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ABSTRACT OF THESIS

FILTERED-DYNAMIC-INVERSION CONTROL FOR UNKNOWN

MINIMUM-PHASE SYSTEMS WITH UNKNOWN RELATIVE DEGREE

We present filtered-dynamic-inversion (FDI) control for unknown linear time-invariant

systems that are multi-input multi-output and minimum phase with unknown-but-

bounded relative degree. This FDI controller requires limited model information,

specifically, knowledge of an upper bound on the relative degree and knowledge of

the first nonzero Markov parameter. The FDI controller is a single-parameter high-

parameter-stabilizing controller that is robust to uncertainty in the relative degree.

We characterize the stability of the closed-loop system. We present numerical ex-

amples, where the FDI controller is implemented in feedback with mathematical and

physical systems. The numerical examples demonstrate that the FDI controller for

unknown relative degree is effective for stabilization, command following, and distur-

bance rejection. We demonstrate that for a sufficiently large parameter, the average

power of the closed-loop performance is arbitrarily small.

KEYWORDS: dynamic inversion; high-parameter stabilization; high-gain control;

unknown relative degree; control with model uncertainty
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Chapter 1
Introduction and Motivation

1.1 Motivation

Developing an accurate mathematical model of a physical dynamic system can

be challenging, time-intensive, and expensive. In particular, developing such models

can require construction or use of expensive test systems. For example, wind tunnels

are used to obtain model parameters for aircraft and automobiles. However, these

experimental tests can be prone to systematic errors (e.g., calibration, instrument

drift, lag time), which result in inaccurate models. In addition, specialized computer

software packages (e.g., COMSOL, Vensim, Magnolia) are often used to determine

mathematical models. However, computational models can include approximations

and might not accurately represent the dynamics of the physical system. Also, ob-

taining high-fidelity computational models can require considerable resources (e.g.,

processing power, memory), which lead to higher costs. Furthermore, multiple eval-

uations might be required to obtain the accurate model, which might not be possible

due to time constraints.

If a feedback controller is designed with an inaccurate model, then the controller

may not achieve the desired performance. It also might not be able to stabilize the
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system if the uncertainties of the system are not considered or are not modeled ac-

curately.

In real-world applications, it is important to consider the effect of disturbances,

which are often unknown and unmeasured because of limitations in the sensors and

their placements. Thus, accurately modeling and estimating the disturbances might

not be possible. For example, in [1], wind is considered as an unknown and unmea-

sured disturbance as the anemometer’s signal from the unmanned aerial vehicle is

not available for feedback.

The relative degree of the input-to-output transfer function of a physical system

can vary depending on the locations of the inputs and outputs, and the structure of

the physical system. For example, [2] presents an expression for the relative degree

of single-input single-output (SISO) force-to-motion transfer function for collinear

lumped-parameter structures (consisting of springs, masses and dashpots) that de-

pends on the positions of the springs and dashpots.

Thus, we are motivated to develop a controller for unknown minimum phase sys-

tems with unknown-and-unmeasured disturbances and uncertain relative degree.

1.2 Literature Review

Plant uncertainty can be classified as structured uncertainty or unstructured un-

certainty. In the case of structured uncertainty, the structure of the plant is known

but the plant parameters are uncertain. Unstructured uncertainty arises because the

plant model might have unmodeled dynamics (e.g., sensor and actuator dynamics,

high frequency flexible modes).

Robust control techniques are effective for the stabilization of uncertain systems.

However, they function efficiently when the uncertainties in the plant parameters

and the disturbances are bounded. In [3], a robust controller for minimum-phase

linear time-invariant (LTI) systems is presented. However, disturbance rejection is
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not addressed. A model reference robust control for minimum-phase LTI systems is

presented in [4], where the disturbances are bounded and the transfer function matrix

is diagonal and strictly positive real. In [5], robust control for uncertain constrained

linear systems is presented; however, disturbance rejection is not addressed. In [6],

H∞ control for uncertain multi-input multi-output (MIMO) linear systems with time-

varying delayed control input is presented. In [7], a nonlinear robust control method

for nonlinear uncertain systems is presented.

Adaptive control methods can also accommodate uncertainties in plant parame-

ters. Adaptive control systems measure the signal systems and change the control

accordingly. Stabilization of linear systems with unknown plant parameters is pre-

sented in [8], but disturbance rejection is not addressed. In [9], an adaptive controller

is presented for uncertain SISO systems in the presence of unknown Preisach-type

hysteresis in input, bounded unknown time-varying parameters, and bounded un-

known time-varying disturbances. In [10], a direct adaptive controller for nonlinear

uncertain systems with exogenous disturbances is presented, where the disturbances

are assumed to be bounded.

High-gain adaptive stabilization methods can be effective for minimum-phase sys-

tems since zeros attract closed-loop poles under high gain. In [11], [12], and [13],

adaptive high-gain proportional feedback is used to stabilize square MIMO systems

that are minimum phase and relative degree one. In [14], [15], [16], and [17], high-gain

proportional feedback is used to stabilize MIMO nonlinear systems that are minimum

phase and relative degree one.

As discussed in Section 1.1, the problem of developing controllers for unknown/un-

certain relative degree is of interest. For example, [18] presents an active disturbance

rejection control for uncertain LTI systems that are SISO and minimum phase with

unknown relative degree. The controller requires limited model information, specif-

ically, knowledge of an upper bound on the relative degree, knowledge of the sign
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of the high-frequency gain, and knowledge of an upper bound on the magnitude of

the high-frequency gain. However, the control method is effective for plants that are

open-loop stable. Also, command following is not addressed. In [19], a model ref-

erence adaptive controller is presented for uncertain minimum phase SISO systems

with unknown-but-bounded relative degree. The controller in [19] is effective with

disturbances, which are bounded and piecewise continuous. In [20], a robust model

reference adaptive control is presented for uncertain SISO LTI systems that are min-

imum phase with unknown relative degree. The controller in [20] requires knowledge

of an upper bound on the degree of the denominator of the plant transfer function,

knowledge of a lower bound and an upper bound on the relative degree, and knowl-

edge of the sign of the high-frequency gain. In [21], a model reference adaptive control

is presented for uncertain LTI systems that are minimum phase and open-loop stable

with unknown relative degree and subject to unknown disturbances. The controller

in [21] requires the knowledge of the plant order, knowledge of an upper bound on the

relative degree, and knowledge of an upper bound on the plant parameters. The con-

troller is effective for rejection of disturbances that are bounded. In [22], an adaptive

pole assignment control scheme is presented for a class of unknown LTI systems that

are nonminimum phase and SISO with unknown relative degree. The controller in [22]

requires the knowledge of the sign of the high-frequency gain. However [22] does not

address disturbance rejection. A high-parameter-stabilizing controller is presented

in [23] for uncertain SISO minimum-phase systems with unknown-but-bounded rela-

tive degree. In [24], the controller in [23] is extended to address adaptive command

following and disturbance rejection. However, the controller in [24] is effective with

command and disturbances, which consists of steps and sinusoids. It also requires

the knowledge of the frequencies of the command and disturbance sinusoids. In [25],

global output-feedback stabilization for SISO uncertain nonlinear systems with un-

known relative degree is presented. However, command following and disturbance
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rejection is not addressed.

Filtered dynamic inversion (FDI), presented in [26], is a high-parameter-stabilizing

controller for unknown MIMO LTI minimum-phase systems. The FDI controller only

requires the knowledge of the relative degree of the system and the first nonzero

Markov parameter to achieve stabilization, command following, and disturbance re-

jection. The disturbances are unknown-and-unmeasured. In [27], the FDI control

in [26] is extended to address decentralized control. In [28, 29], FDI is examined for

vibration control of uncertain structures that are minimum phase and where the sen-

sors and actuators are colocated. In [1], FDI is used for altitude control of fixed-wing

unmanned air vehicles. In [30,31], a single-parameter high-parameter-stabilizing con-

troller for MIMO uncertain nonlinear systems is presented, where the equilibrium of

the zero dynamics is locally asymptotically stable. The controller in [30, 31] is an

extension of the control method in [26, 27]. The controller in [30, 31] only requires

the knowledge of the vector relative degree and knowledge of the dynamic-inversion

matrix, which is the nonlinear extension of the first nonzero Markov parameter of

linear systems. Note that none of these control methods mentioned in this paragraph

address uncertainty in the relative degree.

1.3 Contributions of this Thesis

In Chapter 2, we review the FDI control presented in [26, 27] and provide an ex-

ample where the FDI controller is not necessarily robust to uncertainty in the relative

degree. This provides the motivation for the work in this thesis.

In Chapter 3, we extend the FDI control presented in [26, 27] to accommodate

unknown relative degree. This extended FDI control is a method for unknown LTI

systems that are MIMO and minimum phase with unknown-but-bounded relative

degree. This extended FDI controller requires limited model information, specifi-

cally, knowledge of an upper bound on the relative degree and knowledge of the
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first nonzero Markov parameter. This FDI controller is a single-parameter high-

parameter-stabilizing controller that is robust to uncertainty in the relative degree.

We also characterize the stability of the closed-loop system.

In Chapter 4, we present simulation results of examples of mathematical systems

and physical systems with the FDI control for unknown relative degree implemented

in feedback. We design a single FDI controller that can control a single integrator,

double integrator, and triple integrator. We also design an FDI controller to be im-

plemented in feedback with a MIMO system. We consider several different choices

of input and output matrices, which result in different relative degrees. Next, we

design an FDI controller to be implemented in feedback with a serially connected

four mass-spring-damper system. We consider different choices of sensor and actua-

tor placements, which result in different relative degrees. Finally, we design an FDI

controller to be implemented in feedback with a two-mass servo system with a flexible

shaft. We consider different choices of sensor placements, which result in different

relative degrees. We show that the FDI controller for unknown relative degree is

effective for stabilization, command following, and disturbance rejection.
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Chapter 2
Review of Filtered Dynamic Inversion

In this chapter, we review filtered-dynamic-inversion (FDI) control, which is pre-

sented in [26, 27]. FDI is a control method for linear time-invariant (LTI) systems

that are multi-input multi-output (MIMO) and minimum phase. FDI requires limited

model information, specifically, knowledge of the relative degree and knowledge of the

first nonzero Markov parameter. The FDI controller is effective for stabilization, com-

mand following, and rejection of disturbances, which need not be known or measured.

For sufficiently large choice of a single control parameter, FDI yields an asymptot-

ically stable closed-loop system and makes the average power of the performance

arbitrarily small. However, in Section 2.4, we provide an example demonstrating

that FDI is not necessarily robust to uncertainty in the relative degree.

2.1 Problem Formulation

Consider the MIMO LTI system

ẋ(t) = Ax(t) +Bu(t) + w(t), (2.1)
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y(t) = Cx(t), (2.2)

where t ≥ 0, x(0) ∈ Rn is the initial condition, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,

u(t) ∈ Rm is the control, y(t) ∈ Rm is the measurement, and w(t) ∈ Rn is the unknown

and unmeasured disturbance. Define the relative degree d to be the smallest positive

integer i such that the ith Markov parameter Hi , CAi−1B is nonzero. Let p = d/dt

denote the differential operator. We make the following assumptions:

(A2.1) The triple (A,B,C) is controllable and observable.

(A2.2) If λ ∈ C and det

λIn − A B

C 0m×m

 = 0, then Re λ < 0.

(A2.3) d is known.

(A2.4) Hd is nonsingular and known.

(A2.5) w is d times differentiable, and w,pw, ...,pdw are bounded.

Assumption (A2.2) states that (A,B,C) is minimum phase, that is, the invariant

zeros of (A,B,C) are contained in the open-left-half complex plane. Assumption

(A2.3) requires that the relative degree d is known, and (A2.4) requires that the

first nonzero Markov parameter Hd is known. Note that the FDI approach presented

in this chapter can be extended to accommodate uncertainty in Hd (see [26, 27]).

However, we invoke (A2.4) for clarity of presentation. Assumption (A2.5) is a tech-

nical condition required for analysis. This assumption requires that w is sufficiently

smooth. The plant (2.1) and (2.2) is otherwise unknown, that is, A,B,C and x(0)

are unknown, and w and x are unmeasured.

Consider the m×m polynomial matrices

αm(p) = pdαd + pd−1αd−1 + ...+ pα1 + α0, (2.3)

8



βm(p) = pd−1βd−1 + ...+ pβ1 + β0, (2.4)

where αd = Im; α0, ..., αd−1 ∈ Rm×m; β0, ..., βd−1 ∈ Rm×m; and if λ ∈ C and det

αm(λ) = 0, then Re λ < 0. Now, consider the reference model

αm(p)ym(t) = βm(p)r(t), (2.5)

where t ≥ 0; r(t) ∈ Rm is the reference-model command, which is d-times differ-

entiable and r,pr, ...,pdr are bounded; ym(t) ∈ Rm is the reference-model output;

and the initial condition is given by ym(0), ...,pd−1ym(0), and r(0), ...,pd−2r(0). The

performance is defined as

z(t) , y(t) − ym(t), (2.6)

which is the command-following error. The aim is to design a high parameter-

stabilizing output-feedback controller such that for sufficiently large parameter, the

average power of the performance

lim
T→∞

1
T

∫ T

0
zT(t)z(t) dt

is arbitrary small despite the unknown and unmeasured disturbance w.

2.2 Ideal Dynamic Inversion

To construct the ideal dynamic-inversion (IDI) control, we assume that the plant

(2.1) and (2.2) is known, the disturbance w is measured, and the full state x is

available for feedback. Note that the IDI control is not implementable.

Taking the dth derivative of (2.2) and using (2.1) yields

pdy(t) = Hdu(t) + CAdx(t) +
d−1∑
i=0

CAd−1−ipiw(t). (2.7)
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Next, define the IDI control

u∗ , −H−1
d

CAdx+
d−1∑
i=0

(
CAd−1−ipiw − βipir + αipiy

). (2.8)

Since H1 = · · · = Hd−1 = 0, substituting (2.1) and (2.2) into (2.8) for piy yields

u∗(x,Φ) = −H−1
d

CAdx+
d−1∑
i=0

(
CAd−1−ipiw − βipir + αiCA

ix+
i−1∑
j=0

αiCA
i−1−jpjw

)
= H−1

d Kxx+H−1
d Φ, (2.9)

where

Kx , −
d∑
i=0

αiCA
i ∈ Rm×n, (2.10)

Φ(t) ,
d−1∑
i=0

(
βipir(t) − CAd−1−ipiw(t) −

i−1∑
j=0

αiCA
i−1−jpjw(t)

)
. (2.11)

Let x∗ and y∗ denote the solution to (2.1) and (2.2) with u = u∗(x∗,Φ) and

x∗(0) = x(0). Thus, the ideal closed-loop system (2.1), (2.2), and (2.9)–(2.11) is

given by

ẋ∗(t) = Ã∗x∗(t) +BH−1
d Φ(t) + w(t), (2.12)

y∗(t) = Cx∗(t), (2.13)

where

Ã∗ , A+BH−1
d Kx. (2.14)

Define the ideal performance z∗ , y∗ − ym. The following result characterizes the

stability and performance of the ideal closed-loop system (2.12)–(2.14). This result

is from [26, Lemma 1].
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Lemma 2.1. Consider the ideal closed-loop system (2.12)–(2.14), which consists

of (2.1), (2.2), and (2.9)–(2.11), and satisfies (A2.1), (A2.2), and (A2.4). Then, the

following statements hold:

(i) Let λ ∈ C. Then, det(λIn − Ã∗)=0 if and only if det αm(λ)=0 or

det

λIn − A B

C 0m×m

 = 0.

(ii) Ã∗ is Hurwitz.

(iii) For all initial conditions x∗(0) ∈ Rn, αm(p)y∗(t) = βm(p)r(t).

(iv) For all initial conditions x∗(0) ∈ Rn, limt→∞ z∗(t) = 0 and
∫ ∞

0 zT
∗ (t)z∗(t) dt

exists.

Part (i) of Lemma 2.1 states that the eigenvalues of Ã∗ consists of the roots

of αm and the invariant zeros of (A,B,C), which are in the open-left-half complex

plane. Part (iii) states that the closed-loop input-output relationship from r to y∗

matches the reference model (2.5). Part (iv) implies that for all initial conditions

x∗(0), performance z∗ tends to zero asymptotically.

2.3 Filtered Dynamic Inversion

In this section, we review the FDI controller presented in [26]. The IDI control

(2.9)–(2.11) is not implementable because it relies on knowledge of the plant param-

eters A and C as well as measurements of x and w. Since this information is not

assumed to be known, the IDI control cannot be implemented. Thus, we use a linear

filter to construct the FDI control, which is implementable and approximates the IDI

control.

Let ηk(s) be a parameter-dependent polynomial, that is, a polynomial in s over

the reals whose coefficients are functions of a real parameter k. Furthermore, let ηk
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be monic with degree ρ ≥ d. Thus, ηk can be written as

ηk(s) , sρ + ηρ−1,ks
ρ−1 + ...+ η1,ks+ η0,k, (2.15)

where for all k ∈ [0,∞), η0,k, . . . , ηρ−1,k ∈ R. Define the transfer function

∆k(s) ,
η̄k(s)
ηk(s)

, (2.16)

where

η̄k(s) , sρ−1 + ηρ−1,ks
ρ−2 + ...+ η2,ks+ η1,k. (2.17)

Note that for all k ≥ 0, ∆k is well defined, that is, ηk(s) 6≡ 0. Next, consider the

following conditions:

(C2.1) There exists k0 > 0 such that for all k > k0, ηk is Hurwitz.

(C2.2) For all ε > 0, there exists kε > k0 such that for all k > kε,

γk , sup
ω∈R

|∆k(ω)| < ε. (2.18)

Condition (C2.2) states that for sufficiently large k, the H∞ norm of ∆k is ar-

bitrarily small. Note that ηk(s) = (s + k)ρ is an example of a parameter-dependent

polynomial that satisfies (C2.1) and (C2.2). Other examples that satisfy (C2.1) and

(C2.2) are given in [26,27].

Consider the control u that satisfies

ηk(p)u = ηk(0)u∗(x,Φ), (2.19)

where u∗(x,Φ) is given by (2.9)–(2.11). The transfer function from u∗ to u is given
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by

ζk(s) ,
ηk(0)
ηk(s)

Im = (I − s∆k(s))Im, (2.20)

which is a low-pass filter. It follows from (C2.2) that as k tends to infinity, the

cutoff frequency of ζk tends to infinity, suggesting that u approximates u∗(x,Φ) for

sufficiently large k.

To express (2.19) as an implementable control, it follows from (2.7) and (2.8) that

u∗ = −Hd
−1

pdy −Hdu+
d−1∑
i=0

(αipiy − βipir)


= u−Hd
−1[αm(p)y − βm(p)r]. (2.21)

Substituting (2.21) into (2.19) yields the FDI controller

pη̄k(p)u(t) = η0,kHd
−1[βm(p)r(t) − αm(p)y(t)]. (2.22)

The controller (2.22) is a dynamic output-feedback controller, which uses y for feed-

back, r for feedforward, and can be implemented for k > k0 using knowledge of only

Hd and the design parameters αm, βm, and ηk.

The transfer function from
[
yT rT

]T
to u is given by

Gc(s) ,
η0,k

sη̄k(s)
Hd

−1
[
−αm(s) βm(s)

]
, (2.23)

which characterizes the forced response of (2.22). Next, for all k > k0, let Gc have

the ρm-order state-space realization

ẋc(t) = Acxc(t) +Bcy(t) + Ecr(t), (2.24)

u(t) = Ccxc(t) +Dcy(t), (2.25)
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where xc(t) ∈ Rρm, and for all k > k0, Ac ∈ Rρm×ρm, Bc ∈ Rρm×m, Cc ∈ Rm×ρm,

Dc ∈ Rm×m, and Ec ∈ Rρm×m. To see that such a realization exists, consider the

block-observable realization

Ac =



−ηρ−1,k 1 0 . . . 0

−ηρ−2,k 0 1 0
... ... . . .

−η1,k 0 0 1

0 0 0 . . . 0


⊗ Im ∈ Rρm×ρm, (2.26)

Bc =



−η0,kH
−1
d αρ−1 − ηρ−1,kDc

...

−η0,kH
−1
d α1 − η1,kDc

−η0,kH
−1
d α0


∈ Rρm×m, (2.27)

Ec =



0(ρ−d)m×m

−η0,kH
−1
d βd−1

...

−η0,kH
−1
d β0


∈ Rρm×m, (2.28)

Cc =
[
1 01×ρ−1

]
⊗ Im ∈ Rm×ρm, (2.29)

Dc = −η0,kH
−1
d αρ ∈ Rm×m, (2.30)

where ⊗ is the Kronecker product and αd+1 = αd+2 = · · · = 0m×m.

The closed-loop system (2.1), (2.2), and (2.24)–(2.30) is given by

˙̃x(t) = Ãx̃(t) + B̃w(t) + Ẽr(t), (2.31)

y(t) = C̃x̃(t), (2.32)
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where

x̃(t) ,

 x(t)

xc(t)

 ∈ Rn+ρm, (2.33)

and

Ã ,

A+BDcC BCc

BcC Ac

 ∈ R(n+ρm)×(n+ρm), B̃ ,

 In

0ρm×n

 ∈ R(n+ρm)×n, (2.34)

Ẽ ,

0n×m

Ec

 ∈ R(n+ρm)×m, C̃ ,
[
C 0m×ρm

]
∈ Rm×(n+ρm). (2.35)

The following result characterizes the stability and performance of the closed-loop

system (2.31)–(2.35). This result is from [26, Theorem 1].

Theorem 2.1. Consider the closed-loop system (2.31)–(2.35), which consists of

(2.1), (2.2), and (2.24)–(2.30), where (A2.1)–(A2.5) are satisfied and ηk satisfies

(C2.1) and (C2.2). Then, the following statements hold:

(i) There exists ks > k0 such that for all k > ks, Ã is Hurwitz.

(ii) For all δ > 0, there exists kδ > ks such that for all k > kδ,

lim
T→∞

1
T

∫ T

0
zT(t)z(t) dt < δ.

Part (i) of Theorem 2.1 states that for sufficiently large k, the origin is an asymp-

totically stable equilibrium of closed-loop system (2.31)–(2.35). Part (ii) states that

for sufficiently large k, the average power of performance z is arbitrarily small.

2.4 Motivating Example

In this section, we present an example that demonstrates that the FDI controller

(2.22) is not necessarily robust to uncertainity in the relative degree d. This example
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motivates the work in this thesis, which extends the FDI approach to systems with

unknown-but-bounded relative degree.

Consider the triple integrator

...
y (t) = u(t), (2.36)

where t ≥ 0, y(t) ∈ R is the measured output, and u(t) ∈ R is the control. It follows

that (2.36) can be expressed as (2.1) and (2.2), where

x(t) ,


y(t)

ẏ(t)

ÿ(t)

, w(t) ≡ 0, (2.37)

and

A ,


0 1 0

0 0 1

0 0 0

, B ,


0

0

1

, C ,
[
1 0 0

]
. (2.38)

Note that the relative degree is d = 3, and the first nonzero Markov parameter is

given by Hd = CA2B = 1.

To design an FDI controller to stabilize the triple integrator (2.36), we select the

reference-model polynomials as

αm(p) = (p + 5)3, βm(p) = 125, (2.39)

and we let r = 0. Note that we focus on stabilization only rather than command

following and/or disturbance rejection for clarity of presentation. Next, let ρ = 4 ≥
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d = 3, and let

ηk(s) = (s+ k)4, (2.40)

which satisfies (C2.1) and (C2.2). Since (A2.1)–(A2.5) are satisfied, and ηk satisfies

(C2.1) and (C2.2), it follows from Theorem 2.1 that for sufficiently large k, the origin

is an asymptotically stable equilibrium of the closed-loop system consisting of the

triple integrator (2.1), (2.2), (2.37), and (2.38); and the FDI controller (2.24)–(2.30).

Note that the closed-loop dynamics matrix Ã, given by (2.34), has 7 eigenvalues.

Figure 2.1 shows the locus of the closed-loop eigenvalues (i.e., the eigenvalues of Ã)

for different k > 0. As k is increased, 3 eigenvalues of Ã approach −5 (the roots of αm)

and the remaining eigenvalues of Ã diverge to infinity through the the open-left-half

complex plane. In fact, for all k > 45, all eigenvalues of Ã are in the open-left-half

complex plane. Thus, for all k > 45, the FDI controller stabilizes the triple integrator.

Next, consider the double integrator

ÿ(t) = u(t), (2.41)

where t ≥ 0, y(t) ∈ R is the measured output, and u(t) ∈ R is the control. It follows

that (2.41) can be expressed as (2.1) and (2.2), where

x(t) ,

y(t)

ẏ(t)

, w(t) ≡ 0, (2.42)

and

A ,

0 1

0 0

, B ,

0

1

, C ,
[
1 0

]
. (2.43)

Note that the relative degree is d = 2, and the first nonzero Markov parameter is

given by Hd = CAB = 1.
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Figure 2.1: Locus of the eigenvalues of Ã of the closed-loop system (2.31)–(2.35), which
consists of the triple integrator (2.1), (2.2), (2.37), and (2.38); and the FDI controller
(2.24)–(2.30). For all k > 45, the origin of the closed-loop system is asymptotically stable.
Note that two eigenvalues of Ã diverge along the asymptote towards −∞.

Now, we use the FDI control designed for the triple integrator (2.36) to control

the double integrator (2.41). The closed-loop system consists of the double integrator

(2.1), (2.2), (2.42), and (2.43); and the FDI controller (2.24)–(2.30). Note that the

closed-loop dynamics matrix Ã, given by (2.34), has 6 eigenvalues. Figure 2.2 shows

the locus of the closed-loop eigenvalues (i.e., the eigenvalues of Ã) for different k > 0.

As k is increased, 3 eigenvalues of Ã approach −5 (the roots of αm) and one eigenvalue

diverges to minus infinity. For all k > 0, the remaining 2 eigenvalues of Ã lie in the

open-right-half complex plane. Thus, the FDI controller does not stabilize the double

integrator.

This example shows that the FDI controller is not necessarily robust to uncertainty

18



in the relative degree d. This example motivates the work in the thesis, which extends

the FDI approach to unknown minimum-phase systems with unknown relative degree.
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Figure 2.2: Locus of the eigenvalues of Ã of the closed-loop system (2.31)–(2.35), which
consists of the double integrator (2.1), (2.2), (2.42), and (2.43); and the FDI controller
(2.24)–(2.30), which is designed for the triple integrator. For all k > 0, the closed-loop
system is unstable.
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Chapter 3
Filtered Dynamic Inversion with Unknown Relative Degree

In this chapter, we extend filtered-dynamic-inversion (FDI) control to accommo-

date unknown relative degree. This extended FDI control is a method for unknown

linear time-invariant (LTI) systems that are multi-input multi-output (MIMO) and

minimum phase with unknown-but-bounded relative degree. This FDI controller re-

quires limited model information, specifically, knowledge of an upper bound on the

relative degree and knowledge of the first nonzero Markov parameter. This FDI con-

troller is a single-parameter high-parameter-stabilizing controller that is robust to

uncertainty in the relative degree. The main analytic result in this chapter shows

that the origin of the closed-loop system, consisting of the FDI controller for un-

known relative degree connected in feedback with a single-input single-output (SISO)

open-loop system, is an asymptotically stable equilibrium.

3.1 Problem Formulation

Consider the MIMO LTI system

ẋ(t) = Ax(t) +Bu(t) + w(t), (3.1)
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y(t) = Cx(t), (3.2)

where t ≥ 0, x(0) ∈ Rn is the initial condition, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n,

u(t) ∈ Rm is the control, y(t) ∈ Rm is the measurement, and w(t) ∈ Rn is the unknown

and unmeasured disturbance. Define the relative degree d to be the smallest positive

integer i such that the ith Markov parameter Hi , CAi−1B is nonzero. Let p = d/dt

denote the differential operator. We make the following assumptions:

(A3.1) The triple (A,B,C) is controllable and observable.

(A3.2) If λ ∈ C and det

λIn − A B

C 0m×m

 = 0, then Re λ < 0.

(A3.3) There is a known integer d̄ such that d̄ ≥ d .

(A3.4) Hd is nonsingular and known.

(A3.5) w is d̄ times differentiable, and w,pw, ...,pd̄w are bounded.

Assumption (A3.2) states that (A,B,C) is minimum phase, that is, the invariant

zeros of (A,B,C) are contained in the open-left-half complex plane. Assumption

(A3.3) requires that an upper bound d̄ on the relative degree d is known. Note

that (A3.3) replaces the more restrictive standard FDI assumption (A2.3), which

requires that d is known. Assumption (A3.4) requires that the first nonzero Markov

parameter Hd is known. Assumption (A3.5) is a technical condition required for

analysis. This assumption requires that w is sufficiently smooth. The plant (3.1) and

(3.2) is otherwise unknown, that is, A,B,C and x(0) are unknown, and w and x are

unmeasured.

Consider the m×m polynomial matrices

αm(p) = pd̄αd̄ + pd̄−1αd̄−1 + ...+ pα1 + α0, (3.3)
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βm(p) = pd̄−1βd̄−1 + ...+ pβ1 + β0, (3.4)

where αd̄ = Im; α0, ..., αd̄−1 ∈ Rm×m; β0, ..., βd̄−1 ∈ Rm×m; and if λ ∈ C and det

αm(λ) = 0, then Re λ < 0. Now, consider the reference model

αm(p)ym(t) = βm(p)r(t), (3.5)

where t ≥ 0; r(t) ∈ Rm is the reference-model command, which is d̄-times differ-

entiable and r,pr, ...,pd̄r are bounded; ym(t) ∈ Rm is the reference-model output;

and the initial condition is given by ym(0), ...,pd̄−1ym(0), and r(0), ...,pd̄−2r(0). The

performance is defined as

z(t) , y(t) − ym(t), (3.6)

which is the command-following error. The aim is to design a high parameter-

stabilizing output-feedback controller such that for sufficiently large parameter, the

average power of the performance

lim
T→∞

1
T

∫ T

0
zT(t)z(t) dt

is arbitrary small despite the unknown and unmeasured disturbance w.

3.2 Ideal Dynamic Inversion

To construct the ideal dynamic-inversion (IDI) control, we assume that the plant

(3.1) and (3.2) is known, the disturbance w is measured, and the full state x is

available for feedback. Note that the IDI control is not implementable.

Taking the dth derivative of (3.2) and using (3.1) yields

pdy(t) = Hdu(t) + CAdx(t) +
d−1∑
i=0

CAd−1−ipiw(t). (3.7)
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Next, define the IDI control

u∗ , −Hd
−1

CAdx+ αd̄pd̄y − pdy +
d−1∑
i=0

CAd−1−ipiw +
d̄−1∑
i=0

(
αipiy − βipir

), (3.8)

and note that if d̄ = d, then the IDI control (3.8) is equivalent to the IDI control

(2.8) for known relative degree. Substituting (3.7) into (3.8) yields

u∗ = −Hd
−1

αd̄pd̄y −Hdu+
d̄−1∑
i=0

(
αipiy − βipir

)
=u−Hd

−1

 d̄∑
i=0

αipiy −
d̄−1∑
i=0

βipir


=u−Hd

−1

 d−1∑
i=0

αipiy +
d̄∑
i=d

αipiy −
d̄−1∑
i=0

βipir

. (3.9)

Since H1 = ... = Hd−1 = 0, substituting (3.1) and (3.2) into (3.9) for piy yields

u∗(x, u, . . . ,pd̄−du,Φ) =u−Hd
−1

 d−1∑
i=0

(
αiCA

ix+
i−1∑
j=0

αiCA
i−1−jpjw

)

+
d̄∑
i=d

(
αiCA

ix+
i−d∑
j=0

αiHi−jpju+
i−1∑
j=0

αiCA
i−1−jpjw

)

−
d̄−1∑
i=0

βipir


=u−Hd

−1

 d−1∑
i=0

αiCA
ix+

d̄∑
i=d

αiCA
ix+

d̄∑
i=d

i−d∑
j=0

αiHi−jpju

+
d−1∑
i=0

i−1∑
j=0

αiCA
i−1−jpjw +

d̄∑
i=d

i−1∑
j=0

αiCA
i−1−jpjw

−
d̄−1∑
i=0

βipir


=u−Hd

−1

 d̄∑
i=0

αiCA
ix+

d̄−d∑
i=0

d̄∑
j=d+i

αjHj−ipiu

+
d̄∑
i=0

i−1∑
j=0

αiCA
i−1−jpjw −

d̄−1∑
i=0

βipir
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=Hd
−1Kxx+Hd

−1Φ + u+
d̄−d∑
i=0

Hd
−1Kipiu, (3.10)

where for i ∈
{
0, 1, ..., d̄− d

}
,

Ki , −
d̄∑

j=d+i
αjHj−i ∈ Rm×m, (3.11)

and

Kx , −
d̄∑
i=0

αiCA
i ∈ Rm×n, (3.12)

Φ(t) ,
d̄−1∑
i=0

βipir(t) −
d̄∑
i=0

i−1∑
j=0

αiCA
i−1−jpjw(t). (3.13)

Note that, if d̄ = d, then

K0 = −Hd, (3.14)

Kx = −
d∑
i=0

αiCA
i, (3.15)

Φ(t) =
d−1∑
i=0

(
βipir(t) − CAd−1−ipiw(t) −

i−1∑
j=0

αiCA
i−1−jpjw(t)

)
, (3.16)

which implies that (3.10) simplifies to (2.9), which is the IDI control for known rela-

tive degree.

Let x∗ and y∗ denote the solution to (3.1) and (3.2) with u = u∗(x∗, u∗, . . . ,pd̄−du∗,Φ)

and x∗(0) = x(0). Thus, it follows from (3.1), (3.2), and (3.10)–(3.13) that

ẋ∗(t) =Ax∗(t) +Bu∗

(
x∗(t), u∗(t), . . . ,pd̄−du∗(t),Φ(t)

)
+ w(t), (3.17)

y∗(t) =Cx∗(t), (3.18)
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where u∗(x∗, u∗, . . . ,pd̄−du∗,Φ) satisfies

0 = H−1
d Kxx∗ +H−1

d Φ +
d̄−d∑
i=0

Hd
−1Kipiu∗

(
x∗, u∗, . . . ,pd̄−du∗,Φ

)
, (3.19)

or equivalently,

pd̄−du∗

(
x∗, u∗, . . . ,pd̄−du∗,Φ

)
=H−1

d Kxx∗ +H−1
d Φ

+
d̄−d−1∑
i=0

H−1
d Kipiu∗

(
x∗, u∗, . . . ,pd̄−du∗,Φ

)
. (3.20)

Next, (3.20) has the state-space realization

ẋc∗(t) = Ac∗xc∗(t) +Bc∗x∗(t) + Ec∗Φ(t), (3.21)

u∗

(
x∗(t), u∗(t), . . . ,pd̄−du∗(t),Φ(t)

)
= Cc∗xc∗(t), (3.22)

where

xc∗(t) ,



u∗

(
x∗(t), u∗(t), . . . ,pd̄−du∗(t),Φ(t)

)
pu∗

(
x∗(t), u∗(t), . . . ,pd̄−du∗(t),Φ(t)

)
...

pd̄−d−1u∗

(
x∗(t), u∗(t), . . . ,pd̄−du∗(t),Φ(t)

)


∈ Rm(d̄−d), (3.23)

and

Ac∗ ,



0m×m Im×m 0m×m . . . 0m×m

0m×m 0m×m Im×m 0m×m

... ... . . .

0m×m 0m×m 0m×m Im×m

H−1
d K0 H−1

d K1 H−1
d K2 . . . H−1

d Kd̄−d−1


∈ Rm(d̄−d)×m(d̄−d), (3.24)
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Bc∗ ,

0m(d̄−d−1)×n

H−1
d Kx

 ∈ Rm(d̄−d)×n, (3.25)

Ec∗ ,

0m(d̄−d−1)×m

H−1
d

 ∈ Rm(d̄−d)×m, (3.26)

Cc∗ ,
[
Im×m 0m×(m(d̄−d−1))

]
∈ Rm×m(d̄−d). (3.27)

Thus, the ideal closed-loop system (3.17), (3.18), and (3.21)–(3.27) is given by

˙̃x∗(t) = Ã∗x̃∗(t) + B̃∗Φ(t) + Ẽ∗w(t), (3.28)

y∗(t) = C̃∗x̃∗(t), (3.29)

where

x̃∗(t) ,

x∗(t)

xc∗(t)

 ∈ Rn+m(d̄−d), (3.30)

and

Ã∗ ,

 A BCc∗

Bc∗ Ac∗

 ∈ R(n+m(d̄−d))×(n+m(d̄−d)), (3.31)

B̃∗ ,

0n+m(d̄−d−1)×m

H−1
d

 ∈ R(n+m(d̄−d))×m, (3.32)

Ẽ∗ ,

 In

0m(d̄−d)×n

 ∈ R(n+m(d̄−d))×n, (3.33)

C̃∗ ,
[
C 0m×m(d̄−d)

]
∈ Rm×(n+m(d̄−d)). (3.34)

Define the ideal performance z∗ , y∗ − ym. The following result characterizes

the stability and the performance of the ideal closed-loop system (3.28)–(3.34). This

26



result is an extension of Lemma 2.1 to address d̄ ≥ d.

Lemma 3.1. Consider the ideal closed-loop system (3.28)–(3.34), which consists

of (3.17), (3.19), and (3.21)–(3.27), and satisfies (A3.1), (A3.2), and (A3.4). Then,

the following statements hold:

(i) Let λ ∈ C. Then, det(λIn+m(d̄−d) − Ã∗)=0 if and only if det αm(λ)=0 or

det

λIn − A B

C 0m×m

 = 0.

(ii) Ã∗ is Hurwitz.

(iii) For all initial condition x̃∗(0) ∈ Rn+m(d̄−d), αm(p)y∗(t) = βm(p)r(t).

(iv) For all initial condition x̃∗(0) ∈ Rn+m(d̄−d), limt→∞ z∗(t) = 0 and
∫ ∞

0 zT
∗ (t)z∗(t)dt

exists.

Proof. We consider two cases: d̄ = d, and d̄ > d. First, assume d̄ = d. Then,

K0, Kx, and Φ are given by (3.14)–(3.16). Thus, (3.10) is equivalent to (2.9), and

(i)–(iv) follows from Lemma 2.1.

Next, assume d̄ > d. To show (i), let λ ∈ C, and define d̂ , d̄− d. Next, define

χ(λ) , (det Hd) det(λIn+md̂ − Ã∗), (3.35)

and

L ,



In 0n×m 0n×m . . . 0n×m 0n×m

0m×n Im 0m×m . . . 0m×m 0m×m

0m×n λIm Im 0m×m 0m×m

... ... . . . ...

0m×n λd̂−2Im λd̂−3Im Im 0m×m

0m×n λd̂−1Im λd̂−2Im . . . λIm Im



∈ R(n+md̂)×(n+md̂), (3.36)
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S ,


In 0n×m(d̂−1) 0n×m

0m×n 0m×m(d̂−1) Im

0m(d̂−1)×n Im(d̂−1) 0m(d̂−1)×m

 ∈ R(n+md̂)×(n+md̂), (3.37)

and note that det L = 1 and det S = (−1)m(d̂−1). Thus,

χ(λ) = (−1)m(d̂−1) (det S) (det Hd) (det(λIn+md̂ − Ã∗)) det L

= (−1)m(d̂−1) (det S)

det

 In+m(d̂−1) 0

0m×(n+m(d̂−1)) Hd




det

λIn − A −BCc∗

−Bc∗ λImd̂ − Ac∗




× det L

= (−1)m(d̂−1) det S

 In+m(d̂−1) 0

0m×(n+m(d̂−1)) Hd


λIn − A −BCc∗

−Bc∗ λImd̂ − Ac∗

L

= (−1)m(d̂−1) det S

 In+m(d̂−1) 0

0m×(n+m(d̂−1)) Hd



×



λIn − A −B 0n×m . . . 0n×m 0n×m

0m×n λIm −Im 0m×m 0m×m

0m×n 0m×m λIm 0m×m

... ... . . .

0m×n 0m×m 0m×m λIm −Im

−H−1
d Kx −H−1

d K0 −H−1
d K1 . . . −H−1

d Kd̂−2 λIm −H−1
d Kd̂−1



L

= (−1)m(d̂−1) det S



λIn − A −B 0n×m . . . 0n×m 0n×m

0m×n λIm −Im 0m×m 0m×m

0m×n 0m×m λIm 0m×m

... ... . . .

0m×n 0m×m 0m×m λIm −Im

−Kx −K0 −K1 . . . −Kd̂−2 −K̂1(λ)



L
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= (−1)m(d̂−1) det S



λIn − A −B 0n×m . . . 0n×m 0n×m

0m×n 0m×m −Im 0m×m 0m×m

0m×n 0m×m 0m×m 0m×m

... ... ... . . .

0m×n 0m×m 0m×m . . . 0m×m −Im

−Kx −K̂d̂(λ) −K̂d̂−1(λ) . . . −K̂2(λ) −K̂1(λ)



= (−1)m(d̂−1) det



λIn − A −B 0n×m . . . 0n×m 0n×m

−Kx −K̂d̂(λ) −K̂d̂−1(λ) . . . −K̂2(λ) −K̂1(λ)

0m×n 0m×m −Im 0m×m 0m×m

... ... . . . ...

0m×n 0m×m 0m×m −Im 0m×m

0m×n 0m×m 0m×m . . . 0m×m −Im



,

(3.38)

where for all i ∈
{
1, . . . , d̂

}
, K̂i(λ) ,

∑i
j=0 λ

i−jKd̂−j. Thus, it follows from (3.38)

that

χ(λ) = (−1)m(d̂−1)

det

λIn − A −B

−Kx −K̂d̂(λ)


 (det − Im(d̂−1))

= det

λIn − A −B

−Kx −K̂d̂(λ)



= det

 In 0n×m

0m×n −Im


λIn − A B

Kx −K̂d̂(λ)


 In 0n×m

0m×n −Im



= det

λIn − A B

Kx −K̂d̂(λ)



= det

 In 0n×m

Γ(λ) −αm(λ)


λIn − A B

C 0m×m
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= (−det αm(λ)) det

λIn − A B

C 0m×m

, (3.39)

where Γ(λ) , ∑d̄
i=1

∑i−1
j=0 λ

jαiCA
i−j−1. Therefore, (i) follows from (3.39).

Next, since the roots of det αm and the invariant zeros of (A,B,C) are contained

in the open-left-half complex plane, it follows from (i) that the eigenvalues of Ã∗ are

contained in the open-left-half complex plane, which confirms (ii).

To show (iii), it follows from (3.7) and (3.8) that 0 = ∑d̄
i=0 −αipiy∗ + ∑d̄−1

i=0 βipir,

which implies that αm(p)y∗ = βm(p)r, and thus confirms (iii).

To show (iv), subtracting (3.5) from αm(p)y∗ = βm(p)r yields αm(p)[y∗ −ym] = 0,

which implies that αm(p)z∗ = 0. Since the roots of det αm are contained in the open-

left-half complex plane, it follows that limt→∞ z∗(t) = 0 and
∫ ∞

0 zT
∗ (t)z∗(t)dt exists,

which confirms (iv).

3.3 Filtered Dynamic Inversion

In this section, we present the FDI controller that requires only an upper bound on

the relative degree. The IDI control (3.10)–(3.13) relies on the knowledge of the plant

parameters A, B, and C as well as measurements of x and w. Since this information

is not assumed to be known, the IDI control cannot be implemented. Thus, we use a

linear filter to construct the FDI control, which is implementable and approximates

the IDI control.

For all j ∈ N, let Fj ≥ 0 be the jth Fibonacci number, where F0 = 0, F1 = 1, F2 =

1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, . . . , and define fh , Fρ+1 − Fh+1. Next, define

ηk(s) , ηρs
ρ + kfρ−1ηρ−1s

ρ−1 + ...+ kf1η1s+ kFρ+1η0, (3.40)
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where η1, . . . , ηρ−1 ∈ R, ηρ = 1, and η0 ≥ 1. Define the transfer function

∆k(s) ,
η̄k(s)
ηk(s)

, (3.41)

where

η̄k(s) , ηρs
ρ−1 + kfρ−1ηρ−1s

ρ−2 + ...+ kf2η2s+ kf1η1. (3.42)

Note that for all k ≥ 0, ∆k is well defined, that is, ηk(s) 6≡ 0. Next, consider the

following condition:

(C3.1) If ρ = 1, then η1s+ η0 is Hurwitz. If ρ = 2, then η2s
2 + η1s+ η0 is Hurwitz.

If ρ ∈ {3, 4, 5, ..., }, then for all i ∈ {0, 1, ..., ρ− 3} the polynomials

Ni(s) , ηi+3s
3 + ηi+2s

2 + ηi+1s+ η0 (3.43)

are Hurwitz.
If ηk satisfies (C3.1), then it follows from [23, Lemma 6.1] that there exists k0 > 0

such that for all k > k0, ηk is Hurwitz. Next, consider the following condition:

(C3.2) For all ε > 0 there exists kε > k0 such that for all k > kε,

γk , sup
ω∈R

|∆k(ω)| < ε. (3.44)

Condition (C3.2) states that for sufficiently large k, the H∞ norm of ∆k is arbi-

trarily small. Next, we present examples for ρ = 1, ρ = 2, ρ = 3, and ρ = 4 that

satisfy (C3.1) and(C3.2).

Example 3.1. Let ρ = 1, and consider ηk(s) = s + k, which satisfies (C3.1). It

follows from (3.41) and (3.42) that ∆k(s) = 1/(s+ k). Thus, γk = supω∈R |∆k(ω)| =

|∆k(0)| = 1/k, which satisfies (C3.2). 4
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Example 3.2. Let ρ = 2, and consider ηk(s) = (s + k)2, which satisfies (C3.1).

It follows from (3.41) and (3.42) that ∆k(s) = (s + 2k)/(s + k)2. Thus, γk =

supω∈R |∆k(ω)| = |∆k(0)| = 2/k, which satisfies (C3.2). 4

Example 3.3. Let ρ = 3, and consider ηk(s) = s3 + 6ks2 + 3k2s + k3, which

satisfies (C3.1). It follows from (3.41) and (3.42) that ∆k(s) = (s2 + 6ks+ 3k2)/(s3 +

6ks2 +3k2s+k3). Thus, |∆k(ω)|2 = (ω4 +30k2ω2 +9k4)/(ω6 +30k2ω4 −3k4ω2 +k6).

Taking the derivative of |∆k(ω)|2 with respect to ω yields

d
dω (|∆k(ω)|2) = 2ω(−ω8 − 60k2ω6 − 930k4ω4 − 538k6ω2 + 57k8)

(ω6 + 30k2ω4 − 3k4ω2 + k6)2 . (3.45)

Thus, d
dω (|∆k(ω)|2) = 0 if ω ∈ {0, 0.3024k}. Next, taking the second derivative

of |∆k(ω)|2 with respect to ω implies that |∆k(ω)|2 is maximized at ω = 0.3024k.

Thus, γk = supω∈R |∆k(ω)| = |∆k(0.3024k)| = 3.4676/k, which satisfies (C3.2). 4

Example 3.4. Let ρ = 4, and consider ηk(s) = s4+2k2s3+4k3s2+2k4s+k5, which

satisfies (C3.1). It follows from (3.41) and (3.42) that ∆k(s) = (s3 + 2k2s2 + 4k3s +

2k4)/(s4 +2k2s3 +4k3s2 +2k4s+k5). Thus, |∆k(ω)|2 = (ω6 + (4k4 − 8k3)ω4 + 8k6ω2

+4k8)/(ω8 + (4k4 − 8k3)ω6 + (8k6 + 2k5)ω4 − 4k8ω2 + k10). Taking the derivative of

|∆k(ω)|2 with respect to ω yields

d
dω (|∆k(ω)|2) = a(ω)

(ω8 + (4k4 − 8k3)ω6 + (8k6 + 2k5)ω4 − 4k8ω2 + k10)2 , (3.46)

where

a(ω) ,2ω(−ω12 − 8(k − 2)k3ω10 + 2(1 − 8k((k − 4)k + 5))k5ω8

− 8(8(k − 2)k + 3)k8ω6 + (16(7 − 8k)k + 3)k10ω4 − 8(7k + 4)k13ω2 + 24k16).

(3.47)

Thus, d
dω (|∆k(ω)|2) = 0 if ω ∈ {0, 0.5189k}. Next, taking the second derivative
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of |∆k(ω)|2 with respect to ω implies that |∆k(ω)|2 is maximized at ω = 0.5189k.

Thus, γk = supω∈R |∆k(ω)| = |∆k(0.5189k)| = 3.198/k, which satisfies (C3.2). 4

Examples 3.1–3.4 provide constructions of ηk that satisfy (C3.1) and (C3.2) for

ρ ∈ {1, 2, 3, 4}. We conjecture that for all ρ ≥ 1, if (C3.1) is satisfied, then (C3.2) is

satisfied. However, a proof of this conjecture is open.

To derive the FDI control, consider the control u that satisfies

ηk(p)u = ηk(0)u∗(x, u, . . . ,pd̄−du,Φ), (3.48)

where u∗(x, u, . . . ,pd̄−du,Φ) is given by (3.10)–(3.13). The transfer function from u∗

to u is given by

ζk(s) ,
ηk(0)
ηk(s)

Im = (I − s∆k(s))Im, (3.49)

which is a low-pass filter. It follows from (C3.2) that as k tends to infinity, the cutoff

frequency of ζk tends to infinity, suggesting that u approximates u∗(x, u, . . . ,pd̄−du,Φ)

for sufficiently large k.

To express (3.48) as an implementable control, it follows from (3.9) that

u∗ = u−Hd
−1[αm(p)y − βm(p)r]. (3.50)

Substituting (3.50) into (3.48) yields the FDI controller

pη̄k(p)u(t) = kFρ+1η0Hd
−1[βm(p)r(t) − αm(p)y(t)]. (3.51)

The controller (3.51) is a dynamic output-feedback controller, which uses y for feed-

back, r for feedforward, and can be implemented for k > k0 using knowledge of only

Hd as well as the design parameters αm, βm, and ηk.
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The transfer function from
[
yT rT

]T
to u is given by

Gc(s) ,
kFρ+1η0

sη̄k(s)
Hd

−1
[
−αm(s) βm(s)

]
. (3.52)

which characterizes the forced response of (3.51). Next, for all k > k0, let Gc have

the ρm-order state-space realization

ẋc(t) = Acxc(t) +Bcy(t) + Ecr(t), (3.53)

u(t) = Ccxc(t) +Dcy(t), (3.54)

where xc ∈ Rρm, and for all k > k0, Ac ∈ Rρm×ρm, Bc ∈ Rρm×m, Cc ∈ Rm×ρm,

Dc ∈ Rm×m, and Ec ∈ Rρm×m. To demonstrate that such a realization exists, consider

the block-observable realization

Ac =



−kfρ−1ηρ−1 1 0 . . . 0

−kfρ−2ηρ−2 0 1 0
... ... . . .

−kf1η1 0 0 1

0 0 0 . . . 0


⊗ Im ∈ Rρm×ρm, (3.55)

Bc =



−kFρ+1η0H
−1
d αρ−1 − kfρ−1ηρ−1Dc

...

−kFρ+1η0H
−1
d α1 − kfρ−1η1Dc

−kFρ+1η0H
−1
d α0


∈ Rρm×m, (3.56)

Ec =



0(ρ−d̄)m×m

−kFρ+1η0H
−1
d βd̄−1

...

−kFρ+1η0H
−1
d β0


∈ Rρm×m, (3.57)
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Cc =
[
1 01×ρ−1

]
⊗ Im ∈ Rm×ρm, (3.58)

Dc = −kFρ+1η0H
−1
d αρ ∈ Rm×m, (3.59)

where ⊗ is the Kronecker product and αd̄+1 = αd̄+2 = · · · = 0m×m.

The closed-loop system (3.1), (3.2) and (3.53)–(3.59) is given by

˙̃x(t) = Ãx̃(t) + B̃w(t) + Ẽr(t), (3.60)

y(t) = C̃x̃(t), (3.61)

where

x̃(t) ,

 x(t)

xc(t)

 ∈ Rn+ρm, (3.62)

and

Ã ,

A+BDcC BCc

BcC Ac

 ∈ R(n+ρm)×(n+ρm), B̃ ,

 In

0ρm×n

 ∈ R(n+ρm)×n, (3.63)

Ẽ ,

0n×m

Ec

 ∈ R(n+ρm)×m, C̃ ,
[
C 0m×ρm

]
∈ Rm×(n+ρm). (3.64)

The following result characterizes the stability of the closed-loop system (3.60)–(3.64)

for the case where the open-loop system (3.1) and (3.2) is SISO (i.e., m = 1).

Theorem 3.1. Consider the closed-loop system (3.60)–(3.64), which consists of

(3.1), (3.2), and (3.53)–(3.59), where (A3.1)–(A3.5) are satisfied, ηk satisfies (C3.1)

and (C3.2), and m = 1. Then, there exists ks > k0 such that for all k > ks, Ã is

Hurwitz.

Proof. Let P and Q be coprime polynomials such that P (s)/Q(s) = C(sIn −
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A)−1B. The transfer function from r to y is

G̃yr(s) ,
kFρ+1η0H

−1
d P (s)βm(s)
Q̃(s)

, (3.65)

and the transfer function from w to y is

G̃yw(s) , Q(s)sη̄k(s)C(sIn − A)−1

Q̃(s)
, (3.66)

where

Q̃(s) , Q(s)sη̄k(s) + kFρ+1η0H
−1
d P (s)αm(s). (3.67)

Next, it follows from (3.42) that

Q̃(s) = Q(s)sρ + kfρ−1ηρ−1Q(s)sρ−1 + · · · + kf1η1Q(s)s+ kFρ+1η0H
−1
d P (s)αm(s).

(3.68)

Note that (A3.2) implies that the roots of P are contained in the open-left-half

complex plane. Since αm(p) is Hurwitz,it follows from [23, Lemma 6.1] that there

exists ks > k0 such that for all k > ks, the roots of Q̃ are contained in the open-left-

half complex plane. Finally, since the eigenvalues of Ã coincide with the roots of Q̃,

it follows that for all k > ks, Ã is Hurwitz.
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Chapter 4
Numerical Simulations

In this chapter, we present numerical simulations demonstrating the filtered-

dynamic-inversion (FDI) control for unknown relative degree. We demonstrate that

the performance z is made small by sufficiently large choice of k.

4.1 Numerical Simulations of Mathematical Examples

In this section, we simulate single-input single-output (SISO) systems and a multi-

input multi-output (MIMO) system with FDI controller (3.53)–(3.59) implemented

in feedback. We demonstrate stabilization, command following, and disturbance

rejection. We compare the performance z for different parameters of k for each

example.

4.1.1 Single Integrator, Double Integrator and Triple Integrator

Consider the single integrator

ẏ(t) = u(t) + µ(t), (4.1)
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where t ≥ 0, y(t) ∈ R is the measured output, u(t) ∈ R is the control, µ(t) ∈ R is

the unknown and unmeasured disturbance. It follows that (4.1) can be expressed as

(3.1) and (3.2), where

x(t) , y(t), w(t) , µ(t), (4.2)

and

A , 0, B , 1, C , 1. (4.3)

Note that the relative degree d = 1, and the first nonzero Markov parameter is given

by Hd = CB = 1. Also, (A3.1), (A3.2), and (A3.4) are satisfied.

Next, consider the double integrator

ÿ(t) = u(t) + µ(t), (4.4)

where t ≥ 0, y(t) ∈ R is the measured output, u(t) ∈ R is the control, µ(t) ∈ R is

the unknown and unmeasured disturbance. It follows that (4.4) can be expressed as

(3.1) and (3.2), where

x(t) ,

y(t)

ẏ(t)

, w(t) ,

0

1

µ(t), (4.5)

and

A ,

0 1

0 0

, B ,

0

1

, C ,
[
1 0

]
. (4.6)

Note that the relative degree d = 2, and the first nonzero Markov parameter is given

by Hd = CB = 1. Also, (A3.1), (A3.2), and (A3.4) are satisfied.
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Finally, consider the triple integrator

...
y (t) = u(t) + µ(t), (4.7)

where t ≥ 0, y(t) ∈ R is the measured output, u(t) ∈ R is the control, µ(t) ∈ R is

the unknown and unmeasured disturbance. It follows that (4.7) can be expressed as

(3.1) and (3.2), where

x(t) =


y(t)

ẏ(t)

ÿ(t)

, w(t) ,


0

0

1

µ(t), (4.8)

and

A ,


0 1 0

0 0 1

0 0 0

, B ,


0

0

1

, C ,
[
1 0 0

]
. (4.9)

Note that the relative degree d = 3, and the first nonzero Markov parameter is given

by Hd = CB = 1. Also, (A3.1), (A3.2), and (A3.4) are satisfied.

The objective is to design an FDI controller to control the single integrator (4.1),

the double integrator (4.4), and the triple integrator (4.7). The upper bound on the

relative degree is d̄ = 3. We select the reference-model polynomials

αm(p) = (p + 5)3, βm(p) = 125. (4.10)

Next, let ρ = 4 > d̄, and let

ηk(s) , s4 + 2k2s3 + 4k3s2 + 2k4s+ k5, (4.11)
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which satisfies (C3.1) and (C3.2). We select the initial condition of the FDI controller

(3.53)–(3.59) as xc(0) = 0.

Example 4.1. SISO, stabilization, disturbance free, and no command following.

Consider the single integrator (4.1), the double integrator (4.4), and the triple inte-

grator (4.7). The disturbance is identically 0 (i.e., w = 0). The control objective is

to stabilize the the single integrator (4.1), the double integrator (4.4), and the triple

integrator (4.4).

First, we stabilize the single integrator. The initial condition is x(0) = −5.

The FDI controller (3.53)–(3.59) is implemented in feedback, where ηk is given by

(4.11) and k = 2.9, which is close to but greater than the minimum stabilizing value

k = 2.69. We also consider k = 3.1 and k = 5. The closed-loop system consists of

the single integrator (3.1)–(3.2) and (4.2)–(4.3); and the FDI controller (3.53)–(3.59),

which consists of (4.11), where k ∈ {2.9, 3.1, 5}. Figure 4.1 shows the time history

of y and u. We observe that by increasing k the time it takes y to converge to the

origin decreases.

Next, we stabilize the double integrator. The initial condition is

x(0) =

−5

0

. (4.12)

The FDI controller (3.53)–(3.59) is implemented in feedback, where ηk is given by

(4.11) and k = 9, which is close to but greater than the minimum stabilizing value

k = 8.45. We also consider k = 10 and k = 14. The closed-loop system consists of the

double integrator (3.1)–(3.2) and (4.5)–(4.6); and the FDI controller (3.53)–(3.59),

which consists of (4.11), where k ∈ {9, 10, 14}. Figure 4.2 shows the time history of

y and u. Similar to the single integrator, increasing k tends to improve performance.
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Figure 4.1: The FDI controller (3.53)–(3.59), where k ∈ {2.9, 3.1, 5}, is implemented in
feedback with the single integrator (4.1)–(4.3). By increasing k, the time it takes y to
converge to the origin decreases.
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Figure 4.2: The FDI controller (3.53)–(3.59), where k ∈ {9, 10, 14}, is implemented in
feedback with the double integrator (4.4)–(4.6). By increasing k, the time it takes y to
converge to the origin decreases.
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Finally, we stabilize the triple integrator. The initial condition is

x(0) =


−5

0

0

. (4.13)

The FDI controller (3.53)–(3.59) is implemented in feedback, where ηk is given by

(4.11) and k = 47, which is close to but greater than the minimum stabilizing value

k = 46.2. We also consider k = 50 and k = 55. The closed-loop system consists of

the triple integrator (3.1)–(3.2) and (4.8)–(4.9); and the FDI controller (3.53)–(3.59),

which consists of (4.11), where k ∈ {47, 50, 55}. Figure 4.3 shows the time history of

y and u. Similar to the single integrator and double integrator, increasing k tends to

improve performance. Thus, we have designed a controller capable of stabilizing the

single, double, and triple integrator. 4
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Figure 4.3: The FDI controller (3.53)–(3.59), where k ∈ {47, 50, 55}, is implemented in
feedback with the triple integrator (4.7)–(4.9). By increasing k, the time it takes y to
converge to the origin decreases.
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Example 4.2. SISO, command following, and disturbance free. Consider the

single integrator (4.1), the double integrator (4.4), and the triple integrator (4.7). The

disturbance is identically 0 (i.e., w = 0). The control objective is to force the output y

to follow the reference output ym of the reference model (3.5). The reference command

is a series of step inputs which are passed through the filter Gr(s) = 103/(s + 10)3,

which makes the reference d̄ times differentiable and r,pr, . . . ,pd̄r are bounded.

First, we control the single integrator. The initial condition is x(0) = 0. The

closed-loop system consists of the single integrator (3.1)–(3.2) and (4.2)–(4.3); and

the FDI controller (3.53)–(3.59), which consists of (4.11), where k ∈ {3, 4, 9}. Figure

4.4 shows the time history of y, ym, z, and u.

Next, we control the double integrator. The initial condition is x(0) = 0. The

closed-loop system consists of the double integrator (3.1)–(3.2) and (4.5)–(4.6); and

the FDI controller (3.53)–(3.59), which consists of (4.11), where k ∈ {10, 15, 30}.

Figure 4.5 shows the time history of y, ym, z, and u.

Finally, we control the triple integrator. The initial condition of the open-loop

system of the triple integrator is x(0) = 0. The closed-loop system consists of the

triple integrator (3.1)–(3.2) and (4.8)–(4.9); and the FDI controller (3.53)–(3.59),

which consists of (4.11), where k ∈ {50, 70, 100}. Figure 4.6 shows the time history

of y, ym, z, and u.

We observe in Figure 4.4, Figure 4.5, and Figure 4.6, that y follows ym with a

small nonzero asymptotic error. We also observe that increasing k tends to improve

the performance z. 4
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Figure 4.4: The FDI controller (3.53)–(3.59), where k ∈ {3, 4, 9}, is implemented in feedback
with the single integrator (4.1)–(4.3). The command r is a series of steps passed through a
filter Gr(s) = 103/(s + 10)3. The average power of performance z decreases with increase
of k.
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Figure 4.5: The FDI controller (3.53)–(3.59), where k ∈ {10, 15, 30}, is implemented in
feedback with the double integrator (4.4)–(4.6). The command r is a series of steps passed
through a filter Gr(s) = 103/(s + 10)3. The average power of performance z decreases with
increase of k.
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Figure 4.6: The FDI controller (3.53)–(3.59), where k ∈ {50, 70, 100}, is implemented in
feedback with the triple integrator (4.7)–(4.9). The command r is a series of steps passed
through a filter Gr(s) = 103/(s + 10)3. The average power of performance z decreases with
increase of k.

Example 4.3. SISO, command following, and white-noise disturbance. Con-

sider the single integrator (4.1), double integrator (4.4), and triple integrator (4.7).

The control objective is to force the output y to follow the reference output ym

in the presence of zero-mean 20-variance Gaussian white-noise distribution. The

reference command is a series of step inputs, which are passed through the filter

Gr(s) = 103/(s + 10)3. The initial conditions of the open-loop systems are the same

as Example 4.2.

First, we control the single integrator. The FDI controller (3.53)–(3.59), where

ηk is given by (4.11) and k ∈ {3, 4, 9, 30}, is implemented in feedback with the single

integrator. Figure 4.7 shows the time history of y, ym, z, and u. By comparing

Figure 4.7 with Figure 4.4, we observe that the performance z degrades slightly in

comparison to the disturbance free case. By increasing k to 30, the performance z

improves.
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Figure 4.7: The FDI controller (3.53)–(3.59), where k ∈ {3, 4, 9, 30}, is implemented in
feedback with the single integrator (4.1)–(4.3) with white-noise disturbance. The command
r is a series of steps passed through the filter Gr(s) = 103/(s + 10)3. The performance z
degrades with the introduction of disturbance in comparison to the performance in Figure
4.4. By increasing k to 30, the performance improves.

Next, we control the double integrator. The FDI controller (3.53)–(3.59), where

ηk is given by (4.11) and k ∈ {10, 15, 30, 80}, is implemented in feedback with the

double integrator. Figure 4.8 shows the time history of y, ym, z, and u. By comparing

Figure 4.8 with Figure 4.5, the performance z degrades slightly in comparison to the

disturbance free case. By increasing k to 80, the performance z improves.

Finally, we control the triple integrator. The FDI controller (3.53)–(3.59), where

ηk is given by (4.11) and k ∈ {50, 70, 100, 200}, is implemented in feedback with the

triple integrator. Figure 4.9 shows the time history of y, ym, z, and u. By comparing

Figure 4.9 with Figure 4.6, we observe that the performance z degrades slightly in

comparison to the disturbance free case. By increasing k to 200, the performance z

improves. 4
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Figure 4.8: The FDI controller (3.53)–(3.59), where k ∈ {10, 15, 30, 80}, is implemented in
feedback with the double integrator (4.4)–(4.6) with white-noise disturbance. The command
r is a series of steps passed through the filter Gr(s) = 103/(s + 10)3. The performance z
degrades with the introduction of disturbance in comparison to the performance in Figure
4.5. By increasing k to 80, the performance improves.
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Figure 4.9: The FDI controller (3.53)–(3.59), where k ∈ {50, 70, 100, 200}, is implemented in
feedback with the triple integrator (4.7)–(4.9) with white-noise disturbance. The command
r is a series of steps passed through the filter Gr(s) = 103/(s + 10)3. The performance z
degrades with the introduction of disturbance in comparison to the performance in Figure
4.6. By increasing k to 200, the performance improves.
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4.1.2 Multi-Input Multi-Output Example

In this section, we simulate a MIMO system with FDI control for unknown relative

degree implemented in feedback. We demonstrate that the performance z improves

as k is increased.

Consider (3.1) and (3.2), where

x(t) ,



x1(t)

x2(t)
...

x6(t)


, u(t) ,

u1(t)

u2(t)

, w(t) ,



ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)


, (4.14)

and

A ,



−1 0 0 0 0 0

0 −4 −1.5 0 0 0

0 2 0 0 0 0

0 0 0 −5 −3 0

0 0 0 2 0 0

0 0 0 0 0 −2



. (4.15)

We consider several different choices of B and C (e.g., different sensor and actuator
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placements). First, consider

B ,



1 0

0 0

0 0

0 0

0 0

0 1



, C ,

1 0 0 0 0 0

0 0 0 0 0 1

. (4.16)

In this case, d = 1, and the first nonzero Markov parameter is Hd = CB = I2. Also,

(A3.1), (A3.2), and (A3.4) are satisfied. Next, consider

B ,



0 0

1 0

0 0

0 1

0 0

0 0



, C ,

0 0 0.5 0 0 0

0 0 0 0 0.5 0

. (4.17)

In this case, d = 2, and the first nonzero Markov parameter is Hd = CAB = I2. Also,

(A3.1), (A3.2), and (A3.4) are satisfied.

The objective is to design an FDI controller to control the MIMO system (3.1),

(3.2), (4.14), and (4.15), where B and C could be either of the choices above, which

have different relative degree. Note that the upper bound on the relative degree is

d̄ = 2. We select the reference-model polynomials as

αm(p) = (p + 5)2, βm(p) = 25. (4.18)
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Next, let ρ = 3 > d̄, and let

ηk(s) , s3 + 4k2s2 + 2k2s+ k3, (4.19)

which satisfies (C3.1) and (C3.2). The initial conditions are x(0) = 0 and xc(0) = 0.

Example 4.4. MIMO, command following and disturbance free. Consider the

MIMO system (3.1), (3.2), and (4.14)–(4.16), where the relative degree is d = 1. Also,

consider the MIMO system (3.1), (3.2), (4.14), (4.15), and (4.17), where the relative

degree is d = 2. The disturbances are identically 0 (i.e., ψ1 = ψ2 = ψ3 = ψ4 = 0).

The control objective is to force the ouput y to follow the reference output ym of the

reference model (3.5). The reference-model command is r =
[
r1 r2

]T
, where r1 is

a sequence of steps, which are passed through the filter Gr(s) = 102/(s + 10)2, and

r2(t) = 0.3 sin 2πt.

The FDI controller, where k ∈ {5, 6, 8}, is implemented in feedback with the

MIMO system, where B and C are given by (4.16). Figure 4.10 shows the time

history of y, ym, z, and u. We notice that y follows ym with a small but noticeable

error. By increasing k, the average power of the performance decreases.

Next, the FDI controller, where k ∈ {15, 20, 30}, is implemented in feedback with

the MIMO system, where B and C are given by (4.17). Figure 4.11 shows the time

history of y, ym, z, and u. We notice that y follows ym with a small but noticeable

error. By increasing k, the average power of the performance z decreases. 4
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Figure 4.10: The FDI controller (3.53)–(3.59), where k ∈ {5, 6, 8}, is implemented in feed-
back with the MIMO system (4.14)–(4.16). In this case, d = 1. There is a noticeable error
between y and ym. By increasing k, the average power of the performance is reduced.
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Figure 4.11: The FDI controller (3.53)–(3.59), where k ∈ {15, 20, 30}, is implemented in
feedback with the MIMO system (4.14), (4.15), and (4.17). In this case, d = 2. There is a
noticeable error between y and ym. By increasing k, the average power of the performance
is reduced.
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Example 4.5. MIMO, command following, and white-noise disturbance. Con-

sider the MIMO system (3.1), (3.2), and (4.14)–(4.16), where the relative degree

is d = 1. Also, consider the MIMO system (3.1), (3.2), (4.14), (4.15), and (4.17),

where the relative degree is d = 2. The disturbances ψ1, ψ2, ψ3, and ψ4, are gen-

erated from independent zero-mean 20-variance Gaussian white-noise distributions.

The control objective is to force the ouput y to follow the reference output ym of the

reference model (3.5). The reference-model command is r =
[
r1 r2

]T
, where r1 is

a sequence of steps, which are passed through the filter Gr(s) = 102/(s + 10)2, and

r2(t) = 0.3 sin 2πt.

The FDI controller, where k ∈ {5, 6, 8, 20}, is implemented in feedback with the

MIMO system, where B and C are given by (4.16). Figure 4.12 shows the time his-

tory of y, ym, z, and u. By comparing Figure 4.12 with Figure 4.10, we observe that

the performance z degrades slightly in comparison to the disturbance free case. By

increasing k to 20, the performance z improves.

Next, the FDI controller, and where k ∈ {15, 20, 30, 100}, is implemented in feed-

back with the MIMO system, where B and C are given by (4.17). Figure 4.13 shows

the time history of y, ym, z, and u. By comparing Figure 4.13 with Figure 4.11, we

observe that the performance z degrades slightly in comparison to the disturbance

free case. By increasing k to 100, the performance z improves. 4
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Figure 4.12: The FDI controller (3.53)–(3.59), where k ∈ {5, 6, 8, 20}, is implemented in
feedback with the MIMO system (4.14)–(4.16). In this case, d = 1. The performance z
degrades slightly in comparison to the disturbance free case, which is shown in Figure 4.10.
By increasing k to 20, the performance z improves.

54



-0.5

0

0.5

-0.5

0

0.5

-0.2

0

0.2

-0.2

0

0.2

-10

0

10

0 10 20

-20

0

20

0 10 20 0 10 20 0 10 20

Figure 4.13: The FDI controller (3.53)–(3.59), where k ∈ {15, 20, 30, 100}, is implemented
in feedback with the MIMO system (4.14), (4.15), and (4.17). In this case, d = 2. The
performance z degrades slightly in comparison to the disturbance free case, which is shown
in Figure 4.11. By increasing k to 100, the performance z improves.
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4.2 Numerical Simulations of Physical Examples

4.2.1 Serially Connected Mass-Spring-Damper System (SISO)

Figure 4.14: A serially connected four-mass structure.

Consider the serially connected four mass-spring-damper system shown in Figure

4.14, which has the equation of motion

M0q̈(t) + C0q̇(t) +K0q(t) =
[
v1(t) v2(t) v3(t) v4(t)

]T

+
[
ψ1(t) ψ2(t) ψ3(t) ψ4(t)

]T
, (4.20)

where

q(t) ,



q1(t)

q2(t)

q3(t)

q4(t)


, (4.21)

and

M0 ,



m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4


, (4.22)
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C0 ,



c1 + c2 −c2 0 0

−c2 c2 + c3 −c3 0

0 −c3 c3 + c4 −c4

0 0 −c4 c4


, (4.23)

K0 ,



k1 + k2 −k2 0 0

−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4

0 0 −k4 −k4


. (4.24)

The masses are m1 = 1 kg and m2 = m3 = m4 = 2 kg; the damping coefficients are

c1 = c2 = c3 = c4 = 2 kg/s; the spring coefficients are k1 = 2 kg/s2, k2 = 4 kg/s2,

k3 = 1 kg/s2, and k4 = 3 kg/s2; v1, v2, v3, and v4 are the control forces acting on the

first, the second, the third, and the fourth mass respectively; and ψ1, ψ2, ψ3, and ψ4

are the disturbance forces acting on the first, the second, the third, and the fourth

mass. It follows that (4.24) with u(t) = v1(t) can be expressed as (3.1), where

x(t) ,

q(t)
q̇(t)

, w(t) ,



04×1

−M−1
0



ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)




, (4.25)
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and

A ,

 04×4 I4

−M−1
0 K0 −M−1

0 C0

, B ,



04×1

−M−1
0



1

0

0

0




. (4.26)

We consider several different choices of C (sensor placements). First, consider

C ,
[
1 01×7

]
. (4.27)

The output is the position q1 of the first mass. In this case, d = 2, and the first

nonzero Markov parameter is Hd = CAB = 1. Also, (A3.1), (A3.2), and (A3.4) are

satisfied. Next, consider

C ,
[
0 1 01×6

]
. (4.28)

The output is the position q2 of the second mass. In this case, d = 3, and the first

nonzero Markov parameter is given by Hd = CA2B = 1. Also, (A3.1), (A3.2), and

(A3.4) are satisfied. Next, consider

C ,
[
0 0 1 01×5

]
. (4.29)

The output is the position q3 of the third mass. In this case, d = 4, and the first

nonzero Markov parameter is given by Hd = CA3B = 1. Also, (A3.1), (A3.2), and

(A3.4) are satisfied. Finally, consider

C ,
[
0 0 0 1 01×4

]
. (4.30)
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The output is the position q4 of the fourth mass. In this case, d = 5, and the first

nonzero Markov parameter is given by Hd = CA4B = 1. Also, (A3.1), (A3.2), and

(A3.4) are satisfied.

The objective is to design an FDI controller for the mass-spring-damper system

(4.20)–(4.24), which can be expressed as (3.1), (3.2), (4.25), and (4.26), and where

C could be any of the above choices, which have different relative degree. Note that

the upper bound on the relative degree is d̄ = 5. We select the reference-model

polynomials as

αm(p) = (p + 5)5, βm(p) = 55. (4.31)

Note that the reference model transfer function (3.5) has unity gain at dc. Next, let

ρ = 5 = d̄, and let

ηk(s) , s5 + 12k3s4 + 6k5s3 + 12k6s2 + 6k7s+ 3k8, (4.32)

which satisfies (C3.1) and (C3.2) The initial condition are x(0) = 0 and xc(0) = 0.

Example 4.6. SISO, disturbance free, and stable mass-spring-damper system with

command following and disturbance free. Consider the mass-spring-damper system

shown in Figure 4.14. The disturbances are identically 0 (i.e., ψ1 = ψ2 = ψ3 =

ψ4 = 0). The control objective is to force y to follow the output ym of the reference

model (3.5). The reference-model command r is a sequence of steps, which are passed

through the filter Gr(s) = 105/(s+ 10)5.

The FDI controller, where k ∈ {3, 4, 6}, is implemented in feedback with the

mass-spring-damper system, where C is given by (4.27). The parameter k = 3 is

selected near but above the minimum stabilizing value of approximately 1.9. Figure

4.15 shows the time history of y, ym, z, and u.
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Next, the FDI controller, where k ∈ {8, 12, 20}, is implemented in feedback with

the mass-spring-damper system, where C is given by (4.28). The parameter k = 8 is

selected near but above the minimum stabilizing value of approximately 6.6. Figure

4.16 shows the time history of y, ym, z, and u.

Next, the FDI controller, where k ∈ {20, 30, 50}, is implemented in feedback with

the mass-spring-damper system, where C is given by (4.29). The parameter k = 20 is

selected near but above the minimum stabilizing value of approximately 19.6. Figure

4.17 shows the time history of y, ym, z, and u.

Finally, the FDI controller, where k ∈ {65, 80, 110}, is implemented in feedback

with the mass-spring-damper system, where C is given by (4.30). The parameter

k = 65 is selected near but above the minimum stabilizing value of approximately

60.3. Figure 4.18 shows the time history of y, ym, z, and u.

By observing Figure 4.15, Figure 4.16, Figure 4.17, and Figure 4.18, we notice

that y follows ym with a small but noticeable error. By increasing k, the average

power of performance decreases. 4
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Figure 4.15: The FDI controller (3.53)–(3.59), where k ∈ {3, 4, 6}, is implemented in feed-
back with the mass-spring-damper system (4.25)–(4.27). In this case, d = 2. By increasing
k, the average power of the performance z decreases.
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Figure 4.16: The FDI controller (3.53)–(3.59), where k ∈ {8, 12, 20}, is implemented in
feedback with the mass-spring-damper system (4.25), (4.26), and (4.28). In this case, d = 3.
By increasing k, the average power of the performance z decreases.
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Figure 4.17: The FDI controller (3.53)–(3.59), where k ∈ {20, 30, 50}, is implemented in
feedback with the mass-spring-damper system (4.25), (4.26), and (4.29). In this case, d = 4.
By increasing k, the average power of the performance z decreases.
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Figure 4.18: The FDI controller (3.53)–(3.59), where k ∈ {65, 80, 110}, is implemented in
feedback with the mass-spring-damper system (4.25), (4.26), and (4.30). In this case, d = 5.
By increasing k, the average power of the performance z decreases.
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Example 4.7. SISO and stable mass-spring-damper system, with command fol-

lowing and white-noise disturbance. Consider the mass-spring-damper system (4.20)

shown in Figure 4.14. The disturbances ψ1, ψ2, ψ3, and ψ4, are generated from in-

dependent zero-mean 20-variance Gaussian white-noise distributions. The control

objective is to force y to follow the output ym of the reference model (3.5). The

reference-model command r is a sequence of steps, which are passed through the fil-

ter Gr(s) = 105/(s+ 10)5.

The FDI controller, where k ∈ {3, 4, 6, 10}, is implemented in feedback with the

four mass-spring-damper system, where C is given by (4.27). Figure 4.19 shows the

time history of y, ym, z, and u. By comparing Figure 4.19 with Figure 4.15, we

observe that the performance z degrades slightly in comparison to the disturbance

free case. By increasing k to 10, the performance z improves.

Next, the FDI controller, where k ∈ {8, 12, 20, 40}, is implemented in feedback

with the four mass-spring-damper system, where C is given by (4.28). Figure 4.20

shows the time history of y, ym, z, and u. By comparing Figure 4.20 with Figure 4.16,

we observe that the performance z degrades slightly in comparison to the disturbance

free case. By increasing k to 40, the performance z improves.

Next, the FDI controller, where k ∈ {20, 30, 50, 90}, is implemented in feedback

with the four mass-spring-damper system, where C is given by (4.29). Figure 4.21

shows the time history of y, ym, z, and u. By comparing Figure 4.21 with Figure 4.17,

we observe that the performance z degrades slightly in comparison to the disturbance

free case. By increasing k to 90, the performance z improves.

Finally, the FDI controller, where k ∈ {65, 80, 110, 160}, is implemented in feed-

back with the four mass-spring-damper system, where C is given by (4.30). Figure

4.22 shows the time history of y, ym, z, and u. By comparing Figure 4.22 with Fig-

ure 4.18, we observe that the performance z degrades slightly in comparison to the

disturbance free case. By increasing k to 160, the performance z improves. 4
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Figure 4.19: The FDI controller (3.53)–(3.59), where k ∈ {3, 4, 6, 10}, is implemented in
feedback with the mass-spring-damper system (4.25)–(4.27). In this case, d = 2. In com-
parison to Figure 4.15, the performance z degrades slightly. By increasing k to 10, the
performance z improves.
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Figure 4.20: The FDI controller (3.53)–(3.59), where k ∈ {8, 12, 20, 40}, is implemented
in feedback with the mass-spring-damper system (4.25), (4.26), and (4.28). In this case,
d = 3. In comparison to Figure 4.16, the performance z degrades slightly. By increasing k
to 40, the performance z improves.
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Figure 4.21: The FDI controller (3.53)–(3.59), where k ∈ {20, 30, 50, 90}, is implemented
in feedback with the mass-spring-damper system (4.25), (4.26), and (4.29). In this case,
d = 4. In comparison to Figure 4.17, the performance z degrades slightly. By increasing k
to 90, the performance z improves.
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Figure 4.22: The FDI controller (3.53)–(3.59), where k ∈ {65, 80, 110, 160}, is implemented
in feedback with the mass-spring-damper system (4.25), (4.26), and (4.30). In this case,
d = 5. In comparison to Figure 4.18, we observe that the performance z degrades slightly.
By increasing k to 160, the performance z improves.
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Example 4.8. SISO, disturbance free, and unstable mass-spring-damper system,

with command following. Consider the mass-spring-damper system (4.20) shown in

Figure 4.14. By changing c1 to −10, the resulting open-loop system becomes unsta-

ble. The disturbance is identically 0 (i.e., ψ1 = ψ2 = ψ3 = ψ4 = 0). The control

objective is to force y to follow the output ym of the reference model (3.5). The

reference-model command r is a sequence of steps, which are passed through the fil-

ter Gr(s) = 105/(s+ 10)5.

The FDI controller, where k ∈ {3, 4, 6}, is implemented in feedback with the

mass-spring-damper system, where C is given by (4.27). The parameter k = 3 is

selected near but above the minimum stabilizing value of approximately 2.4. Figure

4.23 shows the time history of y, ym, z, and u.

Next, the FDI controller, where k ∈ {10, 15, 25}, is implemented in feedback with

the mass-spring-damper system, where C is given by (4.28). The parameter k = 10 is

selected near but above the minimum stabilizing value of approximately 8.3. Figure

4.24 shows the time history of y, ym, z, and u.

Next, the FDI controller, where k ∈ {35, 55, 85}, is implemented in feedback with

the mass-spring-damper system, where C is given by (4.29). The parameter k = 35 is

selected near but above the minimum stabilizing value of approximately 31.3. Figure

4.25 shows the time history of y, ym, z, and u.

Finally, the FDI controller, where k ∈ {100, 115, 140}, is implemented in feedback

with the mass-spring-damper system, where C is given by (4.30). The parameter

k = 100 is selected near but above the minimum stabilizing value of approximately

97.4. Figure 4.26 shows the time history of y, ym, z, and u.

Note that the minimum stabilizing values for each case is greater than the mini-

mum stabilizing value of the stable mass-spring damper system in Example 4.6 (i.e.,

SISO and stable mass-spring-damper system). By observing Figure 4.23, Figure 4.24,

Figure 4.25, and Figure 4.26, we notice that y follows ym with a small but noticeable

70



error. By increasing k, the average power of performance decreases. 4
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Figure 4.23: FDI control with k ∈ {3, 4, 6} for the disturbance free and unstable mass-
spring-damper system shown in Figure 4.14. The FDI controller (3.53)–(3.59), where k ∈
{3, 4, 6}, is implemented in feedback with the mass-spring-damper system (4.25)–(4.27). In
this case, d = 2. By increasing k, the average power of the performance z decreases.
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Figure 4.24: FDI control with k ∈ {10, 15, 25} for the disturbance free and unstable mass-
spring-damper system shown in Figure 4.14. The FDI controller (3.53)–(3.59), where k ∈
{10, 15, 25}, is implemented in feedback with the mass-spring-damper system (4.25), (4.26),
and (4.28). In this case, d = 3. By increasing k, the average power of the performance z
decreases.
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Figure 4.25: FDI control with k ∈ {35, 55, 85} for the disturbance free and unstable mass-
spring-damper system shown in Figure 4.14. The FDI controller (3.53)–(3.59), where k ∈
{35, 55, 85}, is implemented in feedback with the mass-spring-damper system (4.25), (4.26),
and (4.29). In this case, d = 4. By increasing k, the average power of the performance z
decreases.
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Figure 4.26: FDI control with k ∈ {100, 115, 140} for the disturbance free and unstable
mass-spring-damper system shown in Figure 4.14. The FDI controller (3.53)–(3.59), where
k ∈ {100, 115, 140}, is implemented in feedback with the mass-spring-damper system (4.25),
(4.26), and (4.30). In this case, d = 5. By increasing k, the average power of the performance
z decreases.
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Example 4.9. SISO and unstable mass-spring-damper system with command fol-

lowing, and white-noise disturbance. Consider the four mass-spring-damper system

(4.20) shown in Figure 4.14. By changing c1 to −10, the resulting open-loop sys-

tem becomes unstable. The disturbances ψ1, ψ2, ψ3, and ψ4, are generated from

independent zero-mean 20-variance Gaussian white-noise distributions. The control

objective is to force y to follow the output ym of the reference model (3.5). The

reference-model command r is a sequence of steps, which are passed through the fil-

ter Gr(s) = 105/(s+ 10)5.

The FDI controller, where k ∈ {3, 4, 6, 10}, is implemented in feedback with the

unstable mass-spring-damper system, where C is given by (4.27). Figure 4.27 shows

the time history of y, ym, z, and u. By comparing Figure 4.27 with Figure 4.23, we

observe that the performance z degrades slightly in comparison to the disturbance

free case. By increasing k to 10, the performance z improves.

Next, the FDI controller, where k ∈ {10, 15, 25, 40}, is implemented in feedback

with the unstable mass-spring-damper system, where C is given by (4.28). Figure

4.28 shows the time history of y, ym, z, and u. By comparing Figure 4.28 with Fig-

ure 4.24, we observe that the performance z degrades slightly in comparison to the

disturbance free case. By increasing k to 40, the performance z improves.

Next, the FDI controller, where k ∈ {35, 55, 85, 200}, is implemented in feedback

with the unstable mass-spring-damper system, where C is given by (4.29). Figure

4.29 shows the time history of y, ym, z, and u. By comparing Figure 4.29 with Fig-

ure 4.25, we observe that the performance z degrades slightly in comparison to the

disturbance free case. By increasing k to 200, the performance z improves.

Finally, the FDI controller, where k ∈ {100, 115, 140, 245}, is implemented in

feedback with the unstable mass-spring-damper system, where C is given by (4.30).

Figure 4.30 shows the time history of y, ym, z, and u. By comparing Figure 4.30 with

Figure 4.26, we observe that the performance z degrades slightly in comparison to
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the disturbance free case. By increasing k to 245, the performance z improves. 4
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Figure 4.27: FDI control with k ∈ {3, 4, 6, 10} for the unstable mass-spring-damper system
shown in Figure 4.14, with white-noise disturbance. The FDI controller (3.53)–(3.59),
where k ∈ {3, 4, 6, 10}, is implemented in feedback with the mass-spring-damper system
(4.25)–(4.27). In this case, d = 2. The performance z degrades slightly in comparison to
the disturbance free case which is shown in Figure 4.23. By increasing k to 10, the average
power of the performance z decreases.
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Figure 4.28: FDI control with k ∈ {10, 15, 25, 40} for the unstable mass-spring-damper sys-
tem shown in Figure 4.14, with white-noise disturbance. The FDI controller (3.53)–(3.59),
where k ∈ {10, 15, 25, 40}, is implemented in feedback with the mass-spring-damper system
(4.25), (4.26), and (4.28). In this case, d = 3. The performance z degrades slightly in
comparison to the disturbance free case which is shown in Figure 4.24. By increasing k to
40, the average power of the performance z decreases.
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Figure 4.29: FDI control with k ∈ {35, 55, 85, 200} for the unstable mass-spring-damper sys-
tem shown in Figure 4.14, with white-noise disturbance. The FDI controller (3.53)–(3.59),
where k ∈ {35, 55, 85, 200}, is implemented in feedback with the mass-spring-damper sys-
tem (4.25), (4.26), and (4.29). In this case, d = 4. The performance z degrades slightly in
comparison to the disturbance free case which is shown in Figure 4.25. By increasing k to
200, the average power of the performance z decreases.
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Figure 4.30: FDI control with k ∈ {100, 115, 140, 245} for the unstable mass-spring-
damper system shown in Figure 4.14, with white-noise disturbance. The FDI controller
(3.53)–(3.59), where k ∈ {100, 115, 140, 245}, is implemented in feedback with the mass-
spring-damper system (4.25), (4.26), and (4.30). In this case, d = 5. The performance z
degrades slightly in comparison to the disturbance free case which is shown in Figure 4.26.
By increasing k to 245, the average power of the performance z decreases.
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4.2.2 Serially Connected Mass-Spring-Damper System (MIMO)

Consider the serially connected mass-spring-damper system (4.20)–(4.24), where

the masses are m1 = m2 = m3 = m4 = 1 kg, the damping coefficients are c1 = c2 =

c3 = c4 = 1 kg/s, and the spring constants are k1 = 2 kg/s2, k2 = 4 kg/s2, k3 = 1

kg/s2, and k4 = 3 kg/s2. The mass-spring-damper system can be expressed as (3.1),

(3.2), where x and w are given by (4.25), and A is given by (4.26).

We consider different choices of B and C (sensor and actuator placements). First,

consider

B ,



04×2

−M−1
0



1 0

0 1

0 0

0 0




, C ,

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

, (4.33)

where the controls are the forces on the first and the second masses and the outputs

are the positions of the first and the second masses. In this case, d = 2 and the first

nonzero Markov parameter is Hd = I2. Also, (A3.1), (A3.2), and (A3.4) are satisfied.

Next, consider

B ,



04×2

−M−1
0



1 0

0 0

0 0

0 1




, C ,

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

, (4.34)

where the controls are the forces on the first and the fourth masses and the outputs

are the positions of the second and the third masses. In this case, d = 3 and the first
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nonzero Markov parameter is Hd = I2. Also, (A3.1), (A3.2), and (A3.4) are satisfied.

The objective is to design the FDI controller (3.53)–(3.59) to control the mass-

spring-damper system (3.1), (3.2), (4.21)–(4.25), and A is given by (4.26), where B

and C could be either of the above choices. Note that the upper bound on the relative

degree is d̄ = 3. We select the reference-model polynomials as

αm(p) = (p + 5)3, βm(p) = 125. (4.35)

Next, let ρ = 4 > d̄, and let

ηk(s) , s4 + 6k2s3 + 8k3s2 + 6k4s+ 4k5, (4.36)

which satisfies (C3.1) and (C3.2). The initial conditions are x(0) = 0 and xc(0) = 0.

Example 4.10. MIMO, disturbance free, serially connected mass-spring-damper

system, with command following. Consider the mass-spring-damper system (4.20)

shown in Figure 4.14. The disturbances are identically 0 (i.e., ψ1 = ψ2 = ψ3 = ψ4 =

0). The reference-model command is r =
[
r1 r2

]T
, where r1 is a sequence of steps,

passed through the filter Gr(s) = 103/(s + 10)3, and r2(t) = 0.5 sin 2πt. The control

objective is to force y to follow the output ym of the reference model (3.5).

The FDI controller, where k ∈ {15, 20, 30}, is implemented in feedback with the

mass-spring-damper system, where B and C are given by (4.33). Figure 4.31 shows

the time history of y, ym, z, and u. We notice that y follows ym with a small but

noticeable error. By increasing k, the average power of the performance z decreases.

Next, the FDI controller, where k ∈ {45, 60, 80}, is implemented in feedback

with the mass-spring-damper system, where B and C are given by (4.34). Figure

4.32 shows the time history of y, ym, z, and u. We notice that y follows ym with a

small but noticeable error. By increasing k, the average power of the performance z
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decreases. 4
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Figure 4.31: The FDI controller (3.53)–(3.59), where k ∈ {15, 20, 30}, is implemented in
feedback with the mass-spring-damper system (3.1), (3.2), and (4.21)–(4.26). B and C are
given by (4.33). In this case, d = 2. By increasing k, the performance z improves.
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Figure 4.32: The FDI controller (3.53)–(3.59), where k ∈ {45, 60, 80}, is implemented in
feedback with the mass-spring-damper system (3.1), (3.2), and (4.21)–(4.26). B and C are
given by (4.34). In this case, d = 3. By increasing k, the performance z improves.
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Example 4.11. MIMO, serially connected mass-spring-damper system with com-

mand following and white-noise disturbance. Consider the mass-spring-damper sys-

tem (4.20) shown in Figure 4.14. The disturbances are ψ1, ψ2, ψ3, and ψ4 are gen-

erated from independent zero-mean 20-variance Gaussian white-noise distributions.

The reference-model command is r =
[
r1 r2

]T
, where r1 is a sequence of steps,

passed through the filter Gr(s) = 103/(s + 10)3 and r2(t) = 0.5 sin 2πt. The control

objective is to force y to follow the output ym of the reference model (3.5).

The FDI controller, where k ∈ {15, 20, 30, 50}, is implemented in feedback with

the MIMO mass-spring-damper system, where B and C are given by (4.33). Figure

4.33 shows the time history of y, ym, z, and u. By comparing Figure 4.33 with Fig-

ure 4.31, we observe that the performance z degrades slightly in comparison to the

disturbance free case. By increasing k to 50, the performance z improves.

Next, the FDI controller, and where k ∈ {45, 60, 80, 250}, is implemented in feed-

back with the MIMO system, where B and C are given by (4.34). Figure 4.34 shows

the time history of y, ym, z, and u. By comparing Figure 4.34 with Figure 4.32, we

observe that the performance z degrades slightly in comparison to the disturbance

free case. By increasing k to 250, the performance z improves. 4
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Figure 4.33: FDI control with k ∈ {15, 20, 30, 50} for the MIMO mass-spring-damper
system with white-noise disturbance. The FDI controller (3.53)–(3.59), where k ∈
{15, 20, 30, 50}, is implemented in feedback with the mass-spring-damper system (3.1), (3.2),
and (4.21)–(4.26). B and C are given by (4.33). In this case, d = 2. The performance z
degrades slightly in comparison to the disturbance free case which is shown in Figure 4.31.
By increasing k to 50, the performance z improves.
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Figure 4.34: FDI control with k ∈ {45, 60, 80, 250} for the MIMO mass-spring-damper
system with white-noise disturbance. The FDI controller (3.53)–(3.59), where k ∈
{45, 60, 80, 250}, is implemented in feedback with the mass-spring-damper system (3.1),
(3.2), and (4.21)–(4.26). B and C are given by (4.34). In this case, d = 3. The performance
z degrades slightly in comparison to the disturbance free case which is shown in Figure
4.32. By increasing k to 250, the performance z improves.
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Example 4.12. MIMO, unstable, disturbance free, serially connected mass-spring-

damper system with command following. Consider the mass-spring-damper system

(4.20) shown in Figure 4.14, but the damping coefficient c1 = −2. The resulting open-

loop system is unstable. The disturbances are identically 0 (i.e., ψ1 = ψ2 = ψ3 =

ψ4 = 0). The reference-model command is r =
[
r1 r2

]T
, where r1 is a sequence of

steps, passed through the filter Gr(s) = 103/(s + 10)3, and r2(t) = 0.5 sin 2πt. The

control objective is to force y to follow the output ym of the reference model (3.5).

The FDI controller, where k ∈ {20, 30, 50}, is implemented in feedback with the

unstable mass-spring-damper system, where B and C are given by (4.33). Figure

4.35 shows the time history of y, ym, z, and u. We notice that y follows ym with a

small but noticeable error. By increasing k, the average power of the performance z

decreases.

Next, the FDI controller, and where k ∈ {65, 80, 120}, is implemented in feedback

with the unstable mass-spring-damper system„ where B and C are given by (4.34).

Figure 4.36 shows the time history of y, ym, z, and u. We notice that y follows refer-

ence model output ym with a small but noticeable error. By increasing k, the average

power of the performance z decreases. 4
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Figure 4.35: FDI control with k ∈ {20, 30, 50} for the unstable MIMO mass-spring-damper
system (disturbance free). The FDI controller (3.53)–(3.59), where k ∈ {20, 30, 50}, is im-
plemented in feedback with the mass-spring-damper system (3.1), (3.2), and (4.21)–(4.26).
B and C are given by (4.33). In this case, d = 2. By increasing k, the performance z
improves.
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Figure 4.36: FDI control with k ∈ {65, 80, 120} for the unstable MIMO mass-spring-damper
system (disturbance free). The FDI controller (3.53)–(3.59), where k ∈ {65, 80, 120}, is im-
plemented in feedback with the mass-spring-damper system (3.1), (3.2), and (4.21)–(4.26).
B and C are given by (4.34). In this case, d = 3. By increasing k, the performance z
improves.
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Example 4.13. MIMO, unstable, serially connected mass-spring-damper system,

with command following and white-noise disturbance. Consider the mass-spring-

damper system (4.20) shown in Figure 4.14, but the damping coefficient c1 = −2.

The resulting open-loop system is unstable. The disturbances ψ1, ψ2, ψ3, and ψ4,

are generated from independent zero-mean 20-Newton-variance Gaussian white-noise

distributions. The reference-model command is r =
[
r1 r2

]T
, where r1 is a sequence

of steps passed through the filter Gr(s) = 103/(s + 10)3 and r2(t) = 0.5 sin 2πt. The

control objective is to force y to follow the output ym of the reference model (3.5).

The FDI controller, where k ∈ {20, 30, 50, 80}, is implemented in feedback with

the MIMO mass-spring-damper system, where B and C are given by (4.33). Figure

4.37 shows the time history of y, ym, z, and u. By comparing Figure 4.37 with Figure

4.35, we observe that the performance degrades slightly in comparison to disturbance

free case. By increasing k to 80, the performance z improves.

Next, the FDI controller, and where k ∈ {65, 80, 120, 300}, is implemented in

feedback with the MIMO mass-spring-damper system, where B and C are given by

(4.34). Figure 4.38 shows the time history of y, ym, z, and u. By comparing Figure

4.38 with Figure 4.36, we observe that the performance degrades slightly in compari-

son to disturbance free case. By increasing k to 300, the performance z improves. 4

90



-1

0

1

-0.2

0

0.2

-0.01

0

0.01

-0.01

0

0.01

-50

0

50

0 10 20
-100

0

100

0 10 20 0 10 20 0 10 20

Figure 4.37: FDI control with k ∈ {20, 30, 50, 80} for the unstable MIMO mass-spring-
damper system with white-noise disturbance. The FDI controller (3.53)–(3.59), where
k ∈ {20, 30, 50, 80}, is implemented in feedback with the mass-spring-damper system (3.1),
(3.2), and (4.21)–(4.26). B and C are given by (4.33). In this case, d = 2. By comparing
with Figure 4.35, we observe that the performance z degrades slightly in comparison to the
disturbance free case. By increasing k to 80, the performance z improves.
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Figure 4.38: FDI control with k ∈ {65, 80, 120, 300} for the unstable MIMO mass-spring-
damper system with white-noise disturbance. The FDI controller (3.53)–(3.59), where k ∈
{65, 80, 120, 300}, is implemented in feedback with the mass-spring-damper system (3.1),
(3.2), and (4.21)–(4.26). B and C are given by (4.34). In this case, d = 3. By comparing
with Figure 4.36, we observe that the performance z degrades slightly in comparison to the
disturbance free case. By increasing k to 300, the performance z improves.
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4.2.3 Two-Mass Servo System with Flexible Shaft

Figure 4.39: Two-mass servo system with flexible shaft.

Consider the two-mass servo system with flexible shaft shown in Figure 4.39,

which has the equations of motion

ω̇L(t) = − c1

JL
ωL(t) + k1

JL
θ(t) + c1

JL
ωE(t) + ψL(t)

JL
, (4.37)

θ̇(t) = −ωL(t) + ωE(t), (4.38)

ω̇E(t) = c1

JE
ωL(t) − k1

JE
θ(t) − c1

JE
ωE(t) + ψE(t)

JE
+ 1
JE
u(t), (4.39)

where ωL is the angular velocity of the load, ωE is the angular velocity of the electric

drive, and θ is the angle of twist between the electric drive and the load. c1 = 0.1

Nm/rad is the damping coefficient of the shaft. k1 = 40 Nms/rad is the stiffness of

the shaft. JL = 0.2 kgm2 is the moment of inertia of the load. JE = 0.1 kgm2 is the

moment of inertia of the electric drive. Note that ψL and ψE are the unknown-and-

unmeasured disturbances acting on the load and the electric drive. u is the control.

It follows that (4.37)–(4.39) can be expressed as (3.1), where

x(t) ,


ωL(t)

θ(t)

ωE(t)

, w(t) ,


ψL(t)
JL

0
ψE(t)
JE

, (4.40)
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A ,


−c1
JL

k1
JL

c1
JL

−1 0 1
c1
JE

−k1
JE

−c1
JE

, B ,


0

0
1
JE

, (4.41)

We consider different choices of C (i.e., sensor placements). First, consider

C ,
[
0 0 1

]
, (4.42)

where ωE is measured at output. In this case, d = 1, and the first nonzero Markov

parameter is Hd = 10. Also, (A3.1), (A3.2), and (A3.4) are satisfied. Next, consider

C ,
[
1 0 0

]
, (4.43)

where, ωL is measured at output. In this case, d = 2, and the first nonzero Markov

parameter is Hd = 10. Also, (A3.1), (A3.2), and (A3.4) are satisfied.

The objective is to design an FDI controller for the two-mass servo system with

flexible shaft (3.1), (3.2), (4.40), and (4.41), and where C could be either of the above

choices. Note that the upper bound on the relative degree is d̄ = 2. We select the

reference-model polynomials as

αm(p) = (p + 5)2, βm(p) = 25. (4.44)

Next, let ρ = 3 > d̄, and let

ηk(s) , s3 + 18ks2 + 36k2s+ 18k3. (4.45)

Example 4.14. Two-mass servo system with flexible shaft, command following,

disturbance free. Consider the two-mass flexible servo system 3.1), (3.2), (4.40), and

(4.41). The disturbances are identically 0 (i.e., ψL = ψE = 0). The reference-
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model command r is a sequence of steps, which are passed through the filter Gr(s) =

102/(s + 10)2. The control objective is to force y to follow the output ym of the

reference model (3.5).

The FDI controller (3.53)–(3.59), where ηk is given by (4.45) and k ∈ {5, 10, 20},

is implemented in feedback with the two-mass flexible servo system, where C is given

by (4.42). In this case, d = 1. Figure 4.40 shows the time history of y, ym, z, and u.

We notice that y follows ym with a small but noticeable error. By increasing k, the

performance z improves.

Next, the FDI controller (3.53)–(3.59), where ηk is given by (4.45) and k ∈

{480, 650, 900}, is implemented in feedback with the two-mass flexible servo system,

where C is given by (4.43). In this case, d = 2. Figure 4.41 shows the time history

of y, ym, z, and u. We notice that y follows ym with a small but noticeable error. By

increasing k, the performance z improves. 4
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Figure 4.40: The FDI controller (3.53)–(3.59), where k ∈ {5, 10, 20}, is implemented in
feedback with the two-mass servo system with flexible shaft (4.40)–(4.42). In this case,
d = 1. The angular velocity of the electric drive ωE is measured at output. By increasing
k, the performance z improves.
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Figure 4.41: The FDI controller (3.53)–(3.59), where k ∈ {480, 650, 900}, is implemented in
feedback with the two-mass servo system with flexible shaft (4.40), (4.41), and (4.43). In
this case, d = 2. The angular velocity of the load ωL is measured at output. By increasing
k, the performance z improves.
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Example 4.15. Two-mass servo system with flexible shaft, command following,

white-noise disturbance. Consider the two-mass flexible servo system 3.1), (3.2),

(4.40), and (4.41). The disturbances are generated from independent zero-mean 20-

variance Gaussian white-noise distributions. The reference-model command r is a

sequence of steps, which are passed through the filter Gr(s) = 102/(s + 10)2. The

control objective is to force y to follow the output ym of the reference model (3.5).

The FDI controller (3.53)–(3.59), where ηk is given by (4.45) and

k ∈ {5, 10, 20, 100}, is implemented in feedback with the two-mass flexible servo sys-

tem, where C is given by (4.42). In this case, d = 1. Figure 4.42 shows the time

history of y, ym, z, and u. By comparing Figure 4.42 with Figure 4.40, we observe

that the performance z degrades slightly in comparison to disturbance free case. By

increasing k to 100, the performance z improves.

Next, the FDI controller (3.53)–(3.59), where ηk is given by (4.45) and k ∈

{480, 650, 900, 2500}, is implemented in feedback with the two-mass flexible servo

system, where C is given by (4.43). In this case, d = 2. Figure 4.43 shows the time

history of y, ym, z, and u. By comparing Figure 4.43 with Figure 4.41, we observe

that the performance z degrades slightly in comparison to disturbance free case. By

increasing k to 2500, the performance z improves. 4
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Figure 4.42: The FDI controller (3.53)–(3.59), where k ∈ {5, 10, 20, 100}, is implemented
in feedback with the two-mass servo system with flexible shaft (4.40)–(4.42). In this case,
d = 1. The angular velocity of the electric drive ωE is measured at output. The performance
z decreases slightly in comparison to the disturbance free case as shown in Figure 4.40. By
increasing k to 100, the performance z improves.
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Figure 4.43: The FDI controller (3.53)–(3.59), where k ∈ {480, 650, 900, 2500}, is imple-
mented in feedback with the two-mass servo system with flexible shaft (4.40), (4.41), and
(4.43). In this case, d = 2. The angular velocity of the load ωL is measured at output.
The performance z decreases slightly in comparison to the disturbance free case as shown
in Figure 4.41. By increasing k to 2500, the performance z improves.
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Chapter 5
Conclusions and Future Work

In this thesis, Chapter 2 reviewed the filtered dynamic inversion (FDI) controller

presented in [26,27] and presented an example demonstrating that FDI is not neces-

sarily robust to uncertainty in the relative degree. This provided the motivation of

work in this thesis.

In Chapter 3, we extended the FDI control to accommodate unknown relative

degree. This extended FDI control is a method for unknown linear time-invariant

(LTI) systems that are multi-input multi-output (MIMO) and minimum phase with

unknown-but-bounded relative degree. The FDI controller requires limited model

information, specifically, knowledge of an upper bound on the relative degree and

the first nonzero Markov parameter. This FDI controller is a single-parameter high-

parameter-stabilizing controller that is robust to uncertainty in the relative degree.

We show that the origin of the closed-loop system, consisting of the FDI controller

for unknown relative degree connected in feedback with a single-input single-output

(SISO) open-loop system, is an asymptotically stable equilibrium.

In Chapter 4, we presented numerical examples, where the FDI controller is im-

plemented in feedback with mathematical and physical systems. We implemented a
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single FDI controller for unknown relative degree in feedback with a single integrator,

double integrator, and triple integrator. We then implemented an FDI controller for

unknown relative degree in feedback with a MIMO system, where we consider differ-

ent choices of input matrices and output matrices, which result in different relative

degrees. We implemented an FDI controller for unknown relative degree in feedback

with a serially connected mass-spring-damper system with different choices of sensor

and actuator placements, which result in different relative degrees. Finally, we imple-

mented an FDI controller in feedback with a two-mass servo system with a flexible

shaft with different choices of sensor placements, which result in different relative

degrees. The numerical examples demonstrated that the FDI controller for unknown

relative degree is effective for stabilization, command following, and disturbance re-

jection with limited modeling information. We demonstrated that for a sufficiently

large parameter, the average power of the closed-loop performance is arbitrarily small.

5.1 Future Work

First, we need to address the open questions in the thesis. We need to show that

ηk given by (3.42), which satisfies (C3.1), also satisfies (C3.2). We need to charac-

terize the performance of the closed-loop SISO system. We need to also characterize

the stability and the performance of the closed-loop MIMO system.

Next, we consider the extensions that can be made to the FDI control for un-

known relative degree. We can extend the FDI control for unknown relative degree

to address uncertainty in the high-frequency gain, thus weakening (A3.4). We sug-

gest that the FDI control method presented in this thesis can be extended to address

stabilization, command following, and disturbance rejection for MIMO decentralized

subsystems, which would be an extension of the FDI control presented in [27]. We

can further extend the FDI controller for unknown relative degree presented in this
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thesis to control nonlinear systems, which would be an extension of filtered feedback

linearization presented in [30,31]. Note that for nonlinear systems, we would consider

the vector relative degree and the dynamic-inversion matrix.
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