendices.

2.2. Mapping biodiversity & ecosystem services

For all spatial analyses we used a combination of ArcGIS Desktop
v10.5 (Esri, 2017) and WaterWorld v2 (Mulligan, 2013). We conducted
all analyses at a spatial resolution of one square kilometer, corre-
sponding to the coarsest resolution of the input datasets, and exported
results into Microsoft Access 2013 for all calculations. Methods are
summarized in Table 1. We conducted similar analyses for all countries,
with adjustments to incorporate the best available data for each
country, which included a combination of global data and, where
available, national-scale data (Appendix 2). Global datasets used as

Table 1
Summarized methods for mapping biodiversity & ecosystem services.
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inputs include human population density (Bright et al., 2012), forest
cover (ESA Climate Change Initiative-Land Cover project, 2017), forest
biomass carbon stocks (Avitabile et al., 2016), and freshwater eco-
system services (Mulligan, 2013).

We relied on the best available data on biodiversity priority areas
recommended by experts from each country, several of whom are co-
authors on this paper. These included Key Biodiversity Areas (KBAs)
from Madagascar (CEPF, 2014), proposed KBAs from Guyana and
Suriname (Kasecker et al., 2007), KBAs and Biodiversity and Protected
Area Management Project (BPAMP) priority sites from Cambodia
(Cutter, 2006), and conservation priority sites defined through sys-
tematic conservation planning in Liberia (Junker et al., 2015). KBAs
were considered incomplete or outdated for Cambodia and Liberia,
which was why experts recommended supplementing them with
BPAMP priority sites (in the case of Cambodia) or using priority sites as
defined by systematic conservation planning (in the case of Liberia).
While the BPAs were therefore defined using different criteria in each
country, they all emphasize the presence of species classified by the
IUCN Red List as Critically Endangered, Endangered, or Vulnerable. We
also analyzed globally consistent biodiversity data, specifically species
richness and range rarity calculated from IUCN Red List species range
polygons for all mammals, amphibians and birds. We deemed the global
data to be inadequate for national-scale analysis; thus the maps are
provided in Appendix 5 but the results are not otherwise discussed.

We mapped forest cover using the European Space Agency (ESA)
land cover product from 2003 and 2015, the most recent year available
(ESA Climate Change Initiative-Land Cover project, 2017). For forest
carbon stocks, we used a pan-tropical dataset on aboveground biomass
carbon (Avitabile et al., 2016) masked using forest areas from ESA in
2003 and 2015. We compared the global land cover product to national
land cover datasets and got similar results, therefore we used the global
datasets for consistency. We note that forest cover and forest carbon
stocks are spatially associated, but that carbon stocks within forests
vary and therefore it is useful to analyze both indicators separately.
Forests also harbor biodiversity and provide multiple other ES, also
supporting their inclusion in the analysis.

Spatially explicit data on ecosystem services were not available
from any of our study countries at a national scale. We therefore con-
ducted spatial analyses to model realized provision of non-timber forest
products (NTFPs) and realized freshwater ecosystem services (FES).
“Realized” ecosystem service provision refers to services which are
being used by people. We selected these two services due to their im-
portance in the study countries and because the results were compar-
able between countries. We modeled several additional ES where re-
levant and based on data availability, including coastal protection in
Madagascar and Liberia, flood regulation in Guyana, Liberia and
Suriname, and fisheries in Madagascar and Cambodia (Conservation
International, 2017, 2015a,b,c), but results were not comparable

Theme Summarized methods

Biodiversity priority areas
Binary variable (0 or 1)
Forest cover

Existing biodiversity priority such as Key Biodiversity Areas, proposed KBAs, or areas identified using systematic conservation planning.

Areas with forest cover, based on the European Space Agency Climate Change Initiative land cover data from 2003 and 2015 (ESA Climate

Change Initiative-Land Cover project, 2017). Binary variable (0 or 1)

Forest carbon storage

Aboveground biomass carbon stocks within forest areas, calculated using global biomass carbon data (Avitabile et al., 2016) and global

forest cover data (ESA Climate Change Initiative-Land Cover project, 2017). Continuous variable

Non-timber forest products (NTFPs)

Natural ecosystems derived from land cover data, weighted by (a) level of importance for NTFPs based on literature review (Cambodia),

expert ranking (Madagascar), or species composition (Guyana), and (b) proximity to food insecure populations (all countries). Continuous

variable
Freshwater ecosystem services

Ecosystems weighted by (a) level of provision of fresh water quantity, quality, or flow regulation services modeled using WaterWorld

(Mulligan, 2013) and (b) level of demand. Demand was estimated by identifying watersheds upstream of population centers, irrigated
agriculture, and hydropower facilities; and calculating demand per capita (population centers), per hectare (irrigated agriculture), or per
megawatt-hour (hydropower facilities). Results were combined in a weighted index of importance for all freshwater ES, for all
beneficiaries. Continuous variable ranging from 0 to 1
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between countries. National-scale data on cultural ES were not avail-
able from any of the study countries. For example, data on nature
tourism and cultural/spiritual benefits is available from Madagascar but
only for national parks, and thus not allowing assessment of cultural
values nationally. Thus no analysis of cultural ES values was included in
this study.

We modeled important areas for NTFPs using data on land cover,
value of different ecosystem types for NTFPs, and accessibility of nat-
ural habitats to people, following methods from Porro et al. (2008). We
estimated the value of different natural ecosystems for NTFPs using
data available from each country. These included published figures on
the economic value of different habitat types for forest products
(Cambodia, Hansen and Top, 2006), an expert ranking exercise (Ma-
dagascar, Conservation International, 2015c), and occurrence of plant
animal species of known importance for food and medicine (Guyana
and Suriname, Porro et al., 2008). In Liberia, no data was available so
all natural habitat classes were treated as equally valuable. Modeled
value of habitat types was then combined with accessibility of habitats
to people to create maps of areas of importance for NTFPs.

We modeled ecosystem provision of freshwater quantity, quality,
and flow regulation using the WaterWorld model (Mulligan, 2013). We
combined the three services into a single index of freshwater services by
taking the average values of all pixels. Relevant beneficiaries were
identified for each country and included human population centers (all
countries), hydropower facilities (all countries), irrigated agriculture
(Madagascar and Cambodia), and freshwater fisheries (Cambodia). We
estimated demand for freshwater services from each beneficiary type in
relevant units (e.g. per capita, per dam production volume, per hectare
of irrigated agriculture). We used the most recent data available at the
time of analysis for mapping FES and NTFPs, however input datasets
and methods varied based on data availability (Appendix 2).

2.3. Data analysis

We analyzed the spatial representation of biodiversity priority areas
(BPAs), forest areas, and ES within PAs in the two time periods. For
discrete areas (BPAs and forest areas) we first calculated the total area
of each per country. This allowed us to calculate the percentage of total
national BPAs and forest areas contained in PAs within each country.
We looked at forest areas and protected area boundaries in 2003 and
2017 to look at change over time. BPA data was available for only a
single time period, therefore we looked at the percentage of BPAs
contained within PAs in 2003 and 2017.

For forest carbon, we first calculated the total tonnes of carbon
contained in all the forests from each country in 2003 and 2017. For
FES and NTFPs, each pixel of habitat was assigned a value ranging from
0 (lowest importance) to 1 (highest) based on their estimated im-
portance as calculated above. NTFPs and FES maps were unitless, as
they combined data on the provision of the service (supply) with the
estimated level of use of the service (demand). We summed the values
of all the pixels of habitat within each country to calculate a total

Table 2
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national value of ES. For each ecosystem service (carbon, NTFPs and
FES), we then calculated the sum of the of all the pixels contained
within PAs. This allowed us to calculate the percentage of total eco-
system service value contained in PAs. We repeated this using PA
boundaries from 2003 and 2017.

We compared the observed percentage of BPAs, forest, and ES
contained within PAs to the total percentage of land area encompassed
by PAs. We also compared the observed percentages to a hypothetical
maximum percentage which could have been achieved with an
equivalent land area under protection, following methods from Turner
et al. (2007). This was calculated by summing the highest value pixels
for BPAs, forest areas, and ES until an area equal to the land area under
protection was reached.

For example, if PAs represent 10% of the land area of a country,
then we calculated the total BPA area of the top 10% of pixels for the
country and repeated this calculation separately for forest area and ES
values. If hypothetically re-configuring PAs could capture more of these
values, then this is an indication that a country might be able to re-
present them better within the PA network without expanding the total
area under protection. We did not combine biodiversity and ES values
in this analysis since they measure substantially different ecosystem
values. This method does not account for PA size or shape, existing land
tenure, political or economic feasibility, nor contiguity of important
areas, and therefore is not intended to represent a specific protection
scenario; it is for comparison purposes only.

We shared preliminary results with local experts from each country
in participatory workshops. Participants included representatives from
local conservation organizations, government environmental agencies,
and research institutions. We incorporated expert feedback, such as
information about newly designated PAs, recently identified BPAs,
important ES provision areas, or other suggestions to refine the ana-
lyses. Experts also helped validate our results by indicating whether the
maps aligned with their understanding of areas important for biodi-
versity and ES provision. We also compared our results with published
statistics on forest cover and protected area coverage from each
country, for validation.

3. Results
3.1. Protected area coverage and expansion

The five countries included in our analysis have globally recognized
significance for biodiversity, falling within biodiversity hotspots or high
biodiversity wilderness areas (Mittermeier et al., 2003; Myers et al.,
2000). Four of the five nations (all but Suriname) expanded their ter-
restrial protected area networks during the study period (2003-2017)
(Table 2).

3.2. Forest cover and population

Guyana and Suriname are “frontier-forest” countries which retain

Summary statistics on land area, population density, and forest cover of the five countries included in the study. Data sources: Land area, population: World Bank
(World Bank, 2017); forest cover: European Space Agency Climate Change Initiative (ESA Climate Change Initiative-Land Cover project, 2017); protected area: World
Database of Protected Areas (UNEP-WCMC and IUCN, 2016) updated with more recent, complete protected areas collected from each country. Note ESA forest cover
statistics differ from World Bank/FAO forest cover statistics in some countries due to differences in forest definitions and methodologies.

Country Cambodia Guyana Liberia Madagascar Suriname
Land area (km?) 176,520 196,850 96,320 581,800 156,000
Population density 2003 (people/km?) 73 4 32 30 3
Population density 2017 (people/km?) 89 4 48 43 4

Forest cover 2003 (% of land area) 37 90 47 26 97
Forest cover 2015 (% of land area) 33 89 45 25 96
Protected area 2003 (% of land area) 21 2 2 4 13
Protected area 2017 (% of land area) 35 9 5 11 13
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very high levels of natural forest cover. Cambodia, Liberia, and
Madagascar are “fragmented-forest” countries, with intact forest pat-
ches interspersed with secondary forest, degraded forest, and cleared
areas resulting from a history of deforestation. The two frontier-forest
countries also have relatively low population density, growth and re-
cent deforestation rates relative to the other countries (Table 2). All five
countries have rural or indigenous populations that are dependent on
natural ecosystems for food, fuel, drinking water, and livelihoods (e.g.
Golden et al., 2011; Orr et al., 2012). Cambodia is characterized by a
particularly high dependence on freshwater resources, due to a heavy
reliance on the Tonle Sap Lake freshwater fishery (Ziv et al., 2012).

3.3. Biodiversity priority areas

In Cambodia and Madagascar, in both time periods, PAs spatially
represented biodiversity priority areas (BPAs) better than would be
expected based on their area alone (Table 3). In Cambodia, PAs en-
compassed 21% of the land area in 2003, representing 40% of BPAs. By
2017, the country expanded its PA system to cover 35% of the land
area, capturing 68% of BPAs. In Madagascar, 4% of land area protected
represented 24% of BPAs in 2003; by 2017, PAs covered 11% of the
land area, representing 65% of the BPAs. In the other three countries,
PAs represented BPAs only slightly better than would be expected based
on their size. In Guyana in 2003, PAs encompassed 2% of land area,
representing 4% of BPAs; in 2017, the PA network was expanded to 9%
of the land area, representing 15% of BPAs. In Liberia in 2003, PAs
encompassed 2% of the land area, representing 8% of BPAs; by 2017,
PAs had expanded slightly (4% of land area), representing 11% of BPAs.
In Suriname in 2003, PAs represented 13% of the land area, re-
presenting 19% of BPAs. There was no expansion in PAs in Suriname
during the study period, although in 2015 there was a community-led
initiative that resulted in the proclamation of a large community con-
servation area in the south of Suriname, covering 41% of the country
(Ramirez-Gomez et al., 2016).

PA systems could hypothetically represent a much larger proportion
of BPAs in Cambodia, Liberia and Madagascar, if they had been de-
signed to prioritize these values. In Cambodia, the 2017 PA system
(encompassing 35% of the land area) could have represented 99% of
BPAs by area, if these areas had been configured to maximize BPA
protection. In Madagascar, 11% of land area (the area protected as of
2017) could have represented 73% of BPAs. In Liberia, 4% of land area
could have represented 17% of BPAs. Similar increases in representa-
tion were not possible in Guyana and Suriname without expanding PA
coverage, as PAs were already located within BPAs in both countries.

3.4. Forests and forest carbon stocks
PAs represented forests and forest carbon stocks better than would

Table 3
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be expected based on their size in Cambodia and Madagascar in both
time periods. In Cambodia, 21% of land area protected in 2003 re-
presented 36% of forest areas and 44% of the forest carbon stocks. By
2017 35% of land area protected represented 57% of the forest areas
and 72% of forest carbon stocks. In Madagascar, 4% of land area pro-
tected in 2003 represented 11% of forest areas and 19% of forest carbon
stocks. By 2017 11% of the land area was protected, representing 30%
of the forest and 50% of the forest carbon stocks. In Liberia, PAs en-
compassed 2% of the land area in 2003, representing 4% of forest areas
and 5% of forest carbon stocks; in 2017 PAs encompassed 4% of land
area, representing 6% of forest areas, and 7% of forest carbon stocks. In
the two frontier-forest countries, PAs represented no more forest area
than would be expected based on their size. In Guyana, 2% of the land
area under protection captured 2% of forest areas and 3% of the forest
carbon stocks. In Suriname, 13% of the land area protected represented
12% of the forest but 18% of the forest carbon stocks.

Madagascar and Cambodia hypothetically could have protected
more forest and forest carbon if protected areas had been designed to
maximize these values. For example, in 2017 in Cambodia 35% of the
land area protected could have represented 100% of remaining forest
cover and therefore also 100% of the forest carbon stocks. In
Madagascar 11% of the land area protected could have represented as
much as 42% of the remaining forest cover and 96% of the country’s
forest carbon. Similar increases in representation were not possible in
Liberia, Guyana, and Suriname without expanding PA size.

3.5. Non-timber forest products

PAs did not represent important areas for non-timber forest pro-
ducts (NTFPs) very well relative to their size in any of the countries. In
Cambodia, 21% of land area protected in 2003 represented 23% of
important areas for NTFPs, and in 2017 35% of land area protected
represented 37% of NTFPs. In Guyana, 2% protection represented 2% of
NTFPs in 2003 and 9% protection only represented 5% of NTFPs in
2017. In Liberia, 2% protection represented 0% of NTFPs in 2003; and
4% protection represented 2% of NTFPs in 2017. In Madagascar 4% of
land area protected represented 4% of NTFPs in 2003 and 11% pro-
tection represented 12% of NTFPs in 2017. In Suriname, 13% protec-
tion represented 7% of NTFPs in both years.

PA representation of important areas for NTFPs could have been
increased in all countries if PAs were targeted to areas important for
this service. In 2017 in Cambodia, 35% protection could represent 45%
of NTFPs; in Guyana 9% protection could represent 31% of NTFPs; in
Liberia 4% protection could represent 6% of NTFPs; in Madagascar 11%
protection could represent 15% of NTFPs; and in Suriname 13% pro-
tection could represent 44% of NTFPs.

Protected area (PA) representation of biodiversity priority areas (BPAs), forest areas (Forest), forest carbon stocks (Carbon), freshwater ecosystem services (FES), and
non-timber forest products (NTFPs). Observed = percentage of each area or value represented within protected areas for a given year. Max = maximum percentage
that could have been protected if PAs had been targeted to optimize for a given value.

Country Cambodia Cambodia Guyana Guyana Liberia Liberia Madagascar Madagascar Suriname Suriname

Year 2003 2017 2003 2017 2003 2017 2003 2017 2003 2017
Protected areas 21 35 2 9 2 5 4 11 13 13
BPAs Observed 40 68 4 15 8 14 23 59 18 18
BPAs Max 58 99 4 17 8 21 24 73 19 19
Forest Observed 36 57 2 9 4 8 11 30 12 12
Forest Max 57 100 2 10 4 10 14 42 13 13
Carbon Observed 44 72 3 9 5 10 19 50 12 12
Carbon Max 85 100 3 13 6 16 48 96 18 18
FES Observed 29 47 2 9 2 4 3 10 12 12
FES Max 41 64 2 10 3 8 14 37 14 14
NTFP Observed 23 37 2 5 0 2 4 12 7 7
NTFP Max 27 45 7 31 3 7 5 15 44 44
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3.6. Freshwater ecosystem services

In Cambodia, PAs represented important areas for freshwater eco-
system services (FES) better than expected based on their size in both
time periods, but not in the rest of the countries. In Cambodia in 2003,
21% protection represented 29% of FES, and in 2017, 35% protection
represented 47% of FES. In Guyana, 2% protection represented 2% FES
in 2003; 9% protection represented 9% FES in 2017. In Liberia in 2003,
2% protection represented 2% of FES; in 2017 4% protection re-
presented 4% of FES. In Madagascar in 2003, 4% protection re-
presented 3% of FES; in 2017 11% protection represented 10% of FES.
In Suriname 13% protection represented 12% of FES in both time
periods.

If PA systems had been designed to prioritize FES, they could better
represent FES in fragmented-forest countries, but not in the frontier-
forest countries. In 2017 in Cambodia, 35% of land area under pro-
tection could have represented as much as 64% of FES; in Liberia 4%
protection could have represented 7% of FES; and in Madagascar 11%
protection could have represented 37% of FES. No increases in re-
presentation of FES in Guyana or Suriname was possible without ex-
panding PAs.

4. Discussion
4.1. Current protected area representation

We asked, “Do PA networks spatially represent biodiversity priority
areas, forest areas, and important areas for ES?” Our results are con-
sistent with evidence that some countries are making concerted efforts
to represent forest areas and important sites for biodiversity within PAs.
In Madagascar, for example, BPAs were used explicitly to identify and
prioritize potential sites for new PAs (Gardner et al., 2018). In Guyana,
PAs were proposed in the late 1990s based on biodiversity irreplace-
ability scores and vulnerability to logging (Richardson and Funk, 1999).
In frontier-forest countries (Guyana and Suriname), historic rates of low
deforestation have laid a foundation for effective long-term conserva-
tion, through PAs or other mechanisms. In Suriname, PAs represented
forest carbon stocks better than expected based on their size, indicating
that there may have been an effort to protect the oldest forests, where
carbon stocks are densest. Policy and financial mechanisms to support
conservation, such as Guyana’s Low Carbon Development Strategy
(Government of Guyana, 2016) and Suriname’s commitment to retain
93% forest cover (UNFCCC, 2017), as well as indigenous or local
management of biodiversity and ecosystems, provide opportunities for
successful conservation of biodiversity and ES in these countries.

In Cambodia, PAs encompass the mountainous areas and water-
sheds critical for supplying water to Cambodia’s major population
centers. Cambodia also contains a massive freshwater lake, the Tonle
Sap, which is a designated protected area. The lake is a major fresh-
water resource which provides ecosystem services to millions of people,
so its inclusion within the protected area system also contributes to the
country’s high level of protection of FES.

4.2. Trends in PA representation

We also asked, “Has spatial representation improved over time?”
We found that PA networks expanded in four out of five countries
during the study period, consistent with global trends. This trend co-
incides however with a loss of habitat. In fragmented forest countries,
biodiversity and forests have become increasingly concentrated within
protected areas, as areas outside are converted for agriculture or other
uses. Madagascar, for example, has lost much of its original forest cover
and remaining forests are under intense pressure due to population
growth and poverty (Eklund et al., 2016). Evidence indicates that
countries are both losing forests and biodiversity outside of PAs and are
also targeting protection to remaining important sites. Habitat loss and
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degradation is also occurring within PAs. Understanding what drove
the trends we observed would require better historic data on biodi-
versity and ES, spatial dynamics of land cover change, and drivers of
these dynamics, all of which was beyond the scope of this analysis.
Nonetheless, information on the spatial configuration and representa-
tion of important areas in a national PA network such as we provide
here can help countries identify potential areas for synergy and trade-
offs between biodiversity and ES, as well as between different ES, in
order to optimize protected area investments.

4.3. Gaps in representation

Finally, we asked, “Could PAs represent these areas better, if they
had been designed to prioritize these values?” Overall, our results in-
dicate that countries are making efforts to achieve global conservation
targets such as those established under the CBD, but there is room for
improvement. In four of our study countries (all except Cambodia), PAs
did not represent FES particularly well, based on their size. While PAs
may be created to protect important water resources, as in the case of
the Tonle Sap lake, the consideration of water services in the design of
PA networks is a relatively new practice. As water resources become
increasingly degraded, the protection of freshwater provisioning areas
is becoming more urgent.

We also found that PAs did not represent NTFPs particularly well,
based on their size. Our NTFP model, which assumes that natural ha-
bitats in proximity to human populations are more important for pro-
viding NTFPs, due to their greater accessibility. Accessible areas are
also less likely to have PAs (Joppa and Pfaff, 2009) which may explain
why we observed a lack of overlap between PAs and ares important for
NTFPs. Governments may intentionally avoid siting PAs in areas that
local communities depend on for food or livelihoods, in cases where
PAs could restrict or prohibit human use. Either way, understanding
which areas are important for NTFPs is important for ensuring these
resources are not over-exploited. Protection or regulation may be im-
portant to ensure the long-term availability of NTFPs for the people
who depend on them. In Guyana, for example, one reason for declaring
protected areas is to secure resources for communities who have sus-
tainably utilized them for millennia (EPA and NRE, 2014).

Our results were consistent with other studies which evaluated PA
representation of biodiversity and ES. Globally, 43% of important bird
and biodiversity priority areas are protected, on average (Donald et al.,
2019b). In China, for example, PAs encompass 15.1% of the country’s
land area, representing 8.5-17.9% of threatened species ranges for
different taxonomic groups, and between 10.2-12.5% of several eco-
system services (water retention, soil retention, sandstorm prevention,
and carbon sequestration) (Xu et al., 2017). In Colombia, PAs have low
to intermediate levels of overlap (3-56%) with important areas for
sensitive species, ecological systems, habitat quality, scenic beauty and
water provision, with water provision the least well protected (Garcia
Marquez et al., 2016). There is thus more to be done to safeguard
biodiversity and ensure the long-term supply of nature’s benefits to
humanity.

4.4. Limitations and future research

Our analyses have several key limitations. First, we only included
formal PAs in our analysis, since consistent definitions and data re-
levant to ‘other effective area-based conservation measures’ (OECMs)
are not yet sufficiently developed for comparison among countries
(Donald et al., 2019a). Also, our analyses did not account for PA size,
shape, or connectivity. Our calculation of a hypothetical maximum
possible representation did not account for existing land tenure, poli-
tical or economic feasibility, or contiguity of important areas. Other
aspects of conservation planning such as efficiency, irreplaceability,
threats, vulnerability, and flexibility are also relevant to protected area
network design (Kukkala and Moilanen, 2013) but were not included
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here. Also, we analyzed representation of biodiversity, forests, and ES
representation individually. Future analyses could examine whether it
would have been possible to better represent multiple values simulta-
neously, through multi-objective optimization analyses. While our
analysis looks at spatial representation of PAs, representation alone
does not necessarily translate into effective conservation on the ground
(Leverington et al., 2010). Both legal and illegal deforestation has oc-
curred within PAs in Cambodia (Davis et al., 2015) and Madagascar
(Eklund et al., 2016) and hunting and other threats continue to deplete
wildlife in PAs in Liberia (Greengrass, 2016). It was however beyond
the scope of this analysis to analyze effectiveness of PA management
and enforcement.

We faced many constraints related to data availability. We ex-
amined protected areas, forest cover, and forest carbon stocks in two
time periods, however due to lack of historic data we were only able to
map biodiversity priority areas, freshwater ES, and NTFPs in a single
time period. For a discussion of the possible implications of this lim-
itation our results, see Appendix 4. Due to the lack of ES data from our
study countries, we often had to combine globally available data, na-
tional datasets, and spatial modelling. For example, we included global
data on aboveground biomass carbon stocks combined with national
land cover products to define aboveground forest carbon stocks. We
were however unable to map carbon stored in other ecosystems such as
peatlands and mangroves. Accepted methods for calculating below-
ground forest carbon stocks at the scales addressed here would not
change relative proportions of stocks between countries (Mokany et al.,
2006). In general, our results should be interpreted as indicative of the
relative level of ES provision within a country, and not as absolute
estimates. Our spatial models of NTFPs and FES were based on several
assumptions, for example we assumed that proximity between people
and natural ecosystems (in the case of NTFPs), or the location and
population density of people downstream of natural ecosystems (for
freshwater services) is an indicator of higher levels of use of ES. Due to
financial constraints and the large geographic scope of our analyses
(national-level), we were unable to formally validate our models be-
yond seeking review of our results by experts. Due to limited resources,
the expert workshops included representatives from local and interna-
tional conservation organizations, government environmental agencies,
and research institutions, but we recognize that these groups do not
represent the full spectrum of stakeholders in each country.

Overall, our results likely underestimate the extent of area im-
portant for ES in our study countries, since we were unable to map
many services provided by ecosystems. Additional research on ES is
needed, particularly on cultural ecosystem services, as well as services
supporting agriculture such as pollination and erosion control. Over
time, we hope that data availability will improve which will enable
more complete accounting of the benefits of nature to people in tropical
developing countries and globally.

4.5. Policy implications

In our study countries, conserving priority areas for biodiversity and
forests will not necessarily secure the areas which are most important
for the supply of freshwater or NTFPs. This has implications for the
post-2020 conservation agenda: targets focusing on biodiversity alone
will not adequately represent ecosystems providing critical benefits to
people. Getting sufficient data to develop and track progress towards
ecosystem service targets is challenging, as demonstrated by the lim-
itations we faced in our study countries. There is an urgent need to
more robustly map the nature people need, particularly in the devel-
oping world where people are most vulnerable. Also, protected areas
alone will not be able to fulfill the dual role of conserving biodiversity
and maintaining a supply of ES. Other effective area-based conservation
measures (OECMs) will have to play a fundamental role in achieving
the post-2020 conservation agenda (Watson et al., 2016). Finally, the
CBD Secretariat and country governments are demanding that the post-
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2020 conservation agenda address the needs of people. The only way to
accomplish this is to include ecosystem services explicitly in target
setting, which will among other things enable the CBD to connect to
other international targets such as the UN Sustainable Development
Goals and the Paris Climate Agreement.

5. Conclusions

National-scale spatial information on important areas for biodi-
versity and ecosystem services, such as we provide here, is needed if
countries are to measure progress towards past commitments estab-
lished under the UN CBD or set meaningful targets under the post-2020
agenda. This analysis is a preliminary attempt to fill a gap recognized in
CBD progress reports, which call for national-scale identification of
important areas for ES (e.g. Secretariat of the Convention on Biological
Diversity, 2014). Our study illustrates how different countries might be
able to address newly revised indicators as well as challenges that re-
main in measuring progress towards global conservation targets. The
reality is that countries will not take a singular approach to measuring
progress. Our framework and these case studies demonstrate a flexible
rubric applicable to different contexts and characteristics. While we
cannot yet evaluate whether our results are generalizable, we believe
the patterns and trends we observed—a focus on forest and biodiversity
priority area protection, but still substantial gaps in representation
across all values—are likely repeated across much of the tropical de-
veloping world. Future efforts should be made to design PA networks to
ensure protection of watersheds and other ES, as has been re-
commended in China, for example (Xu et al., 2017). Other strategies
such as payments for ecosystem services (PES) schemes, community-
based management, or monitoring and enforcement of environmental
regulations should complement traditional protection measures to en-
sure biodiversity and ES values are also maintained outside of PAs.
Achieving international conservation targets will require additional
efforts to safeguard biodiversity and benefits from ecosystems to
people. Such efforts are urgently needed to avoid catastrophic loss of
biodiversity and further degradation of ecosystems supplying clean
drinking water, food, fuelwood, and other benefits to the world’s most
vulnerable people.
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