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Abstract

With the advancement of high-throughput sequencing technologies, a new era

of “big data” biological research has dawned. However, the abundance of biological data

presents many challenges in their analysis and it has proven very difficult to extract impor-

tant information out of the data. One approach to this problem is to use the methods of

machine learning.

In this dissertation, we describe novel probabilistic kernel-based learning meth-

ods and demonstrate their practical applicability by solving major bioinformatics problems

at the transcriptome and proteome levels where the resulting tools are expected to help

biologists further elucidate the important information contained in their data.

The proposed binary classification method, the Classification Relevance Units

Machine (CRUM), employs the theory of kernel and empirical Bayesian methods to achieve

non-linear classification and high generalization. We demonstrate the practical applicabil-

ity of CRUM by applying it to the prediction of protein phosphorylation sites, which helps

explain the mechanisms that control many biochemical processes.

Then we develop an extension of CRUM to solve multiclass problems, called the

Multiclass Relevance Units Machine (McRUM). McRUM uses the error correcting output

codes framework to decompose a multiclass problem into a set of binary problems. We

devise a linear-time algorithm to aggregate the results into the final probabilistic multiclass

prediction to allow for predictions in large scale applications. We demonstrate the practi-

cal applicability of McRUM through a solution to the identification of mature microRNA

(miRNA) and piwi-interacting RNA (piRNA) in small RNA sequencing datasets. This pro-

vides biologists a tool to help discover novel miRNA and piRNA to further understand the

molecular processes of the organisms they study.
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Chapter 1

Introduction

In this dissertation, we describe novel probabilistic kernel-based learning meth-

ods and demonstrate their practical applicability by solving major bioinformatics problems

at the transcriptome and proteome levels where the resulting tools are expected to help

biologists further elucidate the important information contained in their data.

1.1 Background and Motivation

A new era of biological research has dawned with the development of high-

throughput sequencing technologies. An explosion of biological data has occurred due

to the use of a wide variety of technologies to study the diversity of life, including genome

sequencing, RNA sequencing, and mass spectrometry. This has led to an explosion of bi-

ological data now residing in many public databases. The abundance of data, however,

presents many challenges in their analysis. This has led to a situation some call “data rich,

information poor,” as it has proven very difficult to extract important information out of the

biological data and thus many details of biological mechanisms remain a mystery. In this

sense, bioinformatics can be viewed as the sub-field of computer science that provides the

tools biologists need to turn their data into information.

The genome of an organism is the entirety of that organism’s DNA. According to

the Central Dogma of Molecular Biology, segments of DNA are converted into two major

types of RNA via a process called transcription. One type of RNA is called non-coding

RNA (ncRNA) and they are themselves converted into biochemically functioning agents

with a variety of known functions, but the functions of most ncRNA remain unknown to
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this day. The other type of RNA is called coding RNA or messenger RNA (mRNA). As

the name implies, they transport information to the cell’s protein construction machinery.

The information contained in the mRNA are the blueprints for proteins that are constructed

via a process called translation, the next step of the Central Dogma. Proteins are often

considered to be the workhorse of the cell, as they are involved is nearly every biochemical

process.

The entire catalog of an organism’s RNA and protein is called the transcriptome

and proteome, respectively. In principle, according to the Central Dogma, we only need

data on an organism’s genome, as the organism’s transcriptome and proteome is specified

by the genome. However, since the mechanisms involved in the Central Dogma are not

yet fully understood, data at the transcriptome and proteome level are generated directly

using, for example, RNA sequencing (RNA-seq) and mass spectrometry to sequence RNA

and protein, respectively. Thus a large abundance of data is being generated by molecular

biologists at all levels of the Central Dogma.

One approach to analyzing the abundance of biological data is to use the methods

of machine learning. In particular, machine learning methods that solve the classification

problem are very important. Classification is the problem of taking an object and assigning

it to one of a finite number of classes on the basis of a training set of objects of known

class identity. In general, classification has many applications including the identification

of people based on photographed faces [27], recognition of words in handwriting [21] or

speech [17], and e-mail spam detection [6]. In bioinformatics, classification applications

include cancer classification using microarrays [9], prediction of protein localization sites

[13], protein fold recognition [8], and identification of the kinase that acts upon a protein

phosphorylation site [3]. Due to the broad range of important applications of classification

methods, the classification problem has received a huge amount of interest in the machine

learning research community.

A common approach to solving the classification problem is to transform the data

into a form more easily solved. For example, it is easier to find a linear decision bound-

ary between the two classes in the binary classification problem. Therefore the data in its

original state, which is called the observation space, is transformed non-linearly into a new

space called the feature space, where the data has been unraveled in such a way that makes

2



Figure 1.1. Non-linear transformation of data from observation space to a feature space.
The transformation is chosen such that a satisfactory linear solution can be found.

finding a satisfactory linear boundary possible, as illustrated in Figure 1.1. However, this

non-linear transformation, often to a higher dimensional space, may lead to computation-

ally complex algorithms. This is particularly true if the non-linear transformation is learned

from the data, such as with multilayer perceptron (MLP) models [1], as illustrated in Figure

1.2. The first layer is the given object in the observation space, hidden layers represents

the non-linear transformation, and the final layer is the computation of the classification of

the object in the feature space. Another issue this example illustrates is the difficulty of

model selection. How many hidden layers should be used? How many artificial neurons

should be used in each layer? These are only a few of the difficult questions that a designer

of an MLP faces and often the solution is for the designer to experiment with a variety of

configurations to find what works satisfactorily.

A popular solution to the dimensionality issue is to avoid direct computation in

the higher dimensional feature space via the so-called kernel trick. The idea is to base

the algorithm that determines the unknown parameters of the classifier model, called the

learning algorithm, on the kernel function that represents the inner product of the space.

In many cases the kernel function can be computed directly without need to compute the

non-linear transformation into the feature space. This thereby avoids direct computation

in high dimensional spaces and even allows for learning algorithms to use kernel functions

that induce infinite-dimensional feature spaces. This also mitigates the designer’s difficulty

of determining what non-linear transformation is appropriate for their problem. The inner

3



Figure 1.2. A multilayer perceptron with one hidden layer.

product of two vectors in a space is related to the angle between the two vectors, which is

like a measure of similarity. Therefore kernel functions are often based on some measure

of similarity between two objects. Typically it is not very difficult to design a measure of

similarity for the objects being studied and thus designing a kernel function tends to be a

simpler task than designing the architecture of the MLP. Methods that use the kernel trick

are called kernel methods and have increased in popularity in the past decade due to the

Support Vector Machine (SVM) [7].

The SVM model defines a kernel function centered on every observation in the

training set and its learning algorithm prunes kernel functions deemed not essential to solv-

ing the classification problem. Such a method that prunes out the majority of kernel func-

tions in the model is called a sparse kernel method and a preference for sparse models is

motivated by the need to avoid overfitting and by the principle of Occam’s razor that states

simpler models are preferred. However the SVM is often not sparse enough, leading to

classification models that are large in size. Not only is this not desirable from the view-

point of Occam’s razor, but also a large model size leads to longer execution run-times

for predictions, which is an issue in large-scale analyses. A second issue is that the SVM

predictions are “hard decisions,” meaning the SVM simply tells you the predicted class of

the given object but not the uncertainty of the prediction. This is an issue as users of classi-

fication applications may want to use uncertainty information in order to more effectively

make decisions based on the results. This is particularly true in science where a false pos-
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itive could lead to costly but unfruitful experiments and in medicine where the decisions

may be critical to the survival of a patient.

These issues are addressed by the Relevance Vector Machine (RVM) [23] that

has a kernel model similar to the SVM but outputs the probabilities of each class given

the object, thereby providing information about the uncertainty of the predictions. Further-

more, the RVM often provides smaller models that are a fraction of the size of equivalent

SVM models, leading to faster prediction run-times. However, this comes at the cost of a

significantly more computationally complex learning algorithm compared to the SVM due

to the complex Bayesian method of pruning the kernel functions. This has been the major

obstacle that prevents the RVM from widespread use.

In this dissertation, we propose novel probabilistic kernel-based learning methods

similar to the RVM that overcomes the major obstacle, while still maintaining many of the

RVM’s desirable properties. The practical applicability of the proposed method is shown

through some applications to major bioinformatics problems at the transcriptome and pro-

teome levels where the resulting tools are expected to help biologists further elucidate the

important information contained in their data.

1.2 Problem Statement

This dissertation examines novel probabilistic kernel-based empirical Bayesian

classification methods of small model size and empirically characterizes their performance

in terms of both computational complexity and predictive capability. The methods are

applied to important bioinformatics problems of identifying certain biochemical regulation

mechanisms at the transcriptome and proteome levels of molecular biology.

1.3 Research Description

This dissertation will be presented as a series of published peer-reviewed articles

and a manuscript to be submitted for review. A novel probabilistic kernel-based binary

classification method called the Classification Relevance Units Machine (CRUM) is spec-

ified in Article 1, along with empirical evaluation of its performance compared to SVM
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and RVM on benchmarking datasets. However, upon application to a larger dataset in the

Article 2, it was found that the supervised learning algorithm specified in Article 1 did

not scale satisfactorily. Thus a hybrid unsupervised and supervised learning algorithm for

the CRUM is specified to mitigate this problem in Article 2. Using the faster learning

algorithm, the problem of protein phosphorylation site prediction is examined.

In Article 3, the binary CRUM algorithm is extended to the general n-class case

using the framework of error correcting output codes. This Multiclass Relevance Units

Machine (McRUM) is evaluated on benchmarking datasets and preliminarily applied to

the problem of detecting particular classes of small ncRNA. In Article 4, we continue

investigating the small ncRNA problem to improve upon the preliminary results in Article

3 by further consideration of the biological aspects of small ncRNA and enhancements to

McRUM.

1.4 Related Work

This section examines prior research in protein phosphorylation site prediction

and small ncRNA prediction.

1.4.1 Protein Phosphorylation Site Prediction

The classical view of the Central Dogma of Molecular Biology states that genetic

information flows from DNA to RNA to protein. The process of creating RNA from DNA

is called transcription, while the process of creating protein from RNA is called translation.

However, as stated previously, not all RNAs code for proteins. Thus they do not follow

the classical view of the dogma. Some classes of these non-coding RNA will be further

discussed in Section 1.4.2. The class of RNA that code for proteins is called mRNA.

In translation, a molecular machine called the ribosome “reads” the amino acid sequence

encoded in the mRNA and helps physically assemble the amino acid sequence specified,

resulting in a protein.

A post-translational modification of a protein is any modification made to the

protein after translation, such as the attachment of further biochemical molecules. These
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modifications, which may be reversible, allows the structure and function of the protein to

be dynamic. A prominent post-translational modification is phosphorylation, which plays

an essential role in a wide range of cellular processes, such as metabolism, immune re-

sponse, apoptosis, and cellular motility [24]. In phosphorylation, a class of proteins called

kinases attach a phosphate group to some designated amino acid, which is called the phos-

phorylation site, in the target protein. This process is reversible, as a class of proteins

called phosphatases can remove the phosphate group from the phosphorylation site. In the

simplest case, one of these states, phosphorylated or unphosphorylated, set the protein to

be biochemically active, while the other state leaves the protein inactive. The mechanism

is more complicated and flexible in the case where a protein has multiple phosphorylation

sites.

For example, protein 53 (p53) is a tumor suppressor protein with a multitude of

phosphorylation sites and it functions to inhibit cell growth when activated. The key event

that leads to the activation of p53 is the phosphorylation of its N-terminal domain that

contains numerous phosphorylation sites. Inactivated p53 due to, for example, its mutation

or dysfunction of its regulation mechanisms is found in most tumors [16].

As p53 demonstrates, determining which sites of a protein is phosphorylatable is

important in the understanding of the regulation of biochemical processes, such as those

related to diseases [4]. However, experimental discovery of phosphorylation sites is an

expensive and laborious task with many technical challenges [24]. To help mitigate this

problem, computational approaches that identify highly probable phosphorylation sites in

the abundance of protein sequence data generated by genomics projects, for example, have

been an active area of research.

Crystallization studies show that a region of the protein substrate of about 7 to 12

amino acids in length surrounding the acceptor residue contacts the kinase active site [22].

Therefore almost all protein phosphorylation site prediction tools takes the amino acid se-

quence in a window surrounding a potential site as the primary predictive feature. For

example, NetPhos [2] uses a window of length between 9-11 amino acids long, depending

on the type of phosphorylation site. NetPhos numerically encodes the window’s sequence

as a vector using sparse encoding. In sparse encoding, each position in the window’s se-

quence is represented with a 21 bit value that consists of zeros for all but one bit. Thus there
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are 21 possible values, representing the 20 different types of amino acids and one value to

represent the absence of an amino acid. These numerically encoded windows serve as the

input to a MLP for binary classification.

Another example is DISPHOS [15] that employs logistic regression to distinguish

phosphorylation sites using information on the predicted 3D structure of the protein. There

are four aspects to the 3D structure of a protein: 1) primary structure, the amino acid

sequence, 2) secondary structure, local interaction caused by hydrogen bonds, 3) tertiary

structure, the overall shape of a protein caused by nonlocal interactions, and 4) quaternary

structure, the formation of a protein complex via interaction of multiple proteins. Proteins

are not rigid and may dynamically switch to different conformations via post-translation

modifications like phosphorylation, for example. In addition to the sparse encoding of

the window surrounding a possible phosphorylation site, DISPHOS uses three secondary

structure predictors to detect local helix, sheet, and loop structures. Also, some areas of

the protein may not settle into a stable 3D structure and remain in an unfolded state. In

DISPHOS, these intrinsically disordered regions are computationally predicted using five

different predictors and are used as input. Such protein structure information is useful, as

phosphorylation sites are frequently contained in disordered protein regions.

However, the use of protein structure predictions is computationally expensive

and so a simpler method with at least near comparable results is desirable for large scale

analyses, such as making predictions over an organism’s whole proteome. In this disser-

tation, we approach the protein phosphorylation site prediction problem using the CRUM

due to its compact and parsimonious models.

1.4.2 Small ncRNA Prediction

ncRNA are functional RNAs that do not code for and are not translated into pro-

teins. The different varieties of ncRNAs have a diverse set of important functions and

come in many physical sizes. New classes of ncRNA continue to be discovered [10] and

the functions of many classes of ncRNA, such as long ncRNAs, remain largely unchar-

acterized [12]. An important class of ncRNAs is the small ncRNAs that are roughly 20

to 30 nucleotides long. In this dissertation, we focus on microRNA (miRNA) and piwi-

8



interacting RNA (piRNA) that are important in post-transcriptional gene regulation. Post-

transcriptional regulation refers to the regulation of RNA and includes the blocking of

the translation of a mRNA to protein. In contrast to phosphorylation that regulates the

activation of a protein, post-transcriptional regulation can prevent the protein from being

manufactured in the first place.

The biogenesis of miRNA is relatively well-understood. At the final stages of

miRNA biogenesis, a precursor-miRNA (pre-miRNA) is generated that has a distinctive

hairpin structure. An enzyme called Dicer cleaves off the loop of the hairpin, leaving the

double stranded stem that is historically called the miRNA:miRNA* duplex. The duplex

is separated and the mature miRNA strand, in combination with Argonaute proteins, forms

the RNA-induced silencing complex (RISC) [14]. There are cases where the miRNA*

strand itself is a mature miRNA and forms its own RISC. Using the miRNA sequence

as a guide, this RISC binds to mRNA to regulate the mRNA’s stability and translation to

protein [11]. Therefore miRNAs are implicated in a wide variety of biochemical processes.

Unusual changes in miRNA expression can cause dysregulation of important biochemical

pathways, implicating the involvement of miRNAs in diseases. Thus the discovery of novel

miRNA is an important step in the understanding of these processes.

On the other hand, the biogenesis of piRNA is not fully understood. However

it is known that piRNA provides RNA silencing functionality and, in a manner similar to

miRNA, the mature piRNA forms a RISC with piwi proteins. They are known to defend

against transposons [20], which are DNA sequences that may create mutations harmful to

its hosts. Therefore the discovery of novel piRNA is also important.

The discovery of novel miRNA and piRNA is made more possible because of

recent advances in high-throughput sequencing technologies that allow biologists to se-

quence the small RNA content of a tissue or organism. Often small RNA sequencing leads

to millions of reads of short length. While it is relatively simple to identify known ma-

ture miRNA and piRNA among the reads via comparison to ncRNA databases such as

miRBase [18] and NONCODE [5], the discovery of novel mature miRNA and piRNA is

non-trivial and most of the available methods are dependent on the availability of the or-

ganism’s genome sequence and the quality of its annotation. In the worst-case, no genomic

information is available and the identification of mature miRNA and piRNA must be based
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solely on the RNA reads. This also implies that the longer precursor forms of miRNA and

piRNA are not available, as the small RNA sequencing protocol would filter longer RNAs

out of the sample. This renders most discovery methods, which rely on the identification

of the precursors [14], as not appropriate.

There are a few existing methods that apply to this “no genome” situation. For

piRNA, a binary classifier called piRNApredictor has been proposed that uses Fisher’s

linear discriminant analysis of the nucleotide composition of the reads [26]. Nucleotide

composition is analogous to the “bag of words” used in document classification. K-mers,

the “words”, refer to all possible nucleotide sequences of length K nucleotides. In the case

of piRNApredictor, K ranges from one to five. Using only the frequency of K-mers found

in the query RNA sequence, piRNApredictor predicts whether or not the query is a piRNA.

However, our preliminary analysis suggests that the accuracy of piRNA prediction can be

significantly improved upon by using more sophisticated classification methods.

For miRNA, there are two existing approaches: miRMiner [25] and miRPlex

[19]. miRMiner relies on evolutionary conservation, which is the idea that related species

will have similar sets of miRNAs. The idea of miRMiner is to find potential orthologs

of a potential novel miRNA in related species whose genomic information is better char-

acterized. The orthologs are treated as potential pre-miRNA and are folded to see if the

distinctive hairpin structure can be formed. In short, the lack of genomic information is

overcome by using the genomic information of related species as a proxy. However, the

weakness of this approach is the inability to discover weakly- or non-conserved miRNA.

In contrast, miRPlex does not require genomic information for closely related

species at all. Instead, it relies on the assumption that both the miRNA and miRNA* of

the miRNA:miRNA* duplex would be sequenced. Therefore the existence of a strongly

complementary read in the small RNA sequencing dataset would imply that the read is a

miRNA. The primary weakness of this approach, however, is that the pairwise folding of

millions of reads prohibits the use of this method in a large dataset.

In this dissertation, we propose an approach that addresses these weaknesses. Our

approach uses McRUM to predict mature miRNA and piRNA based only on the nucleotide

composition of the read, thereby avoiding the conservation assumption and the costly pair-

wise folding of the reads. Our approach can be considered complementary to miRPlex.
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Our method can be used to identify reads that are likely to be miRNAs and this reduced set

of reads can be used as a more feasible input for miRPlex, which will provide structural

evidence and thus more confidence in the predictions.

1.5 Expected Contributions

In summary, the expected contributions of this dissertation include:

• Novel probabilistic kernel-based binary and multiclass classification methods that

leads to significantly more compact and parsimonious models than existing methods.

This in turn results in a prediction algorithm of lower computational complexity. This

method will be applicable to a wide variety of classification problems, particularly

with problems where probabilistic outputs is required and/or where predictions need

to be made at a large scale.

• A probabilistic approach to the problem of protein phosphorylation site prediction

that uses only sequence information for fast prediction run-times. This will allow

biologists to perform predictions at a large scale, such as a whole proteome, to help

elucidate biochemical processes.

• A fast probabilistic approach to the problem of detecting mature miRNA and piRNA

in small RNA sequencing projects using nucleotide composition data. This will allow

biologists to perform predictions on the entire small RNA sequencing results, which

are often large, to help them understand how organisms control the translation of

proteins and defend themselves from certain mutations.

1.6 Structure of Dissertation

The dissertation is organized into the following chapters:

• Chapter 2 presents Article 1 that precisely describes the CRUM model and supervised

learning algorithm for the binary classification problem. The results of experimental

evaluations using benchmark datasets are also discussed.
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• Chapter 3 presents Article 2 that precisely describes the hybrid unsupervised and

supervised learning algorithm for the CRUM. This revised CRUM is then applied

to the important problem of protein phosphorylation site prediction. The results of

experimental evaluations of this application are discussed.

• Chapter 4 presents Article 3 that precisely describes the extension of the CRUM

method of binary classification to the McRUM method of multiclass classification.

The results of experimental evaluations of the McRUM on benchmark datasets are

discussed. Furthermore, an application to the detection of mature miRNA and piRNA

in small RNA sequencing datasets is described and evaluated experimentally.

• Chapter 5 presents a draft of Article 4. We further investigate the small ncRNA prob-

lem in Article 3 to increase the predictive performance of our solution with further

consideration of the biology of the problem and further modifications of the McRUM

method.

• Chapter 6 concludes the dissertation.
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Chapter 2

Relevance Units Machines for

Classification

Abstract

Classification, a task to assign each input instance to a discrete class label, is a prevailing

problem in various areas of study. A great amount of research for developing models for

classification has been conducted in machine learning research and recently, kernel-based

approaches have drawn considerable attention mainly due to their superiority on general-

ization and computational efficiency in prediction. In this work, we present a new sparse

classification model that integrates the basic theory of a sparse kernel learning model for

regression, called relevance units machine, with the generalized linear model. A learn-

ing algorithm for the proposed model will be described, followed by experimental analysis

comparing its predictive performance on benchmark datasets with that of the support vec-

tor machine and relevance vector machine, the two most popular methods for kernel-based

classification.

c©2011 IEEE. Reprinted, with permission, from M. Menor and K. Baek, “Relevance units machine for clas-

sification,” in Proceedings of the 4th International Conference on BioMedical Engineering and Informatics,

Shanghai, China, October 15-17, pp.2281-2285, 2011. DOI: 10.1109/BMEI.2011.6098663.
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2.1 Introduction

Classification is one of the most studied problems in machine learning research

and one that has kept a constant momentum in terms of research interest and theoretical

novelty. Classification problems are ubiquitous in various fields of study including bioin-

formatics. Examples of bioinformatics classification problems are cancer classification

using microarrays [11], prediction of protein localization sites [13], protein fold recogni-

tion [8], and the prediction of protein phosphorylation sites [2], just to list a few.

The main purpose of classification algorithms is to learn a classifier that assigns

each input instance to one of a finite number of class labels. Over the last several decades,

many classification algorithms have been proposed, such as decision trees [4, 17, 18], k-

nearest neighbors [7], artificial neural networks [25], discriminant analysis [10], Bayesian

networks [14, 16], and the SVM [23].

Recently, considerable attention has focused on kernel-based learning approaches

in supervised classification where they have shown state-of-the-art performance. A predic-

tion model produced by kernel-based learning is often sparse, depending only on a subset

of the kernel basis functions associated with some of the training samples. Of particular

interest is the SVM, a sparse linearly-parameterized model, which has demonstrated great

successes. The basic idea of the SVM is to find the optimal hyperplane decision boundary

between the two data classes. By optimal, it means that the distance from the closest train-

ing examples to the separating hyperplane should be the largest possible, i.e. the margin

between the two classes is maximized. Therefore, SVM minimizes the risk of overfitting

and has potential for better classification accuracy from small training sets compared to

other approaches to classification.

However, despite the current popularity and success, a number of significant and

practical concerns of the SVM methodology have been identified: 1) The error/margin trade

off term has to be selected often through a cross-validation procedure, which is a waste of

both computation and data. 2) Although relatively sparse, the number of support vectors

required tends to increase linearly to the size of the training set. 3) The prediction is not

probabilistic, therefore it makes a hard decision [21].
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The RVM, a Bayesian extension of the SVM, is a sparse learning algorithm that

does not suffer from the limitations alluded to above [21, 22]. The RVM is capable of

generating a fully probabilistic output and it has been shown empirically that, when solving

the same problems, the RVM uses fewer relevance vectors than support vectors, making the

classifier much sparser than the SVM-based one. This can lead to significant reduction in

computational complexity of classification, while maintaining nearly identical performance

to, if not better than, that of the SVM [5, 21, 24].

In this paper, we present a new classification model developed based on a sparse

kernel regression model called the relevance units machine (RUM), a recent variation of

the RVM [12]. While RVM finds relevance vectors from the training samples, analogous

to the support vectors in the SVM, those vectors in the RUM are not necessarily from the

training data. Those vectors, called relevance units, are in fact learned during the training.

The RUM also adopts the Bayesian inference framework to automatically learn all the

parameters including the kernel parameters.

Based on the experimental results on regression problems, it has been argued that

the RUM can generate an even sparser predictor than the RVM while retaining compara-

ble performance [12]. However, the RUM learning framework has not been introduced for

classification, therefore the development of RUM-based classifiers would provide insights

for improving existing state-of-the-art classification methods. In this work, we present a

RUM based classification model and evaluate its predictive performance through experi-

mental studies with benchmark datasets.

In the next section, we specify a classification model that combines the RUM

for regression with the generalized linear model. Assumptions on the parameters and the

underlying distributions for prediction and the (hyper)priors are described in Section 2.3,

followed by the derivation of the learning algorithm for the proposed model in Section

2.4. Section 2.5 presents experimental studies and analyzes the results of benchmark com-

parisons with the SVM and RVM. Finally, we conclude our work with discussions on

advantages and shortcomings of the current model, and future prospect of overcoming the

limitations.
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2.2 Model

We assume that the data is a set ofN independent input vectorsX = {x1,x2, . . . ,xN} ⊂
Rq, along with their corresponding targets t = [t1, t2, . . . , tN ]T . Furthermore, we assume

that the target values are binary, ti ∈ {0, 1}. We use a model that combines the RUM for

regression [12] with the generalized linear model, giving

t̂(x) = f

(
w0 +

M∑
m=1

wmk(x,um; Θ)

)
(2.2.1)

where 1 ≤ M ≤ N , f(·) is an activation function, k(·, ·; Θ) is a kernel function with a set

of parameters Θ, the weights w = [w0, w2, . . . , wM ]T , and the units U = [u1,u2, . . . ,uM ]

with each ui ∈ Rq. We call this the Classification Relevance Units Machine (CRUM)

model.

The problem is to estimate from the data (X, t) appropriate values of w, U, and

Θ to make good predictions t̂(x) for a fixed M . Typically M � N to achieve a sparse

solution. We use the logistic sigmoid function, σ(a) = (1 + e−a)−1, as the activation

function from here on.

2.3 Assumptions

Without loss of generality, we assume w0 = 0 and set w = [w1, w2, . . . , wM ]T .

Define

yi =
M∑

m=1

wmk(xi,um; Θ) (2.3.1)

and the design matrix K with elements

Kij = k(xi,uj) (2.3.2)

for i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M}.
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We adopt a Bernoulli distribution for P (t|x,U,w,Θ) as done with the RVM for

classification [21], giving the following likelihood of the data (X, t) given the model:

P (t|X,U,w,Θ) =
N∏

n=1

σ(yn)tn [1− σ(yn)]1−tn (2.3.3)

A maximum likelihood estimate can be obtained by finding the parameters w, U, and Θ

that maximizes the likelihood function (3.3.4). However we specify further assumptions

to add regularization terms and obtain a maximum a posteriori (MAP) estimate to mitigate

overfitting.

We adopt a zero-mean isotropic Gaussian prior distribution over w to give pref-

erence to simple models,

p(w|α) = N (w|0, α−1I) (2.3.4)

where I is the M ×M identity matrix and α ∈ R+ is the hyperparameter controlling the

precision of the Gaussian over the weights. Note that this is not the Automatic Relevance

Determination prior used in the RVM [21]. Driving wi values to zero is not a goal since

sparsity is instead achieved by selecting a small value for M .

Similarly we specify a Gaussian prior over U with

p(U|r) =
( r

2π

)Mq/2

exp
{
−r

2
tr[UTU]

}
(2.3.5)

where r ∈ R+ is the hyperparameter that controls the precision of the prior.

We assume Gamma distributed hyperpriors for the hyperparameters α and r

p(α) = Gamma(α|a, b) (2.3.6)

p(r|c, d) = Gamma(r|c, d) (2.3.7)

where Gamma(x|a, b) = Γ(a)−1baxa−1e−bx and Γ(a) =
∫∞

0
ta−1e−tdt. The a, b, c, and d

parameters are fixed to small values to make the hyperpriors non-informative [21].
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We obtain the posterior distribution by combining all our assumptions (3.3.4)-

(3.3.6),

p(t,U,w, α, r|X,Θ) =

P (t|X,U,w,Θ)p(U|r)p(r)p(w|α)p(α) (2.3.8)

Let t̂n = t̂(xn) and B = diag(t̂1(1− t̂1), t̂2(1− t̂2), . . . , t̂N(1− t̂N)). We can marginalize

w from (2.3.8) using a Laplace approximation [1] of the integral, as is done in the RVM,

to obtain:

p(t,U, α, r|X,Θ) =∫
P (t|X,U,w,Θ)p(w|α)p(U|r)p(r)p(α)dw (2.3.9)

≈ (2π)M/2|Σ|1/2P (t|X,U,w∗,Θ)p(w∗|α)p(U|r)p(r)p(α)

where the covariance of the Laplace approximation is

Σ = (KTBK + αI)−1 (2.3.10)

and its mean w∗ is the w that maximizes P (t|X,U,w,Θ)p(w|α).

The MAP estimate of the parameters w, U, and Θ are those that maximize

(2.3.9).

2.4 Learning Algorithm

We define our objective function as

L = − ln p(t,U, α, r|X,Θ) (2.4.1)
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and we use methods from unconstrained optimization for continuous functions to find the

parameters w, U, and Θ that minimize L. Typically such methods require computing the

gradient of L that we will provide here.

To begin, we need to compute the mean w∗ for the Laplace approximation. This

is the w that maximizes

ln[P (t|X,U,w,Θ)p(w|α)] = (2.4.2)
N∑

n=1

[tn ln t̂n + (1− tn) ln(1− t̂n)]− α

2
wTw + const

where t̂n is the prediction on xn using the current model estimates. The first term is the log-

likelihood and second is the regularization term. Let t̂ = [t̂1, t̂2, . . . , t̂N ]T . Then the vector

w∗ can be computed by maximizing (2.4.2) with respect to w using the Newton-Raphson

method with gradient

KT (t− t̂)− αw (2.4.3)

and the Hessian

−KTBK− αI (2.4.4)

Now that we have w∗ we can compute the partial derivatives of L as follows,

∂L

∂α
= −1

2

(
M

α
−w∗Tw∗ − tr[Σ]

)
(2.4.5)

∂L

∂Uij

= rUij −
N∑

n=1

(tn − t̂n)w∗j
∂k(xn,uj; Θ)

∂Uij

(2.4.6)

∂L

∂r
=

1

2
tr[UTU]− Mq

2r
(2.4.7)

∂L

∂Θ
=

N∑
n=1

(t̂n − tn)tr

[
w∗T

∂k(xn)

∂Θ

]
(2.4.8)

where k(x) = [k(x,u1; Θ), k(x,u2; Θ), . . . , k(x,uM ; Θ)]T . Note that the terms in L
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associated with p(α) and p(r) were dropped by assuming that they are non-informative.

Also the term in L associated with |Σ|1/2 was dropped for simplicity in (2.4.6) and (2.4.8).

Therefore these are actually the partials of the negative log of (2.3.8) with respect to Uij and

Θ, respectively. We observe good predictive performance despite these simplifications.

We chose to implement this minimization using an alternating variables method

where only one of the parameters or hyperparameters (w, α, U, r, or Θ) is optimized at

a time while holding all other parameters and hyperparameters fixed. This method cy-

cles through each parameter and hyperparameter estimator repeatedly until the estimates

converge. While this approach leads to slower convergence due to the ignorance of any

correlation between the parameters and hyperparameters [9], this simplification allows us

to work with smaller Hessian matrices. Also we have observed lower predictive perfor-

mance with estimates gained using a trust region Newton method [6] over all parameters

and hyperparameters simultaneously under the same initial values. Therefore it appears,

at least on the datasets we have tested, that the alternating variables method leads to better

predictive solutions.

The MAP estimate of w is w∗, obtained using the Newton-Raphson method. The

estimates for α and r are obtained by setting their partial derivatives (2.4.5) and (2.4.7) to

zero, giving

α∗ =
M − αtr[Σ]

wTw
(2.4.9)

r∗ =
Mq

tr[UTU]
(2.4.10)

A trust region Newton method [6] is used to obtain the MAP estimates of U and Θ us-

ing (2.4.6) and (2.4.8) to compute the partial derivatives of L with respect to U and Θ,

respectively, and using finite differencing to approximate the Hessian in both cases.

In summary, the pseudocode for the overall algorithm is as follows:

2.5 Experimental Results

For all experiments we used the Gaussian kernel

23



Input: Matrix of training data X and its associated vector of class labels t,

kernel function k, number of kernel functions M

1: w, α,U, r,Θ← initial values

2: while w, α,U, r,Θ have not converged do

3: Compute design matrix K using (3.3.3)

4: w← Newton-Raphson using (2.4.2)-(2.4.4)

5: α← Equation (3.3.14)

6: U← trust region Newton using (2.4.1) and (2.4.6)

7: r ← Equation (2.4.10)

8: Θ← trust region Newton using (2.4.1) and (2.4.8)

9: end while

10: return w,U,Θ

Algorithm 1: CRUM learning algorithm

k(x,u; Θ = {σ}) = exp

{
− 1

σ2
(x− u)T (x− u)

}
(2.5.1)

where σ is called the width of the kernel. We will use the term critical vector (CV) to refer

to the basis vectors with non-zero wi terms. The CVs are also called support vectors (SV)

in the SVM model ( [3,23]), relevance vectors (RV) in the RVM model, and relevance units

(RU) in the regression RUM and CRUM models.

2.5.1 Ripley’s Synthetic Data

For visualization, we analyze two-dimensional data generated from mixtures of

two Gaussians from [20] whose Bayes error is about 8%. For a comparison, both RVM

and CRUM models are trained on a set of 250 examples and evaluated on a test set of 1000

examples. A CRUM was estimated with a variety of values of M and it was observed that

M = 3 achieved the best Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) [1] values. The decision boundary used here is t̂(x) = 0.5. This CRUM

model achieves 9.6% error on the test set and is plotted in Figure 2.1a. The RVM model was

estimated using a kernel width of 0.5, resulting in 7 CVs and a test error of 9.9%. The RVM
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(a) CRUM with M = 3

(b) RVM

Figure 2.1. Plots of CRUM and RVM on Ripley’s data. The solid curve represents the
chosen decision boundary at t̂(x) = 0.5, while the dashed curves represent the boundary at
values 0.25 and 0.75. The CRUM and RVM have their 3 and 7 CVs, respectively, indicated
by the empty circles.

was generated using the SparseBayes software from http://www.vectoranomaly.

com. The plotted RVM result is shown in Figure 2.1b. The CRUM achieves slightly better

predictive performance with a sparser model than the RVM.

2.5.2 Benchmark Comparisons

We ran a benchmark test to compare the classification results of the CRUM model

to the previously published results of the RVM and SVM models on a variety of datasets.

All datasets are taken from a collection compiled by Rätsch et al. [19] except the Pima

Diabetes dataset which is taken from [20]. In this test, all problems are binary classification
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and both RVM and CRUM use a decision boundary at the predicted value of 0.5 in all cases.

The benchmark datasets used in the comparison are listed below.

• Pima Diabetes: This is a collection of measurements taken from female patients at

least 21 years old of Pima Indian heritage, and the problem is to predict the onset of

diabetes mellitus.

• Banana: A set of two-dimensional samples generated by Rätsch et al. [19].

• Breast Cancer: This dataset contains measurements of nine attributes for prediction

of the prognosis of breast cancer recurrence.

• Titanic: With this dataset, the task is to predict the survival of a passenger of the

historical ship Titanic based on some attributes of the individuals.

• Waveform: This dataset contains a variety of noisy attributes and the task is to de-

termine the class of the wave.

• German: This dataset contains credit data to use to classify a customer as good or

bad credit risks.

• Image: This is a set of image segmentations described by numeric-valued attributes

and the task is to determine what the image segments represent.

Table 2.1 lists the size of training and test datasets,N andNtest, data dimension d,

the observed error on the independent test dataset, and the number of CVs used in the SVM,

RVM, and CRUM models. Unlike the other methods, CRUM requires that we specify M ,

the number of CVs. Note that what is reported in Table 2.1 is the CRUM model with the

best observed AIC, not with the lowest error rate. With the exception of Pima Diabetes, the

reported error and number of CVs for the SVM and RVM are averages over 10 training/test

splits. However we only report the error and the number of CVs for the CRUM on a single

training/test split for computational reasons.

The results indicate that CRUM can achieve sparser (less CVs) solutions than

both RVM and SVM with little sacrifice to predictive performance. In particular, there is

a significant decrease in the number of CVs in the Titanic, Waveform, and Image datasets
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compared to the RVM and SVM. This means the summation in (2.2.1) contains signifi-

cantly less terms and is therefore more computationally efficient than the equivalent RVM

or SVM. This feature is of great importance in running predictions on very large datasets,

which is often the case in many biomedical informatics applications.

2.6 Conclusion

The CRUM model has several advantages. The models can be highly sparse and

yet lead to very good generalization, as implied by the benchmark comparisons shown in

Table 2.1. Additionally, a user can choose to select smaller M to generate more compact

models in sacrifice of generalization, if deemed desirable. This is not possible with the

RVM, but can be done with the SVM through manipulation of the complexity control pa-

rameter. The model is also probabilistic and allows more flexibility than the SVM in choos-

ing an appropriate decision function. The kernel parameters are estimated unlike both the

SVM and RVM where they must be specified. An appropriate M still needs to be selected,

but this can be done using the AIC or BIC in a process simpler than cross-validation.

While the resulting model is very sparse and leads to a very efficient classifier,

the major disadvantage of the CRUM is the computational complexity of the current learn-

ing algorithm. For memory complexity, the CRUM requires the storage of an N × M

design matrix and a Hessian matrix of dimension Mq ×Mq in the estimation of U. This

means that the space complexity of CRUM is higher than that of the RVM if Mq > N .

The time complexity of inverting the Hessian matrices used to estimate w and U, and the

approximation of the Hessian itself using finite differencing in the U estimation are com-

putationally expensive. Potential avenues to reducing the complexity of the algorithm in

the future include using more crude but cheaper approximations to the Hessian and the use

of other unconstrained optimization algorithms such as L-BFGS [15] that do not explicitly

form or store the complete Hessian.
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Chapter 3

Probabilistic Prediction of Protein

Phosphorylation Sites Using

Classification Relevance Units Machines

Abstract

Phosphorylation is an important post-translational modification of proteins that is essen-

tial to the regulation of many cellular processes. Although most of the phosphorylation

sites discovered in protein sequences have been identified experimentally, the in vivo and

in vitro discovery of the sites is an expensive, time-consuming and laborious task. There-

fore, the development of computational methods for prediction of protein phosphorylation

sites has drawn considerable attention. In this work, we present a kernel-based proba-

bilistic Classification Relevance Units Machine (CRUM) for in silico phosphorylation site

prediction. In comparison with the popular Support Vector Machine (SVM), CRUM shows

comparable predictive performance and yet provides a more parsimonious model. This is

Reprinted, with permission, from M. Menor, K. Baek, and G. Poisson, “Probabilistic prediction of protein

phosphorylation sites using classification relevance units machines,” ACM SIGAPP Applied Computing Re-

view, vol.12, no.4, pp.8-20, 2012. DOI: 10.1145/2432546.2432547. PMCID: PMC3806113.

This work is based on an earlier work: M. Menor, G. Poisson, and K. Baek, “Probabilistic prediction of

protein phosphorylation sites using kernel machines,” in The 27th ACM Symposium on Applied Computing

(ACM-SAC 2012) Conference Track on Bioinformatics and Computational Systems Biology (BIO), Riva Del

Garda Congress Center, Italy, March, pp.1393-1398, 2012. DOI: 10.1145/2245276.2231997.
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desirable since it leads to a reduction in prediction run-time, which is important in predic-

tions on large-scale data. Furthermore, the CRUM training algorithm has lower run-time

and memory complexity and has a simpler parameter selection scheme than the Relevance

Vector Machine (RVM) learning algorithm.

To further investigate the viability of using CRUM in phosphorylation site predic-

tion, we construct multiple CRUM predictors using different combinations of three phos-

phorylation site features BLOSUM encoding, disorder, and amino acid composition. The

predictors are evaluated through cross-validation and the results show that CRUM with

BLOSUM feature is among the best performing CRUM predictors in both cross-validation

and benchmark experiments. A comparative study with existing prediction tools in an inde-

pendent benchmark experiment suggests possible direction for further improving the pre-

dictive performance of CRUM predictors.

3.1 Introduction

Phosphorylation is one of the most widespread post-translational modifications

of proteins, and it plays an essential role in the regulation of many cellular processes, such

as metabolism, immune response, apoptosis, and cellular motility [39]. Phosphorylation

occurs when a protein kinase (PK) enzyme covalently bonds phosphate groups to partic-

ular amino acids in a protein [42]. Phosphorylation is reversible through a process called

dephosphorylation, where phosphatase enzymes remove the attached phosphate groups. In

the simplest case, one of these states, phosphorylated or unphosphorylated, set the protein

to be biochemically active, while the other state leaves the protein inactive. Determining

which sites of a protein is phosphorylatable is thus important in the understanding of the

regulation of biochemical processes, particularly of diseases, making PKs a major target

for drug design [7]. For example, a drug called imatinib is used to treat some cancers via

inhibiting an associated PK, preventing the cancer’s anti-apoptopic processes from being

activated via phosphorylation [13].

There are a variety of ways to discover protein phosphorylation sites experimen-

tally, and the mass spectrometry approach has been one of the most popular in recent

years [21]. The experimentally verified phosphorylation sites are listed in the annotations in
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a variety of protein databases, including Swiss-Prot [5], Phospho-Base [23], and Phospho-

Site [17]. Regardless of the method used, however, experimental discovery of phosphory-

lation sites is an expensive and laborious task with many technical challenges [39]. To help

mitigate this problem, computational approaches that identify highly probable phosphory-

lation sites have been an active area of research for over ten years. As a result, numerous

computational techniques have been proposed [39, 42] with the focus on predicting phos-

phorylatable serine, threonine, and tyrosine, as these are the types of acceptor residues

dominating the databases. Often, biologists apply these methods to narrow down the list

of possible phosphorylation sites to be experimentally verified in the proteins that they are

studying [39].

The majority of existing phosphorylation site prediction tools use methods from

supervised learning. These include the SVM used by KinasePhos [41], Musite [14], and

PPRED [2], and a variety of neural network methods used by NetPhosK [4] and GAN-

NPhos [36], among others. These tools differ in their choice of site features and encod-

ings, and their choice of learning algorithms. Moreover, these tools can be grouped into

two categories: kinase-independent and kinase-specific. In this work, we focus on kinase-

independent predictors. A kinase-independent predictor predicts whether a protein site

is phosphorylatable or not, regardless of what PK catalyzed the site. The aforementioned

PPRED is an example of such a predictor. Another example is DISPHOS [18] that employs

logistic regression to distinguish phosphorylatable sites using information on the predicted

3D structure of the protein. Specifically, DISPHOS uses computational disorder predic-

tors to determine whether a protein site is in an intrinsically disordered protein region that

does not fold into a stable 3D structure. Such protein structure information is useful, as

phosphorylation sites are frequently contained in disordered protein regions [18].

In addition to predicting whether a site is phosphorylatable or not, a kinase-

specific predictor also estimates a candidate PK or type of PK that could cause the phos-

phorylation. This is particularly important for phosphorylation sites discovered using the

popular mass spectrometry method, as the method does not identify the PK that catalyzes

the site [39]. To identify the PK, the predictor NetPhosK [4] uses Mutilayer Perceptrons

on sequence information to predict 17 common PKs. Due to the large number of PKs (esti-

mated to be greater than 500 in mammals) and very little experimental data on the majority
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of them, many predictors instead focus on predicting PK groups or families, rather than in-

dividual PKs [42]. Predictors like KinasePhos [41] subdivide the large kinase groups into

smaller, more specific groups. Using Maximum Dependence Decomposition to subdivide

the large PK groups into smaller groups, KinasePhos learns SVMs on sequence information

to make predictions from about 60 PK subgroups.

In this study, we propose a kernel-based learning method, the Classification Rel-

evance Units Machine (CRUM), and present its application to prediction of protein phos-

phorylation sites. CRUM predictors are kinase-independent, and make probabilistic predic-

tions of phosphorylation sites. Experimental results show that CRUM produces a simpler

and yet effective prediction system.

In the next section, we briefly describe the two kernel machines for classification

that have been extensively studied in the machine learning community SVM and RVM.

We note that RVM as well as CRUM have not been previously used to solve the phosphory-

lation site prediction problem. Detailed description of our newly proposed CRUM learning

model and algorithm follows in Section 3.3. Experimental setup including dataset construc-

tion and performance assessment measures is described in Section 3.4, which is followed

by presentation of results and analysis of three experiments conducted to assess the effec-

tiveness and the viability of using CRUM in phosphorylation site prediction. Finally, we

conclude our work with summary and future prospects of overcoming the limitation and

further improving predictive performance of CRUM predictors.

3.2 Kernel Machines

We assume that the data is a set ofN d-dimensional vectorsX = {x1,x2, . . . ,xN} ⊂
Rd, along with their corresponding target values t = [t1, t2, . . . , tN ]T , where (xi, ti) are

drawn independently and identically from a distribution. Since we are only considering

binary classification, ti ∈ {0, 1} for the CRUM and RVM, and ti ∈ {−1, 1} for the SVM.

The value of ti is set to 1 if site xi is phosphorylatable, otherwise ti is set to 0 or −1 for

CRUM/RVM and SVM, respectively.
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3.2.1 Support Vector Machine

The goal of an SVM is to find the hyperplane decision boundary that perfectly

separates the two classes in the training dataset with maximum margin [40]. This means

the distance from the closest training point to the hyperplane should be maximized. The

SVM has been generalized to allow for overlapping class distributions [10] and non-linear

decision boundaries via use of kernel functions [6]. A commonly used kernel function, and

the one used in this study, is the Gaussian radial basis function (RBF) kernel with parameter

γ > 0:

k(x,x′) = exp(γ‖x− x′‖2). (3.2.1)

To use the SVM, a user must specify values for the parameter C that controls the trade-off

between minimizing training error and model complexity, and all the kernel parameters;

namely, γ in the case of the Gaussian RBF kernel.

Upon completion of training, we can classify a new data point x using the fol-

lowing formula,

t̂(x) = sgn

(
N∑
i=1

wik(x,xi) + b

)
(3.2.2)

where the wis and b are learned through the SVM training [6] and sgn(x) is the sign func-

tion that evaluates to 1 if x < 0 and 1 if x > 0. As a consequence of the SVM training,

many of the wis will vanish. Therefore only a subset of the training data is required to

make predictions. The training data xi whose associated wi > 0 are called support vectors

(SVs).

3.2.2 Relevance Vector Machine

Unlike the SVM, the RVM seeks to model the posterior distribution p(C+|x) that

a site x is phosphorylatable (i.e. is a member of the positive class C+) using the following

model,
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p(C+|x) = t̂(x) = σ

(
N∑
i=1

wik(x,xi) + b

)
(3.2.3)

where σ(t) = (1 + e−t)−1, and the wis and b are learned through the RVM training. Empir-

ically it has been seen that more wi terms vanish with the RVM than with the SVM, result-

ing in a sparser, more parsimonious model [37]. Similar to the idea of SVs, the vectors xi

whose associated wi > 0 are called relevance vectors (RVs). While there has been an addi-

tion to the SVM to allow for probabilistic outputs [30], it has been shown that SVMs make

poor estimates of the posterior probability due to the nature of its objective function [37].

To use the RVM, the user needs to only specify values for the kernel parameters.

3.3 Classification Relevance Units Machine

We propose a new classification model CRUM, which combines a sparse ker-

nel regression model called the Relevance Units Machine [15] with the logistic regression

model [16]. To obtain probabilistic predictions, the CRUM seeks to model the posterior

distribution p(C+|x) that a site x is phosphorylatable (i.e. is a member of the positive class

C+) using the following model,

p(C+|x) = t̂(x) = σ

(
M∑
i=1

wik(x,ui) + b

)
(3.3.1)

where M is a positive integer, and the wis, b, kernel parameters, and the relevance units

(RUs) uis are learned through the CRUM training. A commonly used kernel function, and

the one used in this study, is the Gaussian kernel described in Section 3.2.1. The CRUM

can be visualized as a feed-forward network, as shown in Figure 3.1.

Like the RVM, the CRUM provides estimates for the posterior distribution. How-

ever, the CRUM training algorithm has lower run-time and memory complexity than the

RVM algorithm, requiring the storage of anN×M rather than anN×N design matrix [25].

To use the CRUM, the user needs to specify only the model complexity parameter M , typ-

ically with M � N to achieve a parsimonious model. A simple scheme for selecting M

is proposed later in this section to eliminate the need for costly cross-validation for model

selection.
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Figure 3.1. The CRUM model displayed as a feed-forward network. The input layer con-
sists of d nodes representing the d-dimensional input vector x. The hidden layer consists
of bias value b and the M kernel functions centered on the RUs ui. Finally, a weighted
sum of the hidden layer outputs is computed and transformed into a posterior probability
via sigmoid function σ.

3.3.1 Overview of Learning Algorithm

Our original learning algorithm described in [25] implements a regularized super-

vised learning method using approximate Bayesian techniques to learn the full set of model

parameters: the coefficients wi, the bias b, the kernel parameters, and the RUs ui. However,

this full supervised training algorithm is not practical for training on the large phosphory-

lation datasets due to the high complexity in learning the RUs and kernel parameters (see

Appendix 3A). Instead, we propose to learn the model parameters in two phases.

Phase 1 Clustering: In the first phase, unsupervised learning methods are used to

learn the RUs and kernel parameters. For computational simplicity, the k-means clustering

algorithm [24] is used to find the M clusters. Since we are using the Gaussian kernel under

the Euclidean norm, we use Euclidean distance as the similarity metric for the k-means

clustering. Then, the RUs are set to the M cluster centers, and γ is set to (2r2)1 where r is

the maximum distance between cluster centers.

This clustering phase also provides an avenue to select empirically an appropri-

ate value of M . There has been work in the clustering research community for developing

methods to determine the number of clusters, such as [35]. There are also clustering al-
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gorithms using Bayesian techniques to find the appropriate number of clusters, such as the

Variational Bayesian Expectation-Maximization algorithm for Mixture of Gaussians [9].

However, these methods are computationally complex, and we opted to use a simpler

method to determine M , as described later. Due to the regularization scheme presented

in the next phase, an overestimate of M will not result in overfitting.

Phase 2 Supervised Learning: Like the original CRUM learning algorithm [25],

the wis and b are still learned by using the iteratively reweighted least squares (IRLS)

algorithm and the hyperparameter α is learned by using type-II maximum likelihood. The

hyperparameter α serves as a regularizer, and prevents overfitting caused by overestimating

the model complexity M . What follows is a detailed description of Phase 2 of the CRUM

learning algorithm.

3.3.2 Learning Algorithm Assumptions and Derivation

Without loss of generality, we assume b = 0 and set w = [w1, w2, . . . , wM ]T for

a fixed positive integer M . Define

t̂i = σ

(
M∑

m=1

wmk(xi,um)

)
(3.3.2)

and the kernel matrix K with elements

Kij = k(xi,uj) (3.3.3)

for i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M}. Here, the kernel function k is the Gaussian

kernel with parameter γ under the Euclidean norm in Equation (3.2.1). The RUs ujs and γ

are fixed to the values learned in Phase 1.

Let t̂i = t̂(xi). We adopt a Bernoulli distribution for P (t|x,U,w,Θ), where U

is the matrix containing all RUs column-wise and Θ is the set of all kernel parameters, in

this case Θ = {γ}. This leads to the following likelihood given the model:

P (t|X,U,w,Θ) =
N∏

n=1

t̂tnn [1− t̂n]1−tn . (3.3.4)
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To mitigate overfitting by reducing the classifier’s complexity, we adopt a zero-

mean isotropic Gaussian prior distribution over w (see Appendix 3B for an empirical ex-

ample of overfitting mitigation),

p(w|α) = N (w|0, α−1I) (3.3.5)

where I is the M × M identity matrix and α ∈ R+ is the hyperparameter controlling

the precision of the Gaussian over the weights. Finally, we assume a Gamma distributed

hyperprior for the hyperparameter α,

p(α) = Gamma(α|a, b) (3.3.6)

where Gamma(x|a, b) = Γ(a)−1baxa−1e−bx and Γ(a) =
∫∞

0
ta−1e−tdt.

The a and b parameters are fixed to small values to make the hyperpriors non-

informative [37].

We obtain the posterior distribution by taking the product of all our assumptions

(3.3.4)-(3.3.6),

p(t,w, α|X,U,Θ) = P (t|X,U,w,Θ)p(w|α)p(α). (3.3.7)

The dependencies between all the variables can be visualized using a directed

graph called a Bayesian network, as shown in Figure 3.2.

Taking the negative log of Equation (3.3.7) and dropping all terms not involving

w give the following objective function,

L(w) = −
N∑

n=1

[tn ln t̂n + (1− tn) ln(1− t̂n)] +
α

2
wTw. (3.3.8)

The negative summation term in Equation (3.3.8) is known as the empirical risk

under the log loss, and is an empirical measure of the error of the classifier. The last term

of the equation is the penalty function, penalizing complex models over simpler ones. It

is known that empirical risk is a biased estimate of the true risk and thus the additional

penalty term is required to avoid overfitting [32]. Therefore, the parameter α controls the

trade-off between empirical error and model complexity. Thus, minimizing the objective
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Figure 3.2. The CRUM model displayed as a Bayesian network. Note that the nodes
contained in the center rectangle are repeated N times, one for each training data point.
When using the Gaussian kernel, Θ = {γ}.

function (3.3.8) corresponds to a structural risk minimization [22] and aims to minimize

the true error bound. Furthermore, log loss is a margin maximizing loss function [31] and

this fact helps to tighten the true error bound to further reduce overfitting [32].

To estimate w over a fixed α, we minimize Equation (3.3.8), or equivalently

maximize Equation (3.3.7), with respect to w. We can compute the w giving the minimum

of Equation (3.3.8), call it w∗, using the Newton-Raphson method, which is also known in

this classification context as the IRLS algorithm. The use of IRLS requires the computation

of the gradient and Hessian as follows,

∇L = KT (t̂− t) + αw (3.3.9)

H = KTBK + αI (3.3.10)

where B = diag(t̂1(1 − t̂1), t̂2(1 − t̂2), . . . , t̂N(1 − t̂N)) and t̂ =
[
t̂1, t̂2, . . . , t̂N

]T
. The

update formula for w is then

wnew = wold − λH−1∇L (3.3.11)
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for an appropriately chosen step size λ. Pseudocode for learning w is presented in Algo-

rithm 1.

Note that the inverse Hessian computed in line 8 can be done efficiently using

the Cholesky decomposition [27]. The inverse Hessian is also used in the learning of α;

therefore, in addition to returning the optimal w, an implementation should also return

H−1.

To learn α, we use an approximate Bayesian estimate called empirical Bayes

(also known as evidence approximation or type-II maximum likelihood). We marginalize

w in the posterior (3.3.7) and use the Laplace approximation [1],

p(t, α|X,U,Θ) =∫
P (t|X,U,w,Θ)p(w|α)p(α)dw

≈ (2π)M/2|Σ|1/2P (t|X,U,w∗,Θ)p(w∗|α)p(α) (3.3.12)

where the covariance of the Laplace approximation is

Σ = (KTBK + αI)−1 (3.3.13)

and its mean w∗ is the w that maximizes P (t|X,U,w,Θ)p(w|α). Note that w∗ and Σ are

the optimal w and the inverse Hessian H−1, respectively, as computed in Algorithm 1.

Taking the derivative of Equation (3.3.12) and setting it to zero give the following

iterative estimate for α,

αnew =
M − αoldtr[Σ]

w∗Tw∗
. (3.3.14)

In summary, the pseudocode for Phase 2 of the CRUM learning algorithm is

presented in Algorithm 2.

Note that if we wish, b may be learned by augmenting the weight vector with

b, such that w̃ = [w1, . . . wM , b]
T . The kernel matrix must also be augmented to include

an additional column of ones. Denoting the column vector of ones with 1, we define the

augmented kernel matrix as K̃ = [K,1]. Then, we use the aforementioned algorithms

using w̃ and K̃ instead of w and K, respectively.
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Input: Matrix of training data X and its associated vector of class labels t,

kernel function k with parameters Θ, number of kernel functions

M , RUs u1,u2, . . . ,uM , and trade-off parameter α

1: w← initial value

2: λmin ← a small value (e.g. 2−8)

3: while w has not converged do

4: wold ← w

5: Lold ← Equation (3.3.8)

6: L ← ∞
7: ∇L ← Equation (3.3.9)

8: H← Equation (3.3.10)

9: ∆← H−1∇L
10: λ← 1

11: {Comment: Line search to find an appropriate λ value}
12: while λ > λmin and L > Lold do

13: w← wold − λ∆

14: L ← Equation (3.3.8) using updated w

15: λ← λ/2

16: end while

17: {Comment: If line search failed, revert to old w value}
18: if λ < λmin then

19: w← wold

20: end if

21: end while

22: return w,H−1

Algorithm 2: Learning w
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Input: Matrix of training data X and its associated vector of class labels t,

kernel function k with parameters Θ, number of kernel functions

M , RUs u1,u2, . . . ,uM

1: w, α← initial values

2: Compute design matrix K using Equation (3.3.3)

3: while w and α have not converged do

4: w← Algorithm 1 using the current value of w as initial value

5: α← Equation (3.3.14)

6: end while

7: return w

Algorithm 3: CRUM Supervised Learning Algorithm (Phase 2)

3.3.3 Selecting Model Complexity

Both phases of the CRUM learning algorithm require the specification of a fixed

parameter M that represents the number of RUs and thus is a model complexity parameter.

Cross-validation could be used by repeatedly using the entire learning algorithm on a vari-

ety of selected M values and choosing the model with the best performance. Since this is

a slow and time consuming process, we propose a more efficient method that exploits only

Phase 1 of the learning algorithm and avoids the costly Phase 2.

During Phase 1, we cluster the unlabeled data X into M clusters using k-means

clustering. Giving the clustering result a probabilistic interpretation, the AIC and BIC can

be computed [28]. Assume all clusters are spherical Gaussian distributions with identical

variance, then the maximum likelihood estimate for the variance is

σ̂2 =
1

N −M

N∑
i=1

||xi − µ(i)||2 (3.3.15)

where µ(i) is the closest cluster center to xi using Euclidean distance. The log-likelihood

of X given the learned clustering distribution DM is then

l(X|DM) =
N∑
i=1

(
log

1√
2πσ̂d

− 1

2σ̂2
||xi − µ(i)||2 + log

N(i)

N

)
(3.3.16)
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where N(i) is the number of datapoints belonging to the same cluster as xi. There are

M +Md free parameters in this model: M−1 mixture probabilities, the Md cluster center

coordinates, and the variance.

With the log-likehood of the data and the number of free parameters, we can

compute the AIC and BIC of the M cluster model using

AIC(M) = 2(Md+M − l(X|DM)) (3.3.17)

BIC(M) = (Md+M) logN − 2l(X|DM) (3.3.18)

where a low AIC or BIC implies a good model. This allows CRUM’s M to be selected

as the model with the best observed AIC or BIC value. This has clear computational ad-

vantages: i) the costly supervised learning algorithm (Algorithm 2) is not invoked and ii)

only a single clustering needs to be conducted per M value evaluated, compared to a n-

fold cross-validation that would require clustering and supervised training on n different

datasets.

3.4 Experimental Setup

3.4.1 Dataset Preparation

Dataset Type #Pos #Neg Comments
S 9129 10137

Evaluation T 2206 2799 Used in the comparison of learning methods
Y 1555 1691
S 1255 15459

Benchmark Test T 353 9995 Test dataset for benchmark experiment
Y 396 4795
S 8000 8000 Used in

Benchmark Training T 1949 1949 1) cross-validation experiment and
Y 1344 1344 2) benchmark experiment as training dataset

Table 3.1. Composition of datatsets. (#Pos the number of phosphorylation sites (positives),
#Neg the number of putative non-phosphorylation sites (negatives))
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We prepared three datasets, both of which are derived from the Phospho.ELM

database [11, 12] of known, experimentally verified eukaryotic phosphorylatable S, T, and

Y sites. The composition of each dataset is summarized in Table 3.3.1.

• Evaluation dataset: This dataset contains all known sites from 2009 release of Phos-

pho.ELM.

• Benchmark test dataset: The independent dataset taken from [2] was used as bench-

mark test dataset in this study. This dataset is originally from [33], where it was used

to assess the performance of existing predictors. The annotations of this dataset are

updated based on Release 9.0 of the Phospho.ELM database [11, 12].

• Benchmark training dataset: This dataset contains all known phosphorylation sites

from the Phospho.ELM (Release 8.1) database minus the overlapping entries with the

benchmark test dataset, providing a training dataset independent of the benchmark

test dataset. This dataset was also taken from [2].

Positive Datasets: Phosphorylation sites of a specific window size are extracted,

resulting in a positive dataset for each type of sites (S, T, and Y). Since independent ob-

servations are assumed by the CRUM learning algorithms, each positive training dataset

is reduced based on homology. As done in PredPhospho [20], each dataset is individually

searched for sites with more than 70% identity using Needleman-Wunsch alignment [26],

and only one of the similar sites is kept in the dataset. Homology reduction is not per-

formed on the benchmark test dataset so that all sites are used in the evaluation, including

sites at the edges of the protein sequence that do not have sufficient window size.

Negative Datasets: All S, T, and Y sites not annotated as phosphorylatable in

the datasets’ proteins are assumed to be nonphosphorylatable. This assumption may prove

false in some instances, as some of the sites may indeed be undiscovered phosphorylation

sites. However, due to the rareness of phosphorylation sites, only a few false negative sites

are expected and will only affect our training and evaluation to a small degree [2]. Using the

same procedure as the positive training datasets preparation, the negative training datasets

are homology reduced. In addition, since the sizes of the negative datasets far exceed those

of the positive datasets, only a random sample of the negative sites are chosen in equal size

to each positive dataset to improve training [2, 20].
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3.4.2 Performance Assessment Measures

The following predictive performance measures on the test datasets are used to

assess all predictors: sensitivity (Sn), specificity (Sp), Matthews correlation coefficient

(MCC), and accuracy (Ac). By construction, the test datasets are independent of the train-

ing datasets and so the test datasets have no bearing on the training or on the determination

of the parameters. Thus, the test datasets gives unbiased performance measurements on the

generalization ability of the considered predictors. The performance measures are com-

puted as follows

Ac =
TP + TN

TP + FP + TN + FN
× 100% (3.4.1)

Sn =
TP

TP + FN
× 100% (3.4.2)

Sp =
TN

TN + FP
× 100% (3.4.3)

MCC =
TP × TN − FP × FN√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)
(3.4.4)

where the variables are the number of true positives (TP ), false positives (FP ), true neg-

atives (TN ), and false negatives (FN ). For Ac, Sn, and Sp, the ideal is 100%. As a

correlation coefficient, MCC ranges from −1 to +1, and the ideal predictor would have a

MCC of 1.

3.4.3 Implementation

To conduct the computational experiments, we use the LIBSVM [8] implementa-

tion of the SVM that is freely available at http://www.csie.ntu.edu.tw/˜cjlin/

libsvm/. For the RVM, Tipping’s MATLAB implementation of the fast RVM learning al-

gorithm described in [38] is used, and is freely available at www.vectoranomaly.com.

Since the RVM implementation is in MATLAB and a MATLAB interface is available for

LIBSVM, we implemented CRUM, and conducted all dataset processing and experiments

in the MATLAB environment.
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3.5 Results and Discussion

3.5.1 Comparison of Learning Methods

This experiment focuses on the comparison of learning methods where the per-

formance of the CRUM learning method is compared to other popular kernel machines the

SVM and the RVM [37] for prediction of phosphorylation sites. In addition, three different

model selection schemes for the CRUM are compared.

Parameter Search

All models considered contain parameters that are not learned and thus must be

determined by external means. These parameters are C and γ for the SVM, γ for the RVM,

and M for the CRUM. A search over the parameter space is conducted and each model is

evaluated using cross-validation. The parameters that result in the lowest prediction error

according to cross-validation are used to train the final predictor for the comparison. For

the T and Y datasets, 10-fold cross-validation is used. Since the S dataset is significantly

larger, 3-fold cross-validation is used.

The parameter searches are conducted as follows. For the SVMs, we conduct a

course grid search overC = 2i and γ = 2j where i, j ∈ {−10,−9, . . . , 9, 10}. Based on the

cross-validation results, a region is heuristically determined for a more precise parameter

search. The parameter searches for RVM and CRUM are conducted in a similar fashion

over a single dimension, γ or M , respectively. Also, the use of clustering in CRUM as

described in Section 3.3.3 allows M to be selected as the model with the best AIC or BIC

value.

Protein Site Features

Crystallization studies show that a region of the protein substrate of about 9 to

12 amino acids in length surrounding the acceptor residue contacts the PK active site [34].

Therefore, the sequence of amino acids surrounding a site in its 3D structure should provide

sufficient information to determine whether the site is phosphorylatable. However, since
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the 3D structure is not usually known, most predictors settle for only using the amino acid

sequence within a window surrounding the site in the linear sequence.

Since CRUM relies mainly on sequence like NetPhos, we adopt the same window

sizes that they experimentally verified to have good predictive ability [3]. Specifically, a

window size of 9 is used for T and Y sites, while a window size of 11 is used for S sites.

Site sequences are represented using the BLOSUM encoding that was shown to achieve

better performance than the orthogonal encoding [19]. Each amino acid in the window

surrounding the site is represented by a real-valued 20- dimensional vector of substitution

scores for each amino acid. A min-max normalized BLOSUM62 matrix is used, where each

row of the matrix is the substitution scores of the amino acid against all other amino acids.

Using a window size of 11 for S sites, we need to represent each of the 11 amino acids

downstream and upstream of the site, resulting in a 440-dimensional vector representing

the site. Similarly, T and Y sites are represented by 360-dimensional vectors. Note that

center amino acid is always an S, T, or Y, and is thus excluded from the representation.

Predictor Assessment

In addition to the performance assessment measures described in Section 3.4.2,

the predictors are also assessed based on their computational complexity. The number of

critical vectors (CVs), which are the SVs, RVs, and RUs for the SVM, RVM, and CRUM,

respectively, are reported, as this measure gives an indication of the run-time and memory

complexity of the resulting predictors, as given in Equations (3.2.2), (3.2.3), and (3.3.1).

We also conduct run-time benchmarking trials for the training and prediction algorithms,

and report the average of 10 trials. In this case, note that there is a bias toward the SVM

implemented in faster compiled C++, whereas both CRUM and RVM are implemented in

the slower interpreted language of MATLAB. Due to the presence of multiple local minima

in the clustering phase, the CRUM predictors includes 10 replicates of k-means to mitigate

this problem and is included in the training run-times reported.

The computer used on the smaller T and Y datasets is a 2.53 GHz Intel Core 2

Duo with 4 GB of memory. Due to the memory requirements for the RVM, we used a PC

with 2.83 GHz Intel Core 2 Quad with 8 GB of memory to analyze the large S dataset. The

run-time benchmarking trials are run on these computers.
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Results

Predictor Ac (%) Mcc Sn (%) Sp (%) #CV Train (s) Test (s)2

SVM 75.32 0.51 68.42 81.54 10,536 491.42 32.46
RVM 74.01 0.48 69.52 78.08 76 3312.55 2.03
CRUM-CV 73.97 0.48 69.63 77.89 134 2964.50 2.27
CRUM-BIC 70.34 0.40 63.82 76.21 64 2681.57 1.10
CRUM-AIC 74.13 0.48 68.42 79.27 157 3135.63 2.74

Table 3.2. Comparison of predictors on test dataset for serine site prediction

Predictor Ac (%) Mcc Sn (%) Sp (%) #CV Train (s) Test (s)2

SVM 76.55 0.53 60.45 89.25 3031 25.80 2.16
RVM 73.75 0.46 60.90 83.87 50 499.68 0.19
CRUM-CV 74.35 0.48 59.09 86.38 82 129.66 0.25
CRUM-BIC 69.74 0.38 53.64 82.44 20 73.80 0.07
CRUM-AIC 73.74 0.47 57.73 86.38 88 139.56 0.25

Table 3.3. Comparison of predictors on test dataset for threonine site prediction

Predictor Ac (%) Mcc Sn (%) Sp (%) #CV Train (s) Test (s)2

SVM 68.52 0.37 64.52 72.19 2339 11.10 1.24
RVM 69.75 0.39 65.16 73.96 16 75.95 0.04
CRUM-CV 70.06 0.40 65.81 73.96 37 53.07 0.07
CRUM-BIC 70.37 0.41 66.45 73.96 16 36.91 0.03
CRUM-AIC 70.37 0.41 66.45 73.96 78 78.31 0.17

Table 3.4. Comparison of predictors on test dataset for tyrosine site prediction

For this experiment, we used the evaluation dataset described in Section 3.4.1.

For an unbiased comparison between different models, we need a test dataset. We therefore

reserve 10% of each of the positive and negative datasets as the test dataset. The remaining

90% forms the training and validation datasets.

Table 3.2, Table 3.3, and Table 3.4 show the details of the comparative analysis of

the predictors on the test dataset for S, T, and Y site predictions, respectively. The CRUM

predictor names indicate the method used to determine the model complexity parameter M,

which is either “CV” for cross-validation, AIC, or BIC.

50



In Table 3.2, it is shown that the SVM has the best predictive performance for

the S dataset, but the CRUM and RVM are close. The SVM also has the shortest training

times, but we note again that the reported times are biased toward the SVM due to its

faster compiled implementation compared to the slower interpreted language of MATLAB.

However the CRUM and RVM models are significantly more parsimonious with the SVM

having at least 67 times more CVs. The effect this complexity has can be seen on the

testing times where the RVM and CRUM predictors are at least 9 times faster even with the

implementation disadvantage.

With Table 3.3 for the T dataset, it is shown again that the SVM achieves the

highest predictive performance. However, the RVM and CRUM predictors perform closely.

The CRUM and RVM models are again more parsimonious than the SVM, using between

0.66% and 2.90% of the number of CVs. This leads to CRUM and RVM predictors that

are 9 to 31 times faster than the SVM. Furthermore the CRUM training time is about 4 to

7 times faster than the RVM training.

Table 3.4 shows that the CRUM predictors have better predictive performance

over the SVM and RVM, though all three methods are close. We again see the CRUM and

RVM models achieving more parsimonious models than the SVM model, using between

0.68% to 3.33% of the number of CVs; leading to prediction runtime on the testing data of

about 8 to 41 times faster than on the SVM. In this case, the RVM has a fast training time,

beating the CRUM-AIC predictor by a few seconds. However, the CRUM BIC predictor’s,

with comparable predictive performance and complexity, training is about 2 times faster

than RVM’s and only about 3 times slower than SVM’s.

Overall, we see that the SVM offers the best prediction accuracy of the meth-

ods considered for S and T prediction and the quickest training times over all datasets.

However, this comes at the significant cost that the user does not know the uncertainty

of the SVM’s prediction, or has an inaccurate measure of uncertainty if Platt’s method is

used to obtain posterior estimates from SVM outputs [30, 37]. Both the CRUM and RVM

provide accurate posterior estimates by virtue of their data likelihood-based objective func-

tions [25,37], while also significantly reducing the run-time and memory complexity of the

prediction algorithm, as indicated by the use of less than 5% of the CVs than the SVM.
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Arguably, prediction run-time that is more important than training run-time, as training is

typically invoked at far less frequency than the prediction algorithm.

In comparison to the RVM, the CRUM achieves comparable predictive perfor-

mance with a lower cost training algorithm, in both run-time and memory complexity.

Furthermore, through the use of AIC and BIC, model selection is simpler and faster with

the CRUM. It is known that with a finite sample, BIC underestimates the model complex-

ity, while the AIC overestimates it [16], as confirmed here by the cross-validation model

complexity falling between BIC’s and AIC’s. However the results also show that this is

not an issue with the CRUM, as the built-in regularization mitigates the overfitting problem

and the resulting complex AIC model exhibits comparable results to the cross-validation

model. Therefore the use of AIC is a cheap, viable option for CRUM model selection.

3.5.2 Evaluation of Protein Site Features

The goal of this experiment is to evaluate different phosphorylation site features

and their combinations. In addition to the BLOSUM encoded sequence feature described in

Section 3.5.1, we consider amino acid composition and predicted disorder regions, which

provide 3D structure information. The performance of CRUM predictors based on combi-

nations of these three features is compared via cross-validation to give insight into which

feature combinations are important.

Protein Site Features

BLOSUM Encoded Sequence Feature: See Section 3.5.1.

Amino Acid Composition: A statistical analysis of the amino acids surrounding

phosphorylation sites revealed characteristics that coincide with the amino acid composi-

tion of disordered regions. Both types of sequences are significantly depleted in rigid amino

acids and significantly enriched with flexible amino acids [18]. Due to this statistically sig-

nificant difference in composition, amino acid composition can be used to discriminate a

phosphorylatable site from a non-phosphorylatable site. The percent amino acid composi-

tion of the site can be represented using a 20-dimensional vector, where each component

represents the percent composition of one of the 20 amino acids. The percent composition
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is computed over the same window size as the extracted site, including the center amino

acid.

Disordered Regions: Phosphorylation sites and other post-translational modifi-

cations are observed to be located in disordered regions of proteins frequently, but not

exclusively [18]. Intrinsically disordered protein regions are the parts of the protein that

do not fold into a stable 3D structure. To maximize the applicability of CRUM, the true

identification of disordered regions is not required and is instead predicted using a disorder

predictor. The SVM and logistic regression-based VSL2B predictor is used that is based

on amino acid composition [29]. VSL2B is applied to the entire protein sequence using

an output window length of one, resulting in a probabilistic classification for each amino

acid in the sequence being in a disorder region. The disorder classifications of the site and

its surrounding amino acids are extracted over the same window sizes as the extracted site

sequence. Therefore, 23-dimensional vectors represent S sites, and 19-dimensional vectors

represent T and Y sites. Unlike the BLOSUM encoding, the center amino acid is included,

as its disorder classification is dependent on the surrounding amino acids.

Results

Features Ac(%) Sn(%) Sp(%) MCC
CRUMp B 75.25 72.33 78.18 0.51
CRUMp D 64.00 78.36 49.64 0.29
CRUMp A 69.08 70.04 68.12 0.38
CRUMp B+D 75.49 73.16 77.82 0.51
CRUMp B+A 75.21 72.35 78.07 0.51
CRUMp D+A 68.37 72.73 64.00 0.37
CRUMp B+D + A 75.60 73.32 77.88 0.51

Table 3.5. Three-fold cross-validation performance on phosphoserine (S) prediction. (Ac
- Accuracy, Sn - Sensitivity, Sp - Specificity, MCC - Matthews correlation coefficient; B -
BLOSUM encoding feature, D - Disorder feature, A - Amino acid composition feature)

To evaluate the predictive performance of using the CRUM under a variety of

different protein site features, we conducted a 3-fold cross-validation experiment using a

benchmark training dataset described in Section 3.4.1. The protein features considered

are the BLOSUM encoding of the site (B), disorder (D), amino acid composition (A),
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Features Ac(%) Sn(%) Sp(%) MCC
CRUMp B 71.34 66.24 76.45 0.43
CRUMp D 64.91 71.88 57.93 0.3
CRUMp A 67.75 66.44 69.06 0.36
CRUMp B+D 71.73 67.21 76.24 0.44
CRUMp B+A 71.19 66.09 76.30 0.43
CRUMp D+A 68.06 69.06 67.06 0.36
CRUMp B+D+A 71.83 67.21 76.45 0.44

Table 3.6. Three-fold cross-validation performance on phosphothreonine (T) prediction.
(Ac - Accuracy, Sn - Sensitivity, Sp - Specificity, MCC - Matthews correlation coefficient;
B - BLOSUM encoding feature, D - Disorder feature, A - Amino acid composition feature)

Features Ac(%) Sn(%) Sp(%) MCC
CRUMp B 66.56 66.07 67.04 0.33
CRUMp D 62.31 66.89 57.74 0.25
CRUMp A 62.65 63.91 61.38 0.25
CRUMp B+D 65.74 68.15 63.32 0.32
CRUMp B+A 66.70 67.11 66.29 0.33
CRUMp D+A 62.69 67.26 58.11 0.25
CRUMp B+D+A 66.00 67.63 64.36 0.32

Table 3.7. Three-fold cross-validation performance on phosphotyrosine (Y) prediction. (Ac
- Accuracy, Sn - Sensitivity, Sp - Specificity, MCC - Matthews correlation coefficient; B -
BLOSUM encoding feature, D - Disorder feature, A - Amino acid composition feature)

and combinations thereof. Model selection for these CRUM predictors is conducted on

the entire benchmark training dataset using the AIC scheme. Table 3.5, Table 3.6, and

Table 3.7 give the resulting performance for S, T, and Y sites respectively, using a posterior

threshold of 0.5. This means we classify a site as phosphorylatable if the predicted posterior

probability is greater than 0.5, otherwise the site is classified as not phosphorylatable.

The results indicate that the CRUM predictors containing the BLOSUM feature

show the best performance in terms of both accuracy and Matthews correlation coefficient

(MCC) with well balanced sensitivity and specificity. Excluding the BLOSUM feature

drops the specificity, and thus overall accuracy and MCC, by including more false positives.

This remains true under a variety of different posterior threshold settings, as plotted in

Figure 3.3 through Figure 3.5. In the ROC plots, the four CRUM predictors that use the

BLOSUM feature (CRUM B, B+A, B+D, and B+D+A) perform roughly identically under
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Figure 3.3. ROC for phosphoserine (S) prediction by CRUM based on cross-validation
performance. The plot is generated using different posterior threshold values ranging from
0 to 1 in increments of 0.1.

Figure 3.4. ROC for phosphothreonine (T) prediction by CRUM based on cross-validation
performance. The plot is generated using different posterior threshold values ranging from
0 to 1 in increments of 0.1.

different threshold settings, and are always better or equal to the predictors that exclude the

BLOSUM feature. This experiment suggests that using the BLOSUM feature is important

to achieve good predictive performance.

It also should be noted that a user can target a desired false positive rate by ap-

propriately selecting the posterior threshold for the CRUM using the ROC plots. No re-
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Figure 3.5. ROC for phosphotyrosine (Y) prediction by CRUM based on cross-validation
performance. The plot is generated using different posterior threshold values ranging from
0 to 1 in increments of 0.1.

training is needed. This is in contrast with predictors like PPRED [2] that uses the standard

hard-decision SVMs with no additional trained logistic regression model on the SVM out-

puts [30], where the specificity is fixed after training and thus the user has no way to change

it without retraining the predictor under different settings of parameters, such as window

size or positive to negative training data ratio.

3.5.3 Benchmark Comparison

Finally, the third experiment concentrates on the comparative study with existing

predictors where the performance of different CRUM predictor configurations is compared

to that of existing predictors on previously published benchmark datasets [2]. For this

experiment, the CRUM predictors using different combinations of the features described

in Section 3.5.2 are trained on the entire benchmark training dataset described in Section

3.4.1. The trained CRUM predictors’ performances are then computed using the bench-

mark test dataset that is independent of the training set, as described in Section 3.4.1.

For comparison, the performance of NETPHOS [3] and DISPHOS [18] are also

computed using the latest versions available on the web. Note that these tools have been up-

dated since their original publication and may have been trained on proteins included in the
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benchmark test dataset used in this experiment. Therefore, the performance of NETPHOS

and DISPHOS may be biased in favor of them in this comparison.

Protein Features for Sites on Edges of Protein

In previous experiments and in the training of the CRUM predictors in this sec-

tion, sites that lie on the edges of a protein sequence are omitted because of the insufficient

number of amino acids to fill the required window size. However, since NETPHOS and

DIPHOS report results for these edges sites, we modify CRUM to do the same when com-

puting predictions.

Edge sites are accommodated by filling in the missing amino acids with the am-

biguous amino acid code X. If the site is found near the start of a protein sequence, then

the appropriate number of Xs are prepended to the site’s sequence to fill the window size.

If the site is found near the end of the protein sequence, then the appropriate number of

Xs are appended to the site’s sequence to fill the window size. These Xs are ignored in

the computation of amino acid composition and are given a disorder value of 0.5 for its

position in the disorder encoding described in Section 3.5.2.

Results

Figures 3.6, 3.7, and 3.8 show ROC plots for S, T, and Y sites, respectively. Sim-

ilar to the cross-validation experiment, we see that all the BLOSUM-based CRUM pre-

dictors perform comparably with generally greater TPRs compared to the non-BLOSUM-

based CRUM predictors (A, D, and D+A) at similar FPR values.

In comparison with NETPHOS and DISPHOS, there is no uniformly better tool in

this benchmark test dataset. NETPHOS underperforms DISPHOS and the four BLOSUM-

based CRUM predictors uniformly over all FPR values.

For S sites in Figure 3.6, DISPHOS has an advantage in the very small FPR range

(less than 0.03) and at around 0.4 - 0.6 FPR, but otherwise the performance is comparable

to the simpler BLOSUM-based CRUM predictors. For T sites in Figure 3.7, we again see

DISPHOS and BLOSUM-based CRUM predictors being comparable, with the exception

of an advantage for DISPHOS at the very low FPR range, again at less than 0.03. However,
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Figure 3.6. ROC for phosphoserine (S) prediction by CRUM based on benchmark perfor-
mance. The plot is generated using different posterior threshold values ranging from 0 to 1
in increments of 0.1.

Figure 3.7. ROC for phosphothreonine (T) prediction by CRUM based on benchmark
performance. The plot is generated using different posterior threshold values ranging from
0 to 1 in increments of 0.1.

different characteristics are seen for the Y sites in Figure 3.8. Here DISPHOS displays the

best performance for FPRs under 0.6, with an increase in TPR of at most 0.3 compared to

BLOSUM-based CRUM predictors.

A possible major factor for the underperformance of the CRUM predictors is the

high dimensionality of the site representation relative to the sample size, particularly on the
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Figure 3.8. ROC for phosphotyrosine (Y) prediction by CRUM based on benchmark per-
formance. The plot is generated using different posterior threshold values ranging from 0
to 1 in increments of 0.1.

Y dataset. The design of DISPHOS’ encoding of sites into vectors is more computation-

ally complex, such as the inclusion of the results of several disorder predictors, compared

to the settings used here from CRUM. However, the design of DISPHOS used Fisher’s

permutation test and principal component analysis to reduce the dimensionality [18]. This

dimensionality reduction to account for the small sample size may be a major factor in DIS-

PHOS performance on the Y dataset, and will be considered in future work using CRUM.

3.6 Conclusions

In this study, probabilistic predictions of protein phosphorylation sites were pro-

posed using our CRUM model as an alternative to the popular SVM and RVM. The ex-

perimental results show that the extremely compact models of CRUM provide a significant

reduction to the computational complexity of the prediction algorithm, which is advan-

tageous in conducting predictions at a large scale. We show that CRUM using only the

BLOSUM feature, CRUM B, has among the best accuracy and MCC performance com-

pared to other CRUM settings in both crossvalidation and benchmark experiments. The

simplicity and efficiency of the BLOSUM feature computation make the data preparation

process for using CRUM faster, as disorder predictors do not need to be invoked.
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While the BLOSUM-based CRUM predictors are often comparable to the more

complex DISPHOS predictor, which uses several disorder and other structural predictors

to extract features, on the S and T benchmark datasets, there is a cost to this reduction of

computational complexity, as DISPHOS outperforms the different CRUM predictor con-

figurations considered in this study under the Y benchmark dataset.

In the future, as mentioned previously, dimensionality reduction of the protein

feature encoding will be considered to improve the performance, particularly with Y sites.

In addition, a multi-kernel implementation of CRUM shall be considered where only a

single protein feature will be considered in each kernel. Currently in the combined fea-

ture CRUM predictors (e.g. B+D+A), all features are concatenated into the one vector and

used in the same Gaussian kernel. When combined, it is possible that the lower dimen-

sional features D and A may be overshadowed by the B feature simply due to B’s high

dimensionality rather than D or A being unimportant, as the above results may suggest. A

multi-kernel solution may avoid this issue and the supervised learning algorithm may then

be able to exploit all features for improved predictive performance.

Furthermore, we plan to extend the CRUM model and training algorithm for

multi-class prediction. This will allow for kinasespecific phosphorylation site prediction,

where a prediction for what type of PK phosphorylates the site is also made.
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Figure 3.9. Training running-time comparison of CRUM algorithms. Algorithm 1 is the
supervised learning algorithm described in Article 1 (Chapter 2) and Algorithm 2 is the
hybrid learning algorithm described in Article 2 (Chapter 3).

Appendix 3A: Training Running-time Comparison of CRUM

Algorithms

While the CRUM supervised learning algorithm presented in Article 1 (Chapter

2) has it merits in leading to more compact models than the SVM or RVM, the algorithm is

not appropriate for problems larger than the benchmark datasets considered. To overcome

this issue, the hybrid unsupervised/supervised learning algorithm of Article 2 (Chapter 3)

was devised. Figure 3.9 shows the difference in training time between these two algorithms

on the benchmark datasets considered in Article 1 (Chapter 2) using the same CRUM model

size M . The hybrid learning algorithm displays a two to three orders of magnitude reduc-

tion in running time compared to the original supervised learning algorithm. Since the

hybrid learning algorithm is more practical, the remaining dissertation focuses on using

and building upon the hybrid learning algorithm.
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Figure 3.10. Accuracy comparison between empirical Bayes CRUM algorithm (EB Test)
and maximum likelihood CRUM algorithm (ML Test) on the wine test dataset.

Appendix 3B: Accuracy Comparison between Empirical Bayes

and Maximum Likelihood

To demonstrate the ability of the CRUM learning algorithm’s use of empirical

Bayes (EB) to mitigate overfitting, we consider a comparison with a CRUM learning algo-

rithm that omits the use of a Gaussian prior on w. Without the prior, this second CRUM

learning algorithm would then learn w using a maximum likelihood (ML) estimator. Both

algorithms are used to train a CRUM model on the wine dataset under increasing values

of model size M . The resulting models are evaluated using a hold-out test dataset. It is

observed in Figure 3.10 that with increasing M , the ML solution quickly overfits as accu-

racy sharply drops and performance becomes unstable. On the other hand, the EB solution

mitigates overfitting and provides a stable solutions with high accuracy. The penalty for

choosing a M that is larger than ideal is minimal in comparison to the ML solution. There-

fore the use of simple heuristics to choose M is sufficient even though such methods may

overestimate M .
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Chapter 4

Multiclass relevance units machine:

benchmark evaluation and application

to small ncRNA discovery

Abstract

Background. Classification is the problem of assigning each input object to one of a finite

number of classes. This problem has been extensively studied in machine learning and

statistics, and there are numerous applications to bioinformatics as well as many other

fields. Building a multiclass classifier has been a challenge, where the direct approach of

altering the binary classification algorithm to accommodate more than two classes can be

computationally too expensive. Hence the indirect approach of using binary decomposition

has been commonly used, in which retrieving the class posterior probabilities from the set

of binary posterior probabilities given by the individual binary classifiers has been a major

issue.

Reprinted, with permisssion, from M. Menor, K. Baek, and G. Poisson, “ Multiclass relevance units ma-

chine: Benchmark evaluation and application to small ncRNA discovery,” BMC Genomics, 14(Suppl 2):S6,

2013. DOI: 10.1186/1471-2164-14-S2-S6. PMCID: PMC3582431.

This work is based on an earlier work: M. Menor, K. Baek, and G. Poisson, “ Multiclass relevance units

machine: Benchmark evaluation and application to small ncRNA discovery,” in Proceedings of ISCB-A-

sia/SCCG 2012, Shenzhen, China, December 17-19, 2012.
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Methods. In this work, we present an extension of a recently introduced proba-

bilistic kernel-based learning algorithm called the Classification Relevance Units Machine

(CRUM) to the multiclass setting to increase its applicability. The extension is achieved

under the error correcting output codes framework. The probabilistic outputs of the binary

CRUMs are preserved using a proposed linear-time decoding algorithm, an alternative to

the generalized Bradley-Terry (GBT) algorithm whose application to large-scale predic-

tion settings is prohibited by its computational complexity. The resulting classifier is called

Multiclass Relevance Units Machine (McRUM).

Results. The evaluation of McRUM on a variety of real small-scale benchmark

datasets shows that our proposed Naı̈ve decoding algorithm is computationally more ef-

ficient than the GBT algorithm while maintaining a similar level of predictive accuracy.

Then a set of experiments on a larger scale dataset for small ncRNA classification have

been conducted with Naı̈ve McRUM and compared with the Gaussian and linear SVM.

Although McRUMs predictive performance is slightly lower than the Gaussian SVM, the

results show that the similar level of true positive rate can be achieved by sacrificing false

positive rate slightly. Furthermore, McRUM is computationally more efficient than the

SVM, which is an important factor for large-scale analysis.

Conclusions. We have proposed McRUM, a multiclass extension of binary CRUM.

McRUM with Naı̈ve decoding algorithm is computationally efficient in run-time and its pre-

dictive performance is comparable to the well-known SVM, showing its potential in solving

large-scale multiclass problems in bioinformatics and other fields of study.

4.1 Background

The problem of classifying an object to one of a finite number of classes is a

heavily studied problem in machine learning and statistics. There are numerous applica-

tions in bioinformatics, such as cancer classification using microarrays [11], prediction of

protein localization sites [14], protein fold recognition [8], and identification of the kinase

that acts upon a protein phosphorylation site [5].

Recently, a novel kernel-based learning algorithm called the CRUM for binary

classification was introduced [21]. The CRUM addresses some of the concerns in the use
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of the SVM [27], including removing the specification of the error/complexity trade-off

parameter by using empirical Bayes methods, generation of more parsimonious models,

and providing probabilistic outputs through the estimation of the posterior probability den-

sity. Furthermore, the training algorithm is more efficient than that of the RVM [26] that

similarly addressed the SVM concerns. The highly compact model the CRUM generates

significantly reduces the run-time of the prediction system and hence provides further ad-

vantages over the SVM in conducting large-scale data analyses [22], such as Next Genera-

tion Sequencing (NGS) data analysis.

In this paper, we extend the CRUM algorithm into the more general multiclass

setting, allowing for applications beyond binary classification. This is achieved by decom-

posing the multiclass problem into a set of binary classification problems using the error

correcting output codes (ECOC) [20] framework. To preserve the probabilistic outputs

of the binary CRUM into the multiclass setting, the algorithm based on the generalized

Bradley-Terry (GBT) model [16] is considered. Since the optimization problem solved by

the GBT algorithm can prohibit its use in large-scale classification settings, we also pro-

pose a simple linear-time algorithm as an alternative. The details of Multiclass Relevance

Units Machine (McRUM) construction based on the binary CRUM are described in the

next section.

In this study, McRUM is evaluated on two sets of experiments. First, McRUM is

applied to a variety of small-scale datasets from the UCI repository [3] in order to compare

the performance of McRUM under different settings by using different decompositions of

the multiclass problem into a set of binary classification problems and the use of two differ-

ent decoding algorithms that aggregate the binary predictions into multiclass predictions.

In the second set of experiments, McRUM is applied to the problem of classifying

small noncoding RNAs (ncRNAs) to validate the use of the method on a problem of a

larger scale than that of the first set of experiments. This second set of experiments deal

with a three-class classification problem, specifically, the identification of sequences from

two classes of post-transcriptional gene regulatory ncRNAs – mature microRNA (miRNA)

and piwi-interacting RNA (piRNA) – from other ncRNAs. This is of interest to small

RNA sequencing projects (under 40 nt) where novel miRNAs and piRNAs can be found

amidst a set of unannotated reads. For the miRNAs, it is especially interesting since the
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miRNA precursors may not be sequenced in those small ncRNA sequencing project, and

thus losing the usual avenue of finding novel miRNAs via identification of their precursors

[17]. Furthermore, the predictions with McRUM are based solely on the RNA sequences

and no additional genomic information is required, which is ideal for the study of organisms

whose genomic information is lacking.

The experimental results on datasets taken from the UCI repository together with

the preliminary results on small ncRNAs show that, under certain settings, McRUM can

achieve comparable or higher accuracy than previous analyses of these problems Thus the

results suggest CRUM’s potential in solving multiclass problems in bioinformatics and

other fields of study.

4.2 Methods

4.2.1 Classification Relevance Units Machine

The sparse kernel-based binary classification model called the Classification Rel-

evance Units Machine (CRUM) obtains probabilistic predictions [21,22]. Let X be a set of

objects; e.g. X ⊆ Rd. The CRUM models the posterior distribution p(C+|x) that an object

x ∈ X is a member of the positive class C+ using the following model

p(C+|x) = t̂(x) = σ

(
M∑
i=1

wik(x, um) + b

)
(4.2.1)

where σ is the sigmoid function, M is a positive integer, k(, ) is a kernel function, the

weights wi ∈ R, the bias b ∈ R, and the Relevance Units (RUs) ui ∈ X . The posterior of

the negative class is then p(C−|x) = 1− p(C+|x).

For a given k(, ), M , an observed dataset X = {x1, x2, . . . , xN} ⊆ X and the as-

sociated class labels {c1, c2, . . . , cN}, the binary CRUM learning algorithm first estimates

the kernel parameter(s) and uis through unsupervised learning, and then learns the values

of the wis, and b through an iterative approach. The CRUM learning algorithm minimizes

structural risk under log loss [4,27] and determines the error/complexity trade-off parame-

ter using an empirical Bayes method. Further details can be found in [21, 22].
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4.2.2 The Multiclass Classification Problem and Solutions

Multiclass classification is the generalization of binary classification to an arbi-

trary number of classes K > 1. We denote the set of K classes as T = {C1, C2, . . . , CK},
and want to learn a classifier function g : X → T .

There are two major approaches to converting a binary classifier to a multiclass

classifier: the direct approach and through the aggregation of multiple binary classifiers.

Direct Approach

In the direct approach, the internals of the binary classifier are changed to reflect

the K class situation. For CRUM, this is done by changing the underlying model from the

binary sigmoid model to a multiclass softmax model,

p(Ck|x) =
exp

(∑M
m=1 wmkk(x, um) + bk

)
∑K

j=1 exp
(∑M

m=1 wmjk(x, um) + bj

) (4.2.2)

where the M RUs um, M × K weights wmi, and K biases bk are to be learned. The

RUs can be learned using unsupervised learning on the unlabeled data, as done in the

binary case [22]. The K times increase in parameters lead to a K3 increase in the run-

time complexity of the CRUM training algorithm compared to the binary case, due to

the inversion of the (MK + 1) × (MK + 1) Hessian matrix. Similar to the RVM, this

may make this method impractical for large problems [26]. Furthermore, related work in

softmax regression suggests the need for more elaborate and costly methods for matrix

inversion due to ill-conditioning [23].

Likewise, reformulating the SVM for multiclass classification leads to high cost

training algorithms [15]. Therefore the second approach of aggregating multiple binary

classifiers, which we will discuss next, has been the more popular and practical way to

solve the multiclass classification problem.

Decomposition of a multiclass problem into binary classification problems

The idea of the aggregation approach is to decompose the multiclass problem into

multiple binary problems that can then be solved with binary classifiers. The most popular
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framework for this approach is the method of error correcting output codes (ECOC) [20].

In this framework, the decomposition of a K-class problem into L binary problems is

expressed with a coding matrix,

M ∈ {0, 1,∆}K×L (4.2.3)

where each column of M specifies one binary classifier.

For example, the one-versus-rest (OVR) matrix for three classes is a 3×3 identity

matrix: 
1 0 0

0 1 0

0 0 1

 (4.2.4)

There are three columns and thus this decomposition will require the training of three

binary classifiers. The first binary classifier is trained with the training data belonging to

class C1 as the positive class set and the data belonging to classes C2 and C3 as the negative

class set. The second binary classifier is trained with the training data belonging to class

C2 as the positive class set and the data belonging to classes C1 and C3 as the negative set.

The third binary classifier is trained similarly. The name of this decomposition is called

one-versus-rest (OVR) because each binary classifier is trained with only one class serving

as the positive class and all other classes serving as the negative class. In general, the OVR

matrix for K classes is the K ×K identity matrix.

The all-pairs (AP) matrix for three classes is also a 3× 3 matrix:
1 1 ∆

0 ∆ 1

∆ 0 0

 (4.2.5)

The ∆ symbol denotes omission of the class in the training of the binary classifier.

Therefore in this case, the first binary classifier is trained with the training data belonging

to class C1 as the positive class set, data from C2 as the negative class set, and data from C3

is omitted. The next two binary classifiers are trained in a similar way. This decomposition

is called one-versus-one or all-pairs (AP) as each binary classifier is trained with only a
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single class serving as the positive class and another single class as the negative class.

Since there are K(K1)/2 distinct pairs of classes, the general AP matrix for K classes is a

K ×K(K1)/2 matrix.

In general any coding matrix M defined by Equation (3) can be used under the

following constraints:

1. All rows and columns are unique

2. No row is solely composed of ∆

3. Each column has at least one 1 and 0

Aggregating the binary outputs

Given a coding matrix M and the outputs of the L binary classifiers, how do we

compute the probability P (Ck|x)? Let us first consider the simple case of hard decoding,

leading to a hard decision. Assume that the binary classifiers gi, corresponding to the binary

classifier specified by the i-th column of M, return hard decisions where an output of 1

denotes the positive class and 0 denotes the negative class. Then the collective output of the

binary classifiers on x can be collected into a row vector g(x) = [g1(x), g2(x), . . . , gL(x)].

The predicted class that x belongs to is determined by finding the row of M with the

smallest distance to g(x). Let y, z ∈ {0, 1,∆}1×L. A commonly used measure of distance

is a modified Hamming distance [2]:

d(y, z) =
L∑
i=1

cost(yi, zi) (4.2.6)

where

cost(a, b) =


0 if a = b and a 6= ∆

1 if a 6= b and a, b 6= ∆

1/2 if a or b = ∆

(4.2.7)

Let M(k) denote the k-th row of M and,
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k∗ = argmink∈{1,2,...,K}d(M(k),g(x)) (4.2.8)

Then the predicted class of x is Ck∗ . In the case of the AP coding matrices, this would

correspond to choosing the class with the majority vote of the binary classifiers. Note that

rows of M can be interpreted as the unique codewords representing the K classes and that

the predicted g(x) is one of those codewords corrupted by noise. In this context, the above

algorithm decodes g(x) into the closest codeword, thus performing error correction on the

corrupted bits and giving the name of this approach to classification, ECOC.

Unfortunately, computing the posterior probabilities pk = P (Ck|x) for all K

classes is more difficult. For general coding matrices, the Generalized Bradley-Terry (GBT)

model is used to estimate the posterior probabilities [16]. Let I+
i and I−i denote the set

of positive and negative classes, respectively, used by gi. Then the output gi(x) is the

probability of the positive class of the i-th binary classification problem. Also letNi denote

the number of training data with classes in Ii = I+
i ∪ I−i , and the following quantities:

qi =
∑
k∈Ii

pk (4.2.9)

q+
i =

∑
k∈I+i

pk (4.2.10)

q−i =
∑
k∈I−i

pk (4.2.11)

Given the probabilistic outputs of the binary classifiers r̂i = gi(x), the core idea

of the GBT model is that

r̂i ≈ P (I+
i |x, Ii) =

q+
i

qi
(4.2.12)

Through these relations the posterior probabilities p = [p1, p2, . . . , pK ]T can be retrieved.

This is done by finding the p that minimizes the negative log-likelihood,

−
L∑
i=1

Ni(r̂i log(q+
i /qi) + (1− r̂i) log(q−i /qi)) (4.2.13)
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under the constraints that each pk > 0 and that they sum to unity. This optimization can

be interpreted as the minimization of the weighted Kullback-Leibler divergence between r̂i
and q+

i /qi. Huang et al. [16] proposed an iterative algorithm to solve this optimization.

Note that the optimization of Equation (13) must be done for every object x that

we want to make a prediction on. This could be too expensive in large-scale prediction ap-

plications. Furthermore, the computational complexity of the algorithm is not completely

characterized. While Huang et al. [16] provide a proof of convergence under some assump-

tions, under a general decomposition the algorithm may not converge. In the cases that are

known to converge, the speed of convergence is unknown. Therefore, a Naı̈ve approach is

proposed.

We make the Naı̈ve assumption that the output of each binary classifier is in-

dependent. Under the interpretation of error-correcting codes, the formulation below is a

soft-decoding of the observed g(x) to the codewords in M under the assumption that bit

errors are independent. Then we can compute the class posteriors as simple products of the

binary posteriors, as follows

P (Ck|x,M) =
L∏

i=1,Mki 6=∆

P (I+
i |x, Ii)MkiP (I−i |x, Ii)1−Mki (4.2.14)

≈
L∏

i=1,Mki 6=∆

gi(x)Mki(1− gi(x))1−Mki (4.2.15)

where the output of classifiers not trained on data from class Ck are omitted. For example,

from the decomposition given in Equation (5), P (C2|x,M) = (1− g1(x))g3(x). Given the

outputs of the binary classifiers, the algorithm is linear in L. In the implementation log of

Equation (14) is used for computational stability as shown in Step 4 of Algorithm 2.

The above formulation is a generalization to any valid M of the Resemblance

Model for AP decomposition proposed in [12]. Again, the key assumption is the indepen-

dence of the L binary classifiers, which is highly dependent on the decomposition M. Thus

in general, this method is possibly only a crude approximation.

The following pseudocodes summarize the training and prediction processes of

McRUM.
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Input: K × L decomposition matrix M, labeled training data

1: for i← 1 to L do

2: positive data← initialize as empty

3: negative data← initialize as empty

4: for j ← 1 to K do

5: if Mij = 1 then

6: Add data from class j to positive data

7: else if Mij = 0 then

8: Add data from class j to negative data

9: end if

10: end for

11: Set gi to binary CRUM trained on positive data and negative data as

described in [22]

12: end for

13: return g = [g1, g2, . . . , gL]

Algorithm 4: Training McRUM

Input: K × L decomposition matrix M, L binary CRUMs gi, input x

1: p← [0, 0, . . . , 0]

2: for i← 1 to K do

3: for j ← to L do

4: pi ← pi + ln
{
gj(x)Mij(1− gj(x))(1−Mij)

}
5: end for

6: end for

7: p = exp(p)/
∑

exp(p) (normalize to ensure the posterior probabilities

sum to 1)

8: return p

Algorithm 5: Prediction
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Optimal Coding Matrix

The next question is whether there is any theory that can help guide us to design-

ing the optimal coding matrix that gives the smallest error. There is, but it is not practically

useful. These are some of the properties that would achieve a good ECOC-based classi-

fier [2]:

1. The minimum distance (using Hamming distance, Equation (4.2.6)) between rows of

M should be maximized

2. The number of ∆ entries should be minimized

3. The average error of the L binary classifiers should be minimized

All the criteria are at odds with each other. Consider OVR decomposition, Equa-

tion (4), again. Since all but one class is considered to be in the negative class, the training

data is likely to be imbalanced. To see why this is a problem, let us consider an extreme

case where 99% of the training data is negative and only 1% of the data is positive. Then

a binary classifier that always predicts the negative class would achieve 1% error. Under

the framework of empirical or structural risk minimization, classifier training would tend

to converge to his solution as it provides low empirical risk under 0-1 loss. Therefore a

large imbalance between the size of the positive and negative sets would bias the classifier

against the smaller class. So while OVR does not have any ∆ entries, the average error of

the binary classifiers could be high.

In the case of the AP decomposition shown in Equation (5), each individual bi-

nary classifier only has a single class serving as the positive data and another single class

serving as the negative. If the overall training set was balanced between all K classes, then

each of the binary classifiers will also be balanced and have good average error. On the

other hand, the AP matrix contains many ∆ entries, which is a force that increases error.

As a side effect, each individual binary classifier will be faster to train compared to OVR,

as the amount of data per binary classifier is reduced. This can be overshadowed by the

sheer number of classifiers to train if K is large.

Therefore knowing which coding matrix is superior to another a priori is not

possible and the choice of coding matrix M is application-dependent. So we must ex-
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perimentally try different matrices to find which one is the best suited to the particular

application.

4.2.3 ncRNA dataset preparation and features

The ncRNA dataset is gathered from mirBase’s collection of miRNA [18], NON-

CODE 3.0s collection of piRNA [6], and the remaining ncRNAs in the NONCODE 3.0

database serve as representatives of other ncRNAs. Each of these three sets is individually

reduced using CD-HIT [19] to remove sequences with 80% or higher identity. This helps

reduce the evolutionary correlations among the data and improves the generalization of the

CRUM model that assumes an independent sample. The resulting dataset contains 9,439

miRNAs, 81,147 piRNAs, and 94,809 other ncRNAs.

In the gathered data, miRNAs are observed to be 15 33 nt long and piRNAs

are observed to be 16 40 nt long. For the other ncRNAs, the training and evaluation of

McRUM does not necessarily use the entire sequence. We chose to use fragments of length

20 nt, which is in the overlapping range of the lengths between miRNAs and piRNAs, so

that the fragment has the possibility of being an miRNA or piRNA had the identity of the

fragment been unknown. If the other ncRNA sequence is of length longer than 20 nt, we

take a random fragment of 20 nt from the sequence instead. Due to the imbalance of the

dataset among the three classes, the training set is a sample of the available data. After

holding out 20% of the miRNA sequences for an independent test set, we are left with

7,552 miRNAs in the training set. Therefore we sample 7,552 piRNAs and other ncRNAs

each to form a balanced 1:1:1 training set. Together with the hold out of 1,887 miRNAs,

the remaining 73,595 piRNAs and 87,257 other ncRNAs serve as an independent test set.

Since mature miRNAs and piRNAs lack strong secondary structures, internally

McRUM represents each ncRNA using k-mers, for k = 1, 2, . . . , 5. For each value of k,

the number of occurrences of each type of k-mer is computed and normalized.

4.2.4 Performance measures

Receiver Operating Characteristic (ROC) curve is a visualization of performance

of binary classifiers at various thresholds. On the x-axis is the false positive rate (FPR) and
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on the y-axis is the true positive rate (TPR), which is also called sensitivity or recall. These

two quantities are calculated as follows,

FPR = FP/(FP + TN) (4.2.16)

TPR = TP/(TP + FN) (4.2.17)

where TP is the number of true positives, FP is the number of false positives, TN is

the number of true negatives, and FN is the number of false negatives. For classification

of more than two classes, we can compute ROC curves by considering one class as the

positive class and the remaining classes jointly as the negative class. For the small ncRNA

experiment, we have three classes. For Figures 4.1 and 4.5, we consider miRNA as the pos-

itive class, and piRNA and other ncRNAs jointly as the negative class. Under this setting

TP is the count of miRNAs correctly classified, while FP is the number of piRNAs and

other ncRNAs classified as miRNAs. FN is the sum of the number of miRNAs incorrectly

classified and the number of miRNAs unclassified. Lastly, TN is the sum of the number of

piRNA and other ncRNAs correctly classified, the number of piRNAs incorrectly classified

as other ncRNAs, the number of other ncRNAs incorrectly classified as piRNA, and the

number of piRNAs and other ncRNAs left unclassified. The piRNAs incorrectly classified

as other ncRNAs, and vice versa, are counted as true negatives because they are correctly

classified into the negative class and not into the positive class, miRNA. Similarly, Figures

4.2 and 4.6 are computed by considering piRNA as the positive class and miRNA and other

ncRNAs jointly as the negative class, while Figures 4.3 and 4.7 are computed by consid-

ering other ncRNAs as the positive class and miRNA and piRNA jointly as the negative

class.

The timing results for the Naı̈ve and GBT decoding algorithms in the benchmark

experiments were obtained using MATLAB implementations on a PC with a 2.83 GHz

Intel Core 2 Quad processor and 8 GB of memory.
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4.3 Results and Discussion

In this section we present two sets of experiments: benchmark experiments and

small ncRNA experiments. The purpose of benchmark experiments is to assess perfor-

mance of McRUM for four different decomposition settings and the two different decoding

algorithms. For the experiments, we use a group of datasets from the UCI Machine Learn-

ing Repository [3], which is a collection of databases widely used for empirical analysis of

algorithms in the machine learning community. The performance of McRUM with differ-

ent settings is presented in terms of prediction accuracy. The small ncRNA experiments are

conducted to validate the use of McRUM on a larger scale problem. Through the bench-

mark experiments, Naı̈ve decoding algorithm is proven to be much more computationally

efficient than the GBT algorithm with its AP and OVR performances being close to the

GBT results. Therefore, in the ncRNA experiments, only the Naı̈ve McRUMs with AP and

OVR settings are tested and the ROC analysis is used to illustrate how the performance of

selected McRUM models changes at various decision thresholds.

For both sets of experiments, we also run the multiclass SVM implemented

in LIBSVM [7] to illustrate McRUMs performance relative to SVM-based approaches.

The LIBSVM implementation uses the all-pairs decomposition, Platt’s method to generate

probabilities from the individual binary SVMs, and their own algorithm for aggregating the

all-pairs binary results to multiclass posterior probabilities.

4.3.1 Benchmark experiments

For the experiments, we try McRUM on five small datasets from the UCI Ma-

chine Learning Repository website [3] using the binary CRUM classifiers with the Gaus-

sian kernel. The kernel width γ and model complexity M is chosen via K-means clustering

of the unlabeled training dataset [22]. For a range of values of M , K-means clustering is

applied to group the unlabeled training dataset into M clusters and the Akaike Information

Criterion (AIC) is computed by giving the clustering results a probabilistic interpretation.

The number of clusters with the best AIC value is selected for M . Furthermore, we set

γ = (2d2)−1, where d is the maximum distance between cluster centers obtained by the

K-means clustering with K = M . Using K-means clustering to set parameters as described
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above has clear computational advantages, which can be critical when training is performed

on large datasets. The same γ and M are used for all the individual binary classifiers per

dataset.

Throughout the benchmark experiments, we consider the following decomposi-

tions: (i) all-pairs (AP), (ii) one-versus-rest (OVR), (iii) random dense, and (iv) random

sparse. Random coding matrices M are generated with and without using symbols for the

random sparse and random dense cases, respectively. For each random type, 100 random

M are generated and the M with the smallest minimum distance among its rows is chosen.

Controlling the number of columns in the random sparse matrix, we can aim to create a de-

composition that is a compromise between AP and OVR. This is useful should the number

of classes K be large and AP impractical, while still retaining some of the reduced training

set benefits per binary classifier. The details of the different decompositions are given in

the Methods section.

The class label is assigned based on which class has the largest posterior prob-

ability, as determined by the Naı̈ve and generalized Bradley-Terry (GBT) decoding algo-

rithms [16]. Since the GBT algorithm is not guaranteed to converge, a maximum of 1000

iterations of the algorithm is imposed. We first examine results using cross-validation.

Wine dataset

Naı̈ve GBT
Decomposition Train Acc Test Acc Train Acc Test Acc

AllPairs 99.44 (0.20) 97.78 (2.87) 99.44 (0.20) 97.78 (2.87)
OneVsRest 99.44 (0.20) 97.75 (3.92) 99.44 (0.20) 97.75 (3.92)

Dense 84.40 (1.09) 83.63 (6.99) 99.44 (0.20) 98.30 (2.74)
Sparse 91.01 (1.76) 90.00 (6.31) 99.50 (0.26) 97.22 (4.72)

Table 4.1. McRUM results on wine dataset using 10-fold cross-validation. Train/Test Acc
is the mean accuracy on the training/test dataset. The standard deviation is shown in the
parenthesis. (AP: all-pairs, OVR: one-versus-rest, Dense: random dense, Sparse: random
sparse)

The three-class wine dataset contains 178 instances [1]. The objective is to de-

termine the origin of the wines based on 13 physicochemical measurements. The number

of binary classifiers for AP and OVR are both three and so we set the dense and sparse
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decompositions to also use three classifiers. The mean accuracy and its standard deviation

results in Table 4.1 are computed via 10-fold cross-validation. The AP and OVR decom-

positions give nearly the same results regardless of using the Naı̈ve or GBT algorithms.

There is a significant reduction in accuracy for the Naı̈ve algorithm for the random dense

and sparse cases, but the GBT results remain close to the Naı̈ve algorithm’s AP and OVR

performance.

The prediction running-times are also measured for the AP and OVR decompo-

sitions where the Naı̈ve and GBT algorithms show comparable predictive performance.

As shown in Table 4.2, Naı̈ve algorithm achieves a three orders of magnitude speed-up

compared to GBT algorithm for both AP and OVR decomposition.

We observed the mean accuracies of 99.69% (std = 0.33) and 98.89% (std = 2.34)

from Gaussian SVM for the training and test set, respectively, which is comparable to the

AP and OVR McRUM results of 99.44% (std = 0.20) and 97.78% (std = 2.87). In addition,

the best mean accuracy reported for a 10-fold cross-validation using a multiclass RVM

for this wine dataset is 96.24% [24], which, considering the standard deviation, is also

comparable to the best achieved here using McRUM.

Iris dataset

Table 4.3 gives the 10-fold cross-validation results on the three-class iris dataset,

a classic machine learning and statistics benchmark. The problem is to classify flowers of

three species of the genus Iris based on four physical measurements from a sample of 150

flowers [10]. We see similar results as earlier, where the Naı̈ve and GBT accuracies are

nearly the same and the performance of Naı̈ve algorithm drops severely under the random

decompositions. Three binary classifiers are used in all cases. As for prediction running-

times, as shown in Table 4.2, there is a three order of magnitude speed-up with the Naı̈ve

compared to the GBT algorithm with minimal impact to predictive performance, as also

seen with the wine dataset results previously.

The mean accuracies on the training and test set we observed from Gaussian

SVM are 97.85% (std = 0.65) and 96.67% (std = 3.51). The best mean accuracy reported

for a 10-fold cross-validation using a multiclass RVM for this iris dataset is 93.87% [24].

82



N
aı̈

ve
G

B
T

A
P

O
V

R
A

P
O

V
R

w
in

e
0.

00
18

68
(0

.0
00

20
6)

0.
00

16
62

(0
.0

00
16

4)
7.

37
34

05
(1

.1
82

94
7)

1.
07

31
39

(0
.1

97
27

8)
ir

is
0.

00
14

09
(0

.0
00

13
9)

0.
00

13
76

(0
.0

00
14

1)
6.

62
52

28
(0

.6
78

36
3)

2.
90

88
28

(0
.8

34
85

8)
ye

as
t

0.
04

07
37

(0
.0

00
53

4)
0.

04
92

92
0

(0
.0

01
21

9)
27

22
.3

17
54

4
(1

17
.5

45
38

8)
27

95
.7

66
03

5
(1

39
.3

14
29

4)
th

yr
oi

d
0.

13
16

89
0.

12
39

68
93

9.
69

25
26

17
9.

42
66

32
sa

te
lli

te
0.

23
95

50
0.

13
93

04
10

61
2.

59
83

01
28

16
.6

32
70

3

Ta
bl

e
4.

2.
Pr

ed
ic

tio
n

tim
e

of
M

cR
U

M
on

be
nc

hm
ar

k
da

ta
se

ts
(i

n
se

co
nd

s)
.W

e
pr

ov
id

e
th

e
pr

ed
ic

tio
n

tim
e

on
ly

fo
rA

P
an

d
O

V
R

ca
se

s
si

nc
e

th
ei

r
pr

ed
ic

tiv
e

pe
rf

or
m

an
ce

s
ar

e
co

m
pe

tit
iv

e
to

ea
ch

ot
he

r
fo

r
al

lb
en

ch
m

ar
k

da
ta

se
ts

w
hi

le
th

e
pe

rf
or

m
an

ce
s

fo
r

ra
nd

om
de

co
m

po
si

tio
ns

ar
e

m
uc

h
lo

w
er

th
an

th
e

A
P

an
d

O
V

R
ca

se
s

w
ith

N
aı̈

ve
al

go
ri

th
m

.T
he

pr
ed

ic
tio

n
tim

e
is

av
er

ag
ed

ov
er

10
-f

ol
d

cr
os

s-
va

lid
at

io
n

fo
rt

he
fir

st
th

re
e

da
ta

se
ts

w
hi

le
it

is
es

tim
at

ed
on

ce
fo

rt
he

la
st

tw
o

da
ta

se
ts

as
th

ei
re

xp
lic

it
pa

rt
iti

on
in

g
of

tr
ai

ni
ng

an
d

te
st

se
ts

w
er

e
gi

ve
n.

In
cl

ud
ed

in
th

e
pa

re
nt

he
si

s
is

th
e

st
an

da
rd

de
vi

at
io

n
of

th
e

pr
ed

ic
tio

n
tim

e.
(A

P:
al

l-
pa

ir
s,

O
V

R
:o

ne
-v

er
su

s-
re

st
)

83



Naı̈ve GBT
Decomposition Train Acc Test Acc Train Acc Test Acc

AllPairs 97.56 (0.70) 96.00 (5.62) 97.56 (0.70) 96.00 (5.62)
OneVsRest 97.85 (0.82) 96.67 (5.67) 97.85 (0.82) 96.67 (5.67)

Dense 67.56 (2.88) 68.00 (16.27) 97.70 (0.74) 96.00 (6.44)
Sparse 66.67 (1.16) 66.67 (10.42) 97.78 (0.92) 95.33 (5.49)

Table 4.3. McRUM results on iris dataset using 10-fold cross-validation. Train/Test Acc
is the mean accuracy on the training/test dataset. The standard deviation is shown in the
parenthesis. (AP: all-pairs, OVR: one-versus-rest, Dense: random dense, Sparse: random
sparse)

Again, both multiclass SVM and RVM results are comparable to the best achieved here

with McRUM (97.85% (std = 0.82) and 96.67% (std = 5.67)).

Yeast dataset

Decomposition Naı̈ve Test Acc GBT Test Acc
AllPairs 59.43 (6.27) 59.10 (6.21)

OneVsRest 58.90 (5.29) 59.51 (4.02)
Dense 3.43 (1.49) 57.75 (3.11)
Sparse 2.02 (1.62) 59.23 (2.79)

Table 4.4. McRUM results on yeast dataset using 10-fold cross-validation. Test Acc is
the mean accuracy on the test dataset. The standard deviation is shown in the parenthesis.
Note that, due to the large dataset size and the high computational complexity of the GBT
algorithm, the mean accuracy on the training partitions cannot be provided. (AP: all-pairs,
OVR: one-versus-rest, Dense: random dense, Sparse: random sparse)

Table 4.4 gives the 10-fold cross-validation for the 10-class yeast dataset that

contains 1,484 proteins. The goal is to predict the cellular localization site of a protein

based on eight sequence-related measures [14]. 18 binary classifiers are used for the ran-

dom sparse decomposition to achieve a compromise between AP and OVR. For the random

dense decomposition, we used 34 classifiers as a sample of the columns of the complete

dense decomposition that contains all possible partitions of the data into positive and nega-

tive classes. Only the mean accuracy on the test partitions are given, as the dataset is large

enough that computing the accuracy of the training partitions is prohibited by the complex-

ity of the GBT algorithm. The extra effort of the GBT algorithm is required in the random
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decompositions cases where the Naı̈ve results are dismal. The results for AP and OVR,

however, are comparable between Naı̈ve and GBT.

For this dataset, Gaussian SVM shows 60.85% accuracy with standard deviation

of 4.08. Best results from AP McRUM (59.43% (std = 6.27)) and OVR McRUM (59.51%

(std = 4.02) are again comparable to the SVM results considering the standard deviation.

The results from both McRUM and SVM are an improvement over the 56.5% achieved

in the dataset’s original analysis using PSORT [13] and are comparable to the 59.51%

(standard deviation of 5.49) obtained by k-NN with PSORT II on this yeast dataset [14].

The prediction running-times in Table 4.2 show five orders of magnitude speed-

up for the AP and OVR McRUMs using the Naı̈ve algorithm over the GBT algorithm. This

very significant speed-up is achieved with minimal impact to the predictive performance,

as discussed above.

Thyroid disease dataset

Naı̈ve GBT
Decomposition Train Acc Test Acc Train Acc Test Acc

AllPairs 98.44 97.29 97.93 97.11
OneVsRest 95.47 95.22 95.52 95.04

Dense 92.47 92.71 94.38 93.90
Sparse 24.68 25.50 97.11 96.18

Table 4.5. McRUM results on thyroid training and test datasets. Train/Test Acc is the accu-
racy on the training/test dataset. Note that an explicit partitioning of the data into training
and test sets were provided. Therefore, cross-validation experiment was not performed
and, as a result, no information on standard deviation is available. (AP: all-pairs, OVR:
one-versus-rest, Dense: random dense, Sparse: random sparse)

The results in Table 4.5 are from the three-class thyroid dataset that has 3,772

and 3,428 training and testing instances, respectively. The problem is to determine if a

patient has hypothyroid based on 21 attributes [9, 25]. The number of binary classifiers for

AP and OVR are both three and so we set the dense and sparse decompositions to also use

three classifiers. Regardless of the posterior decoding algorithm, the AP decomposition

performs with the best accuracy. The Naı̈ve and GBT algorithms perform similarly on all

but the sparse decomposition. It appears the independent binary classifiers assumption fails
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in the sparse case and the Naı̈ve algorithm does not approximate the posteriors for class 2

and 3 as well as the GBT algorithm does. The SVM results we obtained for this dataset

are 96.29% and 94.37% for training and test accuracy, respectively. The AP results from

McRUM (98.44% and 97.22%) are slightly better.

As shown in Table 4.2, under the AP decomposition, it takes about 0.132 seconds

to compute the predictions for the entire test set using the Naı̈ve algorithm. On the other

hand, with a maximum of 1,000 iterations per datapoint, the GBT algorithm takes about

934.693 seconds, almost four orders of magnitude longer than the Naı̈ve algorithm for

nearly the same predictive accuracy. In the case of OVR, the predictions times for the test

set are 0.124 and 179.427 seconds for Naı̈ve and GBT algorithms, respectively. The OVR

decomposition appears to be an easier problem for the GBT algorithm to solve than the AP

decomposition despite using the same number of binary classifiers.

Landsat satellite (statlog) dataset

Naı̈ve GBT
Decomposition Train Acc Test Acc Train Acc Test Acc

AllPairs 89.85 88.05 89.76 87.70
OneVsRest 89.56 87.65 89.58 87.50

Dense 10.60 11.85 80.56 77.95
Sparse 23.40 23.50 85.73 84.55

Table 4.6. McRUM results on satellite image training and test datasets. Train/Test Acc
is the accuracy on the training/test dataset. Note that an explicit partitioning of the data
into training and test sets was provided. Therefore, crossvalidation experiment was not
performed and, as a result, no information on standard deviation is available. (AP: all-
pairs, OVR: one-versus-rest, Dense: random dense, Sparse: random sparse)

Table 4.6 gives the results on a satellite image (statlog) dataset that has six classes

with 4,435 and 2,000 training and testing instances, respectively. The goal is to interpret a

scene based on 36 multi-spectral values [9]. Here for both training and test accuracy, both

the AP and OVR under Naı̈ve and GBT decoding perform at about the same level. OVR

uses 6 binary classifiers, while AP uses 15. To strike a halfway point between the two, the

random decompositions use 10 binary classifiers. However, for these random decomposi-

tions, the Naı̈ve algorithm is outperformed by GBT. The SVM results we obtained for this
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dataset are 98.35% and 91.50% for training and test accuracy, respectively. For training

set, SVM is superior to AP and OVR McRUMs (89.85% and 89.76%) and both McRUMs

performance on test set (88.05% and 87.70%) is also slightly worse than the SVM.

Table 4.2 shows that, for the test set, it takes about 0.240 and 10,612.598 seconds

for the Naı̈ve and GBT algorithms to compute the predictions under the AP decomposition,

respectively. For the OVR decomposition, the prediction times are 0.139 and 2,816.633

seconds for Naı̈ve and GBT algorithms, respectively. Again the OVR is the faster of the

two decompositions, partly because of the reduced number of binary classifiers.

4.3.2 Small ncRNA experiments

To validate McRUM on a larger scale problem and to explore its use for the task

of NGS data analysis, we investigated the classification of mature miRNAs and piRNAs

from other ncRNAs. This is a problem of interest in the analysis of small RNA sequencing

(RNA-seq) data. Further details of the dataset and sequence features used by McRUM are

given in the Methods section. For this experiment, two McRUM models are used for the AP

and OVR settings using the Naı̈ve decoding algorithm, and their performance is illustrated

relative to the Gaussian and linear multiclass SVMs.

Cross-validation experiments

Figures 4.1 through 4.3 show ROC curves under 3-fold cross-validation exper-

iments. Note that, because ROC curves are defined for binary classification, each ROC

curve considers one of the three classes as the positive class, while considering the remain-

ing two classes jointly as the negative class. For example, Figure 4.1 considers miRNA as

the positive class and piRNA and other ncRNA as the negative class. The details of the

computation of the ROC curves are given in the Methods section. The following results are

obtained using the best observed model complexity, M = 600, for the underlying binary

CRUM models using the Gaussian kernel. The kernel width γ is chosen using K-means

clustering of the unlabeled training dataset with the selected M . For multiclass SVM, we

trained Gaussian SVMs and linear SVMs where, on average, about 3,725 support vectors

were used in each binary Gaussian SVM and about 4,048 for each binary linear SVM.
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Figure 4.1. 3-fold cross-validation results for miRNA being the positive class. The ROC
curves are generated from observed FPR and TPR under varying posterior probability
thresholds from 0.30 to 0.99 in increments of 0.01 for the two McRUM models (AP and
OVR settings) with the Naı̈ve decoding algorithm, and for the Gaussian and linear SVMs
with all-pairs decomposition.

Figure 4.1 suggests that classifying mature miRNA is a very difficult problem,

as even at the highest observed FPR (about 0.2), the TPR only approaches 0.6 for both

McRUM and SVM. There is no clear superior decomposition for McRUM. However, the

OVR McRUM occupies a narrower range of FPRs and cannot achieve as high a TPR as

the AP case. Although both versions of McRUM perform slightly better than linear SVM

and slightly worse than Gaussian SVM, the performances are all very similar. Based on

these results and those given below, it is seen that mature miRNAs often get confused with

ncRNAs other than piRNA.

In contrast to miRNA, Figure 4.2 suggests that the classification of piRNA is a

much easier problem. The TPR approaches 0.9 even at a low FPR of 0.09 for McRUM and

0.05 for Gaussian SVM. The ROC curves for AP and OVR McRUMs are comparable while

Gaussian SVM shows higher performance and linear SVM works very poorly. The poor

performance of linear SVM may be due to the non-linear nature of the problem. Although

the Gaussian SVM shows superior performance, both AP and OVR McRUMs also achieve

similar level of TPR by sacrificing FPR slightly. Furthermore, given more compact models

and better computational efficiency of binary CRUM over SVM [21], McRUM can still be

a favorable choice for large-scale prediction problems.
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Figure 4.2. 3-fold cross-validation results for piRNA being the positive class. The ROC
curves are generated from observed FPR and TPR under varying posterior probability
thresholds from 0.30 to 0.99 in increments of 0.01 for the two McRUM models (AP and
OVR settings) with the Naı̈ve decoding algorithm, and for the Gaussian and linear SVMs
with all-pairs decomposition.

Figure 4.3. 3-fold cross-validation results for non-miRNA and non-piRNA being the posi-
tive class. The ROC curves are generated from observed FPR and TPR under varying pos-
terior probability thresholds from 0.30 to 0.99 in increments of 0.01 for the two McRUM
models (AP and OVR settings) with the Naı̈ve decoding algorithm, and for the Gaussian
and linear SVMs with all-pairs decomposition.

Finally, Figure 4.3 shows that discriminating the class consisting of other ncR-

NAs is also difficult, but not as difficult as the miRNA case. Again, the performance suf-

fers due to the difficulty of discriminating miRNA from other ncRNAs. While linear SVM

89



Figure 4.4. The fraction of unclassified sequences for cross-validation experiment. The
fraction of the validation set left unclassified for the AP and OVR McRUMs and the Gaus-
sian and linear SVMs at different posterior probability threshold values..

shows poor performance, in the region of overlapping FPRs, the ROC curves for Gaussian

SVM and both OVR and AP McRUMs are comparable. However, the OVR McRUM has

a wider FPR range, allowing it to achieve a high TPR of about 0.8 at an FPR of about 0.3,

that the AP McRUM and Gaussian SVM cannot obtain.

In Figure 4.4 we provide a plot showing the fraction of the validation set left

unclassified for the AP and OVR McRUMs and the Gaussian and linear SVMs at different

posterior probability threshold values. In summary, linear SVM is uniformly worse than

the others, AP McRUM and Gaussian SVM have almost the same fraction of unclassified

sequences, and OVR McRUM shows the smallest number of unclassified sequences across

a wide range of threshold values.

Independent test experiments

Further evaluation of McRUM and the multiclass SVMs on a larger, indepen-

dent dataset was also conducted and the ROC curves are given in Figures 4.5 through 4.7.

McRUMs are trained with M = 600 and SVMs are trained with about 5,410 support vec-

tors on average for each binary Gaussian SVM and about 6,034 for each binary linear SVM

using the entire training dataset used in the cross-validation experiment. Figure 4.5 reiter-

ates that the miRNA case is very difficult, showing results similar to the cross-validation
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Figure 4.5. Evaluation results on independent test set for miRNA being the positive class.
The ROC curves are generated from observed FPR and TPR under varying posterior prob-
ability thresholds from 0.30 to 0.99 in increments of 0.01 for the two McRUM models
(AP and OVR settings) with the Naı̈ve decoding algorithm, and for the Gaussian and linear
SVMs with all-pairs decomposition.

Figure 4.6. Evaluation results on independent test set for piRNA being the positive class.
The ROC curves are generated from observed FPR and TPR under varying posterior prob-
ability thresholds from 0.30 to 0.99 in increments of 0.01 for the two McRUM models
(AP and OVR settings) with the Naı̈ve decoding algorithm, and for the Gaussian and linear
SVMs with all-pairs decomposition.

experiment. For the piRNA case shown in Figure 4.6, we again see very good performance

from Gaussian SVM and both the AP and OVR McRUMs, and extremely poor performance

from linear SVM. Note that the scale of the FPR axis is very small. As described above, AP
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Figure 4.7. Evaluation results on independent test set for non-miRNA and nonpiRNA being
the positive class. The ROC curves are generated from observed FPR and TPR under
varying posterior probability thresholds from 0.30 to 0.99 in increments of 0.01 for the two
McRUM models (AP and OVR settings) with the Naı̈ve decoding algorithm, and for the
Gaussian and linear SVMs with all-pairs decomposition.

and OVR McRUMs can achieve the similar level of TPR as Gaussian SVM by sacrificing

FPR slightly, about 0.03. In addition, McRUMs are computationally more efficient than the

multiclass SVMs since the binary CRUM is less expensive computationally than the binary

SVM [21]. To compute the class posterior probabilities of the entire test dataset, the SVMs

take about 2.5 to 3 times longer than McRUMs even though the SVM implementation is in

faster compiled C++, whereas McRUM is implemented in MATLAB, a slower interpreted

language. (OVR McRUM takes 3,203.35 sec, AP McRUM 3,429.91 sec, Gaussian SVM

11,015.29 sec, and linear SVM 8,444.61 sec.) Lastly in Figure 4.7, we see the remaining

ncRNAs showing good results with Gaussian SVM and the OVR McRUM that are slightly

better than the AP McRUM.

In Figure 4.8, we provide a plot showing the fraction of the test set left unclassi-

fied for the AP and OVR McRUMs and the Gaussian and linear SVMs at different posterior

probability threshold values. The results are very similar to those obtained for the cross-

validation experiments shown in Additional file 1.

Recently, a Fisher Linear Discriminant (FLD) based classifier called piRNApre-

dictior has been proposed for binary piRNA classification by Zhang et al. [29]. We have

downloaded the script from their website [28] and trained it with the training dataset used
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Figure 4.8. The fraction of unclassified sequences for independent test experiment. The
fraction of the test set left unclassified for the AP and OVR McRUMs and the Gaussian
and linear SVMs at different posterior probability threshold values.

in [29] (FLD 1) and also with our own training dataset (FLD 2). Then the resulting classi-

fiers were evaluated on our test dataset. For the prediction step, both FLD-based classifiers

constrain the input sequence being at least 25 nt. We removed this constraint in the script

as our test dataset contains many ncRNAs (both piRNAs and non-piRNAs) shorter than 25

nt.

The ROC curves generated from observed results of the FLD-based classifiers

are presented in Figures 4.9 and 4.10 along with the ROC curves for McRUM and SVM

results. Both AP and OVR McRUMs and Gaussian SVM clearly show superior predictive

performance over the FLD-based classifiers. One reason for the lower performance of FLD-

based classifiers can be the possible nonlinear boundary between the classes of ncRNAs

under the features considered. The nonlinearity of the problem is also evident from the

extremely poor performance of linear SVM.

Note that about 99% of the sequences in the positive training dataset for FLD 1

are from NONCODE 2.0s collection of piRNA. Our positive test dataset is gathered from

a later version of NONCODE database and, as a result, 98.57% of the sequences in our

positive test dataset are already included in the positive training dataset used for FLD 1.

Therefore the prediction results may be biased in favor of FLD 1. Then, FLD 2 showing

better performance than FLD 1 may seem contradictory when the training set used for
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Figure 4.9. piRNA prediction results. The ROC curves for FLD-based classifiers are gen-
erated from observed prediction results on our test dataset with the threshold varying from
−0.2 to 0.46 in increments of 0.001. (−0.2 and 0.46 are the lower and upper bounds of the
observed predicted values of FLD-based classifiers.) FLD 1 classifier was trained with the
dataset used in [29] while FLD 2 used our training dataset. McRUM and SVM results are
the same as shown in Figure 4.6.

Figure 4.10. piRNA prediction results. The ROC curves in Figure 4.9 are zoomed in to
match the FPR range shown in Figure 4.6. The ROC curves for FLD-based classifiers are
generated from observed prediction results on our test dataset with the threshold varying
from −0.2 to 0.46 in increments of 0.001. (−0.2 and 0.46 are the lower and upper bounds
of the observed predicted values of FLD-based classifiers.) FLD 1 classifier was trained
with the dataset used in [29] while FLD 2 used our training dataset. McRUM and SVM
results are the same as shown in Figure 4.6.
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FLD 2 is independent of the test set. It can be because FLD 1 is not specifically trained

on the ncRNAs shorter than 25 nt. The training dataset for FLD 1 contains about 4.67%

ncRNAs shorter than 25 nt while our training dataset used for FLD 2 contains 66.41%

sequences shorter than 25 nt. In the test dataset, 55.93% of the sequences in the test dataset

are shorter than 25 nt, for which correct prediction can be hard for FLD 1.

4.4 Conclusions

In this study, the binary CRUM model is generalized to the multiclass setting

via ECOC framework. The probabilistic nature of the binary CRUM is preserved using

either the GBT or the proposed linear-time decoding algorithms. The proposed linear-

time algorithm allows for efficient application to large-scale prediction settings, where the

GBT algorithm’s complexity is prohibitive, while still maintaining comparable predictive

performance under certain decompositions of the given multiclass problems, as evidenced

by the benchmark experiments. The applicability of McRUM to larger scale problems

is demonstrated by an analysis of small ncRNA sequences. The results demonstrate that

McRUM can be an advantageous solution to resolve multiclass problems especially when

applied to large datasets.

The preliminary results on small ncRNA classification presented in this paper

demonstrate that McRUM has potential in addressing the problem of classifying small ncR-

NAs. In this study, we restricted the length of the other ncRNA fragments to be maximum

of 20 nt, but we plan to conduct further experiments with various lengths of fragments. We

also plan to include short byproducts of small RNA biogenesis, such as miRNA*, in the

class of other ncRNAs. In the future, we will also extend the current study by including

other classes of small ncRNAs and optimizing the use of McRUM for large-scale datasets

such as those generated by NGS sequencing projects. Features other than the simple k-

mers will be considered to improve the predictive performance, especially for classifying

the mature miRNAs. Finally, the interesting preliminary results obtained by the multiclass

Gaussian SVM on the problem of small ncRNA classification show that it could be an ad-

vantageous alternative to McRUM on smaller datasets and thus we intend to develop in

tandem both classifiers for further experiments. The resulting small ncRNA classifiers will
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be integrated into a combined prediction tool that will offer both the multiclass SVM and

McRUM options providing more alternative choices to users.
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Chapter 5

Prediction of Mature MicroRNA and

Piwi-interacting RNA Without a

Genome Reference or Precursors

Abstract

MicroRNA (miRNA) and piwi-interacting RNA (piRNA) are two classes of small RNA that

are important in post-transcriptional regulation and are implicated in many important bi-

ological processes, such as those involved in diseases. The discovery of novel miRNA and

piRNA is an important step in the understanding of these processes. This has been made

more possible due to recent advances in high-throughput sequencing technologies that al-

low biologists to sequence the small RNA content of a tissue or organism. Often small RNA

sequencing leads to millions of reads of short length. Finding novel mature miRNA and

piRNA is non-trivial and most of the available methods are dependent on the availability

of the organism’s genome sequence and the quality of its annotation. In this study, we con-

sider the worst-case scenario: no genomic information is available and the identification of

mature miRNA and piRNA must be based solely on the short RNA reads. This implies that

the longer precursor forms of miRNA and piRNA are not available, as the small RNA se-

quencing protocol would filter longer RNAs out of the sample. This renders most discovery

methods, which rely on the identification of the precursors, inappropriate.
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We propose an approach that addresses the weaknesses of existing methods. The

method relies primarily on nucleotide composition of the read, thereby avoiding the need

of reference genomes of related species and the computationally expensive pairwise fold-

ing of the reads required by existing methods. Using Multiclass Relevance Units Machine

(McRUM), an empirical Bayesian kernel method for classification, compact models suit-

able for large-scale analyses are built using databases of known mature miRNA and piRNA.

We find that the usage of a L1-based Gaussian kernel can double the true positive rate

compared to the standard L2-based Gaussian kernel. Our approach can increase the true

positive rate by at most 60% compared to piRNApredictor based on the analysis of a hold-

out testset. Using experimental data, we show that our approach can detect about an order

of magnitude or more known miRNAs than the mature miRNA predictor miRPlex.

5.1 Introduction

Non-coding RNAs (ncRNAs) are functional RNA transcripts that do not translate

into proteins. The small ncRNA class consists of ncRNAs of length about 20 to 30 nt.

Two important types of small ncRNA are microRNA (miRNA) and Piwi-interacting RNA

(piRNA), as they play important roles in molecular biology.

The mature form of miRNA regulates messenger RNAs (mRNAs) in plants and

animals as a form of post-transcriptional regulation of genes. This is accomplished by

the binding of the mature miRNA to the target mRNA transcript, typically within the 3’

UTR [19]. Therefore miRNA play key roles in the regulation of cellular processes and

their dysregulation is implicated in many diseases such as cancer [6].

Mature miRNA arises from a complex biogenesis. The canonical pathway to a

mature miRNA involves the transcription of a long primary RNA transcript (pri-miRNA).

The Drosha enzyme cleaves the pri-miRNA, resulting in a shorter hairpin structure called

the precursor miRNA (pre-miRNA). Alternative non-canonical biogenesis pathways are

known to produce pre-miRNA without Drosha. For example, mirtrons are miRNAs formed

by the introns of a host protein coding gene [4]. In any case, the pre-miRNA is further

cleaved into two segments by the enzyme Dicer. The now liberated double-stranded stem

of the pre-miRNA is historically called the miRNA/miRNA* duplex. The duplex is later

101



separated and both strands may possibly lead to functional mature miRNA by recruitment

into a RNA-induced silencing complex (RISC) via Argonaute proteins.

On the other hand, the most highly expressed and most diverse small ncRNAs in

animals are the piRNAs [17, 25]. Mature piRNAs form RNA-protein complexes with piwi

proteins. The piRNA complexes are linked to epigenetic and post-transcriptional silencing

of retrotransposons, particularly in the germ line cells, and with tumorigenesis [24]. How-

ever recent evidence suggests further roles for piRNA beyond transposon silencing, such as

piRNAs that target genes involved with establishing memory in neurons [22]. Many details

of piRNA, such as the target silencing mechanisms and aspects of its biogenesis, remain

open questions [16]. Therefore piRNAs are important and continuing research will further

establish their role in cellular processes.

High-throughput small RNA sequencing technologies have been developed to

help in the study of small ncRNAs. For example, small RNA sequencing technologies were

used to implicate piRNAs in anti-viral defense in mosquitoes [10]. A variety of methods

have been developed to annotate the small RNA reads that require genomic information,

such as miRCat [20] for miRNA identification. Nevertheless, annotation of small ncRNA

datasets remains a challenge, as for example studies on locust small RNA datasets leave

30-40% sequences unannotated. Furthermore, the requirement of genomic information

prevents the majority of methods from being used on non-model organisms where whole-

genome sequencing and annotation is a non-trivial hurdle.

For miRNA, there are two existing methods for predicting mature miRNA from

small RNA sequencing without a genome reference: MiRMiner [27] and miRPlex [18].

MiRMiner relies on evolutionary conservation and uses the genomic information from

other species as a substitute for direct genome reference. Thus MiRMiner requires genome

references reasonably close to the target species. On the other hand, miRPlex exploits

knowledge of miRNA biogenesis by predicting possible miRNA/miRNA* duplexes via

RNA folding algorithms. This avoids the use of any genome references. However, the

use of miRPlex on the full small RNA datasets that have millions of reads would require

powerful parallel computing infrastructure due to the very large number of possible pairs

that need to be evaluated. To reduce the number of duplexes, miRPlex primarily filters the

102



sequences considered by abundance. This can lead to the omission of miRNAs that were

not highly expressed.

For piRNA, to the best of our knowledge, there exists only one method for pre-

dicting mature piRNA from small RNA sequencing data, piRNApredictor [28]. piRNApre-

dictor is based purely on nucleotide composition and does not require reference genomes

nor sequencing of precursor forms. However, preliminary results in Article 3 (Chapter 4)

suggest the predictive performance of piRNApredictor can be significantly improved upon.

In this study, we propose an approach that addresses the weaknesses of existing

methods and our previous approach in Article 3 (Chapter 4). The method will rely primar-

ily on nucleotide composition of the read, thereby avoiding the need of reference genomes

and the computationally expensive pairwise folding of the reads required by existing meth-

ods. We use Multiclass Relevance Units Machine (McRUM), an empirical Bayesian kernel

method for classification, to achieve compact models appropriate for large-scale analyses.

The results suggest a significant improvement over our previous efforts in Article 3 (Chap-

ter 4) and to existing methods.

5.2 Results

5.2.1 Feature Selection

Since mature miRNAs and piRNAs lack strong secondary structures, we analyze

the nucleotide composition of the ncRNAs. Our previous analysis in Article 3 (Chapter 4)

suggests this composition approach suffices for identifying piRNAs but is not optimal in

the identification of miRNAs. To improve the performance with regards to miRNAs, we

consider additional miRNA-centric features such as the first nucleotide of the sequence,

the composition of the seed region, and the A/U composition. We use Correlation-based

Feature Selection (CFS) [8] to select a subset of features on which to build classifier models.

The core idea of CFS is that the best subsets of features are those that are highly predictive

but minimally correlated to each other.

In total we consider 1389 features, including the 1364 unique k-mers, for k = 1

to 5, that represent nucleotide composition. For the CFS McRUMs, CFS is used to select a
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(a) miRNA (b) piRNA

(c) Other ncRNA

Figure 5.1. 3-fold cross-validation ROC curve for CFS and all features (ALL) McRUMs
using L1 Gaussian kernel with all-pairs (AP) or one-vs-rest (OVR) decompositions. The
ROC curves are generated from observed FPR and TPR under varying posterior probability
thresholds from 0.30 to 0.99 in increments of 0.01.

subset of features to build a McRUM for each fold of cross-validation. CFS selects about

142-161 features per fold, which is about a ten fold decrease from using all features. When

applied to the entire training dataset, CFS selects 154 features. In all cases, among those

selected by CFS are the four binary features representing A, C, G, and U that mark the

identity of the first nucleotide. This is not surprising as both miRNA and piRNA are biased

toward starting with a U base. Also selected is the AU score [7], as both piRNA and

miRNA tend to have higher scores. This too is not surprising for miRNA because miRNA

targets are known to have high AU content [7]. Lastly, the frequency of the 2-mer CG in

the potential seed region is selected. Interestingly, this feature distinguishes piRNA rather

than miRNA, as piRNAs are more biased toward lower scores than other ncRNAs.

Figure 5.1 illustrates the predictive performance of McRUMs with L1 Gaussian

kernel using all features or CFS-selected features. Two popular decompositions of a multi-
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class problem to a set of binary class problems are considered: all-pairs (AP) and one-vs-

rest (OVR). In the AP decomposition, a binary classifier is created for every pair of classes:

1) miRNA vs. piRNA, 2) miRNA vs. other ncRNA, and 3) piRNA vs. other ncRNA. On

the other hand the OVR decomposition creates a binary classifier for each class against all

others: 1) miRNA vs. piRNA & other ncRNA, 2) piRNA vs. miRNA & other ncRNA,

and 3) other ncRNA vs. miRNA & piRNA. The performance is measured using 3-fold

cross-validation. Figure 5.1b shows some advantage of using the OVR decomposition over

AP. However, there is little difference between the models that use all features and CFS-

selected features. This is surprising as the order of magnitude reduction of features and thus

dimensionality was expected to improve predictive performance due to the relative contrast

theory of Aggarwal [1] and since CFS should not be eliminating vital features. Neverthe-

less, the CFS analysis did provide insight into which features are actually necessary for

prediction.

5.2.2 Kernel Selection

We compare the use of L1 and the standard L2 Gaussian kernels with 3-fold

cross-validation using CFS-selected features. Figure 5.2 shows the significant increase of

performance from using L1 rather than the standard L2 Gaussian kernel. For example, there

is an increase to about 0.9 true positive rate (TPR) using L1 from about 0.4 using L2 at 0.01

false positive rate (FPR) for piRNA prediction (Figure 5.2b). Aggarwal et al. [1] studied

the behavior of distance metrics in high dimensional clustering that explains the results

we observe. They define a concept called the relative contrast that measures how well

you can discriminate between the nearest and furthest neighbor when using a particular

distance metric. If relative contrast is too low, all points appear to be equally close by,

which would be disastrous in classification where the locality of datapoints is crucial. They

go on to show that relative contrast using L1 distance decays at a slower rate than L2

distance as dimension increases and therefore L1 distance remains a viable metric at larger

dimensions than L2 distance. These theoretical results agree with our observations that

the standard L2 Gaussian kernel evaluations in our problem are all near unity, indicating

low relative contrast as all points in the dataset appear to be equally distant from each
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(a) miRNA (b) piRNA

(c) Other ncRNA

Figure 5.2. 3-fold cross-validation ROC curves for McRUMs using L1 and L2 Gaussian
kernels with all-pairs (AP) or one-vs-rest (OVR) decompositions. The ROC curves are
generated from observed FPR and TPR under varying posterior probability thresholds from
0.30 to 0.99 in increments of 0.01.

other. The increased relative contrast offered by using L1 distance allows McRUM to more

easily distinguish the datapoints belonging to different classes and thus improves predictive

performance.

5.2.3 Comparison with SVM and piRNApredictor using Hold-out Test

Set

We use a hold-out test set to compare the predictive performance of McRUMs

to a SVM-based solution using the L1 Gaussian kernel and the CFS-selected features and

the existing piRNApredictor software [28]. We implement the L1 Gaussian kernel in the

machine learning library Weka [9] and use Weka’s implementation of sequential minimal

optimization to train a SVM with logistic models. Weka’s implementation of multiclass
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(a) miRNA (b) piRNA

(c) Other ncRNA

Figure 5.3. Test set ROC curves for McRUMs and SVM using L1 Gaussian kernel.
McRUMs use all-pairs (AP) or one-vs-rest (OVR) decompositions. The ROC curves are
generated from observed FPR and TPR under varying posterior probability thresholds from
0.30 to 0.99 in increments of 0.01.

SVM uses the AP decomposition to binary classification problems. The predictive perfor-

mance results are given in the ROC curves in Figure 5.3, which shows no clear superior

method. Performance is nearly identical for miRNAs (Figure 5.3a), the SVM has a small

advantage for piRNAs (Figure 5.3b), and the OVR McRUM has the advantage for other

ncRNAs. The primary advantage of using McRUM models over the SVM model is the

smaller models generated by McRUM, as illustrated in Figure 5.4. The SVM and both

McRUM models are composed of three binary classification models. On average, a binary

classification model of the SVM uses about 6 times more terms (support vectors) in its

linear model than McRUMs. Therefore, McRUM models are able to produce predictions

at 6 times the rate of the SVM, leading to faster RNA-seq analysis run-times.

The predictive performance of McRUMs for the piRNA case compared to the

software piRNApredictor [28] is given in Figure 5.5. piRNApredictor uses Fisher’s Linear
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Figure 5.4. The average size (number of relevance units or support vectors) of the binary
classification models for all-pairs (AP) & one-vs-rest (OVR) McRUMs and SVM.

Figure 5.5. Test set ROC curves for all-pairs (AP) & one-vs-rest (OVR) McRUMs and
piRNApredictors - the original piRNApredictor (FLD1) and a retrained piRNApredictor
(FLD2). The ROC curves are generated from observed FPR and TPR under varying poste-
rior probability thresholds from 0.30 to 0.99 in increments of 0.01.

Discriminant (FLD) classifier and makes predictions based on k-mer composition. Two

variations of piRNApredictor are examined: the original provided by the authors and one

built on our training dataset. Both McRUMs significantly outperform the piRNApredictors.

One reason for the low performance of piRNApredictor is its use of a FLD’s linear model

of the decision boundary between piRNA and other ncRNAs. We also observed poor per-

formance using a linear SVM in our preliminary analysis in Article 3 (Chapter 4). Also
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noted in our preliminary analysis was the small representation of ncRNA sequences under

25 nt long in piRNApredictor’s training dataset. Only 4.67% of piRNApredictor’s training

dataset were ncRNAs under 25 nt long. This weak representation of short ncRNA may be

the reason why the piRNApredictor trained on our dataset outperforms the original.

5.2.4 Comparison with miRPlex using Experimental Datasets

We compare miRPlex [18] and our McRUMs using experimental RNA-seq datasets

since miRPlex requires information on sequence abundance and pairing sequences for the

miRNA duplex prediction. These additional information are not provided in our training

or hold-out test sets. Therefore, we consider the following four datasets: Caenorhabdi-

tis elegans (GSM297747), Drosophila melanogaster (GSM609220), and the gregarious

(GSM317268) and solitary (GSM317269) phases of Locusta migratoria. While the ground

truth is not known for experimental datasets, we are able to gain some insight on how

miRPlex and McRUM perform individually and in conjunction with each other.

The primary disadvantage of miRPlex is its sheer computational complexity, as

it requires invoking a RNA folding routine for every pair of sequences in RNA-seq dataset

that may contain millions of sequences. To make miRPlex practical, the dataset must be

filtered down to a smaller subset in some way. miRPlex does this by allowing the user to

specify the minimum abundance of the sequences to be considered. This removes lowly

expressed sequences from the dataset, which can be an issue should the miRNA of interest

occur at low expression levels. We also consider the use of McRUM as a filter for miRPlex,

as an alternative to abundance filtering.

Due to computational constraints, we use a minimum abundance of 25 reads per

million (RPM) for GSM297747 and GSM609220 datasets and 40 RPM for GSM317268

and GSM317269 that have a larger number of unique sequences with high expression.

For the McRUM results, we use a minimum posterior probability of 0.9 using an OVR-

based McRUM model and minimum abundance of 2 RPM to reduce noise. We also use

the resulting McRUM outputs as the input to miRPlex with no abundance filter. This will

allow miRPlex to pick out the McRUM results that have reasonable duplex pairings. The

results are summarized in Figure 5.6a.
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(a) Predictions (b) Matches to known miRNA

Figure 5.6. (a) Number of miRNA predictions for McRUM and miRPlex. (b) Number of
miRNA predictions matching a known mature miRNA.

Due to the high number of unique sequences in the locust datasets, we were

forced to use a high minimum abundance of 40 RPM. This is too stringent for miRPlex

and it is unable to detect any miRNAs. Using McRUM as the filter instead results in the

detection of more miRNAs for two of the four datasets. MiRPlex still detects no miRNAs

for GSM317269, while it detects less than half the amount of the abundance-filtered miR-

Plex for GSM609220. On the other hand, McRUM by itself detects about 1-2 orders of

magnitude more miRNAs than the standard miRPlex.

To get a sense of the performance of these predictions, we look at how many of

these predicted miRNAs closely match to known miRNAs using a BLAST search against

miRBase’s collection of mature miRNAs. We use NCBI’s blastn-short that is optimized for

sequences less than 50 nucleotides [12]. A challenge with using BLAST on short sequences

is that perfect or near perfect matches result in large e-values relative to analyses with long

sequences. A perfect match of length 22 nt, roughly the length of a mature miRNA, only

gets an e-value of 2e-7. While only having a single mismatch the e-value jumps up to 5e-5

and two mismatches gives an e-value of 2.8. This is troublesome because of the existence

of isomiRs, which are variants of the canonical sequences given in miRBase. These isomiR

variants include nucleotide substitutions, additions, and trimming of the 5’ and/or 3’ end of

the miRNA. We choose an e-value threshold of 5e-5 to allow for a single mismatch in a 22

nt alignment in order to get some sensitivity to isomiRs while still not preventing too many

coincidental matches. While this analysis still remains rough and does not account for

novel miRNAs, it does give a sense of how many of these predictions are reasonably close
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to known miRNAs. The results are summarized in Figure 5.6b and illustrates similar trends

to that of Figure 5.6a. This shows that McRUM by itself can detect known miRNAs better

than miRPlex using abundance or McRUM filtering by about an order of magnitude or

more. This possibly comes with a number of false positives, but these can be reduced using

a higher minimum posterior probability or by usage of miRPlex on McRUM’s predictions.

One additional potential reason for miRPlex under-performing is the aforemen-

tioned existence of isomiRs. MiRPlex cannot account for the miRNAs being further mod-

ified after splitting apart from the duplex phase. The isomiR variants of the miRNAs may

no longer be able to form a thermodynamically favorable duplex and thus miRPlex would

not be able to detect these miRNAs. This is less of an issue with McRUM models since

the models do not consider the duplex and instead rely upon other miRNA features such as

nucleotide biases.

5.3 Methods

5.3.1 Classification Methods

We use and compare the following two kernel-based classification methods: mul-

ticlass relevance units machine (McRUM) from Article 3 (Chapter 4) and the support vec-

tor machine (SVM) [26] using the Gaussian kernel. The SVM is a popular method due to

its high accuracy via margin-maximizing framework. Probabilistic outputs will be gener-

ated from the SVM models by training a logistic regression model on the trained SVM’s

outputs [21], as implemented in Weka [9]. Cross-validation is used to select the SVM

parameters, the soft margin parameter C and the Gaussian kernel width.

McRUM is a new method that provides probabilistic outputs, high accuracy through

its empirical Bayes foundations that mitigate overfitting, and more parsimonious models

than the SVM. McRUM decomposes an n-class classification problem into a set of binary

classification problems that can be solved independently. In this study, we consider the

popular and effective all-pairs (AP) and one-vs-rest (OVR) decompositions. A binary clas-

sifier is generated for every pair of classes in the AP decomposition, resulting in n(n−1)/2

binary classifiers. For each class in the OVR decomposition, the selected class is compared
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to the aggregation of all remaining classes. Therefore the OVR decomposition consists of

n binary classifiers.

Each binary classification problem is solved using the Classification Relevance

Units Machine (CRUM) described in Article 2 (Chapter 3) where cluster centers are used

as the centers for the Gaussian kernels. For this study, the same number of clusters is used

for all CRUMs and is chosen using cross-validation. An empirical Bayesian algorithm

determines the weight of each Gaussian kernel. A linear-time algorithm aggregates the

set of binary predictions from the trained CRUM models to produce the prediction for the

original n-class problem.

5.3.2 Gaussian Kernels

In our previous analysis in Article 3 (Chapter 4), we used the standard Gaussian

radial basis function kernel for both McRUM and SVM,

K(x,x′) = exp(γ‖x− x′‖2
2)

where γ controls the growth of the kernel and the squared Euclidean distance of the two

points x and x′ is considered. The use of Euclidean (L2) distance as its metric is not

necessarily the optimal choice depending on the characteristics of the dataset, such as its

dimensionality and sparseness. This is very well known in the clustering literature [1],

but these results are not prevalently used in the classification literature. This is perhaps

due to the technical difficulty that using a different metric in the Gaussian kernel may lead

to an invalid kernel function and the fact that the popular SVM packages, LIBSVM [5],

SVMlight [11], and Weka [9], do not provide the built-in option to use different metrics

in their Gaussian kernel implementations. However, it is known that the Gaussian kernel

using Manhattan (L1) distance leads to a valid kernel [23]. We investigate the use the L1

distance-based Gaussian kernel over the standard L2 distance-based version with the L1

Gaussian kernel in a d-dimensional real vector space defined as,

K(x,x′) = exp(γ‖x− x′‖1)

where
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‖x− x′‖1 =
d∑

i=1

|xi − x′i|.

5.3.3 Datasets

The small ncRNA dataset is gathered from miRBase’s collection of miRNA [14]

and NONCODE collection of piRNA [3]. To represent other small RNAs that may be

present in small RNA sequencing projects, we use Mus musculus GSM314553 small RNA

dataset from NCBI GEO database [2]. The mouse dataset is from a Dicer knockout mouse,

which should not contain any mature miRNA due to Dicer’s important role in miRNA

biogenesis. Any known mature miRNA and piRNA in this dataset will be filtered out. This

should provide a more realistic representation of other small RNAs than our previous effort

that used random short fragments of other ncRNAs from the NONCODE database. Each

of these three sets are individually reduced using CD-HIT [15] to remove sequences with

80% or higher identity. This helps reduce the evolutionary correlations among the data and

improves the generalization of McRUM and SVM models that assumes an independent

sample.

After redundancy reduction, the dataset consists of 13,891 miRNA, 81,147 piRNA,

and 190,761 other ncRNA sequences. We randomly set aside 20% of the miRNA sequences

for the hold-out test set and the remaining 80% for the training set. We randomly select

equal number of piRNA and other ncRNA sequences for training to keep the training sets

balanced. All remaining piRNA and other ncRNA sequences are used in the hold-out test

set.

Dataset Species Library size # unique seq. # filtered seq.
GSM297747 Caenorhabditis elegans 5 million 371,937 1353
GSM317268 Locusta migratoria 1 million 228,526 2091
GSM317269 Locusta migratoria 2 million 429,041 1668
GSM609220 Drosophila melanogaster 14 million 78,236 1349

Table 5.1. Summary of experimental datasets. Sequences are filtered based on minimum
RPM. We use a minimum of 25 RPM for GSM297747 and GSM609220, and 40 RPM for
GSM317268 and GSM317269.
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For comparison with miRPlex, four experimental RNA-seq datasets are used.

Information about these datasets is summarized in Table 5.1.

5.3.4 Features

Since mature miRNAs and piRNAs lack strong secondary structures, we will

represent each ncRNA using k-mers, for k = 1, 2,..., 5. For each value of k, the number of

occurrences of each type of k-mer is computed and normalized. If we view each ncRNA

sequence as a text document, this k-mer approach is analogous to the “bag of words” ap-

proach in document classification. Our previous analysis in Article 3 (Chapter 4) suggests

this k-mer approach suffices for identifying piRNAs but is poor in identifying miRNAs.

To improve the performance with regards to miRNAs, we consider additional

features. It is known that miRNAs have a strong bias toward the U nucleotide in the first

position of their sequences [18]. We therefore propose to use four binary features for the

four possible RNA nucleotides, A, C, G, and U, to mark the identity of the first nucleotide

of the read. It is also known that the target mRNAs of a miRNA need to be physically

accessible, particularly to the first eight positions of the miRNA that is called the seed

region [13]. Accessibility is correlated with the nucleotide composition of the mRNA tar-

get region and thus the miRNA’s nucleotide composition. The composition of the entire

miRNA is already captured by the k-mers features, but to emphasize the importance of the

seed region, we propose the addition of separate k-mer features computed over the seed re-

gion only. Lastly, we also consider the AU Score proposed in [7] as another feature related

to accessibility. The AU Score is a measure of AU content weighed by the distance of the

A/U occurrence to the seed region.

Using k = 1 and 2 only for the seed region k-mer composition features, we have

a grand total of 1389 features. Since this is high dimensional, we may be able to achieve

improved results through feature selection. We use CFS [8] to select a subset of features

to build classifier models on. The core idea of CFS is that the best subset of features are

those that are highly correlated to the class and minimally correlated to each other. In other

words, CFS seeks to find features that are maximally relevant and minimally redundant. To

prevent overfitting through feature selection, we use CFS in the cross-validation context.
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5.4 Conclusion

We proposed an approach to the prediction of mature miRNA and piRNA that

relies primarily on nucleotide composition of the read. This approach avoids the need of

reference genomes of related species and the computationally expensive pairwise folding

of the reads required by existing methods. Using the McRUM classification method, com-

pact models suitable for large-scale analyses are built using databases of known mature

miRNA and piRNA. Cross-validation results show that the usage of a L1-based Gaussian

kernel can double the true positive rate compared to the standard L2-based Gaussian ker-

nel. Analysis of the the hold-out test set shows our approach can increase the true positive

rate for piRNA by at most 60% compared to piRNApredictor. Finally, we show that our

approach can detect at about an order of magnitude or more known miRNAs than miRPlex

using experimental datasets.
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Chapter 6

Conclusion

In this dissertation, we developed novel probabilistic classification methods and

demonstrated their practical applicability by solving major bioinformatics problems at the

transcriptome and proteome levels where the resulting tools are expected to help biologists

further elucidate the important information contained in their data.

The proposed non-linear binary classification method, CRUM, achieves high gen-

eralization through the utilization of the theory of kernel and empirical Bayesian methods.

The practical applicability of CRUM is demonstrated by its application to an important

problem in molecular biology, the prediction of protein phosphorylation sites. Predictions

of these sites help explain the mechanisms that control many biochemical processes.

Then we developed an extension of CRUM from binary to multiclass problems

with McRUM. McRUM decomposes a multiclass problem into a set of binary problems

by using the error correcting output codes framework. CRUM can then be used to solve

the individual binary problems independently. A linear-time algorithm to aggregate the

results of the individual CRUMs into the final probabilistic multiclass prediction is devised

to allow for predictions in large scale applications. The practical applicability of McRUM

is demonstrated through a solution to the identification of mature miRNA and piRNA,

which are implicated in post-transcriptional regulation, in small RNA sequencing datasets

without the use of genomic references. This provides a tool to help biologists discover

novel miRNA and piRNA and further understand the molecular processes of the organisms

they study, including non-model organisms whose genomic information may be lacking.
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In this new era of big data biological research, the abundance of data has pre-

sented many challenges in their analysis and has led to a situation some call “data rich,

information poor.” It is expected that the research developed in this dissertation will help

alleviate this problem by providing methods to extract important information out of data in

order to elucidate details of biological mechanisms that are helpful for basic science and

the development of new diagnostic and therapeutic tools.

6.1 Future Work

While this dissertation focused on bioinformatics applications, the diverse sample

of benchmarking datasets processed using CRUM and McRUM shows the general applica-

bility of these methods to classification problems of many domains. A future direction is

more in-depth studies into areas such as computer vision, natural language processing, and

speech recognition using CRUM or McRUM. Sentiment analysis is an example problem

from natural language processing that involves determining the attitude of the writer with

respect to the topic being discussed in the text. This can involve the classification of the

polarity of the message as expressing a positive, negative or neutral opinion. Sentiment

analyzers work best if trained specifically for the the domain of application due to the dif-

ferences in lexicon used in different topic areas (e.g. finance or movie reviews) or different

media (e.g. editorial articles or short social media messages). The real-time stream of

text generated by social media is an interesting source of data, as social media platforms

have become a central site where the public can express their opinions. This can allow for

real-time sentiment analysis to track the public’s opinion regarding a product, company,

or political candidate. This would provide the ability to analyze the relationship between

the expressed public sentiment and emerging events, and possibly allow for intervention to

sway public sentiment to a desired state. The development of online learning algorithms for

CRUM and McRUM to efficiently learn with streams of data would facilitate such real-time

learning applications.
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