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ABSTRACT OF THESIS 

 
THE RELATIONSHIP BETWEEN ROADWAY HOMOGENEITY AND NETWORK 

COVERAGE FOR NETWORK SCREENING 
 

In the context of transportation safety engineering, network screening is a method 
of identifying and prioritizing high-risk locations for potential safety investment. Since its 
release, the Highway Safety Manual (HSM) has facilitated the adoption of Safety 
Performance Functions (SPF)  to predict the number of crashes for the network screening 
of any facility type. The predictive model becomes more reliable when developed from 
crash data with homogeneous roadway segments and this homogeneity can be attained by 
applying specific geometric attributes to the dataset. The caveat to this method is the 
requirement of adjustment factors (AFs) to adjust the predicted estimate for the segments 
which have different geometric characteristics compared to the base attributes. Though 
AFs are available from several sources, particularly the HSM and CMF Clearinghouse, 
there are still many attributes for various roadways for which the AFs have not been 
estimated yet. The absence of appropriate AFs limits the use of such crash prediction 
models for network screening. In that case, a generic SPF can be developed from the entire 
network without applying any base conditions and, the reliability of the model is 
compromised. The goal of this study is to evaluate the trade-offs between a more reliable 
SPF (that requires more AFs) and a relatively less reliable SPF (that requires fewer AFs). 
This leads to the following question this research attempts to answer: “Are the benefits of 
AFs for network screening worth the cost of developing them?” 

Recommended by the HSM, this study uses “Excess Expected Crashes (EEC)”, a 
metric derived from the SPF and historical crash data for ranking potential sites for 
improvement. The study analyses found that segment rank is nearly insensitive to the 
choice of the SPF and developing AFs may not justify the cost of network screening. On 
the other hand, an SPF developed from the entire roadway data might not work as well for 
project-level analysis (a combination of several segments) or estimating the benefit-cost 
ratio for a site. This is because the magnitudes of the EEC are crucial for such cases and 
the generic SPF overestimates the EEC compared to SPFs developed from specific sets of 
attributes for most of the segments. Therefore, the major finding of the thesis is that a 
generic SPF is sufficient when sites are needed to be ranked, but specific SPFs perform 
better when a benefit-cost analysis is required. 
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Chapter 1.  INTRODUCTION 

1.1 Background 

Transportation safety professionals use a network screening process to identify hazardous 

sites for future investigation and rank them in order of their priority. The purpose of network 

screening is to identify sites with promise so that resources can be allocated to those which 

can avail the maximum benefits from the targeted, cost-effective treatments. This is a 

challenging process since inefficient decisions can add unnecessary costs with little or no 

safety benefits. Ineffective network screening can result in wasting time and resources and 

distributing funds to sites with less potential for improvement while unsafe sites may remain 

untreated.  

Before the release of the Highway Safety Manual (HSM), transportation agencies used 

various methods for project prioritization. High-crash locations were identified using crash 

frequency, crash rate, crash severity, crash cost, or a combination of these metrics. 

Candidate locations were screened by comparing crash rates to a critical rate factor or based 

on some arbitrary ranking method. Despite the widespread use of these methods, they are 

hindered by methodological disadvantages leading to ineffective project selection and fund 

allocation (Blackden et al., 2018). 

Published in 2010, the HSM has assisted to identify high-risk locations by adopting a 

technique based on crash prediction models. This procedure of network screening can 

address several disadvantages of the traditional methods and enhance the benefits of safety 

improvements. The HSM introduces a methodologically advanced crash predictive model 

named Safety Performance Functions (SPF)(AASHTO, 2010). It also facilitates the use of 

the Empirical Bayes (EB) method which provides a more realistic measure of a site’s safety 

performance by adjusting the predicted crashes with the historical crashes (Blackden et al., 

2018). The HSM technique finally leads to the estimation of a factor that measures the 

potential of any site’s crash reduction. In Kentucky, this metric is termed as “Excess 

Expected Crashes” (EEC) which is used for prioritizing potential sites (Green, 2018). 
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1.2 Research Objective and Problem Statement 

SPFs are regression models that correlate predicted crash frequency with traffic volume 

and geometric attributes of the roadway. When developing models, it is important to 

examine their reliability. The presence of omitted variable bias (OVB) is one of the causes 

of unreliability in the model. OVB indicates that one or more variables have been 

excluded from the model which might have significant effects (Srinivasan and Bauer, 

2013). The use of heterogeneous roadway geometry in modeling results in this bias. 

Conversely, the use of a homogeneous roadway dataset for SPF development reduces 

OVB (Green, 2018). Base conditions (common geometric attributes) can be employed to 

assure homogeneity of the roadway segments. But adjustment factors (AF) should also 

be applied to adjust the predicted crashes to account for differences from base conditions. 

These AFs can vary by the roadway type (e.g. rural/urban, freeway/arterial/local). 

Developing quality AFs requires well-planned observational studies aided by adequate 

resources. Though there are several sources for AFs (e.g. CMF Clearinghouse, the HSM), 

AFs for several roadway geometric attributes are not available yet. The scarcity is even 

greater for multilane roadways including interstates and parkways. Though reliable SPFs 

can be developed, the absence of appropriate AFs limits their usage for network 

screening. In such a case, more generic SPFs can be developed from the entire roadway 

network without limiting the dataset with any roadway characteristics. The subject of this 

thesis is to examine the trade-off between a more reliable SPF (more homogeneity and 

less OVB, but requires more AFs) and a relatively less reliable SPF (less homogeneity 

and more OVB, but requires fewer AFs). This leads to the following question this research 

attempts to answer: “Are the benefits of AFs for network screening worth the cost of 

developing them?” 

1.3 Outline of the Thesis 

This thesis is organized into five chapters. Chapter 1 is the introduction which discusses 

the background of the research along with stating the research question. Following this 

introduction is a literature review in Chapter 2. This chapter deals with a comprehensive 

summary of the existing literature related to both traditional and the most current 
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methodologies for network screening. Two major focuses of this literature review are the 

development of Safety Performance Functions and the test of the model’s reliability for 

effective network screening.  

Chapter 3 covers the methodology that was followed to develop the SPFs and how they 

were analyzed. It explores the impact of changing geometric base conditions for model 

development and the process of evaluating their performances. 

Chapter 4 contains a summary and comparison of the outputs from various models and 

their interpretations. This was followed by the insights obtained from a visual 

representation of the SPF’s model form (cumulative residual (CURE) plots) and the other 

goodness-of-fit measures. This chapter also compares the ranks of the roadway segments 

obtained from each SPF. 

Following this, Chapter 5 provides the findings of the research, with discussions on the 

benefits and limitations of the study, and some recommendations for future work. 
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Chapter 2. LITERATURE REVIEW 

The goal of this literature review is twofold: to present the limitations of conventional 

safety analysis approaches which were widely used before the release of the Highway 

Safety Manual and to describe the development process of Safety Performance Functions 

for network screening. The review explains some measures for examining the reliability of 

the SPFs to develop the best models with available resources. Next, this chapter discusses 

the use of adjustment factors (AF) for adjusting predicted crashes when a location’s 

geometric attributes are different from the base conditions. The last two sections describe 

the state of the art related to the Empirical Bayes method and Excess Expected Crashes 

(EEC), a standalone measure for assessing the safety performance of road segments for 

screening networks.  

2.1 Reactive vs Proactive Approaches for Network Screening 

The conventional methods used for site selection are reactive procedures to road safety 

because of their analysis being built on historical crash data. These methods propose road 

safety improvements by identifying safety problems caused by crashes that have occurred 

after the road has been designed, built, and opened to the traveling public. Another point 

of note is that the existing crash data can often be outdated, insufficient, or incomplete to 

support accurate assessment. Nevertheless, the knowledge of the impacts of highway 

design and operation decisions on road safety is ever-evolving. In recent times proactive 

approaches are becoming more popular to identify hazardous sites before the crashes occur. 

Proactively applying this accumulated knowledge on the design and implementation of 

roadway improvement plans can be expected to lower the potential of crashes occurring on 

the roadway before being built or reconstructed. Though proactive approaches address 

some of the major limitations of reactive approaches, any safety management system is 

incomplete without a reactive component as it is an influential strategy for addressing 

existing safety problems. Therefore, an optimal balance between reactive and proactive 

strategies is necessary for effective network screening (“FHWA Road Safety Audit 
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Guidelines”, 2006). The methodology outlined in the HSM ensures the balance between 

historical data and roadway design.   

2.2 Traditional Approaches to Safety Analysis 

Before the release of HSM, safety practitioners have identified high crash locations using 

various metrics, e.g. the number of crashes, crash rate/critical rate, crash cost, crash 

severity. Some transportation agencies used individual parameters, where some used a 

combination of parameters which led to a somewhat arbitrary ranking of hazardous sites 

or networks (Wu et al., 2012). All the strategies were highly reactive approach 

accompanied by various challenges throughout the entire network screening process. The 

following review was written for the safety component of SHIFT (the Strategic Highway 

Investment Formula for Tomorrow) 2020, a project conducted by the Kentucky 

Transportation Cabinet (KYTC) to compare capital improvement projects and prioritize 

limited transportation funds (Souleyrette et al., 2019). 

Until very recently, KYTC had used a combination of three components for site 

prioritization: Critical Rate Factor (CRF), Crash Frequency (CF), and Crash Density over 

a segment length (CD*L) for measuring safety. CRF is a measure that compares a 

segment’s actual crash rate to a critical crash rate (Agent et al., 2003). CF is the total 

number of crashes occurring at a site in five years period. CD*L is an attempt to distinguish 

each site based on its roadway type. It represents the average crash density (crashes per 

mile) for each roadway type. Equations 1 and 2 show how the three components are 

weighted to create a combined safety score for segments and intersections. The scaled 

components are weighted differently based on the length of a location. If the length of a 

site is less than or equal to 0.2 miles, it is considered an intersection, otherwise a segment. 

Based on how these components’ magnitudes rank in comparison to all other sites, they 

are scaled from 0-100. The scaled values of these components are combined for each 

location to create a single safety score.  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝐿𝐿 > 0.2) =  0.25 ∗ (𝐶𝐶𝐶𝐶 ∗ 𝐿𝐿)†𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.25 ∗  𝐶𝐶𝐶𝐶𝐶𝐶†𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.50 ∗ 𝐶𝐶𝐶𝐶†𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝐸𝐸. 1  

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆 (𝐿𝐿 ≤ 0.2) =  0.50 ∗  𝐶𝐶𝐶𝐶𝐶𝐶†𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.50 ∗ 𝐶𝐶𝐶𝐶†𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝐸𝐸. 2 

One of the major shortcomings of this method is that this method does not account for the 

non-linear relationship between traffic volume and crashes. CRF assumes that more traffic 

volume will produce proportionately more crashes, which is not always accurate. A low-

volume road may have more crashes than a high-volume road due to other factors (e.g. the 

roadway’s geometric attributes) (Kuang et al., 2017). Another issue is that CF and CD*L 

have a bias towards segment length. However, a longer segment will not always have 

relatively more crashes just because it has more space to accumulate crashes. Therefore, 

with this method, locations with higher traffic volume and longer length received higher 

scores whether additional crashes were occurring or not. Regression-to-the-mean bias is 

also not addressed with any of the components, which means they do not account for 

temporal fluctuation in crashes (AASHTO, 2010). These biases can produce misleading 

results, and when used for site prioritization, there is always a possibility that potential sites 

are not chosen. Another issue with this method is that the weighting of each of the three 

components shown in the equations above is arbitrary and contributes to a length bias. For 

example, in both the segment and intersection equations, CF contributes 50% of a site’s 

score. As discussed, CF is influenced by the length of a location, and longer sites tend to 

have higher crash totals.  

2.3 HSM Approach to Safety Analysis 

The Highway Safety Manual (HSM) by AASHTO, published in 2010, outlines a 

methodologically sophisticated analytical procedure for network screening which 

addresses many of the drawbacks of the conventional methods. The manual works as 

guidance for identifying and prioritizing sites with potential for safety improvements in 

addition to selecting appropriate countermeasures for those sites. 

The HSM includes four parts: Part A (Introduction, Human Factors, and Fundamentals), 

Part B (Roadway Safety Management Process), Part C (Predictive Method) and, Part D 
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(Crash Modification Factors). Part C of this manual is focused on the crash predictive 

method which introduces the concept of Safety Performance Functions (SPF). This 

statistical model estimates the expected average crash frequency of an individual site, 

facility, or network (Bahar and Hauer, 2014). The HSM describes the development of SPF 

for three facility types: rural two-lane, two-way roads; rural multilane highways; and urban 

and suburban arterials and specific site types of each facility category: divided and 

undivided roadway segments and, signalized and unsignalized intersections (AASHTO, 

2010). 

The HSM approach also includes the use of the Empirical Bayes (EB) method which 

combines the observed crash data of a site along with the expected safety performance 

derived from SPF. Persaud and Lyon (2006) proposed the idea of Potential for Safety 

Improvement Index (PSIIndex) for further identification, ranking, and selection of 

countermeasures for hazardous sites. This index is the difference between the estimate 

obtained from the EB technique and the crash count expected at sites with similar 

characteristics. The HSM addresses this index as “Expected Excess Average Crash 

Frequency” and in Kentucky, it is referred to as “Excess Expected Crashes” (EEC).  

2.3.1 Safety Performance Functions 

Safety Performance Functions are crash prediction models based on statistical regression 

modeling of historical crash data.  They are used to develop mathematical equations to 

estimate the expected crash frequency for a specific roadway type (e.g. rural, urban) and 

geographic space (e.g. roadway segment, intersection, ramp, or any other special facility). 

SPFs are useful in both design-level and planning-level. Design-level application is useful 

for evaluating the safety impacts of alternative site-specific designs. Planning-level 

analyses include the identification and prioritization of candidate locations for safety 

improvements and the estimation of the benefit of any proposed treatment (Gates et al., 

2018; Srinivasan et al., 2016). 
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2.3.1.1 Statistical Distribution and Functional Form  

Statistical distributions are often used to fit the observed crash data for predicting crash 

frequency. Many studies proposed to use Poisson distribution to model crash counts 

(Nicholson and Wong 1993; Jovanis and Chang, 1986). Miaou and Lum (1993) showed in 

a later study that the Poisson distribution was more effective when the variance in the crash 

data was equal to the mean. That means this distribution cannot deal with overdispersion 

where the variance is greater than the mean. Negative Binomial (NB) distribution is 

considered to handle overdispersion more efficiently since it is capable of capturing the 

random nature of crash frequencies (Zhang et al., 2007; Hariharan, 2015; Gates et al., 

2018). This distribution is also known as Poisson-Gamma distribution since it comprises 

the characteristics of both Poisson distribution (for crash frequency) and the Gamma 

distribution (variation of crash count exceeds the mean). The expected number of crashes 

and the variance can be estimated from the equations below (Ahmed and Chalise, 2018): 

𝜆𝜆𝑖𝑖 = exp(𝛽𝛽𝑜𝑜 + 𝛽𝛽1  𝑋𝑋1𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑖𝑖) 𝐸𝐸𝐸𝐸. 3 

Where, 

λ= The expected number of crashes 

β0 = Intercept 

Xji = Predictor variable j for the observation i. 

βj= Population regression coefficient for predictor variable j. 

𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝑉𝑉𝑆𝑆𝐼𝐼𝑆𝑆 =  𝜆𝜆𝑖𝑖 + 𝑘𝑘 𝜆𝜆𝑖𝑖2 𝐸𝐸𝐸𝐸. 4 

Where, 

k= The overdispersion parameter. 

 

When the overdispersion parameter is equal to zero, the NB model converts to the Poisson 

model. Some studies (e.g. Hauer et al., 2002; Green, 2018) prefer to use the inverse of the 

overdispersion parameter rather than the overdispersion parameter. The term is referred to 

as theta (𝜭𝜭) or the inverse dispersion parameter (k), where k = 1/𝜭𝜭. 
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The HSM recommends using the Negative Binomial model for the development of SPFs.  

NB regression is used to create an equation that relates predicted crashes to traffic volume 

and length (Srinivasan et al., 2013). Several functional forms can be used to develop SPFs. 

The HSM recommends a functional form where both segment length and traffic count are 

treated as offsets (AASHTO, 2010). The equation is shown below:  

𝑌𝑌 = 𝑆𝑆𝑠𝑠 ∗ 𝐿𝐿 ∗ 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴 ∗ 365 ∗  10−6 𝐸𝐸𝐸𝐸. 5 

Where, 

Y = Estimate of predicted average crash frequency (crashes/year) 

L = Length of a segment 

AADT = Annual Average Daily Traffic 

a = Regression parameter for intercept  

Where the HSM assumed that crashes have a linear relationship with traffic volume, most 

recent researches exhibit an exponential relationship between crashes and volume 

(Srinivasan and Bauer, 2013; Green, 2018). The most commonly used functional form of 

an SPF for a roadway segment or, a ramp is defined as follows where segment length is 

kept as a simple multiplier: 

Y = 𝑆𝑆𝑠𝑠 ∗ 𝐿𝐿 ∗ 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝑏𝑏 𝐸𝐸𝐸𝐸. 6 

Where,  

Y = Estimate of predicted average crash frequency 

a = Regression parameter for intercept  

b = Regression parameter for AADT 

 

Based on the roadway type used in the regression model, the model form varies, and the 

regression coefficients change. Though there are other functional forms for SPF, the above-

mentioned form is most widely used. It satisfies the boundary condition that if the AADT 

of a site is zero, the SPF predicted crash should also be zero. With the increase in traffic 

count the number of crashes is supposed to increase and the regression coefficient for 
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AADT, b is most likely to be positive. The shape of the graph, the number of crashes vs 

AADT depends on the value of b. Figure 2-1 shows the probable shapes of the SPF curve 

(Srinivasan and Bauer, 2013). 

 

 

Figure 2-1: Shape of the relationship between the number of crashes and AADT as 
a function of the power, b [Source: Srinivasan et al.] 

 

The mathematical form for the SPF of an intersection is expressed as follows: 

𝐒𝐒𝐒𝐒𝐒𝐒 𝐒𝐒𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐂𝐂𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐏𝐏𝐂𝐂 = 𝐿𝐿 ∗ 𝑆𝑆𝑠𝑠 ∗ 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝑀𝑀𝑠𝑠𝑀𝑀𝑜𝑜𝑀𝑀𝑏𝑏1 ∗ 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝑀𝑀𝑖𝑖𝑀𝑀𝑜𝑜𝑀𝑀 
𝑏𝑏2 𝐸𝐸𝐸𝐸. 7 

Where,  

AADTMajor = Annual Average Daily Traffic of the major road 

AADTMinor = Annual Average Daily Traffic of the minor road 

a, b1, b2= Regression parameters 

There is another functional form that is similar to this general model. Contrasting to the 

previous model, this equation assumes a non-linear relationship between length and 

crashes. More specifically, the segment length is no longer an offset and included as 

another independent variable with its own coefficients (Srinivasan and Bauer, 2013). The 

modified equation is shown below: 

𝐒𝐒𝐒𝐒𝐒𝐒 𝐒𝐒𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐂𝐂𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐏𝐏𝐂𝐂 = 𝑆𝑆𝑠𝑠 ∗  𝐿𝐿𝑠𝑠 ∗ 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝑏𝑏 𝐸𝐸𝐸𝐸. 8 

Where, c = Regression parameter for length 
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2.3.1.2 Omitted Variable Bias 

In statistical modeling, Omitted Variable Bias (OVB) occurs when a regression model 

leaves out one or more variable which is relevant to the model. Wu et al.  (2015) have 

mentioned that in the practice of the development of SPF, it is possible that a variety of 

variables are not apprehended in the regression model which might influence the crash 

prediction. In the most common functional form of SPF, AADT and length are used as an 

explanatory variable and this might lead to OVB, and finally to the estimation of biased 

parameters. One of the reasons for OVB is the presence of heterogeneity of the roadway 

segments: if a dataset contains roadway segments with varying geometric characteristics 

and this variation is not captured in the model, OVB will occur (Green, 2018).  

Filtering a dataset by setting a set of base conditions can ensure homogeneity in the road 

segments that can potentially eliminate the OVB from the model (Blackden et al., 2018). 

However, while excluding variables leads to OVB, including too many variables in the 

SPF may cause overfitting of the model. There is a possibility that an overfitted model has 

several pairs of correlated parameters where including one of the two variables would have 

been sufficient. Especially when the sample size is large, modeling “noise” in the data by 

including the most relevant parameters might lead to a complex model with poor predictive 

power (Srinivasan and Bauer, 2013). 

There are several ways to address overfitting. When more than one variables produce the 

same effect, the variable making the most engineering sense might be included (Srinivasan 

and Bauer, 2013). Cross-validation is another way to handle noise. This is done by splitting 

the dataset into two parts where one part is used for fitting models and the rest of the data 

is used to evaluate the performance of the models (Yang, 2007). 

2.3.1.3 Reliability of SPF and Goodness-of-Fit Measures 

The reliability of SPFs refers to the evaluation of the accuracy of the predictive models. 

The safety practitioners use various goodness-of-fit (GOF) measures to assess the 

reliability of an SPF. These metrics compare the performances of several models and help 



 

12 
 

to choose the most reliable model. Some of the most commonly used GOFs include 

Cumulative Residual (CURE) plots, CURE Deviation Percentage (CDP), modified R2, the 

Maximum Absolute CURE Deviation (MACD), overdispersion parameter, etc. Some 

GOFs (e.g. modified R2, MACD) directly compare the relative performances of the 

contending SPFs by following the existing guidelines. Other measures (e.g. CURE plots) 

need subjective judgment since there are no acceptable thresholds (Lyon et al., 2016). 

One of the GOF measures to assess the SPFs is the modified R2 value. This is a measure 

of the systematic variation explained by the model. It compares the explanatory power of 

the regression models that contain a different number of explanatory variables. When 

comparing multiple SPFs, the model with the largest modified R2 represents the best fit 

(Srinivasan et al., 2013). Mean Absolute Deviation (MAD) is another robust statistical 

measure that deals with the average magnitude of variability of prediction. One of the 

benefits of using MAD is that it handles the issue of the positive and negative errors 

canceling each other out by utilizing absolute values (Bornheimer, 2011). Ideally, lower 

values are considered to be optimal. 

Alkaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are metrics 

that are typically used as model selection criteria rather than for goodness-of-fit evaluation 

(Srinivasan and Bauer, 2013). Sometimes the use of too many variables reduces the 

reliability of the model since the model might end up overfitting the dataset. AIC and BIC 

deal with the model fit versus the complexity of the model (the number of variables and 

number of observations). When comparing multiple SPFs, lower values of both AIC and 

BIC are preferred (Hariharan, 2015). The overdispersion parameter is another metric that 

can be used for comparing the reliability of competing models. In the context of theta 

(inverse overdispersion), a higher value indicates less dispersion and a better fit of the 

model (AASHTO, 2010; Green, 2018). 

CURE plot is an effective method for detecting omitted variable bias and for visually 

examining the efficacy of an SPF. It is a  graphical representation that reflects the functional 

form of the model by plotting cumulative residuals against an independent variable (i.e., 

traffic volume) (Hariharan, 2015). At a given site, residuals are computed by taking the 

difference between observed crashes and the SPF predicted crashes. Hauer and Bamfo 
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(1997) derived upper and lower confidence limits at two standard deviations (±2σ) and the 

residuals are expected to stay within those boundaries. For a particular range of AADT, 

upward drift indicates that the number of observed crashes was higher than the predicted 

crashes and downward drift implies the opposite (Srinivasan and Bauer, 2013). A CURE 

plot is expected to oscillate about zero and the oscillation should end close to zero if the 

model fits the data along with the entire range of the variable (Hauer and Bamfo, 1997). 

An example of a CURE plot is shown in Figure 2-2. 

 

Figure 2-2: Example CURE Plot with ±2σ confidence limits [Source: Hauer and 
Bamfo (1997)] 

 

On the other hand, it is an indication of significant bias in the model if the cumulative 

residuals regularly go outside the confidence margins. CDP is a measure of the percentage 

of data outside the 95% confidence bound (Green, 2018). Though crashes are not normally 

distributed, their residuals are. Therefore, the threshold value for CDP is 5%1. Maximum 

Absolute CURE Deviation (MACD) is another measure that provides the largest deviation 

(absolute value) from the CURE plot (Green, 2018). Long increasing or decreasing trends 

also point toward OVB. In such cases, SPFs can be improved by choosing a new functional 

form, introducing new candidate variables/base conditions or, removing unessential 

variables/base conditions. Large vertical changes in the plot are a sign of outliers and those 

require further investigation before modifying the SPF (Srinivasan et al., 2013; Hauer and 

Bamfo, 1997).  

 
1 For normally distributed data, 95% of the data falls within two standard deviations of the mean. 
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2.3.1.4 Adjustment Factors 

SPFs are preferably developed by filtering the roadway dataset with geometric attributes. 

This creates a situation where a large number of roadway segments will be different from 

the base conditions. Crash Modification Factors (CMF) are used if a roadway segment does 

not identically match the filters used to make the model segments homogenous (AASHTO, 

2010). In Kentucky, when CMF is used for network screening purposes, it is referred to as 

adjustment factors (AF). AFs are multiplicative factors because the effects of the attributes 

they represent are independent. SPF predicted crashes are adjusted by multiplying AFs to 

the predicted values and the equation is shown below. Forecasted crashes with non-base 

conditions increase when an adjustment factor is greater than one and goes the other way 

when it is less than one (Brimley et al., 2012).  

𝐀𝐀𝐏𝐏𝐀𝐀𝐀𝐀𝐂𝐂𝐏𝐏𝐏𝐏𝐏𝐏 𝐒𝐒𝐒𝐒𝐒𝐒 𝐂𝐂𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐏𝐏𝐂𝐂 = 𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 𝑓𝑓𝐼𝐼𝐼𝐼 𝑏𝑏𝑉𝑉𝐼𝐼𝑆𝑆 𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆 ∗ 𝐴𝐴𝐶𝐶1 ∗ 𝐴𝐴𝐶𝐶2 ∗ 𝐴𝐴𝐶𝐶3 ∗ … …𝐸𝐸𝐸𝐸. 9 

International studies, well-designed planning, and resources are required to produce good 

quality AFs2. For a particular geometric attribute, AFs can be different depending on the 

type of the roadway. AFs are available from several sources, e.g. the HSM, CMF 

Clearinghouse. Though these are quite rich sources, a significant number of AFs for various 

roadway geometries and roadway types are yet to be estimated. Recently various states are 

developing own state-specific AFs for dealing with the state’s exclusive features and 

inherent differences among locations within the state (Scopatz and Smith, 2016).    

2.3.2 Empirical Bayes Method 

The state of the art method for network screening is the Empirical Bayes (EB) technique. 

According to Hauer et al. (2002), this method increases the accuracy of the estimate when 

the usual estimate is too imprecise to be useful. It is used to estimate the expected average 

crash count by combining the historical crash frequency for a site and the predicted number 

of crashes derived from SPF (Bahar and Hauer, 2014; Illinois Department of 

 
2 http://www.cmfclearinghouse.org/developing_cmfs.cfm 

http://www.cmfclearinghouse.org/developing_cmfs.cfm
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Transportation, 2014). While a typical predicted value is compared to observed value, it 

might be misleading for safety analysis if the historic crashes are unusually high or low. 

EB estimate compensates for the random fluctuation in crash data by estimating the 

magnitude of the expected crashes (Persaud and Lyon, 2006; Blackden et al., 2018). 

Therefore, the regression-to-the-mean bias in a model is corrected (Green, 2018). The 

observed crashes and SPF forecasted crashes are balanced using a weight parameter (w). 

The EB method uses the following formulas: 

𝐄𝐄𝐄𝐄 𝐄𝐄𝐄𝐄𝐄𝐄𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐂𝐂𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐏𝐏𝐂𝐂 = 

𝑤𝑤 ∗ 𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 𝐼𝐼𝑆𝑆 𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝑠𝑠𝑉𝑉𝐼𝐼 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼 + (1 − 𝑤𝑤) ∗ 𝐻𝐻𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 𝐼𝐼𝑆𝑆 𝑆𝑆ℎ𝑉𝑉𝑆𝑆 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸. 10  

𝒘𝒘 =  
1

1 +

𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ

𝜃𝜃

 𝐸𝐸𝐸𝐸. 11
 

Where,   w = weight based on an overdispersion parameter from SPF, 0≤w≤1 

    𝜃𝜃 = Inverse overdispersion parameter (theta) 

The weight parameter is dependent on the strength of the predicted crash frequency and 

the dispersion of the SPF (Hauer et al., 2002). When the data used for SPF development 

are greatly dispersed, the theta parameter decreases indicating poor correlation in SPF. In 

this case, the weight parameter places more emphasis on the observed crash data than the 

predicted crash frequency. On the other hand, the theta of an SPF is higher when the data 

used for model development have little dispersion. In this case, the reliability of the 

predicted crash frequency increases, and therefore, it gets more weight in the EB estimate 

than the observed crashes (AASHTO, 2010). 

2.3.3 Excess Expected Crashes 

The metric Excess Expected Crashes (EEC) is being used as a standalone measure for 

identifying and prioritizing unsafe sites to assure the best allocation of federal resources. 

Additionally, various private agencies are using EEC to rank potential sites since it follows 

the most current guidelines from the HSM. 
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EEC is defined as the difference between EB expected crashes and SPF predicted crashes. 

EEC quantifies the number of crashes occurring at a location more or less than what would 

be expected (Blackden et al., 2018). The value of EEC can be both positive and negative. 

Positive EEC represents that more crashes are occurring than expected at a site and 

therefore, it has potential for improvements. A higher value indicates more vulnerability of 

a site. On the other hand, negative EEC indicates that fewer crashes are occurring than 

expected and so, those are comparatively safer sites.  Figure 2-3 shows a visual 

representation of the relationship between SPF predicted crashes, historic crashes, EB 

expected crashes, and EEC.  

  

Figure 2-3: Graphical representation of EEC
  

  

(-) EEC 

(+) EEC 
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Chapter 3. METHODOLOGY 

Chapter 2: Literature review delineated guidance on the HSM-based network screening 

method by developing Safety Performance Functions and techniques to evaluate the 

performance of potential models. This chapter will lay out the path this study will follow 

to achieve the objectives. First of all, a brief description of the data and an overview of the 

data preparation process is provided. The next section discusses the detailed process of 

developing SPFs using the data along with a validation process. This is followed by several 

statistical reliability assessments of the models. Finally, this chapter is concluded by 

combining the observed crashes and SPF predicted crashes into EB estimate, followed by 

the estimation of Excess Expected Crashes (EEC) for state-maintained rural two-lane roads 

in Kentucky. 

3.1 Data Preparation 

Roadway data along with crash data are required for developing state-specific SPFs for any 

facility type. For developing SPFs for Kentucky, the roadway geometric data and crash 

data for all state-maintained rural two-lane roads have been collected. The following steps 

have been followed to extract and prepare data for model development and further analysis. 

3.1.1 Roadway Data 

The roadway data for all state-maintained roads are available in the Roadway Centerline 

Network and Highway Information System (HIS)3 database maintained by the Kentucky 

Transportation Cabinet. The database contains information on traffic flow (TF), functional 

classification (FS), and various roadway features (e.g. lanes, shoulders, vertical and 

horizontal curves) in shapefile format. All of these shapefiles were combined into a 

comprehensive database for all state-maintained roadway network in Kentucky. From the 

 
3 https://transportation.ky.gov/Planning/Pages/Centerlines.aspx. 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftransportation.ky.gov%2FPlanning%2FPages%2FCenterlines.aspx&data=02%7C01%7Criana.tanzen%40uky.edu%7Cec23dabb65814bdbec0d08d7bed054ae%7C2b30530b69b64457b818481cb53d42ae%7C0%7C0%7C637187674284116867&sdata=uH2cT8Yja3lButDjoc2pqT5Wcvdc7J8idYI%2FbjbohQ8%3D&reserved=0
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entire database, only rural two-lane data were extracted to another dataset which has been 

used for developing and analyzing models for this study.  

Segmentation is a vital process since the development and application of SPFs are 

influenced by the organization of the dataset into distinct uniform units. Segmentation 

enables the segregation of observed crashes within the bounds of a consistent mix of 

roadway geometric features. A crash predictive model developed from the segments with 

consistent geometric characteristics reflects the underlying pattern of the observed crashes 

with more reliability and promise  (Hariharan, 2015). Therefore, the rural two-lane dataset 

was used to create statewide homogenous segmentation of roadways based on various 

roadway features. Homogeneous segmentation is assured by fixed beginning and ending 

mile points where traffic and road characteristics remain the same along the entire section. 

The HSM provides guidance on which roadway attributes could be used to make the 

segments homogeneous (AASHTO, 2010). The following features were used for this 

segmentation:  

• Average Annual Daily Traffic (AADT) 

• Lane Width 

• Shoulder Width 

• Grade Class 

• Curve Class 

For rural two-lane roads, the segmentation process resulted in 277,437 uniform segments 

covering around 20,000 miles of the rural two-lane road network. When multiple attributes 

are used for segmentation, a lot of homogeneous segments get very short lengths. These 

very short sections influence the crash rate resulting in unreliable crash prediction models 

(Resende and Benekohal, 1997; Miaou, 1993).  According to Hauer and Bamfo (1997),  for 

model development, road sections shorter than 0.1 miles should either be eliminated from 

the dataset or reassembled to adjacent segments. In this study, removing such segments 

would have taken away a significant number of segments which included almost half of 

the total crashes of the dataset. On the other hand, aggregating shorter segments to adjacent 

sections would hamper the homogeneity of the several segments. Miaou (1993) suggested 
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dropping road sections with lengths less than or equal to 0.05 miles. Therefore, the 

minimum segment length was set to 0.05 miles. Moreover, any segment with zero AADT 

is also removed from the database because this could also lead to bias.  It was also made 

sure that these segments did not include any intersection because the functional form and 

required data for intersection’s SPF development are different from roadway sections. 

Finally, the dataset was modified using the following three conditions. 

• The minimum segment length was set to 0.05 miles. 

• The AADT of any segment must be greater than zero. 

• The section must not be an intersection or ramp. 

Finally, 17,470 miles of rural two-lane roads were included in the database (divided into 

143,554 segments). Table 3-1 presents the descriptive statistics of the explanatory variables 

considered for model development and analysis. 

Table 3-1: Description of the explanatory variables 
 

Variables Unit Minimum Maximum Mean Standard 
Deviation 

Most 
common 
attribute 

AADT vehicles/day 2 19619 1223 1673 . 

Segment 
Length miles 0.05 2.48 0.12 0.10 . 

Lane 
Width feet 6 26 9.3 1.14 9 

Shoulder 
Width feet 0 19 3.4 1.94 3 

Grade 
Class4 Percentage 0-0.4 

(Grade A) 
8.5 or higher 

(Grade F) - -  
B 

Curve 
Class5 Degrees 0-3.4 

(Curve A) 
28 or higher 
(Curve F) - - A 

 
4 Grade Class Description (Percentage): A=0-0.4; B=0.5-2.4; C=2.5-4.4; D=4.5-6.4; E=6.5-8.4; F=8.5 or 
higher 
5 Curve Class Description (Degrees): A =0-3.4; B=3.5-5.4; C=5.5-8.4; D=8.5-13.9; E=14-27.9; F=28 or 
higher 
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3.1.2 Crash Data  

The crash data were collected for five years (2013-2017) from the Kentucky State Police 

(KSP) maintained database. The crashes (classified by severity using the KABCO scale6) 

were linked to corresponding segments from the previous step. If a crash occurred between 

the beginning and ending mile points of a segment, it was assigned to that segment. If a 

crash occurred exactly at any start or endpoint, it was allocated to the segment with the 

lower endpoint (Green, 2018). For this study, crashes of all severities were summarized 

into total crashes. In total, 75,717 crashes had been linked to the 143,554 segments of rural 

two-lane roads.  Since the segments were quite small and crashes are rare and very random, 

most of the segments (almost 70%) did not have any crashes.  

3.1.3 Summary of the Final Dataset 

The description of the key fields of the final dataset is summarized in Table 3-2.  

Table 3-2: Description of the final dataset 
 

Column Name Description 

RT_UNIQUE 

Route identifier in “WWW-XX-YYYYSS-ZZZ” format where: 

WWW = County no. (e.g. 001 = Adair, 034 = Fayette) 

XX = Route Prefix (e.g. KY = Kentucky, I = Interstate, CR = 
County road) 

YYYY = Route Number 

SS = Suffix (e.g. X=business, W=west, WX, west business 

ZZZ = Cardinal/Noncardinal (e.g. 000 = cardinal, 010 = non-
cardinal) 

BEGIN_MP Beginning mile point  

END_MP Ending mile point  

 
6 K = Fatal crashes; A = Incapacitating injury; B = Non-incapacitating injury; C = Minor Injury; O = 
Property damage only (MMUCC, 3rd edition) 
K = Fatal injury; A = Suspected serious injury; B = Suspected minor injury; C = Possible injury; O = 
Property damage only (MMUCC, 4th edition definitions started in 2017). 



 

21 
 

LENGTH The difference between the ending and beginning mile points 

LANEWID Lane width  

SHLDWID Shoulder width  

GRADECLS Vertical Curve 

CURVECLS Horizontal Curve 

CURVEDEG Degree of the horizontal curve 

LASTCNT AADT 

TOTAL Total crashes (fatal, injury crashes and property damage only) 

 

3.2 Development of SPF 

For the development of SPFs, the most widely used functional form has been used where 

the segment length is used as a linear function and the traffic volume is considered to be 

non-linear. The following equation has been used where a and b are regression parameters: 

𝐒𝐒𝐒𝐒𝐒𝐒 𝐏𝐏𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂 𝐏𝐏𝐂𝐂𝐏𝐏𝐏𝐏𝐞𝐞𝐂𝐂𝐏𝐏𝐏𝐏 = 𝑆𝑆𝛼𝛼 ∗ 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ ∗ 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝛽𝛽 𝐸𝐸𝐸𝐸. 12 

Where, 
 

α,β = Regression Parameters 

Several statistical software tools such as SPSS, SAS, STATA, R, and LIMDEP can be used 

to develop SPFs (Srinivasan and Bauer, 2013). Models can also be developed in Microsoft 

Excel using solver or custom functions. To support the implementation of HSM predictive 

techniques, the Federal Highway Administration (FHWA) has developed a software 

program named the Interactive Highway Safety Design Model (IHSDM) and the National 

Cooperative Highway Research Program (NCHRP) developed several spreadsheet tools 

(AASHTO, 2010). Moreover, according to the CMF Clearinghouse website, thirteen states 
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have developed their state-specific SPFs and thirteen states have calibrated existing SPFs7 

to their state-specific dataset. Several federal agencies have modified, expanded or 

recreated the tools for developing SPFs through automation, or additional features: 

Kentucky Transportation Cabinet (SPF-R), Ohio DOT (Economic Crash Analysis Tool), 

Illinois DOT (HSM Crash Prediction Tool), Michigan DOT (Part C Spreadsheet) to name 

a few.  

In this study, “SPF-R”, a script in RStudio developed by the Kentucky Transportation 

Center (KTC) has been used for SPF development. This tool estimates Negative Binomial 

regression models using generalized linear modeling techniques. The open-source 

automation tool is available on GitHub at http://github.com/irkgreen/SPF-R. Though 

several tools can generate SPF manually, developing models is complicated and laborious 

since it requires several iterations and filtering of the roadway dataset. This script is 

considered to be more efficient with instant feedbacks and it is customizable to a variety 

of potential uses (Blackden et al., 2018). As an input, the code requires a CSV-format file 

with a specific set of attributes of roadway segments, intersections, or ramps. Since this 

study dealt with segments only, the required attributes were the length of the homogeneous 

segments, crashes, and traffic volume of each segment. The SPF-R tool itself must be 

configured for a specific project with its own paths for input and output, as well as any 

additional model specifications. An excel file with model parameters and goodness-of-fit 

measures, a Cumulative Residual (CURE) plot, a scatter plot, and four box plots (length, 

crashes, crashes per mile, and AADT) are the outputs of the tool.  

3.2.1 Cross-Validation 

Cross-validation is one of the most widely used techniques to estimate the accuracy of the 

performance of a predictive model. There are several methods for performing cross-

validation, e.g. train-test split approach, K-folds cross-validation, etc. In this study, the 

train-test split method has been used for evaluating the performance of the models. This 

approach is based on splitting the dataset into two parts: the training set and the testing set. 

The training set is the one that is used to develop models and explore relationships among 

 
7 http://www.cmfclearinghouse.org/resources_spf.cfm 

http://github.com/irkgreen/SPF-R
http://www.cmfclearinghouse.org/resources_spf.cfm
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the explanatory variables and the response. The rest of the data is called the testing set 

which is used to measure the performance of the fitted models (Kuhn and Johnson, 2019). 

The size of each of the sets is random but in general, the training set is bigger than the 

testing set. Ideally, the data is split into 70:30, 75:25, or 80:20 ratio (Varoquaux, 2018; 

Kuhn and Johnson, 2019). This approach might not be suitable if the dataset has limited 

data because some important records could be eliminated from the training dataset resulting 

in a high bias. The dataset used for this study is large enough to get similar distribution in 

training and testing sets. Therefore, 75% of the data was assigned to the training set using 

a random number generating function, and the rest was used as the testing set. The 

descriptions of the training and testing datasets are shown in Table 3-3.  

Table 3-3: Description of the train-test datasets 

Dataset Total segments Total length (miles) Total crashes 

Training Dataset (75%) 106,922 13,061 56,516 

Testing Dataset (25%) 36,632 4,409 19,201 

3.2.2 Attributes used for SPF Development 

In this study, 15 SPFs have been developed. The attributes used for those model 

development process are described below:  

3.2.2.1 Generic SPF 

The first SPF was developed using the entire training dataset. This is the most generic 

model which included segments with all the attributes of interest (lane width, shoulder 

width, curve class, and grade class) and none of them was specified to any particular value. 

In this study, this model will be referred to as the “generic model”. The “generic” model 

would have omitted variable bias because the variable/s that might contribute to crash 
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prediction were not included in the model. This can also lead to overfitting of the model 

and modeling noise.  

3.2.2.2 SPF with Specific Attributes 

Developing a more reliable SPF required filtering the dataset with various base conditions. 

But the application of filters reduces the sample size. Depending on the extent of the filters, 

sometimes the dataset becomes too small to execute a model (Green, 2018). According to 

Srinivasan et. al  (2013), the minimum sample would be 100-200 miles with at least 300 

crashes per year. When a dataset for a specific set of attributes met these criteria, an SPF 

was developed from that dataset. Multiple iterations were performed with various sets of 

base conditions. Among the models, the most reliable SPF was chosen based on goodness-

of-fit measures. This model will be referred to as the “specific” model in this study. The 

base conditions used for this model are given below: 

o Lane Width = 9 feet 

o Shoulder Width = 3 feet 

o Curve Class = A 

o Grade Class = A 

3.2.2.3 SPF with Ranges of Attributes 

Though reliable SPFs can be developed, in absence of appropriate AFs, they cannot be 

used in the subsequent steps of network screening e.g. adjusting predicted crashes, 

estimating EB crashes, and, ultimately estimation of EEC. One of the goals of this study 

was to reduce the necessity of AFs as much as possible. Therefore, instead of using one 

specific value for a variable, a series of models have been developed using a range of values 

for that same variable. It was made sure that every range included the specific value of an 

attribute that was used to develop the “specific” model and the ranges were expanded 

around that value. For example, one model was developed including all roads between 7 

feet to 11 feet lanes instead of using all 9 feet lanes only. This way, more segments, as well 

as model miles were included in the SPFs and there were fewer segments to adjust. In total, 
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13 SPFs were developed using various ranges of attributes. Table 3-4 summarizes the base 

conditions used to develop those SPFs.   

Table 3-4: Ranges used to develop 13 SPFs 
 

Model 

Base Conditions 

Lane 

Width 

Shoulder 

Width 
Grade Curve 

1 9-13 3-6 A A 

2 9 0-3 A, B A 

3 9 3-6 A, B A, B 

4 9-10 0-3 A, B A, B 

5 8-10 0-6 A, B A, B 

6 8-10 2-4 A, B A, B 

7 7-11 0-6 A, B A, B 

8 9 3 A, B, C A 

9 9-13 0-3 A A, B, C 

10 9-13 3 A A, B 

11 7-11 2-4 A, B A, B 

12 7-13 0-6 A, B A, B 

13 7-13 0-6 A, B, C A, B, C 

3.2.3 Goodness-of-Fit Measures 

Goodness-of-Fit (GOF) measures evaluate the reliability of a prediction model by 

quantifying how well it fits the observed data. It is important to check the reliability of a 

regression model because it helps to identify potential issues of the model and ways to 
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improve it. These measures can also be used to compare the performance of multiple 

models and make the best choice. Some GOF measures can be used by directly comparing 

the relative performances of the contending SPFs by following the existing guidelines. On 

the other hand, some measures need the subjective judgment of the visual representations 

since there are no acceptable thresholds (Lyon et al., 2016). In the study of SPF 

development, one of the most important GOF matrices is CURE plots. It is a reflection of 

the functional form of the particular explanatory variable, in this case, AADT. A CURE 

plot derived from a reliable SPF should have the following qualities. 

• The plot is expected to oscillate around X-axis. 

• The cumulative residuals are expected to stay within two standard deviations. 

• It should be free of outliers (large vertical jumps). 

• It should have minimum upward or downward drifting. 

There are several other GOF measures to assess the performance of SPFs. Apart from 

CURE plots, Table 3-5 summarizes all the GOF measures used to evaluate the SPFs for 

this study.  

Table 3-5: Summary of GOF measures for SPFs 
 

GOF Measures Preferred values 

Modified R2 Higher values 

Cure Deviation Percentage (CDP) Lower values (Less than 5%) 

Theta (Inverse Overdispersion) Higher values 

Maximum Absolute CURE Deviation 

(MACD) 
Lower values 

Root Mean Square Error (RMSE) Lower Values 
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3.3 Validation using Testing Dataset 

Where the 75% data of the whole dataset was used to develop the SPFs, 25% of them were 

used to validate the models. There are several statistical metrics e.g. Mean Absolute 

Percent Error (MAPE), Mean Square Error (MSE), Root Mean Square Error (RMSE) 

which can be used to measure the predictive capacity of a model. All of these measures 

calculate error by taking the difference between observed and predicted crashes of a 

segment. MAPE takes the absolute value of the error term as a percentage of the observed 

crashes. Since the observed crashes are at the denominator, MAPE cannot be calculated 

for the segments with zero crashes (Hariharan, 2015). In this study, around 70% of the 

segments do not have any crashes. Therefore, MAPE would not be an appropriate 

validation metric. 

MSE is the average of the squared error term and RMSE is the square root of MSE. Since 

both of these measures indicate similar interpretations, RMSE is chosen as the validation 

metric for this study. When calculating the RMSE for each model on the testing data, the 

dataset was filtered using the attributes used for developing that particular SPF. The RMSE 

is calculated in two days: 

• RMSE1: In this case, the errors were calculated by comparing the predicted crashes 

to the observed crashes. Due to the randomness of crash data, it possesses 

regression-to-the-mean bias which might affect the RMSE. 

• RMSE2: In this case, the errors were by comparing the predicted crashes to the EB 

estimate which is a function of the observed crashes. EB method accounts for the 

regression-to-the-mean bias by dragging the crash counts to the mean (Hauer et al., 

2002). 

3.4 Adjustment of SPF Predicted Crashes using Adjustment Factors 

Apart from narrowing down the sample size, the application of filters introduces the need 

for adjustment factors (AFs). AFs are required when any segment’s geometric attributes 

are different from the model’s base conditions. AFs are multiplicative factors and equation 

is for adjusting the model predicted crashes is shown below: 
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𝐀𝐀𝐏𝐏𝐀𝐀𝐀𝐀𝐂𝐂𝐏𝐏𝐏𝐏𝐏𝐏 𝐒𝐒𝐒𝐒𝐒𝐒 𝐂𝐂𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐏𝐏𝐂𝐂 = 𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 (𝑏𝑏𝑉𝑉𝐼𝐼𝑆𝑆 𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆) ∗ 𝐴𝐴𝐶𝐶𝐿𝐿𝐿𝐿 ∗ 𝐴𝐴𝐶𝐶𝑆𝑆𝐿𝐿 ∗ 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐴𝐴𝐶𝐶𝐺𝐺𝐺𝐺 

                                                                                                                                …Eq. 13 

For rural two-lane roads, the adjustment factors for lane width and vertical curve are 

obtained from the HSM (AASHTO, 2010) and those for shoulder width are obtained from 

the CMF Clearinghouse. The adjustment factors for lane width, shoulder width, and 

vertical curve are described in Table 3-6, Table 3-7, and Table 3-8 respectively.  

Table 3-6: Adjustment factors for lane width (rural two-lane) 
 

Lane 
Width (ft) 

AF 

AADT <400 AADT (400-2000) AADT>2000 

9 or less 
(base) 1 1 1 

10 0.97 

1.02+.000175*(AADT-400)/ 
1.05+.000281*(AADT-400) 
Or, 
0.622776+(1302.8/(AADT+3336.65)) 

0.87 

11 0.96 

1.01+.000025*(AADT-400)/ 
1.05+.000281*(AADT-400) 
Or, 
0.088968+(3261.86/(AADT+3336.65)) 

0.7 

12 or more 0.95 
1/(1.05+.000281*(AADT-400)) 
Or, 
3558.72/(AADT+3336.65) 

0.67 

 

Table 3-7: Adjustment factors for shoulder width (rural two-lane) [Source: CMF 
Clearinghouse8] 

 
Shoulder Width 

(ft) 
AF 

0 1.145 

1 1.12 

2 1.03 

3 1 

 
8 http://www.cmfclearinghouse.org/study_detail.cfm?stid=338 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=338
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4 0.975 

5 0.945 

6 0.93 

7 0.905 

8 0.875 

Table 3-8: Adjustment factors for vertical curves (rural two-lane) 
 

Vertical Curve 
Grade AF 

0-3% 1 

3-6% 1.1 

>6% 1.16 

 

The HSM provides a function for estimating AFs for horizontal curves of rural two-lane 

highways. According to  (Wu et al., 2017), the HSM function is not very effective because 

it was developed based on outdated data and analysis techniques. This study developed an 

equation to calculate the adjustment factor for horizontal curves and this function is also 

recommended by the CMF Clearinghouse9. The equation is as follows:  

𝐴𝐴𝐶𝐶 = 196.4 ∗ 𝐶𝐶𝑉𝑉𝑐𝑐𝐼𝐼𝑅𝑅𝐼𝐼−0.65 𝐸𝐸𝐸𝐸. 14 

3.5 EB Estimates and Calculation of EEC 

In the previous section, in total 15 SPFs were developed: one generic SPF, one with specific 

values of each attribute (referred to as the “specific” model), and 13 SPFs with ranges of 

values of each attribute. The regression parameters obtained from each model are used to 

estimate the SPF crashes for every segment of the entire dataset and the predicted crashes 

were adjusted using appropriate adjustment factors (described in section 3.3).  

The safety of a site is best estimated when both the number of observed crashes and the 

number of crashes predicted by the SPF of that site are combined. Empirical Bayes Method 

 
9 http://www.cmfclearinghouse.org/study_detail.cfm?stid=481 

http://www.cmfclearinghouse.org/study_detail.cfm?stid=481
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estimates the expected crashes using a mathematical combination of the observed and 

predicted crash frequencies. Equations 14 and 15 were used to calculate the EB estimates 

for each segment.  

𝐄𝐄𝐄𝐄 𝐄𝐄𝐄𝐄𝐄𝐄𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝐂𝐂𝐏𝐏𝐂𝐂𝐂𝐂𝐂𝐂𝐏𝐏𝐂𝐂 = 

𝑤𝑤𝑆𝑆𝐼𝐼𝑆𝑆ℎ𝑆𝑆 ∗ 𝑆𝑆𝑆𝑆𝐶𝐶 𝑝𝑝𝐼𝐼𝑆𝑆𝑐𝑐𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑐𝑐 𝐼𝐼𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 + (1 − 𝑤𝑤𝑆𝑆𝐼𝐼𝑆𝑆ℎ𝑆𝑆) ∗ 𝐼𝐼𝑏𝑏𝐼𝐼𝑆𝑆𝐼𝐼𝑜𝑜𝑆𝑆𝑐𝑐 𝐼𝐼𝑆𝑆 𝑆𝑆ℎ𝑉𝑉𝑆𝑆 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸. 14 

  

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 =  
1

1 +

𝑆𝑆𝑆𝑆𝐶𝐶 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ

𝜃𝜃

𝐸𝐸𝐸𝐸. 15
 

Where, 

𝜭𝜭 = Inverse overdispersion parameter 

Since crashes are random in nature, they are not normally distributed and they exhibit over-

dispersion with a variance higher than the mean. Therefore, the traditional standard 

deviation formula used for normally distributed data would not reflect the correlation 

properly. The standard deviation (σ) of the EB estimate is calculated by: 

𝜎𝜎 =  �(1 − 𝑤𝑤𝑆𝑆𝐼𝐼𝑆𝑆ℎ𝑆𝑆) ∗ 𝐸𝐸𝐸𝐸 𝐸𝐸𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸. 16 

Excess Expected Crashes (EEC) for each segment was calculated using the crashes 

predicted by SPF and the crashes adjusted by Empirical Bayes (EB) method. Equation 16 

was used to calculate the EEC. 

𝐄𝐄𝐄𝐄𝐂𝐂 = 𝐸𝐸𝐸𝐸 𝐸𝐸𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑐𝑐 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 −  𝑆𝑆𝑆𝑆𝐶𝐶 𝑆𝑆𝐼𝐼𝑆𝑆𝑐𝑐𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑐𝑐 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 𝐸𝐸𝐸𝐸. 17 

3.6 Comparison of Segment Ranking 

The EEC depicts how much potential a site, in this case, a segment has for improvement. 

The segments with positive EEC indicate their need for improvement and the segments 

with negative EEC are at a comparatively lower risk. The EEC of each segment varies 

depending on the SPF used. 15 SPFs were used individually to calculate each segment’s 

EEC. These segments were prioritized by their EEC value. The entire dataset was sorted 
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in descending order where the top segments have the most potential for safety 

improvements.  

The ranking of the segments estimated by each of the 15 models was compared among 

themselves using Spearman’s rank correlation coefficient. This coefficient is used to 

measure the rank correlation between the rankings of a variable (i.e. EEC) estimated by 

two different models. The values vary between -1 and 1. The Spearman correlation will be 

high when two models produce a similar rank (correlation will be 1 if the rank is identical).   
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Chapter 4. RESULTS AND ANALYSIS 

An automation tool, SPF-R has been used to develop 15 SPFs from the training dataset 

with various combinations of geometric attributes and the testing dataset was used to 

validate them. The tool provided a CURE plot, scatter plot, and an excel document with 

regression parameters, goodness-of-fit measures, and other details for each model. In this 

section, CURE plots, GOF metrics (e.g. Modified R2, CDP, MACD, theta), and predictive 

metric (e.g RMSE) were used to evaluate the SPFs and to determine which SPF will work 

the best. Going forward, this chapter also compares the ranking of the segments executed 

by each model.  

4.1 Model Output 

In this study, the sample sizes of the models varied significantly because of the variation 

in base geometric conditions. Table 4-1 summarizes the total length covered, and the total 

number of crashes for each model. 

Table 4-1: Description of the sample used for SPF development 
 

Model Total Length 
(miles) 

Total 
Crashes 

Generic 13061 56516 
Specific 126 457 

1 600 3935 
2 457 1660 
3 507 1920 
4 1049 5299 
5 1650 8653 
6 1522 7872 
7 1950 11288 
8 407 1359 
9 492 2933 
10 327 2006 
11 1744 9770 
12 2025 12529 
13 2889 17422 
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4.1.1 Model Parameters  

The regressions parameters of the SPFs are the output from Negative Binomial regression. 

The value of α ranged between -5.481 and -4.135 and, the value of β varied between 0.80 

and 0.98. The inverse overdispersion parameter is also estimated along with the 

coefficients of the regression parameters. The degree by which the variance in the crash 

data is exceeded by mean is represented by the overdispersion parameter. SPF-R reports 

this parameter as theta which is the reciprocal of the overdispersion parameter. The value 

of theta varied between 1.157 and 2.615. The regression coefficients and theta for the SPFs 

are presented in Table 4-2.  

Table 4-2: Regression parameters and inverse overdispersion parameter 

Model α β Theta 

Generic -4.135 0.802 1.157 
Specific -4.661 0.855 2.392 

1 -4.836 0.882 1.798 
2 -5.167 0.926 2.163 

3 -4.987 0.898 2.209 
4 -5.314 0.949 1.908 
5 -4.966 0.902 1.909 
6 -4.982 0.903 2.115 
7 -4.799 0.876 1.964 
8 -5.167 0.916 2.615 
9 -5.481 0.980 1.503 
10 -5.336 0.961 1.557 

11 -4.906 0.891 2.100 
12 -4.976 0.901 1.621 
13 -4.832 0.885 1.526 
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4.1.2 CURE Plots  

CURE plots are the visual representation of the model form and it helps to detect omitted 

variable bias and outliers. In each CURE plot, the blue and green lines represent the upper 

and lower confidence bands respectively and the red dots indicate the cumulative residuals.  

The “generic” SPF was developed from the whole training dataset. The resulting CURE 

plot (Figure 4-1)  of the “generic” SPF has a clear downward drift which is an indication 

of omitted variable bias. For a reliable model, the cumulative residuals are expected to 

oscillate within the confidence band. But for this model, 85% of data have transgressed 

from the bands. The model also has low modified R2 value and theta and high MACD 

(Table 4-3). The CURE plot along with the other GOF measures indicates that the generic 

model is quite unreliable.  

 

Figure 4-1: CURE plot of “generic” SPF 
 
 

Table 4-3: GOF measures of the 
“generic” SPF 

 

GOF Metric Value 

R2 0.25 

CDP 85% 

MACD 4192.8 

Theta 1.157 
 

The CURE plot of the “specific” model is shown in Figure 4-2  and the GOF metrics are 

provided in Table 4-4. The CURE plot of this model is quite satisfactory since it oscillates 
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around the X-axis and the cumulative residuals stay within the two standard deviation 

limits. A model is desirable when it possesses a high modified R2 and theta, a low MACD, 

and a CDP less than 5%. The “specific” model fulfills all of these criteria along with a good 

CURE plot. 

 

Figure 4-2: CURE plot of the “specific” 
SPF (LW=9, SW=3, CU=A, GR=A) 

Table 4-4: GOF measures of the 
“specific” SPF 

 

GOF Metric Value 

R2 0.57 

CDP 2.5% 

MACD 20.4 

Theta 2.392 
 

 

The next step was to develop 13 SPFs using ranges of attributes. The ranges were chosen 

around the attributes which were used for the “specific” model. Figures 4-13 to 4-15 

provides the CURE plots of models 1-13. Since the CURE plots are visually assessed 

using subjective judgments, the screening can be performed quickly, especially when 

several plots are compared at once. It seems that the application of ranges worsened the 

CURE plots for most of the models.  The plots of models 1, 5, 6,7, 9,10, 11, 12, and 13 

started with steady oscillation about X-axis but got downward drifts at the ends. The 

regions that exceeded the standard deviation boundaries can be potential sources of biased 

model fits. On the other hand, models 2, 3, 4, and 8 have relatively better CURE plots. 

Further assessment of the GOF measures can provide better understandings of the models. 
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Figure 4-3: CURE plot for Model 1 

(LW=9-13; SW=3-6; GR=A; CU=A) 

 
Figure 4-4: CURE plot for Model 2 

(LW=9; SW=0-3; GR=A,B; CU=A) 
 

 
Figure 4-5: CURE plot for Model 3 

(LW=9; SW=3-6; GR=A,B; CU=A,B) 

 

 
Figure 4-6: CURE plot for Model 4 

(LW=9-10; SW=0-3; GR=A,B; CU=A,B) 

 
Figure 4-7: CURE plot for Model 5 

 (LW=8-10; SW=0-6; GR=A,B; CU=A,B)  
      

 

Figure 4-8: CURE plot for Model 
6 (LW=8-10; SW=2-4; GR=A,B; 

CU=A,B) 
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Figure 4-9: CURE plot for Model 7 

(LW=7-11; SW=0-6; GR=A,B; CU=A,B)  

 
Figure 4-10: CURE plot for Model 8 
(LW=9; SW=3; GR=A,B,C; CU=A) 

 

 
Figure 4-11: CURE plot for Model 9 

(LW=9-13; SW=0-3; GR=A; CU=A,B,C)  

 
Figure 4-12: CURE plot for Model 10 

(LW=9-13; SW=3; GR=A; CU=A,B) 

 
Figure 4-13: CURE plot for Model 11 

(LW=7-11; SW=2-4; GR=A,B; CU=A,B) 

 
Figure 4-14: CURE plot for Model 12 

(LW=7-13; SW=0-6; GR=A,B; 
CU=A,B) 
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Figure 4-15: CURE plot for Model 13 (LW=7-13; SW=0-6; GR=A,B,C; 

CU=A,B,C) 
 

 

4.1.3 Comparison of Goodness-of-Fit Measures 

Along with CURE plots, goodness-of-fit measures are also important when multiple 

models are compared. This section compares the GOF measures of all SPFs to evaluate 

their performances. AIC and BIC were not included here because these parameters are 

better suited when comparing models with a constant sample size (Green, 2018) and this 

study evaluates models with varying sample sizes. The values of every metric are plotted 

in individual bar charts to show the relative comparison among the models. In every graph, 

the red bar indicates the values for the “generic” model and the green bar represents that 

for the “specific” model. 

• Modified R2 
 

The R2 value of an SPF measures the potentially explainable variation of the model. 

The R2 values used in this study are refined since Negative Binomial regression does 

not estimate any metric that is equivalent to R2 (Green, 2018). Higher values are 

preferable for this metric. The generic model has the lowest modified R2 value which 

is 0.25. Modified R2 improves when attributes are specified for the SPFs. Only one SPF 

(model 8) has a higher modified R2 than the “specific” model. The comparison of 

modified R2 values is shown in Figure 4-16.  
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Figure 4-16: Comparison of modified R2  
 

• CURE Deviation Percentage (CDP) 
 

CDP represents the percentage of data that transgress outside the two standard 

deviation boundaries of any SPF’s CURE plot. Values under 5% are optimal at the 95% 

confidence level. The “generic” model had the poorest CURE plot with 85% of data 

outside the confidence bands where the “specific” model had the best CURE plot with 

only 2.5% transgressed data. 

The CDP value for the other 13 models varied between 2.5% and 85%. Apart from 

model 4, all the models had CDP greater than 5%. Nonetheless,  models 2, 3, and 8 can 

be considered as potential models along with model 4 with their relatively lower CDP 

values. Figure 4-17 represents the comparison of CDP values. 
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Figure 4-17: Comparison of CDP 
 

• Maximum Absolute CURE deviation (MACD) 
 

MACD measures the largest absolute cumulative residual in a CURE plot and smaller 

values are optimal. Coherent to the CURE plots and CDP values, the “generic” model 

has the highest MACD. From Figure 4-18, it is seen that all models have a larger 

absolute deviation compared to the “specific” model. However, models 2, 3, and 8 can 

be considered as desirable candidates based on the lower ranges of MACD values.   
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Figure 4-18: Comparison of MACD 
• Theta 

 
Theta is the inverse of SPF’s overdispersion parameter. A larger theta indicates a better 

fit of the model and less overdispersion. From Figure 4-19, it is observed that model 8 

has the best fit with the highest theta of 2.62 which is more than 2 times higher than 

the lowest value (“generic” model). Apart from model 8, the “specific” model and 

models 2, 3, and 6 have theta higher than 2 and these models can be considered as 

candidates for potential model selection.  
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Figure 4-19: Comparison of theta 
 

4.2 Cross-validation 

The entire dataset of rural two-lane roads was divided into training and testing datasets to 

perform cross-validation. 75% of the were taken as the training data to develop SPFs and 

the above-mentioned GOF measures are obtained from the models. In this section, the 

models are validated using the 25% testing dataset. The metric used for the validation 

process is Root Mean Square Error (RMSE). RMSE is calculated by taking the average of 

the square of the error at each segment. Before calculating the RMSE for each model, the 

dataset was filtered using the same base conditions used to develop that particular model 

so that the model development and the validation dataset have the same geometric 

characteristics. As mentioned in section 3.3, the RMSE is calculated in two ways: by 

comparing observed and predicted crashes (RMSE1), and by comparing EB estimates and 

predicted crashes (RMSE2). The resulting RMSE values are presented in Table 4-5 and 

Table 4-6 respectively.  
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It is desirable to obtain as low value as possible for a predictive measure based on any error 

term (Hariharan, 2015). But, both the tables show that the overall RMSE values are quite 

high and most of them are above or closer to one. Since RMSE was estimated by squaring 

the error term, segments with large differences between predicted and observed or, 

predicted and EB estimate were weighted disproportionately in comparison to other 

segments that resulted in higher RMSE. For every model, RMSE2 is lower than RMSE1. 

This is because RMSE2 uses EB estimate which accounts for the regression-to-the-mean 

bias present in the observed crashes.  

Among the 15 models, model 8 has the lowest RMSE1 and RMSE2 which indicates that 

model 8 has the best predictive ability which is even significantly better than the “specific” 

model.  

Table 4-5: RMSE (Comparing predicted 
crashes with observed crashes) 

 
Model RMSE1 

Generic 1.27 
Specific 0.94 

1 2.52 
2 0.80 
3 0.94 
4 0.91 
5 1.00 
6 1.09 
7 1.17 
8 0.73 
9 2.27 
10 2.86 
11 1.15 
12 1.88 
13 1.69 

 

Table 4-6: RMSE (Comparing predicted 
crashes with EB estimates) 

 
Model RMSE2 

Generic 1.13 
Specific 0.62 

1 2.20 
2 0.55 
3 0.70 
4 0.69 
5 0.78 
6 0.83 
7 0.94 
8 0.46 
9 2.05 
10 2.60 
11 0.92 
12 1.67 
13 1.49 
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4.3 Choosing the Best Model 

A desirable model should possess high modified R2 and theta, low MACD and RMSE, and 

CDP under 5%. The application of ranges of variables showed improvement compared to 

the “specific” model in several GOF metrics. Based on the results shown in Sections 5.1.3 

and 5.2, five SPFs (the “specific” model and models 2, 3, 4, and 8) are chosen to be 

considered for the final assessment of the model selection process. The GOF metrics and 

predictive measures of these five SPFs are summarized in Table 4-7 where darker cells 

represent more optimal values.  

Table 4-7: GOF and predictive measures of the final five models 
 

Model 

Base Conditions Training Data Testing Data 

LW SW GR CU Mod 
R2 

CDP 
(%) MACD 𝜭𝜭 RMSE1 RMSE2 

Specific 9 3 A A 0.57 2.5 20 2.39 0.94 0.62 

2 9-13 3-6 A A 0.57 5.4 49 2.16 0.8 0.55 

3 9 3-6 A,B A,B 0.51 7.7 35 2.21 0.94 0.7 

4 9-10 0-3 A,B A,B 0.43 4 74 1.91 0.91 0.69 

8 9 3 A,B,C A 0.58 8.2 44 2.62 0.73 0.45 

 

The table above indicates that model 8 has got the optimal Modified R2, theta, RMSE1, and 

RMSE2 values. It also has a comparatively lower MACD value. Though the CDP value is 

not under a 5% significance level, it can still be accepted considering the quality of the 

CURE plot. Therefore, model 8 which was developed using 9 feet lanes, 3 feet shoulders, 

A, B, and C grade horizontal curves and A grade vertical curve is chosen to be the new 

best model replacing the specific model. 
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4.4 Ranking Segments with Excess Expected Crashes (EEC) 

Every segment of the entire dataset was used to calculate the EEC values for all 15 models. 

Nearly 24% of the segments have positive EEC which indicates more crashes are occurring 

than expected in those segments. The descriptive statistics of the EEC are shown in Table 

4-8. The maximum values of EEC ranged between 62.3 (model 8) and 71.7 (“generic” 

model).  

Table 4-8: Descriptive statistics of EEC for 15 SPFs 
 

Model Mean 
EEC 

Minimum 
EEC 

Maximum 
EEC 

Generic -0.034 -23.6 71.7 

Specific -0.010 -11.3 63.1 

1 -0.103 -20.7 69.2 

2 -0.020 -13.4 65.3 

3 0.005 -12.2 64.5 

4 -0.005 -19.2 65.8 

5 -0.028 -16.5 66.4 

6 -0.024 -14.3 65.4 

7 -0.035 -14.5 65.7 

8 0.009 -11.6 62.3 

9 -0.098 -29.7 70.9 

10 -0.131 -28.4 70.7 

11 -0.036 -13.6 65.2 

12 -0.079 -21.9 69.9 

13 -0.054 -21.8 70.3 
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4.4.1 Comparison of Rank of the Segments 

After applying all the models on the whole dataset for EEC calculation, it was sorted in 

descending order where the top segments have the most potential for safety improvements. 

Each segment is assigned with a rank and the ranking obtained by the models are compared 

to each other using Spearman’s rank correlation coefficient. The metrics are summarized 

in Table 4-9. The value of this coefficient gets higher when ranking estimated by any two 

models are similar. It is seen that the values of Spearman’s coefficient are significantly 

high (mostly closer to 1) for any pair of SPFs. That means no matter what model is used, 

the screening process provides an almost identical ranking of the segments.  
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Table 4-9: Spearman's Rank Correlation Matrix 
  

Generic Mod 
1 

Mod 
2 

Mod 
3 

Mod 
4 

Mod 
5 

Mod 
6 

Mod 
7 

Mod 
8 

Mod 
9 

Mod 
10 

Mod 
11 

Mod 
 12 

Mod 
13 

Specific 

Generic 1 
              

Mod 1 0.89 1 
             

Mod 2 0.87 0.97 1 
            

Mod 3 0.86 0.95 0.98 1 
           

Mod 4 0.88 0.95 0.98 0.99 1 
          

Mod 5 0.87 0.96 0.98 0.99 0.99 1 
         

Mod 6 0.87 0.96 0.98 0.99 0.99 1.00 1 
        

Mod 7 0.87 0.96 0.97 0.99 0.98 0.99 0.99 1 
       

Mod 8 0.86 0.96 0.99 0.98 0.97 0.97 0.97 0.97 1 
      

Mod 9 0.92 0.95 0.92 0.92 0.93 0.93 0.93 0.93 0.90 1 
     

Mod 10 0.89 0.97 0.94 0.94 0.95 0.96 0.96 0.96 0.93 0.97 1 
    

Mod 11 0.88 0.96 0.97 0.99 0.98 0.99 0.99 1.00 0.96 0.94 0.97 1 
   

Mod 12 0.90 0.98 0.96 0.97 0.97 0.98 0.97 0.98 0.95 0.96 0.99 0.98 1 
  

Mod 13 0.92 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.93 0.99 0.96 0.95 0.97 1 
 

Specific 0.85 0.96 0.99 0.98 0.97 0.97 0.97 0.97 1.00 0.90 0.93 0.97 0.95 0.92 1 
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4.4.2 Comparison of the EEC Values for Top 10 Rural Two-lane Segments 

After the ranks of the segments were obtained, the top 10 rural two-lane segments for each 

model are taken to compare the values of EEC. The top 10 segments provided by all 15 

models are identical (only for the “Generic” model, segments with rank 3 and 4 swapped 

places). The route ID, beginning, and ending mile points of the segments are provided in 

Table 4-10. The EEC values of these segments are plotted for relative comparison. For 

better illustration, segments are divided into two groups: segments with rank 1-5 are shown 

in Figure 4-20, and segments with rank 6-10 are shown in Figure 4-21. For a particular 

segment’s rank, there are 15 bars which represent the EECs calculated by each of the 15 

SPFs. 

Table 4-10: Ranking of the top 10 segments 
 

Rank Route ID  Beginning 
Milepoint 

Ending 
Milepoint 

1 030-US-0431  -000 1.52 1.66 

2 030-US-0431  -000 1.025 1.25 

3* 049-US-0027  -000 5.08 5.97 

4* 005-US-0068  -000 1.42 1.87 

5 030-US-0431  -000 1.69 1.95 

6 076-KY-0627  -000 0.24 0.32 

7 052-KY-0153  -000 5.54 5.73 

8 030-US-0431  -000 2.05 2.17 

9 037-US-0060  -000 0.18 0.35 

10 019-US-0027  -000 0.0 0.089 
 

Both of the following figures show that for a specific rank, the magnitudes of the EECs are 

not similar as it was for the ranks. For almost all the ranks, the “generic” model provides 

the highest estimation of EEC, and model 8 provides the lowest. For the highest-ranked 

segment, the “generic” model overestimated the EEC by 9 crashes than the lowest one, and 

the magnitude of the overestimation reduces for the lower ranks.  
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Figure 4-20: Comparison of EEC for top 10 (1-5) segments 
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Figure 4-21: Comparison of EEC for top 10 (6-10) segments 
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4.4.3 Comparison of Standard Error 

Before drawing any conclusion from the magnitudes of EEC, the evaluation of standard 

error might be useful. This is because EECs with vastly different standard deviation can 

widen the ranges estimated by different models even more. The EEC of a segment is 

represented by the following equation where the standard error (σ) is calculated using 

equation 16. 

𝐄𝐄𝐄𝐄𝐂𝐂 = (𝐸𝐸𝐸𝐸 𝐸𝐸𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆𝑐𝑐 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼 −  𝑆𝑆𝑆𝑆𝐶𝐶 𝑆𝑆𝐼𝐼𝑆𝑆𝑐𝑐𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑐𝑐 𝐶𝐶𝐼𝐼𝑉𝑉𝐼𝐼ℎ𝑆𝑆𝐼𝐼)  ±  𝜎𝜎  

For the top 10 segments, the standard deviations are calculated. Here, the output of only 

three models (i.e. “generic”, “specific” and model 8) are shown in Figure 4-22. Each bar 

presents the EEC of any specific ranked segment with standard error bars. Though the 

EECs are different for any particular rank, the figure below shows that the standard errors 

of those segments are quite similar. For example, the standard error of the highest-ranked 

site is around 7.5 and the 10th ranked segment is around 5 for all three SPFs. 

 

Figure 4-22: Comparison of EEC with standard error
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Chapter 5. CONCLUSION  

This chapter will summarize the key findings of the study from the analysis. Following 

that, it will discuss the limitations and provide recommendations to consider for future 

study. 

5.1 Summary  

One of the advantages of using a “generic” SPF is that it does not require any adjustment 

factors to adjust the predicted crashes since the entire dataset is involved to develop the 

model. This is even more effective when the AFs are not available for a particular attribute 

of any roadway type. But a “generic” SPF has several drawbacks too. For any roadway 

type, a generic model will possibly have the worst CURE plot with poor goodness-of-fit 

metrics indicating an undesirable model. On the other hand, a model developed from 

specific value or ranges of base conditions with an overall better fit is very tempting to use. 

But in the absence of appropriate AFs, this model will not be able to be adjusted for base 

conditions. This study aimed to evaluate the trade-off between these two types of SPFs. 

The major findings of this study are summarized below: 

• Segment-level network screening: 

Segment rank is nearly insensitive to the choice of the SPF. That means SPFs 

developed from the entire dataset or any particular portion of the dataset (specified 

by base conditions) produce quite similar ranked candidate lists. In such cases, 

using a generic model developed from the entire dataset is usually more feasible to 

use since it does not require any AFs. Developing AFs may not justify the cost of 

segment-level network screening. 

• Project-level analysis and others: 

A generic SPF may not work as well for project-level analysis.  Estimating the 

benefit-cost ratio for a site, and other design-level decisions benefit from a more 

accurate model. 
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 Though all of the 15 SPFs developed in this thesis provided similar ranks, 

the magnitude of the EECs for the segments varied model to model. For 

example, using the generic model, the highest-ranked segment had an EEC 

of 72 and a standard error of ±8.  Using model 8 produced an EEC of 62 

and a standard error of ±7. 

 In this study, the generic model overestimates the highest average EECs 

amongst the models. Using FHWA and NHTSA numbers (6 million crashes 

per year costing about $230 billion), the average cost per crash is around 

$40,000. For the highest-ranked segment of rural two-lane roads in 

Kentucky, the generic SPF overestimates EEC by 9 crashes compared to the 

lowest model, a difference of around $360,000 in potential expected 

benefits. Benefit-cost analysis is, therefore, more sensitive than network 

screening/ranking to the choice of SPF. 

 The magnitude of the EEC is more important for project-level network 

analysis. Project extents are usually described by a combination of several 

segments, with project EEC being computed as the sum of the all project 

segment EECs. The overestimation of the EEC values will affect the overall 

project EEC. 

 Using ranges of values instead of a specific value for any attribute for SPF 

development is suggested. Before applying the ranges, the “specific” model 

seemed to the best performing model. But the ranges of attributes offered 

improvements to the modeling process. 

5.2 Limitations and Future Recommendations 

The results from this study should be interpreted keeping the following the limitations in 

mind: 

• According to the HSM and several other studies (e.g. (Hauer and Bamfo, 1997; 

Lord et al., 2005; Ogle et al., 2011), the minimum length of the homogenous 

segments should be set to 0.1 mi. This is because shorter lengths can lead to a large 

number of zero-crash segments which might affect the development of a valid SPF. 
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Any segment with a length shorter than 0.1 mi should either be removed from the 

dataset or readjusted to adjacent segments. But, in this study, the minimum segment 

length was taken as 0.05 mi (suggested by (Miaou, 1993)) because dropping the 

segments with length less than 0.1 mi would have reduced the sample size 

significantly and would have taken away almost half of the crashes. Therefore, for 

future studies, segmentation and reassembly of the dataset based on the geometric 

attributes might be redone considering the minimum segment length to be 0.1 mi. 

• In this study, Negative Binomial (NB) method was used for regression because in 

general, since crash data are counts and they do not follow a Poisson distribution.  

NB regression accounts for the overdispersion of the data. The crash data used in 

this thesis is significantly overdispersed with almost 70% segments with zero 

crashes. In such cases, Zero Inflated Negative Binomial regression might be an 

option for developing SPFs since this model can account for the predominance of 

excessive zeros (Lord et al., 2005). 

• The study was performed using the dataset for rural two-lane roadways in Kentucky 

because important adjustment factors were available for this road type. Therefore, 

it was possible to evaluate the effect of the availability and non-availability of AFs 

on network screening. For additional assessments, urban highways or multilane 

roads with more complex geometric characteristics can be studied using the same 

methodology outlined in this work.  

• In this study, SPFs were developed using all crashes (all severity levels combined 

for a given location). A segment with 10 fatal and 10 injury crashes would be treated 

the same as another with 2 fatal and 18 injury crashes. It is recommended that SPFs 

for specific severities or perhaps even specific types of crashes be developed.  In 

this case, the modeler will be trading specificity and policy sensitivity against 

sample size and accuracy. 
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