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In the branch of Western music theory called serialism, it is desirable to construct chord

progressions that use each chord in a chosen set exactly once. We view this problem

through the scope of the mathematical theory of Gray codes, the notion of ordering a finite

set X so that adjacent elements are related by an element of some specified set R of

involutions in the permutation group of X. Using some basic results from the theory of

permutation groups we translate the problem of finding Gray codes into the problem of

finding Hamiltonian paths and cycles in a Schreier coset graph of the permutation group

generated by the involutions R. Having made this translation we can use known results

about Hamiltonian paths in Schreier (and Cayley) graphs of groups to generate

serialism-like chord progressions. We illustrate the method by examining two theorems

from the literature on Hamiltonian paths, due to Conway, Sloane, and Wilks (Graphs

Combin. 5 (1989), no. 4, 315–325), and to Eades and Hickey (J. Assoc. Comput. Mach. 31

(1984), no. 1, 19–29). We give proofs of these theorems that complement the published

proofs by filling in some details and clarifying some potentially confusing points, and we

then use the algorithms extracted from these proofs to produce chord progressions.
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CHAPTER 1

INTRODUCTION

This thesis will relate the search for Hamiltonian paths and cycles in graphs to the

problem of producing chord progressions in Western music theory that cycle through a set

of chords in an organized way. This problem is important in the branch of music theory

called serialism - developed by the so-called “Second Viennese School”, consisting of

German composer Schönberg and his pupils - which focuses on composing music that uses

each of the twelve chromatic tones before repeating any. (More information on serialism

can be found in Schönberg’s book [1].) We extend the ideas of serialism to chords by

finding a chord progression that uses every chord in a chosen set exactly once. First, we

will represent connections between chords and graphs, and then establish existence

theorems and develop rigorous algorithms that produce Hamiltonian cycles in such graphs.

Serialism is an application of the theory of Gray codes, the notion of cycling through a

finite set X with respect to a collection of involutions R of the elements of the set. An

overview of Gray codes is given in [11]. We will draw a connection between the search for

Gray codes and the existence of Hamiltonian paths in Cayley and Schreier graphs. Then

we will prove two main theorems giving algorithms that produce Gray codes. The first

main theorem comes from Gray Codes for Reflection Groups by Conway, Sloane, and Wilks

[3], and the second main theorem comes from Some Hamiltonian Paths and a Minimal

Change Algorithm by Eades and Hickey [6]. We will interpret both of these examples of

Gray through the scope of serialism, providing chord progressions that use each chord in a

chosen set exactly once.

The search for Gray codes of a set X with respect to a set R of involutions of X goes

hand in hand with graph theory, as the vertices and edges of a graph may represent,

respectively, the elements of X and their connections in R. In Conway, Sloane, and Wilks

[3], the authors construct an algorithm that produces a Gray code for a finite Coxeter
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group G with respect to a system of fundamental reflections R (see [9] for this

terminology). We will not need to introduce the specifics of Coxeter groups here, as we will

observe in Theorem 7.1.1 that the main result of [3] remains valid, with the same proof,

under a more general and simpler assumption on R.

In Eades and Hickey [6], the authors determine necessary and sufficient conditions for

the existence of a Gray code for the set of k-element subsets of the set {1, 2, ..., n} with

respect to the set of involutions R that change one element of the subset by a difference of

1. An account of Eades and Hickey’s work is given in Chapter 9. This Gray code is

interpreted musically by assigning n notes to the numbers 1 to n, so that k-element subsets

of {1, 2, ..., n} represent k-note chords, and successive chords move by changing one note at

a time.

The application of algebra to Western music theory is a relatively new area of

mathematics, developed within the last century. Expanding the work of music theorist

Hugo Riemann (not to be confused with the mathematician), the study of Neo-Riemannian

music theory identifies relationships between chords that do not depend on any tonal

center, demonstrating that operations on sets of chords generate a permutation group. In

A Graph-Theoretic Approach to Efficient Voice-Leading [12], the authors Wixey and

Sturman use the vertices and edges of graphs to represent chords and their connections, in

order to show the “harmonic proximity” of chords. In Musical Actions of Dihedral Groups

[4], the authors Crans, Fiore, and Satyendra completely characterize the dihedral structure

of the TI and PLR groups (permutation groups of the set of 24 major and minor triads).

The authors also provide a Gray code for these musical groups with respect to their

generating sets. In Section 8.2 we will apply the theorem of Conway, Sloane, and Wilks, in

the more general form proved in Theorem 7.1.1, to extend the Gray-code construction in

[3] to larger permutation groups of larger sets of chords, including four-note chords called

seventh chords.
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Cannas and Andreatta [2] have generalized the PLR group to the set of major seventh,

dominant seventh, minor seventh, fully diminished seventh and half diminished seventh

chords, creating a much larger graph of chords and their connections than that of Crans,

Fiore, and Satyendra. Cannas and Andreatta provide a Gray code for this set of seventh

chords with respect to a certain set of permutations. However, the fact that there are only

three distinct fully diminished seventh chords (as opposed to one for each of the 12

chromatic tones) complicates this set-up. A mathematical explanation for this

complication is that the graph of seventh chords considered in [2] is not regular - the

vertices corresponding to the fully diminished chords have higher degree than the other

vertices - and so this graph cannot be a Cayley graph of any group. The construction that

we give in Section 8.1 is different to that of Cannas and Andreatta as we exclude the fully

diminished chords, and the graph corresponding to our set of chords and permutations is,

by design, the Cayley graph of a group generated by involutions.

We will establish a general mathematical context in which to understand these works in

the application of graph-theory to serialism by establishing a bijection between the set of

Gray codes for a set X with respect to a set involutions R ⊆ Perm(X) on one hand, and on

the other, the set of Hamiltonian paths in the Schreier graph of the permutation group

generated by R with respect to the stabilizer group of an element of X and the set R. Our

Gray code for seventh chords is an example of the applicability of this correspondence to

music theory: we can apply the algorithm from Conway, Sloane, and Wilks [3] to a group

of permutations of a set of seventh chords that is generated by involutions, and thus obtain

a Gray code.

A potential application of our identification of Gray codes and Hamiltonian paths in

Schreier graphs is discussed in Section 10.1. The Gray code for the k-element subsets of

{1, ..., n} studied in [6] corresponds to a Hamiltonian path in the Schreier graph for the

subgroup Sk × Sn−k of the symmetric group Sn. This is an example of a parabolic subgroup

in the Coxeter group Sn, and the results of [6] naturally raise the question of whether

3



similar results hold for arbitrary parabolic subgroups of finite Coxeter groups. A full

examination of this problem is beyond the scope of this thesis, but in Section 10.1, we

formulate an explicit question on the existence of a Gray code for parabolic subgroups of

the hyperoctahedral groups. Musically, such a Gray code is an extension of the k-subsets of

{1, 2, ..., n} Gray code, where k-note chords have each note of the chord in one of two

instruments, and chords change by moving one note, switching the voice of the note

designated by 1, or swapping the voices of two notes in a chord. We leave the full

examination of this problem for future research.

Another potential extension of the work presented in this thesis is the study of

subgroups of the permutation group of a set of chords that are not necessarily generated by

involutions. For instance, in [8], Julian Hook studies uniform triadic transformations, a

group of permutations of the set of 24 major and minor triads. The elements of this group

that are of order 24 are particularly interesting, because they have the potential to cycle

through the entire set of major and minor triads.

4



CHAPTER 2

GRAY CODES

Given a set of chords and a set of permutations of those chords, we wish to find a chord

progression that uses each chord in the set where the movements between successive chords

are the result of one of the specified permutations. Generalizing this problem, let X be a

finite set and R a set of involutions in the permutation group of X - that is, R is a subset

of Perm(X) such that each element of R has order 2. Then, we can search for an ordering

of the elements of the set X with respect to the set of involutions R in the following way.

Definition 2.0.1. Let X be a finite set of cardinality a, and let R be a set of involutions

in Perm(X). Then, a Gray code for (X,R) is an ordering of the elements of X,

C = (x0, x1, ..., xa−1), xi 6= xj for i 6= j,

such that for each 0 ≤ i < a− 1, there exists ri ∈ R with ri(xi) = xi+1. The ordering C is a

cyclic Gray code if there exists ra−1 ∈ R such that ra−1(xa−1) = x0.

Named after physicist Frank Gray, Gray codes have been used in many areas of

computer science since the 1980’s [11]. It should be noted that there is a more general

definition of a Gray code, where the set R of permutations of the set X need not be

involutions. We restrict to involutions because many of the groups found in music theory

are those generated by order 2 chord operations.

Example 2.0.2. Let X be the set of n-digit binary numerals and let R be the set of

involutions in Perm(X) that change a single digit. Then, a Gray code for (X,R) is called a

reflected binary Gray code, and it is an ordering of the binary numerals such that successive

numbers differ in a single digit. This is the situation that Gray originally studied.

Reflected binary Gray codes can be interpreted musically by assigning n distinct notes

to each of the n digits. Then, an n-digit binary number represents the chord that contains

the notes with a 1 in their respective digit, and a Gray code is a chord progression that

5



uses all possible chord combinations of the n notes, such that movements between

successive chords are the result of adding or removing a single note.

Example 2.0.3. Let X be the set of subsets of {1, 2, ..., n} that have some fixed number

k ≤ n of elements, and let R ⊆ Perm(X) be the set of involutions

{(12), (23), ..., (n− 1 n)}, the adjacent transpositions. Then, a Gray code for (X,R) is

called a k-subsets of n Gray code, an ordering of the k-element subsets of n such that

successive subsets differ in only one element by a difference of 1.

This example can be interpreted in music theory by assigning notes to each element of

{1, 2, ..., n} so that k-element subsets of n are k-note chords, and a Gray code is a

serialism-like chord progression that moves only one note at a time.

We will define a correspondence between the search for Gray codes and the search for

Hamiltonian paths in Schreier graphs.
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CHAPTER 3

HAMILTONIAN PATHS AND CYCLES

3.1 Graphs and Paths

In view of defining Hamiltonian paths, we begin by defining graphs and paths, and

developing some of their properties. See [7], for instance, for more background on graph

theory. A finite graph Γ is a nonempty finite set of vertices, V (Γ), and a finite set of edges,

E(Γ), where each edge is a 2-element subset of V (Γ). (Graphs of this kind are called

simple, undirected graphs, and this definition prohibits multiple edges between two vertices

and loops on single vertices.) Additionally, a graph ∆ is a subgraph of a graph Γ if

V (∆) ⊆ V (Γ) and E(∆) ⊆ E(Γ). A spanning subgraph of Γ is a subgraph ∆ with

V (∆) = V (Γ). If U is a subset of V (Γ), then the subgraph of Γ induced by U is the

subgraph ∆ with V (∆) = U and E(∆) =
{
{u, v, } ∈ E(Γ) : u, v ∈ U

}
. Two vertices v and

w are said to be adjacent in a graph Γ if {v, w} ∈ E(Γ). Finally, given a finite graph Γ and

a vertex v ∈ V (Γ), the degree of v is the number of edges in E(Γ) that contain v.

It is useful to represent graphs visually in 2-dimensional Euclidean space where vertices

are represented by distinct points and edges are represented by curves that connect

vertices. In this setting, vertices and edges can have labels to designate them. The vertices

may be positioned anywhere in the space as long as the edge information remains the same.

The following definition demonstrates how to move around a graph.

Definition 3.1.1. A path in a graph is a sequence of vertices (v0, v1, ..., vn) such that n ≥ 1

and {vi, vi+1} is an edge for all 0 ≤ i < n. A cycle is a path (v0, v1, ..., vn) with n ≥ 3 such

that {v0, vn} is an edge and vi 6= vj for i 6= j.

A path in a graph is like moving around a map, where each intersection connects to

those adjacent to it. In some cases, it is useful to interpret a path (v0, v1, ..., vn) as a

sequence of edges (e0, e1, ..., en−1) where ei = {vi, vi+1} for 0 ≤ i < n. Sometimes a sequence

of roads on a map is easier to follow than a sequence of intersections.
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A graph Γ is said to be connected if for all vertices v, w ∈ V (Γ), there is a path

(v0, ..., vn) such that v = v0 and w = vn. In other words, there is a path connecting any two

vertices of Γ. The length of a path (v0, ..., vn) is the integer n− 1, or equivalently the

number of edges in the path. In addition, if there is a path between two vertices v and w in

a graph, then the distance between v and w is the minimum length of a path (v0, ..., vn)

with v = v0 and w = vn. A graph is called acyclic if it contains no cycles.

For our purposes, graphs will be constructed with vertices and edges that represent

chords and their connections, and a path in such a graph represents a chord progression (a

sequence of chords).

The following lemmas will be useful in the proof of Theorem 7.1.1:

Lemma 3.1.2. Every acyclic finite graph contains a vertex of degree less than 2.

Proof. Assume to the contrary that Γ is an acyclic finite graph such that each vertex of Γ

has degree greater than or equal to 2. Fix a vertex v0 and an edge {v0, v1}; since the degree

of v1 is at least 2, there exists a vertex v2 6= v0 that is adjacent to v1. If the path (v0, v1, v2)

is a cycle, we have a contradiction; so v0 is not adjacent to v2. Since the degree of v2 is also

at least 2, there exists a vertex v3 6= v0, v1 that is adjacent to v2. If the path (v0, v1, v2, v3)

is a cycle, we have a contradiction. Otherwise, recursively, if (v0, ..., vi) is a path in Γ with

distinct vertices and edges e0, ..., ei−1, then there is an edge ei 6= ei−1 that adjoins vi to

some vi+1, because deg(vi) ≥ 2. If vi+1 is distinct from v0, ..., vi, continue in this way, but

since V (Γ) is finite, at some point vi+1 = vj for some 0 ≤ j ≤ i. In which case, the path

(vj, ..., vi) is a cycle in Γ, a contradiction to Γ being acyclic.

Lemma 3.1.3. The graph obtained by removing a vertex from an acyclic finite graph is

also acyclic.

Proof. Let ∆ be the graph obtained by removing a vertex from an acyclic finite graph Γ;

then, each path in ∆ is also a path in Γ, where no path is a cycle, so ∆ cannot contain any

cycles.
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The following definition provides a condition to consider two graphs equivalent.

Definition 3.1.4. Two graphs Γ and ∆ are isomorphic if there exists a bijection

ϕ : V (Γ) −→ V (∆) such that {v, w} is an edge in Γ if and only if {ϕ(v), ϕ(w)} is an edge

in ∆; such a map is called a graph isomorphism.

In other words, isomorphic graphs have the same structure, but with a different

labelings of their vertices and edges.

Given a graph isomorphism ϕ : V (Γ) −→ V (∆), if (v0, ..., vn) is a path in Γ, then(
ϕ(v0), ..., ϕ(vn)

)
is a path in ∆.

3.2 Hamiltonian Paths and Cycles

The goal of this thesis is to relate the search for Hamiltonian paths in graphs to the

search for Gray codes of a set X with respect to involutions R ⊆ Perm(X), so that we can

find systematic chord progressions that use each chord in a chosen set exactly once.

Definition 3.2.1. A Hamiltonian path in a graph is a path that contains all the vertices

exactly once, and a Hamiltonian cycle is a Hamiltonian path that is a cycle.

Given a graph Γ, a path (v0, ..., vn) is thus a Hamiltonian path if vi 6= vj for all

0 ≤ i < j ≤ n, and for each v ∈ V (Γ), v = vi for some i. If two graphs are isomorphic via a

graph isomorphism ϕ : V (Γ) −→ V (∆), then a Hamiltonian path in Γ will map to a

Hamiltonian path in ∆. This idea will be used in the proof of our first main theorem,

Theorem 7.1.1.

Lemma 3.2.2. If (v0, v1, ..., vn) is a Hamiltonian cycle in a graph Γ, then

R := (vn, vn−1, ..., v0) and T := (vi, vi+1, ..., vn−1, vn, v0, v1..., vi−1)

are Hamiltonian cycles in Γ for 2 ≤ i ≤ n.

Proof. Since (v0, v1, ..., vn) is a Hamiltonian cycle in Γ, {vn, v0} and {vi, vi+1} are edges of Γ

for all 1 ≤ i < n, meaning both R and T are cycles in Γ. Also, each vertex of (v0, v1, ..., vn)

appears exactly once in both R and T ; therefore, R and T are Hamiltonian cycles in Γ.
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3.3 Bipartite Graphs

The problem of determining whether a given graph admits a Hamiltonian path or cycle

can be quite difficult. Nonetheless, there are some useful necessary conditions that can be

easily checked. In the proof of our second main theorem, Theorem 9.1.1, we search for a

Hamiltonian path in a graph that has the following property.

Definition 3.3.1. A graph Γ is bipartite if there are subsets A,B ⊆ V (Γ) such that

A ∩B = ∅, A ∪B = V (Γ), and each edge of Γ is of the form {a, b} for a ∈ A and b ∈ B.

The sets A and B are called the parts of the bipartite graph Γ.

If a graph Γ is bipartite with parts A and B, then there are no edges in Γ that connect

elements of the same part. Therefore, any path in Γ must alternate vertices in A and B.

This observation leads to the following lemma.

Lemma 3.3.2. Let Γ be a bipartite graph with parts A and B. If Γ has a Hamiltonian

path, then
∣∣|A| − |B|∣∣ ≤ 1.

Proof. Assume that (v0, v1, ..., vn−1) is a Hamiltonian path in Γ. Without loss of generality,

we can assume v0 ∈ A. Then, since Γ has no edges that connect vertices of the same part,

vi ∈ A for all the even indices i and vj ∈ B for all the odd indices j. Therefore, we see that∣∣|A| − |B|∣∣ =∣∣∣∣∣{i ∈ {0, 1, ..., n− 1} : i is even}
∣∣− ∣∣{j ∈ {0, 1, ..., n− 1} : j is odd}

∣∣∣∣∣ ≤ 1.

3.4 Combs and Graph Products

Another kind of graph that will be considered in the proof of Theorem 9.1.1 is the

product of a comb with the graph K2, the graph with two vertices and an edge connecting

them.

Definition 3.4.1. A comb with main path M and boundary points u and v is a connected,

acyclic, finite graph C such that each vertex is of maximum degree 3, and all the vertices of
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Figure 3.1: Comb with boundary points u and v.

degree 3 lie on the main path M , strictly between the boundary points u and v. For each

vertex x on the main path between the boundary points u and v, the tooth at x is the

longest path in C that intersects the main path only at x (and if the degree of x is 2, the

tooth at x is considered trivial). If Γ is a finite graph, then a spanning comb for Γ is a

subgraph C of Γ that is a comb and V (C) = V (Γ).

An example of a comb with boundary points u and v is given in Figure 3.1. The main

path of this comb is the horizontal string of vertices, and the teeth are the vertical paths.

The following defines the product of a finite graph with the graph K2 (the graph with

V (K2) = {v0, v1} and E(K2) =
{
{v0, v1}

}
). It should be noted that there are more general

notions of the product of two finite graphs, but it is not necessary for the proof of Theorem

9.1.1.

Definition 3.4.2. If Γ is a finite graph, the product of Γ and K2 is the graph ΓK2 with

V (ΓK2) = {(i, v) : i ∈ {1, 2}, v ∈ V (Γ)} such that two vertices (i, u) and (j, v) are adjacent

if either i = j and {u, v} ∈ E(Γ) or i 6= j and u = v.

The introduction of combs and graph products of K2 is advantageous because the

product of any comb with K2 contains a Hamiltonian path, as shown in the following

lemma.

Lemma 3.4.3. If C is a comb with boundary points u and v and the distance between u

and v is even, then CK2 has a Hamiltonian path with endpoints (2, u) and (1, v).

Proof. Let (u0, u1, ..., ua, u, t0,0, t1,0, ..., tb,0, v, v0, v1, ..., vc) be the main path of the comb C

where u and v form a pair of boundary points. Also, for each 0 ≤ i ≤ b, let
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Figure 3.2: Hamiltonian path in the product of a comb and K2.

Ti = (ti,0, ti,1, ..., ti,ki) be the tooth at ti,0. Note that since the distance between u and v in

C is even, b is even. Then, the following sequence of vertices is a Hamiltonian path in CK2:

(2, u), (2, ua), (2, ua−1), ..., (2, u0),

(1, u0), (1, u1), (1, u2), ..., (1, u),

(1, t0,0), (1, t0,1), (1, t0,2), ..., (1, t0,k0),

(2, t0,k0), (2, t0,k0−1), (2, t0,k0−2), ..., (2, t0,0),

(2, t1,0), (2, t1,1), (2, t1,2), ..., (2, t1,k0),

(1, t1,k0), (1, t1,k0−1), (1, t1,k0−2), ..., (1, t1,0),
...,

(1, tb,0), (1, tb,1), (1, tb,2), ..., (1, tb,kb),

(2, tb,kb), (2, tb,kb−1), (2, tb,kb−2), ..., (2, tb,0),

(2, v), (2, v0), (2, v1), ..., (2, vc)

(1, vc), (1, vc−1), (1, vc−2), ..., (1, v)

An example of the Hamiltonian path defined in the proof of Lemma 3.4.3 for the

product of a comb and the graph K2 is given in Figure 3.2. This lemma is useful because if

a graph Γ has a spanning subgraph that is isomorphic to the product of a comb and K2,

then Γ contains a Hamiltonian path.
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CHAPTER 4

FINITE GROUPS GENERATED BY INVOLUTIONS

4.1 Finite Groups Generated by Involutions

We wish to understand the structure of groups that appear in the context of music

theory, and in general, the groups associated with Gray codes. Many useful groups in

Western music are generated by involutions. An involution is a group element of order 2,

so then a finite group generated by involutions is a pair (G,R) where G is a finite group

and R ⊆ G is a set of involutions that generates G. These types of groups appear in the

study of Gray codes as subgroups of the permutation group of a set X that are generated

by order 2 permutations.

Example 4.1.1. A familiar example includes the permutation group Sn of the set of n

integers {1, 2, ..., n}. It can be shown that for any n, the group Sn is generated by the

adjacent transpositions (12), (23), ..., (n− 1 n). These transpositions are each of order 2,

making the pair (Sn, {(12), ..., (n− 1 n)}) a finite group generated by involutions. It should

be noted that the set of adjacent transpositions is not the only set of involutions that

generates Sn; another such generating set of involutions includes the transpositions

(12), (13), ..., (1 n).

Example 4.1.2. An important example of a finite group generated by involutions that

will be used later in this thesis is the group Cn
2 , the product of n copies of the additive

group of two elements C2 = {0, 1}. As a set, Cn
2 comprises the n-bit binary numbers, and

the group can be generated by the set of involutions

Rn
2 := {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}.

Thus, the pair (Cn
2 , R

n
2 ) is a finite group generated by involutions.
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4.2 Finite Groups Generated by Two Involutions

This section considers the case when a finite group is generated by only two involutions.

If G is a finite group generated by two involutions r and s, we want to show that G is

determined up to isomorphism by the order of the element rs.

Definition 4.2.1. For n ≥ 3, the dihedral group of order 2n is the automorphism group

D2n of the graph Γn with

V (Γn) = {1, 2, ..., n} and E(Γn) =
{
{1, 2}, {2, 3}, ..., {n− 1, n}, {n, 1}

}
.

The graph Γn is the graph with n vertices and edges that form a loop, demonstrating

that the dihedral group of order 2n is the group of symmetries of a regular n-gon.

Lemma 4.2.2. For n ≥ 3, the group D2n has order 2n and is generated by two involutions.

Proof. Let g ∈ D2n be an automorphism of the graph Γn. Then, there are n options for

g(1), and once g(1) is fixed, g(2) must be adjacent to g(1), leaving two options for g(2). If

both g(1) and g(2) are determined, since g is a graph isomorphism, there is only one option

for each g(3), g(4), ..., g(n). Therefore, g is completely determined by g(1) and g(2), with

2n possibilities for g(1) and g(2), meaning |D2n| = 2n.

Now, we want to show that D2n is generated by two involutions. Let r ∈ D2n have

r(1) = 1 and r(2) = n, and let t ∈ D2n have t(1) = 2 and t(2) = 3. Then, r represents an

order 2 reflection of Γn about the vertex 1 and t represents a single rotation of Γn. Thus,

the subgroup H = 〈t〉 ⊆ D2n is the group of n rotations of Γn. Also, since r(1) = 1 and the

only rotation in H that fixes 1 is the identity, we see that r is not in H, so the cosets rH

and H are distinct. Therefore, |H ∪ rH| = 2n = |D2n|, meaning

D2n = H ∪ rH = {1, t, t2, ..., tn−1, r, rt, rt2, ..., rtn−1}.

Next, notice that rtr = t−1 as

rtr(1) = rt(1) = r(2) = t−1(1) and rtr(2) = rt(n) = r(1) = 1 = t−1(2).
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Hence, if we let s = rt, then t = rs and s2 = (rtr)t = t−1t = 1, so D2n is generated by the

two involutions r and s.

If r, t ∈ D2n are the automorphisms of Γn that represent the reflection about the vertex

1 and a single rotation, as in the proof of the lemma, then the relation rtr = t−1 implies

that t−kr = (rtr)kr = rtk for each 0 ≤ k ≤ n. Therefore, we can completely determine the

multiplication in D2n for each 0 ≤ k ≤ n and 0 ≤ l ≤ n as follows:

tktl = tk+l

tk(rtl) = rt−ktl = rtl−k

(rtk)tl = rtk+l

(rtk)(rtl) = (t−kr)(rtl) = tl−k

Theorem 4.2.3. For each n ≥ 1, there is a unique group up to isomorphism of order 2n

that is generated by two involutions.

Proof. If n = 1, then C2 is the only group of order 2, and it is generated by two identical

involutions. If n = 2, then any group G of order 4 generated by two involutions r and s is

{1, r, s, rs}, so G is isomorphic to C2 × C2.

Otherwise, when n ≥ 3, we know that D2n is a group of order 2n generated by two

involutions, so we must show that it is unique. Let G be a group of order 2n that is

generated by involutions r and s. Set t = rs, and let H be the cyclic subgroup of G

generated by t. Note that t2 = (rs)2 6= 1, because rs 6= sr as the order of G is greater than

4. We claim that r is not in H. In fact, if r = tk for some k ≥ 0, then 1 = t2k. Also,

s = r(rs) = tk+1, so t2k = 1 = t2k+2, but that implies t2 = 1, a contradiction.

Therefore, rH and H are distinct left cosets of H in G. Next, we want to show that

H ∪ rH is a subgroup of G. For each k ≥ 0, we have rtk = r(rs)k = (sr)kr = t−kr, so
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multiplication in H ∪ rH is given by

tktl = tk+l ∈ H

tk(rtl) = rt−ktl = rtl−k ∈ rH

(rtk)tl = rtk+l ∈ rH

(rtk)(rtl) = (t−kr)(rtl) = tl−k ∈ H,

where (rtk)−1 = rtk ∈ rH. Therefore, H ∪ rH is a subgroup of G containing r and s, and

G = 〈r, s〉, so H ∪ rH = G. Since G has the same multiplication table as D2n, they are

isomorphic.

This theorem tells us that if G is a finite group generated by two involutions r and s,

then

G ∼=


C2 if r = s

C2 × C2 if order(rs) = 2

D2n if order(rs) = n > 2.

4.3 The PLR Group

In the context of music theory, we will be focusing on subgroups of the permutation

group of a set of chords that are generated by self-invertible chord operations. These

involutions are permutations of a set of chords (say Π, the set of 24 major and minor

triads) that represent “smooth” ways to move between chords, creating chord progressions

that have minimal change between chords, or “parsimonious voice-leading”. One such group

is called the PLR Group, a subgroup of the permutation group of Π, the set of major and

minor chords. The set Π is the union of Π+ and Π−, respectively the sets of major and

minor triads defined as sets of three element subsets of Z12 as follows.

Π+ =
{
{x, x+ 4, x+ 7} ⊆ Z12 : x ∈ Z12

}
Π− =

{
{x, x+ 3, x+ 7} ⊆ Z12 : x ∈ Z12

}
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The PLR Group is generated by three order 2 permutations of the set Π defined below:

P : {x, x+ 4, x+ 7} ↔ {x, x+ 3, x+ 7}

L : {x, x+ 4, x+ 7} 7→ {x− 1, x+ 4, x+ 7}

{x, x+ 3, x+ 7} 7→ {x, x+ 3, x+ 8}

R : {x, x+ 4, x+ 7} 7→ {x, x+ 4, x+ 9}

{x, x+ 3, x+ 7} 7→ {x− 2, x+ 3, x+ 7}

It can be checked that these operations on major and minor triads are well-defined order 2

permutations of Π, making the PLR Group a finite group generated by involutions. Each

generator P , L, and R operators on a triad by moving only one note of the chord,

exemplifying the use of parsimonious voice-leading. The PLR group will be discussed in

detail in Section 7.3, and more information on the PLR Group is given in [4].
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CHAPTER 5

COMMUTING, CAYLEY, AND SCHREIER GRAPHS

5.1 Commuting Graphs

Given a finite group G that is generated by a subset R ⊆ G, we define a graph that

displays which elements of R commute with one another in G.

Definition 5.1.1. If G is a finite group with generating set R, then the commuting graph

of G with respect to R is the graph Com(G,R) with V (Com(G,R)) = R and

E(Com(G,R)) =
{
{ri, rj} : rirj 6= rjri

}
.

Given a finite group G generated by involutions r1, ..., rn, we have that two generators

ri and rj commute with one another if and only if (rirj)
2 = 1. Therefore the commuting

graph of G with respect to involutions R can be determined by identifying the order of the

product of each pair of generators. That is, the involutions ri and rj are adjacent in

Com(G,R) if the order of rirj is greater than 2.

Example 5.1.2. Let G = S4, the permutation group of four element set {1, 2, 3, 4}, and let

R be the following set of generating transpositions {(12), (23), (34)}. Then, the commuting

graph of G with respect to R is the graph shown in Figure 5.1. This graph tells us that the

elements (12) and (34) commute in G because they are not adjacent. To see the

dependence of a commuting graph on the generating set, if we instead let

R = {(12), (23), (34), (14)}, we obtain the commuting graph shown in Figure 5.2.

Figure 5.1: Commuting graph of S4 with respect to {(12), (23), (34)}.

Example 5.1.3. Let G = C3
2 , the product of three copies of the additive group C2, and let

R be the set of involutions R3
2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then, the commuting graph of
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Figure 5.2: Commuting graph of S4 with respect to {(12), (23), (34), (14)}.

G with respect to R is shown in Figure 5.3. This edgeless graph tells us that each of the

generators commute with one another. In general, the commuting graph of Cn
2 with respect

to Rn
2 (defined in Example 4.1.2) is edgeless, meaning that each of the generators commute

with one another.

Figure 5.3: Commuting graph of C3
2 with respect to R3

2.

Example 5.1.4. Referring back to the PLR Group (Section 4.3), a subgroup of the

permutation group of the set of major and minor triads, the commuting graph of the PLR

Group with respect to the generating involutions P , L, and R is shown in Figure 5.4. This

commuting graph demonstrates that none of the generators commute in the group.

Figure 5.4: Commuting graph of the PLR group with respect to {P,L,R}.

5.2 Cayley Graphs

Given a finite group G that is generated by a set of involutions R ⊆ G, we wish to

define a finite graph that represents how to move between the elements of G with respect

to the generators in R. In this way, we obtain the following definition.
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Definition 5.2.1. If (G,R) is a finite group generated by involutions, then the Cayley

graph of G with respect to R is the graph Cay(G,R) with V (Cay(G,R)) = G and

E(Cay(G,R)) =
{
{g, gr} : g ∈ G, r ∈ R

}
Given a Cayley graph, Cay(G,R), the edge {g, gr} of the graph is labeled by the

involution r ∈ R. A path in Cay(G,R) is a sequence of group elements (g0, g1, ..., gn) such

that for each 0 ≤ i < n, there exists ri with giri = gi+1. In this way, a path in a Cayley

graph is also a sequence of generators.

There is a more general definition of the Cayley graph of a group with respect to any

generating set, and such a graph would be a directed graph. By restricting to finite groups

generated by involutions, Cayley graphs are undirected graphs.

Example 5.2.2. Let G = S3 and R = {(12), (23)}; then the the Cayley graph of G with

respect to R is the graph shown in Figure 5.5. Notice that since R contains only the two

involutions (12) and (23), at any vertex of Cay(G,R) there are only two edges, revealing a

Hamiltonian cycle. More generally, if a finite group G is generated by two involutions r1

and r2, then (1, r1, r1r2, r1r2r1, ..., (r1r2)m−1r1) is a Hamiltonian cycle for Cay(G, {r1, r2}),

where m is the order of r1r2.

Figure 5.5: Cayley graph of S3 with respect to {(12), (23)}.

Lemma 5.2.3. Let (G,R) be a finite group generated by involutions. Then, Cay(G,R) is

connected.
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Proof. To verify this claim, it is enough to show that there is a path connecting any vertex

of Cay(G,R) to the vertex that represents the identity of the group, because any two such

paths may be concatenated to form a path between any two vertices. Thus, given any

vertex labeled g of Com(G,R), since R generates G, we have that g = rx1rx2 ...rxk for

1 ≤ xi ≤ n, meaning that the path using the edges rx1 , ..., rxk connects the identity vertex

to the vertex labeled g.

Example 5.2.4. Let G = Cn
2 and R = Rn

2 (as defined in Example 4.1.2). Then, the Cayley

graph of G with respect to R is the n-dimensional hypercube, because the vertices of

Cay(G,R) are the n-digit binary numbers and edges are formed between numbers that

differ in only one digit. The Cayley graph of C3
2 with respect to R3

2 is given in Figure 5.6.

Notice that a path in the n-dimensional hypercube graph is a sequence of binary numbers

with minimal change between successive numbers, that is, only one digit changes at a time.

Theorem 7.1.1 provides an algorithm that produces a binary reflected Gray code, an

ordering of all the n-digit binary numbers such that adjacent numbers differ only in one

digit [11]. The search for binary reflected Gray codes is equivalent to the search for

Hamiltonian paths in the Cayley graph of Cn
2 with respect to Rn

2 .

Figure 5.6: Cayley graph of C3
2 with respect to R3

2.

Example 5.2.5. Referring back to the PLR group (Section 4.3), the Cayley graph of the

PLR group with respect to the set of generators {P,L,R} is called the Tonnetz in Western
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music theory (meaning “tone network”). It has been shown in [4] that the PLR group acts

simply transitively on the set of major and minor triads, allowing us to identify the

elements of the PLR group with each of the 24 major and minor triads, producing the

Tonnetz found in Figure 5.7. In this figure, uppercase letters denote major triads and

lowercase letters denote minor triads. This graph is a handy compositional tool because it

demonstrates how to move between chords with respect to the three simple operations.

Figure 5.7: Cayley graph of the PLR group with respect to {P,L,R} or Tonnetz [4]

5.3 Schreier Graphs

Given a finite group generated by involutions (G,R) and a subgroup H ⊆ G, we will

define a graph that represents how to move between the right cosets of H in G with respect

to the generators in R. In this way, we obtain the following definition.

Definition 5.3.1. If (G,R) is a finite group generated by involutions and H is a subgroup

of G, then the Schreier graph of G with respect to H and R is the graph Sch(G,H,R) with

V (Sch(G,H,R)) = H\G and

E(Sch(G,H,R)) =
{
{Hg,Hgr} : Hg ∈ H\G, r ∈ R

}
.

Given a Schreier graph Sch(G,H,R), each edge {Hg,Hgr} is labeled by the involution

r. A path in Sch(G,H,R) is a sequence of right cosets (Hg0, Hg1, ..., Hgn) such that for
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each 0 ≤ i < n, there exists ri with Hgiri = Hgi+1. Thus, a path in a Schreier graph can be

expressed as a sequence of generators.

Similar to Cayley graphs, there is a more general definition of the Schreier graph of a

group with respect to a chosen subgroup and generating set. The requirement that the

generated set be a set of involutions allows us to work with undirected graphs.

If (G,R) is a finite group generated by involutions, then if H ⊆ G is chosen to be the

subgroup containing only the identity of G, then Sch(G,H,R) is canonically isomorphic to

Cay(G,R). In this way, Cayley graphs are a special case of Schreier graphs.

Example 5.3.2. Let G be the symmetric group Sn and R be the set of adjacent

transpositions {(12), (23), ..., (n− 1 n)}. For each 1 ≤ k < n, define

Sk,n−k :=
〈
R− {(k k + 1)}

〉
,

the subgroup of Sn that permutes the first k numbers {1, 2, ..., k} and the last n− k

numbers {n− k + 1, n− k + 2, ..., n} separately. The Schreier graph Sch(G,H,R) will be

the focus of Theorem 9.1.1.

When n = 4 and k = 2, the Schreier graph of S4 with respect to the subgroup S2,2 and

{(12), (23), (34)} is shown in Figure 5.8. Notice that this graph is bipartite with parts

A = {H,H(234), H(132), H(13)(24)},

B = {H(23), H(1342)}.

Since |A| − |B| = 2 > 1, from Lemma 3.3.2, we conclude that no Hamiltonian path exists in

this graph.

Figure 5.8: Schreier graph of S4 with respect to the subgroup S2,2 and {(12), (23), (34)}.
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CHAPTER 6

CORRESPONDENCE BETWEEN GRAY CODES AND HAMILTONIAN

PATHS

6.1 Simply Transitive Group Actions

In this chapter, we will relate the search for Gray codes and the search for Hamiltonian

paths in Schreier and Cayley graphs. If X is a set and R is a set of involutions in Perm(X),

then let G ⊆ Perm(X) be the subgroup generated by R. Then, define a group action of G

on the set X in the usual way by the map G×X −→ X such that gx 7→ g(x).

Let G be a group that acts on a set X. Recall that the orbit of x ∈ X is the set

Gx = {gx ∈ X : g ∈ G}, and the stabilizer of x ∈ X is the subgroup

Gx = {g ∈ G : gx = x} of G. The orbits in X are the equivalence classes of the equivalence

relation on X such that x ∼ y if there exists g ∈ G with gx = y. Using these notions, we

have the following definition.

Definition 6.1.1. Let G be a group that acts on a set X. Then, the group action is

transitive if Gx = X for each x ∈ X, and the group action is simply transitive if it is

transitive and Gx = {1} for each x ∈ X.

Example 6.1.2. Let X = {0, 1}n, the n-digit binary numerals, and let G = Cn
2 , the

product of n copies of the additive group {0, 1}. Then, G acts on X is the usual way, and

the group action is simply transitive.

Example 6.1.3. Let X = Π, the set of major and minor triads, and let G be the PLR

group. Then, it can be shown that G acts simply transitively on X [4]. As noted in

Example 5.2.5, since this group action is simply transitive, we can associate each group

element to one of the 24 major and minor triads. This property is generalized in the

following section.
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The following theorem is called the orbit-stabilizer theorem, drawing the connection

between the orbit and stabilizer of each element of X.

Theorem 6.1.4. Let G be a group that acts on a set X. Then, for each x ∈ X, the map

f : Gx\G −→ Gx defined f(Gxg) = g−1x is a bijection of sets.

Proof. The map f is well defined and injective because for each g, g′ ∈ G,

Gxg = Gxg
′ ⇐⇒ g′g−1 ∈ Gx ⇐⇒ g′g−1x = x⇐⇒ g−1x = g′−1x.

Also, f is surjective because for each gx ∈ Gx, we have f(Gxg
−1) = gx. Thus, f is a

bijection.

Corollary 6.1.5. Let G be a finite group that acts on a finite set X. Then, for each

x ∈ X, |G|/|Gx| = |Gx|.

Proof. Since G and X are finite, from the orbit stabilizer theorem and Lagrange’s theorem,

we have |Gx\G| = |G|/|Gx| = |Gx|.

6.2 Correspondence Between Gray Codes and Hamiltonian Paths

The following theorem determines the connection between the search for Gray codes

and the search for Hamiltonian paths in Schreier graphs.

Theorem 6.2.1. Let X be a finite set and R ⊆ Perm(X) a set of involutions. If the group

G generated by R acts transitively on the set X, then for each x ∈ X, there is a bijection

between the set of Gray codes for (X,R) and the set of Hamiltonian paths in

Sch(G,Gx, R), where cyclic Gray codes correspond to Hamiltonian cycles.

Proof. To begin, define the graph Γ with V (Γ) = X and E(Γ) =
{
{x, rx} : r ∈ R

}
. Then,

Hamiltonian paths in Γ are exactly the Gray codes for (X,R), so we want to show that

Sch(G,Gx, R) is isomorphic to Γ for each x ∈ X.
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Let x ∈ X and define a map ϕ : V (Sch(G,Gx, R)) −→ V (Γ) by ϕ(Gxg) = g−1x. Then,

the map ϕ is exactly the map f from the orbit-stabilizer theorem (Theorem 6.1.4), so it is

a bijection.

To see that the map ϕ is a graph isomorphism, {Gxg,Gxgr} is an edge of Sch(G,Gx, R)

if and only if

{ϕ(Gxg), ϕ(Gxgr)} = {g−1x, (gr)−1x} = {g−1x, r(g−1x)} ∈ E(Γ).

Therefore, Γ is isomorphic to Sch(G,Gx, R), meaning there is a bijection between the

Hamiltonian paths in Sch(G,Gx, R) and the Gray codes for (X,R), where cyclic Gray

codes for (X,R) are in correspondence with Hamiltonian cycles in Sch(G,Gx, R).

Corollary 6.2.2. Let X be a finite set and R ⊆ Perm(X) a set of involutions. If the group

G = 〈R〉 acts simply transitively on the set X, then for each x ∈ X, there is a bijection

between the set of Gray codes for (X,R) and the set of Hamiltonian paths in Cay(G,R),

where cyclic Gray codes correspond to Hamiltonian cycles.

Proof. Since G acts simply transitively on X, the stabilizer of each x ∈ X is the trivial

subgroup of G, meaning Sch(G,Gx, R) is isomorphic to Cay(G,R). Thus, the proof of the

corollary follows directly from Theorem 6.2.1.

6.3 Examples of Gray Codes as Hamiltonian Paths

Having identified the correspondence between Gray codes and Hamiltonian paths in

Schreier graphs, we can interpret the two examples of Gray codes given in Chapter 2 as

Hamiltonian paths in respective Schreier graphs.

Example 6.3.1. Introduced in Example 2.0.2, a reflected binary Gray code is an ordering

of the n-digit binary numerals in which successive numbers differ in only one digit. In this

example, X is the set of n-digit binary numerals and R ⊆ Perm(X) is the set of involutions

that change exactly one digit.
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The subgroup G of Perm(X) generated by R is isomorphic to the group Cn
2 , the

product of n copies of the additive group {0, 1}. As defined in Example 4.1.2, the set R is

the set of generating involutions Rn
2 . In this case, the group Cn

2 acts simply transitively on

the set X, meaning there is a correspondence between binary reflected Gray codes and

Hamiltonian paths in Cay(Cn
2 , R

n
2 ).

Theorem 7.1.1 provides an algorithm that constructs a Hamiltonian path in

Cay(Cn
2 , R

n
2 ) and equivalently a binary reflected Gray code.

Example 6.3.2. Introduced in Example 2.0.3, a k-subsets of n Gray code is the ordering

of the k-element subsets of {1, 2, ..., n} such that successive subsets differ in only one

element by a difference of 1. In this example, we have

X = {(a1, a2, ..., ak) : 1 ≤ a1 < a2 < ... < ak ≤ n}

and R ⊆ Perm(X) is the set of involutions that swap only two consecutive integers.

The subgroup G of Perm(X) generated by R is isomorphic to the group Sn, where R is

the set of adjacent transpositions {(12), (23), ..., (n− 1 n)}. The group G acts transitively

on the set X but not simply transitively. Let x ∈ X be the k-element set {1, 2, ..., k}.

Then, the stabilizer of x is the set of elements of G that permute the numbers 1 to k and

k + 1 to n separately; that is, Gx = Sk,n−k, as defined in Example 5.3.2. Therefore, each

k-subsets of n Gray code is a Hamiltonian path in the Schreier graph Sch(Sn, Sk,n−k, R).
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CHAPTER 7

FIRST MAIN THEOREM

7.1 Statement and Proof of First Main Theorem

The following theorem provides a sufficient condition for the existence of a Hamiltonian

cycle in the Cayley graph of a finite group with respect to a generating set of involutions,

including an algorithm that produces such a cycle. This theorem is originally stated and

proved in Conway, Sloane, and Wilks [3], but it has been adapted for our purposes.

Theorem 7.1.1. Let (G,R) be a finite group generated by involutions with |R| ≥ 2.

Then, if Com(G,R) is acyclic, there is a Hamiltonian cycle in Cay(G,R). [3]

Proof. We prove the theorem by induction on n = |R|, the number of involutions that

generate the finite group G.

When n = 2 and R = {r1, r2}, then (1, r1, r1r2, r1r2r1, ..., (r1r2)d−1r1) is a Hamiltonian

cycle in Cay(G,R) where d is the order of r1r2.

Now, proceeding for n ≥ 3, assume that there is a Hamiltonian cycle in the Cayley

graph of any finite group with respect to n− 1 generating involutions with an acyclic

commuting graph, and let (G,R) be a finite group generated by involutions with |R| = n

such that Com(G,R) is acyclic. By Lemma 3.1.2, there is a vertex of Com(G,R) of degree

less than 2, so we can index the elements of R so that the vertex of the commuting graph

that represents rn has degree 0 or is adjacent only to the vertex rn−1.

Let H ⊆ G be the subgroup of G generated by R′ := {r1, ..., rn−1}, and let Γ and ∆

denote Cay(G,R) and Cay(H,R′), respectively. Since G is the union of m = [G : H] cosets

of H, the graph Γ is partitioned into m disjoint subgraphs; let ∆g be the subgraph of Γ

induced by the left coset gH. Then, each ∆g is isomorphic to ∆ via the map ∆ −→ ∆g

defined h 7→ gh.

Applying Lemma 3.1.3, since Com(H,R′) is the result of removing a vertex from the

acyclic graph Com(G,R), by the induction hypothesis, there is a Hamiltonian cycle
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B = (h0, ..., hb−1) in ∆, where b = |H|. We can construct a Hamiltonian cycle in any

subgraph ∆g with edges identical to the edges contained in B by left multiplying B by

some element of the coset gH. The goal is to string together Hamiltonian cycles in each of

the subgraphs ∆g via a recursive algorithm in order to construct a Hamiltonian cycle in Γ.

To define this algorithm, consider for each subset X ⊆ G and 1 ≤ i ≤ n the set

δri(X) = {g ∈ G−X : g = xri, x ∈ X},

the elements of G−X that we can get to from the set X via right multiplication by the

involution ri.

Now, suppose we have a subset X ⊂ G that is a union of left cosets of H, and we have a

Hamiltonian cycle C in the subgraph of Γ induced by X, such that every edge label

occurring in C except for the edge label rn also occurs in the Hamiltonian cycle B in ∆.

Since X is a union of left cosets of H, we have that δri(X) = ∅ for each 1 ≤ i < n. Here,

if δrn(X) = ∅, then we are done, as the Cayley graph Γ is connected and then X = G.

Otherwise, there exists y ∈ G−X and x ∈ X such that y = xrn. Let ∆y be the subgraph

of Γ induced by the coset yH.

As noted in Lemma 3.2.2, given a Hamiltonian cycle, we can shift the cycle to begin at

any element and reverse the order of the cycle as necessary. Therefore, if c = |X|, we can

choose an ordering for the cycle C = (x0, ..., xc−1) such that xc−1rβ = x0 = x where

rβ 6= rn−1, rn (which is possible as n ≥ 3).

Next, the cycle C was chosen so that the edge rβ occurs in the cycle B in ∆. Thus, we

can reorder B = (h0, ..., hb−1) such that hb−1rβ = h0. Therefore,

yh−1
0 B = (yh−1

0 h0, ..., yh
−1
0 hb−1)

=: (y0, ..., yb−1)

is a Hamiltonian cycle for ∆y such that yb−1rβ = y0 = y.

Since rβ 6= rn−1 and the vertex rn of Com(G,R) is adjacent to at most the vertex rn−1,

the generators rβ and rn commute. Thus, xc−1rn = x0rβrn = y0rβ = yb−1, implying that the

vertices xc−1 and yb−1 are adjacent in Γ.
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Finally, we have

D = {x0, ..., xc−1, yb−1, yb−2, ..., y0}

is a Hamiltonian cycle for the subgraph of Γ induced by X ∪ yH because each element of

X ∪ yH is contained in D, and y0 = y and x0 = x are adjacent in Γ. Since X ∪ yH is a

union of left cosets of H and every edge label occurring in D except rn occurs in B, we

have a well defined recursive algorithm.

Because G is finite, this algorithm can be repeated until Hamiltonian cycles for all the

∆g’s are concatenated to form a Hamiltonian cycle in Γ, completing the proof of the

theorem.

7.2 Application to Reflected Binary Gray Codes

The first application of the Theorem 7.1.1 is one that is a useful result in computer

science. As introduced in Example 2.0.2, a binary reflected Gray code is an ordering of the

binary numeral system in which successive numbers only differ in one digit. Gray codes are

used in the error correction of digital communications like satellites and cable [11].

Additionally, reflected binary Gray codes can be interpreted musically by assigning n

distinct notes to each of the n digits. Then, an n-digit binary number represents the chord

that contains the notes with a 1 in their respective digit, and a Gray code is a chord

progression that uses all possible chord combinations of the n notes, such that movements

between successive chords are the result of adding or removing a single note.

In Example 6.3.1, we applied Theorem 6.2.1 to see that there is a bijection between

reflected binary Gray codes and Hamiltonian paths in the Cayley graph of Cn
2 with respect

to the involutions Rn
2 . And in Example 5.2.4, we found that the graph Cay(Cn

2 , R
n
2 ) is the

n-dimensional hypercube.

Theorem 7.1.1 applies in this case because, as noted in Example 5.1.3, the commuting

graph of Cn
2 with respect to Rn

2 is edgeless, and hence acyclic. To see the algorithm in

action, we will construct a Hamiltonian cycle in the 4-dimensional hypercube. The
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algorithm in the proof of Theorem 7.1.1 involves starting with two generating involutions,

and adding the remaining generators one at a time. More explicitly, we will construct a

Hamiltonian cycle in the 2-cube, use that to construct a Hamiltonian cycle in the 3-cube,

and then obtain a Hamiltonian cycle in the 4-cube.

Let H be the subgroup of C4
2 generated by the two involutions (1, 0, 0, 0) and (0, 1, 0, 0).

Here, we are in the base case of the induction, so a Hamiltonian cycle for the subgraph

induced by H is given by alternating generators. Moving to the 3-dimensional hypercube,

if we left multiply the Hamiltonian cycle for the subgraph induced by H by the third

generator (0, 0, 1, 0), we obtain a Hamiltonian cycle for the subgraph induced by the only

nontrivial left coset of H in C3
2 . These two cycles are shown in Figure 7.1. Then, we string

the two cycles together as shown in Figure 7.2, resulting in a Hamiltonian cycle in the

3-dimensional hypercube.

Figure 7.1: Constructing a Hamiltonian
cycle in the 3-dimensional hypercube.

Figure 7.2: Hamiltonian cycle in the
3-dimensional hypercube.

Finally, we move to the 4-dimensional hypercube graph, or the Cayley graph of C4
2 with

respect to R4
2. Figure 7.3 shows two isomorphic copies of a Hamiltonian cycle in the

3-dimensional hypercube, and Figure 7.4 shows how to string them together to obtain a

Hamiltonian cycle in the 4-dimensional hypercube graph. The resulting Hamiltonian cycle
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represents a reflected binary Gray code in the 4-digit case. Notice that we can start the

Gray code at any binary number and move in either direction around the cycle.

Figure 7.3: Constructing a Hamiltonian
cycle in the 4-dimensional hypercube.

Figure 7.4: Hamiltonian cycle in the
4-dimensional hypercube.

7.3 Application to the PLR Group

Another application of Theorem 7.1.1 is useful in music theory. Given a group G of

permutations on a set of chords X that is generated by a set of order two operations R, if

the group G acts on the set X simply transitively, then each element of the group can be

identified with a distinct chord in the set. Therefore, in this case, a Hamiltonian cycle in

the Cayley graph of G with respect to X is a chord progression that uses each of the

elements of X exactly once, the essence of serialism.

We have already noted in Example 5.2.5 that the PLR group acts simply transitively on

the set of 24 major and minor triads Π; however, the commuting graph of the PLR group

with respect to the generators P , L, and R contains a cycle, meaning the Theorem 7.1.1

does not immediately apply. Nonetheless, it can be shown that the PLR group is generated

by the two elements L and R [4], where the commuting graph of the PLR group with

respect to the set {L,R} is in fact acyclic. Therefore, Theorem 7.1.1 applies to the Cayley

graph of the PLR group with respect to the generators R and L. With only two generating
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involutions, we are in the base case of the induction argument. Therefore, if we alternately

apply the operations L and R to the C major triad, we obtain the following sequence of

triads, where uppercase letters represent major triads and lowercase letter represent minor

ones.

C, a, F, d, B[, g, E[, c, A[, f, D[, b[, G[, e[, B, g], E, c], A, f], D, b, G, e

Interestingly enough, the first half of this chord progression is used in Beethoven’s

Ninth Symphony, demonstrating that the this application is not restricted to serialism.

The limitation of this example is that the PLR group is generated by only two

involutions, meaning the real substance of the Theorem 7.1.1 is not fully applied. Thus, the

next goal is to provide an example of a group G of permutations of a set of chords X that

has the following properties:

1. The group G is generated by a set of involutions R such that |R| > 2 and Com(G,R)

is acyclic.

2. The group G acts simply transitively on the set X.
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CHAPTER 8

THE SBW GROUP

8.1 Permutations of Sets of Seventh Chords

In order to accomplish this goal, we will move to a larger set of chords: the set Ψ of all

major seventh (∆7), dominant seventh (7), minor seventh (−7), and half diminished seventh

(∅7) chords. More specifically, the collection Ψ is the union of four set of four element

subsets of Z12 defined as follows.

Ψ∆7 =
{
{x, x+ 4, x+ 7, x+ 11} ⊆ Z12 : x ∈ Z

}
Ψ7 =

{
{x, x+ 4, x+ 7, x+ 10} ⊆ Z12 : x ∈ Z

}
Ψ−7 =

{
{x, x+ 3, x+ 7, x+ 10} ⊆ Z12 : x ∈ Z

}
Ψ∅7 =

{
{x, x+ 3, x+ 6, x+ 10} ⊆ Z12 : x ∈ Z

}
The size of this set of seventh chords is |Ψ| = 12× 4 = 48, as there are twelve notes and

four types of seventh chords.

The group that we begin examining is a semidirect product that defines a group action

on the set Ψ. Let S4 act by group automorphisms on Z4
12, the product of four copies of Z12,

by permuting coordinates. That is, for σ ∈ S4 and x ∈ Z4
12, we define

σ(x1, x2, x3, x4) = (xσ−1(1), xσ−1(2), xσ−1(3), xσ−1(4)).

This action defines a semidirect product S4 n Z4
12. Explicitly, for each (σ, x) and (w, y) in

S4 n Z4
12, we define

(
σ, (x1, x2, x3, x4)

)(
(w, (y1, y2, y3, y4)

)
:=
(
σw, (y1 + xw(1), y2 + xw(2), y3 + xw(3), y4 + xw(4))

)
.

In order to define a group action of S4 n Z4
12 on the set Ψ, notice that any chord in the

collection Ψ can be represented by the ordered pair (i, r) ∈ {1, 2, 3, 4} × Z12, where r is the

root of the chord and i represents the type of chord: 1 for major seventh, 2 for dominant
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seventh, 3 for minor seventh, and 4 for half diminished seventh. Therefore, using this

representation of the set Ψ, for any (σ, x) ∈ S4 n Z4
12 and (i, r) ∈ {1, 2, 3, 4} × Z12, define a

group action

(σ, x)(i, r) = (σ(i), r + xi).

Example 8.1.1. To see how this group action works in practice, consider the example

where (σ, x) =
(
(12)(34), (7, 5, 11, 1)

)
in the group S4 n Z4

12 and (i, r) = (1, 0) in the set

{1, 2, 3, 4} × Z12. Then,
(
(12)(34), (7, 5, 11, 1)

)
operates on the chord (1, 0) - which

represents C major seventh (C∆7) - by transposing the root 0 up by the interval in the

third entry of x and changing the chord type to the image of 3 under the permutation σ.

In this case, (
(12)(34), (7, 5, 11, 1)

)
(1, 0) = (2, 7),

meaning that the operation
(
(12)(34), (7, 5, 11, 1)

)
applied to the chord C major seventh

(C∆7) is the chord G dominant seventh (G7).

Example 8.1.2. In order to demonstrate that the group action of S4 n Z4
12 on the set Ψ is

a significant chord permutation group, consider the following chord progression taken from

part of the chorus of the jazz standard “Tune Up” by Miles Davis [5]:

E−7, A7, D∆7, D−7, G7, C∆7, C−7, F7, B[∆7.

Consecutive chords in this progression are the result of the element
(
(132), (0, 5, 5, 0)

)
of

S4 n Z4
12. That is, each minor seventh chord is transposed up an interval of 5 and changed

to a dominant seventh chord; each dominant seventh chord is transposed up and interval of

5 and changed to a major seventh chord; and each major seventh chord is changed to its

parallel minor seventh. As the jazz giant Thelonious Monk once said, “all musicians are

subconsciously mathematicians” [10].

Notice that in this group action, given an element (σ, x) of S4 n Z4
12 and t ∈ Z12, for

each chord (i, r), if (σ, x)(i, r) = (i′, r′), then (σ, x)(i, r + t) = (i′, r′ + t). It is said that each
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element of S4 n Z4
12 acts on chords of the same type the “same way”. This result is

analogous to the uniformity condition in Julian Hook’s “Uniform Triadic Transformation”

[8], where a group action is similarly defined on the set of major and minor triads Π using

the semidirect product C2 n Z2
12.

8.2 The SBW Group

The action of the group S4 n Z4
12 on the set of seventh chords Ψ is transitive, but the

group S4 n Z4
12 is far too large to act simply transitively on Ψ. Therefore, we will define a

subgroup of S4 n Z4
12 that is generated by involutions and acts simply transitively on the

set Ψ.

Named after Schönberg, Berg, and Webern of the Second Viennese School, define the

SBW group to be the subgroup of S4 n Z4
12 generated by the elements

S :=
(
(12)(34), (7, 5, 11, 1)

)
,

B :=
(
(13)(24), (2, 10, 10, 2)

)
,

W :=
(
(14)(23), (6, 0, 0, 6)

)
.

Routine calculations show that each of these generators has order 2 in S4 n Z4
12, meaning

the SBW group is a finite group generated by involutions. It remains to show that the

SBW group acts simply transitively on the set of seventh chords Ψ, and that the

commuting graph is acyclic.

Proposition 8.2.1. The SBW group acts simply transitively on the set Ψ.

Proof. In order to understand the group action of the SBW group on the set Ψ, we can

identify the group S4 nZ4
12 with a subgroup of the general linear group of degree 5 over the

ring Z12, the group GL(5,Z12) of invertible 5× 5 matrices with coefficients in Z12. Then,

the SBW group is isomorphic to a subgroup of GL(5,Z12), so we can easily compute the

order of the SBW group and the stabilizer of an element of Ψ using Sage.
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Define a map ϕ : S4 n Z4
12 −→ GL(5,Z12) by

(
σ, (x1, x2, x3, x4)

)
7→


σ



1

0

0

0


σ



0

1

0

0


σ



0

0

1

0


σ



0

0

0

1


σ



x1

x2

x3

x4


0 0 0 0 1


.

Then, the map ϕ is a group homomorphism because

ϕ
((
σ, (x1, x2, x3, x4)

)(
w, (y1, y2, y3, y4)

))
= ϕ

(
σw,w−1(x1, x2, x3, x4) + (y1, y2, y3, y4)

)

=


σw



1

0

0

0


σw



0

1

0

0


σw



0

0

1

0


σw



0

0

0

1


σ



x1

x2

x3

x4


+ σw



y1

y2

y3

y4


0 0 0 0 1


= ϕ

(
σ, (x1, x2, x3, x4)

)
ϕ
(
w, (y1, y2, y3, y4)

)
for each (σ, x), (w, y) ∈ S4 n Z4

12. Also, the kernel of ϕ is clearly trivial, so ϕ is injective.

Therefore, the group S4 n Z4
12 is isomorphic to the image of ϕ in GL(5,Z12).

Now, the SBW group is isomorphic to the subgroup G of GL(5,Z12) generated by the

matrices ϕ(S), ϕ(B), and ϕ(W ). Using the Sage code in Appendix A, we find that the

order of G is 48. Next, we want to compute the stabilizer of the element

(1, 0) ∈ {1, 2, 3, 4} × Z12. Recall that (σ, x)(1, 0) = (σ(1), x1), so (σ, x) is in the stabilizer of

(1, 0) if σ(1) = 1 and x1 = 0; that is, the matrix ϕ(σ, x) ∈ G has a 1 in the 1,1 coordinate

and a 0 in the 1,5 coordinate. The Sage code in Appendix A counts the number of elements

in G with these conditions and determines that the the stabilizer of (1, 0) is trivial.

Since the SBW group has order 48 and the stabilizer of (1, 0) has order 1, the

orbit-stabilizer theorem (Theorem 6.1.4) guarantees that the orbit of (1, 0) has size 48=|Ψ|.

37



Thus, there is only one orbit in the group action and the stabilizer of each element of Ψ is

trivial, so the SBW group acts simply transitively on Ψ.

8.3 Application of Theorem 7.1.1 to the SBW Group

Since the SBW group acts simply transitively on the set of seventh chords Ψ, each

Hamiltonian cycle in the Cayley graph of the SBW group with respect to the generating

involutions is associated to a Gray code for (Ψ, {S,B,W}). We will apply Theorem 7.1.1

to the SBW group, but first we have to verify that the commuting graph of the SBW group

with respect to the generating involutions is acyclic.

Lemma 8.3.1. The commuting graph of the SBW group with respect to {S,B,W} is

acyclic.

Proof. The commuting graph of the SBW group with respect to the involutions S, B, and

W can be constructed by determining the order of each pair of generators. Routine

calculations show that order(SB) = 6, order(BW ) = 4, and order(SW ) = 2. Therefore, the

commuting graph of the SBW group with respect to {S,B,W} is given in Figure 8.1. Since

this graph has only one vertex of degree greater than 1, it is acyclic.

Figure 8.1: Commuting graph of the SBW Group with respect to {S,B,W}.

Therefore, since the SBW group acts simply transitively on the set Ψ and the

commuting graph of the SBW group with respect to {S,B,W} is acyclic, we can apply

Theorem 7.1.1 to obtain a Gray code for (Ψ, {S,B,W}). If we choose the chord C∆7 to

represent the identity element of the SBW group and implement the algorithm, we

construct the following cyclic Gray code.
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F]∆7
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B
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S
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S

D7

S
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B
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B

G∅7

B

G∆7

B
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S

E[−7

S

A7

S

A−7

S

A[∆7

B

D∅7

B

D∆7

B

G]∅7

B

B[−7

S

E7 W E−7 B[7

S

A∅7

B

A∆7

B

W
D]∅7

B

E[∆7

B

B7

S

B−7

S

F 7

S

F−7

S

E∆7

B

A]∅7

B

B[∆7

B

E∅7

B

F]−7

S

C7

S

C−7

S

F]7

S

F∅7

B

F∆7

B

B∅7

B

B∆7

B

G7 W
G−7 C]7

W
C]−7

By starting at any point in the cycle and moving in either direction, we have a

serialism-like chord progression that uses each of the 48 seventh chords in the set Ψ exactly

once. The chord progressions found in this cycle exemplify a shifting and occasionally

nonexistent tonal center, deviating from the realm of functional harmony. This trend is

found in contemporary classical and jazz music.
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CHAPTER 9

SECOND MAIN THEOREM

9.1 Statement of the Second Main Theorem

Our second main theorem concerns the existence of k-element subsets of n Gray code -

this theorem is stated and proved in Eades and Hickey [6]. Given the set of positive

integers from 1 to n and some k such that 1 < k < n− 1, we wish to order the k-element

subsets of {1, 2, ..., n} such that successive subsets differ in only one element by a difference

of 1. Recall from Example 6.3.2 that this is equivalent to finding a Hamiltonian path in the

Schreier graph of the symmetric group Sn with respect to the subgroup Sk,n−k and the set

of generating adjacent transpositions.

To achieve this goal, define the graph Gn,k such that

V (Gn,k) = {(a1, a2, ..., ak) : 1 ≤ a1 < a2 < ... < ak ≤ n},

E(Gn,k) =
{
{(a1, ..., ak), (b1, ..., bk)} :

( k∑
i=1

(ai − bi)2
)1/2

= 1
}
.

Notice that the vertex set of Gn,k represents the set of all k-element subsets of {1, 2, ..., n}

and that two such k-tuples are adjacent in Gn,k if they differ by a quantity of 1 in only one

position. Therefore, the task at hand is to find a Hamiltonian path in the graph Gn,k.

With this construction, we obtain the following theorem.

Theorem 9.1.1. If n ≥ 4 and 1 < k < n− 1, then Gn,k has a Hamiltonian path if and only

if n is even and k is odd.

The necessity of n being even and k being odd is proved in Section 9.2, while the

sufficiency is proved in Section 9.3.

9.2 Proof of Necessity

This section proves the necessity of n being even and k being odd in Theorem 9.1.1.

Assume that for some n ≥ 4 and 1 < k < n− 1, there is a Hamiltonian path in the graph
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Gn,k. First notice that Gn,k is bipartite with parts defined

En,k = {(a1, a2, ..., ak) ∈ V (Gn,k) :
k∑
i=1

ai is even}

On,k = {(a1, a2, ..., ak) ∈ V (Gn,k) :
k∑
i=1

ai is odd}.

Let ηn,k and ωn,k denote the size of the sets En,k and On,k respectively. Then, Gn,k contains

a Hamiltonian path only if |τn,k| = |ηn,k − ωn,k| ≤ 1, from Lemma 3.3.2.

Next, in order to determine the number τn,k, we want to enumerate the vertices of

V (Gn,k) whose elements sum to some number N . Consider the polynomial in x and y

f(x, y) =
n∏
r=1

(1 + xyr).

Here, if the integer r is used in a vertex of V (Gn,k), it contributes r to the number N and 1

to the number k, so the number of vertices whose elements sum to N is given by the

coefficient of xkyN in f(x, y). Therefore, the number τn,k is the coefficient of xk in f(x,−1).

If n is even, then n = 2m for some integer m, so
2m∏
r=1

(1 + x(−1)r) = (1 + x)m(1− x)m

= (1− x2)m.

Thus, using the binomial theorem,

τn,k =


0 if k is odd and n is even

(−1)k/2
(
m

k/2

)
if k is even and n is even

Next, if n is odd, then n = 2m+ 1 for some integer m, so
2m+1∏
r=1

(1 + x(−1)r) = (1 + x)m(1− x)m+1

= (1− x2)m(1− x).

Thus, using the binomial theorem,

τn,k =


(−1)

k+1
2

(
m
k−1

2

)
if k is odd and n is odd

(−1)k/2
(
m

k/2

)
if k is even and n is odd
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Finally, since n ≥ 4 and 1 < k < n− 1, the only case with |τn,k| ≤ 1 is when n is even

and k is odd, proving the necessity of Theorem 9.1.1.

9.3 Proof of Sufficiency

In this section, we will prove the sufficiency of Theorem 9.1.1. That is, assuming n is

even and k is odd, we want to show that Gn,k contains a Hamiltonian path.

The proof uses induction on n. The following subsets of V (Gn,k) will be used in the

proof.

An,k = {(a1, a2, ..., ak) ∈ V (Gn,k) : a1 = 1, a2 = 2}

Bn,k = {(a1, a2, ..., ak) ∈ V (Gn,k) : a1 ≥ 3}

Cn,k = {(a1, a2, ..., ak) ∈ V (Gn,k) : a1 = 1, a2 ≥ 3}

Dn,k = {(a1, a2, ..., ak) ∈ V (Gn,k) : a1 = 2}

(9.3.1)

If we let Ân,k, B̂n,k, Ĉn,k, and D̂n,k denote the subgraphs of Gn,k induced by An,k, Bn,k,

Cn,k, and Dn,k respectively, then each of these subgraphs is isomorphic to some Gn′,k′ as

follows.

Ân,k ∼= Gn−2,k−2 via (1, 2, a3, a4, ..., ak) 7→ (a3 − 2, a4 − 2..., ak − 2),

B̂n,k
∼= Gn−2,k via (a1, a2, ..., ak) 7→ (a1 − 2, a2 − 2, ..., ak − 2),

Ĉn,k ∼= D̂n,k via (1, a2, a3, ..., ak) 7→ (2, a2, a3, ..., ak),

D̂n,k
∼= Gn−2,k−1 via (2, a2, a3, ..., ak) 7→ (a2 − 2, a3 − 2, ..., ak − 2).

Notice that the requirement of k being odd means the induction hypothesis will only apply

to the subgraphs Ân,k and B̂n,k, but not to Ĉn,k and D̂n,k. Thus, we must strengthen the

inductive hypothesis with a Lemma.

Lemma 9.3.1. If n is even and 1 ≤ k ≤ n, then

1. If k is odd, then Gn,k has a Hamiltonian path with endpoints

(1, 2, ..., k) and (n− k + 1, n− k + 2, ..., n)
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2. If k is even, then Gn,k has a spanning comb with boundary points

(1, n− k + 2, n− k + 3, ..., n) and (2, 3, ..., k + 1).

Proof. The proof of the lemma is by induction on n. For n = 2, the statement is easily

verified. Now, let n be an even integer and assume that the lemma holds for any even

integer m < n. When k = 1 or k = n, the graph Gn,k is just a single path of vertices, so the

lemma holds. Thus, we can restrict to the case when 1 < k < n.

If k is odd, then by the induction hypothesis, the subgraphs Ân,k and B̂n,k have

Hamiltonian paths with respective endpoints

xA = (1, 2, ..., k) & yA = (1, 2, n− k + 3, n− k + 4, ..., n),

xB = (3, 4, ..., k + 2) & yB = (n− k + 1, n− k + 2, ..., n).

Additionally, the inductive hypothesis guarantees that the subgraph Ĉn,k has a spanning

comb T with boundary points

xC = (1, 3, n− k + 3, n− k + 4, ..., n) & yC = (1, 4, 5, ..., k + 2).

Let J denote the subgraph of Gn,k induced by Cn,k ∪Dn,k. Recall that Cn,k is

isomorphic to Dn,k by the map ϕ(1, a2, ..., ak) = (2, a2, ..., ak), and notice that for each

c ∈ V (Cn,k), we have {c, ϕ(c)} ∈ E(Gn,k). Therefore, J contains a spanning subgraph that

is isomorphic to the product TK2.

Since the boundary points of the comb T are in the same part of the bipartite graph

Gn,k (as described in the proof of necessity), the distance between xC and yC is even, so

using Lemma 3.4.3, the graph TK2 has a Hamiltonian path with endpoints (1, xC) and

(2, yC). Thus, J has a Hamiltonian path with endpoints xC and yD = (2, 4, 5, ..., k + 2).

Therefore, since yA is adjacent to xC and yD is adjacent to xB in Gn,k, we can

concatenate the Hamiltonian paths for the subgraphs Ân,k, J , and B̂n,k to obtain a

Hamiltonian path in Gn,k with endpoints xA and yB.

Now, if k is even, then by the induction hypothesis, the subgraph Ĉn,k has a

Hamiltonian path (c1, c2, ..., cm) with cm = (1, n− k + 2, n− k + 3, ..., n). From the

43



isomorphism of Ĉn,k and D̂n,k, there is a Hamiltonian path (d1, d2, ..., dm) for D̂n,k such that

d1 = (2, 3, ..., k + 1) and {ci, di} ∈ E(Gn,k) for all 1 ≤ i ≤ m.

Therefore, since m is even, the path

M = (d1, c1, c2, d2, ..., cm−1, cm, dm)

is a Hamiltonian path for J . We want to construct a spanning comb for Gn,k with M as

part of the main path. To accomplish this, for any vertex x in the path M , we will define a

path Tx that is the tooth at x.

If x = ci = (1, x2, x3, ..., xk), then let r be the smallest index such that xr > r+ 1, and if

no such index exists let r = k + 1. For any 1 ≤ j < r, define

tj = (1, 2, ..., j, xj+1, xj+2, ..., xk). Then, t1 = x and {tj, tj−1} ∈ E(Gn,k) for all 1 < j < r, so

let Tx = (t1, t2, ..., tr−1) be the tooth at x.

If x = di = (2, x2, x3, ..., xk), then let r = x2 − 1 and tj = (j + 1, x2, x3, ..., xk) for

1 ≤ j < r. Again, t1 = x and {tj, tj−1} ∈ E(Gn,k) for all 1 < j < r, so let

Tx = (t1, t2, ..., tr−1) be the tooth at x.

Notice that tooth defined at cm is trivial (because the associated r for cm is 2), while

the tooth defined at dm = (2, n− k + 2, n− k + 3, ..., n) is nontrivial. If Tdm is the tooth at

dm, we can define T to be the comb in Gn,k with main path (M,Tdm) (the concatenation of

M and Tdm) and teeth Tx. We want to show that T is a spanning comb for Gn,k.

If y = (1, 2, y3, ..., yk) ∈ An,k and r is the largest index with yr = r, then y lies only on

the tooth Tx where

x = (1, 3, 4, ..., r + 1, yr+1, yr+2, ..., yk).

And if y = (y1, y2, ...yk) ∈ Bn,k where y1 > 2, then y lies only on the tooth Tx where

x = (2, y2, y3, ..., yk).

Therefore, T is an acyclic spanning subgraph of Gn,k of degree at most 3 such that all the

degree 3 vertices of T lie on the main path strictly between the boundary points

(1, n−k+ 2, n−k+ 3, ..., n) and (2, 3, ..., k+ 1). This completes the proof of the lemma.
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The proof of sufficiency of Theorem 9.1.1 follows directly from the proof of this lemma.

9.4 Application of Theorem 9.1.1

In this section, we will carryout the algorithm provided in the proof of sufficiency of

Theorem 9.1.1 in the case where n = 6 and k = 3, and then the case where n = 8 and k = 3.

Example 9.4.1. We will first apply Theorem 9.1.1 to the case where n = 6 and k = 3.

Since n is even and k is odd, there exists a Hamiltonian path in the graph G6,3. The

algorithm begins by splitting G6,3 into the subgraphs Â6,3, B̂6,3, Ĉ6,3, and D̂6,3 (defined in

Section 9.3). First, Â6,3 and B̂6,3 have the respective trivial Hamiltonian paths

({1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}) and ({3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}).

The graph G6,3 with the paths for Â6,3 and B̂6,3 outlined is shown in Figure 9.1.

Figure 9.1: The graph G6,3 with Hamiltonian paths for the subgraphs Â6,3 and B̂6,3.

Now, we obtain isomorphic spanning combs for Ĉ6,3 and D̂6,3, and find a Hamiltonian

path for J , the subgraph of G6,3 induced by C6,3 ∪D6,3. The Hamiltonian path for J

described in the proof of Theorem 9.1.1 is shown in Figure 9.2.
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Figure 9.2: Hamiltonian path in the subgraph of G6,3 induced by C6,3 ∪D6,3.

Figure 9.3: Hamiltonian path in the graph G6,3.

Finally, we concatenate the Hamiltonian paths for Â6,3, J , and B̂6,3 to obtain the

Hamiltonian shown in Figure 9.3.

Example 9.4.2. The second application of Theorem 9.1.1 is in the case where n = 8 and

k = 3. The subgraph Â8,3 of G8,3 is isomorphic to the graph G6,1, so Â8,3 has the trivial

Hamiltonian path

({1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 2, 8}).

Since B̂8,3 is isomorphic to G6,3, we can use the Hamiltonian path found in Example 9.4.1 to

obtain the corresponding path in B̂8,3. The paths for Â8,3 and B̂8,3 are shown in Figure 9.4.

Now, we construct isomorphic spanning combs for Ĉ8,3 and D̂8,3, and find a

Hamiltonian path in the the subgraph J induced by C8,3 ∪D8,3. The Hamiltonian path for

J described in the proof of Theorem 9.1.1 is shown in Figure 9.5.
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Figure 9.4: The graph G8,3 with Hamiltonian paths for the subgraphs Â8,3 and B̂8,3.

Figure 9.5: Hamiltonian path in the subgraph of G8,3 induced by C8,3 ∪D8,3.
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Figure 9.6: Hamiltonian path in the graph G8,3.

Finally, we concatenate the Hamiltonian paths for Â8,3, J , and B̂8,3 to obtain the

Hamiltonian shown in Figure 9.6.

Example 9.4.3. As an application to music composition, a set of n notes can be assigned

to the set {1, 2, ..., n} so that the Gray code is a progression of k-note chords that uses each

chord exactly once. Take n = 6 and k = 3, and respectively assign the six notes C, D, E, F,

G, and A to the numbers 1, 2, 3, 4, 5, and 6. Then, a Hamiltonian path in the graph G6,3

is a chord progression in the key C major that contains all of the three note chords such

that chords change with minimal movement of notes. This example is particularly pleasing
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because most of the harmonies are consonant. If we instead used a larger set of notes (say

all 12 chromatic tones), there would be many unpleasant dissonances.
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CHAPTER 10

FURTHER WORK

We conclude this thesis by presenting two directions of future research that extend and

generalize the work we have already done.

10.1 The Hyperoctahedral Group

We have shown that the k-elements of n Gray code corresponds to a Hamiltonian path

in the Schreier graph of Sn with respect to the subgroup Sk,n−k and the involutions

{(12), (23), (n− 1 n)}. The subgroup Sk,n−k is called a parabolic subgroup of Sn, and it is

the result of removing one involution from the canonical generating set. The first main

theorem (Theorem 7.1.1), which concerns the existence of a Hamiltonian path in a Schreier

graph for the trivial subgroup, holds not just for Sn, but for a very general class of groups

generated by involutions. In this context, the result of our second main theorem (Theorem

9.1.1) raises the question of whether similar results hold for other parabolic subgroups of

other finite groups generated by involutions. In this section, we will set up an analogous

problem for a parabolic subgroup of the hyperoctahedral group.

For each positive integer n, the hyperoctahedral group Bn is the set of signed

permutations of {1, 2, ..., n}, and it is isomorphic to the semidirect product Sn n Cn
2 , where

Sn acts on Cn
2 by permuting coordinates. The group Bn is generated by the set of

involutions

R =
{(
id, (0, ..., 0, 1)

)
,
(
(12), (0, ..., 0)

)
,
(
(23), (0, ..., 0)

)
, ...,

(
(n− 1 n), (0, ..., 0)

)}
,

the set of adjacent transpositions and the involution that changes the last digit.

For each k ∈ {1, 2, ..., n}, consider the following set:

Xn,k :=
{

(X, f) : X ⊆ {1, 2, ..., n}, |X| = k, f : X −→ {0, 1}
}
.

Define a group action of Bn on the set Xn,k as follows: for each
(
σ, (b1, ..., bn)

)
∈ Bn and

(X, f) ∈ Xn,k, we define
(
σ, (b1, ..., bn)

)
(X, f) = (σ(X), g), where g is the function
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σ(X) −→ {0, 1} defined g(σ(x)) = f(x) + bx. It can be checked that this action is

transitive. For each 1 ≤ k ≤ n, consider the pair (Yk, hk) ∈ Xn,k such that Yk = {1, 2, ..., k}

and hk(y) = 0 for all y ∈ Yk. Then, the stabilizer of (Yk, hk) in Bn is the parabolic

subgroup Pk defined as follows:

Pk =


〈
R−

{(
(k k + 1), (0, ..., 0)

)}〉
if 1 ≤ k ≤ n− 1〈

R−
{(
id, (0, ..., 0, 1)

)}〉
= Sn if k = n

Therefore, the orbit-stabilizer theorem tells us that the coset space Pk\Bn is in bijection

with Xn,k.

In this setting, a Hamiltonian path in the Schreier graph of Bn with respect to the

subgroup Pk and involutions R is an ordering of the set Xn,k of signed k-element subsets of

{1, 2, ..., n} such that successive subsets differ by a single element, swap the signs of two

elements, or change the sign of the element n. Musically, if n notes are assigned to the set

{1, 2, ..., n} and the signs represent two different instrument voices, then such a Gray code

is a progression of k-note chords with each of the notes in one of two instruments, such

that successive chords change by moving one note, swapping the instruments of two notes

in a chord, or switching the instrument of the note designated by n.

In this situation, we pose the question: for which values of n and k does there exist a

Hamiltonian path in the Schreier graph Sch(Bn, Pk, R)?

10.2 Arbitrary Chord Permutations

A second potential extension of the work done in this thesis is the study of subgroups of

the permutation group of a set of chords that are not necessarily generated by involutions.

In this generalized setting, the graphs that represent chords and their connects are directed

graphs, where edges are ordered pairs of vertices. That is, a permutation may send chord x

to chord y, but not necessarily the converse, so directed edges are more appropriate. There
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are more general definitions of Gray codes and Schreier graphs that account for finite

groups of this kind.

Not all of the groups that appear in music theory are generated by involutions. In [8],

Hook studies the group of uniform triadic transformations, a permutation group of the set

of 24 major and minor triads that is isomorphic to the semidirect product C2 n Z2
12. This

group acts on the set of major and minor triads analogously to the the group S4 n Z4
12

defined in Section 8.1. Many subgroups of the group of uniform triadic transformations are

not generated by involutions, but still carry musical significance. For example, if we take

an element u of C2 n Z2
12 that has order greater than 2, and repeated apply u to some

triad, then we obtain a perfectly good chord progression. Although many groups found in

music theory are generated by involutions, there is still work to be done.
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APPENDIX

SAGE CODE

The following code was used for computations described in Chapter 8. The code can be run

by copying and pasting it into https://sagecell.sagemath.org/ and pressing “Evaluate”.

R=Integers(12)

r=matrix(R,5, [[0,1,0,0,5],[1,0,0,0,7],[0,0,0,1,1],[0,0,1,0,11],[0,0,0,0,1]])

s=matrix(R,5, [[0,0,1,0,10],[0,0,0,1,2],[1,0,0,0,2],[0,1,0,0,10],[0,0,0,0,1]])

t=matrix(R,5, [[0,0,0,1,6],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,6],[0,0,0,0,1]])

G = MatrixGroup([r,s,t])

print("Order of G:")

print(order(G))

genorders=(order(G.subgroup([r])),order(G.subgroup([s])),order(G.subgroup([t])))

print("Order of r,s,t:")

print(genorders)

e1=vector(R,[1,0,0,0,0])

L=[(g.matrix().column(0),g.matrix()[0,4]) for g in G]

I=L.count((e1,0))

print("Order of the stabiliser of (1,0):")

print(I)
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