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Abstract

State-dependent noise forcing, where properties such as amplitude are dependent on

the background conditions, has been shown as a potential cause for the El Niño - La

Niña amplitude asymmetry. Complex characterization of the state dependency of El Niño

noise forcing as documented in most existing research has not been readily applicable

to the outputs from the current generation of coupled climate models (GCMs). Here a

simple method for determining the overall strength of the state-dependence factor of the

El Niño noise forcing is proposed and tested. This method is shown to be independent

of the data sampling from monthly mean to daily data, which make it readily applicable

to monthly climate data archives. Using a reanalysis product and two coupled GCMs,

the method is then applied to the equatorial zonal windstress, which is a known noise

source for the El Niño-Southern Oscillation (ENSO) phenomenon. The windstress in all

three cases is shown to have strong state-dependent noise forcing.

The state-dependent component of the noise forcing is further isolated and shown

to be enhanced by the Pacific Warm Pool and Westerly Wind Burst interaction. The

coupled process acts to increase the low-frequency component of state-dependent wind-

stress noise forcing, a part of noise forcing that is most essential in the excitation and

strengthening of ENSO.

The methodology is then further applied to the outputs from a suite of Coupled

Model Intercomparison Project (CMIP)5 model simulations under various scenarios. It

is found that most of the CMIP5 models underestimate the state-dependence factor

of the equatorial windstress on sea-surface temperature (SST). There is a consistent

relationship with the zonal equatorial SST gradient and the state-dependence factor.

However, the models fail to agree on changes of the state-dependence factor due to

global warming.

Finally, using the conceptual model, the state dependence factor is shown to control

the ENSO skewness and is a predictor of the frequency of occurrence of extreme El Niño

events. To a large extent, the CMIP5 simulations are in support of these theoretical

relationships.
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Chapter 1

Introduction

1.1 The Significance of El Niño

Over the past few decades, El Niño-Southern Oscillation (ENSO) has been a major area

of climate research. Even though it is a tropical coupled ocean-atmosphere phenomenon

in the Pacific Ocean basin, ENSO has global implications. Through global teleconnec-

tions, it has been linked to changes in precipitation and temperature throughout North

America, to the Indian and Austral summer monsoons and to changes in tropical cyclone

distribution among many other e↵ects. These global e↵ects vary from event to event with

central Pacific El Niño projecting on to di↵erent teleconnection patterns than eastern

Pacific El Niño (Kug et al., 2009). However, in both cases, the stronger the ENSO event,

the more marked these anomalies have a tendency to become. The so-called El Niño of

the Century in 1997-98 resulted in an estimated 34 billion USD (unadjusted) in damages

globally, despite the early forecast of an event nine months prior to the peak (Nicholls,

2001).

Despite substantial study and significant potential societal impacts, the changes to

ENSO from anthropogenic climate change are not well constrained (IPCC AR5). A

recent study, (Power et al., 2013), has found that if the last century’s ENSO record

is superimposed on next century’s projected SST change, the major impacts of ENSO

will be increased. However, the authors noted that the potential changes to ENSO
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characteristics could alter this. Cai et al. (2014) found an increase in the number of

extreme El Niño events, as classified by eastern Pacific precipitation, in response to

global warming. These potential changes can include changes in amplitude, frequency,

and location of maximum SST anomaly. As shown by Stevenson et al. (2012) and

Wittenberg (2009), the length of our current climate record is not su�cient to determine

with statistical significance the scope of these changes. However, based on tropical Pacific

coral records, adjusting for data sparsity, and comparing with the ENSO variability of a

highly variable coupled model, Cobb et al. (2013) claim that ENSO over the last century

is significantly larger than ENSO at any point over the last millenia. This is in agreement

with the findings of McGregor et al. (2010) for the period of the last 350 years.

There has also been much discussion over the last decade on ENSO flavors. These

flavors of El Niño delineate di↵erent types of El Niño based on the location of the

maximum warming. This maximum warming can occur in the eastern Pacific (also

known as a canonical El Niño) or in the central Pacific (also known as El Niño Modoki

or warm pool El Niño) (Ashok et al., 2007; Kug et al., 2009; Ren and Jin, 2011). Yeh

et al. (2009) found that in response to global warming, there would be an increase in the

fraction of El Niño events that could be classified as central Pacific El Niños. However,

other research has disputed the simple classification of two distinct modes of El Niño

variability, showing that the location of maximum SST anomaly during an El Niño event

exists as a continuum (Ray and Giese, 2012). At the core of these di↵erent results lies

the question, how well do we understand the natural variability of ENSO.

1.2 ENSO Linear Theory

In improving our understanding of ENSO’s natural variability, a major tool is simple

ENSO models. Simple linear coupled models of ENSO have been designed and used

to study ENSO growth, frequency, spatial pattern, and mean-state sensitivity. This

approach has proven fruitful in developing a basic understanding of these properties.

What follows here is a brief discussion of the linear dynamics of ENSO as viewed through

di↵erent conceptual models of ENSO.
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El Niño initially grows, peaks and then quickly becomes an opposite sign anomaly,

La Niña (Rasmussen and Carpenter, 1982; Kessler, 2002). The initial growth is related

to a positive feedback and the flip to the opposite signed anomaly comes from a delayed

negative feedback. An early conceptual model to capture this is the delayed action oscil-

lator (Suarez and Schopf, 1988; Battisiti and Hirst, 1989). The delayed action oscillator

model focuses on ocean wave dynamics in relation to ENSO. An initial downwelling

Kelvin wave, kicked o↵ by a westerly wind burst, travels east along the equator, low-

ering the thermocline and shutting o↵ the mixing from the shallow thermocline in the

eastern Pacific. This generates a positive SST anomaly in the east which will further

induce a westerly wind anomaly. This positive feedback is known as the Bjerknes feed-

back. Meanwhile, the westerly wind anomaly also generates upwelling Rossby waves that

travel westward o↵ the equator. Upon reaching the western boundary, the Rossby waves

reflect and become an eastward propagating Kelvin wave. Like the Rossby waves, this

Kelvin wave is upwelling, raising the thermocline in the eastern Pacific and enhancing

cold water upwelling, which opposes the warm SST anomaly generated earlier. This de-

layed negative feedback is responsible for terminating the El Niño event and intiating the

La Niña event. Observations with the TAO (Tropical Atmosphere Ocean) array in the

equatorial Pacific have been able to observe these equatorial Kelvin waves (McPhaden

et al., 1988).

Another conceptual model for ENSO is the recharge oscillator model (Jin, 1997a).

The recharge oscillator also contains an initial positive feedback, followed by a delayed

negative feedback. In the recharge oscillator, a positive SST anomaly induces a westerly

wind anomaly which reinforces the positive SST anomaly by flattening the equatorial

thermocline. This process is a positive feedback for ENSO growth. While the winds

deepen the thermocline in the eastern Pacific, their curl also causes a slow discharge

of oceanic heat content from the equatorial regions poleward. This discharge of heat

content is the delayed negative feedback that ends the El Niño event and begins the

subsequent La Niña. The total warm water volume in the equatorial Pacific has been

observationally shown to lead the ENSO signal by 6-9 months (Meinen and McPhaden,

2000), confirming the recharge mechanism. It can also be shown that the delayed and
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recharge oscillator conceptual models are not mutually exclusive, but rather two di↵erent

descriptions for the same processes involved in ENSO (Sarachick and Cane, 2010).

A model of intermediate complexity, the Zebiak-Cane model, which uses a 1.5 layer

ocean model with explicit SST mixed layer calculations was the first dynamical model

to predict ENSO and has been used to examine many aspects of ENSO. One feature of

this model which has proven particularly useful in elucidating key aspects of ENSO is

that it specifies the mean state and annual cycle. By altering the mean climate state and

adjusting di↵erent model parameters, the sensitivity of ENSO to di↵erent parameters

has been explored (Jin and Neelin, 1993b,a; Neelin and Jin, 1993; Fedorov and Philander,

2000, 2001; Bejarano and Jin, 2008).

Using a simplified version of the Zebiek-Cane model, the relative importance of ther-

mocline processes and zonal SST-advection to El Niño growth has been examined in

many studies. In a series of papers, Jin and Neelin (1993b), Jin and Neelin (1993a),

and Neelin and Jin (1993) examined the e↵ect of the strength of the SST-atmosphere

coupling and wave propagation speed and found that there were two dominate modes

of El Niño growth which they dubbed the SST-mode and the thermocline mode. Addi-

tionally, they found that over a wide range of realistic parameters, both of these modes

coexisted with the SST-mode having a higher frequency. Fedorov and Philander (2000,

2001) found that changes in the mean state of the tropical Pacific could account for the

observed shifts in ENSO frequency and amplitude across the 1970s Pacific climate shift.

Similar mapping can be done for the changes in El Niño in the early 2000s. Bejarano

and Jin (2008) further examined changes to ENSO growth rate and frequency. They

found that both of these modes coexist over a wide domain of parameters characterizing

changes in the background state. Exploration of the di↵erent ENSO flavors has shown

that the central Pacific El Niño events are dominated by zonal SST-advection processes

compared to the eastern Pacific El Niño events, which are dominated by thermocline

processes (Ren and Jin, 2013).

The di↵erences between the relative contributions of the advective and thermocline

feedbacks are examined by analyzing the anomalous heat budget (Jin and An, 1999a; Jin

et al., 2006; Kim and Jin, 2011a). The change in growth rate determined by the Bjerknes

4



Instability Index has been shown to be related to the change in ENSO amplitude in

di↵erent coupled models (Kim and Jin, 2011b). The di↵erent models disagree on which

feedback is the dominant positive feedback, between the zonal advective, thermocline

and Ekman and the final growth rate ends up being the di↵erence of the two or three

dominant feedbacks (Kim and Jin, 2011b).

1.3 ENSO Non-Linearity

An oscillator will continue to alternate regularly between positive and negative, increas-

ing in magnitude if the growth rate is positive or reducing before eventually coming to

rest at equilibrium if the growth rate is negative. Most of the intial versions of the con-

ceptual models consider a positive growth rate to create an El Niño event. To prevent

runaway growth, an ad-hoc and symbolic non-linear damping term has frequently been

invoked to represent some of the systemic non-linearities in the more complex real world.

1.3.1 Amplitude Asymmetry

The linear models of ENSO have allowed for in depth study of many of the physical pro-

cesses involved in the periodic behavior of ENSO. However, ENSO displays many prop-

erties that are not fully captured by linear processes. For example, there is a warm/cold

asymmetry in ENSO. Figure 1.1 shows a timeseries of ENSO from the last 65 years.

ENSO’s amplitude asymmetry is immediately apparent. The postive (El Niño) SST

anomalies are on the whole larger than the negative (La Niña) amomalies. The positive

and negative feedbacks that contribute to the growth of the positive and negative phases

of ENSO have been explored (Jin et al., 2006; Bejarano and Jin, 2008). There are five

major sources for amplitude asymmetry, non-linear dynamic heating, the atmospheric

non-linearity involved in convection, biological feedbacks on ENSO, tropical instability

waves, and the Madden-Julien Oscillation (MJO) or Westerly Wind Burst (WWB) feed-

back. Beyond the tropical Pacific, Indian Ocean dynamics have also been explored as a

possible source of the amplitude asymmetry (Okumura and Deser, 2010; Okumura et al.,

2011).
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The results of Jin and An (1999b) and Jin et al. (2003) first suggested a role for non-

linear dynamic heating in creating the amplitude asymmetry. The non-linear dynamic

heating is predominantly attributable to the anomalous zonal advection of the anomalous

temperature gradient. It is a positive feedback on the positive events while being a

negative feedback on the negative events. Another cause of ENSO asymmetry is the

asymmetric response of convection to ENSO temperature anomalies. Convection forms

over SSTs in excess of 27�C. Due to the zonal asymmetries of SST in the equatorial

Pacific, the region of SSTs in excess of 27�C expands greatly during an El Niño event,

while it is mostly unchanged during a La Niña event (Hoerling et al., 1997; Kang and

Kug, 2002).

Unlike the first two feedbacks discussed, the next two feedbacks act as negative feed-

backs and are more e�cient for La Niña than for El Niño. In the equatorial eastern

Pacific, climatological upwelling creates a shallow nutricline leading to significant pri-

mary biological productivity from solar radiation, which acts to absorb incoming solar

radiation. During an El Niño event, reduced upwelling deepens the nutricline and lessens

the biologic productivity. During a La Niña event, there is a significant increase in pri-

mary productivity and a resultant increase in solar absorption (Timmermann and Jin,

2002; Marzeion et al., 2005). Tropical instability waves are monthly scale waves that pro-

vide meridional heat mixing. They can therefore act as a negative feedback on ENSO.

During La Niña events, tropical instability waves are much more active than during El

Nño events. This leads to ENSO asymmetry by greater damping of La Niña anomalies

than of El Niño ones (Vialard et al., 2001; An and Jin, 2004; An, 2008). The interaction

of ENSO with the MJO or WWBs can also create an amplitude asymmetry. This is

also referred to as multiplicative or state-dependent noise forcing of ENSO. This will be

detailed in a later section of this dissertation.

Another readily apparent feature of the ENSO timeseries in Figure 1.1 is that El Niño

events tend to be short, beginning and ending in under a year, while La Niña events

can be multiple years long. ENSO has been observed to follow a regular progression

from the beginning of an El Niño event through to a La Niña event. However, the

tropical Pacific can linger in a La Niña state for multiple years in a row or remain in
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an ENSO neutral state for many years after a La Niña event before the following El

Niño event occurs (Kessler, 2002). The role of a simple deterministic non-linearity in the

windstress response to SST has been found and o↵ered as an explanation, particularly as

it relates to the extended La Niña conditions (Choi et al., 2013). This has also been found

using other forms of deterministic non-linearities within the ENSO feedbacks (DiNezio,

personal communication).

1.3.2 ENSO Combination Tones and Phase Locking

Another aspect of non-linearity is ENSO phase locking, namely, that El Niño peaks in

the boreal winter. The annual cycle interaction has been examined in the conceptual

models as well. Simple models involving low-order chaos have been used to explain the

syncronizing of ENSO to the annual cycle (Tziperman et al., 1995; Jin et al., 1994). This

has also been shown to be the result of an annually varying linear growth rate (Stein

et al., 2010) and the e↵ect of phase locking between the annual cycle and ENSO (Stein

et al., 2011). The annual cycle influences ENSO in other ways as well. The non-linear

interactions between the two di↵erent frequencies of the annual cycle and ENSO create

the combination tones, or spectral peaks tat exist at the sum or di↵erence of the two

interacting frequencies (Stuecker et al., 2013). The combination tones have been shown

to play a vital role in the transition from El Niño to La Niña (McGregor et al., 2012).

This asymmetry is important for ENSO impacts and not well captured by simple linear

dynamics, but when accounted for as a deterministic non-linearity within the previously

linear system, can be replicated with conceptual models.

1.3.3 ENSO Propagation Non-Linearities

It is also apparent that the SST anomalies sometimes appear to propagate eastward

across the Pacific and sometimes westward, although this seems to be a change in ap-

pearance due to change in the annual cycle rather than an actual change in ENSO

(Boucharel et al., 2013). The propagation asymmetry between El Niño and La Niña

can also be explained by examaining the role of the total current as opposed to just
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the anomalies. The total current reverses during extreme El Niño events causing the

temperature anomalies to appear to propagate in the opposite direction of the moderate

El Niños and La Niña events (Santoso et al., 2013; Wang and McPhaden, 2000). This

too is not captured by linear ENSO theory predictions.

1.3.4 Stochastic Forcing of ENSO

ENSO as a slow oscillator interacts with many large scale, but much shorter period phe-

nomena, such as the MJO, WWBs, tropical instability waves, etc. This interaction is

fundementally non-linear but can be approximately treated by the approach first pro-

posed by Frankignoul and Hasselmann (1977) for the interaction of weather with climate

in other oceanic regions. Specifically, one can treat this kind of slow-fast interaction with

a stochastic model. It has been observed that WWBs can produce a Kelvin wave that

travels along the equatorial Pacific modifying the depth of the thermocline (McPhaden

et al., 1988), which can trigger an El Niño event. WWBs tend to occur over timescales

of 2-40 days (Yu et al., 2003; Eisenman et al., 2005; Tziperman and Yu, 2007). In com-

parison, ENSO has a timescale of 2-7 years. Thus, the WWBs can be considered noise

in a mathematical sense because the time scale of these WWBs are much shorter than

the timescale of ENSO. The mathematical noise can be white noise (constant energy

at low frequencies) or red noise (more energy at lower frequencies than at higher ones).

However, blue noise (more energy at higher frequencies than lower ones) has been shown

to be deficient at forcing ENSO (Roulston and Neelin, 2000; Levine and Jin, 2010). The

noise can also be additive (where the random forcing is completely independent of the

state of the system) or multiplicative (where the random forcing has a dependence on

the state of the system). This can be used to explain the irregularity of ENSO given the

deterministic physics of the oscillator (Penland, 1996; Penland and Sardeshmukh, 1995;

Kleeman and Moore, 1997; Moore and Kleeman, 1999; Zavala-Garay et al., 2003, 2004,

2005, 2008).

Keen (1982) created a climatology of these WWBs and found that there is a diversity

of structures associated with them. For ENSO, the important pattern is the strong
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westerly wind anomaly in the equatorial wave guide in western and central Pacific that

projects onto the stochastic optimal (Moore and Kleeman, 1999, 2001; Zavala-Garay

et al., 2005). These types of WWBs were shown to occur before the 1997-8 El Niño (Yu

et al., 2003). Harrison and Chiodi (2009) created an updated climatology of WWBs and

found that there were spatial di↵erences in the typical WWBs between the last decade

and the decade and a half prior. They speculated that this was important for di↵erences

in ENSO between the two periods. The WWBs that they found showed an easterly

component which converged with the westerlies of the WWBs in the central Pacific in

the post-1998 period. This easterly component was not present in their analysis in the

pre-1998 period. They also reported changes in the amount of WWBs in the central

and eastern Pacific over that time. These changes in WWBs could result in changes to

ENSO between these periods.

Coupled model experiments have shown that the frequency of occurrence of large

and moderate El Niño events significantly increases after a WWB has been inserted into

the model compared with the control runs without the inserted WWB (Lengaigne et al.,

2004; Lopez and Kirtman, 2013). Lengaigne et al. (2004) found that there are additional

WWBs that occurred after the inserted WWB in the ensemble simulations that formed

El Niño events which did not occur in the cases that did not form El Niño events. This

suggests that multiple WWBs are needed to trigger an El Niño event. The prevalence

of them in the simulations that formed large El Niños make the role of many WWBs

particularly important for the largest El Niño events (Vecchi et al., 2006; Gebbie et al.,

2007).

Examination of the 1997-8 El Niño showed that multiple WWBs occurred one after

another in its growth phase (McPhaden, 1999). These pulses are discrete, increasing

in magnitude, and propagating eastward as the El Niño develops. Satellite wind ob-

servations have shown the importance of these WWBs and their eastward propagation

in initiating El Niño events (Tziperman and Yu, 2007) as well as simplified model ex-

periments showing how this type of forcing can lead to more and larger El Niño events

(Eisenman et al., 2005; Lengaigne et al., 2004; Gebbie et al., 2007). However, theo-

retical studies show that high frequency noise forcing cannot create an El Niño event
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(Roulston and Neelin, 2000; Levine and Jin, 2010). These studies suggest that it is the

low frequency component of the noise forcing that is responsible for forcing an El Niño

event. To more thoroughly examine the creation and enhancement of the low frequency

component from the high frequency variability, we need a better understanding of the

noise forcing of ENSO.

Normally, noise forcing is considered to be additive (Zavala-Garay et al., 2008; Pen-

land, 1996). Additive noise is generally independent of the background ENSO state,

meaning the properties of the noise, when taken as a whole over long time periods,

do not change depending on whether or not an El Niño event is occuring. However,

linear additive stochastic noise alone does not create changes in ENSO asymmetry or

other higher-order moments unless there is another source of non-linearity within the

system, instead multiplicative noise is required (Müller, 1987; Sardeshmukh and Sura,

2009; Levine and Jin, 2010). Multiplicative noise di↵ers from additive noise in that

there is a state-dependent component to the total noise. In this case, the state of ENSO

changes the total noise properties. One of the advantages of using multiplicative noise is

that it can e↵ect the higher moments of the system like skewness (3rd moment) or kur-

tosis (4th moment) whereas additive noise cannot in the presence of linear deterministic

feedbacks. As opposed to considering non-linear feedbacks that have also been shown to

increase the higher-order moments of systems and have been explored as source of the

non-linearities of ENSO, this dissertation will consider multiplicative noise.

Gebbie and Tziperman (2009b,a) have shown that increases in the number of WWBs

and their eastward propagation can be associated with the larger El Niño amplitudes.

They have also shown that this eastward propagation of the WWBs is associated with the

eastward migration of the warm pool edge. Therefore, it has been suggested that these

westerly wind bursts are not just a forcing mechanism for ENSO but are also a↵ected

by the underlying state of ENSO, and potentially a multiplicative noise process (Kessler

and Kleeman, 2000; Vecchi and Harrison, 2000; Yu et al., 2003; Eisenman et al., 2005;

Perez et al., 2005; Gebbie et al., 2007; Tziperman and Yu, 2007; Gebbie and Tziperman,

2009b; Kapur and Zhang, 2012). Many of these studies have focused on the interaction

and coexistence of WWBs and changing SSTs in the central Pacific and how they relate
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to large El Niño events.

Conceptual ENSO models incorporating multiplicative noise forcing have shown in-

creases in ENSO asymmetry and the number of extreme El Niños, and decreases in

ENSO predicatability (Jin et al., 2007; Levine and Jin, 2010). Unlike multiplicative

noise forcing, semi-stochastic noise forcing has a stochastic (random) component and a

deterministic component that is triggered during the initiation of El Niño event. In more

complicated models, experiments have shown that adding semi-stochastic forcing to the

models adds skewness to ENSO and increases the amplitude and irregularity of ENSO

(Gebbie et al., 2007). In this experiment, the deterministic component of the forcing is

the state-dependent part of the forcing and acted similarly to multiplicative noise forc-

ing. The deterministic component that was added to the model in this scenario was also

simplified to be Gaussian in space and time. This approach of defining the multiplicative

component as Gaussian in space and time (although not necessarily determinisitic) has

been previously repeated for many additional experiments. With semi-stochastic forcing,

the WWBs are no longer randomly distributed but group after an initial WWB. It is

more common to have a second and third WWB in this scenario than under additive

noise forcing. This is attributed to the multiplicative noise forcing and is consistent with

what was observed in 1997-8 El Niño event.

Using the semi-stochastic framework for windstress noise forcing of ENSO, coupled

model experiments have shown that additional westerly wind stress events that occur,

occur further to east. Eastward progression of the wind bursts much like that observed

during the growth phase of the 1997-8 El Niño event are generally evident (Gebbie

et al., 2007; Gebbie and Tziperman, 2009b,a; Lopez et al., 2013; Lopez and Kirtman,

2013). Gebbie and Tziperman (2009b) showed that including this semi-stochastic forcing

into a predictive model improved the model’s ability to predict El Niño. Further, their

simuations suggest that it is the general characteristics of the deterministic component

of the forcing and not the characteristics of the individual WWBs that are important

in modifying ENSO. Similarly, Lopez et al. (2013) found that it is the low-frequency

component of the state-dependent noise that played an important role in modifying

ENSO characteristics as opposed to the high-frequency stochastic forcing. This is in
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agreement with previous studies in conceptual and simplified physics models which have

shown that the high-frequency component of the stochastic forcing alone is not an e�cien

ENSO driver (Roulston and Neelin, 2000; Levine and Jin, 2010).

A previous study, (Kug et al., 2008) attempted to measure the strength of the state

dependence of the multiplicative noise. They found that the important region for the

windstress forcing of ENSO was between 160øE-160 øW. However, their approach has not

proved practical for additional applications and further study of the multiplicative noise

forcing of ENSO. An issue with the practical implementation of this methodology is that

it relies on daily data, which is not available in the same quantity as monthly mean data

in the current archives from climate model experiments (CMIP3 and CMIP5) as well as

requiring significantly more hard disk space. Another problem with this methodology is

that spectral filtering is used to determine the noise forcing. The filtering limits the the

noise spectrum to the energy between 20-90 days, which as has been previously discussed

not e�cient in forcing ENSO (Roulston and Neelin, 2000; Levine and Jin, 2010; Lopez

et al., 2013).

Further, Kug et al. (2008) make use of simple linear regression to estimate the value of

the state-dependence factor. Recent work on noise forcing of ENSO has shown that there

is an increased response of windstress to the SST anomalies when the SST anomalies are

positive (Choi et al., 2013). The additional response of the westerly windstress to the

positive SST anomaly suggests a role for convection being involved in the response of

the windstress to SST anomalies. Convection is suggested as a physical process due to

its non-linear interaction with SST over the tropical oceans. Convection has a minimum

threshold of SST below which it does not not form. By using a simple linear regression,

Kug et al. (2008) did not account for the possibility of a convective threshold in their work

on multiplicative noise. The importance of the convective threshold will be examined in

greater detail throughout this dissertation.
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1.3.5 Extreme El Niño Events

The previously outlined work on multiplicative noise forcing suggested that multiplicative

noise forcing plays a role in creating extreme El Niño events. Extreme El Niño events

are important due to their strong societal impact. During these extreme events, many

of the climate anomalies associated with El Niño are significantly enhanced leading to

severe droughts in some regions and severe flooding in other regions. Events of this

magnitude tend to remain in the public consciousness long after they have occurred and

better understanding the forcings associated with them is important to understanding

and predicting extreme El Niño events, allowing for improved mitigation of the climate

anomalies and increased community resiliency to extreme El Niño events.

Including multiplicative noise into CGCMs has been shown to e↵ect eastern Pacific

El Niño preferentially over central Pacific El Niño events (Lopez et al., 2013; Lopez and

Kirtman, 2013). Eastern Pacfic El Niño events tend to be longer and stronger than

their central Pacific counterparts. Lopez and Kirtman (2013) showed that this is related

to the response of the thermocline to WWBs and was magnified by adding a state-

dependence. Multiplicative noise has already been shown to increase the skewness of

ENSO in conceptual and more complicated models (Levine and Jin, 2010; Gebbie et al.,

2007). This increase in skewness can be seen as an increase in extreme El Niño events

(Levine and Jin, 2010).

During an extreme El Niño event, SSTs in the entire equatorial Pacific are above the

convective threshold. This causes a significant increase in precipitation in the cold tongue

region. This enhancement is greater than just linearly accounting for El Niño amplitude

(Cai et al., 2014). The non-linear enhancement of the precipitation in response to SST

could have profound impacts when superimposed on anticipated global warming spatial

patterns, which makes understanding the causes behind these extreme El Niño events of

even greater societal significance (Power et al., 2013).

Observationally, during the 1997-8 El Niño event, there were multiple WWBs that

triggered the event (McPhaden, 1999; Yu and McPhaden, 1999; McPhaden and Yu,

1999). Gebbie et al. (2007) suggested that the individual timing of the wind bursts
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were unimportant in the creation of the El Niño events, but that the overall increase in

WWBs was important. Similarly, Vecchi et al. (2006) found that while an unlikely large

number of WWBs happened in the growth phase of the El Niño, the additional WWBs

always occurred and they were involved in the creation of the extreme magnitude of the

El Niño event. Taken with the findings that it is the low-frequency component of the

noise forcing and not its high-frequency variability that is important for the forcing of

ENSO (Roulston and Neelin, 2000; Levine and Jin, 2010), it is hypothesized that the

low-frequency component of the noise is the main driver of these extreme El Niño events.

1.4 Coupled Model Simulations of ENSO

In general, most climate models simulate ENSO to a degree. However, across most of the

GCMs that have participated in the Coupled Model Intercomparison Project (CMIP)3

and CMIP5, there are still aspects of ENSO that are poorly simulated in the current

generation of climate models (Bellenger et al., 2014). Many models still poorly simu-

late ENSO amplitude (Bellenger et al., 2014). Those that do simulate ENSO amplitude

correctly are frequently getting the amplitude right for the wrong reasons, with large

cancelling errors in the di↵erent feedback terms (Kim and Jin, 2011b). Because ENSO

growth can be described as the di↵erence between two or three competing feedback terms,

there is a large amount of uncertainty associated within the models on the relative im-

portance of di↵erent processes (Kim and Jin, 2011b; DiNezio et al., 2012). Therefore,

while unfortunate, it is somewhat expected that the models do not agree in the changes

in ENSO amplitude or even the sign of the changes in ENSO amplitude due to anthro-

pogenic climate change (Collins et al., 2010). Another aspect of the simulation of ENSO

that the climate models struggle to correctly simulate is the ENSO spectrum. Although

as shown by Wittenberg (2009) and Stevenson et al. (2012), observations do not exist

for the requisite length of time to fully constrain the ENSO spectrum, observations show

a broad spectral band of enhanced activity between 2 and 7 years. In contrast with

the available data from observations, most models have long enough control simulations

to fully constrain their ENSO peaks. In these control simulations, many models fail to
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fully simulate the breadth of the ENSO peak simulated within observations, instead have

strong discernable peaks at one or two di↵erent frequencies (Bellenger et al., 2014).

Climate models still struggle with the seasonal phase locking of ENSO to boreal

winter (Stein et al., 2014). As has been previously discussed in observations, El Niño

events peak during the boreal winter months. However, while many of the current-

generation climate models have improved this aspect of the simulation compared to

the CMIP3 models, there are still erroneous El Niño peaks during the rest of the year.

ADD CITATION. The failure of models to correctly simulate the annual cycle-ENSO

phase locking has been associated with a poor simulation of the annual cycle in SSTs

in the eastern Pacific (Ham and Kug, 2014). Also of interest in correctly simulating

ENSO, the current generation of climate models now is more likely to simulate the

location of maximum ENSO variability further to the east than the previous versions

(Bellenger et al., 2014). This is joined by an improvement in simulating a diversity

of ENSOs (CP and EP), although it is still a topic of discussion as to whether the

diversity of El Niño maximum amplitude locations is a continuum (Ray and Giese, 2012;

Johnson, 2013; Fedorov et al., 2014) or two distinct flavors (Ashok et al., 2007; Ren and

Jin, 2011; Takahashi et al., 2011). That debate and overall amplitude issues aside, the

climate models tend to simulate the correct amplitude longitude of maximum anomaly

relationship–namely, that the further east the maximum SST anomaly is, the larger the

SST anomaly.

1.5 Objectives and Approaches

Great progress has been made in understanding and simulating ENSO. However, many

issues remain unresolved in terms of understanding ENSO, for example ENSO asymme-

try, pattern, and temporal diversity both in the observational record and in GCMs. The

overarching objective of this dissertation is to better understand the role of ENSO state-

dependent noise in contributing to this diversity. To achieve this objective, I will use

a systematic approach to quantify the state-dependence of the noise-ENSO interaction.

It includes testing a method that estimates the state-dependence factor of ENSO noise
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Figure 1.1: A time series of the Niño3.4 Index over the last 60+ years. To first order,
ENSO has an oscillatory nature, but the observed record shows significant assymmetries
in magnitude and duration.

in a conceptual model. Secondly, the methodology for estimating the state-dependence

factor will be applied to reanalysis and two CGCMs. Thirdly, utilizing the results from

this analysis, I will explore the physical processes involved in creating and amplifying

multiplicative noise within the system and compare the results to previous studies of

WWBs and multiplicative noise. Fourthly, I will examine the state-dependence factor of

multiplicative noise in 21 di↵erent CMIP5 models. The Pre-Industrial Control simulation

and two di↵erent emissions pathways will be examined in order to study the e↵ects of

global warming on the state-dependence factor and potential changes to ENSO. Finally,

I will examine how the interaction between ENSO and the multiplicative component of

noise generates extreme El Niño events.
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Chapter 2

A Simple Method for Estimating

the State-Dependency of ENSO

Noise

2.1 Introduction

Examining a phenomenon with a conceptual model can be useful for determining the

role of di↵erent components in creating the phenomenon. The conceptual model makes

predictions that can then be tested in the observed phenomenon. As previously discussed,

there are two di↵erent major conceptual models for ENSO. These models, the delayed

action and recharge oscillators, have focused on di↵erent physical processes that have

been observed as integral parts of ENSO. These conceptual models have been shown to be

equivalent means of describing ENSO. This dissertation will use the recharge oscillator

as the conceptual model. Equation 2.1 shows a simple recharge oscillator system of

ENSO where T represents ENSO state, h the thermocline depth anomaly, � represents
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the Bjerknes positive feedback and ! represents the frequency.

dT

dt
= ��T + !h+ ⌃Fi

dh

dt
= �!T

(2.1)

This form of the recharge oscilator is derived from a two box model (Jin, 1997a; Burgers

et al., 2005). As such it is unable to capture the diversity of ENSO flavors that have been

observed. However, its simplicity has allowed it to be solved analytically (Jin, 1997b; Jin

et al., 2007; Levine and Jin, 2010). The third term in the temperature tendency equation,

⌃Fi, is where any or all forcing terms can be added to the equation. If ⌃Fi = 0, the model

produces a symmetric ENSO. By adjusting ⌃Fi, di↵erent non-linearities can be examined

for their e↵ect on ENSO independently and in combination. The shape and type of this

forcing term will be the subject of this dissertation. In this chapter, I will consider the

conceptual recharge oscillator model with di↵erent strengths of multiplicative noise and

develop a model to estimate the magnitude of the multiplicative noise from observations.

2.2 Multiplicative Noise in the Recharge Oscillator

Multiplicative noise forcing of ENSO was explored in this simple conceptual recharge

oscillator model in Jin et al. (2007) and Levine and Jin (2010). In their studies, they

used a simple parameterization of multiplicative noise to force the recharge oscillator

equations (Equation 2.2).

dT

dt
= ��T + !h+ �N⇠(t)G

dh

dt
= �!T

d⇠

dt
= �r⇠ + w(t)

(2.2)

Where G is the multiplicative term and xi is the noise. This version of the model di↵ers

from the version used in Levine and Jin (2010) in the values of the constants. Here we

use � = 2 year�1, r = 8 year�1, �N = 1.75
p
6 year�1, and ! = ⇡

2 year�1. Since r = 8
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year�1, the conceptual model is forced with red noise, which has increased power at

low frequencies compared with higher frequencies. If r were instead set to 360 year�1,

the noise forcing would be white. White noise has a constant amount of energy at all

frequencies. The values of the constants were chosen so that in the additive noise case,

G = 1, the standard deviation of T is 0.81, similar to that of the Niño3.4 region in

reanalysis. Jin et al. (2007) and Levine and Jin (2010) used a multiplicative noise term

G = 1 + BT , where B is the SST-dependent factor of multiplicative noise. Here, I also

consider a di↵erent shape of the multiplicative noise term, G = 1 + BTH(T ), where

H(T ) is a Heaviside function.

The inclusion of this threshold non-linearity in the noise forcing term, �N⇠(t)G, can

be physically interpreted as changes in the magnitude of the windstress anomaly depend-

ing on the anomalous temperature only during the El Niño phase. The multiplicative

nature of the threshold non-linearity comes as a consequence of the convective process

associated with the generation of transient windstress in the western and central Pa-

cific. Transient windstress, in the form of WWBs, is generated by convective events.

Convection has a minimum threshold around the average temperature in this region

and thus positive temperature anomalies are able to trigger convection and the westerly

wind anomalies to the west of the convection. Negative temperature anomalies cause

little change in the windstress forcing because convection is already absent from this

region. Further, these anomalies are multiplicative, meaning that when one convective

event occurs, it changes the underlying ENSO state such that a following convective

event is more likely to occur and be stronger than it would be in the absence of the first

event. The observed increased variability in the windstress during strong El Niño events

is something that can be represented as the multiplicative noise forcing of ENSO.

A consequence of multiplicative noise, particularly in the form that has been used to

modify the forcing of El Niño in the conceptual model, is that after the initial noise forcing

event a second strong forcing event becomes more likely. This can be demonstrated by

comparing the di↵erence between the additive noise case (B = 0) and the multiplicative

case (B = 0.5) in the conceptual model. The standardized histograms of the noise

forcing one, two, and three months after a large noise event (⇠ > �(⇠)) are examined
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and compared with the standardized histogram of the full ⇠ distribution (Figure 2.1).

The standardized histogram of the total red noise time series is Gaussian. However,

selecting the times immediately following a large noise event modifies the distribution.

In the additive case, the width of the distribution does not change much. The mean of

the distribution is shifted positively and the frequency of occurrence of events around

the shifted mean is significantly increased. From this, we can see that red noise plays

a role in increasing the likelihood of long-lasting anomalous westerly wind forcing. The

results of the multiplicative, B = 0.5, case show an even more significant change in the

distribution of noise forcing. In the months following a large noise forcing event, not

only is the mean of the distribution shifted like we see for the additive case, but the

width and skewness of the distributions are significantly altered creating a large impact

in the extreme positive tails of the noise forcing distribution. Thus, multiplicative noise

significantly increases the likelihood that the future noise will be even larger, playing a

role in enhancing the low-frequency component of the noise.

2.3 A Method for Calculating the State-Dependent Factor,

B

Using the conceptual model, three typical solutions under di↵erent multiplicative noise

forcing are considered. For each case, a 50-year segment from a longer 10,000 year

simulation is shown. The result for the case with only additive noise, B = 0, is shown in

Figure 2.2 (a). From the temperature (upper left panel) and noise forcing (lower left),

there are a few El Niño events that occur and the noise forcing has a lot of variability.

Using the time series of temperature and noise forcing, G⇠, we have a pair of points

(T (ti), G(ti)⇠(ti)) for each sample time i. These points are then binned based upon

T (ti). The bin widths are chosen to give an approximately equal number of points per

bin assuming that the temperature has a Gaussian distribution. While T is not Gaussian,

this approximation gives enough points per bin at the larger values and enough bins at

the smaller values of T . The standard deviation of the associated values of G(ti)⇠(ti)
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are then calculated for each bin. Any bin with fewer than 15 points is discarded from

the analysis. Using this method for binning, the standard deviation of G⇠ for each bin is

then plotted against the center value of the T bin. The standard deviations of G⇠ as a

function of T for the same 50-year sample period are estimated as the dots on the right

in Figure 2.2(a). The exact distribution of the standard deviations of G⇠ is shown as the

solid black line. In the additive noise case, the standard deviation of G⇠ does not depend

on temperature. A second method of calculating the standard deviation of G⇠(T ) was

also used. This method held the number of points per bin constant at 15 and T̄ and the

standard deviation of G⇠ for each bin was calculated. The results are similar (Figure

2.3). The fixed bin width method was chosen for the ease of comparing between di↵erent

cases since the constant points per bin method would have changing values on both the

x and y-axes while the the constant bins method has changing values only along the

y-axis. For increased, applicability I have averaged the output of the conceptual model

to produce monthly mean data from daily forcing to use in the calculation of B. This

change does not a↵ect the results.

The solution and the same analysis for the case where G = 1 + 0.5 T are shown

in Figure 2.2(b). Focusing on the standard deviations of G⇠ as a function of T (right

column), it is shown that in this case the standard deviation of G⇠ is no longer constant.

It reaches its minimum at a value of BT = �1 and increases in value when T is either

greater than or less than that value. The slopes of the lines defined by those points on

either side of the minimum are theoretically equal. This is approximately true in the 50-

year sample period depicted here. Similarly, in Figure 2.2(c), I show the same information

but for the case where G = 1 + .5 TH(T ). Comparing the standard deviations of G⇠

(right column) between cases (b) and (c), the e↵ect of the threshold non-linearity can

be detected. Instead of having a minimum value of the standard deviation of G⇠ at

BT = �1, at T = 0 the standard deviation of G⇠ flattens out and is nearly constant for

all of the bins with T < 0.

To estimate the value of B, the standard deviation of the noise as function of the El

Niño state is used. The standard deviations of G⇠ with respect to the Niño index are

first calculated, these are represented by the circles. They are then piecewise linearly
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regressed (all of the bins with negative values of T are grouped into one regression and all

of the bins with a positive value of T are grouped into a second one) onto the same Niño

index. The y-intercepts of these two regressions are averaged and represent an estimate

of the noise standard deviation. The positive side linear regression is then repeated but

with the y-intercept forced to equal the y-intercept of the of the negative regression.

B is equal to the slope of the latter regression divided by the noise standard deviation

(Figure 2.4).

To test the robustness of this estimation method, I have performed a number of

10,000-year simulations in the conceptual model at di↵erent values of B with G = 1 +

BTH(T ). Each 10,000-year simulation has been subdivided into 200 separate, non-

overlapping 50-year intervals. The estimated value of B is calculated for each of these

intervals and then compared with the actual value used in the conceptual model. The

estimated value from the full 10,000-year simulation and the standard deviation of the

sub-intervals are shown in Figure 2.5 where the actual value is shown as the straight

line. It shows that the value of B can be estimated with a 50-year data length with

reasonable accuracy. The accuracy over 50 years data length is important because it

allows for the utilization of this method to estimate the value of B in short data sets

such as the reanalysis products.

2.4 The E↵ect of Daily vs. Monthly Mean Sampling

While phenomena associated with noise forcing of ENSO (MJOs, WWBs, etc.) are

typically thought of as short-timescale processes, in order to actually force ENSO, they

must have energy in the lower ENSO frequencies (Roulston and Neelin, 2000; Levine and

Jin, 2010). Therefore, the loss of high-frequency information by using the monthly mean

as opposed to daily or pentad data should be unimportant. To test this hypothesis, the

conceptual model is used and the daily noise forcing is compared to the monthly mean

values. In estimating the value of B, the uncertainty in the estimation is slightly reduced

but the mean of the estimate from 200 50-year samples remains nearly constant (Figure

2.6). Over longer time periods for estimation, the daily data reduce the uncertainty even
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less.

2.4.1 Sampling Versus Natural Noise Characteristic Time Scale

The use of the monthly mean is further tested by examining the e↵ect of the noise decor-

relation time scale on the estimation of B in both monthly and daily noise estimations.

The decorrelation timescale of the noise, r in equation 2.2, sets the self-organization

properties of the noise and is the di↵erence between white and red noise. The default

time scale used throughout this chapter is 45 days. Sensitivity tests are run with it set

to 30, 15, and 10 days. The noise amplitude is normalized such that

� = �0

r
r

r0
(2.3)

where �0 and r0 are the values of � and r for 45 days. This normalization is used because

the ENSO growth rate with multiplicative noise is Gr =
�2B2

r ��

2 (Jin et al., 2007; Levine

and Jin, 2010). Both daily and monthly mean data are stored from the sensitivity tests.

The value of B estimated using the monthly mean noise forcing is not sensitive to the

noise decorrelation time scale. With the daily data, the value of B is not very sensitive

to the noise decorrelation time scale for r > 10 days (Figure 2.7).

2.5 Isolating the Windstress Noise Forcing

From Frankignoul and Hasselmann (1977), it is known that variability existing on timescales

much shorter than ENSO can be treated as stochastic forcing. There are many poten-

tial sources from both the atmosphere and the ocean for this stochastic noise forcing

of ENSO. This dissertation will focus on only one of these sources, the transient (not

directly related to ENSO) equatorial windstress. During ENSO, there is a strong zonal

wind response in the central and western Pacific. This response is directly proportional to

ENSO SSTs and not stochastic. Therefore, the windstress is split into two components.

⌧ = ⌧D + ⌧R (2.4)
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⌧D denotes the deterministic response of the central Pacific windstress to ENSO SSTs

and ⌧R is the remaining component of the windstress or the windstress noise. Choi

et al. (2013) showed that there is both a linear and threshold non-linear response of

the windstress to ENSO SST anomalies. This is one component of the deterministic

response.

⌧1 = µ1T + µ2H(T )T (2.5)

Additionally, Stuecker et al. (2013) showed the existence of annual cycle-ENSO com-

bination tones in the tropical Pacific SST-spectra. They showed that the combination

tones play a large role in the El Niño-La Niña transition. As such, they have strong

weighting when El Niño is near its peak and a much smaller weighting during La Niña

and thus could be a source of the windstress variance asymmetry instead of the mul-

tiplicative noise forcing. These combination tones are from the linear combination of

the ENSO and annual cycle frequencies and show up in the per annum spectrum at the

values of 1±Cf , where C is any integer and f is the ENSO frequency. The strongest of

these occur when C = 1. This will be considered and removed.

⌧AC = µACTcos(!ACt) (2.6)

Because the noise forcing generation region of ENSO is in the western and central Pacific,

there is also the potential for a forcing from the semi-annual cycle. Combining these

di↵erent deterministic responses of the windstress to ENSO SST anomalies, it is proposed

that

⌧D = µ1T + µ2H(T )T + µACTcos[!AC(t� tAC)] + µSACTcos[2!AC(t� tSAC)] (2.7)

where !AC is the annual cycle frequency and tAC and tSAC are the number of months

that the annual cycle and the semi-annual cycle are o↵set from the ENSO peak.

The conceptual model a↵ords the opportunity to test a method for determining the

coe�cients µ1, µ2, and µAC . A windstress timeseries, ⌧ , is created in the form of equation
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2.5, with

⌧D = A0T +ANH(T )T +AACTcos(!ACt)

⌧R = AR⇠(1 +BH(T )T )
(2.8)

A0 is set to 1 and the rest of the coe�cients are chosen such that they are correctly

proportional to A0, with AN = 1
5 , (Choi et al., 2013), AAC = 1

3 Stein (2008), AR = 1,

and B = 0.5. According to Stuecker et al. (2013), the combination tone and the direct

ENSO response are orthogonal to each other. Because of this, the combination tone,

AACTcos(!ACt) can be treated separately from the rest of Equation 2.8 as part of

a multiple linear regression. However, since A0T and ANH(T )T are not orthogonal to

each other, a simple multi-linear regression does not work. Instead the covariance matrix

is set up and A0 and AN are solved for.

0

@A0a11 ANa12

A0a21 ANa22

1

A =

0

@F1

F2

1

A (2.9)

where

a11 = TT (t� t0)

a12 = H(T )TT (t� t0)

a21 = TH(T (t� t0))T (t� t0)

a22 = H(T (t� t0))T (t� t0)H(T )T

F1 = ⌧T (t� t0)

F2 = ⌧H(T (t� t0))T (t� t0)

(2.10)

and t0 is a lag based on the principle that the future noise is uncorrelated with the
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present state. Solving the system of two equations and two unknowns yields

A0 = (
a22
a12

F1 � F2)
1

a11a22
a12

� a21

AN = (
a21
a11

F1 � F2)
1

a12a21
a11

� a22

(2.11)

When equation 2.11 is solved for with t0 = 2, µ1 = A0. Equation 2.11 is then solved

for again with t0 = 0 and AN = µ̂2. An estimate of the linear and threshold non-linear

terms are then removed from the windstress, ⌧ .

R̂1 = ⌧ � µ1T � µ̂2H(T )T (2.12)

After removing the linear and threshold non-linear terms from the windstress, the com-

bination tone is then removed using a simple linear regression.

R̂⌧ = R̂1 � ˆµACTcos(!ACt) (2.13)

However, as it is currently calculated, the estimate µ̂2 has a dependence on B, as shown

in the simplified system,

Y = ANH(T )T +AR[1 +BH(T )T ]⇠

= (AN +ARB⇠)H(T )T +AR⇠
(2.14)

To account for this,

µ2 = µ̂2 �ARB̂ (2.15)

where B̂ is an estimate for the state-dependence factor caculated from the timeseries,

R̂⌧ , using the method outlined in section 2.3 and AR = �(R̂⌧ )
.66 . Then R1, µAC , and R⌧

are calculated by repeating equations 2.12 and 2.13 with the updated value of µ2 from

equation 2.15. The new value of R⌧ is then used to calculate the state-dependence factor,

B.

Figure 2.8 shows the spectra of ⌧ , R⌧ , and [1 + BH(T )T ]⇠. The ⌧ spectrum shows
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the additional energy added to the noise spectrum, [1 + BH(T )T ]⇠, by ⌧D. This extra

power is most visible around the low frequencies where there is large scale temperature

variability. The combination tones are also very evident in the spectrum of ⌧ . The

spectrum of R⌧ shows that the energy in the combination tones and the ENSO driven

deterministic windstress forcing can be removed by the method outlined above. To

examine the ability of the method to correctly estimate the deterministic component of

the noise forcing correctly, the relationship between ⌧D and ⌧̂D is shown(Figure 2.9). This

relationship is linear and is very close to the line of ⌧̂D = ⌧D with a slight overestimation

of ⌧̂D. Additionally, the relationship between the [1 + BH(T )T ]⇠ and R⌧ is examined

(Figure 2.10). Like the estimate of ⌧D, the estimate of the noise forcing, R⌧ , is also fairly

accurate. In this case, consistent with the overestimation of ⌧D, there is a corresponding

slight underestimation of R⌧ . Since the goal of the study is to examine the noise forcing

of ENSO, the actual and estimated noise forcing are composited over the extreme El Niño

events in the conceptual model. Like the results in Figure 2.10, the recovered noise, R⌧ ,

slightly underestimates the actual noise (Figure 2.11). Another method of examining the

bias in the estimation of the noise is to compare the actual and estimated noise forcing

over a time period. The 50-year time sample from the conceptual model also agrees with

the rest of the results (Figure 2.12). There is an underestimation of the noise forcing

related to the overestimation of the deterministic component. This underestimation is

most pronounced when the temperature is larger. This bias of a slight underestimation

of the noise amplitude during the growth phase will e↵ect some of the results presented

in later chapters. However, being an underestimation, it suggests that the results in the

following chapter for the noise forcing should be even stronger than presented. Further,

the bias in the deterministic component does not create a bias in the estimation of the

state-dependence factor, B (Table 2.1).

2.5.1 The Impact of a Di↵erent Form of Non-Linearity

The conceptual model can also be used to test how well the linear approximation captures

a more complicated non-linear deterministic term. The forcing term in the temperature
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equation in 2.1 is set to include a non-linear deterministic component and linear deter-

ministic component.

⌧D = µNLtanh(T ) + µT (2.16)

These two components are removed using the linear and threshold non-linear regression

method that is applied to the timeseries. The non-linear deterministic component of

the forcing cannot reproduce the changes in the standard deviation of the noise as a

function of the ENSO state as seen with the multiplicative noise (Figure 2.13). However,

the non-linear deterministic component can amplify the multiplicative noise signal if it

is already present. If the shape of the non-linear deterministic dependence of the forcing

on ENSO were already known, the non-linear component could be removed. Based on

the work of Choi et al. (2013), this non-linear deterministic component is chosen to be a

threshold non-linearity. However, this uncertainity is a limitation of the noise isolation

method being used.

2.6 Summary

This chapter has introduced the conceptual recharge oscillator model with and without

multiplicative noise. The changes in the standard deviation of the noise forcing as a

function of ENSO state has been used to develop a method to use the monthly mean

noise forcing to estimate the state dependence factor of the multiplicative noise, B.

This method has been shown to be accurate over subsamples of 50 years. The concep-

tual model has been used to show that monthly mean data are acceptable to describe

multiplicative noise even when daily data are available. An additional method has been

developed to isolate the noise forcing from a deterministic component containing a linear,

a threshold non-linear, and a combination tone. The method has been shown to estimate

the coe�cients of the di↵erent parts of the deterministic timeseries reasonably accurately

and slightly underestimate the total noise forcing. These methodological biases do not

bias the estimate of the state-dependence factor.
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Figure 2.1: The standardized histogram of noise for 1 (solid), 2 (dashed), and 3 (dotted)
months following a large noise event for additive, B = 0 (red), and multiplicative, B = 0.5
(blue), noise. The additive noise and the multiplicative noise both are di↵erent from the
total noise PDF, which is Gaussian. Further, in the multiplicative noise case, the positive
tail is greatly enhanced at all lags.

Table 2.1: Median value of the coe�cients of deterministic noise as a function of length
of observation period.

Actual 50 100 200 400
A0 1 1.16 1.13 1.13 1.11
An 0.20 0.11 0.15 0.19 0.19
AAC 0.33 0.33 0.33 0.33 0.33
�(R) 1 1.08 1.11 1.12 1.12
B 0.5 0.45 0.43 0.45 0.46
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Figure 2.2: (a) Simulated time series of temperature (upper left) and the noise forcing
(lower left) from a sample 50-year period in the 10,000-year simulation with B = 0. On
the right, the conditional standard deviation of G⇠ for the same 50-year period (circles).
The solid line represents the theoretical distribution of the standard deviation of G⇠ as
a function of T . (b) the same as (a) but for G = 1 + 0.5T . (c) the same as (a) but for
G = 1 + 0.5TH(T ).
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simulation, the estimatedB, including its ensemble mean (circles) and standard deviation
(error bars) are shown. The actual value is shown as the straight line.
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Figure 2.6: Using 200 segments of 50 years of daily data from a 10,000-year simulation,
the estimated B, including its ensemble mean (circles) and standard deviation (error
bars) are shown. The actual value is shown as the straight line. The error of the
estimate is only slightly reduced by using daily data as opposed to monthly data.
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Figure 2.8: The spectra of ⌧ , R⌧ , and [1 + BH(T )T ]⇠ from the created windstress
⌧ = A0T +ANH(T )T +AACTcos(!ACt)+AR[1+BH(T )T ]⇠. The results show that the
methodology outlined here can be used to estimate the windstress noise in the presence
of a deterministic windstress.
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Figure 2.9: Scatter plot ⌧D versus the estimated ⌧D from the created windstress ⌧ =
A0T +ANH(T )T +AACTcos(!ACt) +AR[1 +BH(T )T ]⇠ where ⌧D is the deterministic
component of ⌧ . The results show that the methodology outlined here can be used to
estimate the windstress noise in the presence of a deterministic windstress.
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Figure 2.10: a) Scatter plot (1 + BH)T )⇠ versus R⌧ from the created windstress
⌧ = A0T + ANH(T )T + AACTcos(!ACt) + AR[1 + BH(T )T ]⇠. b) Scatter plot of ⇠
versus estimated ⇠. ⇠ is estimated using as ⇠ = R⌧

1+BH(T )T . The results show that the
methodology outlined here can be used to estimate the windstress noise in the pres-
ence of a deterministic windstress. Additionally, the noise can be split into additive and
multiplicative components.
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Figure 2.11: The composite noise forcing of extreme El Niño events comparing (1 +
BH)T )⇠ and R⌧ from the created windstress ⌧ = A0T +ANH(T )T +AACTcos(!ACt)+
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Figure 2.12: A 50-year timeseries from the conceptual model of T , (1 + BH)T )⇠, and
R⌧ from the created windstress ⌧ = A0T + ANH(T )T + AACTcos(!ACt) + AR[1 +
BH(T )T ]⇠. The results show that the methodology outlined here can be used to estimate
the windstress noise in the presence of a deterministic windstress.
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Chapter 3

The Diagnosis of

State-Dependency of ENSO Wind

Stress Noise in Reanalysis and

Two GCMs

3.1 Introduction

In the previous chapter, a method was developed to diagnose the state-dependency of

the wind stress noise. In this chapter, the method will be utilized to estimate the state-

dependency of the ENSO wind stress noise. In order to accomplish this, the ENSO

wind stress noise will be isolated from the total wind stress using the method outlined in

Chapter 2. The resultant wind stress noise is tested and found to have a state-dependent

component.
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3.2 Data

The windstress data used in this study are the European Centre Reanalysis 40-year

reconstruction (ERA-40), which is available at a horizontal resolution of 2.5 degree x

2.5 degree (Uppala et al., 2005). The current and temperature data used to calculate

the zonal advection of temperature come from the ECMWF Ocean Reanalysis System

3 (ORA-S3) and are on a 1 degree x 1 degree horizontal grid with the upper 5 levels

representing the upper 50 m of the ocean (Balmaseda et al., 2008). The SST time series

comes from the HadISST sea surface temperature reconstruction on a 1 degree x 1 degree

grid (Rayner et al., 2003). The first principal component of the empirical orthogonal

function analysis of the SST anomalies from 120E-80W and 10S-10N is used as the Niño

index. This time series is representative of ENSO events and correlates highly with the

Niño 3.4 time series (r=0.97).

In addition to Reanalysis data, two GCMs, Community Climate System Model 4

(CCSM4) and Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1, are used. 400

years from the pre-industrial control integration of CCSM4 and 300 years from the CM2.1

1990-control integration are used. The atmospheric component of CCSM4 is run at 2

degree resolution and the ocean component is run at a nominal 1 degree resolution, with

higher resolution in the tropics and 15 vertical levels in the upper 150m of the ocean

(Gent et al., 2011). The atmospheric component of CM2.1 has 1 degree resolution and

the oceanic component has variable resolution in the ocean reducing to less than half

a degree at the equator (Delworth and coauthors, 2006). Both models have large and

active ENSO representations.

3.3 Windstress Noise Forcing in Reanalysis and Two GCMs

Here the methodology from Chapter 2 is extended to these datasets and the windstress

is assumed to take the form of Equation 2.7. In the conceptual model, the assumption

of red noise forcing was made. Examining the spectra of R⌧ , it can be seen that the

windstress noise forcing that was isolated does indeed have a noise component with a red
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noise type spectrum reducing to a white noise spectrum at frequencies higher than a few

months for both the Reanalysis and the models (Figure 3.1). All of the di↵erent noise

spectra show variability at high frequencies, but this di↵erence is inconsequential since

high frequency energy alone is unable to excite ENSO (Levine and Jin, 2010; Roulston

and Neelin, 2000). The noise spectra are in stark contrast to the ENSO spectra which

peaks at ENSO frequencies and reduces much more at higher frequencies than the noise

forcing.

Additionally, the standardized histogram of R⌧ was examined (Figure 3.2). R⌧ is

approximately Gaussian, although slightly peaked with a greater percentage of events

closer to zero and less weighting in the tails of the distribution. Levine and Jin (2010)

tested noise distributions with similar properties, only more extreme, and found that at

values of B < 1 it had little e↵ect on ENSO stability or ENSO extreme events. Therefore,

these small deviations from gaussianity can be ignored.

Further examination of the standardized histogram of the noise forcing after a large

noise forcing event (R⌧ > �(R⌧ )) in the Reanalysis and coupled models, show changes

that are similar to the conceptual model with multiplicative noise changes (Figure 3.3).

Following a large noise forcing event, the median value of the noise has a positive shift

and the positive tail is significantly enhanced. This is similar to what has been observed

in the windstress noise forcing after multiplicative events and during the growth phase

of strongest El Niño on record McPhaden (1999). This will be explored in greater detail

in the next chapter. These di↵erences are consistent with the multiplicative noise used

in the conceptual model and suggest that it is possible to deduce the strength of the

SST state dependent constant of multiplicative noise forcing from the time series using

the method previously outlined.

3.4 Spatial Distribution of Noise

The spatial pattern of µ1 shows the expected weakening of the Walker circulation with

a strong increase in anomalous westerlies over the central Pacific dependent on ENSO

phase (Figure 3.4). µ2 shows a strong east-west dipole in its application of the ENSO
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state to the windstress field (Figure 3.5). This is due to the changes in mean SST between

the eastern and western Pacific. In the eastern Pacific, changes in convection are asym-

metrically triggered by only positive SST anomalies. These results are consistent with

Choi et al. (2013). The annual cycle combination tone has a hemispherically asymmetric

pattern in the windstress (Figure 3.6). Both the pattern and the magnitude are similar

across the di↵erent o↵sets in the Reanalysis data sets, due to the overall uncertainty

within the combination tone over the short record of the Reanalysis data product. The

pattern and o↵set for the Reanalysis and CM2.1 are in good agreement with the results

from Stuecker et al. (2013), but in CCSM4 the combination tone is has a di↵erent spatial

pattern and o↵set from Reanalysis and CM2.1. The semi-annual cycle combination tone

has a similar sign reaction to El Niño in the South Pacific Convergence Zone and ITCZ

and an opposite sign reaction in the central Pacific around the equator (Figure 3.7). The

patterns of these di↵erent signals are consistent across the Reanalysis and the models.

Levine and Jin (2010) showed that the noise amplitude plays a role in the overall

impact of multiplicative noise on ENSO. The standard deviation of R⌧ of the tropical

Pacific is examined (Figure 3.8). The windstress noise variability increases from east to

west across the Pacific peaking in the central Pacific along the warm pool edge. Attention

is focused on the equatorial region as the generation region of the Kelvin wave forcing

of ENSO and the windstress noise forcing is averaged over the region of 160� E-160�

W and 3� S-3� N. This area contains the most active region of windstress noise forcing.

This region is along the warm pool edge where small changes in SST can have large

impacts on the location of convection in the equatorial Pacific Ocean. This region is also

consistent with the findings of Kug et al. (2008).

3.5 Calculating B for the Reanalysis and the Two Models

Having isolated a noise time series, it is compared with the Niño time series (Figure 3.9a).

The residual time series has significant variability on short time scales and large peaks

associated with the major El Niño events in 1982-3 and 1997-8, which is indicative of a

relationship between the noise forcing and El Niño. There are peaks in the noise forcing
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that are not associated with the peaks of the strong El Niño events in the record, the

noise forcing is not solely dependent on ENSO state. Figure 3.9b and 3.9c show similar

50 year segments of CM2.1 and CCSM4, respectively. In both cases, comparing the

windstress noise forcing time series and the temperature time series, the largest values

of the noise forcing term are found to be contemporaneous with the onset of strong El

Niño events as was seen in the Reanalysis with the 1982 and 1997 El Niño events. Again,

these time series show peaks prior to the peak of the strong El Niño events, but there are

additional peaks that are unassociated with El Niño events. Similar to the Reanalysis,

the peak in the noise forcing occurs before the maximum of the El Niño event and flips

sign at approximately the same time as the maximum El Niño anomaly. While this has

been shown to be an important part of the combination tone signal (Stuecker et al.,

2013), it is also an important part of the stochastic noise forcing of ENSO (Levine and

Jin, 2010). These properties suggest that, like the conceptual model, the noise forcing

is important to the creation of an El Niño event, but not the only determining factor.

The relationship between these two time series is reminiscent of the features captured in

Figure 2.2 (c).

The previously defined method from the conceptual model can be applied to the

noise estimated from the Reanalysis (Figure 3.9a). In examining the standard deviation

of the noise time series as a function of T , it can be seen that it has a positive slope

for the positive T anomalies and a fairly flat slope for negative T anomalies, although

the relationship is noisy because the 50-year data length is still short. Additionally, the

value of the standard deviation does not approach zero at BT = �1. Both of these

features are similar to the threshold non-linearity case as shown in Figure 2.2 (c). It is

determined that the SST-dependent factor of multiplicative noise, B = 0.29± .14. The

measured value is significantly di↵erent from B = 0, which has an uncertainty range of

±0.11 for a 50 year estimate.

There is some concern that the decadal scale changes that have been observed over

the period of the Reanalysis are large enough that they impact the noise forcing and

the calculation of the B. Over time periods shorter than the 50 years, utilized for

the estimation of B in Reanalysis, the estimate has large values of uncertainty and is
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not shown. However, an examination of the standard deviation of the noise forcing as

a function of the ENSO state for di↵erent twenty year periods within the 50 years of

Reanalysis data, clearly shows that the increase in standard deviation of the noise forcing

as a function of the ENSO state is not due to the changes in the mean state caused by

decadal variability (Figure 3.10).

In both models, over the analyzed section of the simulation, the standard deviation as

a function of temperature is unchanging for T < 0 and increases linearly with tempera-

ture for T > 0 (Figure 3.9 b and c). This is clear evidence of multiplicative noise forcing

with a threshold non-linearity. In both models, the slope of the increase of standard

deviation is greater than in Reanalysis. This is confirmed by the estimated value for the

SST-dependent factor of multiplicative noise in CCSM4, B = 0.89, and in GFDL CM2.1,

B = 0.54. The B value has a much smaller uncertainty because the data length is 400

years and 300 years respectively. This is consistent with the small scatter around the

line in these figures. According to the theoretical results of Jin et al. (2007) and Levine

and Jin (2010), the overestimation of the value of B should result in both models having

overly active ENSOs. Indeed, both models have overly strong ENSOs, with standard

deviations in the Niño indices used for these calculations of � = 1�C and � = 0.95�C,

respectively. This is compared with the Reanalysis which is � = 0.81�C. This suggests

that the correct simulation of the SST state dependent factor of multiplicative noise may

play a role in correctly simulating ENSO amplitude.

Further utilization of the conceptual model results can be achieved by assuming that

R⌧ = ⇠(1 + BH(T )T ). The additive noise component, ⇠, and the multiplicative noise

component, ⇠BH(T )T , can be isolated.

⇠ = R⌧/(1 +BH(T )T ) (3.1)

This isolation works because 1+BH(T )T is positive definite. These two compoents can

be mapped out to see where they have strong variability, like the total windstress was

examined in Figure 3.8. In Figure 3.11, the additive component is examined. The pattern

of the additive noise resembles the total noise forcing. This is because the additive noise
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is responsible for the majority of the total noise forcing. The multiplicative noise forcing

shows much larger variability in the tropics, just o↵ the equator and minimal variability

in the extra-tropics (Figure 3.12). The significantly smaller values of the reanalysis are

related to the much smaller value of B in the reanalysis compared with the two coupled

models. The large variability just north or south of the equator is probably related to

the location of the ITCZ during the ENSO growth phase. Dispite the o↵ equatorial

maximums, the equatorial box for calculating R⌧ is retained because the windstress

forcing should be within the equatorial wave guide so as to force the Kelvin waves that

are a large part of ENSO growth.

Examining the autocorrelations of these two components of the noise forcing, it can be

seen that ⇠ behaves like red-noise with a fast decorrelation time scale and ⇠BH(T )T adds

a low frequency component to the noise forcing, which Levine and Jin (2010) showed was

necessary for the triggering of El Niño events (Figure 3.13). From this, it is observed

that multiplicative noise adds memory to the system. Previoius examinations of the

lengthened atmospheric memory have been attributed to the ocean (e.g Frankignoul and

Hasselmann (1977)). While multiplicative noise is a di↵erent process than simple red

noise, it could be useful to explore the ocean as a source of increased memory.

3.6 Summary

The first challenge in applying the methodology developed in the conceptual model for

calculating B is to define a noise time series. Unlike the conceptual model where the noise

is externally generated and stored, in the Reanalysis and GCMs the total windstress is

measured and the noise must be isolated. The linear ENSO, the threshold non-linear

ENSO, the annual cycle combination tone, and the semi-annual combination tone signals

are all removed from the anomalous windstress to extract the windstress noise time series.

Using the conceptual model, it is shown that this method can successfully remove these

signals linearly. This noise is shown to have properties consistent with multiplicative

noise forcing. As extracted, the windstress noise is shown to have properties associated

with white or red noise. Further, the state dependence factor can be measured over
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these time series. In all cases, B is significantly di↵erent from zero. The estimate from

Reanalysis is B = 0.29, from CM2.1 is B = 0.54, and from CCSM4 is B = 0.89. Both of

the climate models investigated here have overly strong representations of multiplicative

noise when compared with the Reanalysis, which corresponds with the models having

the amplitude of ENSO be too large. However, having too strong of a representation of

the multiplicative noise makes these models a good choice for a continuing study of the

physical processes associated with multiplicative noise because the processes involved

will most likely be more evident.
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Figure 3.1: Spectra showing the ENSO and windstress noise forcing from a) Reanalysis
b) CM2.1 c) CCSM4.
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Figure 3.3: Normalized histograms of R⌧ for one, two, and three months after a large
(R⌧ > �(R⌧ )) noise event for a) Reanalysis b) CM2.1 c) CCSM4. In all cases the
positive tail is enhanced like the multiplicative noise case from the conceptual model.
The normalized histograms are created by binning in bins of width 0.1 and then are
smoothed over 5 points.
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Figure 3.4: Spatial patterns of µ, the linear regression coe�cient for the linear response
of the windstress to ENSO for a) ERA40, b) GFDL CM2.1 and c) CCSM4. The strong
westerly response in the western Pacific to El Niño events shifts the convection from
the western Pacific to the central Pacific, which is evidence of the anomalous Walker
circulation.
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Figure 3.5: Spatial patterns of µ2, the linear regression coe�cient for the non-linear
response of the windstress to ENSO for a) ERA40, b) GFDL CM2.1 and c) CCSM4.
The non-linear response is an east-west dipole similar to the findings of Choi et al. (2013).
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Figure 3.6: Spatial patterns of the linear regression for ⌧ = µTH(T )cos(!ACt � t0) for
a)ERA40, b) GFDL CM2.1 and c) CCSM4. The annual cycle combination tones for
ERA-40 and GFDL CM2.1 are asymmetric and similar to the combination tones found
by Stuecker et al. (2013). CCSM4 has a strong northern component of the combination
tone, but lacks the asymmetric match in the southern hemisphere.
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Figure 3.7: Spatial patterns of the linear regression for ⌧ = µTH(T )cos(2!ACt� t0) for
a) ERA40, b) GFDL CM2.1 and c) CCSM4. The semi-annual cycle combination tones
are symmetric about the equator.
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Figure 3.8: The standard deviation of R⌧ as a function of latitude and longitude for a)
ERA-40 b) CM2.1 c) CCSM4. The box outlines the area averaged in the time series,
R⌧ . It corresponds with the large area of higher variability in the windstress forcing.
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Figure 3.9: time series of SSTA (upper left) and central Pacific zonal windstress noise
forcing (lower left) and conditional standard deviation of R⌧ as a function of T (right)
for a) Reanalysis b) CM2.1 c) CCSM4. The values of B estimated are 0.29, 0.54, and
0.82 respectively.
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Figure 3.10: Comparison of two di↵erent periods (1959-1979 and 1991-2010) with the full
51-year Reanalysis conditional standard deviations. Because of the reduced period, the
threshold of 15 points per bin is not used to create this plot. The two di↵erent periods
both show overall changes in standard deviation as a function of T and within the error
for such a short period of evaluation suggest that the longer decadal scale changes in the
tropical Pacific mean state are not responsible for the multiplicative noise variability.
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Figure 3.11: The standard deviation of the additive component of the windstress noise,
⇠, as a function of latitude and longitude for a) ERA-40 b) CM2.1 c) CCSM4. The box
outlines the area averaged in the time series, R⌧ . The additive component has a stronger
signal in the extratropics than in the tropics much like the total windstress noise (as seen
in Figure 3.8).
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Figure 3.12: The standard deviation of the multiplicative component of the windstress
noise, BH(N)N⇠, as a function of latitude and longitude for a) ERA-40 b) CM2.1 c)
CCSM4. The box outlines the area averaged in the time series, R⌧ . It corresponds
with the large area of higher variability in the windstress forcing. These values are more
tropically focused, although o↵-equator, than the total noise forcing (as seen in Figure
3.8) or additive noise forcing (Figure 3.11).
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Figure 3.13: Autocorrelation of ⇠, the additive component, and BH(N)N⇠, the multi-
plicative component for a) Reanalysis b) CM2.1 c) CCSM4. The multiplicative compo-
nent increases the e-folding time of the system.
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Chapter 4

The Physical Processes of

Multiplicative Noise

4.1 Introduction

Having established that there is multiplicative noise in the windstress forcing of ENSO,

this chapter will examine the physical processes that create the multiplicative noise,

how multiplicative noise fits within the context of previous studies of noise forcing of

ENSO, and its role in the triggering and growth phases of El Niño events. First the

spatial and temporal characteristics associated with multiplicative noise forcing and its

association with the low frequency component of the noise forcing of ENSO will be

examined. Next, the respective roles of ocean and atmosphere will be explored. Finally,

a number of experiments have been conducted to examine the role of coupling the ocean

and atmosphere for the generation of multiplicative noise.

59



4.2 Spatial and Temporal Evolution of Multiplicative Noise

In Chapter 2, a method was derived to isolate the windstress noise from the total wind-

stress averaged over 160�E-160�W and 3�S-3�N.

⌧x = µT +µ2H(T )T +µACH(T )Tcos(!AC(t� t0))+µSACH(T )Tcos(!SAC(t� t0))+R⌧

(4.1)

This approach can be expanded spatially such that R⌧ is calculated at each grid point.

When averaged over the same region as the index in chapter 3, the spatial residual,

R⌧ (x, y, t), returns the same time series used previously. The spatial expansion allows

for further investigation of the evolution of the low frequency component of the noise both

spatially and temporally, which will further allow for better comparisons with previous

studies onWWBs. To examine the large and extreme cases of low frequency noise forcing,

R⌧ (x, y, t) is composited when R⌧ > �(R⌧ ) and R⌧ > 3�(R⌧ ) over 160�E-160�W and

3�S-3�N for large and extreme low frequency noise events, respectively. The reanalysis

contains 128 large events and 5 extreme events. CM2.1 contains 470 large and 79 extreme

events, and CCSM4 contains 827 large and 116 extreme events. Compositing the events

is chosen over other methods of aggregation due to the non-linear response of the noise

forcing to ENSO state as demonstrated previously. Spatially, the patterns of the large

noise events and the extreme noise events do not look very di↵erent. They all consist of

strong westerly wind forcing in the equatorial wave guide over the western Pacific warm

pool. They di↵er from the stochastic optimals found by Moore and Kleeman (1999) by

being narrower and not symmetric about the equator (Figure 4.1). These di↵erences

could be caused by model di↵erences, Moore and Kleeman (1999) used much simpler

model, or also by annual cycle interactions, which could limit the strongest westerly

events to specific times of year when the ITCZ is displaced from the equator. However,

in all cases the extreme low frequency noise events extend further east than their large

low frequency noise event counterparts. Both the reanalysis and CM2.1 show the wind

burst centered on and fairly symmetric about the equator. CCSM4 has its strongest

signal north of the equator with a smaller maximum south of the equator, creating a
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strong signal through the equatorial wave guide.

However, the time evolution associated with the di↵erences in amplitude are im-

portant. The large low frequency noise events show a westerly wind forcing that is

concentrated mainly during the month of the peak event with reduced signals in the

months before and after the burst. It is a short duration event that quickly decays.

In these cases the westerly winds are also confined to a more narrow region along the

warm pool edge. However, in the case of the extreme noise events, the wind burst is not

confined spatially or temporally. The extreme events show a build up in intensity in the

months leading up to the peak of the wind forcing (a low frequency component of the

noise forcing) with an eastward progression of the strongest anomalies moving from the

warm pool edge expanding eastward (Figure 4.2). The extreme events begin a couple

of months earlier with an event of similar magnitude and spatial scale as observed with

the large events. While the increase in amplitude and the eastward propagation are less

clear in the reanalysis than in the models, this is consistent with a smaller value of B

for the reanalysis than for either of the models. The smaller value of B implies that

the background ENSO state is less important in forcing the extreme events in reanalysis

than in the analyzed models, which should give a more independent event-like structure

to the extreme events in the reanalysis.

These di↵erences are even more apparent when examining the multiplicative compo-

nent of the noise forcing. To do this, the shape of the multiplicative noise function is

assumed to be [1+BH(T )T ]⇠ and set R⌧ = [1+BH(T )T ]⇠. Using B = 0.29, B = 0.54,

and B = 0.89 for the reanalysis, CM2.1, and CCSM4 respectively, the ”additive” noise,

⇠, and ”multiplicative” noise, BH(T )T ⇠ components are then roughly isolated by solving

for ⇠.

⇠ =
R⌧

(1 +BH(T )T )
(4.2)

The results of this separation on the estimation of ⇠ were shown in Figure 2.10b, which

shows that using this simple separation does a good job of estimating the correct values

of ⇠. The relative values of R⌧ , ⇠, and BH(T )T ⇠ are shown in Figure 4.3. Here we see

that the additive noise accounts for the bulk of the variability and that this variability
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is fairly constant over time with the multiplicative noise component adding significant

noise forcing in short event like bursts. These events usually occur a couple of months

before the peak of an El Niño event (Figure 4.4). This di↵erence in the low-frequency

component is a key characteristic of multiplicative noise.

Using the additive and multiplicative noise time series, the analysis done in Figures

4.1 and 4.2 is redone to examine the di↵erences between multiplicative and additive

noise. In these cases, composites are created for ⇠ > �(R⌧ ) for the additive cases,

and BH(T )T ⇠ > �(R⌧ ) for the multiplicative cases. The reanalysis contains 115 large

additive events and 2 large multiplicative events, CM2.1 contains 336 large additive

and 102 large multiplicative events, and CCSM4 contains 396 large additive and 302

large multiplicative events. Here we see that the multiplicative noise composites are just

exciting the stochastic optimal with higher amplitude forcing than the additive noise

cases (Figure 4.5). The multiplicative noise event composites are very similar to the

extreme low frequency noise event composites in Figure 4.1 for all cases The additive

noise cases are similar to the large low frequency noise events. The multiplicative case

of the reanalysis shows even greater eastward extent of the westerly winds than the

extreme low frequency case, but this maybe a result of too few events to composite and,

hence, over emphasizing the 1997-8 El Niño. Combining these spatial similarities with

the di↵erences in number of events suggests that multiplicative noise is responsible for

increasing the likelihood of the occurrence of extreme westerly wind events, which can

be found in the partial distribution functions of R⌧ in Figure 3.4.

While spatially somewhat similar in shape, the temporal di↵erences between the ad-

ditive and multiplicative noise cases show a very clear distinction (Figure 4.6). The mul-

tiplicative noise forcing shows a clear build-up in amplitude over the months preceding

the event with additional forcing after the composited time and an eastward propagation

of the noise forcing from the Warm Pool edge across the dateline and potentially into

the eastern Pacific. The additive noise forcing shows a much more isolated event-like

structure without prior events or eastward progression, much like the spatial composites.

The Hovmoeller diagrams of the multiplicative noise case are similar to the extreme low

frequency noise case and the additive noise case Hovmoeller diagrams are similar to the
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large low frequency noise events (Figure 4.6). The multiplicative noise composite shows

even more clearly the increasing strength of the westerly wind and the overall eastward

propagation of the forcing than was seen in the extreme low frequency noise case. The

reanalysis results further show propagation of the westerly winds further to east beyond

the area averaged box in the months after the composited event. This build-up of the

forcing and its eastward progression is consistent with previous studies on multiplicative

noise (Gebbie and Tziperman, 2009a) and with observations of the windstress leading

up to the 1997-8 El Niño event (McPhaden, 1999).

4.3 Coupled Processes of Multiplicative Noise

4.3.1 Warm Pool Advection

Lengaigne et al. (2004), Lopez et al. (2013) and Lopez and Kirtman (2013) found that

idealized state dependent noise forcing created an anomalous temperature response on

the warm pool edge. Observational studies from the TOGA-COARE project (Webster

and Lukas, 1992) also found anomalous warm temperatures and zonal heat transport

after the passage of a westerly wind burst in the central Pacific (McPhaden et al., 1988).

These warm anomalies are driven by the wind bursts and represent a possible mechanism

for multiplicative noise forcing. To determine the non-ENSO component of the zonal

advection of the warm pool, a similar assumption to Jin et al. (2006) is made here

where < u >E= �u[⌧x] + �uh < h >w and �u and �uh are the linear regressions of

the zonal current anomaly on the windstress and the western Pacific thermocline depth,

respectively (Jin et al., 2006; Kim and Jin, 2011a,b). Since the comparison is between

the zonal current anomaly and the windstress anomaly, �u[⌧x] is replaced with �uTT ,

which takes advantage of the fact that windstress is also linearly related to ENSO state

to eliminate the zonal current response to ENSO state irrespective of windstress. Then, a

similar isolation method on the zonal current is used as previously used for the windstress,

eliminating the zonal current signals due to ENSO non-linearity and interactions with

annual cycle combination tones, where the area-averaged zonal current, < U >, can be
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decomposed into the deterministic part, UD, and a residual, RU .

< U >= UD +RU (4.3)

Since upper ocean heat transport is important for the spreading of the warm pool, the

zonal advection of temperature by the anomalous zonal current ZA = �Ru
@T
@z averaged

over the upper 50m of the ocean is examined. By compositing on the additive and multi-

plicative noise events, the di↵erence in zonal advection of temperature can be compared.

The additive case shows a weaker zonal advection of the warm pool SSTs eastward in the

wake of the wind burst. This has been observed following westerly wind bursts before

(McPhaden et al., 1988). The di↵erence in the multiplicative noise case is that the zonal

advection of SST begins before the strongest wind stress event, progressing eastward and

increasing in magnitude before the peak of the wind stress (Figure 4.7). This is similar

to the di↵erence between the large additive and multiplicative events in the wind stress

and corresponds to an eastward advection of the warm pool edge. This agrees with what

has been shown by Gebbie and Tziperman (2009b) and Lopez et al. (2013). Additionally,

in both the models and the reanalysis, there is a continuation and eastward propagation

of the anomalous zonal temperature advection after the peak of the multiplicative noise

windstress event which is not apparent after additive noise cases. Similar to what was

observed in the reanalysis windstress the zonal advection of the temperature continues to

push further east after the peak of the multiplicative noise in comparison to the models.

The eastward expansion of the Warm Pool happens during both large additive and

multiplicative westerly wind events (Figure 4.7). The di↵erence between the large ad-

ditive events and the large multiplicative events is that the large multiplicative events

happen when additional westerly wind bursts occur shortly after the initial eastward

warm pool excursion, reinforcing the initial excursion and pushing the westerly wind

bursts further east through the central Pacific due to an increased availability of warm

SSTs. This further reinforces the incipient El Niño event, creating a low frequency

component of the noise forcing.
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4.3.2 Precipitation Response

As shown previously, the multiplicative noise exhibits a distinct threshold non-linearity

component. The leading mechanism to explain this non-linearity, due to the underlying

mean SSTs, would be convection. Examining the 1982-3 and 1997-8 El Niño events,

the eastward propagation of this anomalous convection is evident based on observed

monthly mean outgoing longwave radiation (Figure 4.8a). As the warmer water advects

east along the warm pool edge, the atmosphere responds to these changes in boundary

forcing with changes in local convergence where the westerly anomalies combine with

the climatological easterlies to produce a region of zero net wind. The precipitation

anomalies are located in this region of zero net wind. In the multiplicative noise case,

the anomalous precipitation progresses eastward in conjunction with the anomalous zonal

temperature advection and the anomalous westerly wind stress. This does not occur in

the additive cases (Figure 4.8b), stressing the importance of the eastward migration of

the forcing as an important characteristic of the multiplicative noise forcing. CCSM4

shows a significant increase in precipitation in the multiplicative noise composite over the

entire eastern Pacific (Figure 4.8c). In all cases, there is enhanced drying occuring over

the warm pool region. This is consistent with the observations and model experiments

that have suggested that the largest El Niño events are forced by a series of westerly

wind events that move further and further to the east over the course of the growth

phase of El Niño (McPhaden, 1999; Gebbie and Tziperman, 2009b).

4.3.3 Coupled Ocean-Atmosphere Experiments

The precipitation response, which drives the eastward propagation of the wind bursts,

is driven by changes in the eastern edge of the western Pacific warm pool. However,

beyond just propagating eastward, the wind response amplifies as the incipient El Niño

intensifies. To determine whether the atmosphere itself was the cause of the amplifica-

tion, an experiment was conducted with GFDL AM2.1 (The GFDL Global Atmospheric

Model Development Team, 2004). Three cases of boundary forcing were examined. The

reanalysis SST case (HadSST) was run with HadISST SSTs forcing the atmosphere. In
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this case, 10 ensemble members of 50-years each were examined. The second case, CM-

SST, used the previously analyzed 300-year SSTs from CM2.1 as forcing. In this case, a

single 300-year realization was examined. The final case, CM-anom, used the HadISST

monthly mean SSTs plus the CM2.1 monthy SST anomalies. This experiment also used

a single 300-year realization. The SSTs are prescribed over a region of 20� N-20� S

and 100� E-80� W and use climatological SSTs elsewhere. The horizontal resolution of

AM2.1 is approximately 2.5 degree longitude by 2 degree latitude and uses 24 vertical

levels.

The mean standard deviation of R⌧ with respect to T of each case is shown with

the ensemble standard deviation for the HadSST experiment in Figure 4.9. The value

of B from the experimental cases show a significant decrease in B from the the value

found previously in the analyzed 300-year integration of CM2.1. These di↵erences in B

indicate the role of the coupled system for windstress multiplicative noise forcing. The

windstress response triggers an ocean response, which can then enhance the windstress

response of any additional noise event that occurs. When these two components, the

windstress and warm pool advection, of the system are not allowed to communicate, as

is the case without coupling, the windstress memory of previous westerly wind bursts

that would normally be maintained in the multiplicative noise is lost.

This can be seen more clearly in the spectra of the windstress noise forcing in the

experiments compared with the fullly-coupled run (Figure 4.10). In the coupled case, the

noise forcing has stronger low frequency noise forcing. However, both the CM-SST and

CM-anom experiments show additional spectral peaks. Both have peaks at frequencies

much lower than the ENSO peak. Outside of this low-frequency peak, the CM-SST

experiment shows less energy at all other frequencies than the coupled case. It shows a

larger deficit in energy in the low frequencies compared with the coupled case than in

the high frequency component. The CM-anom experiment has less energy from the low

frequency peak until periods of approximately 1 year. There is additional energy in the

periods between 6 and 12 months. However, as has been shown by Levine and Jin (2010),

high frequency energy is unable to force ENSO, so this extra energy is unimportant. In

the HadSST case, the noise forcing is white instead of red. From this it can be seen
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that the role of the coupling is to increase the total memory of the system, which is an

importantant component of the multiplicative noise forcing of ENSO.

Comparing the composite for the multiplicative noise between the coupled simulation

and CM-SST, the role of the ocean-atmosphere coupling is clearly evident. In the CM-

SST experiment, the extreme westerly wind events do not show the same eastward

propagation (Figure 4.11) or the increase in magnitude of the westerly wind forcing over

the previous months. This was previously identified as important component of the

multiplicative noise. Instead the CM-SST experiment retains the more solitary, event-

like structure of the additive forcing, only at a larger magnitude (Figure 4.11). Coupling

enhances the multiplicative noise and provides the impetus for the combined eastward

migration of the westerly wind events and of the warm pool edge.

In the CM-SST simulation, the Warm Pool edge propagates eastward with or without

the previous westerly wind forcing. Since the precipitation changes are a response to the

location of the warm pool edge, the precipitation in the CM-SST simulation shows an

eastward propagation (Figure 4.12) unlike the westerly wind response. However, the

di↵erence in the precipitation response between the large and extreme westerly wind

events is merely one of magnitude and not one of kind as observed for the coupled case.

The increase precipitation in CM-anom over the CM-SST experiment is related to the

changes in climatological SST from the removal of the Cold Tongue bias.

As the Warm Pool edge moves further east, convection spreads to the east and the

westerly wind events push further to the east. This, in turn, expands the warm pool

even more and provides a positive feedback within the noise forcing of ENSO and can

lead to even larger El Niño events. This is consistent with the prediction of an increased

number of large El Niño events with greater multiplicative noise forcing from Levine and

Jin (2010). The implication of all of these results combined is that the magnitude of the

multiplicative noise is set by two things, the eastward migration of the Warm Pool edge

in response to a westerly wind burst and the ability for convection to form further to east

in response to the expanded Warm Pool. Additionally, the shape of the multiplicative

noise (threshold nonlinearity) is set by atmospheric convection.
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4.4 Summary

The extreme low frequency noise events of El Niño have a similar spatial pattern to

other westerly wind bursts. These spatial patterns di↵er from the stochastic optimals of

Moore and Kleeman (2001) in width and symmetry about the equator. These di↵erences

are most likely due to di↵erences in model and the seasonality of WWBs. The major

di↵erence between the large low frequency noise forcing events and the extreme ones

are the the extreme low frequency noise forcing events are not isolated in time. These

extreme events have preceding large noise events which prime the ocean, by forcing zonal

advection of the western Pacific Warm Pool, for the creation of the extreme events. This

is in agreement with Gebbie and Tziperman (2009b). This priming of the ocean can be

demonstrated by multiplicative noise. The total noise forcing can be split into additive

and multiplicative components. The multiplicative noise component is responsible for

the additional magnitude of the extreme low frequency noise forcing events.

Organized anomalous precipitation in the region occurs contemporaneously with the

eastward march of the westerly wind anomalies and the eastward progression of the

Warm Pool edge. The anomalous precipitation connects the oceanic response to the

westerly wind anomalies and the future westerly wind anomalies that are the critical

atmospheric manifestation of multiplicative noise. A westerly wind event creates positive

zonal temperature advection, expanding the western Pacific Warm Pool. The expanded

Warm Pool supports additional convection further to the east. The di↵erence in eastward

extent of the additional westerly wind forcing between the reanalysis and the models

could therefore be explained by the existence of the coupled model Cold Tongue bias

preventing convection from forming further to the east. Continuing the cycle, if the

convection forms further to the east, additional westerly wind anomalies occur due to

convergence. These new westerly wind anomalies expand the Warm Pool further to

east, allowing for more eastward propagation of the convection (Figure 4.11). This is in

agreement with previous studies on multiplicative noise (Lengaigne et al., 2004; Eisenman

et al., 2005; Gebbie and Tziperman, 2009b). The positive feedback loop is then broken

by the delayed response of the thermocline and the limited resource of ocean heat content
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which eventually outcrops cooler waters at the outset of La Niña as well as interactions

with the annual cycle.

By examining the uncoupled model experiments compared to the coupled model,

it can be seen that the value of B is reduced by 50% without coupling. As has been

shown, the multiplicative noise acts to increase the memory of the system by 2-3 months

(Figure 3.13) and the low-frequency component of the noise which has been shown to

be important for noise forcing of ENSO. The uncoupled experiments have a more event-

like structure to the most extreme WWBs (Figure 4.11). The more event-like structure

displays the fact that the low-frequency component of the noise is reduced without cou-

pling. This reduction can also be seen in the power spectra of the uncoupled experiments

versus the coupled simulation. This is consistent with a reduction of the measured value

of B that is seen by applying the methodology previously developed to the uncoupled

experiments.
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Figure 4.1: Spatial distribution of large (R⌧ > �R⌧ ) and extreme (R⌧ > 3�R⌧ ) westerly
wind ( N

m2 ) events for a) ERA-40, b) GFDL CM2.1 c) CCSM4.
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Figure 4.2: Hovmoeller diagrams of the anomalous westerly wind forcing ( N
m2 ) averaged

over 5� S - 5� N preceding and following large (left) and extreme (right) westerly wind
events for a) ERA-40, b) GFDL CM2.1 c) CCSM4. The large events are isolated while
the extreme events have a longer lasting low frequency component to them.
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Figure 4.3: Time series of total noise (R⌧ , black), additive noise (⇠, red), and multi-
plicative noise (BTH(T )⇠, green) for a) conceptual model with B = 0.5 b) ERA-40, c)
GFDL CM2.1 d) CCSM4.
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Figure 4.4: Composites in time of the total noise (R⌧ ), for large additive noise (⇠, red),
and multiplicative noise (BTH(T )⇠, green) events for a) ERA-40, b) CM2.1 c) CCSM4.
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Figure 4.5: Spatial distribution of large additive and multiplicative westerly wind ( N
m2

events for a) ERA-40, b)CM2.1 c)CCSM4. The additive events are similar to the large
total noise events and the multiplicative events are similar to the extreme events.
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Figure 4.6: Hovmoeller diagrams of the anomalous westerly wind forcing ( N
m2 ) averaged

over 5� S - 5� N preceding and following large additive (left) and multiplicative (right)
westerly wind events for a) ERA-40, b) GFDL CM2.1 c) CCSM4. The additive events
are similar to the large total noise events and the multiplicative events are similar to the
extreme events.
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Figure 4.7: Hovmoeller diagrams of the anomalous zonal temperature advection 10�5K
s

from the upper 50m and averaged over 5� S - 5� N preceding and following large additive
(left) and multiplicative (right) westerly wind events for a) ORA-S3, b) GFDL CM2.1 c)
CCSM4. The additive events are more single event-like, while the multiplicative events
have a longer lasting low-frequency component to it.
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Figure 4.8: Hovmoeller diagrams of a) the anomalous outgoing longwave radiation W
m2

for the 1982-3 and 1997-8 El Niño events and b) and c) the anomalous precipitation
(mm
day ) preceeding and following large additive (left) and multiplicative (right) westerly

wind events for GFDL CM2.1 and CCSM4 respectively. The multiplicative noise forcing
and the two observed extreme El Niño events show strong eastward propagation.
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Figure 4.9: The standard deviation of noise forcing as a function of temperature for the
300-year CM2.1 results, the HadISST forced AM2.1 experiment, the CM2.1 SST, and
the CM2.1 SST anomaly forced AM2.1 experiments.
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Figure 4.10: The noise spectrum of R⌧ for the 300-year CM2.1 results, the HadISST
forced AM2.1 experiment, the CM2.1 SST, and the CM2.1 SST anomaly forced AM2.1
experiments.
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Figure 4.11: Hovmoeller diagrams of the anomalous westerly wind forcing ( N
m2 averaged

over 5� S - 5� N preceding and following large (left) and extreme (right) westerly wind
events for the a) GFDL CM2.1 and b) CM2.1 SST anomaly forced experiment. The
extreme events do not show the same magnitude of anomaly or the eastward propagation
observed in the coupled scenario.
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Figure 4.12: Composites in time of the total noise (R⌧ ), for large additive noise (⇠, red),
and multiplicative noise (BTH(T )⇠, green) events for a) GFDL CM2.1 b) CM-SST.
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Figure 4.13: Hovmoeller diagrams of the anomalous precipitation (mm
day ) preceding and

following large (left) and extreme (right) westerly wind events for the a) GFDL CM2.1
and b) CM2.1 SST anomaly forced experiment.
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Figure 4.14: A schematic diagram of the interaction of the westerly wind bursts and
western Pacific warm pool SSTs. An initial weserly wind burst expands the warm pool
to the east. If another westerly wind burst occurs, it has a greater zonal extent and is
stronger due to the eastward spread of the warm pool, but if one does not occur, than
the warm pool relaxes back to its initial extent.
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Chapter 5

The Simulation of ENSO

Multiplicative Noise in CMIP5

Models

5.1 Introduction

Coordinated experiments have been run to examine the changes in the climate under

anthropogenic climate change. The most recent of these is CMIP5. In CMIP5, the

coupled models did a better job of replicating ENSO amplitude, pattern, and period

compared with their CMIP3 counterparts (Bellenger et al., 2014). However, the models

still struggle to correctly simulating these aspects of ENSO. Further, Bellenger et al.

(2014) showed that in many of the models that simulated these properties accurately,

the ”accuracy” was caused by a cancellation of errors instead of getting the physical

processes involved in ENSO correct. Since multiplicative noise is known to a↵ect ENSO

properties, it is useful to examine how the di↵erent CMIP5 models simulate multiplicative

noise forcing of ENSO.
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5.2 The Estimation of the State-Dependence of ENSO Noise

in the Windstress

5.2.1 State-Dependent Noise

The coordinated model experiments and archived data from CMIP5 allow for testing

the accuracy of the current generation of climate models with respect to simulating the

multiplicative noise forcing of ENSO. In this chapter, 21 di↵erent CMIP5 models for the

pre-industrial control (piControl), RCP4.5, RCP8.5 scenarios as well as for reanalysis

(HadISST and ERA-40 winds), the CM2.1 1990 control and CCSM4 2� pre-industrial

control simulation previously used are compared. The pre-industrial control simulation

is a long continuous model simulation where the greenhouse gas levels are held constant

at levels from before the industrial revolution. RCP4.5 and RCP8.5 are experiments that

project the climate into the future by estimating di↵erent amounts of greenhouse gasses

that are emitted into the atmosphere over the course of the simulation. These simulations

extend at a minimum through 2099. Some modelling groups extend the simulation

further. Additionally, many of the modelling groups have run multiple realizations of

the experiments. The length of data used for each simulation is shown in Table 5.1.

Using the methodology outlined in chapter 2, the magnitude of B can be estimated

for the di↵erent models across the di↵erent scenarios (Table 5.2). The standard deviation

of R⌧ as a function of ENSO state shows significant uncertainty between the models and

scenarios (Figure 5.1). Many models fail to capture any change of noise variance with

a positive ENSO state. During a negative ENSO state, most of the models that have a

variance increase during the positive ENSO state show little or no change in the noise

variance. This agrees with the previous conclusion that there is a threshold non-linearity

involved in the formation of multiplicative noise. A few models show an increase in the

noise variance during a negative ENSO state. Most of these cases have a reduced rate

of change of noise variance in the negative ENSO state compared with the positive one,

with CanESM2 being the notable exception.

B is evaluated in the other scenarios as well (Figure 5.2). In this figure, the solid
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line is the estimated value from the reanalysis and the dashed lines are ±1�. More

than half of the models fail to simulate B within this interval in the pre-industrial

control simulation. In all but one of these cases, GFDL-CM3, the value of B is too

low. In examining the global warming simulations, most of the models do not have

a consistent trend from the pre-industrial control simulation to RCP4.5 to RCP8.5.

Three of the models, ACCESS-1.0, CESM1-CAM5, and GFDL-CM3, show significant

increases from preindustrial control to both RCP4.5 and RCP8.5. Of these, only CESM1-

CAM5 has a pre-industrial control simulation within the estimated range of B from

the reanalysis. ACCESS-1.0 has too small of a simulated B and GFDL-CM3 has too

large of a simulated B. Three models, CCSM4, CNRM-CM5, and IPSL-CM5A-LR,

show a consistent significant decrease in B from the pre-industrial control simulation to

RCP4.5 and RCP8.5. Only two, CCSM4 and CNRM-CM5, of these three models have

a reasonable simulation of B in the pre-industrial control simulations. IPSC-CM5A-LR

has too weak a simulation of B. Overall, it is clear that the CMIP5 models do a poor job

in simulating B and have too wide a variance on the change of B due to climate change

to draw any strong conclusions as to how this processes will be e↵ected. Our attempts

at drawing any strong conclusions about the changes in B due to climate change are also

hampered by the uncertainty in estimating B.

Initially, limiting the analysis to the pre-industrial control simulations, the model

mean state biases are examined. In the previous chapter, convection and the Warm Pool

edge were found to be important for multiplicative noise, therefore, the SST in the central

Pacific is examined. The estimated value of B is correlated with the model temperature

bias in the central Pacific (3� S-3� N, 160� W- 160� E), r = 0.32 (Figure 5.3). This

correlation with the model Cold Tongue bias is consistent with the physical mechanism

explored in Chapter 4. While graphically clear with a few outliers, the correlation of the

temperature bias to the B is low suggesting that there are other factors responsible for

the poor simulation of B. These causes could include, but are not limited to, convective

biases and model representation of the MJO or WWBs. A future study into the poor

simulation of B in the models should take this into account to test other possible causes

that factor into the models’ poor performance in simulating B.

85



In agreement with this, the spatial pattern of tropical temperature anomaly, defined

as T 0 = T (x, y)� T̄ , where T̄ is the global mean tropical temperature, shows a significant

correlation of positive anomalies in the central Pacific and larger values of B (Figure

5.4). There are also significant negative correlations in the equatorial Indian Ocean and

eastern Pacific. In the eastern Pacific Ocean, the correlation maximum occurs north

of the equator and not on the equator. This could be related to the simulation of the

equatorial cold tongue and resultant warming of o↵-near equatorial SSTs as a result.

The correlations with precipitation are more complicated. B is positively correlated

with increases in precipitation over the equatorial cold tongue region and generally drier

areas of the tropics while it is negatively correlated with precipititation in the Inter-

Tropical Convergence Zone (ITCZ) and South Pacific Convergnce Zone (SPCZ) regions

(Figure 5.5). The relationship between the precipitation in the cold tongue region and

B is potentially another manifestation of the cold tongue bias which inhibits the east-

ward propagation of the WWBs by inhibiting convection further to the east. Combined

with the anti-correlation of the precipitation in the northeast Pacific ITCZ and B, the

meridional contrast of precipitation in the eastern equatorial Pacific is on the whole an-

ticorrelated to B. Merkel et al. (2010) and Watanabe et al. (2011) found that ENSO

amplitude is anticorrelated to the meridional contrast in precipitation. Since, Jin et al.

(2007) and Levine and Jin (2010) found that ENSO amplitude is directly proportionaly

to B, these results are in agreement with the previous studies linking ENSO amplitude

and eastern Pacific meridional precipitation contrast.

5.2.2 Total Windstress Noise Forcing

In equation (2.2), the noise forcing of ENSO is represented as

F = �N [1 +BH(T )T ]⇠ (5.1)

Described in this manner, B is dependent on �N . �N represents the magnitude of

the noise forcing of ENSO. The magnitude of the noise forcing has been shown to be

important for ENSO amplitude (Jin et al., 2007; Levine and Jin, 2010). Therefore, the
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standard deviation of R⌧ is used as a proxy value for �N and is compared across the

di↵erent CMIP5 models and the reanalysis (Table 5.3). With three exceptions, CESM1-

CAM5, CMCC-CMS, and GFDL-ESM2M, �(R⌧ ) is underestimated in the pre-industrial

control simulations (Figure 5.6). This underestimation of the windstress noise forcing

could be related to coupled models’ inability to correctly simulate the MJO. In about half

of the models, the value of �(R⌧ ) is fairly constant across the di↵erent global warming

scenarios. Seven of the models show decreases in �(R⌧ ) with anthropogenic climate

change and three show consistent increases. The rest do not have a consistent direction

of change in the global warming simulations.

The windstress noise forcing is positively correlated, although not significantly, with

increased tropical temperature anomalies along the equator in the western and central

Pacific, presumaly due to the relationship between SST and precipitation in that region

where SSTs lies near or above the convective threshold (Figure 5.7). There are narrow

regions of negative correlations on either side of this positive correlation. This is assumed

to be related to the correct location of the ITCZ and SPCZ and the role that convec-

tion in those areas plays in producing equatorial windstresses. There are also negative

correlations in the tropical Indian Ocean and Maritime continent region perhaps related

to poorly simulated MJO variability and propagation from the Indian ocean through to

the Pacific.

The increase in variance of the total noise created by the state-dependent component

of the noise is small enough that it does not contribute in large quantities to the total

windstress noise forcing of ENSO. This relationship leads to a small correlation, r = 0.4,

between B and �(R⌧ ) (Figure 5.8). While the larger values of B all occur at larger

values of �(R⌧ ), the smaller values of B are not confined to the smaller values of �(R⌧ ).

An unusual feature seen in Figure 5.8 is that the largest values of B occur around the

middle values of �(R⌧ ). However, all three of those extreme B values are from GFDL

CM3, which suggests that that feature is due to a single model and not an important

part of the relationship between B and �(R⌧ ).

ENSO magnitude is related to the noise magnitude and the magnitude of the state-

dependence factor (Jin et al., 2007; Levine and Jin, 2010). It was shown that in the
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simple conceptual model,

Gr ⇡ �2(R⌧ )B2/r + �

2
(5.2)

where r is the red noise timescale and � is the linear growth rate. The magnitude of

the windstress noise forcing and the magnitude of ENSO are correlated at r = 0.67

(Figure 5.9). Given the e↵ect of linear growth rate on ENSO magnitude, this is a strong

relationship. Also, not considered here are other types of noise forcing on ENSO, which

could change the value of the total noise forcing and this relationship. Although there are

not enough points at the higher values of windstress noise forcing to fully determine the

relationship between the ENSO magnitude and windstress forcing, the ENSO magnitude

appears to approach an asymtote where the windstress forcing can no longer increase

the ENSO magnitude. This could be a real part of the system due to non-linear controls

on ENSO magnitude or it could also be a result of coupled model tuning of ENSO

magnitude.

5.3 Simulated Changes to ENSO Noise Forcing Due to Cli-

mate Change

The multi-model ensemble change in B due to climate change is small and not robust

due to the large variability between the di↵erent models’ respective change and the

uncertainty in the estimate of B. Only 10 models show large changes, �B > 0.1,

between the pre-industrial control and RCP4.5 simulations and 9 show large changes

between the pre-industrial control and RCP8.5 simulations. Of those changes, 13 show

a decrease in B and 6 show an increase. The large variability between models and the

lack of consistent changes due to climate change in the models’ estimation of the state

dependence is similar to the uncertainty in predicting the changes to ENSO under climate

change and may point to a direction for improving ENSO simulation in the models.

Examining only the models and scenarios with large changes in B between the pre-

industrial control simulation and the di↵erent RCP scenarios, a better understanding of

the role of the tropical Pacific mean climate state can be developed. The change in B due
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to climate change is compared with the spatial pattern of changes in tropical temperature.

The spatial pattern of warming due to climate change is described by the di↵erence in

the total change in temperature as a function of latitude and longitude from the change

in tropical mean temperature. There are areas of significant correlations along the cold

tongue, the South American coast, and the eastern Pacific ITCZ (Figure 5.10). The

change in B is positively correlated with relative increases in SST in the eastern Pacific

ITCZ region and negatively correlated with changes in the western Pacific warm pool

region and SPCZ. Considering the non-statistically significant correlations, the general

pattern is that if there is greater warming in the equatorial central Pacific and along the

Cold Tongue, there is an increase in B. The expansion of this into the western Pacific

Warm Pool region is due to the multi-model ensemble (MME) Cold Tongue bias where

the cold tongue extends too far to the west. The significant negative correlations with

changes in southern tropical Pacific are presumably related to shifts in the SPCZ and

the double ITCZ bias found in most couple models. The relationship between B and

the change in tropical temperature distribution is consistent with the role of convection

found previously and in the e↵ects of convective parameterization on ENSO amplitude

found by Watanabe et al. (2011) as well as the previously found relationship with the

cold tongue bias.

Using the 19 simulations that show large changes in B from the pre-industrial control

simulation, the changes in the precipitation are examined (Figure 5.11). Positive changes

in the precipitation over the central and eastern Pacific are correlated with increases in

B. The increase in the standard deviation of precipitation shows a greater variability

of preciptation is associated with increases in B. This is consistent with the westward

propagation of precipitation shown to coexist with the multiplicative noise forcing as

opposed to the additive noise forcing cases in Chapter 4. Further, given the relationship

of B and ENSO amplitude predicted by Jin et al. (2007) and Levine and Jin (2010) and

shown in Figure 5.9, this result suggests that an increase in B corresponds to increased

eastward spread of precipitation and more extreme ENSO events from the Cai et al.

(2014) definition.

The relationship of the changes of �(R⌧ ) to the changes in tropical SST distribution
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are small (Figure 5.12). The only significant correlations exist with the SSTs slightly to

the east of the examined region. This suggests that an important component of getting

the ENSO noise forcing magnitude correct is the Cold Tongue bias. It is also consistent

with the mechanism for eastward propagation of the westerly winds in the region. Since

precipitation is confined to tropical regions of su�cient temperature, a decrease in SST

gradient across the equatorial Pacific would allow for greater eastward propagation of the

precipitation. If this eastward propagation of the precipitation allows more precipitation

to occur to the east of the forcing box, then there will be an increase in the occurrence

of westerly wind anomalies within the forcing region. This increase of westerly wind

anomalies will increase the standard deviation of the residual within the forcing region

because it represents the increased variaiblity from the climatic easterlies that occur in

that region. This result suggests that overall spatial warming pattern of the equatorial

Pacific is important to understanding future ENSO forcing changes.

5.4 Summary

The methodology used to estimate B developed in Chapters 2 and 3 is applied to 21

di↵erent CMIP5 models over the pre-industrial control and 2 di↵erent global warming

scenarios. More than half of the models underestimate B. The poor model performance

in simulating multiplicative noise is shown to be related to the model biases in the Cold

Tongue and Tropical precipitation. Changes in tropical temperature distribution and

precipitation are shown to have a potential impact on B in the future. However, due

to the multiple uncertainties related to the models’ simulation of B, there is no robust

change in B due to anthropogenic climate change.

The magnitude of the noise forcing, �(R⌧ ), is also examined across the 21 di↵erent

CMIP5 models and 3 di↵erent climate scenarios. All but three of the di↵erent models

underestimate the magnitude of the noise forcing. The underestimation of �(R⌧ ) is found

to be related to the Cold Tongue bias and potentially to the models’ poor simulation of

the MJO. Again, no consistent change due to anthropogenic climate change is found. The

poor simulation of both B and �(R⌧ ) in the climate models suggests that there are still
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Table 5.1: Number of years used for each of the CMIP5 models and scenarios.

Model piControl RCP 4.5 RCP 8.5
1 ACCESS1-0 500 95 95
2 ACCESS1-3 500 95 95
3 CanESM2 996 875 380
4 CCSM4 501 674 475
5 CESM1-BGC 500 95 95
6 CESM1-CAM5 319 485 285
7 CMCC-CM 330 95 95
8 CMCC-CMS 500 95 95
9 CNRM-CM5 850 295 675
10 CSIRO-Mk3-6-0 500 N/A 95
11 EC-EARTH 452 1140 950
12 FIO-ESM 800 285 95
13 GFDL-CM3 800 485 95
14 GFDL-ESM2G 500 95 95
15 GFDL-ESM2M 500 95 95
16 inmcm4 500 95 95
17 IPSL-CM5A-LR 1000 580 580
18 IPSL-CM5A-MR 300 295 N/A
19 IPSL-CM5B-LR 300 95 95
20 MRI-CGCM3 500 95 95
21 NorESM1-M 501 295 95

physical processes that these models are not correctly representing that are important to

the correct simulation of the tropical climate. If the struggles simulating B and �(R⌧ )

are related to the Cold Tongue bias, it is possible that improving the simulation of them

will reduce the Cold Tongue bias, or that reducing the Cold Tongue bias will improve

the simulation of B and �(R⌧ ) and therefore improve the simulation of ENSO.
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Table 5.2: Value of B for all models and scenarios used. The uncertainty of the estimation
is a function of data length and magnitude of B. From estimates using the conceptual
model, for data lengths of approximately 100 years, the uncertainty is approximately
±0.1.

Model piControl RCP 4.5 RCP 8.5
ACCESS1-0 0.05 0.10 0.17
ACCESS1-3 0.30 0.11 0.17
CanESM2 0.08 -0.01 0.08
CCSM4 0.42 0.34 0.33
CESM1-BGC 0.46 0.25 0.37
CESM1-CAM5 0.30 0.47 0.53
CMCC-CM 0.06 0.00 0.03
CMCC-CMS 0.07 0.20 0.06
CNRM-CM5 0.35 0.22 0.19
CSIRO-Mk3-6-0 0.05 N/A -0.03
EC-EARTH 0.07 0.14 0.18
FIO-ESM 0.39 0.28 0.36
GFDL-CM3 0.58 0.68 0.73
GFDL-ESM2G 0.15 -0.02 0.23
GFDL-ESM2M 0.36 0.38 0.32
inmcm4 0.08 0.06 0.08
IPSL-CM5A-LR 0.03 -0.04 -0.10
IPSL-CM5A-MR 0.12 -0.01 N/A
IPSL-CM5B-LR 0.18 0.04 0.07
MRI-CGCM3 0.21 0.05 0.34
NorESM1-M 0.23 0.05 0.18
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Figure 5.1: Standard deviation of R⌧ as a function of ENSO state for CMIP5 models
pre-industrial control simulation. Most models do not capture the multiplicative noise
process correctly. Numbers refer to the numbers on Table 1. Plots 22, 23, 24 are CM2.1,
CCSM4 2 degree simulation, and the reanalysis, respectively.
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Figure 5.2: B as simulated by all the models. The solid line is the estimate from
reanalysis and the dashed lines are ±�. Most models do not capture the multiplicative
noise process correctly. Numbers refer to the numbers on Table 1. Plots 22, 23, 24 are
CM2.1, CCSM4 2 degree simulation, and the MME respectively.
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Figure 5.3: CMIP5 pre-industrial control simulations B versus the area averaged temper-
ature bias from observations along the western Pacific warm pool edge from 160E-160W,
3S-3N. A correlation of r = 0.35 is found.

Figure 5.4: Correlation of B with (T � T̄ ) for all models. The regions with statistical
significance have stipling.

95



Figure 5.5: Correlation of B with precipitation for all models. The regions with statistical
significance have stipling.

Table 5.3: Value of �(R⌧ ) for all models and scenarios used.

Model piControl RCP 4.5 RCP 8.5
ACCESS1-0 0.0070 0.0066 0.063
ACCESS1-3 0.0070 0.0073 0.0070
CanESM2 0.0061 0.0050 0.0047
CCSM4 0.0098 0.0080 0.0080
CESM1-BGC 0.0095 0.0085 0.0085
CESM1-CAM5 0.0082 0.0112 0.0126
CMCC-CM 0.0073 0.0054 0.0063
CMCC-CMS 0.0121 0.0133 0.0128
CNRM-CM5 0.0099 0.0109 0.0106
CSIRO-Mk3-6-0 0.0085 N/A 0.0109
EC-EARTH 0.0079 0.0085 0.0113
FIO-ESM 0.0116 0.0103 0.0104
GFDL-CM3 0.0085 0.0099 0.0091
GFDL-ESM2G 0.0078 0.0082 0.0080
GFDL-ESM2M 0.0125 0.0123 0.0124
inmcm4 0.0044 0.0046 0.0043
IPSL-CM5A-LR 0.0059 0.0058 0.0070
IPSL-CM5A-MR 0.0071 0.0063 N/A
IPSL-CM5B-LR 0.0080 0.0080 0.0065
MRI-CGCM3 0.0074 0.0072 0.0068
NorESM1-M 0.0068 0.0065 0.0064
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Figure 5.6: The standard deviation of the noise time series, �(R⌧ ), as simulated by all
the models. The solid line is the estimate from reanalysis. Numbers refer to the numbers
on Table 1. Nearly every model underestimates this value compared with the reanalysis.
Plots 22, 23, and 24 are CM2.1, CCSM4 2 degree simulation, and the MME respectively.

Figure 5.7: Correlation of �(R) with (T � T̄ ) for all models. The regions with statistical
significance have stipling.
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Figure 5.8: The relationship of B and �(R). Most models that underestimate B under-
estimate �(R) proportionately. Meanwhile, models that overestimate B tend have an
anti-correlation with �.
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Figure 5.9: B2�2 is related with ENSO growth rate and amplitude. The correlation in
the CMIP5 models between B2�2 and �(N) is r = 0.67.
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Figure 5.10: Correlation of �B with �T for models with �B > 0.1. Large areas of
positive correlation exist in the cold tongue region and a negative correlation exists in
the warm pool. The stippling denotes statistical significance.

Figure 5.11: Correlation of �B with � precipitation for models with �B > 0.1. Large
areas of positive correlation exist in the cold tongue region suggesting an increase in
precipitation variability in the region. The stippling denotes statistical significance.
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Figure 5.12: Correlation of �� with �T . Large areas of positive correlation exist in the
cold tongue region and a negative correlation exists in the warm pool. The stippling
denotes statistical significance.
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Chapter 6

Extreme El Niño Events

6.1 Introduction

Using precipitation as a metric, Cai et al. (2014) found that in response to global warming

the number of extreme El Niño events significantly increased. Extreme El Niño events

have a much larger societal impact than regular El Niño events. Damage from the

impacts associated with the 1997-8 event are estimated at over 35 billion USD (Nicholls,

2001). Due to the costly potential impacts of extreme El Niño events, it is important

for disaster mitigation and resiliency planning to understand the predictability and the

frequency of occurrence of these extreme events. Here, a potential cause for the change

in frequency of extreme El Niño events is examined from both a theoretical view point

and within the coupled climate models.

Jin et al. (2007) found that in the conceptual recharge oscillator model, the addition

of multiplicative noise forcing created more large El Niño events while not enhancing

La Niña in the same manner. These distributional di↵erences echoed the findings of

Perez et al. (2005) where state dependent forcing was applied to an intermediate ENSO

model and found to produce a more realistic ENSO distribution than additive noise

alone. Following up, Levine and Jin (2010) found that increasing the magnitude of the

state-dependence of the multiplicative noise increased the number of extreme El Niño

events and that the skewness was more strongly influenced by noise-induced instability
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than the lower order moments like variance and mean. Given these previous findings of

the e↵ect of multiplicative noise on ENSO skewness and extreme events, the application

of the method of estimation of the state-dependence factor of multiplicative noise to

the coupled models allows the theoretical results to be further scrutinized amongst the

coupled models.

6.2 A Theory for the Relationship of Multiplicative Noise

to ENSO Skewness

6.2.1 Theory and Conceptual Model

Multiplicative noise has been shown to impact ENSO amplitude and skewness (Eisenman

et al., 2005; Jin et al., 2007; Gebbie et al., 2007; Perez et al., 2005; Gebbie and Tziperman,

2009b; Levine and Jin, 2010). From the conceptual model, it can be shown that ENSO

amplitude is also strongly influenced by linear ENSO growth rate and noise amplitude

(Jin et al., 2007; Levine and Jin, 2010). However, the skewness of ENSO, where skewness

is defined as S =
¯T ‘3

¯(T ‘2)
3/2 , being a higher moment, is influenced significantly more by the

state-dependence factor (Sardeshmukh and Sura, 2009; Levine and Jin, 2010). It can

be derived that the skewness of ENSO is linearly proportional to B if the multiplicative

noise does not have a threshold non-linearity (see Appendix 1 for derivation) (Personal

Communication, Jin).

S / 2Ba

�2 + !2

2

(6.1)

where � is the growth rate, ! the frequency, and a is an empirical closure constant, which

Levine and Jin (2010) found to be a ⇡ 0.7. This result is further supported by conceptual

model results from a series of 50,000 year integrations (Figure 6.1). Here the conceptual

model is run with multiplicative noise both with and without the threshold non-linearity.

If the threshold non-linearity is included in the multiplicative noise, the skewness has a

non-linear relationship with B. For the values of B examined, the threshold non-linearity

reduces the skewness of ENSO.
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6.2.2 CMIP5 Models Results

As previously discussed, the coupled models, while improved in their representation of

ENSO, still have significant di�culties in reproducing certain aspects of ENSO (Bel-

lenger et al., 2014). The spatial pattern of tropical Pacific SST skewness is compared

between the models and reanalysis (Figure 6.2). The reanalysis shows the largest values

of the skewness of the SST in the eastern Pacific, decreasing towards the west. The west-

ward extension of the skewness is greatest along the equator and the South American

coast. The multi-model ensemble (MME) skewness of the SST has a slight westward

displacement of the large values of the skewness. This is most likely related to the west-

ward displacement of the maximum ENSO variance in the coupled models. The overall

structure of the maximum in the eastern Pacific which is continuously decreasing to-

wards to the west along the equator is not present. Instead, both the central and eastern

Pacific have local maxima with a minimum value approaching zero or slightly negative

in between. Away from the coast, the positive values of the the skewness slowly decrease

poleward. The decrease is faster in the central Pacific than in the eastern Pacific. The

MME does not capture the slant of the decrease, leaving the skewness of the SST too

zonally uniform. The model mean shows little change in the skewness of the SST be-

tween the di↵erent climate change scenarios and the pre-industrial control simulation.

Given the theoretical results relating ENSO skewness and B, the failure to reproduce

the SST skewness in the tropical Pacific and the poor simulation of B in the CMIP5

models could be related. This could also be related to the ENSO pattern bias and the

model cold tongue bias and should be the subject of further study.

Using the theoretical and conceptual model results, the values of ENSO skewness are

compared with the model values of B across the di↵erent climate change simulations.

One and two standard deviation uncertainty intervals for a sample of 50 years are gener-

ated from a set of 10,000 year conceptual model simulations and shown in the darker and

lighter gray shaded regions respectively (Figure 6.3). The models have a large spread

in their simulated magnitude of multiplicative noise. This spread is also present in the

models’ simulation of ENSO skewness. The models’ ENSO skewness is calculated by
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taking the area averaged SST anomalies over a box from 5� S-5� N and of 50 � longitude

centered on the point on the equator which has the largest loading of the 1st EOF of

tropical Pacific SSTs. When the di↵erent RCP scenarios are examined, the multi-model

ensemble estimations of B do not change significantly. However, due to the large spread

between the models, the result that B does not change due to anthropogenic climate

change is not particularly robust. On the whole, the CMIP5 models fit well within the

theoretical prediction of the relationship of B and ENSO skewness. As has been pre-

viously shown, this figure clearly illustrates that the models have a tendency to both

underestimate ENSO skewness and B.

6.3 The Relationship of ENSO Skewness to Extreme El

Niño Events

The skewness of a distribution is important because it measures the ratio of width and

symmetry of the tails of the distribution to the width of the center. In a positively skewed

distribution, as is observed with ENSO, this means that there is a negative median value,

a reduction in the large negative values, and an increase in the large positive values

(Figure 6.4). Applying this to ENSO, the mean state has a slight negative anomaly,

consistent with the lengthy recharge process (Kessler, 2002; Jin et al., 2007). Further,

the positive tails of the SST anomaly distribution, exceed the expected number from a

Gaussian distribution and there is a corresponding decrease in the small positive part of

the distribution. This heavy positive tail is representative of the large number of extreme

El Niño events that have occurred during the observational record. Given the impacts

of extreme El Niño events, this tail is worthy of further examination.

For the purposes of this study, extreme El Niño events are defined as any event

with a peak magnitude greater than 2.5 standard deviations, while regular events are

defined with a peak magnitude greater than .5 standard deviations. As seen from the

conceptual model, the frequency of occurrence of extreme events, defined as the number

of extreme events divided by the total number of events, is strongly related to the
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skewness (Figure 6.5). These results in the conceptual model are independent of the

threshold non-linearity.

The extreme El Niño events are not just larger than the regular events, they also

have a greater impact on the SST state in following years (Figure 6.6). In the reanalysis

composite, these extreme El Niño events are followed by not just one year, but a second

year of La Niña. This double-dip into La Niña is necessary for the further recharge of

equatorial heat content that has been discharged during the El Niño event. The CMIP5

MMEmean also shows a similar strong La Niña following an extreme El Niño event which

does not occur for regular El Niño events. There is little di↵erence in the strength of

the average extreme El Niño events between the di↵erent emissions scenarios, consistent

with the results that the mean skewness of ENSO in the models does not shift.

The extreme El Niño events in the CMIP5 models do not change in shape between

the di↵erent emissions scenarios. In comparison with the reanalysis, the extreme El Niño

representation in the models is reasonable (Figure 6.7). It captures the large zonal extent,

although perhaps extending the warm anomalies too far to the west. The meridional

extent of the warm anomalies is slightly reduced from reanalysis, but not hugely so.

However, missing in the models is the strong warming in the extreme eastern Pacific

that plays a major role in rainfall anomalies along the Pacific coast of South America

and is a key defining portion of the traditional eastern Pacific El Niño.

It has already been shown that ENSO skewness is proportional to B. It is therefore

not surprising that the frequency of occurrence of extreme El Niño events is also pro-

portional to B (Figure 6.8). Due to event counting and sample size issues, the smaller

the time period examined, the greater the uncertainty with the frequency of occurrence

of extreme El Niño events with respect to B. However, the relationship for the skew-

ness with the frequency of occurrence is much stronger. The frequency of occurrence

is directly measured by the skewness, independent of the threshold non-linearity in the

conceptual model. Therefore, while this analysis is consistent with the multiplicative

noise framework, in order to simulate the frequency of extreme events correctly, it is

only necessary to correctly simulate ENSO skewness.

Beyond the conceptual model, applying these results to the suite of CMIP5 models
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and scenarios already examined produces similar results. There is a clear relationship

between the models’ simulation of B and the percentage of extreme El Niño events

(Figure 6.9). Considering the event like nature, the inherent randomness of the samples

and the length of the simulations, the fit is very good. As was previously found with the

CMIP5 models’ simulation of ENSO skewness, the frequency of occurrence of extreme El

Niño events is likewise underestimated. Also, as was previously found, the frequency of

occurrence of extreme El Niño events does not change in response to the di↵erent global

warming scenarios considered. This di↵ers from the results of Cai et al. (2014), but this

di↵erence is likely caused by a di↵erent metric (precipitation averaged over the Niño3

region) being used to define extreme El Niño events. Their metric is a↵ected by changes

in both the mean state and ENSO amplitude, while this one is not. As was found in the

conceptual model, the fit is significantly improved when comparing model skewness to

the frequency of extreme events (r = 0.78) (Figure 6.10).

6.4 Slow Noise Forcing and Extreme El Niño Event

Multiplicative noise has already been shown to decrease predictability of El Niño events

compared with the additive noise case (Gebbie and Tziperman, 2009b,a; Levine and

Jin, 2010). However, it has also been shown that the extreme El Niño events require a

low-frequency component of the noise forcing (Levine and Jin, 2010). Furthermore, it

has been shown earlier in this dissertation that multiplicative noise enhances the low-

frequency component of the noise forcing. This can be seen in the conceptual model by

comparing the frequency of El Niño events at di↵erent decorrelation timescales (Figure

6.11). The shorter the decorrelation timescale (the more even the energy distribution is

among all frequencies), the longer the return period is between El Ni

no events. Additionally, multiplicative noise forcing decreases the return period partic-

ularly at shorter timescales. Therefore, the role of the low-frequency noise forcing of

ENSO in producing extreme El Niño events will be further examined.

Starting with an examination of the 1997-98 El Niño, the event was preceded by a

series of WWBs (McPhaden, 1999; McPhaden and Yu, 1999; Gebbie et al., 2007). The
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WWBs can be identified as strong westerly wind anomalies in the pentad zonal wind

anomalies (Figure 6.12). The WWBs can be seen to precede the SST anomalies intially

in the central and later in the eastern Pacific. The high-frequency variability of the

WWBs can similarly be found in the monthly zonal wind anomalies (Figure 6.13). The

monthly anomalies show the low-frequency component of the noise forcing. Unlike the

pentad anomalies, the monthly anomalies do not show increases and decreases of the

noise forcing, but rather only show an increase in the growth phase of the El Niño event.

This is the low frequency component of the noise forcing of ENSO, which has previously

been shown to be more important in forcing ENSO (Roulston and Neelin, 2000; Levine

and Jin, 2010).

Returning to the conceptual model, what has been seen in the 1997-8 El Niño event

between the high and low frequency components of the noise forcing is typical. The

high-frequency variability is superimposed upon a low-frequency envelope. This is im-

portant for forcing an El Niño event. During the El Niño growth phase, the low-frequency

component of the noise, as seen by the monthly mean values, increases while the high-

frequency variability is larger but both positive and negative. This can be more clearly

seen by subtracting the monthly mean noise from the total noise to create a high fre-

quency analog ⇠0 = ⇠� ⇠̄. This shown over 5 di↵erent El Niño events (Figure 6.14). The

high-frequency analog (⇠0) has a mean of zero. The monthly mean noise captures the

slow growth of the low frequency component which is key for forcing El Niño.

Multiplicative noise has been shown to increase the low-frequency component of the

noise forcing. In order to examine the role of multiplicative noise (and the low frequency

component of the noise more generally) in di↵erentiating between regular and extreme El

Niño events, the El Niño events are composited on the peak of El Niño. The di↵erences

between regular and extreme events begin to develop early in the evolution of the event.

In regular events, the the noise grows slowly and inconsistently while the multiplicative

component of the noise remains small. In extreme events, after the initial burst of noise,

the noise component steadily grows. A few months before the peak of the event, the

multiplicative noise component becomes very large. It is shown that as a fraction of

the total noise forcing, the multiplicative component of the noise increases significantly
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for the extreme events but does not for the moderate ones (Figure 6.15). Thus, the

multiplicative component of the noise plays an integral role in producing an extreme El

Niño event. The noise forcing and, in particular, its multiplicative component become

negative ahead of the peak of the El Niño event and can contribute to the beginning of

the transition of El Niño to La Niña along with other aspects of the transition like the

annual cycle combination tones found by Stuecker et al. (2013) and the delayed negative

feedbacks described by the delayed (Battisiti and Hirst, 1989; Suarez and Schopf, 1988)

and recharge oscillators (Jin, 1997a).

The 1997-8 El Niño event also had an eastward propagation of the WWBs over the

series of events (McPhaden, 1999; McPhaden and Yu, 1999). This is in agreement with

other studies on multiplicative noise in coupled models (Gebbie et al., 2007; Gebbie and

Tziperman, 2009b) and has been shown previously in this dissertation. Examining the

Hovmuller diagrams of the composite extreme El Niño events shows the relationship

between the low-frequency noise forcing and the creation of extreme El Niño events

(Figure 6.16). The the zonal temperature advection (colors), total noise forcing (black

contours), and total temperature (green contours) all precede the event and propagate

eastward together. The zonal temperature advection is co-located with and to the east of

the maximum noise forcing. The positive total noise forcing is located over warm waters

of approximately 28�C in the western and central Pacific ocean. Starting approximately

seven or eight months prior to the peak of El Niño event, all three components, the

total noise forcing, the zonal temperature advection, and the warm waters on the edge

of the warm pool migrate in tandem slowly eastward. As the eastward migration occurs,

the composite temperature advection and total noise forcing increase to a maximum

2-3 months before the peak of the El Niño event. Hovmuller diagrams of the extreme

El Niño composites for all the CMIP5 models and scenarios used here can be found

in Appendix C. Combining this information with the inclusion of a Heaviside function

of ENSO amplitude as part of the shape of the multiplicative noise forcing of ENSO

further emphasizes that the multiplicative noise forcing of ENSO is due to the eastward

progression of warm pool edge and the corresponding eastward movement of convection

in the build up to an El Niño event.
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Figure 6.1: The skewness of the conceptual model as a function of B from 50,000 years
of simulation. The skewness is linearly related to B when regular multiplicative noise is
considered and non-linearly when multiplicative noise with a threshold non-linearity is
considered.

6.5 Summary

Multiplicative noise forcing has impacts on the general ENSO properties, such as skew-

ness and extreme events. In particular, these extreme events increase in frequency of

occurrence with an increase in B. This is due to an increase in the slow noise compo-

nent from the inclusion of multiplicative noise. The slow frequency component of the

noise has been previously shown to be responsible for triggering El Niño events, while

the high frequency component is unable to trigger El Niño events in isolation (Roulston

and Neelin, 2000; Levine and Jin, 2010). This low frequency component of the noise

corresponds to the coupled eastward propagation of the western Pacific warm pool and

the westerly wind bursts. The series of westerly wind bursts that occurred prior to the

1997-8 El Niño event is shown to be a characteristic of extreme El Niño events and is

related back to the low frequency component of the noise forcing.
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Figure 6.2: The skewness of the SST anomaly for a) reanalysis and CMIP MME for
b) Pre-Industrial Control c) RCP 4.5, and d) RCP 8.5. None of the MMEs correctly
capture SST anomaly assymetry in the equatorial regions.
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Figure 6.3: CMIP5 models simulation of the relationship between state dependence, B,
and skewness of the model defined Nino box. Most models fail to adequately simulate
the state-dependence. There is also a large amount of variability between the models
and little variability between the di↵erent emissions scenarios.
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Figure 6.4: The di↵erence between a skewed distribution and a normal distribution as
demonstrated using the reanalysis PC1 normalized histogram. The skewed normalized
histogram has a negative median and fatter positive tail than the normal distribution.
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Figure 6.5: The percentage extreme (T > 2.5�(T )) El Niño events of the total (T >
0.5�(T )) El Niño events as a function of the skewness in a 50,000 year simulation of the
conceptual model for di↵erent values of B. There is a clear relationship between the
skewness and frequency of occurrence of extreme El Niño events until the percentage of
extreme events saturates.
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Figure 6.6: The MME composite regular and extreme El Niño events for the Pre-
Industrial Control (blue), RCP4.5 (red), and RCP 8.5 (green). The extreme El Niño
events tend to be followed by a long-lasting La Niña, which is di↵erent than the regular
El Niño events.
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Figure 6.7: The MME composite extreme El Niño events. The extreme El Niño events
have maxima in the eastern Pacific, although the tend to miss the large anomalous SSTs
along the western coast of South America.
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Figure 6.8: The percentage extreme (T > 2.5�(T )) El Niño events of the total (T >
0.5�(T )) El Niño events as a function of B in a 50,000 year simulation of the conceptual
model for di↵erent values of B. Similar to skewness, there is a relationship between
frequency of occurrence of extreme El Niño events and B.
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Figure 6.9: The percentage extreme (T > 2.5�(T )) El Niño events of the total (T >
0.5�(T )) El Niño events as a function of B in the CMIP5 models. The relationship
between frequency of occurrence of extreme El Niño events an B is weaker because of
too short simulations to get accurate statistics on extreme event frequency.
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Figure 6.10: The percentage extreme (T > 2.5�(T )) El Niño events of the total (T >
.5�(T )) El Niño events as a function of the skewness in the CMIP5 models (r = 0.78).
Like the conceptual model, there is a good relationship of frequency of occurrence of
extreme El Niño events to skewness.
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Figure 6.11: The return period of El Niño events in the conceptual model for di↵erent
noise decorrelation timescales. The return period increases as the decorrelation timescale
decreases. This shows the importance of the low frequency component of the noise
forcing.
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Figure 6.12: The zonal wind and SST anomalies averaged over 5-days from 1996-8. There
are both positive and negative windstress anomalies that occur in the pentad windstress
field. From NOAA PMEL.

116



Figure 6.13: The zonal wind and SST monthly anomalies from 1996-8. Unlike the pentad
windstress field, the anomalies from the monthly mean are consistently positive in the
growth phase of El Niño. From NOAA PMEL.
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Figure 6.14: El Niño composites for 5 El Niño events showing the di↵erence of the daily
and monthly mean forcing values (dotted lines) and monthly mean forcing values (solid
lines). The monthly values capture the low frequency modulation of the noise, which is
what is necessary for the forcing of an El Niño event.
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Figure 6.15: Composites of moderate (T > .5�(T )) and extreme (T > 2.5�(T )) El
Niño events of the total noise forcing and percentage multiplicative noise forcing for
(a,d) conceptual model B = 0 and B = 0.5, (b,e) reanalysis, and (c,f) CM2.1. In (a-c)
the solid lines are the El Niño composite and the dashed lines are the R⌧ composite.
Multiplicative noise plays a larger role in forcing extreme events than regular ones.
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Figure 6.16: Composite Hovmoeller diagrams of the extreme (T > 2.5�(T )) El Niño
events of the total noise forcing, zonal temperature advection, the SST, and, SST
anomaly for (a) reanalysis, and (b) CM2.1. The complete set of multiplicative noise
physical processes (as outlined in Chapter 4) occur in the months leading up to an
extreme El Niño event.
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Chapter 7

Conclusion

7.1 Key Points

This dissertation has presented a new method for diagnosing the magnitude of the state-

dependence and the intensity of the noise forcing of ENSO. This method has been applied

to the equatorial zonal windstress in reanalysis and coupled climate models. Using

the reanalysis and two of the coupled climate models, the physical processes of the

windstress multiplicative noise were explored. An anomalous westerly windstress is found

to expand the warm pool, promoting convection further to the east in the equatorial

Pacific. This eastward shift of the convection can enhance the future westerly wind

anomalies creating a positive feedback. This positive feedback is shown to then a↵ect

the ENSO skewness and extreme El Niño events. In general, it was found that the

CMIP5 models underestimate the strength of this feedback compared to observations.

7.2 Summary and Discussion

The multiplicative noise forcing of ENSO plays a key role in ENSO asymmetry and

extreme El Niño events. These extreme events have very large societal impacts, yet it is

still poorly understood what causes one El Niño event to become a normal event while

another event to become an extreme event. Here, it is shown that a key contributor
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to these extreme events is multiplicative noise. The dynamics of the oceans and the

atmosphere contribute to increasing the strength of the forcing and to reddening of

the wind stress spectrum, which are important for the cascade of energy from higher

frequencies to lower ones and transferring energy from WWBs, including MJO events,

to ENSO.

Previous attempts at characterizing multiplicative noise forcing of ENSO have treated

the WWBs as function of many parameters to fully describe them over time and space

(Eisenman et al., 2005; Gebbie et al., 2007; Gebbie and Tziperman, 2009b,a; Lopez et al.,

2013; Lopez and Kirtman, 2013). They have assumed numerous properties such as Gaus-

sanity in space and time or being more deterministic in nature during the development

of an El Niño event. I have developed a systematic approach starting from a simple

conceptual model to focus on two parameters of the system, namely, the intensity, �,

and the magnitude of the state-dependence, B, of ENSO noise forcing. Furthermore,

the conceptual model has allowed for the development and testing of simple methods to

estimate the ENSO noise forcing and these parameters. By applying this methodology,

the magnitude of the state dependence and the intensity of the ENSO noise forcing from

reanalysis and coupled climate models can be more simply estimated.

Another major strength of this approach is its use of monthly mean values of wind

stress and SST in determining the magnitude of the state dependence factor. This

allows the method to be easily applied to coupled GCM simulations from which the

daily output is significantly more cumbersome to use. This is in contrast to the method

of estimation from Kug et al. (2008). Also, in contrast to their method of estimation,

the method presented in this dissertation does not use spectral filtering to isolate the

noise component. As has been shown by many previous studies, including Roulston and

Neelin (2000) and Levine and Jin (2010), the high frequency component of noise forcing

is unable to e↵ectively force ENSO. Filtering for the high frequency noise removes the

low frequency component of the noise forcing that is so important to force ENSO. By

eliminating this component of the forcing, some of the signal is potentially missed. It has

been further demonstrated in this dissertation the extent to which the high-frequency

variability is not responsible for the creation of El Niño events and in particular the
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extreme events.

With the conceptual model, the methodology can be tested for its resiliency to various

di↵erent assumptions. By comparing the di↵erence between the conceptual model with

daily output and only monthly output, it is clear that the low frequency noise is the

important component. This is what allows the methodology to use monthly mean data.

Further, the e↵ect of the length of the time series on the estimation of the magnitude

of state-dependent factor can be can be tested. This method is relatively accurate over

time lengths of 50 years allowing it to be applied to reanalysis products of those lengths.

This method produces an estimate of B = 0.29 ± 0.14 which is within the range of

the estimate from Kug et al. (2008) of B = 0.1�0.5. The importance of having a correct

value for B was shown in Jin et al. (2007) and Levine and Jin (2010). Both of these

studies showed that as B increases so does the ENSO growth rate. Levine and Jin (2010)

further showed that as B increases, there are more super El Niños and the predictability

of ENSO decreases.

Both GFDL-CM2.1 and CCSM4 model simulations were examined in depth and

found to significantly over estimate the strength of the state-dependence of multiplica-

tive noise of zonal wind on SST (CM2.1 has B = 0.54 and CCSM4 has B = 0.89) with

respect to reanalysis despite the fact that the last 50 years includes extremely active

ENSO periods. It has previously been noted that both of these models generate overly

active and highly non-linear ENSO variaiblity (Wittenberg, 2009; Deser et al., 2012). Jin

et al. (2007) and Levine and Jin (2010) both showed that increases in B cause increases

in ENSO growth rate, potentially forcing a stable oscillatory regime to become unstable,

requiring non-linear controls to prevent runaway El Niño states in their conceptual mod-

els. While additional processes in coupled models preclude these runaway states in the

GCMs, this could potentially be an important factor in both the overly large and multi-

year El Niño events simulated by these GCMs. Moreover, both models show significant

amounts of multi-decadal scale ENSO variability (Wittenberg, 2009; Deser et al., 2012).

How related this longer time scale variability is to these larger values of multiplicative

state-dependence, whether cause or e↵ect, is still to be determined, but the potential for

increased variability due to the amplifying e↵ect of multiplicative noise forcing can not
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be ignored.

Additionally, this study shows that the strong state-dependent windstress noise forc-

ing for ENSO occurs along the warm pool edge. This region has already been the target

of numerous studies examining the relationship of westerly wind bursts to ENSO. The

results shown here are consistent with the findings of changes in westerly wind burst

properties in the western Pacific in the growth phase of ENSO with those found by Har-

rison and Chiodi (2009). The importance of this region and the threshold non-linearity

found as part of the state-dependence further emphasizes the potential importance of

convection and the role of the warm pool in forcing ENSO.

While the 50-year time frame of the reanalysis data leaves a large uncertainty in the

structure of the existence of the threshold non-linearity, the GCMs with much longer data

lengths give robust results. CM2.1 unambiguously shows the threshold non-linearity in

the multiplicative noise forcing, while CCSM4 shows a slightly more complicated pattern

suggesting that the threshold non-linearity exists not at T = 0, but at a di↵erent value

of T . However, this di↵erence does little to a↵ect the overall impacts of multiplicative

noise on ENSO and is similar to shifting the region of windstress anomaly being exam-

ined. The threshold non-linearity was not accounted for previously by Kug et al. (2008).

The inclusion of a threshold non-linearity suggests an important role for atmospheric

convection in shaping this feedback. This fits with other studies on multiplicative noise

forcing of ENSO which have discussed the role of convection as a key physical process for

multiplicative noise. The coupling of the ocean state and the windstress forcing are also

consistent with many previous studies on multiplicative noise forcing of ENSO which

have found a eastward propagation of the western Pacific warm pool and the westerly

wind bursts as key processes within the multiplicative noise framework (Lengaigne et al.,

2004; Eisenman et al., 2005; Gebbie et al., 2007).

Additionally, by showing the role of atmospheric convection and the threshold non-

linearity within the multiplicative noise forcing, it is clear that simply using linear re-

gressions may result in an overemphasis of the symmetric response to both warming

and cooling when estimating properties of ENSO. The challenges of accounting for the

non-linear responses in examining ENSO, using tools like the Bjerknes Instability Index
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(Jin et al., 2006; Kim and Jin, 2011a,b), has been noted (Graham et al., 2014). ENSO

noise forcing may be part of the solution to these errors. Additionally, the non-linearity

of the precipitation response to ENSO has been examined as a method for determining

the extreme El Niño events (Cai et al., 2014) and in future projections of the e↵ect of

global warming on changing ENSO teleconnections (Power et al., 2013).

Due to the asymmetric response of the multiplicative noise to ENSO state, the physi-

cal processes involved in producing multiplicative noise are investigated using composites.

The composites of additive and multiplicative noise are analyzed and shown to be similar

to the WWBs characterized both from observations and modeling studies (Kleeman and

Moore, 1997; Moore and Kleeman, 1999; Yu et al., 2003; Tziperman and Yu, 2007).

These extreme noise forcing events of El Niño have a similar spatial pattern to other

westerly wind bursts (Tziperman and Yu, 2007). The major di↵erence between the large

noise forcing events and the extreme ones are that the extreme noise forcing events are

not isolated but have a strong low-frequency contribution. These extreme events have

preceding large noise events which prime the ocean, by forcing zonal advection of the

western Pacific warm pool, for the creation of the extreme events. This is in agreement

with Gebbie and Tziperman (2009b). This priming of the ocean can be represented as

multiplicative noise. Separating the total noise forcing into multiplicative and additive

components, it is shown that the multiplicative noise is responsible for the creation of

most of the extreme noise forcing events.

Further, it is shown that organized anomalous precipitation in the region occurs

contemporaneously with the eastward march of the westerly wind anomalies and the

eastward progression of the warm pool edge. The anomalous precipitation connects the

oceanic response to the westerly wind anomalies and the future westerly wind anomalies

which are the critical atmospheric manifestation of multiplicative noise. A westerly

wind event creates positive zonal temperature advection, expanding the western Pacific

warm pool. The expanded warm pool supports additional convection further to the east.

The di↵erence in eastward extent of the additional westerly wind forcing between the

reanalysis and CM2.1 and CCSM4 could therefore be explained by the exisitence of the

coupled model cold tongue bias preventing convection from forming further to the east.
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Continuing the cycle, if the convection forms further to the east, additional westerly

wind anomalies occur due to convergence. These new westerly wind anomalies expand

the warm pool further to east, allowing for more eastward propagation of the convection.

This is in agreement with previous studies on multiplicative noise (Lengaigne et al., 2004;

Eisenman et al., 2005; Gebbie and Tziperman, 2009b). The positive feedback loop is then

broken by the delayed response of the thermocline and the limited resource of ocean heat

content which eventually outcrops cooler waters at the outset of La Niña and changes in

the background state due to the annual cycle.

The distinction between additive and multiplicative noise is that for additive noise,

each noise event is independent of the background state, while in the case of multiplicative

noise, each noise event contains a dependence on the state of the system which itself

can be altered by noise events. In the ENSO system, the noise, WWBs, can create a

positive feedback loop where one WWB creates conditions such that a second burst is

more likely (Gebbie and Tziperman, 2009b). From this analysis, it becomes evident not

just in the initial event but also in the largest events. When composited, the largest

events show a strengthening through time. Months prior to the peak windstress forcing

event, an initial windstress event occurs of normal strength. The initial oceanic response

to windstress produces an expansion of the warm pool to the east. Without another

WWB, the warm water anomaly dissipates returning the warm pool edge to its pre-

WWB location. However, if another WWB happens while the warm pool is expanded

eastward, the WWB gets enhanced by the previously forced changes to the underlying

SSTs and progresses further eastward. Both the enhancement of the westerly wind event

and the propagation of the event further to the east are responsible for increased El Niño

forcing.

Additionally, this new WWB further expands the warm pool to the east allowing for

a repetition of the process. In this way, the largest westerly wind events have a tendency

to be preceded by smaller westerly wind events, successively increasing in magnitude

and migrating eastward over time. This low-frequency modulation of the noise forcing

is important to the cascade of energy from the high-frequencies to the low-frequencies

and has been shown to be vital to the creation of El Niño events and explicitly to the
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occurrence of extreme El Niños. The increase in system memory that drives the largest

westerly wind events is well explained by the multiplicative noise driven aspect of the

conceptual ENSO oscillator hypothesis. The initial trigger for an ENSO event begins to

create the conditions for additional forcing events of ENSO to occur. If the additional

forcing does not occur, a small El Niño event takes place. However, every additional

forcing event that occurs increases the strength of the growing El Niño and improves the

e↵ectiveness of future forcing events such that El Niño can be forced to grow larger and

larger much like was seen during the 1997-8 El Niño event (McPhaden, 1999; Gebbie

and Tziperman, 2009b).

Much like previous work on the impacts of SSTs in creating red noise atmospheric

forcing (Frankignoul and Hasselmann, 1977), the coupling between the ocean and the

atmosphere is important for the low-frequency modulation of the noise forcing of ENSO

achieved by the multiplicative noise. In atmosphere only experiments forced by di↵erent

SST anomalies, the low frequency component of the noise forcing is reduced over the

coupled simulation. In these situations, a new peak in the spectrum of the noise forcing

occurs at the low-end of the ENSO spectrum. This peak is similar to what exists when a

smoothed ENSO signal is used to remove the ENSO signal from the windstress. There is

a deficit of energy in the semi-annual to inter-annual energy bands in these experiments

that results in the lack of coupling and its role in facilitating the multiplicative noise

process.

The state-dependent low-frequency noise forcing of ENSO is important for the sim-

ulation of extreme El Niño events, as previously shown by prevous studies (Levine and

Jin, 2010) and in the conceptual model. These extreme El Niño events are responsible

for large amounts of damage and significant weather anomalies in many parts of the

world. These extreme El Niño events, however, only happen occasionally, with three

in the last 50 years and potentially fewer per 50 years over the previous millennium

from paleoclimate reconstructions (Conroy et al., 2008). In a future climate, the current

climate ENSO SST anomalies create larger societal impacts than are currently experi-

enced (Power et al., 2013). Additionally, there is a suggestion that the societal impacts

could be even larger than would be created by a simple addition of the projected tropical
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warming to the current ENSO record (Cai et al., 2014). Here, a potential mechanism

for the creation of these extreme El Niño events has been examined. It has been shown

that the extreme events can be related to multiplicative stochastic noise forcing.

Looking at the CMIP5 model simulations across three di↵erent scenarios, the rela-

tionship between the strength of the state-dependence of multiplicative noise, B, the

overall ENSO skewness, and the frequency of extreme El Niño events matches well with

the prediction of a conceptual model El Niño model. It is observed that as the state-

dependence increases, so too does the ENSO skewness and the frequency of extreme El

Niño events. However, it is also shown that the current generation of coupled climate

models does a poor job at simulating the processes involved in multiplicative noise. As

these are related to convection along the warm pool edge, it is not surprising that the

cold tongue bias and the location of the ITCZ are found to play a role in the poor model

simulation of this process and the under-representation of ENSO skewness among the

coupled climate models.

While the significant spread of the model simulations of multiplicative noise make

it di�cult to make a projection for the change in the magnitude of multiplicative noise

forcing of ENSO or ENSO skewness due to climate change, the relationship of the spatial

patterns of precipitation and temperature anomalies can provide some potential infor-

mation. Positive changes in B are positively correlated with decreases in east-west SST

gradient in the equatorial Pacific. These changes are also positively correlated with in-

creased precipitation in the eastern Pacific. The meridional precipitation contrast in the

eastern Pacific is anti-correlated with B, which is consistent with the findings of Merkel

et al. (2010) and Watanabe et al. (2011) on the relationship of precipitation and ENSO

amplitude. This result is opposite to the correlation between B and the total precipi-

tation. Additionally, there is also a relationship between B and total precipitation that

is likely due to the impact of the cold tongue bias. Whereas, the change in meridional

precipitation contrast, in conjunction with the wet get wetter hypothesis (Xie et al.,

2010), and the reduction of the east-west SST gradient all suggest an increase in ENSO

skewness in response to global warming in agreement with the results from Cai et al.

(2014).
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7.3 Future Work

The ability to quantify the state-dependent factor of multiplicative noise points to new

directions of study. ENSO variability has been shown to be large in observations and

unforced climate control runs (Wittenberg, 2009; Cobb et al., 2013; Ogata et al., 2013).

Many attempts have been made to explain this as interaction of ENSO and the mean

climate state, which modifies the dominant positive and negative feedbacks of ENSO

and the relative importance of thermocline processes and SST-advection. In a simplified

model framework, Jin and Neelin (1993b,a) and Neelin and Jin (1993) found that these

processes coexist over a wide range of realisitic parameters. The relative dominance

between these two processes is sensitive to the chosen values of the parameters. Fedorov

and Philander (2000, 2001) translated these parameters to changes in the mean state of

the tropical Pacific. They found that the observed changes in the tropical Pacific mean

state across the 1970s Pacific climate shift could account for the changes observed in

ENSO over the same period of time. Bejarano and Jin (2008) further examined changes

to ENSO amplitude and frequency, showing that ENSO had two dominate modes with

periods of approximately 2 and 4 years matching with the di↵erent types of variability

obsreved by Jin and Neelin (1993b). The dominant mode was found to be sensitive to

small changes in ocean mean state. Of these physical processes, the central Pacific El

Niño is more dominated by SST-advection processes than by thermocline processes and

thus is less a↵ected by the state-dependent westerly wind bursts than the eastern Pacific

El Niños (Harrison and Chiodi, 2009; Ren and Jin, 2013; Lopez and Kirtman, 2013).

The relationship between multiplicative noise forcing and the di↵erent types of ENSO

must be further explored.

The spreading of the western Pacific warm pool in response to westerly wind bursts

has been noticed in observations (McPhaden et al., 1988) and simulated in coupled cli-

mate models (Lengaigne et al., 2004; Lopez et al., 2013). Harrison and Chiodi (2009)

found that there were changes in the westerly wind burst location and strength of the

anomalous easterlies converging with the westerly wind burst over the last few decades,

which were related to the di↵erences El Niño over the multidecadal observed period.
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Similarly, Lopez and Kirtman (2013) found that the state-dependent component of the

westerly wind bursts was more important for eastern Pacific type El Niño events than for

central Pacific ones in a single climate model, due to the impact of state-dependent west-

erly wind bursts on the thermocline. The process that has been outlined here has shown

the impact of advection of the warm poool for creating the multiplicative component of

the forcing. Given the e↵ects of noise on ENSO diversity found by Lopez and Kirtman

(2013) and its relationship to multiplicative noise forcing, it is possible that the recent

trends in ENSO di↵erences, the well documented changes in ENSO amplitude between

the period of 1976-1998 and 1999-current as well as changes in its location of maximum

SST anomaly, from central Pacific El Niño to eastern Pacific El Niño, are purely noise

driven as opposed to a physical mode of multidecadal scale variability. To what extent

is the multiplicative noise forcing component important in di↵erentiating between these

two ENSO flavors.

An aspect of additional complexity that was ignored in this work is the annual cycle

of WWBs. In agreement with Harrison and Chiodi (2009), large noise forcing events

are found to happen less frequently in the boreal summer months (Figure 7.1). How

this modulation of the WWB timing might e↵ect ENSO should be further explored in

the conceptual model. Another e↵ect that needs to be explored in conjunction with

the annual cycle of WWBs is the role of the annual cycle of ENSO growth rate. The

interaction of these two di↵erent annual cycles with multiplicative noise needs to be

explored in greater detail.

In this dissertation, the role of multiplicative noise in creating extreme El Niño

events is explored. The low-frequency component of the noise manifests as an increase

in the noise forcing during the growth phase of El Niño. This has implications for

the predictability of El Niño. These implications for predictability need to be further

explored in the conceptual model, reanalysis, and coupled climate models. In particular,

greater attention should be paid to the frequency with which El Ni no and extreme El

Niño events occur in the months following various size westerly wind events. This can

help quantify the uncertainty in El Niño prediction.

In terms of broader impacts, beyond a better understanding of ENSO and ENSO
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Figure 7.1: The average number of low frequency westerly wind events (R⌧ > �(R⌧ ))
per year by month for the Reanalysis. There is a weak seasonal cycle to the observed
distribution of these events, with a minimum in boreal summer.

interactions, the question can be asked if there are other multiplicative systems in the

climate system and if so, can the methodology developed here be used to help estimate

the state dependence of those systems to increase our understanding and ability to

simulate these systems.

131



132



Appendix A

Derivation of Analytical Solution

to the Skewness

Starting from the second and third order terms in Levine and Jin (2010), we can add

additional equations to solve analytically for the skewness, S = T 03

(T 02)
3
2
. This is derived

from Jin (personal communication).

d < T 02 >

dt
= �2� < T 02 > +2! < h0T 0 > +2�(1 +B < T >) < ⇠T 0 >

+ 2�B < ⇠T 02 >

d < h02 >

dt
= �2! < h0T 0 >

d < h0T 0 >

dt
= �� < h0T 0 > +!(< h02 > � < T 02 >) + �(1 +B < T >) < ⇠h0 >

+ 2�B < ⇠h0T 0 >

(A.1)

By multiplying 1
3T

d<T 02>
dt the equation for the third moment evolution of the tem-

perature is found

d < T 03 >

dt
= �6� < T 03 > +6! < h0T 02 > +6�(1 +B < T >) < ⇠T 02 >

+ 6�B < ⇠T 03 >

(A.2)
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Similarly, by multiplying 1
3h

d<h02>
dt the equation for the third moment evolution heat

content is found
d < h03 >

dt
= �2! < h02T 0 > (A.3)

Finally, the mixed term d<h0T 02>
dt is solved for by multiplying h⇤ d<T 02>

dt + 1
2T ⇤ d<h0T 0>

dt

d < h0T 02 >

dt
= �2� < h0T 02 > +2! < h02T 0 + 2�(1 +B < T >) < ⇠h0T 0 >

� 2� < h0T 02 > +2!(< h02T 0 > � < T 03 >)

+ 2�(1 +B < T >) < ⇠h0T 0 > +4�B < ⇠h0T 02 >

(A.4)

which simplifies to:

d < h0T 02 >

dt
= �4� < h0T 02 > �2! < T 03 > +4! < h02T 0 >

+ 4�(1 +B < T >) < ⇠h0T 0 > +4�B < ⇠h0T 02 >

(A.5)

By assuming steady state, d
dt = 0, so from equation (3)

< h02T 0 >= 0 (A.6)

Substituting into equation (5) and assuming fourth order closure condition, < ⇠h0T 02 >=

0 and that < ⇠h0T 0 >= 0

0 = �4� < h0T 02 > �2! < T 03 > (A.7)

< h0T 02 >=
�!

2�
< T 03 > (A.8)

Substituting into equation (2)

0 = �6� < T 03 > �6!
!

2�
< T 03 > +6�B < ⇠T 03 > +6�B < ⇠T 02 > (A.9)

which yields

< T 03 >=
�B < ⇠T 03 > +� < ⇠T 02 >

�2 + 1
2!

2
(A.10)
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Returning to Levine and Jin (2010), we find that

d < ⇠T 02 >

dt
= �(2�+ r) < ⇠T 02 > +2! < ⇠h0T 0 >

+ 2�(1 +B < T >) < ⇠2T 0 > �2�B(⇠2T 02� < ⇠T 0 >2)

(A.11)

Again assuming steady state, r >> � and closure conditions < ⇠h0T 0 >= 0, < ⇠T 0 >2= 0,

and < ⇠2T 02 >= 2a < T 02 >

0 = �r < ⇠T 02 > +2� < ⇠2T 0 > �4�Ba < T 02 > (A.12)

which yields

< ⇠T 02 >=
2�

r
(< ⇠2T 0 > �2Ba < T 02 >) (A.13)

From Levine and Jin (2010),

d < ⇠2T 0 >

dt
= �(�+ 2r) < ⇠2T 0 > +! < ⇠2h0 > +�B < ⇠3T 0 > (A.14)

Again assuming steady state, r >> � and that closure conditions < ⇠2h0 >= 0, and

< ⇠3T 0 >= 2a < ⇠T 0 >

0 = �2r < ⇠2T 0 > +�2Ba < ⇠T 0 > (A.15)

which yields

< ⇠2T 0 >=
�

r
Ba < ⇠T 0 > (A.16)

From Levine and Jin (2010)

d < ⇠T 0 >

dt
= �(�+ r) < ⇠T 0 > +! < ⇠h0 > +�(1 +B < T >) + �B < ⇠2T 0 > (A.17)

Again assuming steady state, r >> � and that closure conditions < ⇠h0 >= 0, and

< ⇠2T 0 >= 0

0 = �r < ⇠T 0 > +� (A.18)
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which yields

< ⇠T 0 >=
�

r
(A.19)

Plugging equation (19) into equation (16)

< ⇠2T 0 >=
�2

r2
Ba (A.20)

Plugging into equation (13)

< ⇠T 02 >=
2�

r
Ba(

�2

r2
� 2 < T 02 >) (A.21)

Assuming the fourth order closure condition < ⇠T 03 >= 2a < ⇠T 0 >< T 02 > and plugging

into equation (10)

< T 03 >=
�4Ba�2

r < T 02 > +2Ba�3

r3

�2 + 1
2!

2
(A.22)

Since r3 >> r,

< T 03 >

< T 02 >
=

2Ba�2

r

�2 + 1
2!

2
(A.23)

Skewness is defined as T 03

(T 02)
3
2
, so we must also solve for T 02. Assuming steady state

in equation (1) and < h0T 0 >= 0 yields

0 = �2� < T 02 > +2� < ⇠T 0 > +2�B < ⇠T 02 > (A.24)

Substituting in equations (21) and (19) and solving for < T 02 > yields

< T 02 >=
�2

r (1 + 2B2a�2

r )

�+ 4B2a�2

r

(A.25)

Taking the square root of equation (25) and r2 >> r

p
< T 02 > =

vuut
�2

r

�+ 4B2a�2

r

(A.26)
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Since <T 03>
<T 02>

1p
<T 02>

= <T 03>

(<T 02>)
3
2
divide equation (23) by equation (26).

S =
< T 03 >

(< T 02 >)
3
2

=
2Ba

q
�2

r

�2 + 1
2!

2
⇤
r
�+ 4B2a

�2

r
(A.27)

And thus the skewness is linearly dependent on B.
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