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ABSTRACT OF DISSERTATION 

END-TO-END PREDICTION OF WELD PENETRATION IN REAL TIME BASED 

ON DEEP LEARNING 

Welding is an important joining technique that has been automated/robotized. In 

automated/robotic welding applications, however, the parameters are preset and are not 

adaptively adjusted to overcome unpredicted disturbances, which cause these applications 

to not be able to meet the standards from welding/manufacturing industry in terms of 

quality, efficiency, and individuality. Combining information sensing and processing with 

traditional welding techniques is a significant step toward revolutionizing the welding 

industry. In practical welding, the weld penetration as measured by the back-side bead 

width is a critical factor when determining the integrity of the weld produced. However, 

the back-side bead width is difficult to be directly monitored during manufacturing because 

it occurs underneath the surface of the welded workpiece. Therefore, predicting back-side 

bead width based on conveniently sensible information from the welding process is a 

fundamental issue in intelligent welding. 

Traditional research methods involve an indirect process that includes defining and 

extracting key characteristic information from the sensed data and building a model to 

predict the target information from the characteristic information. Due to a lack of feature 

information, the cumulative error of the extracted information and the complex sensing 

process directly affect prediction accuracy and real-time performance. An end-to-end, data-

driven prediction system is proposed to predict the weld penetration status from top-side 

images during welding. In this method, a passive-vision sensing system with two cameras 

to simultaneously monitor the top-side and back-bead information is developed. Then the 

weld joints are classified into three classes (i.e., under penetration, desirable penetration, 

and excessive penetration) according to the back-bead width. Taking the weld pool-arc 

images as inputs and corresponding penetration statuses as labels, an end-to-end 

convolutional neural network (CNN) is designed and trained so the features are 

automatically defined and extracted. 

In order to increase accuracy and training speed, a transfer learning approach based 

on a residual neural network (ResNet) is developed. This ResNet-based model is pre-

trained on an ImageNet dataset to process a better feature-extracting ability, and its fully 

connected layers are modified based on our own dataset. Our experiments show that this 

transfer learning approach can decrease training time and improve performance. 



 

Furthermore, this study proposes that the present weld pool-arc image is fused with two 

previous images that were acquired 1/6s and 2/6s earlier. The fused single image thus 

reflects the dynamic welding phenomena, and prediction accuracy is significantly 

improved with the image-sequence data by fusing temporal information to the input layer 

of the CNN (early fusion). Due to the critical role of weld penetration and the negligible 

impact on system implementation, this method represents major progress in the field of 

weld-penetration monitoring and is expected to provide more significant improvements 

during welding using pulsed current where the process becomes highly dynamic. 

KEYWORDS: End-to-End, Weld Penetration, ResNet, Transfer Learning, Dynamic 

Welding Phenomena, Early Fusion 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

 As one of the most popular welding technologies, gas tungsten arc welding 

(GTAW) has been playing an important role in some critical application cases. This is due 

to its stability and high-quality joints in practical manufacturing, such as automobiles and 

pressure vessels. With the development of industrial technology, more and more welding 

productions are done primarily by automatic GTAW equipment. However, the path, 

fixture, and parameters of automatic welding are all pre-set and are hardly changed in the 

manufacturing process. This imperfection cannot meet the increasing requirements in 

welding/manufacturing industry related to quality, efficiency, and individuality. Highly 

skilled human welders are often still preferred over automatic welding, because automatic 

equipment cannot analyze and control the weld penetration status. The back-bead width is 

a major parameter that can be used to analyze and control weld penetration [1]. Its real-

time monitoring requires a complex setup that is not suitable for welding operations. 

Therefore, it has become urgent for automatic GTAW equipment to have intelligent 

analysis capability. 

Skilled welders can control the weld penetration by observing the welding process 

occurring on the top side of the work-pieces to adjust parameters (e.g., current, welding 

speed, arc length, and torch orientation). The mechanism of welder’s behaviors was 

utilized to develop a general method to predict weld penetration, many studies have been 

conducted to predict weld penetration using different characteristic information from the 

welding process. They typically (1) sense observable phenomena from the welding process 

using different sensors or phenomena; (2) define and extract characteristic information 
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from sensed phenomena; and (3) build a model to correlate the extracted characteristic 

information to the penetration state [2,3].  

The general method as shown in Figure 1.1 meets with some inescapable problems: 

the characteristic information is defined by humans and therefore greatly depends on an 

individual’s opinions, views, and abilities, which means some key data that determining 

the target information may be missed. In addition, the extracting process will add 

complexity and accumulated errors to the whole system. Furthermore, the welding process 

is typically nonlinear and complex, so a linear numerical model may not possess sufficient 

accuracy to describe the nonlinear behavior of the welding process; most numerical models 

are designed for certain welding applications and are not a universal solution [4, 5].  

Deep learning has developed quickly in recent years, and the weld penetration 

prediction by deep learning models has become an important issue in the welding field. 

The artificial neural network (ANN) is one of the most widely intelligent algorithms that 

can be used to  predict the bead geometry and penetration problems [2], and the back 

propagation artificial neural network (BPNN) is applied to predict penetration depth, back-

 

 

Figure 1.1: The general workflow of prediction process 
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bead width, and bead geometry size [3, 6]. However, all these methods have the issue, 

namely that prediction accuracy is not high; this is often due to missing characteristic 

information. Complex setups, extensive data pre-processing, and results with 

unsatisfactory accuracy are often the causes. In order to address this general challenge, this 

dissertation applies a deep-learning based method to automatically extract the information. 

The major remaining challenge to acquire adequate information from the welding process 

is therefore reduced. 

Skilled welders can judge weld penetration by observing welding phenomena 

during the welding process. Thus, the welding community believes that images from 

observable welding scenes contain sufficient information to predict weld penetration. 

While earlier efforts were made to follow the aforementioned procedure to initially 

propose characteristics, the deep learning method was recently applied; with a focus on 

using a convolution neural networks (CNN) [7, 8, 9, 10] to directly map images of the 

penetration [11, 12]. Training for the parameters, which includes the convolutional kernels 

and weights in fully connected layers and feature extraction and reasoning, is automatically 

done. However, these images of observable weld scenes and weld-penetration states are 

synchronously collected for use in training CNN models. They all assume that the current 

weld penetration can fully determine the final weld penetration, but they miss the temporal 

dynamic information and incompletely interpret skilled-welder operation. 

1.2 Objectives and Approach 

 As can be seen from a previous analysis, the general method has some limitations. 

Thus, the goal of this dissertation is to establish an efficient-yet-relatively-simple end-to-

end prediction system to learn weld-penetration status in complex welding processes by 
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deep-learning methods. In this system, the characteristic information from the welding 

process is defined and extracted by a data-driven process, and the deep-learning model can 

directly predict the weld-penetration status from knowledge learned from the characteristic 

information. Therefore, the objectives of this dissertation are: 

 to understand the skilled-welder response to the welding process and 

simulate skilled-welder intelligence to learn knowledge from the welding 

process by the deep-learning method  

 to establish an effective sensing and welding system that can simultaneously 

know the back-bead width by automatically observe the welding process 

(i.e., a welder’s view)  

 to design a dataset that reflects dynamic welding phenomena to effectively 

simulate the welding process 

 to build an effective and fast deep-learning model that will accurately 

predict weld penetration status in real time 

Technical challenges include sensing the welding process from the high-light 

welding arc, designing a training dataset that includes temporal information (i.e., dynamic 

welding phenomena), and training the deep-learning model to accurately predict the weld 

penetration status from complex welding process information in real time. To address 

these, we propose the following approaches: (a) a passive vison system with two installed 

cameras to simultaneously capture the top-side and back-side images; (b) fusing the 

present weld pool-arc image with two previous images acquired 1/6s and 2/6s earlier (the 

fused single image will reflect the dynamic welding phenomena); and (c) the CNN model 

is trained with the fused weld pool-arc images as input data and the penetration status as 
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labels. To improve the prediction model, we also introduce a residual neural network 

(ResNet) and a transfer-learning method. Welding experiments were conducted in a 

variety of welding conditions to synchronously collect the necessary data-pairs to train the 

deep-learning model. Results show that this method significantly improved prediction 

accuracy, and the trained model was verified for robustness and versatility. 

1.3 Dissertation Outline 

In this dissertation, an intelligent welding system that automatically collects data 

and an end-to-end prediction system that effectively predicts weld penetration status in 

real time and controls the welding process based on the prediction results. The dissertation 

is organized as follows. 

Chapter 1: Introduction 

The background and motivation of this research is discussed, and the research objectives 

are proposed.  

Chapter 2: Literature Review 

Analysis of the welding process is surveyed, and the physical evolution of this process and 

weld-penetration sensing are discussed; these include pool oscillation, infrared, ultrasonic, 

arc sensing, and vision-based sensing methods.  

Chapter 3: System Configuration 

An automatic GTAW welding platform is built, and a passive vision system is designed in 

the platform that includes two cameras that will simultaneously capture the top-side and 

back-side of the welding process. The platform is driven and controlled by a computer 

with a stepper motor. Due to the special characters of the top-side images, we introduce 

the image-sequence analysis which will also be discussed in this chapter. 
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Chapter 4: Deep Learning 

In this chapter, deep-learning methods are discussed to explain how they use convolution 

pixel information for purposes of prediction, then the role and advantage of a ResNet are 

derived by the vanishing-gradients problem of a CNN. Furthermore, we propose a transfer-

learning method to improve the training speed and performance of neural networks by pre-

training the ImageNet dataset.  

Chapter 5: Time Information Fusion 

We will discuss methods to fuse temporal information in the deep-learning models. 

Compared with the different fusion methods, the early fusion method best meets our design 

requirements and is also suitable for the characteristics of the input data. 

Chapter 6: Data Design 

Chapter 6 offers a detailed description of the data design for an input dataset and labels. In 

this case, the top-side image is the static-welding-process information at a certain moment, 

but it misses the dynamic and temporal information that is needed to analyze dynamic 

weld phenomena. So, we design the image-sequence data as an input dataset, and the weld 

penetration status is defined by a range of back-bead width values that is calculated 

according to the back-side image. 

Chapter 7: Model Training 

Different parameters and function settings are discussed in this chapter, and the optimal 

model is established. The CNN- and ResNet-model-based transfer-learning trains the 

single-frame images and image-sequence data to show the different results from the 

different models and different datasets. 

Chapter 8: Results and Analysis 
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In Chapter 8, we compare the different models with different training datasets to analyze 

the advantage of image-sequence and ResNet-model-based transfer learning.  

Chapter 9: Conclusion and Future Work 

The main findings and contributions are summarized, and the future work to improve the 

proposed research is discussed. 
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CHAPTER 2. LITERATURE REVIEW 

Welding is one of the most important joining techniques, and it has been 

automated/robotized. In practical welding, the weld penetration as measured by the back-

side bead width is a critical factor in determining the integrity of the weld. However, the 

bask-side bead width is difficult to directly monitor during manufacturing, as it occurs 

beneath the surface of a welded piece. Therefore, predicting back-side bead width from 

conveniently sensible information from the welding process has become a fundamental 

issue in intelligent welding. Skilled welders can control weld penetration by observing the 

welding process and adjusting parameters (e.g., current, welding speed, arc length, and 

torch orientation) as needed. The mechanisms of a welder’s behavior were utilized to 

develop a general method to predict weld penetration; thus, various methods were studied 

to monitor the welding process. The dynamic welding process is analyzed in the following 

subsection, then the sensing methods are reviewed.  

2.1 Welding Process Analysis 

The development of weld penetration is a complex process, but the physical 

evolution is clear. When welding starts, the solid metal melts and the liquid metal expands 

due to thermal expansion; this causes the surface to start to rise, as shown in Figure 2.1(a). 

Under continuous application of heat, the arc is formed and the volume of the liquid weld 

pool increases. As a result, the surface area of the weld pool increases and the penetration 

depth deepens until the liquid weld pool completely penetrates the solid metal. 

The width of the back-side weld bead (𝑊𝑑) will increase after the solid metal is 

fully melted, as shown in Figure 2.1(b), and the 𝑊𝑑 is the key information to determine 
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the penetration state. The weld quality is considered qualified when 𝑊𝑑 reaches a certain 

width in actual production. If the liquid weld pool continuously increases, the back-side 

weld pool surface will become more convex due to gravity.  

When the convex volume is greater than the thermal expansion volume, the top-

side surface will become concave, as shown in Figure 2.1(c). The analysis discussion 

illustrates that the top-side and back-side weld pool must follow the physical relationship, 

and using the observable weld scene from the top-side to predict back-side bead width is 

justifiable. In addition, the dynamic evolution of the top-side weld scene is even more 

informative and can better correlate to what occurs on the back-side. 

We note that welders not only see the surface of the weld pool, but also the welding 

arc. Until recently, the arc was regarded as strong light interference that affected effective 

image processing used to extract more critical information, such as the weld pool 

boundary. Part of the efforts were to filter out the arc. Possible information from the arc 

that was relevant to the development of the weld pool was ignored. In fact, because heat 

 

 

Figure 2.1: Welding process (a) partial penetration; (b) full penetration; (c) excessive 

penetration 
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is directly applied by the arc, the arc cone directly affects energy-density distribution and 

the heated area that is related to the direction and speed of the weld-pool extension. 

As shown in Figure 2.2, as the arc voltage increases, the arc length becomes longer, 

which leads to a wider arc cone and a broader arc-heating area. Conversely, when the arc 

voltage decreases, the arc length is shorter, the arc cone becomes narrower, and the heating 

area is more focused [13]. The surface of the weld pool will constantly change with the 

development of the weld pool, and the deformed surface also affects the arc cone. Hence, 

we collect the top-side image which includes both the arc and the weld pool as the raw 

information of the relevant weld phenomena. 

While complex raw data increases redundant information, it also increases the 

difficulty of extracting characteristic information and computational complexity. 

However, the deep-learning-based data-driven approach is expected to be capable of 

effectively analyzing top-side images despite the increased complexity. 

 

 

Figure 2.2: Weld arc cone and length 
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2.2 Welding Process Sensing 

Sensing the welding process should provide information associated with the weld 

penetration. Extensive work has been done to sense the welding process, including pool 

oscillation [14–23], ultrasonic sensing [24–29], infrared sensing [30–32], arc sensing [33–

35], and vision sensing methods [36–51]. The review regarding these sensing methods is 

presented in the following. 

2.2.1 Pool Oscillation Method 

Sensing weld penetration by weld pool oscillation behavior, which is based on the 

oscillation frequency of the weld pool, is related to weld-pool geometry. In 1972, Kotecki 

et al. [14] discovered weld pool oscillation behavior and the relationship between the weld 

pool diameter and the natural frequency of the weld pool oscillation in the GTAW process. 

Richardson and his colleagues [15] then proposed a method to predict the back-bead width 

based on the natural frequency of weld pool. However, these results had poor accuracy, 

and it was unclear how the method could be applied in the moving welding process. 

 The abrupt change in the oscillation frequency of the weld pool during the 

transition from partial to full penetration was found and applied to monitor and control the 

weld penetration by Xiao and Ouden [17, 18]. Anderson [19] developed a synchronous 

weld pool oscillation method to control and monitor weld penetration status. Yudodibroto 

[22] further implemented the weld pool oscillation method to control weld penetration 

during the GTAW process with the addition of cold filler wire. However, the pool 

oscillation method had some issues that resulted in low prediction accuracy due to the 

moving speed of the arc torch; additionally, the work-piece surface, surface dirt, and 

oxidation of the work piece changed the natural frequency of the weld pool oscillation. 

Furthermore, the sensing device and data processing needed to control the weld 
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penetration by sensing the pool oscillation method is complex. Therefore, the pool 

oscillation method is designed for specific welding applications and is not suitable for 

general welding applications. 

2.2.2 Ultrasonic Method 

Ultrasonic methods are used to find the boundaries of the weld pool in the work 

piece [24–26]. Developed ultrasonic sensing methods can locate and track the welding 

seam to ensure the arc torch is in the correct position during the welding process. Recently, 

various non-contact ultrasonic sensing methods have been developed in which weld 

penetration depth is determined by calculating the receiving time of the reflected ultrasonic 

wave [23, 28]. However, the ultrasonic wave transmission speed is different in different 

materials. Therefore, ultrasonic methods only can be used in uniform material that contain 

a low percentage of impurities, and the surface of work piece must be clean. In addition, 

ultrasonic methods need special calibration and the equipment is expensive, which make 

this an imperfect sensing method for welding applications. 

2.2.3 Infrared Based Method 

Infrared-based methods use infrared sensors to measure thermal distribution in the 

welding process by monitoring the weld parameters, including weld bead width, 

penetration depth, and torch position [30–32]. However, infrared sensors are very 

expensive, and sensing accuracy can be affected by the environment, such as sun, light, or 

other lighting conditions. This limits applicability of the infrared-based method; thus, it is 

not suitable for industrial welding applications. 
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2.2.4 Arc Sensing 

Arc sensing is widely used to track welding seams and control arc stability by 

monitoring arc behavior in the welding process [33, 34]. The advantage of arc sensing is 

that the system uses the arc itself as a sensor, instead of the external sensors. However, 

less-useful information and easy interference make this sensing method less effective in 

controlling weld penetration [35].  

2.2.5 Vision Based Sensing 

The top-side of the weld pool provides many important information for 

understanding the welding process and is the source of information that welders can obtain 

in the welding process. As discussed above, the top-side of the weld pool includes the arc 

cone and the weld pool surface (which will constantly change with development of the 

weld penetration), and they are closely related to weld penetration. Vision-based sensing 

is an observation method to collect information from the top-side of the weld pool; this is 

the same information a welder can obtain, and it is widely used in industrial welding due 

to its cheap cost, easy setup, reliability, and high accuracy.  

Pioneering work on vision-based sensing to observe the weld pool was proposed 

by Rokhlin and Guu [36, 37]. They used radiography to measure depth penetration 

according to the understanding that the radiation increases with the depression depth. The 

principle of this method is to measure the material’s thickness. However, it is difficult to 

extract the shape of the weld pool surface for full penetration, which causes pool surface 

deformation to occur. 

A stereovision system was proposed by Minch [52] to measure the weld pool by 

using the high frame rate. Two cameras synchronously captured images when the arc was 
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off, and the 3D weld pool surface was reconstructed by stereo image process algorithms. 

Zhao [44] developed a method to reconstruct the weld pool surface shape from a shading 

algorithm with a single weld pool image. Researchers at the University of Kentucky 

Welding Research Laboratory have done pioneering work in weld-pool monitoring and 

welding penetration state control based on structured laser lights. By taking advantage of 

the mirror-like reflective property of the weld pool, they captured images of a structured 

laser (including multi-stripes [38], dot matrix [40, 42, 43], and grid matrix [53]) reflected 

by the weld pool and designed corresponding image processing algorithms to reconstruct 

the 3D surface of the weld pool. 

With the general methods to predict weld penetration status, the sensing 

information always eliminates the influence of the bright arc light, because no method can 

analyze the arc information with the images, and the arc light blocked out the sight of the 

weld pool, which was regarded as interference. Now the deep-learning-based data-driven 

approach can analyze and solve this issue, so the images that include more information are 

better.  

The passive vision system was created with the process and development of deep-

learning in the field of welding. Chen’s [54] research shows that the arc and weld pool 

surface are both important features that affect the weld penetration, and Jiao [11] proposed 

an end-to-end prediction system by processing top-side images from the passive vision 

system; the latter method has an easy setup and is not concerned about extracting and 

defining characteristic information from the sensing data, and the raw sensing data, 

including the weld pool surface and arc cone, can be directly used as input data. This 
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method is highly suitable for industrial applications, so we will continue to use this method 

and optimize it in this dissertation. 
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CHAPTER 3. SYSTEM CONFIGURATION 

Skilled welders can control and estimate weld penetration by observing the top-side 

of the welding process; this mechanism proves that top-side images contain enough 

characteristic information to estimate the weld penetration status. In this chapter, a passive 

vision system is used to observe the welding process in real time, similar to the welder’s 

perspective on an automatic GTAW platform. The top-side images will be input data, and 

the back-side images will be used to estimate the back-bead width as label data, utilizing 

a relationship function between the pixels of the back-side images and the actual back-

bead width. The deep-learning model can then directly output the prediction results by 

training the raw top-side data. 

3.1 Experimental Platform 

The experimental platform, which includes an automatic GTAW system and the 

passive vision system, is a simple but fully automated welding platform, meaning all 

welding operations and information collections are controlled by computer programs. The 

system flow chart is shown in Figure 3.1: The computer controls the two cameras and 

collects image information with a PCI expansion card (IEEE 1394), and a data acquisition 

card (PCI 6229) is used to order the welding power supply and retrieve feedback 

information from the welding power supply. The stepper motor is controlled by the motor 

controller with the order of the computer by the data acquisition card. All the collected 

information is transmitted to the computer and saved in the specified path, and the 

computer programs are edited with Python software. 
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3.1.1 Automatic GTAW System 

As shown in Figure 3.2, the automatic GTAW system was designed on the 

automatic platform, and the weld torch was set perpendicular to the automatic platform. 

The center of the platform is a rectangular hole, which is convenient for adding shielding 

gas and observing weld penetration states via camera during the welding process. For the 

consistency of the experiment, a stepper motor drives the platform to achieve and control 

the position and movement of the work piece. In the automatic GTAW system, two 

shielding gas pipelines are used to prevent the front and back of the work piece from 

becoming oxidized during the welding process, which also leads to better welding effect. 

The power supply is Miller PM200 DC, which is able to output direct current up to 200 

amperes. In experiments, each workpiece/sheet is welded in 12 spots that are spaced 2cm 

apart. For the more complete samples under different conditions, the ranges of welding 

 

 

Figure 3.1: System flow chart 
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currents and welding times are relatively large. Cameras capture the images during the 

entire welding process from partial penetration to excessive penetration under different 

welding conditions. The preset parameters are shown in Table 3.1. 

Table 3.1: Welding parameters applied 

Welding Parameters Value 

Welding Type GTAW 

Welding Current (A) 60-110 

Welding Time (S) 4-12 

Tungsten Diameter (mm) 2.4 

Shielded Gas Argon 

Gas Flow (L/Min) 7 

Workpiece Material 304L 

 

 

 

 

Figure 3.2: Automatic GTAW system 
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3.2 Passive Vision System 

 In the automatic platform, the welding torch and two high-speed cameras are set 

to remain stationary, and the work piece is moved by the step motor, which is shown in 

Figure 3.3. This design ensures that the cameras can always capture high-resolution paired 

images from top-side and back-side of the work piece. In order to eliminate the strong 

interference from the arc radiation, Camera 1 (Point Grey FL3FW03S1C) uses a 685nm 

center-wavelength band-pass optical filter. The same filter is used by Camera 2 for the 

same reason: the filter will eliminate interference light from the strong arc and keep the 

arc cone.  

 The configurations for both cameras are shown in Table 3.2. The passive vision 

system can capture the full top-side images of the welding process to ensure that the 

collected information has sufficient valid information. Furthermore, the passive vision 

system is very easy to setup to reduce the negative impact of the external system in the 

welding process and design difficulties. The passive vison system is different from the 

 

 

Figure 3.3: Passive vision system 
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active vision system with the structured laser, which is easily disturbed by the 

environment, and the captured images includes more information than those of active 

vision system. 

Table 3.2: Camera configuration applied 

Configuration Value 

Filter Center (nm) 685±2 

Filter FWHM (nm) 10±2 

Image Size (Pixel) 480×640 

Format Mono8 

Frame Rates (FPS) 30 

Shutter Time (ms) 0.08 

Sharpness 3000 

Gain 0 

Gamma 2.5 

 

3.3 Observation Results 

 In experiments, the automatic platform drives a 1.85mm-thick stainless steel sheet 

to move into position and be spot-welded using direct current GTAW. As shown in Figure 

3.4, both-sides images of the welding pool are obtained through the passive vision system. 

In Figure 3.4(a), the top-side images are obtained at 0.08ms camera exposure time. Most 

of arc light was suppressed, and the arc shape and weld pool side edge can be clearly 

 

 

Figure 3.4: Passive vision images. (a) top-side image (b) back-side image 
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observed. In Figure 3.4(b), the back-side images are obtained synchronously with the top-

side images, and the back-side geometry is captured as desired. The designed passive 

vision system performs well in the automatic GTAW system, and the observation results 

meet the design requirements. Over 120 welding experiments were automatically 

conducted with these parameters, and 28,494 images pairs were collected as a raw dataset. 

All these image pairs were divided into training, validating, and testing datasets with the 

size of 22,794, 2,849, and 2,851, respectively. 

3.4 Image Sequence 

An image sequence contains more information than any of its constituent images. 

For this reason, image-sequence analysis has been used in computer vision for a long time. 

Analyzing image sequences is very effective for object detection, especially for relatively 

moving objects [55]. Additionally, camera noise can corrupt individual images, but such 

noise can be suppressed using an image sequence to reliably detect low-contrast objects 

[56]. For our particular application, the analysis of the weld pool dynamic evolution also 

illustrates the necessity of using dynamic weld phenomena.  

In our case, the top-side images have the following characteristics: dark chroma, 

low contrast, and the development of the weld pool and arc is a slow process. Thus, the 

 

 

Figure 3.5: The sequence of top-side image 



22 

 

top-side images in the same process have a high degree of similarity. Furthermore, 

characteristic information in the welding process is dynamic while the surrounding 

environment is static, as can be seen from the sequence of top-side images in Figure 3.5. 

The development of the weld pool and arc cone can be observed with this sequence, but 

the harsh imaging conditions make extracting image features a challenge. Directly 

processing the image by a CNN without first extracting image features is therefore a 

correct choice. In this paper, we will design an image-sequence dataset to increase the 

temporal information in the raw information, which enables CNNs to extract dynamic 

feature information. In addition to widen the image information, we also deepened the 

model to better use the high-level information to improve the prediction accuracy. 

The main connectivity pattern category for fusing temporal information through a 

CNN includes single frame, early fusion, late fusion, and slow fusion [17]. These contents 

involve the knowledge of deep learning, which will be explained in detail in Chapter 5. 

And the deeper CNN-based model will be discussed in Chapter 4. 
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CHAPTER 4. DEEP LEARNING 

4.1 Introduction 

Deep-learning algorithms are a specialized subset of Artificial Intelligence (AI). 

Deep learning is inspired by information processing and distributed communication nodes 

in biological systems, which can transmit the intelligence to a computer by using multiple 

layers to progressively extract higher-level features from the input data and learn the 

potential relationship to output target information without being explicitly programmed. 

Deep-learning architectures such as deep neural networks, recurrent neural networks, deep 

belief networks, and CNNs have been applied in many fields, including computer vision, 

natural language processing, machine translation, medical-image analysis, and so on.  

CNNs are the best among the learning algorithms for image content understanding 

and have achieved good results in related tasks such as segmentation, classification, 

detection, and retrieval [55, 56]. The success of CNNs has drawn attention from all walks 

of life. In the industry, large companies such as Google, Microsoft, and Facebook have 

established active research groups to explore CNN new architecture [59]. Currently, most 

front-runners in image processing and computer vision competitions use deep CNN-based 

models. 

In 2011, CNN was applied on graphics processing units (GPUs) to win an image 

recognition contest that broke through the deep-learning performance [60]. The success of 

the CNN model promoted the development of image analysis in various fields and has 

introduced a new possibility for solving weld-penetration problems. The architecture of a 

CNN is similar to the connection pattern of the visual cortex in the human brain [61], so it 

can quickly and efficiently learn the features from the images without much pre-
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processing. Hence, we propose an end-to-end method to directly predict the target 

information from the raw data without the need for hand-engineering to define and extract 

characteristic information. In such a process, the characteristic information is 

automatically defined and extracted by model, and the model can achieve high prediction 

accuracy due to the reduced likelihood of missing characteristic information. The powerful 

performance of a CNN offers a possible way to build such an end-to-end method. 

4.2  Convolutional Neural Network 

The advantage of a CNN is that it can exploit spatial or temporal correlations of 

data. The structure of the CNN is divided into multiple learning stages, consisting of 

convolutional layers, nonlinear processing units, and sub-sampling layers [62]. CNNs are 

feed-forward multilayer hierarchical networks that are similar to fully connected neural 

networks; each layer uses a set of convolution kernels to perform multiple transformations 

[63]. Convolution operations extract useful features from locally correlated data. 

Assigning the output of the convolution kernel to a nonlinear processing unit (activation 

function) not only helps to learn the abstraction, but also embeds the nonlinearity in the 

feature space. This nonlinearity generates different activation modes for different 

reactions, thereby promoting the learning of image semantic differences. The output of the 

nonlinear activation function is usually performed after subsampling, which helps to 

summarize the results and also causes the input to be unaffected by geometric distortions 

[64]. A CNN has automatic feature-extraction capabilities, which reduce the need to 

synthesize separate feature extractors [65]. Therefore, CNNs with small processors can 

learn good internal representations from raw pixels. The important attributes of a CNN are 
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hierarchical learning, automatic feature extraction, multi-tasking, and weight-sharing [64–

66]. 

CNNs first attracted people’s attention in 1989 through Yann LeCun’s processing 

of grid-like topological data (images and time-series data) [69]. CNNs’ architectural 

design is inspired by the work of Hubel and Wiesel and largely follows the basic structure 

of the visual cortex in primates [70], [71]. The popularity of CNNs is largely due to its 

hierarchical feature-extraction capabilities. The hierarchical organization of CNN 

simulates the deep hierarchical learning process of the neocortex of the human brain and 

dynamically learns features from raw data [72]. Because a CNN has a multi-layered 

structure, it can extract low-, mid-, and high-level features. High-level features (more 

abstract features) are a combination of low- and mid-level features. 

From the late 1990s to 2000, CNNs made several improvements in learning 

strategies and architectures, which makes a CNN scalable to large, heterogeneous, 

complex, and multi-class problems. Innovations of the CNN include modifications of basic 

components, parameter and hyperparameter optimization strategies, regularization units, 

design patterns, connectivity between layers, and so forth. CNN-based applications 

became popular after AlexNet performed well on the ImageNet dataset [9]. CNNs have 

proposed major innovations since 2012, primarily in the reorganization of processing units 

and the design of new blocks. In addition, Zeiler and Fergus proposed the concept of layer-

wise visualization of a CNN [73], which improved the feature-extraction stages and 

changed the trend of extracting low spatial resolution features in deep architectures such 

as a visual geometry group (VGG) [74]. Currently, most new architectures are built on the 

simple and isomorphic topology principles introduced by VGGs. On the other hand, the 
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Google Group introduced the idea of splitting, transforming, and merging; the 

corresponding block is known as an inception block. An inception block gives the concept 

of branching in a layer for the first time, which allows abstracting features on different 

spatial scales [75]. In 2015, the concept of skip connection for deep CNN training 

introduced by ResNet was widely known [76]. Subsequently, the concept was used by 

most subsequent networks, such as Inception-ResNet, WideResNet, ResNeXt, etc. [75–

77]. 

4.2.1 Basic CNN components 

    In the end-to end prediction system, the input is the top-side image that includes 

both the weld pool and the arc, and a CNN is used as the prediction model. A CNN is a 

kind of neural network that builds higher levels of functionality from groups of pixels 

commonly in images. The images are then weighted using scoring on these features to 

generate the final classification results [69]. Usually, a CNN consists of a series of 

convolution layers, pools layers, and fully connected layers. In some cases, the full-

connection layer is replaced by the global-average pooling layer. In addition to different 

mapping functions, different adjustment units such as batch normalization and dropout are 

added to optimize the performance of the CNN [80]. The arrangement of CNN components 

plays a critical role in the design of the new architecture to improve performance. This 

section briefly discusses the role of these components in the CNN architecture.  

4.2.2 Convolutional Layers 

The role of the convolution layer is to extract feature values, which can be 

understood as using a filter (convolution kernel) to filter each small area of the image to 

obtain the feature values of these small areas. In specific applications, there are often 



27 

 

multiple convolution kernels extracting the features of the same image at the same time to 

achieve the extraction of multiple features. Here, the convolution kernels can also be called 

filters. Different filters will get different output data; this is the equivalent to using different 

filters to extract the specific information you want about the image (i.e., color, depth, or 

contour). The neurons in each layer of the CNN are arranged in three dimensions; they are 

arranged in a rectangular parallelepiped, with width, height, and depth. For RGB images, 

this convolution layer contains three filters, namely three sets of parameters. Each filter 

can convolve the raw input image to obtain a feature map, and three filters can obtain three 

feature maps. As for how many filters a convolutional layer can have, this can be freely 

set. In other words, the number of filters in the convolutional layer is also a 

hyperparameter. We can think of the feature map as image features extracted through 

convolution transformation. The three filters extract three different sets of features from 

from the raw image, also called three channels (channel). 

Here is a simple example to explain how to calculate the convolution and explain 

some important concepts and calculation methods of the convolutional layer. Suppose 

there is a 5*5 image, and a 3*3 filter is used to convolve to get a 3*3 feature map, as shown 

in Figure 4.1. First, numbering each pixel of the image, using 𝑥𝑖,𝑗 to represent the i-th row 

and j-th column of the image; each weight of the filter is numbered by 𝑤𝑚,𝑛, which is the 

m-th row and n-th column weight, and 𝑤𝑏  represents the bias of the filter. When 

numbering each element of the feature map, use 𝑎𝑖,𝑗  to represent the i-th row and j-th 

column of the feature map; use ℱ to represent the activation function; in this example, the 
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Rectified Linear Unit (ReLU) function is selected as the activation function). The 

convolution is then calculated using Formula 4.1: 

𝑎𝑖,𝑗 = ℱ( ∑ ∑ 𝑤𝑚,𝑛𝑥𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏

2

𝑛=0

2

𝑚=0

) (4.1) 

For the upper-left element 𝑎0,0 of the Feature map, the convolution calculation method is: 

𝑎0,0 = ℱ( ∑ ∑ 𝑤𝑚,𝑛𝑥𝑚+0,𝑛+0 + 𝑤𝑏

2

𝑛=0

2

𝑚=0

) 

        = relu(𝑤0,0𝑥0,0 + 𝑤0,1𝑥0,1 + 𝑤0,2𝑥0,2 + 𝑤1,0𝑥1,0 + 𝑤1,1𝑥1,1 + 𝑤1,2𝑥1,2 + 𝑤2,0𝑥2,0

+ 𝑤2,1𝑥2,1 + 𝑤2,2𝑥2,2 + 𝑤𝑏) 

       = relu(1 + 0 + 1 + 0 + 1 + 0 + 0 + 0 + 1 + 0) 

       = relu(4) 

       = 4 

 

 

Figure 4.1: The element of convolution process  
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The result is shown in Figure 4.2 (a); if the stride is set to be 2, the feature map is calculated 

 

 

Figure 4.2: Convolution process  
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as Figure 4.2. This process shows that the size of Feature map is based on the stride and 

size of the image. In Figure 4.2, the 2*2 Feature map is calculated when the stride is set as 

2; the relationship is as follows: 

𝑊2 = (𝑊1 − F + 2P)/S + 1 (4.2) 

𝐻2 = (𝐻1 − F + 2P)/S + 1 (4.3) 

where 𝑊2 is the width of the Feature map after convolution, 𝑊1 is the width of the image 

before convolution, 𝐹 is the width of the filter, 𝑃 is the number of zero padding (i.e., the 

number rounds of zero around the raw image). 𝑆 is the stride, 𝐻2 is the height of Feature 

map after convolution, and 𝐻1 is the height of the image before convolution. 

   According to the above analysis, the convolution layer can extract the feature 

information of a 2D image by convolution, in the same way the convolution layer can also 

extract the feature information of depth image (i.e., a multi-channel image). If the image 

depth before convolution is D, then the corresponding filter depth must also be D. Formula 

4.1 can be extended to get the convolution formula with depth greater than 1 as follows: 

𝑎𝑖,𝑗 = ℱ(∑ ∑ ∑ 𝑤𝑑,𝑚,𝑛𝑥𝑑,𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏

𝐹−1

𝑛=0

𝐹−1

𝑚=0

𝐷−1

𝑑=0

) (4.4) 

where D is the depth of the image, and 𝐹 is the size of the filter (the width or height-both 

are same). 𝑤𝑑,𝑚,𝑛 represents the weight of the d-th layer, m-th row and n-th column of the 

filer. 𝑥𝑑,𝑖,𝑗 represents the pixels in layer d, row i, column j of the image. 

 Segmenting the image into smaller pieces helps extract feature information. 

Different features are extracted from images using sliding kernels (i.e., a filter) with the 

same weight. Convolution operations can be further classified into different types 

depending on the type and size of the filter, the type of padding, and the direction of the 
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convolution [69]. In addition, if the kernel (filter) is symmetrical, the convolution 

operation will become a related operation. 

4.2.3 Pooling Layers 

The limitation of the feature map output of convolutional layers is that they record 

the precise location of the features. This means that small movements of feature locations 

in the input image will result in different feature maps. This can happen when re-cropping, 

rotating, shifting, and making other minor changes to the input image. A common method 

to solve this problem in signal processing is called down sampling, in which a lower-

resolution version of the input signal that still contains large or important structural 

elements without the fine details that may not be helpful for the task is created. The main 

function of the pooling layer is down sampling, which further reduces the number of 

parameters by removing unimportant samples from the feature map, reducing the tendency 

of overfitting. There are many pooling methods are used in a CNN: mean pooling, max 

pooling and stochastic pooling. 

Mean pooling calculates the average of the elements for each patch on the feature 

map; this process is shown in Figure 4.3. Mean pooling will smoothly extract features and 

 

 

Figure 4.3: The mean pooling  
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bring all features into the next layer, which means all values are used for the Feature map 

and output, so this is a generalized computation. Mean pooling is suitable for instances 

when all the data are important for the output, and causes the model to be more robust to 

space translations in the data. 

Max pooling calculates the maximum of the elements for each patch on the feature 

map; this process is shown in Figure 4.4. Max pooling is good for extracting the most 

important features like boundary location, chromatic aberration, and so on. Max pooling 

is too sensitive for some patterns in feature map, it is more informative to observe the 

maximum presence of different features than their average presence [81].   

Stochastic pooling picks every possibly value for each patch on the feature map, 

unlike max pooling, which dismisses the smaller values. In each patch, first calculate the 

probability of the value based on Formula 4.5. 

𝑝𝑖,𝑗 =
𝑎𝑖,𝑗

∑ 𝑎𝑘𝑘𝜖𝑅
 (4.5) 

 

 

Figure 4.4: The max pooling  
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Then, the output is chosen by the probabilities, as shown in Figure 4.5. Max pooling 

can be thought of as a special stochastic pooling, where the probability of the maximum 

value is 1 and others are 0. In stochastic pooling, the smaller values also have a chance of 

being chosen as output.  

4.2.4 Activation Function 

The activation function is a decision function that helps to learn complex patterns. 

Selection of an appropriate activation function can speed up the learning process. In a 

multilayer neural network, there is a functional relation between the output of the upper 

node and the input of the lower node. The output is normally a linear combination of the 

inputs, which is the primitive perceptron. By introducing nonlinear functions as an 

activation functions, the deep neural network expression ability is more powerful; it is no 

longer a linear combination of inputs, but can approximate almost any function. In the 

literature, different activation functions such as sigmoid, tanh, maxout, ReLU, and variants 

of ReLU such as ELU and PReLU.  The sigmoid, tanh and ReLU functions are the most 

widely used in current CNN applications. 

 

 

Figure 4.5: The stochastic pooling  
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The sigmoid function is also called the logistic activation function. It compresses 

real values into the range of 0 to 1, as shown in Figure 4.6. This function can also be used 

in the output layer of prediction probability. This function converts large negative numbers 

to 0 and large positive numbers to 1. The mathematical function can be calculated with 

Formula 4.6: 

σ(𝓍) =
1

1 + 𝑒𝑥
 (4.6) 

There are three main drawbacks of the sigmoid function: (1) the gradient 

disappears, and the rate of change becomes flat when the sigmoid function approaches 0 

and 1. (thus, the gradient of the sigmoid approaches 0); (2) it is not zero-centric; and (3) 

calculations are costly 

The tanh activation function is also called the hyperbolic-tangent activation 

function. Similar to the sigmoid function, the tanh function uses truth values. Unlike 

sigmoid, the output of the tanh function is zero-centric because the interval is between -1 

and 1. The tanh functions can be imagined as two sigmoid functions put together which as 

shown in Figure 4.7. In practice, the tanh function takes precedence over the sigmoid 

function. Negative inputs are treated as negative values, zero input values are mapped to 

 

 

Figure 4.6: Sigmoid activation function and gradient curve  



35 

 

near zero, and positive inputs are treated as positive values. The only disadvantage is that 

the tanh function also has the vanishing gradient problem. 

Rectified linear unit (ReLU) solves the problem of vanishing gradients commonly 

found in sigmoid and tanh, and is also the fastest activation function for computing 

gradients. The mathematical formula is: 

σ(𝓍) = max (0, 𝓍) (4.7) 

when x <0, the output is 0; and when x> 0, the output is x. This activation function makes 

the network converge more quickly. It does not saturate; thus, it can combat the vanishing 

gradient problem, at least in the positive region (when x> 0), so the neuron does not 

 

 

Figure 4.7: tanh activation function and gradient curve  

 

 

Figure 4.8: ReLU activation function and gradient curve  
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propagate all zeros in at least half of the region, as shown in Figure 4.8. Due to the use of 

simple thresholding, ReLU calculations are very efficient. But ReLU neurons also have 

some disadvantages: (1) it is not zero-centric; and (2) the activation value is always zero 

when the input continues to be negative. 

4.2.5 Fully Connected Layer 

In the CNN structure, after multiple convolutional layers and pooling layers, one or 

more fully connected layers are connected. Each neuron in the fully connected layer is 

fully connected to all neurons in the previous layer. Fully connected layers can integrate 

class-specific local information in convolutional or pooling layers. In order to improve the 

performance of CNN networks, the activation function of each neuron in the fully 

connected layer generally uses the ReLU function. Unlike the convolution and pooling 

layers, the fully connected layer is a global operation. It outputs the final classification 

result by globally analyzing the input from features of the preceding layers. 

The specific architecture of a fully connected layer is shown in Figure 4.9. In this 

process, where 𝑊𝐾∗𝑁 is the weight matrix of the neurons, K is the number of the categories 

 

 

Figure 4.9: The architecture of fully connected layer  
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to be classified, and x is the result of flattening the output of the previous layers and is also 

the input vectors of fully connected layer.  The fully connected layer multiplies the weight 

matrix by the input vectors and adds the bias to map the N(−∞, +∞) real numbers into 

K(−∞, +∞) real numbers (fractions). And the softmax will map the K(−∞, +∞) real 

numbers into K(0, 1) real numbers (probabilities), while ensuring the components will add 

up to 1, so the results can be interpreted as probabilities [82]. The mathematical function 

is as shown in Formulas 4.8 and 4.9: 

𝑧 = [

𝑧1

⋮
𝑧𝐾

] = [
𝑤1

𝑇

⋮
𝑤𝐾

𝑇
] [

𝑥1

⋮
𝑥𝑁

] (4.8) 

𝑦̂ = softmax(z) = softmax(𝑊𝑇𝑥 + 𝑏) (4.9) 

where 𝑦̂ is the output probabilities of the softmax function, and b is the bias. The softmax 

function is as follows: 

softmax(𝑧𝑗) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑗
𝐾

 (4.10) 

 

From the Formula 4.9, it can be seen that the fully connected layer analyzes the 

importance of the features in each dimension and obtains the scores of each category by 

the weighted sum of the features, and the softmax function then maps the scores to 

probabilities. Finally, the result of the neural networks is the class that has the highest 

probability. This is a whole process of the logistic regression, and the process of linear 

regression will not include the softmax function, as the output of the linear regression is 

continuous. 
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4.2.6 Architecture of CNN 

CNNs are designed to simulate the human visual system. However, there are 

billions of neurons in the human brain. Even in current hardware, billions of neurons are 

large and difficult to implement. Therefore, researchers tend to design different 

architectures for different cases. Different improvements in CNN architecture have been 

proposed from 1989 to present. These improvements can be categorized as parameter 

poetization, structural reformulation and so on. However, the main development direction 

is to build deeper network architectures. An important specialty of a CNN is local 

connection, which means that each neuron does not perceive the entire image, but 

perceives a certain locality. Here the "local" scope is called the receptive field. Therefore, 

from shallow layers to deep layers, the receptive field is increased and some detailed 

features are removed due to the effect of stride or pooling. The CNN goes from extracting 

the underlying local features to being able to extract globally semantic features. In 

addition, the greater number of layers mean there are more parameters that can be adjusted, 

and the greater freedom of network adjustment, leads to a better fitting effect of the 

network.  

Deeper networks mostly have the following two advantages: (1) Better fitting 

features and more powerful expression capabilities; deeper models mean better nonlinear 

expression capabilities, which can learn more complex transformations and can fit more 

complex feature inputs. (2) If the network is deeper, the things to be done at each layer are 

simpler, and it is possible to better learn layer by layer.  

However, it also brings about the following problems: (1) Vanishing gradient and 

the exploding gradient problems. (2) The overfitting problem: As the number of network 
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layers deepens and the number of parameters increases, the fitting ability of the neural 

network becomes stronger, which means that the functions it expresses will become more 

complicated. If simple problems such as binary classification problems are used with the 

deeper network, it will be too complicated and can easily cause overfitting. For complex 

problems such as image and language problems, the deeper network will get better results 

due to its complexity. (3) The degradation problem: As the number of network layers 

increases, the degradation problem will occur. The essence of the problem is that the 

networks cause overfitting due to the loss of information. This problem was originally 

proposed in the CNN network. In the structure of the CNN, each layer will produce an 

effect similar to lossy compression after passing the convolution kernel. If the convolution 

is performed multiple times, it will inevitably lead to an excessively high degree of 

abstraction and information loss, which will eventually lead to larger training errors and 

degradation problems. The deep residual neural network (ResNet) proposed by He et al. 

[76] solved this problem. Therefore, to improve our prediction model the ResNet is applied 

in this dissertation.  

4.3 Residual Neural Network 

The architecture and properties allow a CNN to achieve better ability on the vision 

problem. The state of the art CNN model goes deeper and deeper, the deep CNN 

architectures are based on the assumption that as the depth increases, the network can 

better approximate the objective function through a large number of nonlinear mappings 

and richer feature hierarchies [83]. Network depth is an important factor in the success of 

supervised training. Theoretical research shows that deep networks can represent certain 

types of functions more effectively than shallow structures [84]. However, simply stacking 
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layers together will lead to the vanishing gradient problem and consumes a lot of 

computing power; the performance will be saturated, or may even start to rapidly degrade. 

In 2016 He et al. [76] proposed a residual neural network (ResNet) to revolutionize CNN 

performance by introducing the concept of residual learning in a CNN and designing an 

effective method to train deep networks, which also can avoid the problem of vanishing 

gradient. The core idea of ResNet is utilizing shortcut connections to skip some layers, as 

shown in the Figure 4.10. The mathematical formula of a ResNet is expressed as follows: 

𝑥𝑙+1 = 𝒽(𝑥𝑙) + 𝒢(𝑥𝑙, 𝑊𝑙) (4.11) 

𝒢(𝑥𝑙, 𝑊𝑙) = 𝑥𝑙+1 − 𝑥𝑙 (4.12) 

where 𝒢(𝑥𝑙, 𝑊𝑙) is a transformed signal and 𝑥𝑙  is an input of 𝑙𝑡ℎ  layer without 

transformation. In Equation 4.11, 𝑊𝑙 shows the W number of kernels from input layer to 

output layer, where the residual block can consist of one or more hidden layers. The input 

𝑥𝑙  is applied to the activation function 𝒽(. ) and added to transformed signal 𝒢(𝑥𝑙 , 𝑊𝑙) 

through short-cuts, thus results in an aggregated output  𝑥𝑙+1. The ResNet believes that the 

residual function is easy to optimize and can improve the accuracy of depth. 

 

 

Figure 4.10: Canonical form of a Residual neural network 
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The ResNet introduces short-cut connections in layers to achieve cross-layer 

connections. Compared with the gates of normal networks, this layer is independent of 

data and has no parameters. In ResNet, the residual information is always passed and the 

identity shortcut is never closed. Residual links (shortcut connections) speed up the 

convergence of deep networks, enabling ResNet to avoid gradient descent problems. The 

CNN and ResNet models are used as the base ideals for prediction models. As discussed 

above, due to the special characters of top-side images, I improved the performance of the 

prediction system from two aspects. One is to increase the width of the data to increase the 

temporal information (image sequence), another is to increase the depth of the model to 

improve the ability of image analysis (ResNet model). 

4.4 Transfer Learning  

An adequate model structure does not necessarily mean that good results will be 

obtained, because training a model well requires huge data and tedious parameter 

adjustment process. The end-to-end prediction system requires to be used simply and 

 

 

Figure 4.11: The performance of neural network model with transfer learning [86] 
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universally and the transfer learning is an effective and versatile method to help. Transfer 

leaning focuses on overcoming the isolated learning model and applying knowledge 

acquired from one task to solve related tasks [85]. It is useful to train neural network 

models with insufficient data by storing the weights of neural network from the pre-train 

data. This method has been proved to be suitable to solve practical problems in computer 

vision and natural language processing, because there is often not enough data in practical 

applications. The approach improves the baseline and final performance of the neural 

network model, and it also reduces the model-development time which is shown in Figure 

4.11[86].  

There are usually two way to train in transfer learning including: the develop model 

approach and the pre-train model approach. 

The develop model approach includes the following steps: (1) select source task ( 

choosing a related predictive modeling problem with an large amount of data where there 

are some relationship with the input data, output data, and/or concepts learned); (2) 

develop source model (developing a skillful model for the first task); (3) reuse mode  (the 

model should fit on the source task and then be used as the starting point for a model on 

the task of interest); (4) tune model (the model needs to be adapted on the input and output 

data available for the task of interest). 

The pre-trained model approach is easier than develop model approach. First, a pre-

trained source model is chosen from the available model, then pre-trained source model is 

trained with a large data which has relationships with the task data. Next, the tuning model 

is adapted to the data available for the task of interest. In this dissertation, the ResNet 

model will be used to extract the high-level features from the input data, considering the 
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training difficulty of the ResNet, which will thus be trained using the pre-train method 

approach to improve the accuracy and training speed in this dissertation. 
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CHAPTER 5. TIME INFORMTION FUSION IN CNNS 

As discussed above, this system can automatically collect continuous image 

information of the top-side and back-side during the welding process. The continuous 

welding image information contains more temporal information than the static image. In 

this project, the temporal information can help to identify and analyze the characteristics 

of the welding process and enable the system to more accurately predict the penetration 

status. The CNN has been proven to be able to learn and interpret image features, and the 

input data in this dissertation is image information, so the CNN model is the only and 

optimal choice for analyzing image sequences. Using CNN to analyze continuous images 

with time sequence information, the network not only accesses the appearance information 

in a single static image, but also the complex time evolution. In this case, there are several 

challenges in extending and applying CNNs: (1) It is difficult to label continuous images 

on a large scale; the data-design and labeling issues will be discussed in Chapter 6. (2) A 

CNN requires a long training period to effectively optimize millions of parameterized 

models. When the processing object is time-sequence images, the amount of calculation is 

greater because the network must process multiple frames of images at a time, not just one 

image. This challenge will be solved by the data design, which reduces the useless images, 

and the transfer-learning approach to reduce the model-development time. (3) How can 

CNN connect and take advantage of this time information? This chapter will discuss 

multiple CNN architectures to analyze this problem. Each architecture uses a different 

method to fuse information across time domains, which are the following frame fusion 

strategies.  
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5.1 Single Frame Model 

The single-frame model analyzes the single-frame image, which is derived from 

one whole image sequence or a video to achieve the classification goal. This process 

randomly selects a frame image from the video or image sequence and converts the video 

classification into an image classification. Using this method as a baseline, the 

classification effect is still possible in some specific cases, because some behaviors can be 

judged through a single frame of screen, but some behaviors are not. The single frame 

model is the same as the normal CNN model, which is the forward convolution recognition 

operation of a single frame. The architecture of single frame model is shown in Figure 5.1. 

This approach is similar to such methods as ConvLSTM [87] and CNN-RNN [88], which 

use the convolution layers to extract characteristic information from each frame of video 

or image sequence, and then the LSTM [89] or RNN [90] model will learn the temporal 

relationship between the outputs of the convolution layers. However, RNN and LSTM 

 

 

Figure 5.1: The architecture of single frame model 
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have better capabilities for analyzing and fusing temporal information than the full 

connectivity layer, because the LSTM and RNN is proposed to predict the results with the 

temporal information.  

5.2 Late Fusion 

The late-fusion method convolves two frames of the same video or image sequence 

separated by a certain time, then fused in the first fully connected layer to compute global 

motion characteristics; because the fusion function is after the convolution layers, it is 

called late fusion. Therefore, the previous convolutional layer does not detect any motion, 

but the first fully connected layer can receive timing information, and the global motion 

characteristics are calculated by comparing the output of both frames. The late-fusion 

model can also be seen as the fusion of two single-frame models at the fully connected 

layers, and is shown in Figure 5.2. 

 

 

Figure 5.2: The architecture of single frame model 
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The two-stream convolution network is another evolution of the late-fusion model, 

which also places two separate convolution networks (ConvNet); one spatial-stream 

ConvNet is used to extract the image information from the single frame and output the 

image classifications, and another temporal stream ConvNet is used to extract the motion 

characteristics from the continuous frames. The structures of both streams are the same, 

and the probabilistic output scores can be separately predicted by the softmax function, 

then the output scores from the two streams are fused by a support-vector machine (SVM) 

[91].  

The late fusion is widely used in the prior art due to its simplicity and variability. 

However, a big disadvantage of the late-fusion model is that it is too expensive in terms of 

learning effort, because each model requires a separate supervised learning stage. In 

addition, combinatorial representation requires an additional learning stage. Another 

disadvantage of this method is that correlations may be lost in the mixed feature space 

[92]. 

5.3 Early Fusion 

The early fusion method uses continuous multiple frames for prediction, and fuses 

them in the first convolution layer. The filter size (W ∗ H ∗ C) on the first convolution layer 

is extended to W ∗ H ∗ C ∗ T, where the W is the width of the input image, H is the height 

of the input image, C is the channel number of the input image and T is the number of 

fused frame, which means the filter size will extend through the full depth of the input 

volume. The filter will convolve across the width and height of the input data, the 

convolutional layer can more clearly see the direction and speed of the motion in the pixel 

level, and so early fusion is also referred to as fusion in feature space. The unimodal 
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features extracted from the different frames which are all in the same video or image 

sequence are integrated into a single large feature vectors set for training, and the 

normalization is performed to keep the features on the same scale. Classifiers are trained 

for the target results using these large feature vector sets. 

Early fusion captures the true essence of continuous frame fusion as all features are 

grouped together in a unified form. The convolution layer convolves the consecutive 

frames at the same time, so that the feature map is connected to multiple adjacent 

consecutive frames in the previous layer, and the motion information is captured 

sequentially. This process is shown in Figure 5.3. This process shows that the shape of 

theinput image as (input_height, input_width, input_channels, input_depth); here the 

input-depth is 3, which means that three consecutive frames are used as input instead of 

three channels, and the shape of kernel size is (kernel_height, kernel_width, 

kernel_channels, kernel_depth). The same parameters of kernels are used in the same 

 

 

Figure 5.3: The multiple frames convolved with CNN 
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channel, it is same as that the weight used by each channel of the kernel in a normal 

convolution. The weight of different channels may be different. In early-fusion process, 

the input of continuous frames is overall convolved once. 

The early-fusion method was performed by Snoek et al. [92] to combine the visual 

and textual in the feature level. The visual vector contains pixel decision values for all 

pixels in the most representative image segment, which is combined with histogram-based 

text features extracted from the voice record. SVM classifiers are then trained for each 

semantic concept. The results show that six out of 20 concepts have better performance 

with early fusion than late fusion. Zou et al. [93] tracked people in a cluttered environment 

by fusing multi-modal measurements, which take advantage of the correlation between the 

visual movement of walking people and the corresponding footsteps at the feature level. 

A delayed neural network (TDNN) is used to train and combine audio and visual features.  

Many early fusion evolution methods have been proposed to deal with the problem 

of the multiple information fusion, and different methods address different problems. 

5.4 Slow Fusion 

Slow fusion is a balanced hybrid method between early fusion and late fusion. This 

method slowly fuses temporal information through the whole network, so that the deeper 

network layers can gradually obtain more global information form the space and time 

dimensions of the input data. Slow fusion uses 10 consecutive frames as input, and the 10 

frames (0, 10) are divided into (0, 4), (2, 6), (4, 8) and (6, 10) in the form of length as 4 

and stride as 2. Then the four parts of the local time sequence information are divided into 

two groups and early fusion is performed on the same convolution layer. Finally, the 

probabilistic output scores from the two groups are further fused on the fully connected 
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layer. Overall, the process improves the receptive field from 4 frames to 8 frames and 

finally raised to 10 frames. Obviously, this idea is very deep learning and slowly fusion. 

This method is the changed 3D-CNN, Figure 5.4 shows that the differences between 3D-

CNN and 2D-CNN (general CNN). In the field of image processing, the objects to be 

convolved are still images, so using a 2D convolution network is sufficient. In the field of 

 

 

Figure 5.4: The 2D and 3D convolution operations 
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video or image sequence understanding, in order to retain temporal information at the same 

time, it is necessary to learn the spatiotemporal characteristics at the same time. If 2D-

CNN is used to process the video or image sequence, the motion information between 

consecutive multiple frames cannot be considered, because if applying 2D convolution on 

a video volume also results in an image. In this process, a cube formed by stacking multiple 

consecutive frames at the same time is convolved with a 3D kernel. Through this 

construction, the feature map on the convolutional layer is connected to multiple 

consecutive frames of the previous layer, thereby capturing motion information. 

Furthermore, the 3D-kernel moves slowly in the three-dimensional space of continuous 

images to ensure learning and extracting more spatiotemporal characteristics, this process 

can learn more information than the early fusion.  

Slow fusion has better performance than the other three fusion methods, because it 

can learn and extract the spatiotemporal information better due to the sliding 3D-kernel 

operation and two-times fusion. However, it also has some disadvantages such as training 

difficulty, expensive computation, large memory consumption, and so on.  

5.5 Summary 

Single frame is a method of single-image classification, so we will not consider 

using it here. Early fusion involves fusing multiple features that are extracted from early 

layers in the CNN, then using the fused features to train a predictor (later layers). Late 

fusion uses separate networks to predict, then fuses the prediction results from these 

reworks together. The slow-fusion model needs a much larger dataset and longer 

computation time, and it is difficult to predict the penetration state in real time. Early fusion 

appears to be more appropriate than the other two choices for our application, because the 
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goal of our application is to find the hidden dynamic features in the feature space, so the 

neural network can use the dynamic features to predict the weld penetration status. Early 

fusion is an early attempt by researchers to conduct multi-modal fusion. Since only a 

common model needs to be trained, by associating the underlying features of each mode 

with the learning correlation, the complexity is controllable and the input information 

sources are the same, which will not increase the difficulty of the original data fusion. 

The key first step in our application is to find the feature information; it is difficult 

to find these important features, which are hidden in low-contrast images by using a single 

image. Therefore, we need to use the method of time-information fusion to extract 

temporal and spatial information to help the network discover these key dynamic features 

by the early fusion. When the multiply frames enter the convolution layer, the multiply 

kernels convolve the multiply frames at the same time and superpose the intermediate 

outputs to get a vector, which contains pixel decision values that make it easy to find the 

dynamic information. This process the multiply frames are analyzed by the same receptive 

field, the dynamic features are easily discovered through comparison previous frame in 

the process. The second step is to train this feature information. In our application, we 

believe that it is more interesting to use deeper neural networks for training, because the 

network can better extract deep-level information from complex features by the deeper 

neural networks, instead of simply fusing the probabilistic output scores of the previous 

network. Therefore, we adopt early fusion and apply a ResNet to increase the number of 

network layers in order to better predict the results from the features.  

The disadvantages of these methods cannot be ignored. In the next chapter, we will 

focus on how to use clever data design to avoid these problems, such as incomplete fusion 
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information in early fusion and excessive training data in 3D-CNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

CHAPTER 6. DATA DESIGN  

A series of experiments were designed to perform spot welding using the gas 

GTAW process. Each 1.85mm-thick stainless steel sheet was welded 12 spots with 2cm 

distance apart. For completeness and reasonableness of the experiments, the range of 

welding current and time is designed to simulate a wide range of conditions. In each 

experiment, one stainless steel sheet was subjected to 12 complete spot weldings in 

sequence from low current to high current, and the corresponding welding time was from 

long to short. After each spot was completed, the current drops to 15 amps and the platform 

moved to the next spot-welding position. This ensured that each spot welding could be 

continuously performed without the need to restart the arc every time. At the same time, 

the shielding gas argon was always output to protect both sides of the welding process. All 

these processes are automatically performed by the system, and the detailed parameters 

are shown in Table 6.1.  

During each experiment, cameras can capture images of the entire welding process 

from partial penetration to excessive penetration. 28,494 images pairs haven been 

Table 6.1: Welding parameters applied 

Welding Parameters Value 

Welding Type GTAW 

Welding Current (A) 60-110 

Welding Time (S) 4-12 

Tungsten Diameter (mm) 2.4 

Shielded Gas Argon 

Gas Flow (L/Min) 7 

Workpiece Material 304L 
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collected as raw data from more than 120 experiments, and all the images pairs are 

segmented into training, validation, and test datasets with sizes of 22,794, 2,849, and 

2,851respectively. The experiment data is stored separately in a folder that is named in the 

experiment sequence. Furthermore, each image is named in the time when it is collected, 

so as long as the name of the corresponding image is detected, it can be discriminated 

whether the image pair is synchronized. Other parameters such as current, voltage, and 

speed of the welding process are all saved as a .csv file in each experiment folder, which 

is to prepare for future data analysis. 

The collected images are vision information from both sides of the welding process, 

which simulates the visual experience of a welder during the welding operation, and the 

welding-situation pictures which a welder can see being directly collected as input data for 

the training model. For completeness and authenticity of the image information, none 

images collected will be subjected to any preprocessing. Generally, many designers use 

image enhancement processes such as noise addition, horizontal flip, and rotation for 

image recognition and classification projects. Image enhancement processing cannot 

increase the information of the original image; it can only enhance the ability to discern 

certain information, and this processing will definitely lose other information, and the 

quality of the enhanced image will be difficult to quantify. 

In this project, the system predicted the weld perpetration status through the 

complete and useful information of the top-side images of the welding process; the 

relationship between top-side images and weld penetration status is a complex physical 

process. The design purpose of this system is to automatically define and extract features 

through data-driven, so there is no need to enhance certain features of interest. If the 
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process of image enhancement is also adopted, the original physical relationship may be 

broken, and we cannot synchronously change the back-side image to conform to the 

original physical change process of welding. Therefore, the original images will be directly 

used as input data. Of course, in this process, we need to consider how to effectively 

improve the quality of the data and enrich the data information. We will use the image 

sequence as the input data to increase the spatial and temporal information of the data. 

6.1 Image Sequence Design 

In a typical CNN model, the input images are passed through the network one by 

one. The image generator yields (N, W, H, C) data, where N is the batch size, W and H are 

the width and height of the images, and C is the number of channels (3 for RGB images, 

and 1 for grayscale images). The image sequence dataset needs several frames in a 

sequence and the data dimension becomes (N, W, H, C, F), where F is the number of 

frames in a sequence. In this project each experiment data is a large image sequence, if the 

large image sequence (over 500 frames) is directly inputted the model, it will be a disaster 

for the model. It is impossible for a prediction model to analyze so many frames at the 

same time, and as discussed in Chapter 5, some information will be lost if the early fusion 

model convolves too many  frames.  

Another method is to divide the whole image sequence into several parts, it is also 

a problem to analyze each small image sequence separately. How to effectively segment 

these image sequences is a very important issue, because there are relationships between 

the segmented image sequences, and the corresponding connections of the sequence may 

be segmented after the segmentation. In this case, the most critical time information is the 
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moment when the penetration state changes, and we do not know when this critical point 

is. If the information of the critical point is divided, it will lose its design significance. 

The 3D kernel function provides a good ideal, which can effectively control the 

size of the input data and only needs to control the stride size to avoid the problem of 

image sequence segmentation. In our system the frame rate of camera is 30 frames per 

second, so we set every sequence to be 1/3 s which has 10 frames (grayscale images), and 

the stride is set to 1 to prevent missing critical information. In this application, the welding 

development is very slow, so every frame in the sequence is not equally important as it is 

in other applications such as motion analysis and video classification [94], [95]. We pick 

 

Figure 6.1: Image sequence design 
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the last image (Image 10), the image in the middle of the sequence (1/6 s earlier or Image 

5) and the first image (Image 1) in the sequence as the sample of the sequence. The sampled 

sequence is used as the input of the CNN. The image sequence design is shown in Figure 

6.1.  

The three red frames are one input sequence data, and the three blue frames are the 

second input sequence data with the stride as 1. With this design, the early fusion can also 

have the same fusion effect as 3D-CNN, and the sliding specifies a size of ten frames 

which is a suitable time width. What’s more, in order to reduce too many calculations, 

three frames are taken to represent the spatiotemporal information in every ten-frame 

sequence. The designed image-sequence data can meet the requirements of quickly and 

effectively identifying feature information. 

This image-sequence design is necessary for the analysis of subtle changes.  Since 

the angle and position of the camera are exactly the same in all experiments, the welding 

 

Figure 6.2: Three frames are merged as an RGB image 
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pool, weld arc and other information are in the same corresponding position for all the 

images. According to the above design, three frames of grayscale images are merged into 

3 channels to form an RGB image. As shown in Figure 6.2, it is easy to find other colors 

around the boundary of the welding pool and the shape of the arc. By comparing the colors, 

we can clearly see the local characteristic information and dynamic information. Similarly, 

when three frames of images enter the same convolution layer and are calculated by the 

multiply convolution kernels, it is easy to find the pixel changes at the same location by 

superimposing the filter maps. This local dynamic information is the feature that needs to 

be found and analyzed. Therefore, all the raw images are converted into 3-channel images 

according the above design, that the three frames are in the same receptive field as same 

as merged in 3 channels. And the merged images are named as the 10th image’s name. 

Taking into account the requirements for real-time prediction of the penetration status 

during the welding process, the first input merged images must wait until the tenth frame 

is acquired from the beginning of the process, and each subsequent merged images input 

only needs to wait for the most recent frame acquisition, because the previous 9 frames 

have already been obtained. Hence, we named these merged images in the time of the last 

frame acquisition, so the corresponding label is also the penetration status of the last frame 

during the training process.  
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6.2 Labels 

The back-side images are used as the penetration state labels for training the CNN 

model. The penetration state is defined by the range of the real back-bead width. However, 

it is not possible for this to be measured simultaneously with the top-side images in real 

time during the welding process. Therefore, we calculate the back-bead width value 

through a model that correlates the back-side image to the real back-bead width. The 

conversion is demonstrated in Figure 6.3. To this end, we first define a bright area using a 

threshold, then calculate it from the back-side image. In this dissertation, we set the 

threshold at 170. The relationship between the area and the actual back-bead width was 

then established through calibration experiment. In order to reduce the measurement error, 

we also conducted 6 sets of experiments with different times and different currents, then 

accurately measured the widths of the back-side images, as shown in Figure 6.4. The back-

side welding pool generally is irregularly round, so its four diameter data are measured 

 

Figure 6.3: The process of back-side image to convert to the width of back-side bead 

width 
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separately, then the average value is taken as the width of the back-side welding pool. 

Since the square of the actual back-bead width is proportional to the area (number of 

pixels), and we can propose Formula 6.1: 

𝑊𝑖𝑑𝑡ℎ = 𝑘 ∗ √𝐴𝑟𝑒𝑎 − 𝐸𝑟𝑟𝑜𝑟 6.1 

where k and Error are unknown parameters determined by least squares approximation, 

the fitting curve is shown in Figure 6.5. The coefficient of determination is 0.9879, which 

indicates that the regression predictions approximate the real data well. The back-bead 

width can be calculated from the back-side images with the formula 6.1, and the 

penetration state is classified according to the back-bead width. If the threshold is changed, 

the relationship will be changed but the bright area will also be changed such that the same 

width of the back-side is converted. 

The goal to predict the weld penetration to assure that the weld penetration is 

appropriate and as desired. As such, we can classify the weld penetration into three 

categories: under penetration including partial penetration where the back-side bead width 

is zero, desirable penetration and excessive penetration. Table 6.2 lists the classification 

criteria used in this dissertation. Such criteria may change per application such that the 

model will be changed, but the effectiveness of our proposed methods should not. Per the 

 

Figure 6.4: The calibration experiment 
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criteria in Table 6.2, the back-side width calculated from the back-side image and the 

relationship in Figure 6.5 is classified into one of the three penetration categories that will 

be used as a training label for the CNN model.  

 With the merged images-sequence data and the labels, we create three independent 

datasets (training dataset, validation dataset and test dataset) to ensure the training results 

of neural networks are convincing. The three datasets are completely different, because if 

the images of the test dataset are also used for training, we can't judge whether this neural 

network really learned or just remembered all the images. Therefore, we divided 120 sets 

of experimental data into three parts. The first 96 sets of data were used as training data, 

and there is a total of 21,823 merged image-sequences. The next two sets of data, each 

with 12 spot welding experiments which are divided into verification data (2,797 merged 

image-sequences) and test data (2,794 merged image-sequences). The three datasets are 

respectively saved in three .txt files with the corresponding label information, and the 

detailed path and name of the merged image-sequences. In this way, during the training 

 

Figure 6.5: Model fitting between area and back-side bead width 
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process the model only needs to read the .txt file to obtain all the training merged image-

sequences and labels. 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Labels and penetration status 

Label 

Number 

of 

images 

Back-bead 

width(mm) 
Penetration status 

0 11474 < 4 Under penetration 

1 5268 4~6 Desirable penetration 

2 11755 > 6 Excessive penetration 
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CHAPTER 7. MODEL TRAINING 

Early fusion can immediately expand the entire time window to fusion information 

at the pixel level. This is achieved by modifying the kernels of the first convolutional layer 

in the single-frame model by expanding the size to W*H*C*F. In this dissertation, we set 

the same weight of kernel for each frame, because the designed image sequence can be 

easily found in the dynamic features in the same receptive field, and the designed image 

sequence reduces the redundant image. Hence, the early fusion model can learn and extract 

the dynamic features in the first convolution layer with the designed image sequence, and 

the short time window of the designed image sequences also help our model attain the 

advantage of slow fusion, which can gradually learn and extract more dynamic 

information. Thus, the kernel size also can be expanded to be W*H*(C*F), which means 

the 3 frames are converted into 3-channels, this matches with our design sequence data. 

The network can then accurately detect local motion directions and speeds [96]. With the 

early fusion method, we designed a nine-layer CNN model and an eighteen-layer ResNet 

model to train three independent datasets. This chapter discusses how to train neural 

networks, with a focus on hyperparameter settings and tricks for training neural networks. 

7.1 CNN Model and ResNet Model 

Different CNN structures may be constructed per the specific tasks in computer 

vision. Normally, 5 - 10 layers are sufficient for relatively simple image classification 

problems. In this paper, a nine-layer CNN architecture that includes three convolutional 

layers, three max-pooling layers and three fully-connected layers are used. The final output 

is the classification of the weld penetration state is predicted by one softmax regression 
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layer. As shown in Table 7.1, the CNN (early fusion) takes 480*640*3 merged image-

sequence as input, and its Conv1 has 32 kernels of 5*5 (3-channel) to fuse the temporal 

information at the pixel level by convoluting over the 3-channel raw images. A 3*3 

Maxpool layer follows the Conv1 to reduce the computation cost of the whole neural 

network. The similar processes with different kernel size and kernel number are applied 

on Conv2, Pool2, Conv3 and Pool3 respectively to further extract the features. The CNN 

model is a tradeoff between speed and accuracy: the 5*5 kernel is used in Conv1 to better 

fuse information from 3-channel images and the 3*3 kernels are used in Conv2 and Conv3 

to reduce memory usage and compute faster [20]. Then, the data is flattened and connected 

with three fully-connected layers to output the classification of the weld penetration state. 

Table 7.1: The architecture of the CNN (early fusion) 

Layer 

Name 

Kernel 

size 

No. of 

Filters 

Output 

Size 
CNN (early fusion) 

Conv1 5*5 32 476*636 
Batch Normaization, 

ReLU 

Pool1 3*3 - 158*212 MaxPool 

Conv2 3*3 64 156*210 
Batch Normaization, 

ReLU 

Pool2 3*3 - 52*70 MaxPool 

Conv3 3*3 128 50*68 
Batch Normaization, 

ReLU 

Pool3 3*3 - 16*22 MaxPool 

FC1 - - 1080 - 

FC2 - - 64 - 

FC3 - - 3 softmax 
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The input data is the merged top-side images. There are many important features 

(such as edges, shapes, colors, time information etc.) under the arc light. To extract features 

with better precision the network must perform more convolutions. The vanishing gradient 

issue must be addressed. We explore by using ResNet 18-layer in the prediction model. 

The detailed architecture of the 18-layer ResNet is shown in Table 7.2. In the ResNet 

model the first convolution layer convolutes the input data with a 7*7 kernel, and all the 

follow-up convolution layers with 3*3 kernels. The short-cuts connections used to transmit 

the activations with a stride 2 after the first convolution layer. Moreover, optimization 

function, loss function and activation function are the same as the CNN model. The total 

parameters become very large after 17 convolution layers, which increases the training 

difficulty. Hence, we use the transfer learning method to pretrain ImageNet data by the 18-

layers ResNet model, then we use the transferring information to train the top-side images. 

This method significantly improved the sample efficiency and performance. 

Table 7.2: The architecture of the ResNet 18-layer 

Layer Name Output Size ResNet 18-layer 

Conv1 240*320 7*7, 64, stride 2 

Conv2 120*160 

3*3 MaxPool, stride 2 

[
3 ∗ 3, 64
3 ∗ 3, 64

] ∗ 2 

Conv3 60*80 [
3 ∗ 3, 128
3 ∗ 3, 128

] ∗ 2 

Conv4 30*40 [
3 ∗ 3, 256
3 ∗ 3, 256

] ∗ 2 

Conv5 15*20 [
3 ∗ 3, 512
3 ∗ 3, 512

] ∗ 2 

 1*1 Average pool, 3-d fc, softmax 
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7.2 Hyperparameter 

Machine learning models are definitions of mathematical formulas in which many 

parameters need to be learned from the data. In other words, the model is fitted to the data 

by training the model using existing data. However, there is another parameter that cannot 

be directly learned from the regular training process. These parameters represent the "high-

level" properties of the model and they are called hyperparameters.  Hyperparameters are 

usually determined before the actual training process begins. The hyperparameters related 

to the network structure include the size of the input image, kernel size and pooling size. 

 In this dissertation, the size of the input merged image-sequence is 640*480*3. 

High-resolution input images mean richer information, which is helpful for the CNN to 

obtain more details and more robust features. For this case, high resolution is key for the 

low contrast and harsh imaging conditions. In the CNN model, the 5*5 kernel was used in 

the first convolution layer to better fusion and extract features, and  the 3*3 kernels were 

used to reduce the parameters in the next convolution layers, which is similar to the setting 

of the 18-layer ResNet, just change the kernel size to 7 * 7 in the first convolutional layer. 

Since the network is deeper, increasing the kernel size can effectively reduce the 

calculation amount of the entire network. The ILSVRC winners commonly keep the kernel 

size at 3*3 or 5*5, which is often kept larger in the first convolution layer [74, 75] because 

the size is less important in the first layer, and there are fewer input channels. 

Furthermore, the Maxpool function is used after each convolution layer for the 

CNN model. Due to the inputs, there are 3 sequential grayscale images, and the feature 

information is brighter pixels in the grayscale images, Maxpool is useful when the 

background of the images is dark and the target information is lighter pixels. Therefore, 

on Pool1 the Maxpooling is used to extract the extreme features and give the neural 



68 

 

network robustness to position variance. Similarly, the Maxpool function is used after the 

first convolution layer in ResNet, and after all the convolution layers the global average 

pool is used to reduce the tendency of overfitting by reducing the total number of 

parameters in the model. 

7.3 Tricks for Training Neural Networks 

Training deep learning neural networks is very difficult because it requires 

knowledge and many experiences to optimize model and proper training. This section we 

discuss some tricks for training neural networks. The lost function is discussed first, which 

can optimize the parameter values. The optimization methods are important approaches to 

improve the training model. The learning tricks, including learning rate and decay learning 

rate, are used in our training process. Finally, the batch normalization, which controls the 

overfitting is discussed.  

7.3.1 Loss Function 

The loss function is used to estimate the difference between the predicted output 

value and the real value of the model, which can help researchers optimize the model [97]. 

The smaller the value of the loss function, the better the robustness of the model. The loss 

functions used by different models are generally different. Mean squared error loss (MSE) 

and mean absolution error loss (MAE) are the most commonly used loss functions in 

machine learning and deep learning for regression tasks [98]; we will not discuss these 

much here due to this dissertation being a classification task.  

Cross entropy loss is a workhorse of basic loss function for the classification 

problem [99]. This case is a multi-classification task, the real value 𝑦𝑖 is a one-hot vector 

[100], and the compression of the model output is the softmax function. The softmax 
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function limits the output range of each dimension to (0, 1), and the output sum of all 

dimensions is 1. The probability distribution is shown as Formula 7.1: 

p(𝑦𝑖|𝑥𝑖) = ∏(𝑦̂𝑖
𝑘)

𝑦𝑖
𝑘

𝐾

𝑘=1

 (7.1) 

where the 𝑦̂𝑖 is output value, 𝑦𝑖 is the real value, and 𝑘 ∈ 𝐾 is one class of K categories.  

Assuming the data points are independently and identically distributed, the negative 

log-likelihood can be obtained as: 

NLL(x, y) = 𝐿𝐶𝐸 = − ∑ ∑ 𝑦𝑖
𝑘 log(𝑦̂𝑖

𝑘)

𝐾

𝑘=1

𝑁

𝑖=1

 (7.2) 

Due to the real value 𝑦𝑖 is a one-hot vector, the output of other classes is 0, and the target 

class is 1, thus, the above formula can also be written as: 

𝐿𝐶𝐸 = − ∑ 𝑦𝑖
𝑐𝑖 log (𝑦̂𝑖

𝑐̂𝑖)

𝑁

𝑖=1

 (7.3) 

The integer 𝑐𝑖 is the target class of 𝑥𝑖. When this cross-entropy loss function is applied to 

multi-classification, it is also called softmax loss or categorical cross entropy loss. 

In this case, the labels have three categories, under penetration, desirable 

penetration, and excessive penetration. Assuming that there are two classification models, 

both of these models use the softmax function to obtain the probability value for each 

prediction, which are shown in Figure 7.1.  

Model 1 correctly predicts Samples 1 and 2 with a very weak advantage, and 

incorrectly predicts Sample 3. Model 2 accurately predicts Samples 1 and 2, and 

incorrectly predicts Sample 3, but it is not too far from the truth. We then used Formula 

7.3 to calculate the value of the loss function in the above models. 
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Model 1: 

Sample 1: 𝐿𝑂𝑆𝑆 = −(0 ∗ log 0.3 + 0 ∗ log 0.3 + 1 ∗ log 0.4) = 0.91 

Sample 2: 𝐿𝑂𝑆𝑆 = −(0 ∗ log 0.3 + 1 ∗ log 0.4 + 0 ∗ log 0.3) = 0.91 

Sample 3: 𝐿𝑂𝑆𝑆 = −(1 ∗ log 0.1 + 0 ∗ log 0.2 + 0 ∗ log 0.7) = 2.3 

ALL 𝐿𝐶𝐸 =
0.91 + 0.91 + 2.3

3
= 1.37 

Model 2: 

Sample 1: 𝐿𝑂𝑆𝑆 = −(0 ∗ log 0.1 + 0 ∗ log 0.2 + 1 ∗ log 0.7) = 0.35 

Sample 2: 𝐿𝑂𝑆𝑆 = −(0 ∗ log 0.1 + 1 ∗ log 0.7 + 0 ∗ log 0.2) = 0.35 

Sample 3: 𝐿𝑂𝑆𝑆 = −(1 ∗ log 0.3 + 0 ∗ log 0.4 + 0 ∗ log 0.4) = 1.2 

ALL 𝐿𝐶𝐸 =
0.35 + 0.35 + 1.2

3
= 0.65 

From this process, we find that the cross-entropy loss function can capture the 

difference of prediction effects between Model 1 and Model 2. During the back-

 

Figure 7.1: Model 1 and Model 2 

 



71 

 

propagation training, the cross-entropy loss avoids the (𝑦̂𝑖) ∗ (1 − 𝑦̂𝑖) term. Thus, the 

weight changes do not become smaller and smaller, and training will not stall out. With 

these advantages of the cross-entropy loss, it is used in the CNN and ResNet models, which 

helps both models achieve better results. 

7.3.2 Optimizer 

The training process of the neural network is to find the relationship between layers; 

the parameters are the weights of the layers, and the process of finding the parameters is 

called learning. Therefore, the purpose of the neural network is to constantly update the 

parameters to minimize the value of the loss function, then to find the best results. The 

gradient descent (GD) is a method of constantly updating parameters to find solutions, and 

it is also one of the most popular and common ways to optimize neural networks. 

 In calculus, taking the partial derivative for the parameters of the multivariate 

function, and the gradient is simply the vector of the partial derivative in each parameter, 

which is shown in Formula 7.4.  

In geometry, the gradient vector is where the function change increases the fastest. 

Conversely, along the opposite direction of the gradient vector, the gradient decreases the 

fastest, so it is easier to find the minimum value of the function. In Formula 7.4, 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is a surface equation by the parameters 𝑥𝜖ℝ𝑛, and the partial derivative 

𝜕𝑓

𝜕𝑥1
 is the slope. In the neural network, the gradient can be used to find the minimum point 

of loss function, then to find the best results of the network. However, an easy way for this 

to be used in deep learning will be difficult. Because deep learning models have many 

neurons and layers and different connection methods, the loss function often has many 

∇𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = (
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑛
) (7.4) 
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parameters.  Furthermore, according to the type of the loss function, the gradient is usually 

nonlinear to the end. All these factors will lead to difficult calculations. 

The concept of GD method is to constantly adjust the stride and direction from the 

initial point, which is randomly selected, then trying to find the optimal solution. The 

formula of gradient descent is as follows: 

where 𝑤𝑡  is the initial point, and 𝑤𝑡+1  is the target point, according to the direction 

towards the minimum of loss function, thus, ∇𝐿(𝑤𝑡)  should be negative, and 𝜂  is the 

learning rate.  

According to the above introduction, the GD method must first determine whether 

the loss function is differentiable. If the loss function is a non-differentiable function, then 

it needs to be handled by convex optimization. If the loss function is a differentiable, the 

initial point and learning rate both will affect the effect of the GD.  

First, the GD process will change with the initial point as shown in Figure 7.2. The 

𝑤𝑡+1 = 𝑤𝑡 + 𝜂 ∗ (−∇𝐿(𝑤𝑡)) = 𝑤𝑡 − 𝜂 ∗ ∇𝐿(𝑤𝑡) (7.5) 

 

Figure 7.2: The effect of gradient descent with different initial points 
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process (a) and process (b) have different paths, both of which try to find the minimum 

point of the curved space, and the efficiency of both paths is different.  

Furthermore, the learning rate also affect the GD, as shown in Figure 7.3 [97]. If 

the learning rate is small, the number of iterations will be many and will easily fall to the 

local minimum. If the learning rate is big, the amplitude of the iteration is large and not 

stable enough. So the best way is to adjust the learning rate with each iteration. 

A variant of gradient descent is stochastic gradient descent (SGD), which is to run 

a training example or a mini-batch examples and then calculate the gradient or the average 

of the gradient of the small batch and update it once [101]. And this example or the 

examples of the small batch is randomly selected, the formula can be written as:  

The SGD method is different from the GD method; all parameters must be 

calculated to generate a gradient. SGD only uses one sample or a mini-batch sample to 

calculate the gradient. As long as enough samples are randomly selected, the final expected 

L(𝑤𝑡) = − ∑ 𝑦𝑖
𝑐𝑖 log (𝑦̂𝑖

𝑐̂𝑖)

𝑁

𝑖=1

= − ∑ y(𝑥𝑖 , 𝑤𝑡)log (𝑦̂𝑖
𝑐̂𝑖)

𝑁

𝑖=1

 (7.6) 

∇L(𝑤𝑡) = −∇ ∑ y(𝑥𝑖 , 𝑤𝑡)log (𝑦̂𝑖
𝑐̂𝑖)

𝑁

𝑖=1

 (7.7) 

 

Figure 7.3: The effect of gradient descent with different learning rates [97] 
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value will be similar to the result of the GD method. Before updating the gradients, the 

SGD method only uses one training example during the training process. When the training 

set is larger (deep learning always needs a large training set), the SGD can be faster than 

GD and can also be used to learn online. However, the process will oscillate toward the 

minimum point rather than converge smoothly, as shown in Figure 7.4 [102].  

SGD’s fluctuation will help it jump local minimum to look for the global minimum. 

However, when the learning rate is large, the fluctuation will also be large, which is not 

easy to converge. Therefore, a better way to use SGD is by slowly decreasing the learning 

rate to help it achieve better convergence behavior.  

Another widely used method is adaptive moment estimation (Adam) [103]. Adam 

will compute adaptive learning rate for each parameter to adjust the better learning rate for 

the training process. In addition to storing the exponentially decaying average of past 

squared gradients (𝑣𝑡 ), the Adam also keeps exponentially decaying average of past 

gradients (𝑚𝑡). The Adam combines the advantages of AdaGrad [104] and RMSProp [105] 

and the formula 𝑣𝑡 and 𝑚𝑡 as follows: 

 

Figure 7.4: SGD vs GD [102] 
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The 𝑚𝑡  and 𝑣𝑡  integers are the estimates of the first moment and the second 

moment of the gradient, as is the name of the algorithm. The Equation 7.8 - 7.11 shows 

the updating process for the parameters. 

where the ∇L(𝑤𝑡) is the gradient, and as the first moment 𝑚𝑡 and second moment 𝑣𝑡 are 

initialized as 0, they are biased towards zero, especially when the decay rates are small 

[103]. In generally, the default values of 0.9 for 𝛽1, 0.999 for 𝛽2, and 10−8 for 𝜖.  

In this case, when we compared SGD and Adam in our CNN and ResNet models, 

we observed that the performance of SGD was better than the Adam, but the convergence 

speed of Adam was faster. We think the adaptive learning rate will not be correct for each 

parameter during the training process, so the incorrect learning rates will disturb the 

performance of Adam. Hence, in this case, we choose the SGD to be an optimizer which 

is also in line with the initial setting of the VGG and ResNet [76], [106]. The role of the 

optimizer is not only to optimize the parameters in the current network, but also to optimize 

the information in the back propagation. When the model code is written by PyTorch, the 

gradients need to be manually set to 0 before the backpropagation, because the PyTorch 

will accumulate the gradients.  

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇L(𝑤𝑡) (7.8) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(∇L(𝑤𝑡))2 (7.9) 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (7.10) 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (7.11) 

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝑣𝑡 + 𝜖
𝑚̂𝑡 (7.12) 
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7.3.3 Learning Rate 

As discussed above, the learning rate controls the degree of gradient adjustment. A 

small learning rate helps the neural network converge to the global minimum, but it will 

take a lot of time because the weight of the network has only a few adjustments updates in 

each parameters. A smaller learning rate is also more likely to trap the neural network in 

the local minimum, because the smaller learning rate cannot jump out of the local 

minimum. However, a higher learning rate may also bring undesirable consequences. A 

high learning rate can almost never reach the global minimum because it is likely to skip 

the extreme value. In this way, the gradient will fluctuate greatly and make the network 

difficult to converge. Therefore, it is difficult to properly set the learning rate. The Figure 

7.5 demonstrates the different situations with different learning rates [97]. 

The selection strategy of the learning rate is constantly changing during the network 

training process. At the beginning, the parameters are relatively random, so we should 

 

Figure 7.5: Different training processes with different learning rates [97] 
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choose a relatively large learning rate so the loss declines faster. After training for a period 

of time, the update parameter should have a smaller amplitude, so the learning rate will 

decay; there are many ways to decay, such as discrete staircase, exponential decay, and 1/t 

decay. Here we will not discuss more about the decay methods.  Another problem is how 

to determine the initial learning rate. An inefficient way is to try each level of learning rate 

to run the network, and observe the loss results.  A relatively reasonable learning rate can 

be chosen, but this method is too time-consuming.  

Leslie N. Smith proposed using a cyclical learning rate that is widely used in the 

deep learning such as ResNet, AlexNet and GoogLeNet [107]. This method eliminates the 

way to experimentally find the best global learning rate, instead of monotonously reducing 

the learning rate. This method uses a periodic learning rate to keep the learning rate 

between reasonable boundary values, thereby improving classification accuracy, and 

usually with fewer iterations. 

As discussed above, the performance of Adam is slightly worse than the SGD in 

this case, due to the adaptive learning rate that may add noise when it gets an incorrect 

learning rate in the training process. Thus, we gave up the adaptive learning rate and chose 

the cyclical learning rate, which brought about good results in this case. 

7.3.4 Batch Normalization 

During the training process, the parameters in the network are constantly updated 

with the gradient decreases. When the parameters in the previous layer change slightly, 

these subtle changes are amplified with the network deepens. In addition, the change of 

parameters causes the input distribution of each layer to change, and the upper layer 

network needs to constantly adapt to these distribution changes, which makes model 
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training difficult. This phenomenon is called internal covariate shift. The internal covariate 

shift brings about two problem in the neural network: (1) the network needs to be 

constantly adjusted to adapt to changes in the distribution of input data, which reduces 

learning speed, and (2) the training process fall easily into gradient saturation, which slows 

down the network convergence speed. 

In this case, we used the batch normalization (BN) to avoid internal covariate shift 

and improve the speed, stability and performance of the training model [108, 109]. The 

principle states that when the parameters are passed from the previous layer to the next 

layer, a normalization process is performed before entering the next layer of the network. 

This method is used to make each dimension feature mean 0 and variance 1, the formula 

is as follows: 

where the man 𝐸() and variance  𝑉𝑎𝑟() are calculated based on the batch data.  

However, if only the normalization formula is used, then the features learned by the 

next layer of network will be distorted. In this way, the feature distribution learned in the 

previous layer is broken, so the transformation and reconstruction are added at the end of 

the BN process to retain the features learned by the previous layer, the step follows as: 

where the parameters 𝛾𝑘 and 𝛽𝑘 are learnt in the subsequent optimization process.  

In the CNN model, the characteristics of the convolutional neural network 

correspond to a whole feature response map, so when doing BN the response map should 

be used as a unit instead of according to each dimension. In this case, we followed this 

logic to add BN between the convolutional layers and set the size of BN to be 

𝑥̂𝑘 =
𝑥𝑘 − 𝐸(𝑥𝑘)

√𝑉𝑎𝑟(𝑥𝑘)
 (7.13) 

𝑦𝑘 = 𝛾𝑘𝑥̂𝑖
𝑘 + 𝛽𝑘 (7.14) 



79 

 

M*W*H*(C*F), where the M is the batch size. With this setting the results of the CNN 

are in line with forecast. 

7.4 Summary 

In this chapter, the setting of the training model is discussed. For the performance 

view, a batch normalization (BN) and Rectified Linear Unit (ReLU) function followed 

each Conv to improve the performance of the CNN model. BN had the effect of stabilizing 

the learning process and dramatically accelerating the neural network training speed by 

reducing internal covariate shift, and reducing generalization error [108]. ReLU was used 

as activation function; comparing with other activation functions such as tanh and sigmoid, 

ReLU can overcome the vanishing gradient problem and allow the model to learn faster 

and perform better [110]. In addition, the CNN model is trained using mini-batch back-

propagation algorithm. The loss function is set as the cross-entropy for this multi-class 

classification problem, and SGD optimization is used to reduce the computation cost and 

improve the convergence rate in the training process [101]. In the ResNet model, the 

optimization function, the loss function and the activation function are the same as the 

CNN model.  
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CHAPTER 8. RESULTS AND ANALYSIS 

    In this chapter, we will discuss the results of the CNN and the ResNet with 

normal single image and merged image-sequence. All trainings were done on a person 

computer with an Intel(R) Core (TM) i7-6700K CPU and an NVIDIA GeForce GTX 1080 

GPU. Both models respectively trained single images and merged image-sequence 

continues 20 epoches with the batch size as 30 (Due to the limit of RAM, 30 is highest 

number of batch size by our computer) and the training accuracies are shown in Figure 

8.1. Compared with the CNN model, the accuracy of ResNet with transfer learning had as 

higher start and higher asymptote, no matter what kind of data we used, the ResNet model 

shows similarly excellent performance. Comparing these two different types of data, 

single-image data often has a better start, but the performance of the two types of data is 

 

Figure 8.1: Training accuracy with different model and different data 
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not much different as training continues. We believe that the content of single image data 

is less, and it is simpler than the data which contained time series information (IS). 

Therefore, the model training single image set can converge faster. The training losses are 

shown in Figure 8.2, the training loss of the CNN model is quickly reduced in first two 

epochs and does not significantly change after the third epoch. However, the training losses 

of the ResNet model are very small, and there is almost no obvious change in the entire 

training process. The phenomenon mainly depends on the training model, and the training 

data has little effect on it. 

The training process shows that the ResNet model has better performance with 

transfer learning. However, the training data and prediction accuracy have not yet been 

divided, they need to be compared with the verification results to be fully analyzed. After 

each epoch training, the model will be in eval mode; at this time, all weights of layers no 

 

Figure 8.2: Training loss with different model and different data 
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longer change, and predict the validation data and then return the validation accuracy and 

validation loss. After this, each batch training results and each epoch validation results 

would be save in the same .csv file.  

8.1 Comparison of Results 

From the training results, it is known that ResNet has a better performance, so here 

we will focus on comparing and analyzing the valuation test, which can be found the 

differences of the both input. The single image data and image-sequence data are trained 

by the CNN which is shown in Figure 8.3. The validation accuracy of CNN with single 

image data is relatively volatile, the best accuracy is 94.2% in Epoch 17. The validation 

accuracy of CNN with image sequence data (CNN-IS) has big fluctuations, but the big 

 

Figure 8.3: The single image data and Image sequence data are trained by CNN 
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fluctuations is relative. The accuracy range is between 84.7% and 95%, and the best 

accuracy is still better than single image data. The best performance appears in Epoch 7.  

The Figure 8.4 shows that the results of both datasets are trained by ResNet with 

transfer learning. Obviously, ResNet is more suitable for complex image data, such as 

image sequence data. The loss of ResNet with image-sequence data (ISResNet) does not 

case significant fluctuation in the whole process, and the loss is very small at the beginning. 

Again, the accuracy of ISResNet is very good from the start. The best accuracy appears in 

Epoch 4 and the value is 95.6%. Comparing the input data by both the CNN and ResNet, 

the image-sequence data has better accuracy in both models. This shows that the image 

sequence has more information, and that dynamic information can be effectively extracted 

 

Figure 8.4: The single image data and Image sequence data are trained by ResNet with 

transfer learning 

 



84 

 

and used by the reasonable model with our data design.  

Furemore, we again compare the results of both model with image-sequence data, 

which is shown in Figure 8.5. It can be observed that the accuracy and loss of ISCNN case 

more obvious fluctuations. We believe that when the CNN model processes complex 

image data, because its depth is not enough to fully learn the knowledge from the multiply-

channel image, and the network parameters change greatly, so the prediction results are 

relatively fluctuating. 

As compared above, in Epoch 4 the best performance appears where the accuracy 

is 0.956 and the loss is 0.00344, and the ResNetIS model is saved as the test model. The 

prediction results by the saved ResNetIS model with the testing data is 94.3% while it is 

 

Figure 8.5: The image sequence data are trained by ResNet with transfer learning and 

CNN 
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92.3% for the model using single image. The testing results are shown in Table 8.1, and 

the predicting results during the test welding experiment, where the weld penetration 

increases with time of the arc application, are shown in Figure 8.6. The inaccurate results 

only occur at the borders of the classes. When compared with Figure 8.7, we find that the 

test experiment with low current has better prediction results. The possible reason for this 

is that the intensive arc from the high welding current affects the quality of the captured 

images. The prediction using the trained model is considered real-time. The prediction 

process takes 0.0137s, and they system requires 0.024s for the computer to transfer the 

image sequence to the CNN and for the CNN to output the classification of the weld 

penetration. It is less than the time of acquiring one image, which is 0.033 s.  

Table 8.1: Confusion matrix 

 
Actual class 

0 1 2 

Predicted Class 

0 1075 42 0 

1 10 430 102 

2 0 4 1131 
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Figure 8.6: The prediction results from the test experiment with 65A 

 

Figure 8.7: The prediction results from the test experiment with 100A 
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CHAPTER 9. CONCLUSION AND FUTURE WORK 

In view of the special and complicated process of welding, we propose a passive 

vision system to capture the welding process images in real time, this is simpler, and more 

efficient, and reliable than the previous information collection method. A CNN and ResNet 

were applied to predict weld penetration based on the top-side image of the weld pool and 

arc from a passive vision system. The training dataset was produced from experiments 

under a variety of welding conditions. The weld penetration state was predicted by an end-

to-end deep learning approach, and transfer learning was used to improve the training 

performance. What’s more, due to the characteristics of the welding images such as low 

contrast and darker chroma, we designed merged image data that contained temporal 

information. The image sequence was sent to multiple channels in sequence, and the same 

receptive field was then used to observe the dynamic information from the input image 

sequence, and the key features were extracted from the dynamic information to analyze 

 

Figure 9.1: The all works of this study. 
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and predict the welding penetration state. This method improves prediction accuracy from 

92.3% to 94.3%. The all works of this study are shown in Figure 9.1. 

9.1 Conclusion 

(1) The top-side images where the weld pool and arc are passively imaged contain 

enough needed information to predict the weld penetration and can be used to directly train 

a complex prediction model;  

(2) The transfer learning method significantly reduces the training difficulty for 

deep learning, and it can meet the training requirement even with a small amount of 

training data;  

(3) The designed sequence of top-side images can effectively add temporal 

information and improve the accuracy of the prediction system;  

(4) The early fusion approaches can enable the CNN and ResNet to quickly and 

accurately find the dynamic information in the sequence data; 

(5) The whole process of the prediction system costs 0.024s, which is less than the 

time of acquiring one image. The prediction system meets the real-time requirement. 

 (6) The data-driven and end-to-end prediction system is an efficient and simple 

method to predict the weld penetration state from top-side images in the complex welding 

process. 

9.2 Future Work 

Now that we have proven the effectiveness and feasibility of the data-driven and 

end-to-end system, this is also the first attempt to understand and predict welding 

penetration by analyzing dynamic welding information. Due to the critical role of weld 
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penetration and the negligible impact on system/implementation, this method represents a 

major progress in the important field of weld penetration monitoring and is expected to 

provide more significant improvements during welding when using pulsed current where 

the process becomes highly dynamic. What’s more, this model can be improved to increase 

the batch size and add the number of layers, such as slow fusion and two-stream fusion 

method, are worth experimenting with. 
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