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ABSTRACT OF DISSERTATION 
 
 
 
 

A BIFACTOR APPROACH TO 
DIMENSIONALITY ASSESSMENT 

 
Bifactor confirmatory factor analysis models and statistical indices computed from 

them have previously been used to provide evidence for the appropriateness of utilizing a 
unidimensional interpretation of multidimensional data. However, the ability of bifactor 
indices to aid in the assessment of subscore strength has not been investigated.  

A simulation study was conducted to relate bifactor indices to the strength of 
subscores corresponding to specific factors. The bifactor indices OmegaHS and ECVSS 
were found to be strongly predictive of subscore strength conditional upon OmegaS. The 
number of factors was also found to play a minor role in this relationship. Cutoffs for 
assessing the appropriateness of interpreting subscores were constructed. 

The overarching goal of this work was to extend a framework for using bifactor 
models and their indices as diagnostic tools for dimensionality assessment. This goal is 
accomplished in two steps. First, a package for the R statistical computing environment 
was developed to enable the efficient computation of bifactor indices. Second, the 
aforementioned simulation study was conducted to discover relationships between bifactor 
indices and classical test theoretic measures of subscore strength. 

 
KEYWORDS: Bifactor, Dimensionality, Confirmatory Factor Analysis, Simulation, 
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CHAPTER 1. INTRODUCTION 

Psychological research commonly involves the use of a scale, consisting of multiple 

items, designed to assess a single construct which nevertheless exhibits some elements of 

multidimensionality. Confirmatory factor analysis (CFA) is a common tool used to assess 

the dimensionality of a set of data obtained from a scale. CFA models for unidimensional 

and multidimensional data can be fit and the fit of these models can be compared to 

determine which model exhibits superior fit. Some quantitative methodologists have 

observed that such tests are highly sensitive to multidimensionality and may suggest a 

multidimensional interpretation even when the extent of multidimensionality is not 

substantively relevant (Reise et al., 2013b; Sellbom & Tellegen, 2019). Instead, auxiliary 

indices based on hierarchical CFA models have been developed to assist in determining 

when total scores and unidimensional CFA models can appropriately be used (Rodriguez 

et al., 2016a). On the other hand, fewer and less exact strategies have been developed for 

determining when a multidimensional interpretation is appropriate (Chen et al., 2006; 

Gignac & Kretzschmar, 2017; Reise et al., 2013a). In this dissertation, the aforementioned 

strategies will be detailed and dissected, and new strategies devised. 

1.1 Confirmatory Factor Models for Dimensionality Asssessment 

Factor analysis refers to a range of techniques whose purpose is to describe the 

variation and covariation among a set of observed variables, called indicators, through the 

use of continuous latent variables called factors. In the contexts and applications considered 

herein, indicators are almost always individual items to which a research participant 

responds as part of a scale; the terms “item” and “indicator” are used mostly 

interchangeably, but “indicator” should be understood as being more general. A “scale” is 
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defined as a set of items that collectively measure a construct. The “scale score” or “total 

score” refers to the total of the numeric value of responses to items in the scale.  

In CFA, the number of factors (latent variables) underlying a set of indicators and the 

pattern of associations between indicators and factors is pre-specified, and the 

corresponding model is estimated using maximum likelihood or other techniques. The 

specified model for a scale is called a measurement model because it makes a claim about 

how the scale measures the construct it was designed to assess. When an indicator is 

declared to be directly linearly related to a factor, it is said to “load” on that factor. Because 

models are specified before being estimated, CFA can be used to test the hypothesis that 

the model being estimated is the correct one by examining how well the model describes 

the sample data. Additionally, CFA is used to examine the strength of relationship between 

indicators and the factors on which they load as well as the correlational relationship 

between factors. Thus, CFA is well suited for use in the evaluation and analysis of 

theoretical models for the composition and dimensionality of constructs being measured. 

 As implied above, the primary units of factor analysis are a set of latent factors (Fj) 

and observed indicators (Yi) which are linearly related. Specifically, the indicators are 

described using a multiple regression-like equation with the factors as predictors: 

𝑌𝑌𝑖𝑖 = λ𝑖𝑖, 1𝐹𝐹1 + λ𝑖𝑖, 2𝐹𝐹2 + ⋯λ𝑖𝑖, 𝐹𝐹𝑛𝑛 + μ𝑖𝑖 + 𝑒𝑒𝑖𝑖, (1.1)

where n is the total number of factors, λ𝑖𝑖,𝑗𝑗 is a regression-like coefficient called the factor 

loading of Yi onto Fj, μ𝑖𝑖 is the item’s intercept (having the same meaning as in regression), 

and ei is a residual. Because this equation holds for each indicator, it is often expressed 

using matrices and vectors, as  

𝑌𝑌�⃗ = Λ�⃗�𝐹 + 𝑀𝑀��⃗ + 𝐸𝐸�⃗ , (1.2) 
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where Λ is the matrix of factor loadings referred to as the pattern matrix, 𝑀𝑀��⃗  is the vector of 

item intercepts, and 𝐸𝐸�⃗  is the vector of residual terms, sometimes referred to as unique 

factors because the variability of ei is latent and unique to the indicator Yi. An example of 

a matrix of factor loadings is provided for a CFA model in which 6 indicators load onto 2 

factors such that each factor is measured by only 3 indicators: 

𝐹𝐹1 𝐹𝐹2
𝑌𝑌1
𝑌𝑌2
𝑌𝑌3
𝑌𝑌4
𝑌𝑌5
𝑌𝑌6 ⎣

⎢
⎢
⎢
⎢
⎡
. 7 0
. 5 0
. 6 0
0 . 4
0 . 6

0  . 5⎦
⎥
⎥
⎥
⎥
⎤

= Λ 

In addition to a pattern matrix, a fully specified CFA model will include a factor 

covariance matrix Φ and a covariance matrix of the unique factors, Θ, also called the error 

covariance matrix of the indicators which represents the indicator (co-)variance which is 

unexplained by the latent factors. The covariance matrix of unique factors is assumed to be 

diagonal in all standard models (Kline, 2016); although not discussed herein, it is possible 

to specify CFA models in which unique factors may correlate. The various CFA models 

discussed below are largely distinguished by their restriction on the number of factors and 

the form of factor covariance matrix. Details about the specification and identification of 

CFA models can be found in any standard psychometrics, latent variable modeling, or 

structural equation modeling textbook (e.g., Raykov & Marcoulides, 2011; Finch & 

French, 2015; and Kline, 2016, respectively). 

 Estimation of CFA models typically involves determining model parameters such 

that the sample covariance matrix, ΣYY, is reproduced as precisely as possible by the model 

implied covariance matrix. The model implied covariance matrix, Σ, is related to the 
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covariance matrix of the common factors, the pattern matrix, and the covariance matrix of 

the unique factors, according to the following equation: 

Σ = ΛΦΛ𝑇𝑇 + Θ (1.3)  

Inexact replication of the sample covariance matrix is referred to as misfit and can 

bias or invalidate interpretations of the CFA model at hand. Because the model is only 

intended to reproduce the sample covariance matrix, raw data is not used in estimating 

CFA models; this approach is called limited information estimating since only a small part 

of the information contained in the data is utilized.  

 Unidimensional CFA Model 

 The simplest CFA models, unidimensional CFA models, are those in which a single 

factor is specified in order to explain the observed covariance matrix of indicators. A one 

factor CFA model with 4 indicators is displayed in Figure 1.1.  

 

Figure 1.1 Unidimensional CFA Model 

 

For each indicator Yi, the only sources of indicator variance are from the common factor 

F1 and the error, ei; accordingly, the instantiation of Equation 1.1 for Y1 of this model is 
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𝑌𝑌1 = λ1𝐹𝐹1 + 𝑒𝑒1. Likewise, the covariance between items is fully explained by the variance 

that indicators share with the factor. Using standard path tracing rules, the covariance 

between items X1 and X2 is given by 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋1,𝑋𝑋2) = λ1λ2. In more complicated models, the 

error term is only represented by the incoming arrow to simplify presentation.  

In the event that a unidimensional model for a scale is deemed to adequately fit the 

data, a single total score can reasonably be interpreted (Raykov & Marcoulides, 2011, p. 

129). However, the unidimensionality assumption is a strong one which is rarely if ever 

met perfectly (Bentler, 2009). Even small amounts of construct heterogeneity can manifest 

as misfit of a unidimensional CFA model (Floyd & Widaman, 1995), but in some cases 

this heterogeneity does not prohibit interpretation of a total score or unidimensional 

measurement model (Reise, 2012; Rodriguez et al., 2016a). Thus, while adequate fit of a 

unidimensional model is sufficient to reasonably interpret a total score, inadequate fit of a 

unidimensional model does not preclude the justifiable interpretation of a total score. 

 Correlated Traits CFA Model 

 Correlated traits CFA models consist of several factors, each of which has several 

indicators loading on it; typically, indicators are not allowed to load on multiple factors 

(Kline, 2016, p. 193). A correlated traits model with 3 factors and 3 indicators per factor is 

shown in Figure 1.2. In this model, covariance between indicators loading on the same 

factor is explained by the loadings on the factor, whereas covariance between indicators 

loading on different factors additionally involves the correlations between factors. Unique 

factors are not shown for simplicity. 
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Figure 1.2 Three-Factor Correlated Traits Model 

Correlated traits CFA may be used to model multiple scales or to model subdomains 

of a single scale measuring a multidimensional construct, the latter of which will be the 

setting for all discussion within this manuscript. While goodness of fit of a correlated traits 

model is often used as justification for employing a multidimensional interpretation and 

utilizing subdomain scores (termed subscores), this perspective fails to acknowledge that 

the degree of multidimensionality may be inconsequential in which case a unidimensional 

interpretation may be more appropriate (Reise et al., 2013a). Namely, if the factors in the 

correlated traits model are too strongly correlated, then subscores may be largely redundant 

and only a total score should be interpreted. For example, Haberman and Sinharay (2010) 

reported a subscore analysis of an unnamed test measuring skills necessary for 

paraprofressional. The three subscores had an average inter-correlation of .76 and 

reliability estimates higher than .80, yet none showed evidence of being interpretable 

independently of the total score. Within a correlated traits model, it is difficult to determine 

whether interpreting subscores separately from the total score is likely to be useful. For 

that reason, models which utilize both a general source of variance (as in a unidimensional 

model) and subdomain specific sources of variance (as in a correlated traits model) are 

often used for nuanced discussions of dimensionality. 
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 Second-Order CFA Model 

 Second-order CFA models (a type of higher-order model) differ from other CFA 

models in that a separate set of latent variables is included to model the covariance between 

the first-order factors. To put it another way, the first-order factors comprise a measurement 

model for the indicators, while the second-order factors comprise a measurement model 

for the first-order factors. An example of a second-order CFA model with one second order 

factor and three first order factors can be found in Figure 1.3.  

 

Figure 1.3 Example of a Second-Order CFA Model 

In a second-order CFA model, the covariance matrix of first-order factors can be 

expressed analogously to Equation 1.3 as 

Φ1 = ΓΦ2Γ𝑇𝑇 + Ψ (1.4) 

where Φ1 is the covariance matrix of first order factors, Φ2 is the covariance matrix of 

second order factors, Γ is the factor loading matrix of first-order factors onto second-order 

factors, Ψ is the residual covariance matrix of first order factors, and T denotes matrix 

transpose. As with the covariance matrix of unique factors for indicators, Ψ is assumed to 
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be diagonal. The model reproduced covariance of indicators can be obtained by substituting 

Equation 1.4 into Equation 1.3, yielding the expression 

Σ = Λ(ΓΦ2Γ𝑇𝑇 + Ψ)Λ𝑇𝑇 + Θ. (1.5) 

Second-order factors models are more restrictive than correlated traits models because the 

covariance amongst first-order factor must itself have the structure of indicators in a CFA 

model, per Equation 1.4.  

Second-order factor models commonly only include one second-order factor which 

is intended to represent a general factor (Kline, 2016), and only models with a single 

second-order factor are considered henceforth. Note that, while the second-order factor 

models the covariance among first-order factors, the first order factors are allowed a 

residual variance. Accordingly, a second order factor may explain little of the variance of 

the first order factors if they are weakly correlated, or much of the variance if they are 

strongly correlated. Thus, indicator explained variance can be split into variance explained 

by a general, second-order, factor and variance explained by the residual of the appropriate 

first-order factor. With the exception of specific domains such as intelligence and 

personality research, the use of second-order models has not been widespread, likely due 

to the difficulty of their estimation, the likelihood of poor fit given the strictness of 

constraints placed on the first-order factor covariance matrix, and the difficulty in 

interpreting relationships between first-order factors and external variables while 

controlling for the general second-order factor (Chen et al., 2006; Chen et al., 2012). 

 Bifactor CFA Model 

 In a bifactor CFA model, all indicators load onto a general factor, and indicators 

are additionally allowed to load onto uncorrelated specific factors (Holzinger & Swineford, 
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1937). Thus, like the second-order factor model, explained variance of indicators is 

partitioned between a general factor and a specific factor. The matrix of factor loadings in 

a bifactor model is constrained so that all indicators load onto the general factor and at 

most one specific factor. A diagram for a bifactor model with 6 items and 2 specific factors 

can be found in Figure 1.4. Arrows for indicator error variances are suppressed so as not 

to make the diagram needlessly complicated.  

 

Figure 1.4 Diagram of a Bifactor CFA Model 

The general factor of a bifactor model is frequently the only latent variable of 

interest, while the specific factors are considered as residual, nuisance factors (DeMars, 

2013; Reise, 2012; Rodriguez et al., 2016a). However, bifactor models can also be used 

with a focus on the specific factors, for example to examine the extent to which subscales 

are distinct from the general factor (Gignac & Kretzschmar, 2017; Gignac & Watkins, 

2013; Reise, 2012; Reise et al., 2013a; Rodriguez et al., 2016b), to test whether apparent 

factors are best interpreted as method factors (e.g., item phrasing factors) or as substantive 

factors (McKay et al., 2015), or to examine the contribution of specific factors to prediction 

of external variables (Chen et al., 2006; Gonzalez & MacKinnon, 2018). 
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 As previously noted, second-order and bifactor CFA models are closely related, as 

both can be interpreted as partitioning indicator explained variance into general and 

specific sources. In fact, Yung et al. (1999) demonstrate that all second-order CFA models 

can be reparameterized into a statistically equivalent (i.e., the model implied covariances 

matrices are the same) bifactor model. Furthermore, correlated traits factor models can be 

reparameterized as bifactor models exactly when the correlated traits model is statistically 

equivalent to a second-order model. Informally, the set of second-order factor models is 

the intersection of the sets of correlated traits and bifactor CFA models, as displayed in 

Figure 1.5. 

 

Figure 1.5 Venn Diagram of CFA Model Relationships 

 As with the other multidimensional models discussed (i.e., correlated traits and 

second-order CFA models), the existence of a well-fitting bifactor model does not 

immediately imply that a specific interpretation of the data is appropriate. It is possible that 

a bifactor model with a weak general factor fits the data well and yet a total score should 

not be interpreted, but rather the subscores should be interpreted. Contrariwise, a bifactor 

model with a strong general factor may fit the data such that a total score may be 
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interpreted, but the subscores are too highly correlated to provide meaningful information 

above and beyond the total score. To assist in decision making about dimensionality and 

score interpretations based on bifactor models, a number of statistical indices related to 

bifactor model parameters have been developed. 

1.2 Bifactor Indices for Dimensionality Assessment 

In a bifactor CFA model, items are allowed to crossload onto both the general factor 

and a specific factor; therefore, the variance of each item is split into three components: 

covariance with the general factor, covariance with the specific factor, and item specific 

variance, as depicted in Figure 1.6. For the general factor to be interpretable as the primary 

dimension, it stands to reason that the amount of shared variance explained by the general 

factor should be substantial relative to the amount of shared variance explained by the 

specific factor. Various statistical indices estimating the partitioning of variance and 

covariance across items computed from the parameters of the bifactor model have been 

devised and can be used for evaluating the appropriateness of making uni- or multi-

dimensional interpretations of the data.  

 

Figure 1.6 Partitioning of Item Variance in a Bifactor Model 

 Omega Indices 

1.2.1.1 Omega 

Coefficient omega (Omega, ω; McDonald, 1999) is a model-based estimate of 

composite reliability of total score. Omega is computed using the estimated parameters 
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(namely factor loadings and residual variances) of a statistical model; it estimates the 

proportion of variance in the total score explained by common variance (i.e., all common 

factors) implied by the model (Bentler, 2009; Raykov, 1997; Revelle & Zinbarg, 2009). 

While Omega is typically used with unidimensional models, Zinbarg et al. (2005, p. 126, 

Equation 8) imply the following formula for Omega based on bifactor model parameters: 

ω =
∑ �λ𝑖𝑖,𝐺𝐺�

2
+∑ ∑ �λ𝑖𝑖,𝑆𝑆𝑗𝑗�

2
𝑖𝑖𝑗𝑗𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2
+∑ ∑ �λ𝑖𝑖,𝑆𝑆𝑗𝑗�

2
𝑖𝑖𝑗𝑗𝑖𝑖 +∑ �1−ℎ𝑖𝑖

2�𝑖𝑖
 , (1.6) 

where i varies over all items, j varies over all specific factors, λ𝑖𝑖,𝐺𝐺 is the loading of item i 

onto the general factor, λ𝑖𝑖,𝑆𝑆𝑗𝑗 is the loading of item i onto specific factor j, and ℎ𝑖𝑖2 is the 

communality of item i. Omega has a slightly different interpretation than many other 

reliability coefficients; specifically, it includes multidimensional sources of common 

variance and therefore does not represent the correlation between the total score and a 

single latent variable. Rather, Omega is simply interpreted as the ratio of variance 

explained by commonality amongst items to the total variance of the total scale score 

(McNeish, 2017). 

1.2.1.2 OmegaH 

Whereas omega estimates the proportion of total score variance that can be 

explained within the bifactor model, hierarchical omega (OmegaH; ω𝐻𝐻; McDonald, 1999; 

Zinbarg et al., 2005) estimates the proportion of total score variance that can be explained 

by the general factor, and is computed similarly as in Equation 1.6 except that only loadings 

from the general factor are considered in the numerator (Zinbarg et al., 2005, p. 126, 

Equation 8): 
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ω𝐻𝐻 =
∑ �λ𝑖𝑖,𝐺𝐺�

2
𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ ∑ �λ𝑖𝑖,𝑆𝑆𝑗𝑗�
2

𝑖𝑖𝑗𝑗𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

. (1.7) 

 From the perspective of OmegaH, variability explained by the group factors is 

considered as measurement error. While OmegaH does not directly address the issue of 

unidimensionality (Reise et al., 2007), Gustafsson and Åberg-Bengtsson (2010) and 

McDonald (1999) argue that high OmegaH indicates that total scores primarily reflect a 

single dimension, since it may be interpreted as the squared correlation between observed 

total scale score and the latent general factor (McDonald, 1999). Like many estimates of 

reliability, OmegaH is strongly influenced by scale length; indeed, for long scales with 

many specific factors, OmegaH can be high even when the data is plainly multidimensional 

(Reise et al., 2013b). 

1.2.1.3 OmegaS 

An estimate of composite reliability of subscores (OmegaS; ω𝑆𝑆) can also be 

computed for each specific factor. The OmegaS index has a formula (Reise et al., 2013a, 

p. 134, Equation 5) similar to the formula for Omega, except that only items from a 

particular specific factors are included:  

ω𝑆𝑆 =
∑ �λ𝑖𝑖,𝐺𝐺�

2
𝑖𝑖 + ∑ �λ𝑖𝑖,𝑆𝑆�

2
𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ �λ𝑖𝑖,𝑆𝑆�
2

𝑖𝑖𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

, (1.8) 

where i varies only over the items loading on specific factor S. Like Omega, OmegaS is 

not generally interpretable as the squared correlation between a total score and a latent 

factor, but rather as the proportion of variance in the subscale score explained by common 

variance implied by the model (Rodriguez et al., 2016a). However, in the special case that 

specific factor loadings are proportional to general factor loadings, the items on the specific 
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factor can be modeled using a unidimensional model (Yung et al., 1999). In this case, 

therefore, while OmegaS does not necessarily equal the Omega estimate from a 

unidimensional model, it will nevertheless have the same interpretation as Omega for a 

unidimensional model, which is an estimate of the squared correlation between a total score 

and the single latent factor (McDonald, 1999; Zinbarg et al., 2005). 

1.2.1.4 OmegaHS   

Hierarchical omega for a subscale (OmegaHS; ω𝐻𝐻𝑆𝑆) estimates the proportion of 

subscore variance that can be explained by the corresponding specific factor, and is 

computed (Reise et al., 2013a, p. 134, Equation 6) as 

ω𝐻𝐻𝑆𝑆 =
∑ �λ𝑖𝑖,𝑆𝑆�

2
𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ �λ𝑖𝑖,𝑆𝑆�
2

𝑖𝑖𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

 , (1.9) 

where i varies only over the items on the subscale S. According to Reise et al. (2013a), 

OmegaHS reflects the reliability of a subscore after partialling out variability explained by 

the general factor, consistent with the interpretation of specific factors as being residuals 

after the general factor is accounted for (DeMars, 2013). However, Perreira et al. (2018) 

note that this interpretation of OmegaHS would require variability explained by the general 

factor to also be removed from the denominator of Equation 1.9. Therefore, in the form of 

Equation 1.9, OmegaHS is not a reliability coefficient, as it is not the ratio of true score 

variance to observed score variance for any set of scores. Yet, Reise et al. (2013a) and 

Rodriguez et al. (2016b) suggest that OmegaHS can be interpreted as a measure of 

dimensional uniqueness of the specific factor, while Sellbom and Tellegen (2018) instead 

recommend applying this interpretation to the ratio of OmegaHS to OmegaS. Finally, 

Gignac and Kretzschmar (2017, p. 138) refer to OmegaHS as “an effect size index of 

unique latent variable strength.” Consequently, these different interpretations can lead to 
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confusion among applied researchers who are leaning on methodologists for guidance on 

how to properly interpret such indices. 

 Explained Common Variance Indices 

1.2.2.1 ECV 

Explained common variance (ECV; Sijtsma, 2009; ten Berge & Socan, 2004) is the 

proportion of all common variance explained by the general factor, 

𝐸𝐸𝐸𝐸𝐸𝐸 =
∑ λ𝑖𝑖,𝐺𝐺2𝑖𝑖

∑ λ𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ ∑ λ𝑖𝑖,𝑆𝑆𝑗𝑗
2

𝑖𝑖𝑗𝑗
, (1.10) 

where i varies over all items, j varies over all specific factors, λ𝑖𝑖,𝐺𝐺 is the loading of item i 

onto the general factor, and λ𝑖𝑖,𝑆𝑆𝑗𝑗  is the loading of item i onto specific factor j. While ECV 

has some similarities to OmegaH, they assess somewhat different things. Whereas 

OmegaH can be viewed as a measure of unidimensionality of a total score, ECV is a 

measure of the unidimensionality of the data from a latent variable modeling perspective 

(Reise et al., 2013b; Rodriguez, et al., 2016b). Notably, ECV does not depend on the 

residual variances of the items, and therefore can be high even when items have little shared 

common variance. Finally, since loadings are squared before being summed, ECV also 

differs from OmegaH in that it is independent of scale length and the number of specific 

factors.  

1.2.2.2 ECVGS, ECVSS, and ECVSG 

Explained common variance indices can also be computed for each specific factor. 

The proportion of common variance of the items in specific factor S explained by the 

general factor is referred to as “within-domain ECV” by Stucky and Edelen (2015, p. 201) 

and is computed using the same formula as ECV (i.e., Equation 1.10), except that only 
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items belonging to the specific factor of interest are used. This specific-factor ECV index 

is denoted ECVGS, which is meant to be interpreted as the proportion of common variance 

explained by the general factor amongst items in the specific factor. High values of ECVGS 

indicate that common variance in the subscale is largely subsumed by the general factor, 

while low values indicate that the subscale is more independent of the general factor. In 

the case that the bifactor model is statistically equivalent to a second-order model, ECVGS 

will be equal to the square of the second-order factor loading for that subscale, per Equation 

1.10 and Quinn’s (2014, Appendix A) description of the correspondence between second-

order and bifactor models.  

 The complement of ECVGS is the proportion of common variance of the items in 

specific factor S explained by specific factor S, ECVSS. The formula for ECVSS is 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 =
∑ λ𝑖𝑖,𝑆𝑆2𝑖𝑖

∑ λ𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ λ𝑖𝑖,𝑆𝑆2𝑖𝑖
, (1.11) 

where sums are taken only over items loading on the specific factor of interest, and ECVSS 

+ ECVGS = 1 for specific factors. ECVSS is the proportion of common variance in a 

subdomain which is unique to that subdomain’s specific factor. An advantage offered by 

ECVSS is that it can be interpreted as the proportion of common variance of items on a 

factor explained by that factor even in models more general than bifactor models. For 

example, in a model with multiple general factors and multiple specific factors (two-tier; 

Cai, 2010), ECVSS for each general factor can be interpreted as though it were the ECV of 

a corresponding bifactor model with only that one general factor. In the case that the 

bifactor model is statistically equivalent to a second-order model, ECVSS will be equal to 

the residual variance of the first-order factor corresponding to that subscale. 
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 A third specific factor ECV index is ECVSG, which is the proportion of common 

variance explained by specific factor S with respect to all items from the general factor. 

The formula for ECVSG is the same as the equation for ECVSS (i.e., Equation 1.11) except 

that all items in the scale are used. Stucky and Edelen (2015, p. 199) refer to ECVSG as 

“specific-dimension ECV” and claim it is a measure of the uniqueness of the specific 

factor. This interpretation is suspect, as the loadings of items from other subdomains are 

unrelated to how well a subdomain is differentiated from the general construct. Instead, 

ECVSG measures the portion of total item explained variance captured by the specific 

factor. As such, high ECVSG in a specific factor will lead to lower ECV of the general 

factor, and thereby diminish the appropriateness of applying a unidimensional 

measurement model (Bonifay et al., 2015; Reise et al., 2013b). 

 As the various indices have similar formulae and are therefore easily confused, the 

following example is provided for clarification. Consider a bifactor model with two 

specific factors each being comprised of three indicators, as pictured in Figure 1.7. The 

standardized general factor loadings are all .60, the standardized loadings on the first 

specific factor are all .30, and the standardized loadings on the second specific factor are 

all .20. Computations for ECV indices can be found in Table 1.1. From the results in Table 

1.1, it can be seen that for a given specific factor, ECVGS + ECVSS = 1. Also, the sum of 

ECV and all ECVSG indices is always 1, since all of the common variance is partitioned 

into either a general source (ECV) or a specific source (ECVSG). 
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Figure 1.7 Example Bifactor Model with Standardized Loadings 

 

Table 1.1 ECV Indices for Example Bifactor Model 

Index Factor Formula Value 

ECV General 6 ×. 62

6 ×. 62 + 3 ×. 32 + 3 ×. 22
 .847 

ECVGS SF1 3 ×. 62

3 ×. 62 + 3 ×. 32
 .800 

ECVGS SF2 3 ×. 62

3 ×. 62 + 3 ×. 22
 .900 

ECVSS SF1 3 ×. 32

3 ×. 62 + 3 ×. 32
 .200 

ECVSS SF2 6 ×. 22

3 ×. 62 + 3 ×. 22
 .100 

ECVSG SF1 3 ×. 32

6 ×. 62 + 3 ×. 32 + 3 ×. 22
 .106 

ECVSG SF2 3 ×. 22

6 ×. 62 + 3 ×. 32 + 3 ×. 22
 .047 
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1.2.2.3 I-ECV 

 An explained common variance index can also be computed for each item. The 

proportion of common variance for an item which is explained by the general factor is 

(Stucky & Edelen, 2015, p. 201) 

𝐼𝐼 − 𝐸𝐸𝐸𝐸𝐸𝐸 =
𝜆𝜆𝑖𝑖,𝐺𝐺2

𝜆𝜆𝑖𝑖,𝐺𝐺2 + 𝜆𝜆𝑖𝑖,𝑆𝑆2
, (1.12) 

where i is the index of a single item. I-ECV is a measure of how well an item’s common 

variance is explained by the general factor (Stucky et al., 2013). Stucky and Edelen (2015) 

recommend using I-ECV to select a subset of items to include in a shortened scale which 

is essentially unidimensional, claiming that a set of items with I-ECV “greater than 0.80 or 

0.85 will typically yield a fairly unidimensional item set” (p. 202).  

 Other Bifactor Indices 

1.2.3.1 Percent uncontaminated correlations 

(PUC) 

Percent uncontaminated correlations (PUC) provides the proportion of elements of 

the covariance matrix which are only modeled by the general factor (Rodriguez et al., 

2016a, Equation 8, p. 232),  

𝑃𝑃𝑃𝑃𝐸𝐸 = 1 −
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑐𝑐𝑜𝑜 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑁𝑁𝑐𝑐𝑐𝑐𝑎𝑎 𝑐𝑐𝑐𝑐𝑒𝑒𝑁𝑁𝑐𝑐 𝑤𝑤𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐 𝑎𝑎𝑁𝑁𝑐𝑐𝑁𝑁𝑔𝑔 𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑐𝑐𝑜𝑜 𝑐𝑐𝑐𝑐𝑁𝑁𝑁𝑁𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(1.13) 

Since a unidimensional model attempts to replicate all the elements of the data’s covariance 

matrix and the general factor of a bifactor model influences all elements of the model-

implied covariance matrix, it stands to reason that if only few covariances are influenced 

by specific factors, the unidimensional model and general factor will be similar (Bonifay 

et al., 2015; Reise et al., 2013b). As an example, consider a test with 9 items allocated 
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evenly among three subdomains. The covariance matrix (see Figure 1.7) has 9 variance 

terms (highlighted in lavender) and 9(9 – 1)/2 = 36 covariance terms, of which only 9 

(highlighted in blue) are affected by the specific factors. Thus, the remaining 27 

(highlighted in tan) are uncontaminated by the subdomains; for this model, PUC = 0.75, 

which means that 75% (27 out of 36) of the covariance terms in the covariance matrix are 

modeled only by the general factor of the bifactor model.  

 

Figure 1.8 Partitioning of Covariance Matrix into Contaminated and Uncontaminated 

Covariances 

1.2.3.2 Average relative parameter bias 

(ARPB) 

Average relative parameter bias (ARPB) is an overall index of the difference 

between factor loadings on the bifactor general factor and the factor loadings of a 

unidimensional CFA model of the same data. Specifically, ARPB is the average of the 

difference in factor loadings between the models relative to the factor loadings on the 

unidimensional model, 

𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 =
∑ �

𝜆𝜆𝑖𝑖,𝑈𝑈 − 𝜆𝜆𝑖𝑖,𝐺𝐺
𝜆𝜆𝑖𝑖,𝐺𝐺

�𝑖𝑖

𝑐𝑐
(1.16) 
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where the sum is taken overall all items, 𝜆𝜆𝑖𝑖,𝑈𝑈 is the factor loading of item i onto the 

unidimensional factor, 𝜆𝜆𝑖𝑖,𝐺𝐺 is the factor loading of item i onto the bifactor general factor, 

and n is the total number of items.  When ARPB is small, the general factor of the bifactor 

solution and the single factor of the unidimensional solution will be roughly equivalent 

models of the data; therefore, the simpler unidimensional model can be used in SEM 

contexts without substantially biasing structure coefficients (Bonifay et al., 2015; 

Rodriguez et al., 2016a).  

1.3 Use of Bifactor Models for Unidimensionality Assessment 

Bifactor indices have been utilized in simulation and theoretical studies to develop 

cutoffs for when data can reasonably be interpreted in a unidimensional manner. As these 

simulations provide much of the motivation and inform much of the design of the 

simulation proposed herein, they will be described in detail. 

Reise et al. (2013b) compared the accuracy with which the factor in a 

unidimensional model predicts a criterion when the true measurement model was bifactor. 

Specifically, they specified a bifactor population model along with a criterion variable with 

a fixed latent correlation (.50) to the general factor. Then, an analysis model consisting of 

a unidimensional model which predicted the criterion in a structural equation model (SEM) 

was used. The primary outcome of interest in this study was relative bias in the structural 

coefficient. Relative bias, also known as percent bias, in a coefficient is defined as the ratio 

of the difference between theoretical and estimated coefficients and the theoretical 

coefficient (Bonifay et al., 2015, p. 5). Reise et al. (2013b) manipulated the number of 

factors (3, 6, 12), the number of items per factor (3, 6, 12), standardized loadings on the 

general factor (.3, .4, .5, .6, .7), and standardized loadings on specific factors (.3, .4, .5, .6). 
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Notably, rather than simulating data, Reise et al. (2013b) generated a population correlation 

matrix for each condition and performed analyses using this correlation matrix as the data. 

Because this study was based on population models, it was not a simulation study, as no 

data was simulated. Rather, the results are relevant to hypothetical true models; in practice, 

sampling error will add another source of error to the prediction of external correlates. The 

design of this study guarantees that all measurement models considered are second-order 

models (Yung et al., 1999). Additionally, in Reise et al.’s (2013b) design, all specific factor 

bifactor indices were the same for all specific factors in a given model since all relevant 

parameters (number of items, magnitude of factor loadings on general factor, magnitude of 

factor loadings on specific factor) were the same for all specific factors..  

Reise et al. (2013b) found that relative bias in the structural coefficient was 

predicted by ECV, and that this relationship was moderated by PUC. Reise et al. (2013b, 

p. 22) suggest that when PUC > .80 or when ECV > .60 and OmegaH > .7, relative bias in 

structural coefficients induced by using a unidimensional measurement model rather than 

a bifactor measurement model in an SEM framework is likely to be slight. When these 

cutoffs are met, therefore, use of a unidimensional latent variable model may be justified 

without too much concern about structural parameter bias. 

Bonifay, et al. (2015) compared loadings of a unidimensional model to loadings on 

the general factor of a bifactor model in situations where the bifactor model was the true 

population model. Specifically, they simulated data from a bifactor population model and 

then analyzed that data using a unidimensional measurement model. The primary outcome 

of interest in this study was average relative bias in loadings between the estimated 

unidimensional model and the population bifactor model. Here average relative bias is the 
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average of relative biases in loadings across all the items in the model. Bonifay et al. (2015) 

manipulated the number of factors and the number of items per factor to create 15 different 

bifactor structures. They then manipulated standardized loadings on the general factor (.3, 

.4, .5, .6, .7), and standardized loadings on specific factors (.3, .4, .5, .6). Notably, rather 

than simulating many samples of data per condition, Bonifay et al. (2015) generated a 

single large sample (N = 10,000) which they analyzed, making the assumption that loadings 

and bifactor indices will be precisely estimated with such a large sample. In the same way 

as Reise et al.’s (2013b) design, the design of Bonifay et al.’s (2015) simulation guarantees 

that all measurement models considered are second-order models and that all specific 

factor bifactor indices are the same for all specific factors in a given model. Bonifay et al. 

(2015) found that ECV predicted average relative bias in factor loadings, and that this 

relationship was moderated by PUC, mirroring the results of Reise et al. (2013). No cutoffs 

were provided. 

Finally, it should be noted that neither Reise et al. (2013) nor Bonifay et al. (2015) 

make any claims about the appropriateness of interpreting a total score; instead, their 

claims are limited to measurement models. The only claim concerning using bifactor 

indices to justify interpretation of a total score found in the literature is given by Rodriguez 

et al. (2016a), who claim OmegaH > .80 is sufficient to claim that total scores can be 

considered as effectively unidimensional, and therefore may be interpreted. In making this 

recommendation, Rodriguez et al. (2016a) do not refer to any research literature. However, 

it seems likely that their rationale was inspired by Nunnally and Bernstein’s (1994, p. 265) 

well-known claim that reliabilities above .80 are adequate for research “concerned with the 

size of correlations and with mean differences.” 



24 
 

1.4 Use of Bifactor Models for Multidimensionality Assessment 

 While no explicit simulations have been conducted using bifactor indices to 

measure dimensional uniqueness of subscales, numerous researchers have recommended 

using OmegaHS for this purpose (Gignac & Kretzschmar, 2017; Gignac & Watkins, 2013; 

Reise et al., 2012; Rodriguez et al., 2016b; Sellbom & Tellegen, 2019). Gignac and 

Watkins (2013) and Reise et al. (2013a) recommend not interpreting a subscore with 

OmegaHS < .50, while Reise et al. additionally suggest that higher values such as 

OmegaHS = .75 would be preferred. Both of these recommendations are based upon 

interpreting OmegaHS as a reliability coefficient, which has already been demonstrated to 

be a flawed interpretation (Perreira et al., 2018). Gignac and Kretschmar (2017) utilize the 

results of a literature review performed by Rodriguez et al. (2016a) to suggest when 

OmegaHS values may be considered “small,” “medium,” and “large,” but attach no 

meaning to those labels other than in relation to each other. 

 The use of OmegaHS for assessment of individual specific factors has been 

observed as a common practice in applied literature. Specifically, a search was made of 

PsychINFO for peer reviewed articles published in 2018 using the search term “bifactor.” 

This search revealed 149 articles reporting at least one exploratory or confirmatory bifactor 

model, of which 58 interpreted OmegaHS coefficients for the purpose of dimensionality 

assessment. The most common interpretation given to OmegaHS among these articles was 

consistent with Reise et al.’s (2013a) interpretation as reliability of the subscore after 

partialling out variability explained by the general factor. Less common was to consider 

OmegaHS as an estimate of the reliability of the subscore. Generally, small OmegaHS 

values were considered as evidence that only a total score should be interpreted; for 
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example, Shihata et al. (2018) argue that small OmegaHS values (.07 - .24) indicate that 

only a total score of intolerance of uncertainty should be interpreted, but later interpret the 

inhibitory subscore anyways. Decisions based on moderate levels of OmegaHS were more 

variable. On the one hand, Bruner and Benson (2018) use OmegaHS values between .27 

and .41 as evidence to support interpreting only a general factor of social identity and total 

score despite low ECV (.50) and marginal OmegaH (.78). Several other researchers 

interpret OmegaHS between .40 and .50 as being inadequate to interpret a subscore (e.g., 

Dagnall et al., 2018; Isoard-Gautheur et al., 2018; Naser et al., 2018). On the other hand, 

Folberg et al. (2019) argue that similarly sized OmegaHS values (.40 and .49) indicate that 

dominance and self-direction goals specific factors need to be included in a measurement 

model for agentic goals (of which they are subdomains) in an SEM. It is noteworthy that 

in three of these studies, both a general factor or total score and at least one subscore are 

interpreted. Thus, in practice, scales are sometimes treated as both effectively 

unidimensional and effectively multidimensional, even within a single study. 

1.5 Purpose 

Applied researchers employ bifactor CFA models and indices based on model 

parameter estimates for dimensionality assessment purposes, including determining 

whether to interpret subscales. However, to date no rigorous guidelines for accomplishing 

this determination have been developed. The present research endeavors to partially close 

this gap between methodology literature and research practice by aligning bifactor indices 

with a classical test theoretic approach to subscore analysis common in educational testing 

(Sinharay, 2019). It is hoped that the present research will provide results that aid 

psychology, education, and, more broadly, social science researchers in making rigorous 
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decisions about whether to interpret subscores for use in research concerning, for example, 

group mean differences or covariance structures such as regression. Therefore, the purpose 

of this dissertation is to accomplish two closely related goals: 

(1) Develop and disseminate a package for the R statistical computing environment 

(R Core Team, 2019) to efficiently compute bifactor indices from bifactor CFA, 

EFA, or exploratory SEM model parameters, with special convenience 

functions for inputting fitted model results from Mplus (Muthén & Muthén, 

2019), the lavaan R package (Rosseel & Jorgensen, 2018), and the psych R 

package (Revelle, 2020). Dissemination will involve publication of the package 

on the Comprehensive R Archive Network (CRAN) and preparation of a 

vignette manuscript suitable for publication in the Journal of Statistical 

Software (impact factor = 11.655, 5 year impact factor = 20.539; Journal 

Citation Reports (JCR), March 19, 2020) or the R Journal (impact factor = 

2.682, 5 year impact factor = 3.377; JCR, March 19, 2020). 

(2) Use of simulation techniques to devise a strategy for which bifactor indices can 

be used to determine whether interpretation of subscores is appropriate. 

Specifically, cutoffs will be devised for a specific factor’s bifactor indices, 

possibly conditioned upon general bifactor indices, such that exceeding these 

cutoffs provides empirical evidence for the appropriateness of interpreting that 

factor’s subscore separately from the total score. 

  



CHAPTER 2. AN R PACKAGE FOR COMPUTING BIFACTOR INDICES 

2.1 Introduction 

Many psychological constructs are measured using multi-item scales. In this case, 

it is common for researchers to model data arising from those using a latent variable model. 

Frequently, unidimensional confirmatory and exploratory factor analysis models are found 

to exhibit poor fit to questionnaire data due to multidimensionality resulting from clusters 

of items belonging to subdomains of the general construct (Chen et al., 2006). However, 

the extent of this multidimensionality may be ignorable, so that a unidimensional 

interpretation is warranted despite the poor fit (Reise et al., 2013b; Sellbom & Tellegen, 

2018). In order to investigate the extent of multidimensionality in data, the use of ancillary 

indices computed from parameter estimates of a bifactor measurement model has become 

common (Rodriguez et al., 2016a). 

Bifactor models are a specific type of latent variable model in which each indicator 

loads on a general factor and at most one orthogonal specific factor. Thus, bifactor models 

partition the variance of the indicators into general, specific, and unique sources (Reise, 

2012). This partitioning of variance enables two primary purposes for bifactor models. 

First, the biasing effects of multidimensionality can be accounted for, allowing accurate 

estimation of coefficients related to the general factor (Reise et al., 2010). Second, the 

partitioning of variance can be studied to determine the extent of multidimensionality; if a 

general factor explains the vast majority of the variance of items, then multidimensional 

data can be treated as unidimensional without causing too much bias (Bonifay et al., 2015; 

Reise et al., 2013a; Rodriguez et al., 2016a). To accomplish this latter goal, a variety of 

auxiliary statistical indices for bifactor models have been developed. These bifactor indices 
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include various forms of reliability indices, aggregate variance explained indices, and 

others; bifactor indices have been successfully used to determine when data is 

unidimensional enough to be interpreted as unidimensional or multidimensional enough 

that subdomain scores may be interpreted instead of (or even in addition to) a total score 

(Bonifay et al., 2015; Dueber, 2019; Reise et al., 2013a; Reise et al., 2013b; Rodriguez et 

al., 2016a; Stucky & Edelen, 2015). 

A search of PsychINFO for peer-reviewed articles published in 2018 using the 

search term “bifactor” revealed 65 papers which utilized ancillary bifactor indices to aid in 

decision-making about dimensionality. These studies spanned a wide variety of 

psychological constructs, including gender roles (Hammer et al., 2018), memory (McGill 

& Dombrowski, 2018), burnout (Isoard-Gautheur et al., 2018), intelligence (Fenollar-

Cortés et al., 2019), emotional distress (Marshall et al., 2018), belief in the paranormal 

(Drinkwater et al., 2018), personality (Dagnall et al., 2018), racial attitudes (Keum et al., 

2018), and many others. As such, bifactor indices are used across a wide range of 

psychological sciences. 

2.2 Computing Bifactor Indices 

Model based reliability and explained common variance indices can be computed 

for bifactor models. Coefficient omega (ω; McDonald, 1999) is a model-based estimate of 

composite reliability of total score, typically computed for unidimensional models. 

However, Zinbarg et al. (2005, p. 126) provide an extension of the logic for omega such 

that it can be computed for bifactor models as 

𝜔𝜔 =
∑ �𝜆𝜆𝑖𝑖,𝐺𝐺�

2
+ ∑ ∑ �𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗�

2
𝑖𝑖𝑗𝑗𝑖𝑖

∑ �𝜆𝜆𝑖𝑖,𝐺𝐺�
2

+ ∑ ∑ �𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗�
2

𝑖𝑖𝑗𝑗𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

, (2.1) 
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where i varies over all items, j varies over all specific factors, 𝜆𝜆𝑖𝑖,𝐺𝐺 is the loading of item i 

onto the general factor, 𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗 is the loading of item i onto specific factor j, and ℎ𝑖𝑖2 is the 

communality of item i. Whereas omega estimates the proportion of total score variance that 

can be explained within the bifactor model, hierarchical omega (OmegaH; 𝜔𝜔𝐻𝐻; McDonald, 

1999; Zinbarg et al., 2005) estimates the proportion of total score variance that can be 

explained by the general factor, and is computed similarly as in Equation 2.1 except that 

only loadings from the general factor are considered in the numerator (Zinbarg et al., 2005, 

p. 126, Equation 8): 

𝜔𝜔𝐻𝐻 =
∑ �𝜆𝜆𝑖𝑖,𝐺𝐺�

2
𝑖𝑖

∑ �𝜆𝜆𝑖𝑖,𝐺𝐺�
2

+ ∑ ∑ �𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗�
2

𝑖𝑖𝑗𝑗𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

. (2.2) 

Explained common variance (ECV; ten Berge & Socan, 2004) is the proportion of 

all common variance explained by the general factor,  

𝐸𝐸𝐸𝐸𝐸𝐸 =
∑ 𝜆𝜆𝑖𝑖,𝐺𝐺2𝑖𝑖

∑ 𝜆𝜆𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ ∑ 𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗
2

𝑖𝑖𝑗𝑗
, (2.3) 

where i varies over all items, j varies over all specific factors, λ𝑖𝑖,𝐺𝐺 is the loading of item i 

onto the general factor, and λ𝑖𝑖,𝑆𝑆𝑗𝑗 is the loading of item i onto specific factor j.  

Average absolute relative parameter bias (ARPB; Bonifay et al., 2015; Rodriguez 

et al., 2016a) is a measure of the extent of deviation between loadings in a unidimensional 

measurement model and loadings of the general factor in a bifactor model: 

𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 =
∑ �

𝜆𝜆𝑖𝑖,𝑈𝑈 − 𝜆𝜆𝑖𝑖,𝐺𝐺
𝜆𝜆𝑖𝑖,𝐺𝐺

�𝑖𝑖

𝑐𝑐
(2.4) 

where the sum is taken overall all items, 𝜆𝜆𝑖𝑖,𝑈𝑈 is the factor loading of item i onto the 

unidimensional factor, 𝜆𝜆𝑖𝑖,𝐺𝐺 is the factor loading of item i onto the bifactor general factor, 
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and n is the total number of items. Percentage of uncontaminated correlations (PUC) is the 

proportion of inter-indicator correlations which are modeled only by the general factor. 

Omega, OmegaH, ECV, PUC, and ARPB have been found to be useful for assessing the 

strength of general factors (Bonifay et al., 2015; Reise et al., 2013a; Rodriguez et al., 

2016a). These overall indices only make sense when there is a single global general factor, 

and BifactorIndicesCalculator only provides them when it can determine that the model 

being evaluated has a general factor. 

 As an item-level version of the general factor ECV index, Stucky and Edelen 

(2015) compute ECV for each item (I-ECV) given by 

𝐼𝐼 − 𝐸𝐸𝐸𝐸𝐸𝐸(𝑐𝑐) =
𝜆𝜆𝑖𝑖,𝐺𝐺2

𝜆𝜆𝑖𝑖,𝐺𝐺2 + ∑ 𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗
2

𝑗𝑗
, (2.5) 

where 𝜆𝜆𝑖𝑖,𝐺𝐺 is the factor loading of item i onto the bifactor general factor, j varies over all 

specific factors, and 𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗
2  is the loading of item i onto specific factor j. Values of  I-ECV 

near one indicate an item that only reflects the general dimension (Stucky et al., 2013). As 

with model level indices, I-ECV is only computed by BifactorIndicesCalculator when a 

general factor is present. 

 In addition to overall model level and item level indices, several indices are also 

computed at the factor level. These include Omega and ECV indices which are very similar 

to the model level indices. OmegaS (𝜔𝜔𝑆𝑆; Reise et al., 2013b) is identical to Omega except 

that only the items loading on specific factor S are utilized: 

𝜔𝜔𝑆𝑆 =
∑ �𝜆𝜆𝑖𝑖,𝐺𝐺�

2
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𝑖𝑖𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

, (2.6) 
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where i varies only over the items loading on specific factor S. OmegaHS (𝜔𝜔𝐻𝐻𝑆𝑆; Reise et 

al., 2013b) is similarly related to OmegaH, this time with the numerator utilizing specific 

factor loadings: 

𝜔𝜔𝐻𝐻𝑆𝑆 =
∑ �𝜆𝜆𝑖𝑖,𝑆𝑆�

2
𝑖𝑖

∑ �𝜆𝜆𝑖𝑖,𝐺𝐺�
2

+ ∑ �𝜆𝜆𝑖𝑖,𝑆𝑆�
2

𝑖𝑖𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

, (2.7) 

where i varies only over the items loading on specific factor S. OmegaHS is not a reliability 

index, but rather an indicator of dimensional uniqueness for the specific factor (Reise et 

al., 2013b; Rodriguez et al., 2016a). Three different ECV indices can be computed for 

specific factors: ECVSG, ECVGS, and ECVSS. By using specific factor loadings in place of 

general factor loadings in Equation 2.3, ECVSG is obtained (Stucky & Edelen, 2015): 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐺𝐺 =
∑ 𝜆𝜆𝑖𝑖,𝑆𝑆2𝑖𝑖

∑ 𝜆𝜆𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ ∑ 𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗
2

𝑖𝑖𝑗𝑗
, (2.8) 

where i varies over all items, j varies over all specific factors, and S of the numerator is an 

individual specific factor. While Stucky and Edelen (2015) interpret this index as an 

indicator of specific factor uniqueness, a more natural approach would be to only consider 

items loading on the specific factor of interest. This approach yields ECVSS, which has the 

same formula as ECVSG (i.e., Equation 2.8) except that only the items loading on the 

specific factor are included in any of the sums. 

 The complement of ECVSS is the within-domain ECV (ECVGS; Stucky & Edelen, 2015): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺𝑆𝑆 =
∑ 𝜆𝜆𝑖𝑖,𝐺𝐺2𝑖𝑖

∑ 𝜆𝜆𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ ∑ 𝜆𝜆𝑖𝑖,𝑆𝑆𝑗𝑗
2

𝑖𝑖𝑗𝑗
, (2.9) 

where again i only varies over items loading on the specific factor of interest. Notationally, 

the subscripts of specific factor ECVs are two letters: the first letter indicates whether 

loadings from the general factor of specific factor appear in the numerator, and the second 
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letter indicates whether sums are to be taken over all items or just items loading on the 

specific factor. 

 Specific factor indices OmegaHS and ECVSS can be interpreted as indicators of 

dimensional uniqueness for bifactor models. However, when models with multiple general 

factors, termed “two-tier” models (Cai, 2010), OmegaHS and ECVSS can be interpreted as 

general factor ECV and OmegaH for those general factors. 

2.3 Installation and Examples of Using BifactorIndicesCalculator 

The R package BifactorIndicesCalculator (>1.0.0) contains functions for 

computing bifactor indices for a variety of model types as well as convenience functions 

for directly utilizing output from various R packages and Mplus (Muthén & Muthén, 2019). 

The package is publicly available from the Comprehensive R Archive Network (CRAN). 

Installation and loading of the package can be accomplished with  

install.packages("BifactorIndicesCalculator") 

library(BifactorIndicesCalculator) 

For confirmatory models, bifactor indices can be computed using the following two 

functions: 

bifactorIndices(Lambda, Theta = NULL, UniLambda = NULL,  

                                                standardized =  TRUE) 

bifactorIndicesMplus(Lambda = file.choose(), UniLambda = NULL,  

                                                standardized = TRUE) 

with the following arguments: 

• Lambda – A matrix of factor loadings or an object that BifactorIndicesCalculator 

can convert to a matrix of factor loadings. Currently, models fit by the R package 

lavaan (Rosseel & Jorgensen, 2019) are supported in the “bifactorIndices” function 
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and Mplus .out files are supported in the “bifactorIndicesMplus” function. The 

default behavior of “bifactorIndicesMplus” is to spawn a file selection window 

which the user can use to select the desired .out file. 

• Theta – an optional vector of indicator residual variances. When Lambda is a model 

fit by lavaan of Mplus, Theta is extracted from the fit model. Additionally, when 

standardized coefficients are used, Theta is computed using Lambda. Thus Theta 

input is only required when inputting a matrix of unstandardized factor loadings for 

Lambda. 

• UniLambda – a matrix of factor loadings from a unidimensional model of the same 

data or an object that BifactorIndicesCalculator can convert to a matrix of factor 

loadings (i.e., a model fitted by lavaan or Mplus). UniLambda is used for computing 

parameter bias and is only needed when that index is desired. 

• standardized – a Boolean indicator of whether bifactor indices are to be computed 

based on standardized coefficients as is standard practice (Rodriguez et al., 2016a). 

Bifactor indices can also be computed based on unstandardized coefficients 

(standardized = FALSE). 

Additionally, since bifactor indices from exploratory models show promise for being 

interpretable in a similar way as those from confirmatory models (Murray et al., 2019), the 

following two functions are provided for computing bifactor indices based on exploratory 

models: 

bifactorIndices_expl(Lambda, ItemsBySF = NULL, LoadMin = 0.2) 

bifactorIndicesMplus_expl(Lambda = file.choose(), ItemsBySF = NULL,  

                                                       LoadMin = 0.2) 

with the following arguments: 
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• Lambda – A standardized factor loading matrix from an exploratory model or an 

object that BifactorIndicesCalculator can convert to a factor loading matrix. 

Currently, exploratory factor analysis models fit by the psych package (Revelle, 

2017) are supported in “bifactorIndices_expl”, and .out files for exploratory 

structural equation models fit by Mplus are supported by “bifactorIndices 

Mplus_expl.” The default behavior of “bifactorIndicesMplus_expl” is to spawn a 

file selection window which the user can use to select the desired .out file. 

• ItemsBySF – A list, indexed by specific factors, of items which are intended to load 

on that specific factor. This list is used for controlling which indicators are included 

in the sums for specific factor indices. The default input is for this list to be NULL 

and assign indicators to specific factors based on having large enough factor 

loadings. 

• LoadMin – The factor loading threshold for which an indicator is be considered as 

loading substantially on a factor. Used for assigning items to specific factors and 

generate warnings concerning unexpected items loading on factors when 

ItemsBySF is provided.  

 Example 1. Confirmatory Bifactor Model 

Data from the twenty SRS-22r (Asher et al., 2006) items concerning patient quality 

of life with scoliosis is provided in the BifactorIndicesCalculator as the built-in data set 

SRS_data. The SRS-22r has four subdomains, but a total score is often interpreted. A  
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Figure 2.1 Bifactor Model of SRS-22r 
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diagram of a bifactor model for the SRS-22r in which the specific factors are aligned with 

the subdomains can be found in Figure 2.1. To assess the appropriateness of utilizing a 

total score or unidimensional measurement model, the following code fits an appropriate 

bifactor model in lavaan and computes the bifactor indices: 

SRS_UnidimensionalModel <-  
   "SRS =~ SRS_1  + SRS_2  + SRS_3  + SRS_4  + SRS_5  +  
           SRS_6  + SRS_7  + SRS_8  + SRS_9  + SRS_10 +  
           SRS_11 + SRS_12 + SRS_13 + SRS_14 + SRS_15 +  
           SRS_16 + SRS_17 + SRS_18 + SRS_19 + SRS_20" 
 
SRS_BifactorModel <-  
   "SRS =~ SRS_1  + SRS_2  + SRS_3  + SRS_4  + SRS_5  +  
           SRS_6  + SRS_7  + SRS_8  + SRS_9  + SRS_10 +  
           SRS_11 + SRS_12 + SRS_13 + SRS_14 + SRS_15 +  
           SRS_16 + SRS_17 + SRS_18 + SRS_19 + SRS_20     
    Function     =~ SRS_5  + SRS_9  + SRS_12 + SRS_15 + SRS_18    
    Pain         =~ SRS_1  + SRS_2  + SRS_8  + SRS_11 + SRS_17   
    SelfImage    =~ SRS_4  + SRS_6  + SRS_10 + SRS_14 + SRS_19   
    MentalHealth =~ SRS_3  + SRS_7  + SRS_13 + SRS_16 + SRS_20" 
 
SRS_Unidimensional <- lavaan::cfa(SRS_UnidimensionalModel,  
                                  SRS_data,  
                                  ordered = paste0("SRS_", 1:20),  
                                  orthogonal = TRUE) 
 
SRS_bifactor <- lavaan::cfa(SRS_BifactorModel,  
                            SRS_data,  
                            ordered = paste0("SRS_", 1:20),  
                            orthogonal = TRUE) 
 
bifactorIndices(SRS_bifactor, UniLambda = SRS_Unidimensional) 

The output of “bifactorIndices” is a list with three elements: factor level indices, 

item level indices, and model level indices. According to the guidelines established by 

Rodriguez et al. (2016a), a total score is interpretable, but use of a unidimensional model 

is questionable. Abridged output from “bifactorIndices” for this example is: 

$FactorLevelIndices 
                ECV_SS     ECV_SG    ECV_GS     Omega   Omega_H 
SRS          0.6728130 0.67281303 0.6728130 0.9614271 0.8702229 
Function     0.1972990 0.04153902 0.8027010 0.8342751 0.1011000 
Pain         0.4123779 0.11147096 0.5876221 0.9116273 0.3616746 
SelfImage    0.3280132 0.08183383 0.6719868 0.8846751 0.2445099 
MentalHealth 0.3424358 0.09234316 0.6575642 0.9127146 0.3054461 
 
$ItemLevelIndices 
            IECV RelParBias 
SRS_1  0.5104022 0.35337859 
SRS_2  0.4976737 0.36753848 
SRS_3  0.7980893 0.03658076 
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          . . . 
SRS_19 0.4582466 0.16640639 
SRS_20 0.6912559 0.10480146 
 
$ModelLevelIndices 
      ECV       PUC      ARPB  
0.6728130 0.7894737 0.1209678 

 Example 2. Exploratory Bifactor Model 

Using the same dataset, the use of “bifactorIndices_expl” is now illustrated. Of note 

that when using the psych package for exploratory factor analysis, the factors are 

automatically named. To ensure that the proper items sets were associated with the 

appropriate specific factors, the loadings from the exploratory factor analysis solution were 

reviewed (not shown).  

Library(psych) 
SRS_BEFA <- fa(SRS_data, nfactors = 5, rotate = "bifactor") 
 
ItemsBySF = list(MR4 = paste0("SRS_", c(5, 9, 12, 15, 18)), #Function 
                 MR2 = paste0("SRS_", c(1, 2,  8, 11, 17)), #Pain 
                 MR3 = paste0("SRS_", c(4, 6, 10, 14, 19)), #SelfImage 
                 MR5 = paste0("SRS_", c(3, 7, 13, 16, 20))) #Mental H… 
 
bifactorIndices_expl(SRS_BEFA, ItemsBySF = ItemsBySF) 

The output of “bifactorIndices_expl” is a list with two elements: factor level indices 

and model level indices. According to the guidelines established by Rodriguez et al. 

(2016a), a total score is interpretable, but use of a unidimensional model is questionable. 

Note that, had “ItemsBySF” not been specified, general factor results would have been 

unchanged but specific factor results would have been based on different items and not 

been the same. Abridged output from “bifactorIndices” for this example is: 

$FactorLevelIndices 
        ECV_SS     ECV_SG    ECV_GS     Omega    Omega_H 
MR1  0.6528916 0.65289164 0.6528916 0.9402626   0.890523 
MR2  0.3052481 0.12171192 0.5911061 0.8757252  0.2698778 
MR3  0.4024035 0.10707890 0.5103314 0.8398127  0.3263923 
MR4  0.2760142 0.06322365 0.6600196 0.7412911  0.1689451 
MR5 0.02662722 0.05509389 0.8479560  0.873287 0.02185901 
 
$ModelLevelIndices 
       ECV_SS     Omega  Omega_H 
MR1 0.6528916 0.9402626 0.890523 
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Additionally, “bifactorIndices_expl” issued 34 warnings, which suggests that the 

exploratory factor analysis did not recover the hypothesized structure very well. The first 

four of these warnings are: 

Warning messages: 
1: In bifactorIndices_expl(SRS_BEFA, ItemsBySF = ItemsBySF) : 
  Item SRS_1 loads on factor MR1 above 0.2 
2: In bifactorIndices_expl(SRS_BEFA, ItemsBySF = ItemsBySF) : 
  Item SRS_2 loads on factor MR1 above 0.2 
3: In bifactorIndices_expl(SRS_BEFA, ItemsBySF = ItemsBySF) : 
  Item SRS_3 loads on factor MR1 above 0.2 
4: In bifactorIndices_expl(SRS_BEFA, ItemsBySF = ItemsBySF) : 
  Item SRS_3 loads on factor MR5 below 0.2 
. . . 

 Example 3. Two-Tier model 

Simulated multitrait-multimethod data was simulated for use as an example and is 

available in BifactorIndicesCalculator as “MTMM_data”. In this dataset, three traits are 

each represented by three items for each of three methods. In the model fit below, trait 

factors are allowed to covary but method factors are orthogonal to all other factors. The 

following code can be used to compute the bifactor indices for this data set: 

MTMM_model <- " 
Trait1 =~ 
       T1M1_1+T1M1_2+T1M1_3+T1M2_1+T1M2_2+T1M2_3+T1M3_1+T1M3_2+T1M1_3 
Trait2 =~ 
       T2M1_1+T2M1_2+T2M1_3+T2M2_1+T2M2_2+T2M2_3+T2M3_1+T2M3_2+T2M1_3 
Trait3 =~ 
       T3M1_1+T3M1_2+T3M1_3+T3M2_1+T3M2_2+T3M2_3+T3M3_1+T3M3_2+T3M1_3 
Method1 =~ T1M1_1+T1M1_2+T1M1_3+T2M1_1+T2M1_2+T2M1_3+ 
           T3M1_1+T3M1_2+T3M1_3 
Method2 =~ T1M2_1+T1M2_2+T1M2_3+T2M2_1+T2M2_2+T2M2_3+ 
           T3M2_1+T3M2_2+T3M2_3 
Method3 =~ T1M3_1+T1M3_2+T1M3_3+T2M3_1+T2M3_2+T2M3_3+ 
           T3M3_1+T3M3_2+T3M3_3 
 
Trait1 ~~ 0*Method1 
Trait1 ~~ 0*Method2 
Trait1 ~~ 0*Method3 
Trait2 ~~ 0*Method1 
Trait2 ~~ 0*Method2 
Trait2 ~~ 0*Method3 
Trait3 ~~ 0*Method1 
Trait3 ~~ 0*Method2 
Trait3 ~~ 0*Method3 
 
Method1 ~~ 0*Method2 
Method1 ~~ 0*Method3 
Method2 ~~ 0*Method3" 
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MTMM_fit <- lavaan::cfa(MTMM_model, MTMM_data) 
bifactorIndices(MTMM_fit) 

With a two-tier model, only factor level indices are output. For the trait factors, 

these indices can be interpreted a though they were model level indices in a standard 

bifactor model.  

$FactorLevelIndices 
           ECV_SS     Omega   Omega_H 
Trait1  0.7422100 0.9436118 0.8415608 
Trait2  0.5967258 0.9215644 0.7490016 
Trait3  0.6880337 0.9555450 0.8243821 
Method1 0.3206363 0.9258991 0.5394873 
Method2 0.3197150 0.9403045 0.5497289 
Method3 0.4579639 0.8546333 0.6719250 

 Bifactor Indices Shiny App 

For the convenience of Mplus users who may be unfamiliar with R, a Shiny-based 

application with graphical user interface was additionally developed and is freely available. 

The left panel of the interface contains fields for uploading Mplus .out files for 

confirmatory bifactor, unidimensional, or two-tier models. Results are calculated as soon 

as the confirmatory bifactor model is uploaded; the unidimensional model is only required 

for parameter bias indices. The right panel of the interface contains tabs holding the 

different categories of indices. 
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Figure 2.2 Bifactor Indices Calculator Shiny App 

 

2.4 Discussion 

This manuscript introduces an R package, BifactorIndicesCalculator, for 

computing auxiliary indices for both confirmatory and exploratory bifactor models. While 

these indices are not difficult to compute manually, the success of an earlier Excel-based 

version demonstrates demand for convenient calculators of these indices (Dueber, 2017). 

To that end, the package includes convenience functions for directly inputting output from 

various statistical programs that can estimate confirmatory and exploratory bifactor 

models. Additionally, a Shiny-based webapp has been provided for additional convenience 

to researchers unfamiliar with R.  

In summary, we described computation of various indices to aid in the assessment 

of dimensionality, implemented these computations in an R package, and illustrated use of 

this package through several examples.  



CHAPTER 3. STUDY TWO: BIFACTOR APPROACH TO SUBSCORE ANALYSIS 

3.1 Introduction 

Important social science constructs are often measured with multi-item instruments, 

and data collected from using these instruments often fail to satisfy the strict conditions of 

unidimensionality (Reise et al., 2013a). Instead, these data exhibit a multidimensional 

structure in which clusters of similar items measuring a facet or subdomain of the construct 

of interest comprise the dimensions. Using bifactor models and associated indices, 

methodologists have developed a framework for deciding when data can be interpreted 

unidimensionally, with a total score or unidimensional measurement model, despite the 

presence of some multidimensionality in item responses (Bonifay et al., 2015; Reise et al., 

2013b; Rodriguez et al., 2016a). 

However, it is also sometimes the case that researcher desire to interpret scores of 

the subdomains, termed subscores. This is particularly true in education testing contexts in 

which subscores provide diagnostic information about specific areas of strength and 

weakness (Monaghan, 2006; Wedman & Lyrén, 2015). In social science research, 

interpretation of subscores is particularly useful when different subdomains correlate 

differently with an external variable (Chen et al., 2012). In this case, use of only a total 

score can result in inappropriately nonspecific theories and recommendations (Hull et al., 

1991). For example, Follberg et al. (2019) found that the dominance subdomain of a 

measure of agentic and communal goal orientations was correlated with career interest 

while other subdomains were not, whereas previous research had found no correlation 

between agentic and communal goal orientations total score and career interest (Diekman 

et al., 2010). Generally, when there is theoretical and psychometric evidence for the 
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appropriateness of their interpretation, the use of subscores may uncover relevant 

associations, group differences, or other results that would be masked or tempered when 

only a total score is interpreted. 

 Scoliosis Quality of Life Index 

As an example, consider the Scoliosis Quality of Life Index (SQLI), which was 

designed to measure how an adolescent patient’s idiopathic scoliosis affects their quality 

of life (Feise et al., 2005). The SQLI is comprised of 20 items, belonging to four 

subdomains each with five items: self-esteem, back pain, physical activity, and moods and 

feelings. Both the total SQLI score and subdomain scores have typically been interpreted 

(Feise et al., 2005; Rowe et al., 2006); however, no psychometric evidence concerning the 

dimensionality of data from the SQLI has been provided except for reliabilities, which are 

not useful indicators of dimensionality (McNeish, 2018). Doctors use SQLI total scores 

and subdomain scores to help provide a more holistic approach to the treatment of scoliosis. 

For example, a patient whose moods and feelings score drops severely may be referred to 

counseling, a patient whose back pain scores drop severely (indicating more back pain) 

may be prescribed medication, or a patient whose physical activity score drops severely 

following being fitted with a back brace may have their treatment plan reconsidered. 

Accordingly, interpretation of subdomain scores is clinically relevant.  

Given this relevance, it is important to provide evidence that subdomain scores are 

of sufficient quality to be interpreted. After all, if data from the SQLI are truly 

unidimensional, then interpreting subdomain scores is always inappropriate (Bollen & 

Lennox, 1991; Sinharay et al., 2011). A common phenomenon for patients who are fitted 

with a brace is to show little to no change in overall SQLI score after receiving the brace, 
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but report substantial decrease in moods and feelings (compensated for by moderate 

improvement in back pain and physical activity). If SQLI subdomain scores do not possess 

interpretive value, then only the overall lack of change in SQLI total scores should be 

interpreted. In this case, the decrease in moods and feelings would be considered as 

measurement error and not clinically relevant; these patients’ changes in subdomain scores 

would be the result of measurement error and interpreted as Type I error. However, if 

subdomain scores are interpretable, then these patients’ decrease in moods and feelings is 

clinically relevant, and their doctors should feel confident in taking appropriate action.  

 Bifactor Models and Indices 

When data are unidimensional, they may be modeled using a unidimensional 

confirmatory factor analysis model in which a single latent factor explains all covariances 

between items. When data are multidimensional, it is common to use a separate latent 

factor for each dimension. Items belonging to each dimension load on the corresponding 

factor, and factors are allowed to correlate; accordingly, these models are referred to as 

correlated traits models. However, when the dimensions of data are closely related, such 

as when comprising subdomains of a global construct, models can be used which reflect 

both a general factor and factors corresponding to each dimension. The most common of 

these models is a second-order factor model, in which a single latent factor explains 

covariances amongst the factors of a correlated traits model.  

Another model which can be used for this purpose is the bifactor CFA model, which 

consists of a single general factor onto which all items load and orthogonal specific factors 

corresponding to the subdomains. Bifactor models and correlated traits models are 

statistically equivalent only under certain proportionality constraints; these constraints are 
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equivalent to the data satisfying a second-order CFA model structure (Yung et al., 1999). 

Even when multidimensional data does not satisfy this constraint, bifactor models tend to 

exhibit good fit to the data anyway (Cucina & Byle, 2017; Morgan et al., 2015). Bifactor 

CFA models are commonly fit to data for dimensionality assessment purposes even when 

a bifactor interpretation of the data is not intended (Rodriguez et al., 2016a); instead either 

a unidimensional (single total score) or correlated traits (subscores) interpretation will be 

used. 

In a bifactor CFA model, items crossload onto both the general factor and a specific 

factor (although in some bifactor models not all items will crossload onto a specific factor); 

therefore, the variance of each item is split into three components: covariance with the 

general factor, covariance with the specific factor, and item specific variance, as depicted 

in Figure 3.1. Various statistical indices describing the partitioning of variance in a bifactor 

model have been devised and can be used for evaluating the appropriateness of making 

uni- or multi-dimensional interpretations of the data.  

 

Figure 3.1 Partitioning of Item Variance in a Bifactor Model 

Research concerning bifactor indices has primarily focused on indices for the 

general factor. These include omega, hierarchical omega, explained common variance, and 

the percent of uncontaminated correlations. Coefficient Omega (ω; McDonald, 1999) is a 

model-based estimate of composite reliability of total score. While Omega is typically used 
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with unidimensional models, Zinbarg et al. (2005, p. 126, Equation 8) imply the following 

formula for Omega based on bifactor model parameters: 

ω =
∑ �λ𝑖𝑖,𝐺𝐺�

2
+ ∑ ∑ �λ𝑖𝑖,𝑆𝑆𝑗𝑗�

2
𝑖𝑖𝑗𝑗𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ ∑ �λ𝑖𝑖,𝑆𝑆𝑗𝑗�
2

𝑖𝑖𝑗𝑗𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

 , (3.1) 

where i varies over all items, j varies over all specific factors, λ𝑖𝑖,𝐺𝐺 is the loading of item i 

onto the general factor, λ𝑖𝑖,𝑆𝑆𝑗𝑗 is the loading of item i onto specific factor j, and ℎ𝑖𝑖2 is the 

communality of item i. Since Omega is computed using the estimated parameters (namely 

factor loadings and residual variances) of a model, it estimates the proportion of variance 

in the total score explained by common variance (i.e., using all common factors) implied 

by the model (Bentler, 2009; Raykov, 1997; Revelle & Zinbarg, 2009).  

Whereas Omega estimates the proportion of total score variance that can be 

explained within the bifactor model, hierarchical omega (OmegaH; 𝜔𝜔𝐻𝐻; McDonald, 1999; 

Zinbarg et al., 2005) estimates the proportion of total score variance that can be explained 

by the general factor and is computed similarly as in Equation 1.6 except that only loadings 

from the general factor are considered in the numerator (Zinbarg et al., 2005, p. 126, 

Equation 8): 

ω𝐻𝐻 =
∑ �λ𝑖𝑖,𝐺𝐺�

2
𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ ∑ �λ𝑖𝑖,𝑆𝑆𝑗𝑗�
2

𝑖𝑖𝑗𝑗𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

. (3.2) 

While OmegaH does not directly address the issue of unidimensionality (Reise et al., 

2007), Gustafsson and Aberg-Bengtsson (2010) and McDonald (1999) argue that high 

OmegaH indicates that total scores primarily reflect a single dimension, since it may be 

interpreted as the squared correlation between observed total scale score and the latent 
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general factor. Rodriguez et al. (2016a) suggest that total scores can still be interpreted in 

the presence of some multidimensionality so long as OmegaH is high and give a cutoff of 

0.8.  

Explained common variance (ECV; Sijtsma, 2009; ten Berge & Socan, 2004) is the 

proportion of common variance across all items which is explained by the general factor,  

𝐸𝐸𝐸𝐸𝐸𝐸 =
∑ λ𝑖𝑖,𝐺𝐺2𝑖𝑖

∑ λ𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ ∑ λ𝑖𝑖,𝑆𝑆𝑗𝑗
2

𝑖𝑖𝑗𝑗
, (3.3) 

where i varies over all items, j varies over all specific factors, λ𝑖𝑖,𝐺𝐺 is the loading of item i 

onto the general factor, and λ𝑖𝑖,𝑆𝑆𝑗𝑗  is the loading of item i onto specific factor j. Reise et al. 

(2013a) consider ECV to be a measure of the unidimensionality of the data from a modeling 

perspective. Reise et al. (2013a) and Bonifay et al. (2015) both found that ECV predicted 

the bias in model parameters when a unidimensional model is fit to multidimensional data. 

Finally, the percent of uncontaminated correlations (PUC) is the proportion of item 

covariances which are modeled only by the general factor (Bonifay et al., 2015, p. 4). As 

CFA is concerned with modeling covariances between items, a high PUC means that much 

of the information in the data is only relevant to the general factor of a bifactor model; the 

specific factors model only a small number of covariances. Reise et al. (2013a) and Bonifay 

et al. (2015) both found that as PUC increases, the role of ECV in predicting the bias model 

parameters when a unidimensional model is fit to multidimensional data diminishes. That 

is, when ECV is high or PUC is high and ECV is moderate, expected bias is low. 

In the present study, however, where subdomain scores and therefore specific 

factors are of primary interest, bifactor indices relevant to specific factors are more 

relevant. An estimate of composite reliability of subscores (OmegaS; 𝜔𝜔𝑆𝑆) can be computed 
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for each specific factor. The OmegaS index has a formula (Reise et al., 2013a, p. 134, 

Equation 5) similar to the formula for Omega, except that only items from a particular 

specific factor are included:  

ω𝑆𝑆 =
∑ �λ𝑖𝑖,𝐺𝐺�

2
𝑖𝑖 + ∑ �λ𝑖𝑖,𝑆𝑆�

2
𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ �λ𝑖𝑖,𝑆𝑆�
2

𝑖𝑖𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

, (3.4) 

where i varies only over the items loading on specific factor S. While OmegaS does not 

generally represent a squared correlation between observed and true scores, in the case that 

specific factor loadings are proportional to general factor loadings, the items on the specific 

factor can be modeled using a unidimensional model (Yung et al., 1999) and OmegaS can 

be interpreted as a squared correlation between observed and true scores.  

Hierarchical omega for a subdomain (OmegaHS; 𝜔𝜔𝐻𝐻𝑆𝑆) estimates the proportion of 

subscore variance that can be explained by the corresponding specific factor and is 

computed (Reise et al., 2013a, p. 134, Equation 6) as 

ω𝐻𝐻𝑆𝑆 =
∑ �λ𝑖𝑖,𝑆𝑆�

2
𝑖𝑖

∑ �λ𝑖𝑖,𝐺𝐺�
2

+ ∑ �λ𝑖𝑖,𝑆𝑆�
2

𝑖𝑖𝑖𝑖 + ∑ (1 − ℎ𝑖𝑖2)𝑖𝑖

 , (3.5) 

where i varies only over the items on the subscale S. As specific factors are interpreted as 

residuals after the general factor is accounted for, OmegaHS is not a reliability index. 

Instead, OmegaHS is sometimes interpreted as a measure of dimensional uniqueness for 

the subdomain (Gignac & Kretschmar, 2017; Reise et al., 2013b; Rodriguez et al., 2016a). 

While not providing any strict cutoffs, Reise et al. (2013b) and Gignac and Kretschmar 

(2017) both suggest using OmegaHS to aid in decision-making about interpreting 

subscores and suggest OmegaHS = .50 as a reasonable minimum for interpreting a 

subscore. A search of the PsychINFO database for peer-reviewed articles published in 2018 



48 
 

using the search term “bifactor” revealed 195 articles, of which 58 used OmegaHS to aid 

in decision-making about dimensionality. For the most part, authors of these studies 

conformed to the suggestion of not interpreting subscores when OmegaHS < .50, but a 

small number of authors recommended interpretation of subscores for smaller OmegaHS 

(e.g., Hukkelberg & Ogden, 2018; Stanton et al., 2018; Thompson et al., 2018). 

Finally, while several ECV indices can be computed for specific factors, the most 

relevant to the current study is the explained common variance of the specific factor with 

respect to the items loading on that specific factor (ECVSS, Dueber, 2017, 2019). The 

formula for ECVSS is 

𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 =
∑ λ𝑖𝑖,𝑆𝑆2𝑖𝑖

∑ λ𝑖𝑖,𝐺𝐺2𝑖𝑖 + ∑ λ𝑖𝑖,𝑆𝑆2𝑖𝑖
, (3.6) 

where sums are taken only over items loading on the specific factor of interest. ECVSS is 

the complement of what Stucky and Edelen (2015, p. 201) refer to as “within-domain 

ECV,” and can be considered as an indicator of dimensional uniqueness. In this way, 

ECVSS and OmegaHS perform similar purposes, but from different perspectives: ECVSS 

refers to item variance explained by a latent specific factor, while OmegaHS refers to 

subscore variance explained by a latent specific factor. 

 A Classical Test Theoretic Approach to Subscore Analysis 

The central idea behind Haberman’s (2005, 2008) subscore assessment technique 

is that if observed subscores (s) are to be useful, they must be able to predict true subscores 

(st) better than the observed total score (x) does. If a scale is truly unidimensional, then the 

total score will be a better predictor of st than the subscore because the total score is more 

reliable. On the other hand, if a scale is truly multidimensional, then the observed subscore 

will be a better predictor of st than the total score because the correlation between st and s 
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will be higher than the correlation between st and x. Therefore, if s is a better predictor of 

st than x, then the subscore will have added value, in the sense that interpreting s gives 

additional useful information about the subdomain above and beyond x. 

The quality of prediction is measured using the proportional reduction in mean 

square error (PRMSE), which is equivalent to the coefficient of determination (R2; Smith, 

1977). When the observed subscore is used to predict the true subscore, the coefficient of 

determination PRMSE(s) is the squared correlation between the observed and true 

subscore, which is the reliability and can be estimated by an appropriate reliability 

coefficient such as Cronbach’s alpha. When the observed total score is used to predict the 

true subscore, the coefficient of determination PRMSE(x) is the squared correlation 

between the observed total scores and true subscores. Computing PRMSE(x) can be 

accomplished by exploiting the bilinearity property of correlations as described in Reise et 

al. (2013); an implementation of this technique can be found in the ‘subscore’ R package 

(Dai et al., 2019).  

In order to understand the behavior of PRMSE(s) and PRMSE(x), it is useful to 

write them as in Equations 3.7 and 3.8, which decompose the squared correlation into a 

squared correlation between true scores and a reliability (Sinharay et al., 2007; Sinharay et 

al., 2011): 

PRMSE(𝑐𝑐) = 𝑁𝑁2(𝑐𝑐𝑡𝑡, 𝑐𝑐) = 𝑁𝑁2(𝑐𝑐𝑡𝑡, 𝑐𝑐𝑡𝑡)𝜌𝜌2(𝑐𝑐)  =  𝜌𝜌2(𝑐𝑐) (3.7) 

and 

PRMSE(𝑥𝑥) = 𝑁𝑁2(𝑐𝑐𝑡𝑡,𝑥𝑥) = 𝑁𝑁2(𝑐𝑐𝑡𝑡,𝑥𝑥𝑡𝑡)𝜌𝜌2(𝑥𝑥), (3.8) 

where r2 is the squared correlation and ρ2 is reliability. From equations 3.7 and 3.8 it is 

clear that PRMSE(s) is less than unity because of unreliability in s. On the other hand, 
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PRMSE(x) is less than one both because of the presence of multidimensionality (which 

lowers the correlation between st and xt) and because of measurement error in x. However, 

since x typically has a higher reliability than s (Ling, 2012, p. 2), it is still possible for 

PRMSE(x) to be greater than PRMSE(s). The literature on PRMSE and VAR are silent as 

to the most appropriate ways to estimate reliability, but Chronbach’s alpha is most 

commonly used (Dai et al., 2019; Sinharay, 2019). 

Standard guidelines (Wedman & Lyren, 2015; Sinharay et al., 2011) are to only 

report subscores when PRMSE(s) is greater than PRMSE(x). However, Feinberg and 

Jurich (2017) advise performing a significance test using bootstrapping to see if PRMSE(s) 

is statistically significantly larger than PRMSE(x). Sinharay (2019) demonstrates a variety 

of ways to perform this significance test. Additionally, Feinberg and Jurich recommend 

only reporting subscores when PRMSE(s) is at least 10% greater than PRMSE(x). 

Feinberg and Wainer (2014) introduced the value-added ratio (VAR) of a subscore, 

defined as the ratio of PRMSE(s) to PRMSE(x). If this ratio is greater than one, then 

PRMSE(s) exceeds PRMSE(x) and the subscore will have added value over the total score, 

meaning that interpretation of the subscore provides meaningful information above and 

beyond interpreting the total score. On the other hand, if VAR is less than one, then total 

scores provide a more accurate estimate of true subscores than the observed subscores do; 

thus, interpretation of the subscore does not contribute useful information. While Feinberg 

and Jurich (2017) indicate that there is no harm in interpreting a subscore so long as VAR 

> 1.0, their recommendation corresponds to reporting subscores when VAR > 1.1 to assure 

that the subscore explains a meaningful amount of true subscore variance above and 

beyond the total score. 
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 Purpose 

Applied researchers employ bifactor CFA models and indices based on model 

parameter estimates for dimensionality assessment purposes, including determining 

whether or not to interpret subscores. However, to date no rigorous guidelines for 

performing this determination have been developed. The present research endeavors to 

partially close this gap between methodology literature and research practice by aligning 

bifactor indices with PRMSE indices which are commonly used to assess the value added 

by interpretation of subscores in educational testing contexts (Sinharay, 2019). By 

providing this link between methods commonly used in testing contexts (PRMSE) and 

methods commonly used in psychological sciences research (bifactor models), it is hoped 

that the present research will provide results that aid psychology, education and, more 

generally, social science researchers in making rigorous decisions about whether to 

interpret subscores for use in research and in practical settings. 

 The purpose of this study is to use simulation techniques to devise a strategy for 

which bifactor indices can be used to determine whether a multidimensional interpretation 

is appropriate for a given data set. Specifically, cutoffs will be devised for a specific 

factor’s bifactor indices, possibly conditioned upon general bifactor indices, such that 

exceeding these cutoffs indicates the subscore has added value over the total score. Use of 

these cutoffs will then be illustrated using data collected from the SQLI. 

3.2 Method 

A simulation study will be conducted using the R statistical computing environment 

(R Core Team, 2019) where bifactor indices will be related to PRMSE based indices with 

possible moderation of that relationship by general factor bifactor indices. The goal is to 
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use bifactor indices to develop cutoffs for determining when it is appropriate to interpret a 

subscore separately from the total score. A variety of factors will be manipulated to help 

probe those relationships and guide selection of cutoffs.  

For each experimental condition, data will be generated from a second-order factor 

model, consistent with prior simulation work using bifactor models (Bonifay et al., 2015; 

Reise et al., 2013). As discussed in the introduction, second-order factor models are 

statistically equivalent to both correlated-trait models and bifactor models; as such, 

inferences about both the general factor and about the multidimensional structure of the 

scale can be made from a single model. Both second- and first-order factor scores as well 

as individual indicator (item) scores will be generated and recorded. The simulated factor 

scores will be treated as true scores in order to exactly compute PRMSE(s), PRMSE(x), 

and thereby VAR for the simulated data. A bifactor CFA model with specific factors 

corresponding to the first-order factors will be fit, and relevant bifactor indices computed 

for that model will then be compared to VAR.  

Unlike typical simulation studies (Feinberg & Rubright, 2016), data will not be 

generated by repeatedly sampling from fixed population parameters for each condition. 

Rather, a single large sample (N = 100,000) will be generated for each condition so that 

population parameters can be estimated with great precision. This strategy is consistent 

with prior simulation studies involving bifactor indices (Bonifay et al., 2015; Reise et al., 

2013) and with the finding of Ferrando and Lorenzo-Seva (2019) that PRMSE based 

indices are largely unaffected by sample size. In practice, sampling error can affect 

estimation of bifactor indices as well as PRMSE indices; thus, decisions based on sample 

statistics and sample indices will always have some degree of uncertainty to them. This 
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phenomenon is an unavoidable aspect of working with samples and in no way diminishes 

the value of understanding how population parameters function. In an effort to capture as 

much of the diverse range of relevant models as possible, simulation conditions were 

determined by sampling 1,000 possible population models from each of a number of model 

structures which each define a distribution of possible models. Sufficiency of this sample 

size (i.e., 1,000 per model structure) was verified by replicating the study with a different 

initial seed obtained from random.org for the random number generator.  

Design of simulation conditions will be formulated to represent as much of the 

range of PRMSE and bifactor indices found in practice as possible. PRMSE(s) is equivalent 

to subscore reliability (Haberman, 2005) and should therefore be accurately estimated by 

OmegaS (Rodriguez et al., 2016b). On the other hand, PRMSE(x) is related both to total 

score theoretical reliability and to the correlation between subscore and total score (Reise 

et al., 2013). Noting that only reliabilities and scale-level correlations are of interest, the 

number of items per subdomain is not relevant. Instead, five items per subdomain will be 

used and first-order factor loadings will be chosen to match an OmegaS reliability index 

specified for that condition. Five items per subdomain is common in applied literature; in 

Rodriguez et al.’s (2016a) review of applied bifactor literature, five was the most common 

number of items in a specific factor. The correlation between subscore and total score is 

not directly expressed in a second-order factor model; however, second-order factor 

loadings represent correlations between latent subdomains (first-order factors) and the 

general second-order factor. Finally, the total score reliability is influenced by subscore 

reliability, correlations among subdomains, and the number of subdomains. Thus, the 
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number of factors, reliability of subscores, and second-order factor loadings will be 

manipulated in this simulation study. 

 Manipulated Variables 

3.2.1.1 Number of Subdomains 

Rodriguez et al. (2016a) surveyed 50 studies from the psychopathology, personality, 

and assessment literatures and found that scales on which bifactor models had been 

employed involved between two and seven specific factors. In order to capture the 

variability in number of dimensions found in research practice, the present study uses seven 

different conditions for the number of first-order factors: from two to eight. 

3.2.1.1 Reliability of Subdomains 

The standard recommendation is to not interpret or use (sub-)scores with a 

reliability lower than 0.7 or 0.8 depending on the purpose (Nunnally & Bernstein, 1994). 

Nevertheless, it is possible for low reliability and high reliability (defined below) 

subdomains to coexist in such a way that one or more high reliability subscore is 

interpretable separately from the total score, even though the low reliability subscores are 

not interpretable. As such, in the present study, subdomain reliabilities will be allowed to 

vary between .50 and .99. The choice of .99 for highest reliability was chosen as a practical 

maximum. The lowest reliability of .50 was chosen to correspond to the Omega reliability 

estimate of three items with standardized factor loadings of .5. In educational testing 

settings, subscores frequently have very low reliability, but subscore reliability tends to be 

higher in psychological and educational research settings in which measurement 

instruments use items with polytomous response options (Sinharay et al., 2011). The 

following three conditions will be used for subdomain reliabilities: 
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• All high reliabilities, sampled uniformly from the interval [.70, .99] 

• Mixed reliabilities, sampled uniformly from the interval [.50, .99] 

• Half low reliabilities (sampled uniformly from the interval [.50, .70]) and half high 

reliabilities (sampled uniformly from the interval [.70, .99]) 

Note, an “all low reliabilities” condition is not included since, in that case, subscores should 

not be interpreted even if they are sufficiently different from the total score. 

3.2.1.2 Second-Order Factor Loadings 

Prior simulation and theoretical literature concerning the assessment of uni- or 

multi-dimensionality using bifactor indices (Bonifay et al., 2015; Quinn, 2014; Reise et al., 

2013) or PRMSE indices (Ferrando & Lorenzo-Seva, 2019; Quinn, 2014) have typically 

involved subdomains with identical theoretical reliabilities and identical correlations 

between subdomains in each condition. In this context, either all of the subscores can be 

interpreted separately from the total score or none of them can. In applied contexts, 

however, it is certainly possible for only a subset of the subscores to have added value 

(Reise et al., 2013a; Sinharay, 2011). Accordingly, in the present study, variability among 

correlations of subdomains as represented by first-order factors will be induced by 

selecting random second-order factor loadings from a specified distribution. Second-order 

factor loadings will range from low (0.50, corresponding to first-order factors correlating 

at 0.25) to high (0.99, which functions as a practical maximum). The magnitude of the 

lowest factor loading was chosen to correspond to the conditions in Bonifay et al. (2015) 

and Reise et al. (2013a) with the lowest ECV. The magnitude of the highest factor loading 

was set to .99 as that represents a practical maximum and corresponds to an ECV higher 

than any found in Bonifay et al. (2015) or Reise et al. (2013a). The cut between high and 
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low loadings was selected to be .80 based on a pilot study suggesting that this cutpoint 

would maximize variability in VAR of subscores across replications and conditions. The 

following four conditions will be set for second-order factor loadings: 

• All high loadings, sampled uniformly from the interval [.80, .99] 

• All low loadings, sampled uniformly from the interval [.50, .80] 

• Mixed loadings, sampled uniformly from the interval [.50, .99] 

• Half high and half low loadings 

Noting that with only two first-order factors, the second-order factor model would 

be under-identified (Kline, 2016, p. 319). Thus, there are many different second-order 

models with two first-order factors that are statistically equivalent to each other. Namely, 

so long as the product of second-order factor loadings is the same, the models will be 

statistically equivalent; accordingly, in the case of only two first-order factors, the second-

order loadings serve only to model the correlation between these two first order factors. 

Therefore, for the conditions with only two factors, both factors are assigned the same 

second-order factor loading. 

3.2.1.3 Summary 

The present study will employ 84 model structures determined by fully crossing 7 

number of dimension conditions, 3 subdomain reliability conditions, and 4 second-order 

factor loading conditions. From each of these structures, 1,000 random population models 

will be drawn, resulting in a total of 84,000 population conditions being used. These 

conditions average 5 subdomains per condition, so a total of 420,000 subdomains will be 

evaluated. 
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 Data Generation 

Data generation will proceed in two steps: the second- and first-order factor scores 

will be computed first, and the item scores will be computed separately. The model used 

for generating data will be completely standardized; second-order factor scores, first-order 

factor scores, and item scores are all normally distributed with a mean of zero and a 

variance of one. Second-order factor scores will be generated by randomly sampling 

100,000 numbers from the standard normal distribution. For each first-order factor, a 

second-order factor loading will be chosen from the distribution specified in the simulation 

condition and first-order factor scores will be computed from second-order scores with all 

factor means set to zero. For each first-order factor, a reliability will be chosen from the 

distribution specified in the simulation condition. This reliability was converted to an item 

factor loading by solving Equation 3.1 (in this unidimensional model, there are no specific 

factors) for the loading, assuming five items with equal loadings, 

λ = �
ω

5 − 4 × ω
, (3.9) 

where λ is the item’s loading onto the first-order factor and 𝜔𝜔 is the desired reliability. Item 

scores are then computed from first-order factor scores with all item means set to zero. 

Thus, the elements of the second-order factor model are produced by creating two separate 

correlated factors models: one representing the second-order structure and one representing 

the first-order structure. 

 The population second order-factor model can be converted to a bifactor model 

using the Schmid-Leiman (1957) transformation. The Schmid-Leiman transformation 
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works by applying a rotation to the first-order factor loadings which adds a general factor 

and ensures that all factors are now orthogonal. The formula for this transformation is  

𝚲𝚲bifactor = 𝚲𝚲first−order�𝚲𝚲second−order��𝚯𝚯first−order� (3.10) 

where 𝚲𝚲bifactor is the factor loading matrix for the bifactor model, 𝚲𝚲first−order 

is the factor loading matrix for the indicators onto the first order factors, 𝚲𝚲second−order 

is the factor loading matrix for the first-order factors onto the second-order factors, 

�𝚯𝚯first−order is the square matrix with the square root of first-order factor uniquenesses 

on the diagonal and zeros elsewhere, and ( | ) denotes a supermatrix. Use of the Schmid-

Leiman transformation permits computation of the population bifactor model. However, it 

is unclear whether bifactor indices computed from this population model are more 

appropriate to use than ones computed from a bifactor model fit to the sample data given 

that sampling error affects (sub-)score properties and bifactor indices alike. After all, the 

sample will contain some idiosyncrasy which may be captured in a bifactor model 

estimated from the sample data. 

A small pilot simulation study was conducted with 50 replications per condition in 

which bifactor indices were compared between the population bifactor model and the 

bifactor model estimated from generated sample data. When the number of first-order 

factors was greater than 2, the bias between population model bifactor indices and bifactor 

indices estimated from the sample was very small. Specifically, when the number of 

subdomains was greater than 2, average absolute bias, defined as the mean (across 

conditions, replications, and indices) of the absolute difference between the index 

computed from the population model and the index estimated from the sample, was less 
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than 0.002 and only 0.6% of indices exhibited an absolute bias greater than 0.01. While 

there is no body of literature examining the distribution and standard errors of bifactor 

indices to draw from, this level of error matches what the author expects given past personal 

experience with bifactor indices and the sample size of 100,000. Across all conditions, bias 

was most prevalent in factors with low reliability (< .70) and thus of minimal concern. 

After all, low reliability subscores ought not to be interpreted regardless of VAR. When 

the number of first-order factors was 2, however, bias was much greater. Specifically, 

average absolute bias was 0.099 and 78.9% of indices exhibited an absolute bias greater 

than 0.01. In all cases of large bias (i.e., absolute bias > .01) in OmegaS, OmegaS from the 

population model closely matched the squared correlation between observed subscores and 

first-order factor scores, while OmegaS from the estimated model over-estimated this 

value. Thus, the Schmid-Leiman transformation will be used to compute population 

bifactor models, as indices computed from these population models are either nearly 

equivalent (when number of dimensions is greater than 2) to indices estimated from the 

sample or more accurately measure what they are intended to measure (when number of 

dimensions is 2). These results suggest possible problems with using bifactor indices from 

models with two specific factors, as they may not accurately measure what they are 

intended to measure. Of note, a literature search has revealed no research concerning the 

accuracy and precision of estimated bifactor indices. 

 Following computation of a bifactor model, the BifactorIndicesCalculator package 

(Dueber, 2019) for the R statistical computing environment will be used to compute 

bifactor indices for a given model. Specifically, the ECV, Omega, OmegaH, and all 

OmegaS, OmegaHS, and ECVSS indices will be computed. Furthermore, the PRMSE 
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indices PRMSE(s), PRMSE(x), and VAR will be computed by correlating observed 

subscores and total scores with first-order factor scores, which function here as true scores. 

For each replication, the simulation condition information will be stored, as well as the 

following information for each first-order factor: second-order factor loading, reliability, 

first-order factor loading, bifactor indices, and PRMSE indices.    

 Analyzing Results of Simulation 

The process of analyzing the data collected to decide upon a decision rule for 

interpreting a subscore was largely exploratory with a goal of creating a model of VAR 

using bifactor indices as predictors. Then, using that model, bifactor index cutoffs were 

created for both VAR > 1 and VAR > 1.1, as those are the common PRMSE based cutoffs 

(Feinberg & Jurich, 2017; Sinharay et al, 2011; Wedman & Lyren, 2015). Independent 

variables considered as predictors of VAR included OmegaS, OmegaHS, ECVSS, ECV, 

Omega, and OmegaH. The factors comprising the simulation conditions were also 

considered as covariates, especially the number of factors, as well as their interactions with 

other predictors. Of note, each first-order factor will be separately assessed for having 

added value, so the total number of subdomains to be assessed is higher than the total 

number of replications. 

 Determination of cutoffs or other decision rules for when a subscore has added 

value will proceed in a similar manner as the analyses performed by Reise et al. (2013b). 

Modeling of VAR will be conducted using multiple regression in an exploratory fashion 

by sequentially adding bifactor indices to the model as long as their inclusion substantially 

improves predictive accuracy (ΔR2 > .02). In this fashion, it will be determined which 

bifactor indices are influential and whether significant interactions exist. Once relevant 
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predictors and interactions are identified, levels of those variables will be determined to 

create a decision rule or set of decision rules with accuracy as high as possible. In the case 

of Reise et al. (2013b), they were able to give a cutoff for ECV when PUC was not large 

(< .80) and assert that when PUC was large (> .80), their criterion would be met regardless 

of ECV. As several authors (Gignac & Kretzschmar, 2017; Gignac & Watkins, 2013; 

Reise, 2012; Reise et al., 2013a; Rodriguez et al., 2016b) have suggested OmegaHS is an 

indicator of dimensional uniqueness, it is hoped that a decision rule based upon OmegaHS 

can be found. 

 Adequacy of the resulting decision rules were evaluated by computing their 

sensitivity and specificity. While no fixed rules exist for what levels of sensitivity and 

specificity are adequate, very high levels (> 90%) are desired here as it is expected that 

practitioners may decide whether or not to interpret subscores based on these decision 

rules. Furthermore, every effort was made to generate the simplest set of decision rules 

while maintaining a high level of accuracy. 

 A set of replication samples was simulated using the same conditions as the original 

set of samples. The replicated samples were used to check for consistency of results with 

the original simulated samples. Specifically, the replication samples were used to check for 

consistency of parameters in the linear models and also for consistency of sensitivity and 

specificity of the decision rules. 

3.3 Results 

The two bifactor indices which best predicted VAR individually were OmegaHS 

and ECVSS, which explained 84.8% and 73.6% of variance in VAR, respectively. The 

estimated regression equation using OmegaHS as a predictor of VAR is 



62 
 

𝐸𝐸𝐴𝐴𝐴𝐴 = 0.679 + 2.039 × 𝜔𝜔𝑆𝑆𝐻𝐻 + 𝑒𝑒 (3. 11) 

where e is an error term with a variance of .022. Using Equation 3.11, VAR has an expected 

value of 1.0 for OmegaHS = .157, and VAR has an expected value of 1.1 for OmegaHS 

= .206. Using these values of OmegaHS as cutoffs results in acceptable levels of sensitivity 

(.909 for VAR = 1.0 and .919 for VAR = 1.1) but unacceptable levels of specificity (.724 

for VAR = 1.0 and .840 for VAR = 1.1). The estimated regression equation using ECVSS 

as a predictor of VAR is 

𝐸𝐸𝐴𝐴𝐴𝐴 = 0.674 + 1.595 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 + 𝑒𝑒 (3. 12) 

where e is an error term with a variance of .038. Using Equation 3.12, VAR has an expected 

value of 1.0 for ECVSS = .205, and VAR has an expected value of 1.1 for ECVSS = .267. 

Using these values of ECVSS as cutoffs results in nearly acceptable levels of sensitivity 

(.886 for VAR = 1.0 and .884 for VAR = 1.1) but unacceptable levels of specificity (.570 

for VAR = 1.0 and .708 for VAR = 1.1). 

 Due to the unacceptably low levels of specificity for the above cutoffs, additional 

predictors will be included to better predict VAR. The remainder of the results are 

presented in two sections: one which builds a model for VAR starting with OmegaHS and 

the other starting with ECVSS. 

 Building a Model for VAR Starting with OmegaHS 

Inclusion of other bifactor indices in the regression model naturally increased 

predictive accuracy; the index which most increased variance explained was OmegaS, 

when its interaction with OmegaHS was also included. This model explained 87.8% of 

variability in VAR. Examination of residuals from this model revealed heteroscedasticity 
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and nonlinearity in the relationship between OmegaHS and VAR after accounting for 

OmegaS, as seen in Figure 3.2. 

 

Figure 3.2 Residuals for VAR Regressed on OmegaS and OmegaHS 

 To account for nonlinearity in the relationship between OmegaHS and VAR, a 

quadratic term for OmegaHS (i.e., OmegaHS2) was included in the model for VAR; this 

resulted in improved prediction of VAR (R2 = .909) and substantially decreases the 

apparent nonlinearity (Figure 3.3). Note that there is still substantial heteroscedasticity, as 

the variance of residuals notably increases as OmegaHS increases. 
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Figure 3.3 Residuals for VAR After Including a Quadratic Term for OmegaHS 

 The estimated regression equation using OmegaHS and OmegaS as well as their 

interaction and a quadratic term for OmegaHS as predictors of VAR is 

 
𝐸𝐸𝐴𝐴𝐴𝐴 = −0.260 + 4.053 × 𝜔𝜔𝐻𝐻𝑆𝑆 + 1.513 × 𝜔𝜔𝑆𝑆 − 4.858 × 𝜔𝜔𝑆𝑆 × 𝜔𝜔𝐻𝐻𝑆𝑆

+ 2.798𝜔𝜔𝐻𝐻𝑆𝑆
2 + 𝑒𝑒, 

(3.13) 

where e is an error term with a variance of .013. Using Equation 3.13, VAR has different 

OmegaHS cutoffs for different levels of OmegaS, as listed in Table 3.1. For example, for 

a specific factor with OmegaS = .75, OmegaHS of at least .151 is necessary for expected 

VAR to exceed 1.0 and OmegaHS of at least .220 is necessary for expected VAR to 

exceed 1.1. 
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Table 3.1  OmegaHS Cutoffs for Varying Levels of OmegaS 

OmegaS VAR = 1.0 VAR = 1.1 

.50 .224 .258 

.55 .216 .253 

.60 .206 .257 

.65 .193 .241 

.70 .176 .232 

.75 .151 .220 

.80 .108 .204 

.85 .000 .178 

.90 .000 .111 

.95 .000 .000 

 

Using these values of OmegaHS as cutoffs results in excellent levels of sensitivity (.984 

for VAR = 1.0 and .979 for VAR = 1.1) but unacceptable levels of specificity (.852 for 

VAR = 1.0 and .877 for VAR = 1.1). 

 To further improve predictive accuracy, all the bifactor indices and number of 

factors were again checked for their incremental predictive value. The number of factors 

was found to have the most value, when included with all interactions (including the three-

way interaction between OmegaHS, OmegaS, and number of factors). Because of the 

strength of interaction terms involving number of factors, separate regression models were 

fit for each number of factors condition using OmegaS, OmegaHS, their interaction, and 

OmegaH2 as predictors of VAR. Variance in VAR explained by these models varied by 
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number of factors, ranging from R2 = .879 for three factors to R2 = .984 for eight factors. 

Cutoffs for OmegaHS at different levels of Omega for VAR = 1.0 are found in Table 3.2, 

and cutoffs for VAR = 1.1 are found in Table 3.3.  

Table 3.2 OmegaHS Cutoffs for Varying Levels of OmegaS and Number of Factors for 

VAR = 1.0 

 Number of Factors 

OmegaS 2 3 4 5 6 7 8 

.50 .216 .214 .218 .222 .224 .227 .228 

.55 .210 .203 .208 .214 .216 .219 .221 

.60 .204 .189 .196 .203 .206 .210 .212 

.65 .195 .172 .181 .189 .194 .198 .200 

.70 .183 .148 .161 .171 .177 .182 .185 

.75 .166 .113 .131 .145 .152 .158 .163 

.80 .140 .048 .075 .097 .108 .118 .124 

.85 .090 .000 .000 .000 .000 .000 .000 

.90 .000 .000 .000 .000 .000 .000 .000 

.95 .000 .000 .000 .000 .000 .000 .000 

Note. Italicized numbers differ from the cutoffs in Table 3.1 by more than .010. Bold 

italicized numbers differ from the cutoffs in Table 3.1 by more than .020. 
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Table 3.3 OmegaHS Cutoffs for Varying Levels of OmegaS and Number of Factors for 

VAR = 1.1 

 Number of Factors 

OmegaS 2 3 4 5 6 7 8 

.50 .260 .260 .256 .257 .257 .258 .258 

.55 .260 .254 .251 .252 .252 .253 .253 

.60 .259 .247 .244 .245 .246 .247 .248 

.65 .258 .238 .236 .238 .239 .241 .242 

.70 .256 .227 .226 .228 .230 .232 .234 

.75 .255 .211 .212 .216 .218 .221 .223 

.80 .252 .188 .192 .197 .202 .205 .208 

.85 .248 .148 .158 .167 .174 .180 .185 

.90 .241 .000 .000 .078 .096 .115 .128 

.95 .223 .000 .000 .000 .000 .000 .000 

Note. Italicized numbers differ from the cutoffs in Table 3.1 by more than .010. Bold 

italicized numbers differ from the cutoffs in Table 3.1 by more than .020. 

 Graphs displaying the relationship between OmegaHS and VAR for different levels 

of OmegaS and different numbers of factors can be found in Figures 3.4 through 3.9. 

Graphs are only shown for 2, 3, and 6 factors for the sake of brevity. Also featured on the 

graphs are a quadratic curve of best fit and a demarcation of the cutoff for a specified level 

of VAR.  
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Sensitivity and specificity from using the cutoffs listed in Table 3.2 and Table 3.3 

can be found in Table 3.4. Sensitivity is excellent across all factors, but specificity is not 

acceptable, particularly for the 3, 4, and 5 factor conditions. 

Table 3.4 Sensitivity and Specificity for Cutoffs in Table 3.2 and 3.3 

 VAR = 1.0  VAR = 1.1 

Number of 
Factors 

Sensitivity Specificity  Sensitivity Specificity 

2 .977 .870  .971 .953 

3 .970 .724  .952 .789 

4 .978 .797  .970 .840 

5 .984 .840  .978 .866 

6 .989 .865  .984 .890 

7 .990 .873  .987 .897 

8 .992 .888  .988 .910 
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Figure 3.4 VAR versus OmegaHS for Two Factors, Showing Cutoffs for VAR = 1.0 
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Figure 3.5 VAR versus OmegaHS for Two Factors, Showing Cutoffs for VAR = 1.1 
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Figure 3.6 VAR versus OmegaHS for Three Factors, Showing Cutoff for VAR = 1.0 
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Figure 3.7 VAR versus OmegaHS for Three Factors, Showing Cutoffs for VAR = 1.1 
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Figure 3.8 VAR versus OmegaHS for Six Factors, Showing Cutoffs for VAR = 1.0 
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Figure 3.9 VAR versus OmegaHS for Six Factors, Showing Cutoffs for VAR = 1.1 
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 Building a Model for VAR Starting with ECVSS 

Inclusion of other bifactor indices in addition to ECVSS as predictors in the 

regression model naturally increased predictive accuracy; the index which most increased 

variance explained was OmegaS. The regression model with ECVSS and OmegaS as 

predictors explained 87.5% of variability in VAR. Including the interaction between 

OmegaS and ECVSS as a predictor did not increase explained variance, so no interaction 

term was included. Examination of residuals from this model revealed heteroscedasticity 

and nonlinearity in the relationship between ECVSS and VAR after accounting for OmegaS, 

as seen in Figure 3.10. 

 
Figure 3.10 Residuals for VAR regressed on OmegaS and ECV 

 To account for nonlinearity in the relationship between ECVSS and residuals for 

VAR, a quadratic term for ECVSS (i.e., ECVSS
2) was included in the model for VAR; this 

resulted in improved prediction of VAR (R2 = .911) and substantially decreases the 

apparent nonlinearity (Figure 3.11). Note that there is still substantial heteroscedasticity, 
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as the variance of residuals notably increases as ECVSS increases.

 

Figure 3.11 Residuals for VAR after including a quadratic term for ECVSS 

 The estimated regression equation using ECVSS and Omega as well as a quadratic 

term for ECVSS as predictors of VAR is 

𝐸𝐸𝐴𝐴𝐴𝐴 = 0.120 + 1.055 × 𝜔𝜔𝑆𝑆 − 0.460 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 + 1.961 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆2 + 𝑒𝑒 (3.14) 

where e is an error term with a variance of .013. Using Equation 3.14, VAR has different 

OmegaS cutoffs for different levels of ECVSS, as listed in Table 3.5. For example, for a 

specific factor with ECVSS = .20, an OmegaS of at least .768 is required for expected VAR 

to exceed 1.0 and an OmegaS of at least .863 is required for expected VAR to exceed 1.1. 

Using these values of OmegaS as cutoffs results in excellent levels of sensitivity (.976 for 

VAR = 1.0 and .968 for VAR = 1.1) and adequate levels of specificity (.910 for VAR = 

1.0 and .923 for VAR = 1.1). 
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Table 3.5 OmegaS Cutoffs for varying levels of ECVSS 

ECVSS VAR = 1.0 VAR = 1.1 

.05 .832 .927 

.10 .820 .915 

.15 .799 .894 

.20 .768 .863 

.25 .729 .824 

.30 .680 .775 

.35 .622 .716 

.40 .554 .649 

.45 .477 .572 

.50 .391 .486 

 To further improve predictive accuracy, all the bifactor indices and number of 

factors were checked for their incremental predictive value. The number of factors was 

found to have the most value, when included with all interactions. Because of the strength 

of interaction terms involving number of factors, separate regression models were fit for 

each number of factors condition using ECVSS, OmegaS, and OmegaS2 as predictors of 

VAR. Variance in VAR explained by these models varied by number of factors, ranging 

from R2 = .867 for three factors to R2 = .985 for eight factors. Cutoffs for OmegaS at 

different levels of ECVSS and number of factors for VAR = 1.0 are found in Table 3.6, and 

cuttoffs for VAR = 1.1 are found in Table 3.7.  
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Table 3.6 OmegaS Cutoffs for Varying Levels of ECVSS and Number of Factors for VAR 

= 1.0 

 Number of Factors 

ECVSS 2 3 4 5 6 7 8 

.05 .998 .813 .824 .830 .829 .828 .826 

.10 .947 .788 .806 .815 .818 .820 .821 

.15 .888 .755 .779 .792 .798 .803 .806 

.20 .820 .716 .744 .760 .769 .776 .780 

.25 .744 .670 .700 .719 .730 .738 .744 

.30 .660 .618 .649 .669 .682 .691 .698 

.35 .567 .559 .590 .611 .624 .634 .641 

.40 .467 .493 .523 .544 .557 .567 .574 

.45 .358 .421 .448 .468 .480 .490 .497 

.50 .241 .341 .364 .383 .394 .403 .409 

Note. Italicized numbers differ from the cutoffs in Table 3.1 by more than .010. Bold 

italicized numbers differ from the cutoffs in Table 3.1 by more than .020. 

Graphs displaying the relationship between OmegaS and VAR for different levels 

of ECVSS and different numbers of factors can be found in Figures 3.12 through  3.17. 

Graphs are only shown for 2, 3, and 6 factors for the sake of brevity. Also featured on the 

graphs are a line of best fit and a demarcation of the cutoff from Table 3.6 and Table 3.7 

for a specified level of VAR. 
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Table 3.7 OmegaS Cutoffs for Varying Levels of ECVSS and Number of Factors for VAR 

= 1.1 

 Number of Factors 

ECVSS 2 3 4 5 6 7 8 

.05 N/A .958 .939 .928 .918 .911 .905 

.10 N/A .932 .920 .913 .908 .903 .900 

.15 N/A .899 .893 .890 .888 .886 .885 

.20 N/A .860 .858 .858 .858 .859 .859 

.25 .985 .815 .815 .817 .820 .821 .823 

.30 .900 .762 .764 .768 .771 .774 .777 

.35 .808 .703 .705 .709 .714 .717 .720 

.40 .707 .637 .638 .642 .646 .650 .653 

.45 .598 .565 .562 .566 .570 .573 .576 

.50 .481 .486 .479 .481 .483 .486 .488 

Note. Italicized numbers differ from the cutoffs in Table 3.1 by more than .010. Bold 

italicized numbers differ from the cutoffs in Table 3.1 by more than .020. N/A indicates 

that a reliability greater than one is required to achieve VAR = 1.1. 

  Sensitivity and specificity from using the cutoffs listed in Table 3.6 and Table 3.7 

can be found in Table 3.8. Sensitivity is adequate across all numbers of factors, but 

specificity is not acceptable for 3 and 4 factors. 
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Table 3.8 Sensitivity and Specificity for Cutoffs in Tables 3.6 and 3.7 

 VAR = 1.0  VAR = 1.1 

Number of 
Factors 

Sensitivity Specificity  Sensitivity Specificity 

2 .927 .917  .918 .987 

3 .969 .731  .929 .867 

4 .973 .848  .952 .905 

5 .977 .894  .965 .919 

6 .980 .921  .974 .932 

7 .981 .931  .978 .928 

8 .982 .941.  .980 .932 
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Figure 3.12 VAR versus OmegaS for Two Factors, Showing Cutoffs for VAR = 1.0  
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Figure 3.13 VAR versus OmegaS for Two Factors, Showing Cutoff for VAR = 1.1 
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Figure 3.14 VAR versus OmegaS for Three Factors, Showing Cutoffs for VAR = 1.0 
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Figure 3.15 VAR versus OmegaS for Three Factors, Showing Cutoffs for VAR = 1.1 
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Figure 3.16 VAR versus OmegaS for Six Factors, Showing Cutoffs for VAR = 1.0 
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Figure 3.17 VAR versus OmegaS for Six Factors, Showing Cutoffs for VAR = 1.1 
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 Testing of Models with Replication Sample 

Regression coefficients, coefficients of determination, OmegaHS cutoffs, OmegaS 

cutoffs, and all sensitivities and specificities were re-estimated using a second set of 

simulated data. No estimate differed by more than .02 between the original and replication 

simulated data; in fact, only a small number differed by more than .01. 

3.4 Empirical Example 

A dataset of 1,074 adolescent idiopathic scoliosis patients with SQLI data measured 

at doctor visits between 2010 and 2017 was kindly provided for use (Anonymous, 2019) 

as an example in this study; patients averaged 2.16 visits. In order to avoid person 

dependencies in the data, a single timepoint was randomly chosen for each participant. The 

resulting dataset consisted of complete responses to the 20 SQLI items for 1,074 

adolescents with idiopathic scoliosis. As both total SQLI scores and subdomain scores are 

commonly interpreted, unidimensional, four-factor, and bifactor with four specific factors 

models were estimated using the lavaan package for R (Rosseel & Jorgensen, 2019) using 

the DWLS estimator. Model fit information can be found in Table 3.9, and was compared 

to common fit index cutoff to judge quality of fit. Specifically, a non-significant chi-square 

test indicates exact fit, RMSEA < .06, CFI > .95, and SRMR < .08 indicate close fit, 

RMSEA < .08, CFI > .95, and SRMR < .08 indicate acceptable fit, and RMSEA < .10 and 

CFI > .92 indicate marginal fit (Byrne, 2008; Hu & Bentler, 1999; MacCallum et al., 1996; 

West et al., 2012). The unidimensional model exhibits poor fit, while the four factor model 

exhibits marginal fit and the bifactor model exhibits acceptable fit. 
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Table 3.9 Model Fit Information 

Model Chi-Square RMSEA CFI SRMR 

Unidimensional 𝜒𝜒2(170) = 4390,𝑔𝑔 <  .001 .152 .808 .116 

Four Factor 𝜒𝜒2(164) = 1301,𝑔𝑔 <  .001 .080 .932 .071 

Bifactor 𝜒𝜒2(150) = 802,𝑔𝑔 <  .001 .064 .970 .058 

Note. In the four factor model, latent inter-factor correlations ranged from .521 to .759. 

As the fit of the bifactor model is acceptable, the model and its indices may be 

interpreted. Note that the bifactor model is being proposed as a supplemental model to 

assess dimensionality (Rodriguez et al., 2016a) rather than as a “true” model. That is, the 

bifactor model serves here only as a tool to examine the partitioning of variance into 

general and specific sources to aid in decision-making about whether unidimensional 

and/or multidimensional (i.e., correlated traits model) interpretations are appropriate. 

Parameter estimates and bifactor indices for the bifactor model can be found in Table 3.10.  

With overall OmegaH = .849, observed total scores can safely be interpreted 

(Rodriguez et al, 2016b). To determine whether subscores can also be interpreted, bifactor 

indices are compared to the criteria listed in Tables 3.3 and 3.7Table 3.7. According to 

these decision rules, all four subscores have VAR > 1.1, and therefore their interpretation 

adds value. Additionally, Equations 3.13 and 3.14 were used to estimate VAR, which was 

also computed using the subscore package for R (Dai et al., 2019). Estimates of VAR can 

be found in Table 3.11. Differences amongst estimates are approximately what would be 

expected given the variance of the error terms in Equations 3.13 and 3.14. Some of that 

difference may be explained by the number of factors; it was noted in the simulation results  
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Table 3.10 Standardized Factor Loadings and Bifactor Indices for Bifactor Model of 

SQLI 

Item General 
Factor 

Self-
Esteem 

Back Pain Physical 
Activity 

Moods & 
Feelings 

SQLI 1 .536 .270    

SQLI 2 .449 .629    

SQLI 3 .525 .654    

SQLI 4 .429 .738    

SQLI 5 .681 .101    

SQLI 6 .725  .640   

SQLI 7 .737  .453   

SQLI 8 .679  .442   

SQLI 9 .629  .306   

SQLI 10 .753  .097   

SQLI 11 .694   .316  

SQLI 12 .708   -.010  

SQLI 13 .726   .590  

SQLI 14 .656   .508  

SQLI 15 .719   .494  

SQLI 16 .610    .496 

SQLI 17 .443    .576 

SQLI 18 .577    .536 

SQLI 19 .540    .433 

SQLI 20 .556    .562 

ECV/ ECVSS .627 .507 .268 .279 .477 

Omega/ OmegaS .959 .855 .910 .909 .870 

OmegaH / OmegaHS .849 .389 .211 .206 .415 
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that the number of factors additionally influenced VAR above and beyond the predictors 

of Equations 3.13 and 3.14. Notably, using ECVSS and OmegaS resulted in estimates closer 

to the subscore estimates than estimates using OmegaHS and OmegaS when VAR was 

large (> 1.20), while estimates were more consistent when VAR was not large. Finally, it 

should also be noted that estimates provided by subscore use coefficient alpha for 

reliability; inaccuracies in reliability estimation due to the multidimensionality of SQLI 

and violation of tau-equivalence in the data (McNeish, 2018) will bias estimation of VAR. 

Table 3.11 Estimates of VAR for SQLI subdomains 

Estimation 
Method Self Esteem Back Pain 

Physical 
Activity 

Moods & 
Feelings 

subscore 1.275 1.136 1.194 1.310 

Equation 3.13 1.417 1.164 1.159 1.466 

Equation 3.14 1.292 1.098 1.103 1.264 

 In the example dataset, approximately 10% of patients who are fitted with a brace 

show little to no change in overall SQLI score after receiving the brace, but report 

substantial decrease in moods and feelings (compensated for by moderate improvement in 

back pain and physical activity). As subdomain scores for the SQLI indeed provide added 

value over the total score, the subdomains are indeed individually interpretable, and doctors 

should feel confident making clinical decisions based on these differences. 

Additionally, while SQLI total scores are interpretable, a unidimensional model for 

SQLI should not be used in structural equation modeling contexts, as multidimensionality 

in the data may lead to significant bias in estimated coefficients. Instead, a bifactor 

measurement model should be used if a general SQLI factor is to be interpreted in a 
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structural equation model (Bonifay et al., 2015; Reise et al., 2013a). This data supports 

both unidimensional and multidimensional interpretations of the SQLI. 

3.5 Discussion 

 Estimating VAR using OmegaHS and OmegaS 

While OmegaHS has been touted as an indicator of dimensional uniqueness and as 

being sufficient to justify the interpretability, or lack thereof, of subscores (Gignac & 

Kretschmar, 2017; Reise et al., 2013), the results of this study illustrate a more nuanced 

picture. Furthermore, while Reise et al. (2013) dismiss OmegaHS estimates of .11 and .22 

as being insufficient for separately interpreting subdomains, the results of Table 3.3 and 

Table 3.7 suggest that both of these subdomains have added value and VAR > 1.1. 

 While OmegaHS was found to be insufficiently predictive of VAR on its own, 

accuracy was much improved by also including OmegaS as a predictor. Interestingly, after 

including OmegaS as a predictor, nonlinearity in the relationship between VAR and 

OmegaHS became apparent, necessitating the use of a quadratic OmegaHS term. A 

possible explanation for this phenomenon is that, as OmegaHS increases, the influence of 

the specific factor increases while the influence of the general factor decreases. These two 

influences feed off each other, resulting in growth which is faster than linear. Using both 

OmegaHS and OmegaS to predict VAR was found to have excellent sensitivity but 

relatively poor specificity. The large difference between sensitivity and specificity can be 

explained by the shape of the relationship between OmegaHS and VAR as pictured in 

Figure 3.4 though Figure 3.9. As VAR curves around the cutoff point, there are naturally 

more points above and to the left of the cutoff (false negatives) than there are below and to 

the right of the cutoff (false positives). Examination of the response operator characteristic 
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(ROC) curves reveals cutoffs with lower sensitivity and higher specificity. For example, 

by slightly increasing the cutoffs in Table 3.2 and Table 3.3, specificity and sensitivity of 

greater than .90 can be obtained for all number of factor conditions. However, modeling 

VAR was seen as a more important goal than producing strict cutoffs, so cutoffs based on 

expected value of VAR from regression equations were used. 

 In an effort to further improve predictive capabilities, separate regression models 

were fit for each different number of factors. This revealed a generally increasing level of 

accuracy as the number of factors increased but also unexpected results when the number 

of factors was two. Recall that special restrictions on the population model had to be 

imposed for two factors because second-order factor models with only two first-order 

factors are not identified. Accordingly, for two-factor models, both factors are equally 

correlated with the second-order factor. This symmetry between the two factors explains 

why results for two dimensions do not match results for more dimensions. As for increasing 

accuracy with increasing number of factors, it seems likely that this is mostly due to the 

way sampling was performed in the simulation.  

As the number of factors increases, the average of factor-level properties 

(reliability, second-order factor loading) becomes more stable, reducing overall variability. 

As a result, sensitivity and specificity increase because of lowered overall variability. With 

such a wide range of factor-level properties and such highly variable sampling approach 

(i.e., using uniform distributions), this simulation study likely generates more highly 

variable models than are found in practice. While regression model parameters, and thereby 

cutoff recommendations are not expected to be unduly influenced by the specific sampling 

choices in simulation design, sensitivity and specificity are influenced by sampling 
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variability in the simulation design. Accordingly, it is expected that sensitivity and 

specificity across the population of models fit in the course of empirical research will not 

exactly match what has been found herein. Finally, it should be noted that, per Table 3.2 

and Table 3.3, the number of factors makes little difference in OmegaHS cutoffs so long 

as the number of factors is at least four. Given that accuracy of estimates of bifactor indices 

is also lesser for two and three factors, this observation raises questions about the 

appropriateness of making overall recommendations concerning use of bifactor indices. 

Instead, the cases of two- and three- specific factor models should be treated separately and 

with great care.  

 The relationship between OmegaHS and VAR conditional upon OmegaS can 

clearly be seen in Figure 3.4 through Figure 3.9. As OmegaS increases, the level of 

OmegaHS required to create a certain expected level of VAR decreases. In each of Figure 

3.4 through Figure 3.9, the cutoff point for OmegaHS moves to the left as OmegaS 

increases. This situation can be explained by considering Equations 3.11 and 3.12. As 

OmegaS increase, the numerator of VAR naturally increases; on the other hand, while 

OmegaHS increases, the denominator of VAR decreases. So, as OmegaS increases, VAR 

will naturally increase independent of OmegaHS. Thus, less dimensional uniqueness 

(OmegaHS) is required for reaching a certain level of VAR. Indeed, for very high levels of 

OmegaS, subscores almost always have added value, regardless of OmegaHS. This fact is 

much more relevant in psychological and related literature where subscores often have high 

reliability than it is in education testing settings, where subscores more often have low 

reliability (Sinharay et al., 2011). 
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 While the overall accuracy of using OmegaHS and OmegaS to create cutoffs for 

VAR = 1.0 and VAR = 1.1 did not reach the desired levels of sensitivity and specificity, 

OmegaHS was shown to be in indicator of dimensional uniqueness as claimed by others 

(Gignac & Kretschmar, 2017; Reise et al., 2013). Furthermore, OmegaS was found to also 

have a significant contribution to predicting VAR; indeed when OmegaS is high, 

OmegaHS becomes less relevant to determining if a subscore has added value. 

 Despite not recommending strict cutoffs, improvement on the suggestions of other 

researchers (Gignac & Watkins, 2013; Reise et al., 2013a) can still be made. Table 3.2 and 

Table 3.3 make clear that a cutoff of .50 for OmegaHS is inappropriately high. For low 

subscore reliability (OmegaS = .60), OmegaHS = .25 is sufficient that the subscore has a 

good chance of having added value (VAR > 1.1) above and beyond the total score. For 

moderate reliability (OmegaS = .80), OmegaHS = .20 is sufficient, and the role of 

OmegaHS diminishes as OmegaS increases further. It is important to note that a subscore 

having added value does not necessitate its interpretation. Instead, when subscores are 

desired to be interpreted, high OmegaHS can be considered as evidence that such an 

interpretation is statistically appropriate. When only interpreting a total score is desired, 

high OmegaHS is not necessarily problematic so long as the total score has adequate 

psychometric properties (e.g., OmegaH > .80). For very large values of OmegaHS, 

inclusion of items on that subdomain may degrade measurement of the general construct; 

in this case, performance of a sensitivity analysis is recommended: analyses can be 

conducted with a total score and then again with the subscore removed from the total score. 

An example of using OmegaHS to support a recommendation to remove a subscore from 

a total score can be found in Mészáros et al. (2014), who suggest that the Maslach Burnout 
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Inventory – Human Services Survey (Maslach & Jackson, 1981) be scored using separate 

personal accomplishment and burnout scores, with burnout consisting of emotional 

exhaustion and depersonalization items. 

 Estimating VAR using ECVSS and OmegaS 

ECVSS is a natural indicator of dimensional uniqueness from a latent variable 

modeling perspective, as it represents the proportion of common variance of items loading 

on a specific factor which is independent of the general factor. While ECVSS was found to 

be insufficiently predictive of VAR on its own, accuracy was much improved by also 

including OmegaS as a predictor. Interestingly, after including OmegaS as a predictor, non-

linearlity in the relationship between VAR and ECVSS became apparent, necessitating the 

use of a quadratic ECVSS term. A possible explanation for this phenomenon is that, as 

ECVSS increases, the influence of the specific factor increases while the influence of the 

general factor decreases. These two influences feed off each other, resulting in growth 

which is faster than linear. Using both ECVSS and OmegaS to predict VAR was found to 

have excellent sensitivity and adequate specificity.  Examination of the response operator 

characteristic (ROC) curves would no doubt reveal cutoffs with lower sensitivity and 

higher specificity. However, modeling VAR was seen as a more important goal than 

producing strict cutoffs, so cutoffs based on expected value of VAR from regression 

equations were used. 

In an effort to further improve predictive capabilities, separate regression models 

were fit for each different number of factors. This revealed a generally increasing level of 

accuracy as the number of factors increased but also unexpected results when the number 

of factors was two. This generally matches the results from using OmegaHS and OmegaS 
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to predict VAR. Specifically, cutoffs for VAR = 1.0 and VAR = 1.1 were found to be 

relatively consistent for five or more factors, while the conditions with two or three factors 

diverged strongly. Similarly, predictive accuracy was acceptable for five or more factors, 

marginal for four factors, and poor for three factors. As with using OmegaS and OmegaHS 

to predict VAR, specificity and sensitivity were very high for two factors, likely as a result 

of the low variability amongst models with only two specific factors in the simulation 

design. 

 The relationship between ECVSS and VAR conditional upon OmegaS can clearly 

be seen in Figure 3.12 through Figure 3.17. As ECVSS increases, the level of OmegaS 

required to create a certain expected level of VAR decreases. In each of Figure 3.12 through 

Figure 3.17, the cutoff point for OmegaS moves to the left as ECVSS increases. This 

situation can be explained by considering Equations 3.7 and 3.8. As ECVSS increase, the 

denominator of VAR naturally increases; on the other hand, as OmegaS increases, the 

numerator of VAR increases. So, as ECVSS increases, VAR will naturally increase. Thus, 

less subscore reliability (OmegaS) is required for reaching a certain level of VAR. Indeed, 

for very high levels of ECVSS, subscores can have added value even when OmegaS is low 

enough that interpreting that subscore is not recommended. 

 When subscores are found to not have added value, a common response is to add 

items to the subdomain in order to improve its reliability. In fact, Brennan (2012) proposed 

a utility index, 𝑃𝑃�, which uses the Spearman-Brown prophecy formula to estimate the 

number of additional parallel items which would need to be added to a subdomain to ensure 

than the subscores had added value. Brennan’s (2012) technique for estimating the number 

of parallel items needed to be added is statistically equivalent to using the prophecy 
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formula with Haberman’s (2008) indices, assuming that PRMSE(x) will not change as a 

result of adding these items. Unfortunately, adding items to a subdomain also tends to 

increase reliability of the total score; thus, using 𝑃𝑃� is likely to result in an underestimate of 

the number of items which need to be added in order for a subscore to have added value. 

The method of using ECVSS and OmegaS to predict VAR does not have this drawback. 

While bifactor indices such as Omega, OmegaH, ECV, OmegaS, and OmegaHS will 

necessarily change as additional items are added to a subdomain, ECVSS depends only on 

the ratio of common variance explained by the general and specific factors for the items in 

the subdomain. Thus, so long as new items load similarly on both general and specific 

factors as the old items do, ECVSS will not be affected. Accordingly, it is possible to use 

Equation 3.14 with ECVSS from a fitted bifactor model and a desired level of VAR to find 

a required level of OmegaS to achieve that VAR. Then, the prophecy formula can be used 

to determine the number of additional items which need to be added to achieve that level 

of OmegaS. As an example, consider a specific factor with 8 items from a bifactor model 

with five specific factors with ECVSS = .300 and OmegaS = 0.720. Per Table 3.7, OmegaS 

= .768 would be required to achieve VAR = 1.1. The prophecy formula is given by 

𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛2 =
𝑐𝑐 × 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜2

1 + (𝑐𝑐 − 1)𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜2
, (3.15) 

where n is the ratio of the length of the old subdomain to the new subdomain, 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜2  is the 

reliability of the old subdomain, and 𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛2  is the reliability of the new subdomain with the 

added items. In this example, therefore, we have 

. 768 =  
𝑐𝑐 × .720

1 + (𝑐𝑐 −  1). 720
,  
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so that n = 1.29, and three more items are required for the subdomain to have a reliability 

above .768 and a VAR above 1.1. 

The overall accuracy of using ECVSS and OmegaS to create cutoffs for VAR = 1.0 

and VAR = 1.1 reached the desired levels of sensitivity and specificity, and researchers 

should feel confident interpreting ECVSS as an indicator of dimensional uniqueness. The 

higher specificity of cutoffs created using ECVSS and OmegaS is partially the result of the 

linear shape of relationship between OmegaS and VAR, compared to the quadratic 

relationship between OmegaHS and VAR. Furthermore, predicting VAR with ECVSS and 

OmegaS permits use of the prophecy formula to unbiasedly estimate VAR upon addition 

of parallel items to the subdomain. 

Despite not recommending strict cutoffs, some suggestions for interpreting specific 

values of ECVSS can still be made. Table 3.6 and Table 3.7 suggest that ECVSS = .45 is 

probably sufficient to warrant interpretation of a subscore when that subscore’s reliability 

is low (OmegaS = .60). Furthermore, for moderate reliability (OmegaS = .80), ECVSS = 

.30 is probably sufficient to warrant interpretation of a subscore, and the importance of 

ECVSS diminishes as OmegaS increases further. As with recommendations for OmegaHS, 

high ECVSS should be considered as evidence for interpreting a subscore, not as evidence 

for not interpreting a total score. 

 Comparison with Prior Bifactor Simulation Research 

As with prior simulation research involving bifactor models and dimensionality 

(Bonifay et al., 2015; Reise et al., 2013a), this study only considered second-order factor 

models (technically, both of those other studies considered bifactor models which are 

statistically equivalent to second-order models). Compared to these studies, however, the 
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present research considered a far greater diversity of models and a far greater number of 

models. While previous research involved bifactor models each of which had constant 

loadings across all specific factors, loadings were allowed to vary across specific factors 

in this study. As the goal of the present study was to evaluate specific factors, the specific 

factors were required to be different from each other. However, since prior bifactor 

dimensionality research only considered the general factor, no attention was paid to the 

specific factors. Also, Reise et al. (2013a) considered only 120 different models and 

Bonifay et al. (2015) considered only 300 different models, compared to the 84,000 models 

considered herein. Both the additional complexity and sheer volume of models considered 

contribute to the complexity and difficulty of interpreting the results. Therefore, the results 

recorded herein raise the question of whether the simplicity and clarity of Bonifay et al.’s 

(2015) and Reise et al.’s (2013) conclusions are misleading.   

Some other simulation research involving bifactor models, not specific to 

dimensionality, is similarly afflicted by overly simplistic model choices. For example, 

Green et al. (2018) simulated from both correlated traits and bifactor models in their 

comparison of parallel analysis methods; however, their bifactor models were structured 

such that they were nearly identical to some of the correlated traits modes, albeit with lower 

inter-factor correlations. However, research concerning fit index bias in favor of bifactor 

models (Green et al., 2019; Morgan et al., 2015) have necessarily involved more 

sophisticated and varied models from which data were simulated, including ones for which 

neither a second-order nor a bifactor model are a perfect fit in the population. 
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3.6 For the Applied Researcher 

The primary takeaway of this study for the applied researcher is that OmegaHS and 

ECVSS are both useful indicators of dimensional uniqueness. Their precise interpretation 

requires also considering OmegaS. Levels of OmegaHS required for appropriately 

interpreting subscores are much lower than claimed by prior methodological literature 

(Gignac & Kretschmar, 2013; Reise et al., 2013a). For low subscore reliability (OmegaS = 

.60), OmegaHS = .25 or ECVSS = .45 is sufficient that the subscore has a good chance of 

having added value (VAR > 1.1) above and beyond the total score. For moderate reliability 

(OmegaS = .80), OmegaHS = .20 or ECVSS = .30 is sufficient, and the role of OmegaHS 

and ECVSS diminish as OmegaS increases further. Importantly, a subscore having added 

value does not necessitate its interpretation. Instead, when subscores are desired to be 

interpreted, high OmegaHS or ECVSS can be considered as evidence that such an 

interpretation is statistically appropriate. When only interpreting a total score is desired, 

high OmegaHS is not necessarily problematic so long as the total score has adequate 

psychometric properties (e.g., OmegaH > .80).  

These recommendations are tempered by limitations of this study. When the 

number of subdomains is low, slightly higher values of OmegaHS and ECVSS may be 

required. Furthermore, when the number of subdomains is two, the extent of error in 

estimating population bifactor indices from a fitted model may be severe. Also, as with all 

simulation studies, factors not incorporated into study design may alter interpretation of 

OmegaHS and ECVSS. Specifically, this study did not consider sampling error, misfit in 

the second-order CFA model, or very low reliabilities in some subscores.  
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3.7 Limitations and Conclusion 

 Limitations 

A major limitation of any simulation study is imperfect coverage of data structures 

found in real-world research. While a wide range of second-order models were generated 

and analyzed in this study, it is possible that researchers may encounter data which is not 

well-described by any of these models. For example, models including specific factors with 

very low reliability or very low second-order factor loadings are not represented in this 

study. More importantly, multidimensional data often does not satisfy a second-order 

structure (Chen et al., 2006; Chen et al., 2012). When the true model for data is other than 

second-order, a bifactor model will not fit the data perfectly, so any conclusions drawn 

from such a model should be tempered with uncertainty due to misfit. It is a subject for 

future research to analyze the usefulness of bifactor indices with correlated traits models 

which do not satisfy the conditions of a second-order model.   

As with other dimensionality simulation research examining multidimensionality 

(Bonifay et al., 2015; Reise et al., 2013b), sampling was not considered in this study. When 

fitting bifactor models based on samples, parameter estimates and estimates of bifactor 

indices will be subject to sampling error. The influence of sampling error on estimation of 

bifactor indices has not yet been studied. Furthermore, as discovered in the pilot study, 

bifactor models fit to data may result in biased estimates of bifactor indices, particularly 

when the number of dimensions is small. This phenomenon has also not been subject to 

research. 

Finally, the level of error and complexity of Table 3.2, Table 3.3, Table 3.6, and 

Table 3.7 prohibit them from functioning as perfect cutoffs for decision-making regarding 
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whether subscores have added value. However, it is hoped that these tables may serve as 

general guidelines, to be interpreted with the degree of possible error in mind. 

 Conclusions 

When the number of specific factors is at least four, Equations 3.13 and 3.14 and 

Table 3.2, Table 3.3, Table 3.6, and Table 3.7 provide reasonably accurate information 

about VAR to aid in decision-making about interpretation of subscores. OmegaHS and 

ECVSS both serve as effective indicators of dimensional uniqueness and, conditional upon 

OmegaS, as effective indicators of the value added by a subscore.  

 Additionally, this study raises awareness of several gaps in the literature on bifactor 

models. First, the sampling distribution of bifactor indices is completely unknown. Second, 

the ability of bifactor models fit to empirical data to yield accurate and meaningful bifactor 

indices is suspect when the number of specific factors is small, and is unknown in the case 

of true correlated traits models not satisfying the restrictions of a second-order factor 

model. Finally, the relative accuracy of VAR as traditionally computed (say, using the 

subscore package) compared to the accuracy of Equations 3.13 and 3.14 is unknown.  

While previous research concerning bifactor indices were largely concerned with 

using them to evaluate whether data could be considered essentially unidimensional 

(Bonifay et al., 2015; Reise et al., 2013a; Rodriguez et al., 2016a), this study was concerned 

with whether data was multidimensional enough for subscores to be interpreted. When 

combined with prior bifactor research, this work extends a framework (Rodriguez et al., 

2016a, 2016b) of using confirmatory bifactor models for dimensionality assessment. 
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CHAPTER 4. CONCLUSION 

 
 

Bifactor models and their indices have been widely used to aid in decision-making 

about dimensionality. While recommendations for using bifactor indices to evaluate the 

appropriateness of interpreting a total score or unidimensional measurement model are well 

establish (Rodriguez et al., 2016a, 2016b), recommendations for using bifactor models to 

evaluate the appropriateness of subscores have previously taken the form of 

unsubstantiated options (Gignac & Kretschmar, 2017; Gignac & Watkins, 2013; Reise et 

al., 2013a). Furthermore, computation of bifactor indices has typically been done manually 

or using one of several programs (Dueber, 2017; Revelle, 2020; Watkins, 2013) which lack 

in convenience features, fail to provide all relevant indices, are limited to being used with 

a narrow range of models, or require the user to employ a specific program for estimation 

of factor models. 

The BifactorIndicesCalculator package for the R statistical computing environment 

provides a user-friendly platform for computing bifactor indices. Estimated exploratory 

and confirmatory models can be input directly into BifactorIndicesCalculator functions, or 

the user can directly input a matrix of factor loadings. The range of model types supported 

make the BifactorIndicesCalculator a convenient tool for use both in empirical research 

and in simulation research. Researchers who do not wish to use R can access 

BifactorIndicesCalculator as a Shiny app and directly load Mplus .out files in order to 

obtain bifactor indices for the estimated model.  
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In Study Two, the utility of bifactor indices in predicting whether subscores will have 

added value over the total score was investigated. OmegaHS and ECVSS were each found 

to substantially predict VAR, especially when OmegaS was included as a predictor. Results 

showed some variation for models with two and three subscales, but where fairly robust 

for larger models. Suggestions for when OmegaHS or ECVSS are large enough that a 

subscore may safely be interpreted separately from the total score were made; required 

levels of OmegaHS were much lower than previous researchers have suggested (Gignac & 

Watkins, 2013; Reise et al., 2013a). The relationship between ECVSS, OmegaS, and VAR 

was used in tandem with the Spearman-Brown prophecy formula to estimate the number 

of additional items a subdomain would need to have added value. Finally, a demonstration 

was made using data from the SQLI to show a concrete example of data for which a total 

score is interpretable and subscores are also interpretable.  

4.1 Implications for Applied Researchers 

The BifactorIndicesCalculator package for the R statistical computing environment 

and associated Shiny app, provide applied researchers with a convenient way to compute 

bifactor indices. 

Study Two provides a more rigorous set of guidelines around interpreting 

OmegaHS (and ECVSS) than was previously available. While very low levels of OmegaHS 

indicate that only a total score should be interpreted, levels of OmegaHS previously 

considered small or moderate are nevertheless associated with subscores having added 

value. Researchers arguing that only a total score should be interpreted ought not to 

consider moderate levels of OmegaHS as evidence in support of their claim. On the other 

hand, researchers who desire to interpret subscores need not meet the stringent criteria 
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suggested by Gignac and Watkins (2013) or Reise et al. (2013a); much lower levels of 

OmegaHS are sufficient to provide evidence for the suitability of interpreting subscores. If 

subscores do not have added value but researchers desire to interpret those subscores, a 

mechanism was provided using ECVSS, OmegaS, and the Spearman-Brown prophecy 

formula by which the number of additional items which should be added to the subdomain 

may be estimated. 

4.2 Implications for Future Research 

It has been said that good research raises more questions than it answers; by this 

metric, at least, the present research has been a success. The most significant question 

raised through this research is how well bifactor indices measure what they are purported 

to measure, particularly in non-ideal situations. As discussed in the methodology of Study 

Two, bifactor indices computed from estimated models showed severe bias compared to 

the theoretical population values when the number of specific factors was two. A bifactor 

model with only two specific factors was estimated in 26% (39 out of 149) of studies 

reporting an estimated bifactor model from the search of PsychINFO reported in earlier 

chapters, highlighting the importance of this issue. Simulation research could be performed 

to more fully examine the extent of this bias and determine to what extent the conclusions 

of current and prior bifactor simulation research (Bonifay et al., 2015; Reise et al., 2013b) 

are valid when the number of specific factors is small. 

The issues of recovery and interpretation of population bifactor indices using 

estimated models extends far beyond the case of a small number of specific factors. As the 

current research and prior bifactor simulation research (Bonifay et al., 2015; Reise et al., 

2013b) have employed only second-order models, there is a lingering question of how well 



106 
 

indices computed from actual estimated models measure what they are purported to 

measure. Are the recommendations of Study Two and of prior bifactor simulation research 

applicable when the true model is a correlated traits model which does not conform to a 

second-order pattern. As Chen et al. (2006, 2012) observed, well-fitting second-order 

models are rare in applied research? Even more generally, how well do these 

recommendations hold up when the correlated traits model exhibits misfit? Additionally, 

prior bifactor simulation research (Bonifay et al., 2015; Reise et al., 2013b) utilized a 

narrow range of models, which may relative simplicity of results in these studies as 

compared to Study Two. How would conclusion of these studies differ if they were to 

consider a more representative sample of models? Furthermore, bifactor simulation 

research has thus far been restricted to population models (Reise et al., 2013b) or very large 

samples (Bonifay et al., 2015). While both the delta method and bootstrapping show some 

promise for estimating confidence intervals of reliability coefficients (Kelley & 

Pornprasertmanit, 2016), little is known about the sampling distribution of bifactor indices. 

Understanding the expected level of sampling error would help researchers be more 

confident (or more tentative) in the conclusions they draw based on bifactor indices. 

Continuing the theme of accurate recovery of population bifactor indices, it was 

noted earlier that some preliminary work has suggested that bifactor indices computed from 

exploratory models may be interpreted in a similar way as indices computed from a 

confirmatory model (Murray et al., 2019). However, Perreira et al. (2018) raise concerns 

about using exploratory models for computing bifactor indices as well as concerns about 

the formula used for indices. In recent years, the variety of types of hierarchical models 

with general factors being fit to data has exploded; in addition to bifactor CFA models, 
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bifactor exploratory factor analysis models (Jennrich & Bentler, 2011), bifactor 

exploratory structural equation models (Morin et al., 2016), incomplete bifactor models 

(Eid et al., 2016), trifactor models (Rijmen, 2011), and two-tier models (Cai, 2010) are 

becoming common in applied literature. While the various bifactor indices make intuitive 

sense in all of these contexts, information about how well interpretations and recommended 

cutoffs transfer to these other analytic contexts has not been developed. 

 Finally, while Study Two addresses the question of whether a subscore can 

appropriately be interpreted, it does not address the question of whether that subscore ought 

to be interpreted instead of a total score. Incorporating a subscore which is sufficiently 

uncorrelated with the construct of interest into the total score will degrade the quality of 

measurement of that construct, as its inclusion adds error variance but not construct 

relevant variance. Thus, at some level of dimensional uniqueness, a statistical 

recommendation can be made to remove a subscore from the total score so as to improve 

measurement. This type of claim has been observed in empirical research (Mészáros et al., 

2014). While the decision to include specific subdomains in a scale is a mostly theoretical 

one, the ability to use bifactor indices to determine when inclusion of a subdomain degrades 

measurement of the general factor would help provide statistical evidence for the 

appropriateness of that theoretical decision.  

4.3 Final Conclusions 

Bifactor models and indices computed based on parameter estimates from bifactor 

models are useful tools for providing evidence about the appropriateness of different 

dimensional interpretations of data. This dissertation adds to prior research in that it 

provides a mechanism for using bifactor indices for subscore assessment. Abundant 
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questions remain about uses and appropriateness of bifactor models and indices, 

particularly when the number of specific factors is low. 

 
 
 



  

APPENDICES 

 

APPENDIX A 

Code for Simulating Data 

 
library(BifactorIndicesCalculator) 
library(parallel) 
 
# Generates all relevant data: 
#   Second order factor scores 
#   Second order factor loadings 
#   First order scores 
#   First order factor loadings 
#   Indicator scores 
GenerateData <- function (N, nfac, load, rel, nitems) { 
  # Generates first order factor scores 
  GenerateFirstOrder <- function (N, nfac, loads, scores) { 
    sapply(1:nfac, function(x) { 
      scores*loads[x] + rnorm(N, 0, sqrt(1-loads[x]^2)) 
    }) 
  } 
   
  # Generates item scores  
  GenerateItems <- function (N, rel, scores, nitems) { 
    load <- sqrt(rel/(nitems - (nitems-1)*rel)) 
    sapply(1:nitems, function(x) { 
      scores*load + rnorm(N, 0, sqrt(1-load^2)) 
    }) 
  } 
   
  # Now lets start generating the data 
  SecondOrderScores <- rnorm(N, 0, 1) 
   
  # Second order factor loadings according to the  
  # loading distribution type 
  # If nfac is 2, then we need to make the loadings the same 
  if (nfac == 2) { 
    if (load == "high") { 
      SecondOrderLoadings <- rep(runif(1, .80, .99), 2) 
    } else if (load == "low") { 
      SecondOrderLoadings <- rep(runif(1, .50, .80), 2) 
    } else if (load == "mixed") { 
      SecondOrderLoadings <- rep(runif(1, .50, .99), 2) 
    } else { #load == "half" 
      SecondOrderLoadings <- rep(runif(1, .50, .99), 2) 
    } 
  } else { 
    if (load == "high") { 
      SecondOrderLoadings <- runif(nfac, .80, .99) 
    } else if (load == "low") { 
      SecondOrderLoadings <- runif(nfac, .50, .80) 
    } else if (load == "mixed") { 
      SecondOrderLoadings <- runif(nfac, .50, .99) 
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    } else { #load == "half" 
      SecondOrderLoadings <- c(runif(nfac/2, .50, .80),  
                               runif(nfac/2, .80, .99)) 
      if (nfac %% 2 == 1) { 
        SecondOrderLoadings <- c(SecondOrderLoadings,  
                                               runif(1, .5, .99)) 
      } 
    } 
  } 
   
  FirstOrderScores <- GenerateFirstOrder(N, nfac,  
                                SecondOrderLoadings, SecondOrderScores) 
   
  # First order reliabilities according to the reliability  
  # distribution type 
  if (rel == "high") { 
    FirstOrderReliability <- runif(nfac, .7, .99) 
  } else if (rel == "mixed") { 
    FirstOrderReliability <- runif(nfac, .5, .99) 
  } else { # rel == "half" 
    FirstOrderReliability <- c(runif(nfac/2, .7, .99),  
                               runif(nfac/2, .5, .7)) 
    if (nfac %% 2 == 1) { 
      FirstOrderReliability <- c(FirstOrderReliability,  
                                                   runif(1, .5, .99)) 
    } 
  } 
   
  ItemScores <- do.call(cbind,  
                        lapply(1:nfac, function(x)  
                           GenerateItems(N, FirstOrderReliability[x],  
                           FirstOrderScores[,x], nitems))) 
   
  return(list( 
    SecondOrderScores     = SecondOrderScores, 
    SecondOrderLoadings   = SecondOrderLoadings, 
    FirstOrderScores      = FirstOrderScores, 
    FirstOrderReliability = FirstOrderReliability, 
    ItemScores            = ItemScores 
  )) 
} 
 
# Schmid-Leiman Transformation for bifactor parameters  
# from second-order parameters 
SchmidLeimanTrans <- function (SimData, nfac) { 
   
  # A function to do the actual transformation after  
  # we do some wrangling 
  SLT <- function (SecondOrderLoadings, FirstOrderLoadings) { 
    U2 <- diag(sqrt(1-SecondOrderLoadings^2))  
    B2 <- cbind(SecondOrderLoadings, U2)  
    FirstOrderLoadings %*% B2 
  } 
   
  # Data wrangling to generate loadings matrices 
  sload_matrix <- SimData$SecondOrderLoadings 
  # This euqation solves the Omega equation for loading, basically 
  floads <- sqrt(SimData$FirstOrderReliability/(nitems - (nitems- 
                                  1)*SimData$FirstOrderReliability)) 
   
  # Create first order matrix. Vectorizing this would take  
  # more time than it would save. 
  for (i in 1:nfac) { 
    if (i == 1) { 
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      load_vector <- rep(floads[i], nitems) 
    } else { 
      # fill in zeros, then next dimension of factor loadings 
      load_vector <- c(load_vector, rep(0, nitems*nfac), rep(floads[i],  
                                                               nitems)) 
    } 
  } 
   
  # Now matrix-ify it 
  fload_matrix <- matrix(load_vector, ncol = nfac, byrow = FALSE) 
  
  return ( SLT(sload_matrix, fload_matrix) ) 
} 
 
# PRMSE Indices (theoretical) 
PRMSE_Indices <- function(RawData, FirstOrderScores, nfac) { 
  Tot <- rowSums(RawData) 
   
  # Let's make subscores 
  for (i in 1:nfac) { 
    if (i == 1) { 
      # First subscores 
      Subscores <- rowSums(RawData[,1:nitems]) 
    } else { 
      # add one dimension at a time 
      m <- (i-1)*nitems + 1 
      n <- i*nitems 
      Subscores <- cbind(Subscores, rowSums(RawData[,m:n])) 
    } 
  } 
 
   
  PRMSES <- sapply(1:ncol(Subscores), function(x)  
                           cor(FirstOrderScores[,x], Subscores[,x])^2) 
  PRMSET <- sapply(1:ncol(Subscores), function(x)     
                           cor(FirstOrderScores[,x], Tot)^2) 
  VAR    <- PRMSES/PRMSET 
   
  return(do.call(cbind, list(PRMSES = PRMSES, 
                             PRMSET = PRMSET, 
                             VAR    = VAR))) 
} 
 
# Put it all together and do the simulation 
sim_analysis <- function (c, N, nitems, numreps) { 
  # set simulation conditions 
  nfac <- conditions$numfactors[c] 
  load <- conditions$loadings[c] 
  rel  <- conditions$reliabilities[c] 
   
  run_reps <- function(i, N, nfac, load, rel, nitems) { 
    # Generate Data 
    SimData <- GenerateData(N, nfac, load, rel, nitems) 
     
    # Create bifactor model (S-L style) 
    BiModel_SL <- SchmidLeimanTrans(SimData, nfac) 
     
    # Bifactor Indices 
    SL_bindices <- bifactorIndices(BiModel_SL) 
     
    # PRMSE Indices 
    PRMSE <- PRMSE_Indices(SimData$ItemScores,  
                           SimData$FirstOrderScores, nfac) 
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    # Glue it all together into a vector. Ugly but easy to follow 
    RepResultMat <- SL_bindices$FactorLevelIndices[-1,] 
    RepResultMat <- cbind(rep(SL_bindices$FactorLevelIndices$ECV_SS[1],  
                              nfac), RepResultMat) 
    colnames(RepResultMat)[1] <- "ECVG" 
    RepResultMat <- cbind( 
             rep(SL_bindices$FactorLevelIndices$Omega_H[1], nfac),  
             RepResultMat) 
    colnames(RepResultMat)[1] <- "OmegaGH" 
    RepResultMat <- cbind( 
             rep(SL_bindices$FactorLevelIndices$Omega[1], nfac),  
             RepResultMat) 
    colnames(RepResultMat)[1] <- "OmegaG" 
    RepResultMat <- cbind(PRMSE, RepResultMat) 
    RepResultMat <- cbind(SimData$SecondOrderLoadings, RepResultMat) 
    colnames(RepResultMat)[1] <- "SecondOrderLoadings" 
    RepResultMat <- cbind(SimData$FirstOrderReliability, RepResultMat) 
    colnames(RepResultMat)[1] <- "FirstOrderReliability" 
    RepResultMat <- cbind(rep(rel, nfac), RepResultMat) 
    colnames(RepResultMat)[1] <- "rel" 
    RepResultMat <- cbind(rep(load, nfac), RepResultMat) 
    colnames(RepResultMat)[1] <- "load" 
    RepResultMat <- cbind(rep(nfac, nfac), RepResultMat) 
    colnames(RepResultMat)[1] <- "nfac" 
    RepResultMat <- cbind(rep((c-1)*numreps+i, nfac), RepResultMat) 
    colnames(RepResultMat)[1] <- "IterationNumber" 
     
    return(RepResultMat) 
     
  } 
   
  # Let's get replicating 
  rep_results <- lapply (1:numreps, run_reps, N, nfac,  
                                              load, rel, nitems) 
  rep_results <- as.data.frame(do.call(rbind, rep_results)) 
  return (rep_results) 
} 
 
 
# Let's get some constants out of the way 
{ 
  N <- 100000 
  nitems <- 5 
  numreps <- 1000 
  loadings <- c("high", "low", "mixed", "half") 
  reliabilities <- c("high", "mixed", "half") 
  numfactors <- c(2, 3, 4, 5, 6, 7, 8) 
  conditions <- expand.grid(loadings, reliabilities, numfactors) 
  colnames(conditions) <- c("loadings", "reliabilities", "numfactors") 
  num_conditions <- nrow(conditions) 
} 
 
# set up clusters 
{ 
  cl <- makeCluster(detectCores(logical = FALSE)) 
  clusterEvalQ(cl, library(lavaan)) 
  clusterEvalQ(cl, library(BifactorIndicesCalculator)) 
  clusterExport(cl, "conditions") 
  clusterExport(cl, "GenerateData") 
  clusterExport(cl, "SchmidLeimanTrans") 
  clusterExport(cl, "PRMSE_Indices") 
  clusterExport(cl, "N")             
  clusterExport(cl, "nitems")        
  clusterExport(cl, "numreps")       
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  clusterExport(cl, "sim_analysis")  
   
  # Asked random.org for a random number between 1 and a billion 
  clusterSetRNGStream(cl, iseed = 12495640) 
  # This next one is for replication samples 
  #clusterSetRNGStream(cl, iseed = 204059826) 
} 
 
# Now let's do the work! 
 
system.time(results <- parLapply(cl, 1:num_conditions, sim_analysis,  
                                                  N, nitems, numreps)) 
# It’s a massive list, so let’s make it into a dataframe 
results <- as.data.frame(do.call(rbind, results)) 
 
stopCluster(cl) 
 
write.csv(results, "DissResults.csv", row.names = FALSE) 
# This next one is for replication samples 
#write.csv(results, "DissResultsReplication.csv", row.names = FALSE)



APPENDIX B 

Code for Analysis of Simulated Data Sets 
 

# Source the Auxiliary Functions file first!! 
 
SimResults <- read.csv("DissResults.csv") 
 
# Which variables are most predictive? 
summary(lm(VAR ~ Omega_H, SimResults)) 
summary(lm(VAR ~ Omega, SimResults)) 
summary(lm(VAR ~ ECV_SG, SimResults)) 
summary(lm(VAR ~ ECV_SS, SimResults)) 
summary(lm(VAR ~ nfac, SimResults)) 
summary(lm(VAR ~ OmegaG, SimResults)) 
summary(lm(VAR ~ OmegaGH, SimResults)) 
summary(lm(VAR ~ ECVG, SimResults)) 
 
# OmegaHS and ECV_SS are clearly the best.  
# First, build a model starting from OmegaHS 
# Then build a model starting from ECV_SS 
 
 
# Starting from OmegaHS, build a model for VAR 
OH_fit <- lm(VAR ~ Omega_H, SimResults) 
summary(OH_fit) #R2 = .848 
plot(x = SimResults$Omega_H, 
     y = OH_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaHS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$VAR, 
     y = OH_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "VAR", 
     ylab = "Residuals for VAR")  
SensSpec(OH_fit, SimResults) 
 
# That heteroscedasticity is a little sketchy. 
# Sensitivity is a bit low, too. 
# Let's add another variable and see how it looks 
# Try all of them and see which is best 
 
summary(lm(VAR ~ Omega_H*Omega,   SimResults)) 
summary(lm(VAR ~ Omega_H*ECV_SG,  SimResults)) 
summary(lm(VAR ~ Omega_H*ECV_SS,  SimResults)) 
summary(lm(VAR ~ Omega_H*nfac,    SimResults)) 
summary(lm(VAR ~ Omega_H*OmegaG,  SimResults)) 
summary(lm(VAR ~ Omega_H*OmegaGH, SimResults)) 
summary(lm(VAR ~ Omega_H*ECVG,    SimResults)) 
 
# OmegaS, ECV_SG, and nfac are clearly the winners 
# nfac should only be included if absolutely  
# necessary because of complexity of interpretation 
 
# Further analyses with ECV_SG are not included 
# because OmegaS worked out better in the end 
 
# Add OmegaS to the model and see where that takes me 
 
OOH_fit <- lm(VAR ~ Omega_H*Omega, SimResults) 
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summary(OOH_fit) #R2 = .878 
plot(x = SimResults$Omega_H, 
     y = OOH_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaHS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$Omega, 
     y = OOH_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$VAR, 
     y = OOH_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "VAR", 
     ylab = "Residuals for VAR")  
 
# That heteroscedasticity is nasty looking 
# Let's add a quadratic OmegaHS term and see if it helps 
 
OOH2_fit <- lm(VAR ~ Omega_H*Omega + I(Omega_H^2), SimResults) 
summary(OOH2_fit) #R2 = .909 
plot(x = SimResults$Omega_H, 
     y = OOH2_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaHS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$Omega, 
     y = OOH2_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaS", 
     ylab = "Residuals for VAR")   
plot(x = SimResults$VAR, 
     y = OOH2_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "VAR", 
     ylab = "Residuals for VAR")   
SensSpec(OOH2_fit, SimResults) 
 
# Residuals look a lot better. Some wonky heteroscedasticity 
# with VAR. There are some datasets for which VAR is MAJORLY 
# overestimated. This will be a problem for specificity. 
# Sensitivity is ok, but specificity is a little low. 
# Let's make some cutoffs 
 
OmegaVals <- c(.5, .55, .6, .65, .7, .75, .8, .85, .9, .95) 
CutoffGen_OmegaOmegaH2(OOH2_fit, OmegaVals) 
 
# Let's see if we can improve things better by adding another variable 
 
summary(lm(VAR ~ Omega_H*Omega*ECV_SG  + I(Omega_H^2),  SimResults)) 
summary(lm(VAR ~ Omega_H*Omega*ECV_SS  + I(Omega_H^2),  SimResults)) 
summary(lm(VAR ~ Omega_H*Omega*ECVG    + I(Omega_H^2),  SimResults)) 
summary(lm(VAR ~ Omega_H*Omega*OmegaG  + I(Omega_H^2),  SimResults)) 
summary(lm(VAR ~ Omega_H*Omega*OmegaGH + I(Omega_H^2),  SimResults)) 
summary(lm(VAR ~ Omega_H*Omega*nfac    + I(Omega_H^2),  SimResults)) 
 
# ECV_SG and nfac are the winners. Again, analyses with ECV_SG 
# are not included here because they didn't turn out as well. 
# Instead, I'll pursue nfac. Since nfac is categorical, I am going 
# to fit models for each dimension separately. 
 
# I want a table of cutoffs indexed by nfac and OmegaS 
# with the overall numbers at the top 
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OOH2_cuts <- unlist(CutoffGen_OmegaOmegaH2(OOH2_fit, OmegaVals))[11:30] 
OOH2_cuts <- matrix(OOH2_cuts, ncol = 20) 
colnames(OOH2_cuts) <- c(paste0("V1_", OmegaVals),  
                         paste0("V11_", OmegaVals)) 
 
# Now let's go through the dimensions one at a time... 
OOH2_cuts <- OmegaS_Cuts_Increment(2, SimResults, OOH2_cuts) 
OOH2_cuts <- OmegaS_Cuts_Increment(3, SimResults, OOH2_cuts) 
OOH2_cuts <- OmegaS_Cuts_Increment(4, SimResults, OOH2_cuts) 
OOH2_cuts <- OmegaS_Cuts_Increment(5, SimResults, OOH2_cuts) 
OOH2_cuts <- OmegaS_Cuts_Increment(6, SimResults, OOH2_cuts) 
OOH2_cuts <- OmegaS_Cuts_Increment(7, SimResults, OOH2_cuts) 
OOH2_cuts <- OmegaS_Cuts_Increment(8, SimResults, OOH2_cuts) 
 
# Merge them all together and write to file 
OOH2_cuts <- cbind(c("Overall", "2fac", "3fac", "4fac", "5fac",  
                                "6fac", "7fac", "8fac"), OOH2_cuts) 
colnames(OOH2_cuts)[1] <- "nfac" 
write.csv(OOH2_cuts, "OmegaOmegaHCutoffs.csv") 
 
# Next make the plots of OmegaHS vs VAR for different levels of OmegaS 
VarOmegaHSPlots(SimResults[SimResults$nfac == 2, ], 1, .1) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 2, ], 1.1, .1) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 3, ], 1, .085) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 3, ], 1.1, .085) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 4, ], 1, .085) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 4, ], 1.1, .085) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 5, ], 1, .07) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 5, ], 1.1, .07) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 6, ], 1, .04) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 6, ], 1.1, .04) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 7, ], 1, .04) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 7, ], 1.1, .04) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 8, ], 1, .03) 
VarOmegaHSPlots(SimResults[SimResults$nfac == 8, ], 1.1, .03) 
 
 
# Now let's do it all again with ECV_SS!! 
 
ECV_fit <- lm(VAR ~ ECV_SS, SimResults) 
summary(ECV_fit) #R2 = .736 
plot(x = SimResults$ECV_SS, 
     y = ECV_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "ECV_SS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$VAR, 
     y = ECV_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "VAR", 
     ylab = "Residuals for VAR")  
SensSpec(ECV_fit, SimResults) 
 
# That heteroscedasticity is a little sketchy. 
# Sensitivity is very low, too. 
# Let's add another variable and see how it looks 
# Try all of them and see which is best 
 
summary(lm(VAR ~ ECV_SS*Omega_H, SimResults)) 
summary(lm(VAR ~ ECV_SS*Omega,   SimResults)) 
summary(lm(VAR ~ ECV_SS*ECV_SG,  SimResults)) 
summary(lm(VAR ~ ECV_SS*nfac,    SimResults)) 
summary(lm(VAR ~ ECV_SS*OmegaG,  SimResults)) 



117 
 

summary(lm(VAR ~ ECV_SS*OmegaGH, SimResults)) 
summary(lm(VAR ~ ECV_SS*ECVG,    SimResults)) 
 
# OmegaS and nfac are the winners 
# nfac should only be included if absolutely  
# necessary because of complexity of interpretation 
 
# Add OmegaS to the model and see where that takes me 
oecv_fit <- lm(VAR ~ Omega*ECV_SS, SimResults) 
summary(oecv_fit) #R2 = .875 
plot(x = SimResults$ECV_SS, 
     y = oecv_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "ECV_SS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$Omega, 
     y = oecv_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$VAR, 
     y = oecv_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "VAR", 
     ylab = "Residuals for VAR")  
 
# That heteroscedasticity is nasty looking 
# Let's add a quadratic ECV_SS term and see if it helps 
 
oecv2_int_fit <- lm(VAR ~ Omega*ECV_SS + I(ECV_SS^2), SimResults) 
summary(oecv2_int_fit)   #R2 = .911 
 
# That coefficient for the interaction term is TINY 
# Let's see if it matters 
oecv2_fit <- lm(VAR ~ Omega + ECV_SS + I(ECV_SS^2), SimResults) 
summary(oecv2_fit)   #R2 = .911 
 
# The interaction really doesn't matter, so we will omit it 
plot(x = SimResults$ECV_SS, 
     y = oecv2_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "ECV_SS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$Omega, 
     y = oecv2_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "OmegaS", 
     ylab = "Residuals for VAR")  
plot(x = SimResults$VAR, 
     y = oecv2_fit$residuals, 
     col = rgb(red = 0, green = 0, blue = 0, alpha = 0.03),        
     xlab = "VAR", 
     ylab = "Residuals for VAR")  
SensSpec(oecv2_fit, SimResults) 
 
# Reiduals look much better, but some wonky heteroscedasticity 
# with VAR. There are some datasets for which VAR is MAJORLY 
# overestimated. This will be a problem for specificity. 
# Sensitivity and specificity are ok. 
# Let's make some cutoffs 
 
ECVals <- c(.05, .10, .15, .20, .25, .30, .35, .40, .45, .50) 
CutoffGen_ECV2Omega(oecv2_fit, ECVals) 
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# Let's see if we can improve things better by adding another variable 
summary(lm(VAR ~ (Omega + ECV_SS)*Omega_H + I(ECV_SS^2), SimResults)) 
summary(lm(VAR ~ (Omega + ECV_SS)*ECV_SG  + I(ECV_SS^2), SimResults)) 
summary(lm(VAR ~ (Omega + ECV_SS)*OmegaG  + I(ECV_SS^2), SimResults)) 
summary(lm(VAR ~ (Omega + ECV_SS)*OmegaGH + I(ECV_SS^2), SimResults)) 
summary(lm(VAR ~ (Omega + ECV_SS)*ECVG    + I(ECV_SS^2), SimResults)) 
summary(lm(VAR ~ (Omega + ECV_SS)*nfac    + I(ECV_SS^2), SimResults)) 
 
# nfac is the winner here. Since nfac is categorical, I am going 
# to fit models for each dimension separately. 
 
# I want a table of cutoffs indexed by nfac and OmegaS 
# with the overall numbers at the top 
ECV2O_cuts <- unlist(CutoffGen_ECV2Omega(oecv2_fit, ECVals))[11:30] 
ECV2O_cuts <- matrix(ECV2O_cuts, ncol = 20) 
colnames(ECV2O_cuts) <- c(paste0("V1_",  ECVals),  
                          paste0("V11_", ECVals)) 
 
# Now let's go through the dimensions one at a time... 
ECV2O_cuts <- ECV_Cuts_Increment(2, SimResults, ECV2O_cuts) #R2 = .891 
ECV2O_cuts <- ECV_Cuts_Increment(3, SimResults, ECV2O_cuts) #R2 = .867 
ECV2O_cuts <- ECV_Cuts_Increment(4, SimResults, ECV2O_cuts) #R2 = .941 
ECV2O_cuts <- ECV_Cuts_Increment(5, SimResults, ECV2O_cuts) #R2 = .967 
ECV2O_cuts <- ECV_Cuts_Increment(6, SimResults, ECV2O_cuts) #R2 = .978 
ECV2O_cuts <- ECV_Cuts_Increment(7, SimResults, ECV2O_cuts) #R2 = .983 
ECV2O_cuts <- ECV_Cuts_Increment(8, SimResults, ECV2O_cuts) #R2 = .985 
 
# Let's write these cutofs to file 
write.csv(ECV2O_cuts, "OmegaECVCutoffs.csv") 
  
 
# Next make the plots of OmegaS vs VAR for different levels of ECV_SS 
VarOmegaPlots(SimResults[SimResults$nfac == 2, ], 1, .1) 
VarOmegaPlots(SimResults[SimResults$nfac == 2, ], 1.1, .1) 
VarOmegaPlots(SimResults[SimResults$nfac == 3, ], 1, .085) 
VarOmegaPlots(SimResults[SimResults$nfac == 3, ], 1.1, .085) 
VarOmegaPlots(SimResults[SimResults$nfac == 4, ], 1, .085) 
VarOmegaPlots(SimResults[SimResults$nfac == 4, ], 1.1, .085) 
VarOmegaPlots(SimResults[SimResults$nfac == 5, ], 1, .07) 
VarOmegaPlots(SimResults[SimResults$nfac == 5, ], 1.1, .07) 
VarOmegaPlots(SimResults[SimResults$nfac == 6, ], 1, .04) 
VarOmegaPlots(SimResults[SimResults$nfac == 6, ], 1.1, .04) 
VarOmegaPlots(SimResults[SimResults$nfac == 7, ], 1, .04) 
VarOmegaPlots(SimResults[SimResults$nfac == 7, ], 1.1, .04) 
VarOmegaPlots(SimResults[SimResults$nfac == 8, ], 1, .03) 
VarOmegaPlots(SimResults[SimResults$nfac == 8, ], 1.1, .03)  
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APPENDIX C 

Code for Auxiliary Functions Used in Analysis of Simulated Data 
 

# source this file before doing analyses 
 
options(digits=5) 
 
# computes sensitivity and specificity for a given regression  
# model of VAR 
SensSpec <- function(fit, data) { 
  PredVar <- predict.lm(fit) 
   
  a <- sum(PredVar > 1.0 & data$VAR > 1.0) / sum(data$VAR > 1.0) 
  b <- sum(PredVar < 1.0 & data$VAR < 1.0) / sum(data$VAR < 1.0) 
  c <- sum(PredVar > 1.1 & data$VAR > 1.1) / sum(data$VAR > 1.1) 
  d <- sum(PredVar < 1.1 & data$VAR < 1.1) / sum(data$VAR < 1.1) 
   
  sens_spec <- matrix(c(1, a, b, 1.1, c, d), nrow = 2, byrow = TRUE) 
  sens_spec <- as.data.frame(sens_spec) 
  colnames(sens_spec) <- c("VAR", "SENS", "SPEC") 
   
  sens_spec 
} 
   
 
# Creates OmegaHS cutoffs for given OmegaS values 
# based on a model with OmegaHS, OmegaS, their 
# interaction, and OmegaHS^2 as predictors 
CutoffGen_OmegaOmegaH2 <- function(fit, OmegaVals) { 
  QF <- function (a, b, c) { 
    suppressWarnings((-b + sqrt(b*b-4*a*c))/(2*a)) 
  } 
   
  int <- fit$coefficients[1] 
  b_omegah <- fit$coefficients["Omega_H"] 
  b_omega <- fit$coefficients["Omega"] 
  b_omegah2 <- fit$coefficients["I(Omega_H^2)"] 
  b_interact <- fit$coefficients["Omega_H:Omega"] 
   
  a <- b_omegah2 
  b <- b_omegah + b_interact*OmegaVals 
  c <- int + b_omega*OmegaVals 
   
  Var1 <- QF(a, b, c-1) 
  Var11 <- QF(a, b, c-1.1) 
   
  res <- data.frame(Omega = OmegaVals, Var1 = Var1, Var11 = Var11) 
  res[apply(res,2,is.nan)] <- 0 
   
  return(res) 
} 
 
# Create OmegaHS cutoffs using a model with OmegaHS 
# and OmegaHS as predictors. Used for models with 
# (nearly) constant OmegaS 
CutoffGen_OmegaH2 <- function(fit) { 
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  QF <- function (a, b, c) { 
    suppressWarnings((-b + sqrt(b*b-4*a*c))/(2*a)) 
  } 
   
  int <- fit$coefficients[1] 
  b_omegah <- fit$coefficients["Omega_H"] 
  b_omegah2 <- fit$coefficients["I(Omega_H^2)"] 
   
  a <- b_omegah2 
  b <- b_omegah 
  c <- int 
   
  Var1 <- QF(a, b, c-1) 
  Var11 <- QF(a, b, c-1.1) 
   
  res <- data.frame(Var1 = Var1, Var11 = Var11) 
  res[apply(res,2,is.nan)] <- 0 
   
  return(res) 
} 
 
# Generates cutoffs for OmegaHS based on OmegaS 
# for a given number of specific factors 
# and adds them on to OOH2_cuts 
OmegaS_Cuts_Increment <- function(nfac, SimResults, OOH2_cuts) { 
  OOH2_fit_n <- lm(VAR ~ Omega_H*Omega + I(Omega_H^2), 
                                  SimResults[SimResults$nfac == nfac, ]) 
  print(summary(OOH2_fit_n)) 
  # Sensitivity and Specificity 
  print(SensSpec(OOH2_fit_n, SimResults[SimResults$nfac == nfac, ])) 
  # cutoffs 
  OmegaS_cuts_n <- CutoffGen_OmegaOmegaH2(OOH2_fit_n, OmegaVals) 
  OOH2_cuts <- rbind(OOH2_cuts, unlist(OmegaS_cuts_n)[11:30])  
  OOH2_cuts 
} 
 
 
# Generates matrix of plots for OmegaHS vs VAR 
VarOmegaHSPlots <- function(data, VAR, alpha) { 
  par(mfrow=c(4,2)) 
  minOs <- .5+.05*1:8 
  for (x in minOs) { 
    minOmega <- x 
    maxOmega <- x + .05 
    temp_data <- data[data$Omega > minOmega & data$Omega < maxOmega,] 
    func_mod <- lm(VAR ~ Omega_H + I(Omega_H^2), temp_data) 
    xvals <- seq(0, .6, len = 1000) 
    yvals <- predict.lm(func_mod, newdata = data.frame(Omega_H = xvals)) 
    if (VAR == 1) { 
      plot(temp_data[,"Omega_H"],  
           temp_data[,"VAR"], 
           col = rgb(red = 0, green = 0, blue = 0, alpha = alpha), 
           main = paste0(minOmega, " < OmegaS < ", maxOmega), 
           xlim = c(0, .6), 
           ylim = c(0.5, 2.0), 
           yaxs = "i", xaxs = "i", 
           xlab = "OmegaHS", 
           ylab = "VAR") 
      abline(h = 1, lwd = 1) 
      abline(v = CutoffGen_OmegaH2(func_mod)[1], lwd = 1) 



121 
 

      lines(xvals, yvals, lwd = 2) 
    } else { 
      plot(temp_data[,"Omega_H"],  
           temp_data[,"VAR"], 
           col = rgb(red = 0, green = 0, blue = 0, alpha = alpha), 
           main = paste0(minOmega, " < OmegaS < ", maxOmega), 
           xlim = c(0, .6), 
           ylim = c(0.5, 2.0), 
           yaxs = "i", xaxs = "i", 
           xlab = "OmegaHS", 
           ylab = "VAR") 
      abline(h = 1.1, lwd = 1) 
      abline(v = CutoffGen_OmegaH2(func_mod)[2], lwd = 1) 
      lines(xvals, yvals, lwd = 2) 
    } 
  } 
} 
 
 
# Creates OmegaS cutoffs for given ECV_SS values 
# based on a model with ECV_SS, OmegaS, and ECV_SS^2 
# as predictors 
CutoffGen_ECV2Omega <- function(fit, ECV_Vals) { 
  int <- fit$coefficients[1] 
  b_omega <- fit$coefficients["Omega"] 
  b_ECV <- fit$coefficients["ECV_SS"] 
  b_ECV2 <- fit$coefficients["I(ECV_SS^2)"] 
   
  Var1 <- (1 - int - b_ECV*ECV_Vals - b_ECV2*ECV_Vals^2) / (b_omega) 
  Var11 <- (1.1 - int - b_ECV*ECV_Vals - b_ECV2*ECV_Vals^2) / (b_omega) 
   
  return(data.frame(ECV = ECV_Vals, Var1 = Var1, Var11 = Var11)) 
} 
 
# Create OmegaS cutoffs using a model with 
# OmegaS as the only predictor. Used when  
# ECV_SS is (mostly) constant 
CutoffGen_Omega <- function(fit) { 
  int <- fit$coefficients[1] 
  b_omega <- fit$coefficients["Omega"] 
   
   
  Var1  <- (1   - int) / b_omega 
  Var11 <- (1.1 - int) / b_omega 
   
  return(data.frame(Var1 = Var1, Var11 = Var11)) 
} 
 
# Generates cutoffs for OmegaS based on ECV 
# for a given number of specific factors 
# and adds them on to ECV2O_cuts 
ECV_Cuts_Increment <- function(nfac, SimResults, ECV2O_cuts) { 
  ECV2O_fit <- lm(VAR ~ ECV_SS + Omega + I(ECV_SS^2),  
                                  SimResults[SimResults$nfac == nfac, ]) 
  print(summary(ECV2O_fit)) 
  # Sensitivity and Specificity 
  print(SensSpec(ECV2O_fit, SimResults[SimResults$nfac == nfac, ])) 
  # cutoffs 
  ECV2O_cuts_n <- CutoffGen_ECV2Omega(ECV2O_fit, ECVals) 
  ECV2O_cuts <- rbind(ECV2O_cuts, unlist(ECV2O_cuts_n)[11:30])  
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  ECV2O_cuts 
} 
 
 
# Generates matrix of plots for OmegaS vs VAR 
VarOmegaPlots <- function(data, VAR, alpha) { 
  par(mfrow=c(5,2)) 
  minECVs <- .05*1:10 
  for (x in minECVs) { 
    minECV <- x 
    maxECV <- x + .05 
    temp_data <- data[data$ECV_SS > minECV & data$ECV_SS < maxECV,] 
    func_mod <- lm(VAR ~ Omega, temp_data) 
    xvals <- seq(0.5, .95, len = 1000) 
    yvals <- predict.lm(func_mod, newdata = data.frame(Omega = xvals)) 
    if (VAR == 1) { 
      plot(temp_data[,"Omega"],  
           temp_data[,"VAR"], 
           col = rgb(red = 0, green = 0, blue = 0, alpha = alpha), 
           main = paste0(minECV, " < ECV_SS < ", maxECV), 
           xlim = c(.5, 1.00), 
           ylim = c(0.5, 1.7), 
           yaxs = "i", xaxs = "i", 
           xlab = "OmegaS", 
           ylab = "VAR") 
      abline(h = 1, lwd = 1) 
      abline(v = CutoffGen_Omega(func_mod)[1], lwd = 1) 
      lines(xvals, yvals, lwd = 2) 
    } else { # VAR = 1.1 
      plot(temp_data[,"Omega"],  
           temp_data[,"VAR"], 
           col = rgb(red = 0, green = 0, blue = 0, alpha = alpha), 
           main = paste0(minECV, " < ECV_SS < ", maxECV), 
           xlim = c(0.5, 1.00), 
           ylim = c(0.5, 1.7), 
           yaxs = "i", xaxs = "i", 
           xlab = "OmegaS", 
           ylab = "VAR") 
      abline(h = 1.1, lwd = 1) 
      abline(v = CutoffGen_Omega(func_mod)[2], lwd = 1) 
      lines(xvals, yvals, lwd = 2) 
    } 
  } 
}
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