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NECESSARY CONDITION FOR EXCITATION THE OSCILLATIONS IN 
GOODWIN’S MODEL OF BUSINESS CYCLE 

We investigate the necessary condition for excitation of long-periodic Goodwin’s os-
cillations and short-periodic sawtooth oscillations in the Goodwin model of the busi-
ness cycle with fixed delay in the induced investment and in the consumption.  

Introduction 

In [1] Goodwin proposed a business cycle model in the form of the neutral 
delay differential equation with fixed delay in investment 

� � � � � �� � � �.)1( tAtytyty ������ ��	
 ��

Here )(ty  is income, )(y��  is induced investment, A is the autonomous investment, 
0�
  and 0��  are the time-lag of the dynamic multiplier and the time-lag be-

tween the investment decisions and the resulting outlays, 	  is the marginal propen-

sity to consume, 10 �� 	 , and 
dt
dyy �� . Values of �,y  and A are expressed in 

billions of dollars per year, t  is time in years. The function )(y��  satisfies the con-
ditions: 

0)( y�� ;     0)0( �� ;    r�� )0(� ;  
������� yyyy fc ���� if)(;if)( ���� , 

where r  is the acceleration coefficient (in years), c�  and f�  are the Hicksian 
ceiling and floor (in billions of dollars per year). Also an initial function 

0),()( ��� ttty  for the delay differential equation (1) needs to be specified.  
 It was shown in [2] by the analog simulation, that Eq. (1) has many solu-
tions. One of them is similar to the long periodic Goodwin’s oscillation [1]. Other 
solutions are the short periodic sawtooth oscillations with periods 

....,2,1, �� n
n

Tn
� These results are confirmed by a numerical simulation per-

formed in [3]. 
 Recently Matsumoto and Szidarovszky [4] have proposed Goodwin’s 
model with a fixed delay in investment and in the consumption. This model has the 
following form: 

� � � �� � ),()()( tAtytytyty ������� ���	
 ��                                               (2) 

where �  is the consumption delay time.
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We have performed numerical simulations of Eq. (2) and have showed that 
this model also generates the long oscillation as well as the short periodic ones.  

Problem statements 

In this paper we obtain the necessary condition for the excitation of Good-
win’s oscillations and the sawtooth oscillations for model with delays in the induced 
investment and in the consumption. 

Analysis of the linearized Googwin equation 

If 0)( �tA , Eq. (2) has a stationary solution .0�sy  We are interested in 
the stability of this solution. Variational equation for Eq. (2) takes the form  

).()()()( ��	
 ������ tyrtytyty LLLL ��                                       (3) 
To investigate its stability, we seek its solution in the form 

,)( 0
t

L eyty �� where �  is the eigenvalue. Substituting t
L eyty �

0)( �   into Eq. (3) 
and rearranging terms, we obtain the corresponding characteristic equation: 

.01 ���� �� 
�	� ���� eer                                                        (4) 
First recall some basic facts concerning the properties of solutions of Eq. 

(4). For the roots with ��|| �  Eq. (4) can be replaced by an approximate equa-

tion .0��� 
�� ��er  From this equation we obtain 
...,2,1,2ln ����� nnipn ��� , where ./ 
� rp

 
If ,
�r  then all high modes 

with frequencies ...,2,1,/2 ����� nnn
 
are unstable for any value of � .  

We now consider the dependencies of the roots of Eq. (4) on the parameter 
r. There were chosen the following parameters [1]:� ,5.0,6.0 �� 
	 .1��  The 
numerical results given in Table 1and in Table 2 for �=0 and �=1 respectively. 

 

Table 1. Roots of Eq.(4) as functions of r for �=0.6, 
=0.5, �=1 and���=0 . 

r  �0 �1 �2 
0.5  -0.1870+0.8453i -0.0076+6.4074i -0.0020+12.6296i 
0.6  -0.0903+0.8218i 0.1713 +6.4069i 0.1794 +12.6296i 
0.7  -0.0084+0.7943i 0.3226+6.4063i 0.3328 +12.6295i 
0.8  0.0625+0.7641i 0.4537 +6.4058i 0.4657 +12.6294i 
1.0  0.1810+0.6985i 0.6729+6.4046i 0.6878+12.6292i 
1.2  0.2776+0.627i 0.8520+6.4034i 0.8692+12.6291i 
1.4  0.3593+0.549i 1.0036+6.4023i 1.0226+12.6289i 
1.6  0.4299+0.4620i 1.13491+6.401i 1.1555+12.6288i 
1.8  0.4922+0.3595i 1.25016+6.400i 1.2727+12.6286i 
2.0  0.5478+0.2204i 1.35452+6.399i 1.3776+12.6285i 
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Table 2. Roots of Eq.(4) as functions of r for �=0.6, 
=0.5, �=1 and���=1 . 
 

r  �0 �1 �2 
0.5  -0.7506+0.4333i -0.0288+6.4010i -0.0079+12.6287i 
0.6  -0.5947+0.5666i 0.1452 +6.4290i 0.1721 +12.6441i 
0.8  -0.3662+0.6602i 0.4205 +6.4624i 0.4561 +12.6630i 
1.0  -0.2004+0.6779i 0.6345 +6.4811i 0.6764 +12.6741i 
1.2  -0.0708+0.6659i 0.8096 +6.4926i 0.8564 +12.6814i 
1.4  0.0353 +0.6385i 0.9578 +6.5001i 1.0086 +12.6864i 
1.6  0.1250 +0.6013i 1.0863 +6.5052i 1.1405 +12.6901i 
1.8  0.2027 +0.5568i 1.1997 +6.5088i 1.2568 +12.6929i 
2.0  0.2710 +0.5056i 1.3013 +6.5113i 1.3609 +12.6951i 

 
We see, that the stability switch for �0 depends strongly on �. 

At any stability switch 0Re ��  and hence .�� i�  Substituting  �� i�  
into (5) and separating the real and imaginary parts, we have  

,1cossin �� ��	���r  
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which is equivalent to 
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�                      
(5) 
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      (6) 
We have the following claim. Equation (4) has purely imaginary roots if and 

only if  

,
sin
cos1

���
��	

kk

k
krr �
��

     

 
 

where k� is a root of (5). 
From Eqs. (5) – (6) it follows that if delay � increases, then the frequency 

0� decreases and the threshold r0 increases. The numerical solutions of Eqs. (5) - 
(6) for 1,6.0,5.0 ��� �	
  are shown in Figure 1 by solid lines. 

For small ��0 , � ���0  and � ��0r  can be approximated by the following 
formulas 
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Dependencies (11) �nd (12) are shown in Figure 1 by dashed lines. 
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Fig. 1. The functions � ���0  and � ��0r  for �=0.6, 
=0.5, �=1. The solid lines correspond to 
the numerical solution of Eqs. (5) - 6). The dashed lines correspond to the formulas (7)-(8).  

Conclusions 

We have shown that if 
�r , the unstable high modes  

...,2,1,2
�� nn

n �
��

 
 always exist. To excite Goodwin’s mode the accelerator must exceed the certain 
minimum value .0r  We have found an approximate expression for :0r  

� � .
2

1
0

�		�
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���r  

In the range 0rr ��
  the Goodwin’s mode does not excite. It should also 
be noted that in reality the excitation threshold of Goodwin’s mode lies higher than 

.0r This is due to the fact that, as seen in Table 2, only when 1r  the growth rate 
of Goodwin’s mode will be comparable with the growth rate of the first mode. 
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This confirms the results of the numerical solution of Eq. (3), which are 
shown in Figure 2. They show that there is a threshold 61.0�cr� : if cr�� � , then 

the steady state solutions have the form of the long periodic Goodwin oscillations. If 
cr�� � , then the steady state solutions have the form of sawtooth oscillations. 
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Fig. 2. Solutions y(t) of Eq. (2) with �=0.6, 
=0.5, �=1, r=2, �(t)=0, and  A(t)=10te-t . The lines 
1, 2, 3 and 4 correspond to �=0.05 , �=0.5, �=0.6 and �=0.625. 
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