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 Detritus is a ubiquitous component of ecosystems and an important fuel for secondary 

production. Due to the extractive nature of bivalve aquaculture, detritus is often incorporated into 

carrying capacity and growth models for cultured bivalves. However, despite the complexity and 

difficulty in obtaining direct measurements, detritus is often treated as a homogeneous food source in 

models. Further understanding the role detritus plays in the diet of cultured bivalves could lead to more 

comprehensive and accurate models as well as more informed site selection for growers. The purpose of 

this study was to assess the abundance, bioavailability, and contribution of detritus to the diet of a 

commercially important bivalve (Mytilus edulis) in a northern temperate bay (Saco Bay, ME USA) using a 

combination of lipid fatty acid biomarkers and stable isotopes (δ13C and δ15N). Both macroalgal (6.9 ± 

0.1%) and vascular plant (4.8 ± 0.1%) detritus contributed to the particulate organic matter of Saco Bay 

and could supplement essential fatty acids (FA) or their precursors to consumers able to digest them. 

Mussels in Saco Bay may have been limited by the availability of the essential fatty acid 20:5ω3 (EPA) 

and incorporated macroalgal detritus as a small part (5 to 11%) of their diet. Macroalgae contained large 

proportions of the essential FAs 20:4ω6 (7 to 18%) and 20:5ω3 (8 to 25%) which may supplement the 

dietary needs of mussels. The original source of primary production had more influence on the 

bioavailability of lipid and FAs than the state of decay. The bioavailability of lipid and FAs from 



 

 
 

Ascophyllum nodosum (9 ± 3%) was significantly lower than that of Spartina alterniflora (56 ± 19%) and 

Isochrysis galbana (48 ± 2%), likely due to the presence of polyphenols and structural alginates that 

interfered with lipid solubilization. Although it contains essential FAs and its contribution into the diet of 

M. edulis suggest macroalgae could be a good supplemental diet for bivalve aquaculture, the 

concentration of secondary metabolites (>3% wt/wt) and alginates needs to be considered due to their 

anti-nutritional effects.    
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CHAPTER 1 

INTRODUCTION 

Detritus has long been recognized for its ubiquity within ecosystems and importance in the 

microbial loop, secondary production and stabilization of food webs (Odum, 1969; Mann, 1988; Duggins 

et al., 1989). To differentiate detritus from the broader term seston (defined as all suspended 

particulate matter), we operationally define detritus as any decaying or dead organic matter sweated 

from parent material, along with any associated bacteria. Living bacteria associated with dead and 

decaying organic matter have been included in our definition of detritus due to their critical role in 

altering particle size and nutritional value (Mann, 2000). On average over 50% of primary production in 

both terrestrial and aquatic ecosystems enters detrital pathways, making detritus a crucial component 

of ecosystem energy flow (Cebrian and Lartigue, 2004).  Secondary production can result from the 

consumption of autochthonous detritus (Baird and Ulanowicz, 1989) or subsidized by allochthonous 

detritus imported from other ecosystems, as in estuaries (Dias et al., 2016), where detritus is frequently 

a primary food source (McLusky 1981, Schlacher & Wooldridge 1996).  Whether autochthonous or 

allochthonous in origin, detritus consumption within ecosystems supports a greater diversity and higher 

biomass of species than would be possible by herbivory alone (Hairston & Hairston 1993, Moore et al. 

2004).  

Due to the abundance of primary producers, one of the largest sources of detritus is uneaten 

primary production. In an extensive review of detrital production in terrestrial and marine habitats, the 

rates of primary production were highly correlated with detrital production (Cebrian & Lartigue 2004). 

Additionally, nutrient concentrations (N and P) of primary producers are strongly positively correlated 

with herbivory rates as well as decomposition rates (Cebrian and Lartigue, 2004). Chemical composition, 

carbon-to-nitrogen ratios, nutrient composition and lignin content have all been used as predictors for 
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decomposition rates (Swift et al. 1979, Coleman et al. 1983, Melillo et al. 1984, Moore et al. 2004). 

Another important factor to consider when assessing nutritional quality of detrital material is the 

concentration of anti-nutritional factors (ANF); defined as “substances generated in natural feed stuffs 

by the normal metabolism of species by different mechanisms (e.g., inactivation of some nutrients, 

diminution of the digestive process or metabolic utilization of feed) which exert effects contrary to 

optimum nutrition” (Kumar, 1992). Polyphenols are an example of an ANF, polyphenols are secondary 

metabolites produced by vascular plants and macroalgae (Ragan and Jensen, 1978; Ragan and 

Glombitza, 1986; Kumar, 1992) and their presence can inhibit grazing (Duggins and Eckman, 1997) and 

adversely affect consumers digestive processes (Zimmer, 1997). A primary factor limiting the amount of 

energy organisms can derive from detrital particulates is their ability to digest them (Arambalza et al., 

2010, 2014). In addition, digestibility of detrital particles is not homogeneous across species and their 

chemical composition affects digestibility by consumers (Arambalza et al., 2010, 2014). 

The importance of detritus, whether allochthonous or autochthonous, in energy and nutrient 

cycling has led to its frequent and necessary incorporation into ecosystem models (e.g., Atlantis (Fulton 

et al., 2004) and EcoPath (www.ecopath.org)). Models incorporating detritus vary in design, from food-

web trophic structure models (Coll et al., 2015; Feng et al., 2018), to carrying capacity models (Byron et 

al., 2011a), to organismal bioenergetic models (Hawkins et al., 2013a). While frequently considered by 

models, detritus is often treated as a “black box” whose quantity is estimated based on uneaten primary 

production. Additionally, modeled detritus is treated as a homogeneous pool of organic matter in terms 

of particle size, biochemical composition and nutritional value, which does not reflect the reality of its 

variable nature.  Treating detritus as a homogeneous pool of organic matter can result in over or under-

estimating its importance, particularly for carrying capacity and growth estimates where varying 

compositions of detrital material has direct effects on digestibility and absorption efficiencies.  
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Bivalve aquaculture researchers frequently employ carrying capacity and growth models to 

estimate the production capacity of particular bays or estuaries. Bivalve aquaculture is inherently 

extractive; it relies upon resources already present in environments to grow organisms. All bivalves 

ingest detritus as part of their diet to varying degrees (Langdon and Newell, 1990; Bustamante and 

Branch, 1996; Tallis, 2009; Ezgeta-Balić et al., 2012). However, large variations exist in detrital 

contributions to bivalve diets. Detritus can comprise the majority of a bivalve’s diet (Bustamante and 

Branch, 1996) or only a minor fraction (Langdon and Newell, 1990). Although the quality of detrital 

particulates for bivalve consumers depends on their source and age (Duggins and Eckman, 1997), the 

availability of higher quality food-sources also plays a role in detrital consumption. For example, detrital 

contribution to the diets of Mytilus edulis and Crassostrea gigas varied from 12 to 95 % when measured 

and was negatively correlated with phytoplankton concentration (Hawkins et al., 2013a). In addition to 

source and age, detrital consumption varied over time depending on the availability of fresher organic 

material. As such, detailed and accurate carrying capacity and growth models of bivalve aquaculture 

require some way of estimating the quantity, quality, and seasonality of the primary diet 

(phytoplankton) as well as the available detrital resources which may contribute to the diet of the 

cultivated species.  

A better understanding of the reliance of cultured bivalves on detrital resources could allow for 

better carrying capacity and growth models and better site selection practices. Currently site selection 

for bivalve aquaculture primarily focuses on the availability of phytoplankton, often based on 

measurements of chlorophyll-ɑ from samples, continuous fluorometry and satellite imaging (Snyder et 

al., 2017). Although some measurements of detrital availability can be incorporated, e.g. remaining 

organic matter (REMORG; Hawkins et al., 2013b), they necessarily treat detritus as homogeneous. The 

reason for this necessary simplification is that there can be numerous sources of detrital material for 

any given ecosystem and it is usually not feasible or cost effective to measure and model every source. 
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This simplified approach is understandable from a grower’s perspective; however, for ecologists and 

ecosystem managers seeking to construct carrying capacity models of bivalve aquaculture, more detail 

in detrital contributions is warranted. As ecosystem engineers, bivalves can have profound effects on 

their surrounding ecosystem (Karatayev et al., 2002), i.e. seston depletion (Dowd, 2003). As such, by 

treating detritus as a homogeneous pool of organic matter we risk over or under-estimating food 

availability, which could lead to ill-advised management decisions. Better understanding how bivalves 

interact with available food resources will also allow for more informed decisions when siting bivalve 

aquaculture. 

The purpose of this study was to assess the organic matter availability, primary and detrital, in a 

northern temperate estuary (Saco Bay, ME USA) as well as determine how the available organic matter 

contributes to the diet of Mytilus edulis, a commercially important bivalve species. I use lipid fatty acid 

biomarkers in combination with stable isotopes (δ13C and δ15N) to determine the composition of 

particulate organic matter and its contribution to the diet of intertidal M. edulis in Saco Bay. 

Additionally, I assessed the bioavailability of lipids and FAs, estimated by the ability to be solubilized in 

sodium taurocholate, from two major detrital resources (marsh grass and macroalgae). The goal of this 

study is to determine which detrital resources may be important for bivalve aquaculture, to narrow 

down which detrital resources warrant further study and incorporation into ecological carrying capacity 

and growth models.  
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CHAPTER 2 

CHANGES IN PARTICULATE ORGANIC MATTER DYNAMICS IN A TEMPERATE BAY (SACO BAY, ME USA) 

DETERMINED USING STABLE ISOTOPE AND FATTY ACID ANALYSES 

2.1 Introduction 

  Particulate organic matter (POM) is a complex resource derived from many sources, which fuels 

coastal, estuarine, and pelagic food webs. Components of POM range from living phytoplankton and 

zooplankton to bacterial aggregates (Biddanda, 1988) and dead and decaying detrital material from 

phytoplankton (Alldredge and Gotschalk, 1989), zooplankton (Davoll and Silver, 1986), macroalgae 

(Duggins et al., 1989), salt marshes (Mann, 1988; Bergamino and Richoux, 2014) and other terrestrial 

sources (Kristensen et al., 2008). Each component contributing to POM represents a resource, of varying 

quality, for organisms capable of exploiting them, e.g., filter feeders. Understanding POM dynamics 

within an ecosystem can lead to insights into ecosystem function. For example, allochthonous inputs of 

detrital POM or dissolved organic matter (DOM) can lead to secondary production resulting in net 

heterotrophic food webs observed in estuaries (Griffith and Raymond, 2011).  

 The amount and quality of POM determines how much, and what kinds, of secondary 

consumers can be supported, i.e. herbivores, detritivores, or omnivores. While phytoplankton 

production serves as the primary food source for herbivorous zooplankton and filter feeders, omnivores 

and detritivores also consume detrital POM (Diodato and Hoffmeyer, 2008). Filter feeding bivalves 

ingest both macroalgal and marsh grass detritus (Lucas and Newell, 1984; Newell and Langdon, 1986; 

Bustamante and Branch, 1996). Similarly, bacterial aggregates (Alber and Valiela, 1996) and vascular 

plant detritus (Dias et al., 2016) contribute to the diets of primary consumers. Unsurprisingly, due to its 

ephemeral nature, the quality and quantity of POM vary by season (Danovaro and Fabiano, 1997). The 

ratio of fresh-to-detrital organic matter also affects detrital consumption by bivalves (Hawkins et al., 

2013a). 
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The composition of POM will affect which fatty acids (FA) are available to consumers. Essential 

FAs, such as 20:5ω3 (EPA), 22:6ω3 (DHA) and 20:4ω6 (ARA) are important drivers of ecosystem stability 

and are important for many consumers, such as bivalves and crustaceans (Arts et al. 2001; Arts et al. 

2009; Parrish 2009). Essential FAs primarily originate from marine primary producers such as diatoms, 

dinoflagellates and macroalgae (Parrish 2009; Kelly and Scheibling 2012; Parrish 2013), while vascular 

terrestrial plants are associated with long chain saturated FAs, such as 24:0, and shorter chain 

polyunsaturated FAs (PUFA), especially 18:2ω6 and 18:3ω3 (Budge et al. 2001; Kelly and Scheibling 

2012). Although some invertebrate consumers are able to elongate PUFA (18:2ω6 and 18:3ω3) into 

metabolically essential FAs (20:5ω3, 22:6ω3 and 20:4ω6), most marine consumers must obtain them 

from their diet (Sargent et al. 1999; Hall et al. 2006; Kelly and Scheibling 2012). Changes in the 

abundance of vascular plant and marine POM will directly affect the abundance and quality of FAs 

available for consumers.    

 Characterizing the composition of POM is required to properly assess the resources available to 

consumers. Understanding the available POM resources allows the construction of carrying capacity 

models for consumers, e.g. bivalves (Jiang and Gibbs, 2005; Byron et al., 2010, 2011a; Outeiro et al., 

2018; Kluger et al., 2019), and can be used to define and quantify a “resource unit” within larger social-

ecological system frameworks (Ostrom 2009; Johnson et al. 2019).  As such, understanding POM 

dynamics is important for ecosystem functioning as well as understanding how human activities function 

and interact within ecosystems.  

 Quantifying phytoplankton abundance and production using estimates of chlorophyll-ɑ from 

buoy measurements and satellite imagery is a routine practice, e.g. aquaculture site selection (Snyder et 

al., 2017). In contrast, understanding the dynamics of detrital POM is far more difficult. Stable isotopes 

(δ13C and δ15N) have been successfully used to determine source contributions to POM (Bergamino and 

Richoux, 2014) as have lipid and fatty acid biomarkers (Budge and Parrish 1998). Used together, stable 
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isotopes, lipid, and fatty acids biomarkers are powerful tools for determining the sources of POM to 

consumer diets. Stable isotopes provide insight into the source and pathways of organic carbon and 

nitrogen in an ecosystem. On the other hand, because lipids are the densest form of energy in marine 

ecosystems and due to necessity of certain FAs to consumer physiology (Parrish, 2013), lipid and FA 

biomarkers provide insight into the transfer of energy and essential metabolites in ecosystems.  

 The purpose of this study was to gather baseline data as well as qualitatively and quantitatively 

assess the available POM of a northern temperate bay (Saco Bay, Maine USA) with large riverine inputs 

(Saco River). We collected size-fractionated POM (≥100 and <100 µm), zooplankton, and macrophyte 

primary producers (macroalgae, marsh grass, and terrestrial plants) from Saco Bay, ME USA, and 

analyzed their lipid, FA, and stable isotope composition to determine their contributions to the POM 

pool. Our goal was to describe the qualitative and quantitative organic matter dynamics of the bay as 

well as the availability of essential FAs. To our knowledge, this is the first characterization of nearshore 

POM in the Gulf of Maine that employs both FA and stable isotope analysis. 

2.2.0 Methods 

2.2.1 Study site and sample collection 

 Saco Bay is a northern temperate bay located in southern Maine, USA, which directly receives 

freshwater from both the Saco and Scarborough Rivers (Figure 2.1). The Saco River provides the majority 

of the freshwater to the bay (Jacobson et al., 1987; Barber, 1995; Kelley et al., 2005) and there are 

numerous salt marshes located around Saco Bay, including Scarborough marsh which is the largest in 

Maine (Jacobson et al., 1987; Kelley et al., 2005). In addition, six wastewater treatment plant outfalls 

that discharge into the bay, serving a population of 67,000 (US Census 2010). 
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Figure 2.1. Map of Saco Bay. Contains the location of Land Ocean Biological Observatory (LOBO) buoys, 
Northeast Regional Association of Coastal Ocean Observing System (NERACOOS) buoy, particulate 
organic matter (POM) sampling sites, wastewater treatment plant (WWTP) outfalls, and salt marshes 
fringing Saco Bay, ME USA. 
 
  We deployed three oceanographic buoys in Saco Bay during 2016 (Figure 2.1). Two Land Ocean 

Biogeochemical Observing (LOBO; SeaBird Scientific) buoys and one Northeast Regional Association of 

Coastal Ocean Observing System (NERACOOS; Wallinga et al., 2003) buoy which provided hourly 

measurements of water velocity, temperature, salinity, photosynthetically active radiation (PAR), 

chromophoric dissolved organic matter (CDOM), dissolved oxygen, nitrate, pH, chlorophyll-ɑ, optical 

attenuation (turbidity) and backscatter. To ground-truth buoy measurements, biweekly water quality 

samples were collected from buoy locations for POM, chlorophyll-ɑ, dissolved nutrients, primary 

productivity, zooplankton species composition, as well as phytoplankton species composition, identified 

using FlowCam (Fluid Imaging Technologies, Inc.) samples analyzed at the Bigelow Laboratory for Ocean 
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Sciences (Boothbay ME, USA). Biovolume estimates used methods from Sieracki et al. (1989) and 

algorithms from Burger and Burge (2008) and Chang et al. (2004), while biomass calculations followed 

carbon content to biovolume functions by Menden-Deuer and Lessard (2000). 

In addition to ground-truthing samples, POM was collected from buoy sites along with three 

additional sites throughout the bay during 2016 and 2017 (Figure 2.1). Samples were size-fractionated 

(≥100 and <100 µm) in situ in the water column, returned to shore, and sub-sampled for chlorophyll-ɑ, 

stable isotopes (δ13C and δ15N), lipid and fatty acid biomarkers. For endmember analysis, we also 

collected zooplankton, macroalgae (Saccharina latissima, Ascophyllum nodosum, Chondrus crispus), and 

vascular plants (oak leaf-litter and Spartina alterniflora) throughout the bay for stable isotope (δ13C and 

δ15N), lipid and fatty acid biomarkers. 

2.2.2 Chlorophyll-ɑ  

 Chlorophyll-ɑ samples were collected on pre-combusted 1.2 µm GF/C Whatman filters and 

stored at -20°C until analysis. Chlorophyll-ɑ content was determined fluorometrically using a Turner 

Designs TD700 fluorometer. Samples were homogenized in 90% acetone using a glass tissue grinder and 

refrigerated in the dark overnight. Afterwards, samples were vortexed and centrifuged at 2400 rpm for 

10 min before reading on the fluorometer. Samples were acidified by adding two drops of 5% 

hydrochloric acid to determine phaeopigment concentration (Strickland and Parsons, 1972; Parsons et 

al., 1984; Welschmeyer, 1994; Arar and Collins, 1997). The fluorometer was calibrated using quantified 

standards from Turner Designs (part # 10-850). Selected organic matter (SELORG; or organic matter 

associated with phytoplankton), and remaining organic matter (REMORG; or non-phytoplankton 

associated organic matter), were calculated as 𝑆𝐸𝐿𝑂𝑅𝐺 =
𝐶𝐻𝐿 𝑥 50

0.38
  and  𝑅𝐸𝑀𝑂𝑅𝐺 = 𝑃𝑂𝑀 − 𝑆𝐸𝐿𝑂𝑅𝐺 

as described by Hawkins et al. (2013). Although Hawkins et al. (2013) recommended using a carbon-to-

chlorophyll (C:CHL) ratio of 12 when calculating REMORG, to avoid SELORG estimates exceeding total 
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POM. In this study we used a more conservative and widely used C:CHL ratio of 50 (Taylor et al., 1997) 

to avoid underestimating phytoplankton contributions to POM.    

2.2.3 Stable isotope analysis and interpretation 

 Stable isotope samples were collected by filtering POM onto pre-combusted and pre-weighed 

1.2 µm GF/C Whatman filters. Filters were dried overnight at 60°C or until constant weight. Dried 

samples were stored in desiccation chambers at room temperature until processed and sent for 

analysis. Prior to encapsulation in tin, samples were exposed to hydrochloric acid fumes for 24 h to 

remove carbonate carbon. Endmember tissues were stored at -20°C until processed and sent for 

analysis. Tissue samples were prepared by drying overnight at 60°C, or until a constant weight, once dry 

tissues were crushed into a fine powder. Subsamples (1.0 ± 0.2 mg) of powder were encapsulated and 

sent to the University of California’s Davis Stable Isotope facility for analysis using a PDZ Europa ANCA-

GSL elemental analyzer along with a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., 

Cheshire, UK).  

To determine POM contributions of endmembers, we constructed dual-isotope Bayesian mixing 

models with R Studio (2019; version 1.0.136, 2009-2016) using the stable isotope analysis in R (SIAR, ver. 

4.2) package. Bayesian mixing models in SIAR use Markov Chain Monte Carlo methods to generate true 

probability distributions of possible endmember contributions based on their isotopic values and 

fractionation factors with incorporated uncertainty (standard deviation) of measurements (Parnell et al., 

2010).  Diatom and dinoflagellate δ13C values of -18 ± 2‰ and -24 ± 1‰ were used based on previously 

reported values from George’s Bank (Fry and Wainright, 1991). No fractionation factors were used when 

determining endmember contributions to POM; this assumes decay did not alter isotopic signatures. 

Diatom and dinoflagellate δ15N values were estimated from zooplankton δ15N by subtracting 

fractionation due to one trophic level (3.4‰). Due to similarities of δ13C and δ15N values between 

diatoms and macroalgae, they were combined in mixing models. Modeled endmember contributions 
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were reported as mean, minimum, and maximum of 95% Bayesian credibility intervals, within which 

represent the range of values that a given estimate from a single model iteration has a 95% probability 

of falling. 

2.2.4 Lipid class and fatty acid analysis 

 A chloroform:methanol (2:1) modified Folch extraction was used to extract lipids from samples 

and an Iatroscan Mark V TLC-FID with silica coated Chromarods was used to analyze lipid composition 

(hydrocarbons, steryl/wax esters, methyl esters, ketones, triacyclglycerols, free-fatty acids, alcohols, 

sterols, diacylglycerols, acetone-mobile polar lipids, and phospholipids)  as described by Parrish (2013). 

Aliquots of total lipid extracts were transesterified into fatty acid methyl esters (FAME) using 

concentrated sulfuric acid and by heating samples to 100°C for one hour. FAME composition was 

determined using an Agilent 7890A Series GC with an FID detector equipped with a 30 m (0.25 µm 

internal diameter) ZB wax+ column (Phenomenex, US) using helium as the carrier gas (2 ml min-1). 

Column temperature began at 65°C for 30 sec, then ramped to 195°C at a rate of 40°C min-1, and held 

for 15 min. Temperature then ramped to 220°C at a rate of 2°C min-1 and held for 3.25 min. Injector 

temperature started at 150°C and ramped at a rate of 200°C min-1 until reaching a final temperature of 

250°C, while the detector remained a constant 260°C. Fatty acid retention times were determined with 

a Supelco, 37 component FAME mix (Product number 47885-U). 

Permutational multivariate ANOVA (PERMANOVA) was used to determine statistically significant 

(p ≤ 0.05) groupings between sample groups and similarity percentages (SIMPER) along with cluster 

analysis was used to determine similarity within groups and dissimilarity among groups. Homogeneity of 

multivariate dispersions (PERMDISP) was tested and, when necessary, data were square root 

transformed prior to analysis to meet the assumption of homogeneity of multivariate dispersion. All 

multivariate statistical tests including transformations were completed using Primer 7 with the 

PERMANOVA+ package (ver. 7.0.13, Quest Research Limited). All data are shown as average ± 1 
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standard error, unless stated otherwise. Proportions (%) of diatom and macroalgal FAs markers 

identified based on principal coordinates analysis (PCoA) and SIMPER analysis were used to separate 

combined diatom/macroalgal estimates from stable isotope mixing models, e.g. 

𝐷𝑖𝑎𝑡𝑜𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑥 (
𝐷𝑖𝑎𝑡𝑜𝑚 𝐹𝐴𝑠

𝐷𝑖𝑎𝑡𝑜𝑚 𝐹𝐴𝑠 + 𝑀𝑎𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑙 𝐹𝐴𝑠
). 

2.3.0 Results 

2.3.1 Endmember biomarker identification and isotopic signatures 

 Of the top five FAs driving within group similarity, all marine endmembers (zooplankton and 

macroalgae) contained some essential FAs (20:5ω3, 22:6 ω3, and 20:4ω6), while vascular plant 

endmembers did not (Table 2.1). Major FAs responsible for similarity among the three macroalgae 

species were 18:1ω9 and the essential FA arachidonic acid (20:4ω6), while 18:2ω6 and 18:3ω3 drove 

similarity between vascular plant sources (S. alterniflora and oak leaves). The essential FAs, 20:5ω3 and 

22:6ω3, both contributed to the within group similarity of <100 µm POM (15%) and zooplankton (34%). 

For most consumers, due to the lack of essential FAs vascular plant detritus will be of lower nutritional 

value.  
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Table 2.1. Endmember biomarkers. Proportion of fatty acids (%) and contribution to similarity (%) 
between samples of <100 µm particulate organic matter (POM), zooplankton, Saccharina latissima, 
Ascophyllum nodosum, Chondrus crispus, oak leaves and Spartina alterniflora from Saco Bay, Maine 
USA, throughout 2016 and 2017. 
 

Group Fatty acid Average abundance 
(% Fatty acids) 

Contribution to similarity 
(%) 

<100 µm POM 16:0 18 24 
(61% average similarity) 16:1ω7 9 10 
 22:6ω3 8 9 
 20:5ω3 7 8 
 14:0 6 6 

Zooplankton 22:6ω3 19 19 
(80% average similarity) 16:0 16 18 
 20:5ω3 15 16 
 16:1ω7 9 8 
 14:0 7 7 

S. latissima 20:4ω6 18 19 
(84% average similarity) 16:0 12 14 
 20:5ω3 13 14 
 18:4ω3 11 10 
 18:1ω9 9 8 

A. nodosum 18:1ω9 34 35 
(90% average similarity) 20:4ω6 11 12 
 16:0 11 11 
 14:0 10 10 
 20:5ω3 8 8 

C. crispus 20:5ω3 26 26 
(89% average similarity) 16:0 23 25 
 16:1ω7 9 9 
 20:4ω6 7 7 
 18:1ω9 6 5 

S. alterniflora 18:3ω3 38 40 
(81% average similarity) 18:2ω6 19 21 
 16:0 17 20 

Oak 22:2 26 28 
(75% average similarity) 18:3ω3 16 20 
 16:0 11 14 
 18:2ω6 5 6 
 24:0 4 4 
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Separating diatom and macroalgal endmembers is difficult because, in addition to similarities 

between δ13C and δ15N values, many of the principal FAs for macroalgae identified by SIMPER are shared 

with diatoms and dinoflagellates (Parrish et al., 2005; Pepin et al., 2011; Parrish, 2013). Of the top five 

FAs contributing to similarity between macroalgal species, 20:5ω3 and 16:1ω7 have been used as 

markers for diatoms while 18:1ω9 and 18:4ω3 have been used as dinoflagellate markers (Parrish et al. 

2005; Pepin et al. 2011; Parrish 2013). The only FA that appeared in the top five FAs for each species of 

macroalgae that has not been used as either a diatom or dinoflagellate marker is the essential FA 

20:4ω6, which has been previously described as a marker for red algae and kelp (Kelly et al. 2012; Kelly 

and Scheibling 2012; Parrish 2013). However, using a single essential FA as a biomarker is not ideal. 

 Reflecting its high lability, 20:4ω6 made up only a very small proportion of the FAs (0 to 0.9%) in 

<100 µm POM. Additionally, as an essential FA, it will quickly be absorbed by other organisms leading to 

difficulties in using it alone as a biomarker. To determine if there were other suitable FA biomarkers for 

macroalgae, the FA profile of all three species sampled in this study were compared to literature values 

for dinoflagellates (Nichols et al. 1984; Mansour et al. 1999; Leblond and Chapman 2000; Mansour et al. 

2003) using PCoA and SIMPER analysis. The PCoA grouped the macroalgal species together based on 

20:4ω6, 20:4ω3, 20:2ω6, 18:1ω9 and 18:3ω6 while dinoflagellates were separated based on 22:6ω3, 

with 18:2ω6 and 18:3ω3 separating out vascular plant sources (Figure 2.2). Of the identified FAs only 

20:4ω6 and 18:1ω9 consistently appeared in SIMPER analyses as showing dissimilarity among the three 

macroalgae species and literature values for dinoflagellates. Each FA was present in higher proportions 

in macroalgae (20:4ω6: 13.0 ± 0.2%, 18:1ω9: 20.0 ± 0.5%) than dinoflagellates (20:4ω6: 0.1 ± 0.01%, 

18:1ω9: 3.4 ± 0.1%) and together they explained 18% of the dissimilarity among the groups. In 

particular, A. nodosum had high proportions of 18:1ω9 (33.6 ± 0.3%). Although 20:2ω6, 20:4ω3 and 

18:3ω6 helped separate macroalgae from dinoflagellates in PCoA, and not in the results from SIMPER, 

they have potential as biomarkers for macroalgae. All three FAs (20:2ω6, 20:4ω3 and 18:3ω6) are 
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precursors to essential FAs, 20:2ω6 and 18:3ω6 are precursors to 20:4ω6 and 20:4ω3 is a precursor to 

20:5ω3 (Nichols and Appleby 1969; Gurr and James 1980; Khozin et al. 1997; Bergé and Barnathan 2005; 

Kelly and Scheibling 2012). All three FAs (20:2ω6, 20:4ω3 and 18:3ω6)  have also been previously used 

as algal or macroalgal markers (Kharlamenko et al. 1995; Kelly and Scheibling 2012; Parrish 2013). 

 

Figure 2.2. Principal coordinates analysis of fatty acid profiles. Contains three macroalgae species 
(Ascophyllum nodosum, Saccharina latissima and Chondrus crispus), terrestrial endmembers (Spartina 
alterniflora and oak leaves) and dinoflagellates (Nichols et al., 1984; Mansour et al., 1999, 2003; Leblond 
and Chapman, 2000). 
 
 There were distinct differences in the isotopic composition of most endmembers (Table 2.2). 

The isotopic composition of vascular plants (S. alterniflora and oak) was distinctly different from one 

another and marine endmembers. Spartina alterniflora was heaviest in terms of δ13C (-13.3 ± 0.1 ‰), 

while oak was isotopically the lightest (-30.5 ± 0.2 ‰). In contrast, although macroalgae were distinct 
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from vascular plants, all three macroalgal species had similar δ13C values (A. nodosum: -19.0 ± 0.1 ‰, S. 

latissima: -18.1 ± 0.1 ‰, C. crispus: -19.6 ± 0.1 ‰). Zooplankton were isotopically lighter than 

macroalgae in terms of δ13C (-21.3 ± 0.1 ‰) but were more enriched in δ15N than any other endmember 

(8.6 ± 0.1 ‰). Although the δ13C of <100 µm POM resembled marine sources (-19.4 ± 0.1 ‰), owing to 

its varied nature POM δ13C values had a wide range of values (-12 to -25 ‰). 

Table 2.2. Endmember isotopic composition (δ13C and δ15N). Contains particulate organic matter (<100 
and >100 µm) and all endmembers (zooplankton, macroalgae, and vascular plants) collected from Saco 
Bay, Maine USA, throughout 2016 and 2017.  

 δ13C (‰)  δ15N (‰) 
Endmember Average St. dev. St. error  Average St. dev. St. error 

Particulate organic matter        
<100 µm POM -19.4 3.7 0.1  7.0 2.8 0.1 
>100 µm POM -21.9 1.5 0.1  8.1 0.9 0.1 

Marine        
Zooplankton -21.3 1.5 0.1  8.6 1.3 0.1 
A. nodosum -19.0 1.5 0.1  5.6 1.1 0.1 
S. latissima -18.1 2.5 0.1  5.6 0.9 0.1 
C. crispus -19.6 2.1 0.1  4.6 0.4 0.1 

Vascular plants        
S. alterniflora -13.3 1.1 0.1  2.8 3.4 0.1 
Oak -30.5 1.2 0.2  -2.6 0.6 0.1 

 
2.3.2 Seasonal trends 
 
2.3.2.1 Late spring to early summer (May and June)  
 
 The late spring and early summer season of Saco Bay were characterized by high nutrient 

(Figure 2.3) and low chlorophyll-ɑ concentrations (Figure 2.4). The highest concentrations of dissolved 

organic nitrogen (DON; 46.7 ± 0.3 µM N) and dissolved inorganic nitrogen (DIN; 6.3 ± 0.2 µM N) occurred 

during May and decreased throughout June. Chlorophyll-ɑ concentrations were at their lowest (<0.1 µg 

l-1) in late spring and early summer. Although chlorophyll-ɑ concentrations were low, there was an 

elevated concentration of phaeopigments (1.6 µg l-1) during May 2017, likely the tail-end of the spring 

bloom. Cillates were the most abundant phytoplankton (28.8 ± 0.9 µg C l-1) during the May to June 

period, followed by dinoflagellates (10.6 ± 0.3 µg C l-1) and then diatoms (1.1 ± 0.1 µg C l-1) based on 

FlowCam biomass estimates (Figure 2.5).   
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Figure 2.3. Concentration of dissolved nutrients. Concentration (µM) of dissolved organic nitrogen 
(DON), inorganic nitrogen (NO3

- and NO2
-), ammonium (NH4

+) and silica (Si) within Saco Bay, Maine USA, 
throughout 2016. Error bars represent ± 1 standard error. 
 

 

Figure 2.4. Chlorophyll-ɑ and phaeopigment concentrations (µg l-1). Measured in Saco Bay, ME USA, 
throughout 2016 and 2017. Error bars represent ± 1 standard error. 
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Figure 2.5. Selected components of the plankton community composition in Saco Bay, ME USA, 

throughout 2016. (a) Biomass (µg C l-1) of diatoms, dinoflagellates, and ciliates. (b) Volume (mm3 l-1) of 

centric diatoms, pennate diatoms, and zooplankton. Error bars represent ± 1 standard error. 
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Low phytoplankton abundances led to proportionally larger contributions of macroalgal 

(18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3 and 20:4ω6) and vascular plant FAs (18:2ω6 and 18:3ω3) to <100 µm 

POM. The concentration of diatom FAs (16:1ω7, 16:4ω1 and 20:5ω3) during June was 0.3 µg l-1 and 

comprised 7.9 to 11.9% of <100 µm POM FAs (Figure 2.6 and 2.7), while the concentration of 

dinoflagellate FAs (22:6ω3 and 18:4ω3) ranged from 0.2 to 1.2 µg l-1 and comprised 9.9 to 10.9 % of 

POM FAs (Figure 2.6 + 2.7).  Although the concentrations of macroalgal (0.2 to 1.2 µg l-1) and vascular 

plant (0.1 to 0.9 µg l-1) FAs were not significantly elevated compared to other seasons, their proportional 

contribution to <100 µm POM FAs was higher than any other time-period (Figure 2.6 + 2.7). Stable 

isotope modeled estimates of endmember contributions to <100 µm POM corroborated the largest 

proportional contributions of macroalgal and oak detritus during June (Figure 2.8). Additionally, SELORG 

comprised only a small proportion (<13%) of POM during early summer corroborating low 

phytoplankton contributions to POM (Figure 2.9). 

Larger proportional contributions of macroalgal detritus during late spring and early summer 

resulted in higher ratios of 20:4ω6-to-20:5ω3 and 22:6ω3. The highest ratio of 20:4ω6-to-20:5ω3 (0.21 ± 

0.06) occurred during June 2017, while the highest ratio of 20:4ω6-to-22:6ω3 (0.25 ± 0.04) occurred in 

April 2017. Although the ratio of 20:4ω6-to-20:5ω3 and 22:6ω3 were lower in 2016, they were still 

higher in May and June than any other season (Figure 2.10). All three species of macroalgae had large 

proportions of 20:4ω6 (7 to 18 %) which led to the incorporation of 20:4ω6 as a biomarker for 

macroalgae (Table 2.1). Although pennate diatoms can also be sources of 20:4ω6, the ratio of 20:4ω6 to 

another diatom biomarker (16:1ω7) was elevated in late spring and early summer (Figure 2.10). 

Additionally, the ratio of another macroalgal marker (18:1ω9) to 16:1ω7 was also elevated (Figure 2.10) 

suggesting 20:4ω6 was from macroalgal detritus and not diatoms.
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Figure 2.6. Percentage of biomarker fatty acids in particulate organic matter. Proportions (%) of fatty acids in <100 µm particulate organic matter 
from Saco Bay, Maine USA, throughout 2016 and 2017. (a) Diatom markers (16:1ω7, 16:4ω1 and 20:5ω3). (b) Macroalgal markers (18:1ω9, 
18:3ω6, 20:2ω6, 20:4ω3 and 20:4ω6). (c) Dinoflagellate markers (22:6ω3 and 18:4ω3). (d) Zooplankton markers (Σ20:1 and Σ22:1). (e) Vascular 
plant markers (18:2ω6 and 18:3ω3). (f) Bacterial markers (iso, anteiso and odd-chain FAs). Error bars represent ± 1 standard error. 
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Figure 2.7. Concentration of biomarker fatty acids in particulate organic matter. Concentrations (µg l-1) of fatty acids in <100 µm particulate 
organic matter from Saco Bay, Maine USA, throughout 2016 and 2017. (a) Diatom markers (16:1ω7, 16:4ω1 and 20:5ω3). (b) Macroalgal markers 
(18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3 and 20:4ω6). (c) Dinoflagellate markers (22:6ω3 and 18:4ω3). (d) Zooplankton markers (Σ20:1 and Σ22:1). (e) 
Vascular plant markers (18:2ω6 and 18:3ω3). (f) Bacterial markers (iso, anteiso and odd-chain FAs). Error bars represent ± 1 standard error. 
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Figure 2.8. Comparison of model estimates and fatty acid biomarkers. Dual-isotope (δ13C and δ15N) Bayesian mixing model endmember 
contributions (%) to <100 µm particulate organic matter within Saco Bay, Maine USA, throughout 2016 and 2017 in comparison to measured 
fatty acid biomarkers. Modeled estimates are shown as mean, minimum, and maximum contributions of 95% Bayesian credibility intervals, while 
fatty acid data are shown as average ± 1 standard error. (a) Diatom. (b) Dinoflagellates. (c) Macroalgae. (d) Zooplankton. (e) S. alterniflora. (f) 
Oak. 
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Figure 2.9. SELORG and REMORG concentrations. Particulate organic matter (POM) concentrations 
within Saco Bay, Maine USA, throughout 2016 and 2017. (a) Total POM, selected organic matter 
(SELORG), and remaining organic matter (REMORG) concentrations (mg l-1). (b) Proportion of POM 
composed of SELORG (%), assuming a C:Chl of 50. Data shown are average ± standard error. 
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Figure 2.10. Ratios of biomarker fatty acids in particulate organic matter. The ratio (% %-1) of 20:4ω6-to-

20:5ω3 and 22:6ω3 (a), the ratio of 20:4ω6-to-16:1ω7 (b), and the ratio of 18:1ω9-to-16:1ω7 in <100 

µm particulate organic matter within Saco Bay, Maine USA, throughout 2016 and 2017. 
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2.3.2.2 Summer (July and August) 

 Phytoplankton productivity in Saco bay increased throughout the summer months. While 

chlorophyll-ɑ concentrations were still low (<0.8 µg l-1) during summer months, they were elevated 

compared to May and June (<0.1 µg l-1; Figure 2.4). Although chlorophyll-ɑ concentrations increased 

during the summer, SELORG still comprised only a small proportion (<18%) of POM (Figure 2.9).  

Increases in chlorophyll-ɑ concentrations were accompanied by increases in the concentration of diatom 

and dinoflagellate FAs as well as increases in the proportional contribution of diatom and dinoflagellate 

FAs to <100 µm POM FAs (Figure 2.6 and 2.7). Increases in the proportional contribution of diatoms 

throughout the summer to <100 µm POM was corroborated by increases in diatom and decreases in 

macroalgal and oak detritus contributions based on isotope model estimates (Figure 2.8). Additionally, 

the maximum biomass productivity (Pmax) increased throughout the summer, increasing from 10.0 ± 1.6 

µg C-1 d-1 in June until reaching a maximum of 116.1 ± 8.4 µg C-1 d-1 at the end of August. 

Although dinoflagellates were the most abundant phytoplankton, diatoms became increasingly 

abundant throughout the summer. Dinoflagellates (3.1 to 17.5 µg C l-1) were more abundant during 

summer months than diatoms (0.9 to 4.9 µg C l-1) and ciliates (0.6 to 6.0 µg C l-1; Figure 2.5). There was a 

slow increase in the biomass of diatoms between July (1.1 ± 0.4 µg C l-1) and August (4.9 ± 0.4 µg C l-1; 

Figure 2.5). Increases in diatom biomass were corroborated by increases in diatom FA indices (16:1-to-

16:0 and ΣC16-to-ΣC18) and a decrease in the ratio of 22:6ω3-to-20:5ω3 (Figure 2.11), which has been 

used to indicate dinoflagellate dominance (Pepin et al., 2011). Although generally centric diatoms were 

more prevalent than pennate diatoms, there was an increase in pennate diatoms during July based on 

FlowCam volumes (Figure 2.5). 

Increased productivity of phytoplankton during summer months was likely due to nutrient 

availability. Although there was a general trend of decreasing nutrient concentrations throughout the 

summer, there was a relative increase in nutrient concentrations in early July (DON: 29.8 ± 2.7 µM N, Si: 
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8.7 ± 1.0  µM) compared to June (DON: 23.0 ± 0.4 µM N, Si: 2.6 ± 0.5 µM; Figure 2.3). Accompanying the 

increases in nutrient availability there was an increase in the C16 PUFA ratio (Figure 2.11). The C16 PUFA 

ratio ([16:2ω4 +16:3ω4 + 16:4ω3 + 16:4ω1] to [16:0 + 16:1ω7 + 16:1ω5 + 16:2ω4 + 16:3ω4 +16:4ω3 

+16:4ω1]) is a measure of diatom physiological status. The C16 PUFA ratio was highest (19.3 ± 2.3) 

towards the beginning of July, suggesting fresh phytoplankton. In addition, the ω3 and PUFA content of 

<100 µm POM also increased and were at their highest (33.7 ± 0.9 % and 42.5 ± 0.6 % respectively) 

during July, again suggesting fresh phytoplankton (Figure 2.11). The proportion of free-fatty acids (FFA), 

a lipid breakdown indicator, also increased from 7.5 ± 1.5 % to a maximum of 16.6 ± 0.9 % throughout 

the summer. In conjunction with the proportion of FFAs, the lipolysis index (LI: [(FFA + alcohols) (acyl 

lipids + alcohol)-1]), which shows the breakdown of total acyl lipids (Parrish, 1998), increased from 8.8 ± 

0.8 % in mid-June to 22.8 ± 1.4 in late August, suggesting that degradation of organic material may be 

behind the increased nutrient concentrations. The proportion of FFA and diatom FAs were both 

positively correlated (p = 0.03, R2 = 0.11 and p < 0.001, R2 = 0.24 respectively) with the δ15N of <100 µm 

POM (Figure 2.12). The highest δ15N occurred in August, suggesting the possibility of isotopically heavy 

anthropogenic nitrogen (Figure 2.12). In addition, the proportion of diatom FAs was positively correlated 

(p < 0.001, R2 = 0.35) with the proportion of FFA (Figure 2.12c). 
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Figure 2.11. Summary of particulate organic matter fatty acids. Proportions (%) of fatty acids in <100 µm particulate organic matter from Saco 
Bay, Maine USA, throughout 2016 and 2017. (a) Proportion of ω3 and polyunsaturated fatty acids (PUFA). (b) Diatom (16:1/16:0, Σ16/Σ18) and 
dinoflagellate (22:6ω3/20:5ω3) indices. (c) C16 PUFA ratio (16:2ω4 +16:3ω4 + 16:4ω3 16:4ω1 to 16:0 + 16:1ω7 + 16:1ω5 + 16:2ω4 + 16:3ω4 
+16:4ω3 +16:4ω1). (d) Proportion of essential fatty acids (20:4ω6, 20:5ω3, and 22:6ω3). Error bars represent ± 1 standard error. 
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Figure 2.12. Particulate organic matter δ15N regressions. Significant (p < 0.05) regressions between δ15N 

(logit(‰)) and the proportion of (a) diatom FAs (16:1ω7, 16:4ω1 and 20:5ω3; logit(%)), (b) free fatty 

acids (FFA; logit(%)), and between (c) diatom FAs and FFA in <100 µm particulate organic matter from 

Saco Bay, Maine USA, throughout 2016 and 2017. Center lines of boxplot represent median, box height 

is interquartile range, error bars represent first and third quartile, box width represents coefficient of 

variation, and black circles represent outliers. 
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2.3.2.3 Fall (September to November) 

 Saco Bay experienced a large phytoplankton bloom throughout the fall due to the breakdown of 

stratification in the bay. The highest chlorophyll-ɑ and phaeopigment concentrations (12.1 ± 3.9 µg l-1 

and 14.7 ± 5.1 µg l-1 respectively) recorded for the bay occurred in late September (Figure 2.4). High 

chlorophyll-ɑ concentrations resulted SELORG contributions (58.6 ± 1.0 %) to POM exceeding REMORG 

for the first time (41.4 ± 1.0 %; Figure 2.9).  Dinoflagellate and diatom biomasses also peaked during the 

fall (24.6 ± 3.1 µg C l-1 and 4.9 ± 0.4 µg C l-1 respectively; Figure 2.5). Coinciding with high biomasses, the 

concentrations of dinoflagellate (2.6 ± 0.3 µg l-1) and diatom (7.2 ± 1.1 µg l-1) FAs were also higher during 

fall than at any other period (Figure 2.7). The density difference between the surface and bottom water 

of the Bay decreased from 1.6 ± 0.5 kg m-3 to 0.6 ± 0.2 kg m-3 at the end of August which likely triggered 

the phytoplankton bloom formation. The concentration of chlorophyll-ɑ was significantly negatively 

correlated (p < 0.01, R2 = 0.35) with the density difference between the surface and bottom water of the 

bay (Figure 2.13).    
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Figure 2.13. Chlorophyll-ɑ and density regression. Significant (p < 0.01) regression between the 

chlorophyll-ɑ concentration (log(µg l-1)) and the density difference (kg m-3) between the surface and 

bottom water in Saco Bay, Maine USA, throughout 2016 and 2017. 

 Even during the fall bloom, dinoflagellates were the most abundant phytoplankton. Although 

the concentration of diatom FAs continued to increase until the chlorophyll-ɑ maxima in October, the 

proportion of diatom FAs was highest (26.7 ± 0.1 %) at the beginning of September and did not coincide 

with the chlorophyll-ɑ maxima (Figure 2.4 + 2.6). Corroborating that diatom’s proportional contribution 

to <100 µm POM was greatest at the beginning of September, both diatom indices (16:1-to-16:0 and 

ΣC16-to-ΣC18) reached their maxima (1.25 ± 0.1 and 3.7 ± 0.1 respectively) in August and at the 

beginning of September (Figure 2.11). Additionally, the 22:6ω3-to-20:5ω3 ratio was the lowest (1.3 ± 

0.1) at the beginning of September and increased rapidly as the bloom progressed towards the 

chlorophyll-ɑ maxima (Figure 2.11). Dinoflagellates were also more abundant (24.6 ± 3.1 µg C l-1) than 

diatoms (1.9 ± 0.1 µg C l-1) during the fall based on FlowCam biomass estimates, which was true even at 

the beginning of September (17.5 ± 6.0 µg C l-1 and 4.9 ± 0.4 µg C l-1 respectively) when diatom’s 

proportional contribution to POM was highest (Figure 2.5). 
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 Large abundances of zooplankton were indicative of the fall bloom and zooplankton were 

important concentrators of lipid in the water column. The volume of zooplankton within Saco Bay was 

generally low (<0.1 mm3 l-1) but increased (0.2 ± 0.1 mm3 l-1) during the bloom (Figure 2.5). Like volume 

estimates, zooplankton FAs (Σ20:1 and Σ22:1) were also generally low (<1.0 µg l-1) before increasing to a 

maxima (13.3 ± 3.7 µg l-1) during the bloom (Figure 2.7). The proportion of zooplankton FAs was 

significantly positively correlated (p = 0.003, R2 = 0.53) with the chlorophyll-ɑ concentration of the bay 

(Figure 2.14a). The proportion of zooplankton FAs was also significantly positively correlated with the 

lipid concentration (p = 0.002, R2 = 0.55) of <100 µm POM (Figure 2.14b). 

Although phytoplankton and zooplankton FAs dominated the water column during the fall, the 

concentrations of detrital FAs in the water column were the same, or higher, than summer values. 

During the peak of the bloom when the concentrations of diatom, dinoflagellate, and zooplankton FAs 

were at their highest, the concentrations of vascular plant FAs and bacterial FAs were also high (Figure 

2.7). The concentration of vascular plant and bacterial FAs were both low at the start of September (0.3 

± 0.1 µg l-1 and 0.5 ± 0.1 µg l-1 respectively) and increased towards the end of the September and early 

October to their highest recorded concentrations (1.7 ± 0.7 µg l-1 and 2.1 ± 0.3 µg l-1, respectively). In 

addition, although there was no substantial increase during the bloom period, the concentration of 

macroalgal FAs in the water column during October (0.8 ± 0.1 µg l-1) was comparable to June (1.1 ± 0.2 

µg l-1) and August (0.9 ± 0.1 µg l-1; Figure 2.7).  

Although the proportion of SELORG increased during the bloom period, the concentration of 

REMORG also increased during the bloom. Like the proportion of phytoplankton FAs dominating POM 

FAs masking increases in the concentrations of detrital FAs, the concentration of REMORG in the water 

column increased from the beginning of September (0.3 ± 0.1 mg l-1) to a maximum in late September 

(2.3 ± 0.1 mg l-1) even as its proportional contribution decreased (84.6 ± 1.3 % to 41.4 ± 1.0 %; Figure 

2.9). It should also be noted, that although in this study we generally associated diatom and 
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dinoflagellate FAs with fresh phytoplankton, diatom and dinoflagellate biomarker FAs would also be 

present in phytodetritus. The REMORG concentration of <100 µm POM was positively correlated with 

macroalgal (p < 0.01, R2 = 0.19) and vascular plant FAs (p < 0.007, R2 = 0.21) as well as diatom (p < 0.001, 

R2 = 0.45), dinoflagellate (p = 0.003, R2 = 0.24), and zooplankton FAs (p < 0.001, R2 = 0.34), suggesting 

detrital material from all biomarker sources contributed to <100 µm POM (Figure 2.15a). In contrast, the 

proportion of macroalgal (p = 0.01, R2 = 0.21), vascular plant (p = 0.02, R2 = 0.16), and detrital FAs 

(18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3 and 20:4ω6, 18:2ω6 and 18:3ω3, iso, anteiso, odd-chained; p = 0.01, 

R2 = 0.20) were negatively correlated with the concentration of REMORG, suggesting that when 

REMORG is low (e.g. outside of bloom periods) there is proportionally more macroalgal and vascular 

plant detrital material (Figure 2.15b).  

The δ13C of <100 µm POM became isotopically heavier during the fall bloom due to a 

combination of diatoms and vascular plant (i.e. S. alterniflora) detritus. The δ13C of <100 µm POM 

became isotopically heavier during the fall phytoplankton bloom, increasing from -19.1 ± 0.1 ‰ at the 

beginning of September to a maximum of -13.8 ± 0.2 ‰ in October, which coincided with concentration 

increases in diatom and vascular plant FAs. The δ13C of <100 µm POM was significantly positively 

correlated with the concentrations of both diatom (p < 0.01, R2 = 0.21) and vascular plant FAs (p < 0.05, 

R2 = 0.12; Figure 2.16). Additionally, the δ13C of <100 µm POM was significantly positively correlated 

with the concentration of zooplankton FAs (p < 0.001, R2 = 0.56), presumably due to zooplankton grazing 

on diatoms and vascular plant detritus (Figure 2.15). 
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Figure 2.14. Zooplankton biomarker fatty acid regressions. Significant (p < 0.01) regressions between 

zooplankton fatty acids (logit(%)), the chlorophyll-ɑ concentration (log(µg l-1);a), and the lipid 

concentration (log(µg l-1);b) of <100 µm particulate organic matter from Saco Bay, Maine USA, 

throughout 2016 and 2017. 
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Figure 2.15. REMORG regressions. Significant ( p < 0.05) regressions among the REMORG concentration 

(log(mg l-1)) and the (a) concentration (log(µg l-1)) and (b) proportion (logit(%)) of endmember biomarker 

fatty acids in <100 µm particulate organic matter from Saco Bay, Maine USA, throughout 2016 and 2017. 

Diatoms (16:1ω7, 16:4ω1 and 20:5ω3), dinoflagellate (22:6ω3 and 18:4ω3), zooplankton (Σ20:1 and 

Σ22:1), macroalgal (18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3 and 20:4ω6), vascular plant (18:2ω6 and 18:3ω3), 

and detrital (18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3 and 20:4ω6, 18:2ω6 and 18:3ω3, iso, anteiso, odd-

chained). 
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Figure 2.16. Fatty acid biomarker and particulate organic matter δ13C (‰) regressions. Significant (p < 

0.05) regressions between δ13C (‰) and concentration (log(µg l-1)) of endmember fatty acid biomarkers 

in <100 µm particulate organic matter from Saco Bay, Maine USA, throughout 2016 and 2017. Diatoms 

(16:1ω7, 16:4ω1 and 20:5ω3), zooplankton (Σ20:1 and Σ22:1), and vascular plants (18:2ω6 and 18:3ω3). 

2.4.0 Discussion 

2.4.1 POM composition 

 For a consumer in Saco Bay, most (38.4 ± 0.1%) of the lipids and FAs present in <100 µm POM 

were associated with phytoplankton and zooplankton. Diatom, dinoflagellate, and zooplankton 

contributed more to <100 POM than detrital sources based on FAs and isotope modeled estimates 

(Figure 2.8). Although they comprised a smaller proportion (17.3 ± 0.1%), detrital sources did contribute 

to the available pool of lipids and FAs in <100 µm POM (Figure 2.6 and 2.7). The positive correlations 

between REMORG and all endmember biomarker FAs suggests that detrital material from all 

endmembers contributed to <100 µm POM (Figure 2.15a). However, the negative correlations between 

REMORG and the proportion of macroalgal, vascular plant, and detrital FAs suggests that these detrital 

sources become more important contributor’s to POM as REMORG concentrations decrease (Figure 
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2.15b). As the highest concentrations of REMORG coincide with the fall phytoplankton bloom (Figure 2.4 

and 2.9a), this suggests that macroalgal and vascular plant detritus would likely be more important to 

consumers during non-bloom periods as supplemental food-sources.   

Based on FA composition, POM in Saco Bay can be broken down into two general categories; 

marine POM (phytoplankton, zooplankton, and macroalgal detritus) and vascular plant detritus (salt 

marsh and terrestrial plant). The difference between marine and vascular plant POM for consumers was 

the presence of essential FAs. While marine detritus is expected to contain some amounts of essential 

FAs, in varying concentrations depending on the source, vascular plant detritus lacks essential FAs and is 

instead rich in 18:2ω6 and 18:3ω3 (Table 2.1). The distinction between the FAs of marine and vascular 

plant detritus is not surprising, it has long been known that vascular plants from marshes and terrestrial 

sources are poor sources of essential FAs (Phillips, 1984). Due to the differences in their FA 

compositions, marine and vascular plant detritus offer very different opportunities for consumers. 

 Although 20:5ω3, 22:6ω3, and 20:4ω6 are considered essential FAs for many consumers, 

because they lack the ability to synthesize them de novo (Sargent et al., 1999; Hall et al., 2006; Kelly and 

Scheibling, 2012), some invertebrate consumers possess the enzymes required to chain elongate and 

desaturate 18:2ω6 and 18:3ω3 into 20:5ω3, 22:6ω3, and 20:4ω6 (Waldock and Holland, 1984; Bell et al., 

2001; Troch et al., 2012; Da Costa et al., 2015). For consumers unable to synthesize 20:5ω3, 22:6ω3, and 

20:4ω6 from precursors, these FAs are considered essential nutrients (they must be obtained in their 

diet) whereas they are only essential metabolites for consumers able to synthesize them from 

precursors (Parrish, 2009). Copepods can elongate 18:3ω3 into 20:5ω3 and 22:6ω3 as well as 18:2ω6 

into 20:4ω6 (Norsker and Støttrup, 1994; Nanton and Castell, 1998; Stottrup, 2000; O’Keefe, 2002; 

Troch et al., 2012). Additionally the Pacific oyster, Crassostrea gigas, is able to elongate 18:3ω3 into 

20:5ω3 (Waldock and Holland, 1984; Da Costa et al., 2015).. Consumers able to synthesize metabolically 

essential FAs (20:5ω3, 22:6ω3, and 20:4ω6) using their precursors (18:2ω6 and 18:3ω3) will be able to 
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more readily take advantage of vascular plant detritus than those that cannot. By being able to exploit 

vascular plant detritus a consumer will have more avenues available to obtain metabolically required 

FAs. Consumers physiologically capable of exploiting vascular plant detritus will likely benefit from 

reduced competition, by being less reliant on ephemeral phytoplankton to obtain metabolically 

essential FAs. 

 Like other marine POM, macroalgal detritus contains metabolically essential FAs (20:5ω3 and 

20:4ω6) which would be available to consumers lacking the elongase and desaturase enzymes. 

Macroalgae were potentially an important means for consumers to obtain both 20:4ω6 (7 to 18%) and 

20:5ω3 (8 to 26%). Macroalgal FAs comprised the largest proportion of <100 µm POM during May and 

early June, a time when phytoplankton FAs were low (Figure 2.6). Due to the abundance of 20:4ω6 in 

macroalgae, proportionally larger contributions of macroalgal detritus led to higher ratios of 20:4ω6-to-

20:5ω3 and 22:6ω3 (Figure 2.10).  Overall macroalgal detritus was less abundant than phytoplankton 

based on both FAs and stable isotopes (Figure 2.8); however, its consistent presence in <100 µm POM 

offered a potential avenue for consumers to obtain additional 20:4ω6 and 20:5ω3, especially during 

spring/early summer.  

However, unlike phytoplankton and zooplankton, macroalgae contain large amounts of ANFs in 

the form of secondary metabolites (Haddad et al., 1992) and difficult to digest structural material 

(Schiener et al., 2017). Both secondary metabolites and refractory structural material, such as cellulose 

and lignin’s, are potential barriers barring consumers from accessing the essential FAs in macroalgal 

detritus. These barriers set macroalgal detritus apart from other marine POM, but like vascular plant 

detritus, macroalgal detritus can become an alternative source of metabolically essential FAs for 

consumers capable of digesting it. It should be noted that vascular plant detritus also contains ANFs in 

the form of secondary metabolites and refractory structural carbohydrates (Newell and Langdon, 1986; 

Haddad et al., 1992). So, for a consumer to obtain metabolically essential FAs from vascular plant 
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detritus they would need to possess elongase and desaturase enzymes and be capable of dealing with 

ANFs. As such, vascular plant detritus is likely the most difficult avenue to obtain metabolically essential 

FAs.    

 Although macroalgae were an abundant source of 20:4ω6, pennate diatoms could also 

contribute 20:4ω6 to the water column. Arachidonic acid (20:4ω6) is present in moderate proportions (2 

to 6%) in some pennate diatoms (Dunstan et al., 1994). Although centric diatoms were more prevalent 

in Saco Bay, pennate diatoms were at times present in the water column and could have been a source 

of 20:4ω6 (Figure 2.5). A well-known FA biomarker for diatoms is 16:1ω7 (Parrish, 2013), and because of 

their higher proportion of 20:4ω6, pennate diatoms (0.01 to 0.25) have a higher ratio of 20:4ω6-to-

16:1ω7 than centric diatoms (0.01 to 0.07; Dunstan et al., 1994). With higher proportional abundances 

of 20:4ω6 and lower proportional abundances of 16:1ω7 than pennate diatoms, macroalgae have an 

even higher ratio of 20:4ω6-to-16:1ω7 (A. nodosum: 6.8 ± 0.1, S. latissima: 4.8 ± 1.3, C. crispus: 0.8 ± 

0.1). In this study, 18:1ω9 was an abundant FA in macroalgae (especially A. nodosum) which led to its 

use as a biomarker (Table 2.1). By comparing the ratio of the macroalgal marker 18:1ω9 to the diatom 

marker 16:1ω7 we can estimate whether there were macroalgae or diatom FAs present in the water 

column. The ratio of 18:1ω9-to-16:1ω7 is low in both centric (0.01 to 0.43) and pennate (0.01 to 0.27) 

diatoms (Dunstan et al., 1994), while the ratio of 18:1ω9-to-16:1ω7 is much higher in macroalgae (A. 

nodosum: 20.1 ± 0.4, S. latissima: 2.4 ± 0.1, C. crispus: 0.6 ± 0.1). As such, when both the ratio of 20:4ω6-

to-16:1ω7 and 18:1ω9-to-16:1ω7 increase it is indicative of macroalgal material, whereas when only the 

ratio of 20:4ω6-to-16:1ω7 increases it likely due to pennate diatoms. In the current study, both  20:4ω6-

to-16:1ω7 and 18:1ω9-to-16:1ω7 are elevated in late spring and early summer corroborating the 

presence of macroalgal detritus in the water column, while in the fall only the ratio of 20:4ω6-to-16:1ω7 

increased suggesting pennate diatoms were the source of 20:4ω6 (Figure 2.10). 
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Both FlowCam and FA biomarker analysis demonstrated that dinoflagellates dominated Saco 

Bay, followed by centric diatoms and then pennate diatoms. The biomass of dinoflagellates was always 

greater than that of diatoms (Figure 2.5) and the ratio 22:6ω3-to-20:5ω3 was always ≥1 (Figure 2.11b). 

Based on cell counts, dinoflagellates have previously been reported to be the dominant phytoplankton 

in the Gulf of Maine (Bigelow, 1926; Marshall, 1984; Fry and Wainright, 1991). Centric diatoms were 

always more prevalent than pennate diatoms (Figure 2.5). Dinoflagellates predominantly contain 

22:6ω3 and diatoms predominantly contain 20:5ω3 (Budge and Parrish, 1998), while 20:4ω6 is lacking in 

most dinoflagellates (Nichols et al., 1984; Mansour et al., 1999, 2003; Leblond and Chapman, 2000) and 

only present in some pennate diatoms (Dunstan et al., 1994). Reflecting the dominance of 

dinoflagellates followed by centric diatoms, 22:6ω3 (8.6 ± 0.1%) was the most abundant metabolically 

essential FA in POM, followed by 20:5ω3 (7.0 ± 0.1%), while there was relatively little 20:4ω6 (0.3 ± 

0.1%; Figure 2.11d). Although each individual consumer will have different essential FA requirements, 

based on only their abundance we would expect 20:4ω6 to be the most limiting essential FA, followed 

by 20:5ω3, both of which are present in macroalgae. 

Macroalgal detritus consistently contributed to <100 µm POM, likely because macroalgal 

detritus can arise from a variety of vectors (blade erosion, gamete release, and epithelial shedding), 

which vary seasonally. Fucoid algae such as A. nodosum are known to release gametes during April and 

May in estuaries and during June for open coastlines like Saco Bay (Keser and Foertch 1982; Milan Keser 

and Larson 1984). The temperature range of the bay during early June was within the range reported (6 

to 15 °C) for A. nodosum gamete release (Bacon and Vadas, 1991). Saccharina latissima releases spores 

slightly earlier in the year during May (Lee and Brinkhuis, 1986). Macroalgal gametes could also have 

contributed to POM during fall since S. latissima is known to produce sorus (gamete producing) material  

in the fall (Lee and Brinkhuis, 1986; Egan and Yarish, 1990). Both FA markers used for macroalgae 

(18:1ω9 and 20:4ω6) are present in S. latissima zoospores, especially 18:1ω9 which occurs in large 
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proportions (30 to 45%; Steinhoff et al. 2011) corroborating a gamete source of these FAs. Zoospores 

contain large amount of triacylglycerol’s in the form of lipid droplets (Brzezinski et al., 1993), which 

makes them an energy dense food source. Due to their unicellular nature (Steinhoff, 2012), macroalgal 

zoospores are presumably easier to digest than their parent material; however, zoospores do possess 

polyphenols (Steinhoff et al., 2011).     

Another likely source of macroalgal detritus is material eroded from blade tips. Erosion rates in 

macroalgae are positively correlated with temperature (Krumhansl and Scheibling, 2011, 2012). 

Increased concentrations of macroalgal FAs in late summer coincided with the warmest water 

temperatures in the bay. In addition to temperature, wave exposure has also been positively correlated 

with macroalgal erosion rates (Krumhansl and Scheibling, 2011, 2012), which could explain increases in 

macroalgal FAs during fall when the bay became more turbulent due to seasonal storms (Brown and 

Beardsley, 1978). Aside from increasing macroalgal detritus production via increased erosion rates, 

increased wave action may also simply resuspend settled macroalgal detritus and cannot be ruled out as 

the cause of increased macroalgae FA concentrations in the water column. Additionally, to combat 

epiphytes macroalgae, such as A. nodosum, periodically shed thin sheets of epithelial cells into the water 

column, representing about 1% of frond biomass per month (Halat et al., 2015), which could help 

explain the consistent low concentrations of macroalgal FAs. 

Like macroalgal detritus, vascular plant FAs were less abundant than phytoplankton FAs but 

were consistently present at low levels (Figure 2.7e). Unlike macroalgal detritus, vascular plant detritus 

may have contributed more to POM carbon and nitrogen (Figure 2.8e and f). Although our stable 

isotope mixing model estimation of S. alterniflora contributions are likely an overestimation, 

diatom/macroalgae and S. alterniflora were negatively correlated (R2 = -0.57) in the isotopic mixing 

model, so over-estimations of one would lead to reductions in the other. Some of the observed 

differences in measured FAs and stable isotope model estimates (Figure 2.8) could be explained by 



 

41 
 

natural processes. While FAs can distinguish between bacteria and other endmembers, mixing models 

cannot. Heterotrophic bacterial δ13C is similar to their substrate which can make it difficult to distinguish 

their contribution using traditional mixing models. Conversion of labile endmember material into 

bacterial biomass would thus lower their contributions to total FAs while showing little change in δ13C. 

Although this could explain some of the difference between isotope modeled estimates and measured 

FAs, the combined contributions of vascular plant FAs and bacterial FAs (10.4%) is still lower than the 

isotope model estimated contribution of vascular plants (25.4 ± 0.4%). Because many of the zooplankton 

within Saco Bay are omnivorous, it is also possible that consumption of vascular plant detritus by 

zooplankton, and consequent reworking into essential FAs, masked the contribution of vascular plants.  

The reworking of vascular plant FAs could partially explain why zooplankton FAs were highly 

positively correlated (R2 = 0.56) with the δ13C of <100 µm POM (Figure 2.16). However, diatoms were 

also positively correlated (R2 = 0.21) with the δ13C of <100 µm POM (Figure 2.16). Diatom δ13C values are 

known to become isotopically heavier during periods of rapid growth and nutrient limitation (Fry and 

Wainright, 1991; Fry, 1996), conditions which are both expected to occur towards the end of a bloom. 

Nutrient concentrations in the bay and the C16 PUFA ratio both corroborate that diatoms likely became 

nutrient limited as chlorophyll-ɑ concentrations reached their maxima at the beginning of October and 

POM δ13C became isotopically heavier (Figure 2.4 and 2.11c). The peak in chlorophyll-ɑ concentrations 

and isotopically heavy POM also coincided with increasing proportional contributions of dinoflagellates, 

an expected successional pattern following nutrient limitation in diatoms (Figure 2.6).  

Another possibility which could explain increases in POM δ13C is benthic diatom contributions. 

Salt marsh benthic microalgae have isotopically heavy δ13C (-13.0 ‰) and are important food sources for 

estuarine consumers (Currin et al., 1995). Microphytobenthos can contribute directly to the water 

column when resuspended and are commonly associated with pennate diatoms (Cahoon et al., 1992; 

MacIntyre et al., 1996). It is possible the pennate diatoms present in the water column during 
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September based on volume estimates and FA ratios were resuspended microphytobenthos (Figure 2.5 

and 2.10b). Turbidity within the bay increased throughout September and October (data not shown), 

suggesting there was likely increased re-suspension. Although re-suspended benthic diatoms could 

explain the increases in pennate diatoms and changes in the ratio of 20:4ω6-to-16:1ω7, the peak in 

pennate diatom abundance occurred during September and did not coincide with the isotopically 

heaviest POM δ13C in early October. As such, while re-suspended benthic pennate diatoms could explain 

some of the increases in POM δ13C, there were likely other contributing factors.  

Yet another possibility which could explain the isotopically heavier POM δ13C, is the presence of 

cyanobacteria. Like benthic diatoms, cyanobacteria are known to be isotopically heavy in δ13C (-14.5 to -

8.5 ‰) and are present in salt-marsh estuaries (Calder and Parker, 1973; Fry et al., 1982; Pulich and 

Scalan, 1987; Currin et al., 1995). In the present study, the abundance of the cyanobacterium 

Synechococcus spp. peaked during July (9.7 × 104 cells ml-1) and decreased until October (0.7 × 104 cells 

ml-1). If Synechococcus spp. was responsible for increases in POM δ13C, we would have expected their 

abundance to increase during the fall, not decrease, suggesting Synechococcus spp. was not responsible 

for the observed changes in POM δ13C. It should be noted, that the presence of isotopically heavy 

benthic diatoms or cyanobacteria within the water column at other times of the year, e.g. summer, 

could also partially explain the over-estimates of S. alterniflora contributions in our isotope model 

compared to measured FA biomarkers.  

Given the increased concentration of vascular plant FAs in the water column during October as 

well as the significant (R2 = 0.12) positive correlation between vascular plant FAs and POM δ13C (Figure 

2.16), albeit weaker than diatoms, it is unlikely that diatoms are solely responsible for the heavier δ13C 

of POM. Increases in fall contributions of S. alterniflora detritus to the water column are consistent with 

POM fluxes measured in other salt-marsh estuaries (Dame et al., 1986). Fall increases in vascular plant 
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FAs would also be consistent with the timing of post-flowering senescent S. alterniflora plants as well as 

the outwelling hypothesis (Odum, 1980; Crosby et al., 2015). 

2.4.2 Phytoplankton dynamics 

Saco Bay followed the classic northern temperate estuary spring/fall bloom cycle (Thomas et al., 

2003). Diatoms began to bloom in September and October when the bay became less stratified, the 

bloom timing is corroborated by FlowCam diatom biomass estimates (Figure 2.5b), chlorophyll-ɑ levels 

(Figure 2.4), the concentration and proportion of diatom FAs (Figure 2.6 and 2.7), reductions in silicate 

concentrations (Figure 2.3), and the negative correlation between chlorophyll-a and the surface-to-

bottom density difference (Figure 2.13). Chlorophyll-ɑ in Saco Bay was comparable to previously 

reported fall chlorophyll-ɑ maxima (Feurt et al., 2015). Phytoplankton blooms are known to occur during 

the spring (March to May) and fall (August to November) within the Gulf of Maine (Thomas et al., 2003) 

with diatoms comprising the majority of phytoplankton during the spring bloom (Townsend and Thomas 

2001).  

In contrast to diatoms, dinoflagellates commonly bloom during the summer and succeed diatom 

blooms in the Gulf of Maine when silicate levels fall and limit diatom growth (Townsend and Thomas 

2001; Townsend et al. 2005). Both our FlowCam biomass (Figure 2.5) estimates and dinoflagellates 

markers (22:6ω3 and 18:4ω3; Figure 2.6) indicate that dinoflagellates dominated the summer and post-

fall bloom assemblage. In addition, the 22:6ω3/20:5ω3 ratio (Figure 2.11b), an indicator of 

dinoflagellate dominance, was also elevated during these times. The C16 PUFA ratio first described by 

Shin et al. (2000) and later modified by Parrish et al. (2005) has been used as an indicator of the 

physiological status of diatoms. The low C16 PUFA ratio in early October 2016 corroborates nutrient 

limited diatoms as dinoflagellate abundance increased (Figure 2.11c). Nutrient limitation (nitrate, 

phosphate, and silica) is known to reduce the proportion of ω3 and PUFA in phytoplankton (Harrison et 

al. 1990; Sukenik and Wahnon 1991; Reitan et al. 1994; Parrish et al. 2005). Coinciding with the 



 

44 
 

relatively low C16 PUFA ratio in October, the proportions of PUFA and ω3 FAs were also low, 

corroborating that diatoms were nutrient limited (Figure 2.11a). Although the ratio of dinoflagellates-to-

diatoms decreased during the diatom bloom in the fall, the 22:6ω3/20:5ω3 ratio remained > 1 (Figure 

2.11b). The 22:6ω3/20:5ω3 ratio suggests dinoflagellates were the dominant phytoplankton even during 

the diatom bloom, a result corroborated by FlowCam estimates of dinoflagellate biomass (µg C l-1) which 

were greater than diatom estimates for almost all dates sampled (Figure 2.5). 

While the C16 PUFA ratio and proportions of PUFA and ω3 were low at the end of the 2016 fall 

bloom, they were elevated in July, a time when diatoms are generally nutrient limited (Townsend et al., 

2005). Nutrient concentrations within the bay were low in June; however, they increased in July 

coinciding with increases in diatom physiological status and marker (16:1ω7, 16:4ω1 and 20:5ω3) 

abundance increases (Figure 2.3, 2.6, and 2.7). Although diatom biomass within the bay was low during 

this period (Figure 2.5), the volume occupied by pennate diatoms was relatively high, suggesting their 

growth was driving the increase observed in FAs. Low precipitation, and thus river discharge, in July 

suggests that the increased nutrient input into the bay was due to other sources such as oceanic and 

local wastewater sources. Maine is a popular, summer tourist destination, attracting 35.8 million visitors 

in 2016 (Maine Office of Tourism, 2016). There are six separate wastewater treatment plant outfalls 

located within the bay and Saco River which serve an estimated population of 67,000 (US Census 2010). 

Discharge from Old Orchard Beach’s outfall, the largest discharger in the area, increased roughly 40% 

from May to July 2016 and remained high throughout August until decreasing in September. Free-fatty 

acids signal lipid breakdown when present in human sewage (Pastore et al., 2015). The proportion of 

FFA in <100 µm POM increased from 8.6 ± 2.8% in late June to 16.6 ± 0.9% in late August in conjunction 

with wastewater discharges and was positively correlated (R2 = 0.35) with diatom FAs (Figure 2.12c).  

The δ15N values measured in Saco Bay also indicate that anthropogenic N input was an 

important driver of POM dynamics. In nearby Casco Bay (the most populous watershed and home to the 
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largest wastewater treatment outfalls in the state), the δ15N of nitrate in areas near wastewater outfalls 

(0.4‰) was elevated in comparison to more pristine areas (-2.7‰; Flynn et al., 2011). If we assume that 

we can derive δ15N values by subtracting two trophic levels from zooplankton (Fertig et al., 2014), the 

resulting δ15N (1.7‰) is within a similar range to the elevated nitrate values of Casco Bay suggesting the 

importance of anthropogenic N inputs to this ecosystem. Corroborating that anthropogenic nitrogen 

may increase δ15N values, the δ15N of <100 µm POM was positively correlated with diatom FAs (R2 = 

0.24) and FFAs (R2 = 0.11; Figure 2.12). It should be noted that oceanic nitrate, with δ15N values between 

2.4 to 5.3 ‰ (Marconi et al., 2015), would also be expected to increase δ15N over riverine values; 

however, the correlation between δ15N and FFA supports the importance of anthropogenically sourced 

nitrogen in this system. 

2.5.0 Conclusions 

 There were two main categories of POM in Saco Bay, marine POM which contained essential FAs 

(20:5ω3, 22:6ω3, and 20:4ω6) and vascular plant POM which lacked metabolically essential FAs but was 

rich in their precursors (18:2ω6 and 18:3ω3). Phytoplankton and zooplankton were the most important 

sources of lipid and FAs; however, macroalgal and vascular plant detritus became more important 

contributors to POM outside of phytoplankton bloom periods. Macroalgal detritus could serve as a 

supplemental source of the essential FAs 20:5ω3 and 20:4ω6, while consumers possessing elongase and 

desaturase enzymes could make use of 18:2ω6 and 18:3ω3 from vascular plant detritus. Like the rest of 

the Gulf of Maine there were spring/fall diatom blooms in Saco Bay, followed by a succession of 

dinoflagellates and zooplankton.  
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CHAPTER 3 

DETRITAL SUBSIDIES TO THE DIET OF MYTILUS EDULIS: MACROALGAL DETRITUS LIKELY SUPPLEMENTS 

ESSENTIAL FATTY ACIDS 

3.1.0 Introduction 

Bivalves, such as the blue mussel (Mytilus edulis), are a major group of filter-feeding animals 

whose growth (Grant, 1996; Hawkins et al., 2002, 2013a) and ecological carrying capacities (Byron et al., 

2011a, 2011b; Kluger et al., 2016; Outeiro et al., 2018) have been modeled based on food availability 

and other environmental variables. Within ecosystems large proportions of energy in food-webs move 

through detritus (Cebrian and Lartigue, 2004), which is often incorporated into food web and bivalve 

growth models. In this study we operationally define detritus as any dead or decaying matter shed from 

a parent organism along with associated bacteria. Detritus is difficult to measure, so models frequently 

must indirectly estimate the size of the detrital pool, e.g. organic matter (OM) that is not live 

phytoplankton defined as remaining organic matter (REMORG) in Shellsim, which is treated as a 

homogeneous entity (Hawkins et al., 2013a).  

Detritus is not, however, a homogeneous entity and the physical and biochemical composition 

of different detrital particulates determines their rate of degradation and residence time in ecosystems 

(Cebrian and Lartigue, 2004) as well as their bioavailability for bivalve consumers (Grant and Cranford, 

1991; Duggins and Eckman, 1997; Arambalza et al., 2010; Dethier et al., 2014). Not incorporating this 

complexity into models can cause under or overestimations of detrital importance, which may be 

acceptable for growth models: however, when used in ecosystem models to determine carrying 

capacities intended for regulators and decision makers such over-simplifications can have real 

repercussions. For example, intensive bivalve aquaculture exceeding carrying capacity can result in bay-
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wide seston depletion (Grant et al., 2005; Comeau et al., 2008). By assuming all detrital material is 

equally valuable for a bivalve consumer we risk overestimating the available food resources.   

 The major primary producers that contribute to detrital pools in temperate estuaries are 

phytoplankton, macroalgae and salt marsh grasses. A common proxy for nutritional quality of detrital 

material is the ratio of carbon to nitrogen, which correlates with herbivory rate on the parent material 

(Cebrian, 1999) as well as predicts decomposition rate (Swift et al., 1979; Coleman et al., 1983; Melillo et 

al., 1984; Cebrian, 1999; Moore et al., 2004). Phytoplankton, the primary diet for most bivalves, 

represents the highest quality material with relatively low C:N ratios (9 ± 5) (Cranford and Grant, 1990; 

Enríquez et al., 1993; Kitazato et al., 2000; Beaulieu, 2002) while macroalgae and marsh grass detritus 

represent progressively lower quality material with corresponding C:N ratios of 30 ± 20 and 61 ± 34 

respectively (Enríquez et al., 1993; Krumhansl and Scheibling, 2012).  Although lower in quality than 

phytoplankton, both marsh grass detritus (Lucas and Newell, 1984; Peterson et al., 1985; Newell and 

Langdon, 1986; Mann, 1988; Langdon and Newell, 1990; Decottignies et al., 2007) and macroalgal 

detritus (Bustamante and Branch, 1996; Fredriksen, 2003; Allan et al., 2010) have been shown to 

contribute to bivalve diets to varying degrees. In particular macroalgal detritus can play an important 

role in the food webs of nearshore ecosystems (Duggins et al., 1989; Hill et al., 2006; Kaehler et al., 

2006; Tallis, 2009; Von Biela et al., 2016) and may represent a valuable resource for bivalves during 

periods of low phytoplankton production.  

 Laboratory feeding trials using macroalgal detritus suggest current models of bivalve feeding 

may be underestimating the potential food source. For example, bivalves display moderate to high 

absorption efficiencies (41 to 87%) which increases with age of detrital particulates (Stuart et al., 1982; 

Cranford and Grant, 1990). Detrital particles consisting of a single cell (SCD) formed from macroalgae 

were capable of supporting equivalent or greater growth compared to phytoplankton diets when 

comprising 50 to 90% of larval diets in a shellfish hatchery (Camacho et al., 2004; Carboni et al., 2016). 
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While laboratory examinations of macroalgal detritus use by bivalves looks promising, the importance of 

macroalgal detritus to bivalves within natural ecosystems is still uncertain.  

Directly tracking detrital material use by bivalves in situ is exceedingly difficult so, many studies 

rely on stable isotope analysis (Duggins et al., 1989; Hill et al., 2006; Kaehler et al., 2006; Tallis, 2009; 

Von Biela et al., 2016). Stable isotopes are well suited to distinguishing between C3 and C4 

photosynthetic plants, as well as between marine and terrestrial primary producers (O’leary, 1988; 

Ehleringer and Cerling, 2001; Mortazavi et al., 2005; Fry, 2006). In addition, because fractionation causes 

δ15N values of consumers to become more enriched than their prey, δ15N values are useful for 

estimating trophic level (Post, 2002; Fry, 2006). One potential complexity when interpreting δ13C is that 

some key primary producers in marine ecosystems can display a wide range of δ13C values. For example, 

diatoms display a wide range of δ13C values depending on their phase of growth (Fry and Wainright, 

1991) which can overlap with macroalgal values and lead to ambiguities about the importance of 

macroalgal detritus (Miller and Page, 2012).  

 Another powerful tool available to ecologists to track organic matter in ecosystems is lipid fatty 

acid biomarkers. Lipid classes themselves (composition, quantity, and ratios) have a history of use as 

biomarkers in ecological and biogeochemical studies (see review by Parrish, 2013) and individual fatty 

acids (FA) have been used in oceanographic studies as biomarkers for a large variety of organisms (Kelly 

& Scheibling 2012, Parrish 2013 and references within). Lipid FA biomarkers have been used to 

determine the shifting contributions of diatoms and dinoflagellates within the water column, as well as 

the detrital inputs into marine sediments (Budge et al., 2001). Lipid FA biomarkers have also been used 

to determine the contribution of mangrove detritus to suspended particulate matter (Bachok et al., 

2003), and compound specific stable isotope analysis of FA biomarkers has been used to determine the 

source and age of particulate organic matter (POM; McIntosh et al., 2015; Taipale et al., 2015). Lipid FA 

biomarkers have also frequently been used to determine the composition of bivalve diets (Bachok et al., 
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2003, 2009; Guest et al., 2008; Allan et al., 2010; Ezgeta-Balić et al., 2012; Irisarri et al., 2014; Wang et 

al., 2014). When used in conjunction with stable isotopes FA biomarkers become a versatile tool that 

can reveal primary producer contributions to food webs (Carreón-Palau et al. 2013). 

 We content that by using SIA, lipid, and FA biomarkers together, complex organic matter 

pathways in coastal ecosystems can be parsed more accurately. The purpose of this study was to 

determine the contributions of detrital particulates from phytoplankton, macroalgae, and vascular 

plants (marsh grass and oaks) within a northern temperate bay to the diet of intertidal M. edulis using a 

combination of stable isotopes and lipid fatty acid biomarkers. Our aim was to more accurately 

represent organic matter pathways for consideration in bivalve feeding and carrying capacity models. 

3.2.0 Methods 

 To determine the contributions of macroalgae and vascular plants to mussel diets, we collected 

fresh samples of each from Saco Bay, ME USA, along with live M. edulis. Lipids were extracted from M. 

edulis, vascular plant, and macroalgal endmembers and quantified via Iatroscan analysis before being 

derivatized into fatty acid methyl esters (FAME) and identified with gas chromatography. Multivariate 

statistics were used to determine the relative contributions of each endmember to the diet of M. edulis, 

based on the proportions of FA biomarkers from each producer (identified via SIMPER analysis and 

previous literature). In addition, the stable isotopic composition (δ13C and δ15N) of M. edulis and each 

endmember was used to construct a dual-isotope Bayesian mixing model, which estimated primary 

producer contributions to the diet of M. edulis.  

3.2.1 Study site and sample collection  

We collected samples from Saco Bay (Figure 3.1), which is located in southern Maine, USA, with 

its northern-most border framed by Scarborough marsh and the southern boundary is Biddeford Pool 

(Reynolds and Casterlin, 1985). Saco Bay has a mean tidal range of 2.7 m (Jensen 1983; Kelley et al. 

2005) and the primary source of freshwater is the Saco River. The Saco River is the the 6th largest river 
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discharging into the Gulf of Maine (Tilburg et al., 2011) with discharge rates varying between 40 and 620 

m3 s-1 and a mean of 100 m3 s-1 (Barber 1995; Kelley et al. 2005). The only other significant river 

discharging into the bay is the Scarborough River, which has an average discharge of only 3.1 m3 s-1 

(Figure 3.1; Jacobson et al. 1987; Kelley et al. 2005). 

Water samples for POM were obtained from six sites throughout Saco Bay in 2016 and 2017 

(Figure 3.1). Particulate organic matter was size fractionated (≥100 and <100 µm) in situ in the water 

column by filtering water through a 100 µm pre-screen and a 1 µm collection mesh. In 2016 POM 

samples were collected biweekly from all six sites, while in 2017 POM samples were only collected 

monthly from three sites: Wood Island, the mid-bay site, and the mouth of the Scarborough River. 

Concentrated slurries of POM were stored in a cooler of ambient water until subsampled on land for 

each analysis. Replicate subsamples were filtered onto 1.2 µm GF/C Whatman filters for each analysis. 

Samples were analyzed for dry weight, ash-free dry weight, chlorophyll-ɑ, stable isotopes (δ13C and 

δ15N), and lipid and fatty acid biomarkers.  
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Figure 3.1. Map of Saco Bay, ME USA. Includes locations of fringing salt marshes, particulate organic 
matter (POM) sampling sites, and sampling sites for mussels (Mytilus edulis). 
 

Intertidal blue mussels and macroalgae (Saccharina latissima, Ascophyllum nodosum and 

Chondrus crispus) as well as a C4 photosynthetic marsh grass Spartina alterniflora, were collected 

biweekly from four sites in 2016 and monthly in 2017: The outer northern perimeter of Biddeford pool, 

the other eastern perimeter of Biddeford pool, near Wood island, and Prout’s Neck near the 

Scarborough River (Figure 3.1). Oak tree leaf litter was sampled once in the fall of 2016 to represent C3 

photosynthetic plants. Macroalgae sampled within this study represent system dominants, fucoid algae, 

such as A. nodosum, and C. crispus dominate the intertidal area in the North western Atlantic and kelps, 

such as S. latissima, dominate the subtidal zone (Stephenson and Stephenson, 1972; Chapman and 

Johnson, 1990). Mussels were shucked and processed for stable isotope (δ13C and δ15N), lipid and FA 
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analysis as described below. Macroalgal and Spartina samples were scraped with a razor to remove 

epiphytes and rinsed in deionized water prior to processing for stable isotope (δ13C and δ15N), lipid, and 

fatty acid analysis. Zooplankton were collected with vertical tows of a 200 µm zooplankton net. 

Afterwards, zooplankton were phototaxically separated from settling detritus in a graduated cylinder, by 

shining a beam of light horizontally through the water surface and decanting off aggregating photophilic 

zooplankton.   

3.2.2 Lipid class and fatty acid analysis 

 Modified Folch extractions were used to extract lipids from tissues or filtered POM using a 

chloroform-to-methanol ratio of 2:1 as described by Parrish (2013). Lipid quantification was determined 

using an Iatroscan Mark V TLC-FID. Heat (100°C for one hour) and concentrated sulfuric acid were used 

to transesterify subsamples of total lipid extracts into fatty acid methyl esters (FAME). An Agilent 7890A 

Series GC with an FID detector equipped with a 30 m (0.25 µm internal diameter) ZB wax+ column 

(Phenomenex, US) was used to determine FAME composition; retention times were determined with a 

Supelco 37 component FAME mix (Product number 47885-U). Helium was used as the carrier gas at 2 ml 

min-1 while column temperature began at 65°C for 0.5 min then ramped to 195°C at a rate of 40°C min-1 

and held for 15 min. Column temperature was then ramped to 220°C at a rate of 2°C min-1 and held for 

3.25 min. Injector temperature started at 150°C and ramped at a rate of 200°C min-1 until reaching a 

final temperature of 250°C, while the detector remained a constant 260°C.  

 We used Primer 7 with the PERMANOVA+ package (ver. 7.0.13, Quest Research Limited) to 

perform principal coordinates analysis (PCoA), similarity percentages (SIMPER), cluster analysis, 

permutational multivariate analysis of variance (PERMANOVA) and homogeneity of dispersion tests 

(PERMDISP). Data were visualized with PCoA while SIMPER and cluster analysis were used to determine 

similarity and dissimilarity within and among endmember groups. Statistically significant groupings (ɑ = 

0.05) were determined using PERMANOVA and prior to multivariate tests PERMDISP was used to test for 
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homogeneity of multivariate dispersion. When necessary, FA data were square root transformed to 

improve homogeneity. Biomarker FAs for each endmember group as identified from previous studies, 

are given in Table 3.1. Data shown are average ± 1 standard error, unless otherwise indicated. 

Proportions (%) of diatom and macroalgal FA markers, identified based on PCoA and SIMPER analysis, 

were used to separate the combined diatom/macroalgal estimates from stable isotope mixing models, 

e.g. 𝐷𝑖𝑎𝑡𝑜𝑚 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑥 (
𝐷𝑖𝑎𝑡𝑜𝑚 𝐹𝐴𝑠

𝐷𝑖𝑎𝑡𝑜𝑚 𝐹𝐴𝑠 + 𝑀𝑎𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑙 𝐹𝐴𝑠
). 

Table 3.1. Fatty acid biomarkers used for each endmember in this study. Includes literature source of 
previous use. 
 

Endmember Fatty acid biomarker Source 

Macroalgae 18:1ω9 (Kelly and Scheibling, 2012; Parrish, 2013) 
 18:3ω6 (Kelly and Scheibling, 2012; Parrish, 2013) 
 20:2ω6 (Kharlamenko et al., 1995) 
 20:4ω3 (Kelly and Scheibling, 2012; Parrish, 2013) 
 20:4ω6 (Kelly and Scheibling, 2012; Parrish, 2013) 
   

Vascular plants 18:2ω6 (Kelly and Scheibling, 2012; Parrish, 2013) 
 18:3ω3 (Kelly and Scheibling, 2012; Parrish, 2013) 
   

Dinoflagellates 22:6ω3 (Kelly and Scheibling, 2012; Parrish, 2013) 
   

Diatoms 16:1ω7 (Kelly and Scheibling, 2012; Parrish, 2013) 
 16:4ω1 (Dalsgaard et al., 2003; Parrish, 2013) 
 20:5ω3 (Kelly and Scheibling, 2012; Parrish, 2013) 
   

Zooplankton 20:1 (Kelly and Scheibling, 2012; Parrish, 2013) 
 21:1 (Kelly and Scheibling, 2012; Parrish, 2013) 
   

Bacteria Odd-chained FAs (Kelly and Scheibling, 2012; Parrish, 2013) 
 Iso and anteiso FAs (Parrish, 2013; George and Parrish, 2015) 
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3.2.3 Stable isotope analysis 

 Initial processing of stable isotope samples for POM was identical to how dry weights were 

processed. Particulate organic matter was filtered onto pre-combusted and pre-weighed 1.2 µm GF/C 

Whatman filters, dried for 24 hours (60°C), or until a constant weight, and stored in desiccation 

chambers until processed and sent for analysis. Hydrochloric acid fumes were introduced to dried POM 

samples for 24 hr to remove carbonate carbon prior to encapsulation in tin (Sn). Mussel and 

endmember tissues were prepared by drying for 24 hr at 60°C, or until a constant weight. Once dry, 

tissues were crushed into a fine powder and subsamples (1.0 ± 0.2 mg) of powder were encapsulated 

and sent to the University of California’s Davis Stable Isotope facility for analysis. Samples were 

compared to laboratory reference materials, which were calibrated against international reference 

materials (IAEA-600, USGS-40, USGS-41, USGS-42, USGS-43, USGS-61, USGUS-64, and USGS-65). Prior to 

processing endmember tissues were stored at -20°C. 

Analysis of variance tests were conducted using R-Studio (Version 3.6.1). Additionally, we 

constructed Bayesian stable isotope mixing models, which use Markov Chain, Monte Carlo methods to 

generate probability distributions of possible dietary contributions (Parnell et al., 2010), using the stable 

isotope analysis package in R (SIAR, ver. 4.2). Fractionation factors of 0.4 ± 1.0‰ and 3.4 ± 1.0‰ for δ13C 

and δ15N respectively established by Post (2002) were used when determining mussel diets. 

Phytoplankton δ15N values were estimated by subtracting one trophic level (3.4‰) from zooplankton 

δ15N values.  Previously reported δ13C values from George’s Banks in the Gulf of Maine were used, -18 ± 

2‰ and -24 ± 1‰ for diatoms and dinoflagellates respectively (Fry and Wainright, 1991). Diatoms and 

macroalgae were combined in mixing models due to similarities in their isotopic values. Modeled 

endmember contributions are reported as mean, minimum, and maximum contributions of 95% 

Bayesian credibility intervals, which represent the range of values within which an estimate from a 

single iteration of the model has a 95% probability of falling. All stable isotope data, measured and 
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model estimates, is reported as average ± 1 standard deviation, while all other data is reported as 

average ± 1 standard error. Regressions were constructed using SigmaPlot (2008; version 11.2.0.5 Systat 

Software, Inc.). 

Our stable isotope mixing model did not account for the effects of lipid depletion on mussel δ13C 

values and assumed 1 trophic level (3.4‰ δ15N) difference between the δ15N values of phytoplankton 

and zooplankton. To test the validity of these assumptions, a revised model incorporating a 1.75 trophic 

level (5.95‰ δ15N) difference between phytoplankton and zooplankton as well as mussel δ13C values 

corrected for lipid content (based on a lipid-to-protein depletion of 6.5‰: Logan et al., 2008) was 

constructed. The estimates of both models were compared to assess the effects our assumptions had on 

the results. 

3.3.0 Results 

3.3.1 Lipid class and fatty acid composition 

The lipids and FA composition of M. edulis changed qualitatively and quantitatively among 

seasons. Lipid content of M. edulis ranged from 0.8 to 5.4% wet weight (WW) with an average of 3.3 ± 

0.1% (Figure 3.2a), consistent with previously reported lipid content of M. edulis (Table 3.2). Lipid 

content in mussels was 70% lower in mid-summer (July) than during spring (May) or fall (September). 

Mussels contained high quality lipids, polyunsaturated FAs comprised the bulk (54.5 ± 0.1%; range 49-

60%) of identified FAs in M. edulis, and M. edulis contained a large proportion (37.1 ± 0.1%) of ω3 FAs 

(Figure 3.2b). The proportion of PUFA (Figure 3.3b), two essential FAs, 20:4ω6 and 22:6ω3, and non-

methylene interrupted dienes (NMID) increased throughout summer and fall.  Additionally, there was a 

decrease in the proportion of 20:5ω3 (Figure 3.3a), which was significantly (p < 0.01) negatively 

correlated with the proportion of NMIDs (Figure. 3.4), suggesting mussels may use NMIDs to 

compensate for 20:5ω3 requirements. In contrast concentrations (µg g-1 WW) of all FAs, including 

essential FAs, decreased throughout the summer before increasing in the fall (Figure 3.3b).  
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Figure 3.2. Summary of Mytilus edulis lipids. Lipid content (% wet weight) and proportion of fatty acids 
(%) in Mytilus edulis from Saco Bay, Maine USA, throughout 2016 and 2017. (a) Total lipid content (% 
wet weight). (b) Proportion (%) of saturated, monounsaturated (MUFA), polyunsaturated (PUFA), and 
ω3 fatty acids. Data shown are average ± standard error. 
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Figure 3.3. Essential fatty acids in Mytilus edulis. Proportion (%) and concentration (µg g-1 wet weight) of 

essential fatty acids (20:5ω3, 22:6ω3 and 20:4ω6) and non-methylene interrupted dienes (NMID) in 

Mytilus edulis from Saco Bay, Maine USA, throughout 2016 and 2017. (a) Proportion of total fatty acids 

(%). (b) Concentration (µg g-1 wet weight). Data shown are average ± standard error. 
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Figure 3.4. Significant (p < 0.05) linear regression of the proportion (%) of non-methylene interrupted 
dienes (NMID) and the essential fatty acid 20:5ω3 in Mytilus edulis from Saco Bay throughout 2016 and 
2017. 
 
Table 3.2. Proportions (%) of fatty acids in Mytilus edulis measured in this study compared to literature 
values.  Values shown are average ± standard error, significant difference (p < 0.05) are denoted by abc. 
 

 This study Alkanani et al. 2007 Murphy et al. 2002 

Fatty acid  2000 2001 Site 1 Site 2 Site 3 

20:2 NMID 3.4 ± 0.1 3.7 ± 0.9 1.0 ± 1.5 0.5 ± 0.2 0.3 ± 0.0 0.3 ± 0.1 
20:4ω6 4.7 ± 0.1 2.8 ± 0.8 2.8 ± 1.2 1.5 ± 0.7 1.9 ± 0.2 1.8 ± 0.2 
20:5ω3 12.3 ± 0.1 12.0 ± 2.2 17.0 ± 3.5 13.3 ± 3.5 15.1 ± 0.9 15.4 ± 0.8 
22:2 NMID 2.8 ± 0.1 3.6 ± 0.9 2.8 ± 1.5 1.4 ± 0.4 1.4 ± 0.2 1.2 ± 0.3 
22:6ω3 14.4 ± 0.1 21.5 ± 2.9 20.0 ± 4.3 18.2 ± 5.5 21.3 ± 2.0 24.2 ± 3.9 
       
Σ Saturated 22.2 ± 0.1 25.4 ± 1.8 23.6 ± 2.3 28.9 ± 1.2 29.5 ± 2.7 30.4 ± 0.6 
Σ MUFA 21.1 ± 0.1 14.5 ± 3.0 17.7 ± 4.1 11.9 ± 4.4 10.4 ± 1.0 9.6 ± 0.8 
Σ PUFA 54.5 ± 0.1 61.9 ± 3.0 60.8 ± 4.0 44.0 ± 7.4 49.2 ± 4.6 50.1 ± 1.2 
Σ ω3 37.1 ± 0.1a 47.8 ± 3.7b 49.5 ± 3.5b 38.2 ± 7.2ab 41.7 ± 1.8ab 44.6 ± 1.4ab 

 



 

59 
 

The FA composition of M. edulis and each primary producer endmember were distinctly 

different (Table 3.3). The three major FAs (>10% total FA) identified in M. edulis were 16:0 along with 

two essential FAs 20:5ω3 and 22:6ω3. This FA profile was significantly different (PERMANOVA, p(perm) 

< 0.05) than all endmembers. The most defining FA difference between macroalgal sources and other 

endmembers was 20:4ω6, which comprised a large proportion of macroalgal FAs (A. nodosum; 11.5 ± 

0.1%, S. latissima; 17.7 ± 0.3%, C. crispus; 7.1 ± 0.3%) and only small proportions in vascular plants (S. 

alterniflora; 0.3 ± 0.1%, Oak; <0.1%) and consumers (M. edulis; 4.7 ± 0.1%, zooplankton; 0.5 ± 0.1%). 

Additionally, macroalgae (especially A. nodosum) had large proportions of 18:1ω9 (A. nodosum; 33.6 ± 

0.3%, S. latissima; 9.0 ± 0.3%, C. crispus; 5.7 ± 0.3%) compared to other endmembers. Both vascular 

plant endmembers had large proportions of 18:3ω3 (S. alterniflora; 37.7 ± 0.4%, Oak; 18.6 ± 2.5%) and 

18:2ω6 (S. alterniflora; 19.0 ± 0.2%, Oak; 6.0 ± 0.1%). The three major FAs in zooplankton were the same 

as M. edulis (16:0, 20:5ω3, and 22:6ω3). M. edulis contained FA biomarkers from all endmembers 

sampled (Table 3.4). Diatom (16:1ω7, 16:4ω1 and 20:5ω3) and dinoflagellate (22:6ω3) FAs comprised 

the largest proportions of M. edulis FAs, 17.2 ± 0.1% and 16.9 ± 0.1% respectively, followed by 

macroalgal (18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3, and 20:4ω6; 7.9 ± 0.1%) and zooplankton (20:1 and 21:1; 

6.2 ± 0.1%) FAs. Vascular plant (18:2ω6 and 18:3ω3) FAs comprised the smallest proportion (3.3 ± 0.1%) 

of M. edulis FAs with bacterial FAs (iso, anteiso and odd-chained) comprising another 4.8 ± 0.1%.              
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Table 3.3. Endmember fatty acids. Proportion (%) and concentration (µg g-1 wet weight) of fatty acids for all endmembers: Saccharina latissima, 
Ascophyllum nodosum, Chondrus crispus, Spartina alterniflora, oak leaves, zooplankton and Mytilus edulis from Saco Bay throughout 2016 and 
2017. Values shown are average ± standard error, sample size denoted by n. 
 

 Saccharina latissima (n = 11) Ascophyllum nodosum (n = 13) Chondrus crispus (n = 5) Spartina alterniflora (n = 23) 
Fatty acid % µg g-1 WW % mg g-1 WW % µg g-1 WW % mg g-1 WW 

14:0 6.6 ± 0.2 72.0 ± 4.4 9.9 ± 0.1 1.4 ± 0.08 4.8 ± 0.1 49.3 ± 3.8 1.0 ± 0.1 0.1 ± 0.1 

16:0 12.5 ± 0.2 130.9 ± 8.2 10.7 ± 0.1 1.6 ± 0.1 23.3 ± 0.3 235.0 ± 15.7 17.2 ± 0.1 3.5 ± 0.5 
16:1ω7 3.8 ± 0.1 40.5 ± 3.0 1.8 ± 0.1 0.3 ± 0.02 9.0 ± 0.3 91.0 ± 7.2 0.7 ± 0.1 0.1 ± 0.02 
16:4ω1 0.2 ± 0.1 1.8 ± 0.1 Trace Trace 0.8 ± 0.1 8.0 ± 0.8 Trace Trace 
18:0 0.6 ± 0.2 6.9 ± 0.6 0.6 ± 0.1 0.08 ± 0.01 0.9 ± 0.1 9.0 ± 0.5 2.4 ± 0.1 0.3 ± 0.03 
18:1ω9 9.0 ± 0.3 109.8 ± 8.2 33.6 ± 0.3 4.7 ± 0.3 5.7 ± 0.3 57.8 ± 5.3 4.8 ± 0.1 0.9 ± 0.1 
18:2ω6 7.2 ± 0.2 88.1 ± 6.6 7.5 ± 0.1 1.1 ± 0.07 1.4 ± 0.1 14.5 ± 1.0 19.0 ± 0.2 3.5 ± 0.5 
18:3ω3 4.9 ± 0.2 42.3 ± 2.4 3.2 ± 0.1 0.5 ± 0.03 0.9 ± 0.1 8.7 ± 0.9 37.7 ± 0.4 8.0 ± 1.2 
18:3ω6 1.7 ± 0.1 22.1 ± 1.9 0.4 ± 0.1 0.06 ± 0.01 0.8 ± 0.1 8.5 ± 0.9 Trace Trace 
18:4ω3 11.0 ± 0.5 98.5 ± 6.1 2.5 ± 0.1 0.4 ± 0.03 1.3 ± 0.1 13.4 ± 1.5 0.1 ± 0.1 Trace 
20:1 Trace 0.8 ± 0.05 0.4 ± 0.1 0.05 ± 0.01 0.4 ± 0.1 3.6 ± 0.2 0.4 ± 0.1 0.09 ± 0.01 
20:2 NMID n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
20:2ω6 0.2 ± 0.1 2.0 ± 0.1 1.9 ± 0.1 0.3 ± 0.02 0.1 ± 0.1 1.4 ± 0.2 0.2 ± 0.1 0.04 ± 0.01 
20:4ω3 0.8 ± 0.2 6.8 ± 0.4 0.6 ± 0.1 0.1 ± 0.02 0.7 ± 0.3 7.4 ± 2.7 0.2 ± 0.1 0.01 ± 0.01 
20:4ω6 17.7 ± 0.3 195.8 ± 12.0 11.5 ± 0.1 1.7 ± 0.1 7.1 ± 0.3 72.7 ± 6.4 0.3 ± 0.1 0.9 ± 0.2 
20:5ω3 12.9 ± 0.2 133.5 ± 8.4 7.7 ± 0.1 1.1 ± 0.08 25.9 ± 0.9 265.6 ± 19.8 0.1 ± 0.1 0.02 ± 0.01 
22:1 0.1 ± 0.03 0.3 ± 0.04 0.3 ± 0.1 0.04 ± 0.01 0.3 ± 0.1 3.5 ± 0.3 0.3 ± 0.1 0.12 ± 0.02 
22:2 NMID n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
22:6ω3 Trace 0.3 ± 0.04 1.0 ± 0.1 0.1 ± 0.01 0.9 ± 0.1 9.3 ± 0.7 0.8 ± 0.1 1.5 ± 0.3 
24:0 0.1 ± 0.1 0.6 ± 0.05 0.2 ± 0.1 0.03 ± 0.01 0.1 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.07 ± 0.01 

Bacterial 3.7 ± 0.1 33.3 ± 2.1 1.4 ± 0.1 0.2 ± 0.02 3.6 ± 0.1 36.4 ± 2.6 3.6 ± 0.1 0.6 ± 0.08 
Σ Saturated 21.2 ± 0.3 225.6 ± 14.1 22.3 ± 0.1 3.2 ± 0.2 30.7 ± 0.2 310.6 ± 20.9 25.3 ± 0.2 4.4 ± 0.6 
Σ MUFA 17.4 ± 0.2 192.0 ± 13.0 38.3 ± 0.2 5.4 ± 0.3 24.0 ± 0.7 240.7 ± 18.3 10.6 ± 0.2 2.0 ± 0.3 
Σ PUFA 59.0 ± 0.4 621.0 ± 36.9 38.9 ± 0.2 5.8 ± 0.4 42.7 ± 0.7 435.8 ± 30.3 61.7 ± 0.4 15.9 ± 2.5 
Σ ω3 30.0 ± 0.9 286.2 ± 16.4 16.0 ± 0.2 2.4 ± 0.2 30.3 ± 0.9 309.5 ± 21.9 40.0 ± 0.4 11.2 ± 1.8 
Total  1060 ± 64  14.5 ± 0.9  1014 ± 69  22.6 ± 3.4 
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Table 3.3. cont. 

 Oak (n = 2) Mytilus edulis (n = 94) Zooplankton (n = 11)  
Fatty acid % mg g-1 WW % mg g-1 WW % mg g-1 WW   

14:0 1.2 ± 0.3 0.3 ± 0.09 3.0 ± 0.1 1.0 ± 0.02 7.2 ± 0.2 1.5 ± 0.2   
16:0 12.2 ± 0.6 2.6 ± 0.4 13.7 ± 0.1 4.2 ± 0.09 16.5 ± 0.2 3.2 ± 0.4   
16:1ω7 0.1 ± 0.1 0.03 ± 0.01 4.7 ± 0.1 1.8 ± 0.06 8.7 ± 0.3 1.7 ± 0.2   
16:4ω1 0.1 ± 0.1 0.03 ± 0.01 0.2 ± 0.1 0.06 ± 0.01 1.0 ± 0.1 0.2 ± 0.03   
18:0 1.5 ± 0.1 0.3 ± 0.04 2.7 ± 0.1 0.7 ± 0.01 3.2 ± 0.1 0.7 ± 0.08   
18:1ω9 2.2 ± 0.7 0.4 ± 0.1 2.2 ± 0.1 0.7 ± 0.01 2.5 ± 0.1 0.4 ± 0.03   
18:2ω6 6.0 ± 0.1 1.3 ± 0.1 2.0 ± 0.1 0.6 ± 0.01 1.4 ± 0.1 0.2 ± 0.02   
18:3ω3 18.6 ± 2.5 4.1 ± 0.9 1.3 ± 0.1 0.4 ± 0.01 1.0 ± 0.1 0.2 ± 0.02   
18:3ω6 0.1 ± 0.1 0.02 ± 0.01 0.1 ± 0.1 0.04 ± 0.01 0.3 ± 0.1 0.06 ± 0.01   
18:4ω3 0.1 ± 0.1 0.03 ± 0.01 2.4 ± 0.1 0.8 ± 0.02 2.7 ± 0.2 0.7 ± 0.1   
20:1 0.3 ± 0.1 0.07 ± 0.01 6.0 ± 0.1 1.6 ± 0.02 1.6 ± 0.1 0.3 ± 0.04   
20:2 NMID n.d. n.d. 3.4 ± 0.1  0.9 ± 0.02 n.d. n.d.   
20:2ω6 3.9 ± 0.5 0.8 ± 0.04 0.6 ± 0.1 0.2 ± 0.01 0.5 ± 0.1 0.1 ± 0.01   
20:4ω3 0.9 ± 0.1 0.2 ± 0.05 0.2 ± 0.1 0.07 ± 0.01 0.7 ± 0.1 0.1 ± 0.01   
20:4ω6 Trace 0.01 ± 0.01 4.7 ± 0.1 1.2 ± 0.02 0.5 ± 0.1 0.1 ± 0.01   
20:5ω3 0.6 ± 0.1 0.1 ± 0.01 12.3 ± 0.1 3.5 ± 0.07 15.3 ± 0.4 4.3 ± 0.7   
22:1 0.6 ± 0.1 0.13 ± 0.01 0.1 ± 0.1 0.05 ± 0.01 0.5 ± 0.02 0.1 ± 0.02   
22:2 NMID n.d. n.d. 2.8 ± 0.1 0.8 ± 0.01 n.d. n.d.   
22:6ω3 0.1 ± 0.1 0.03 ± 0.01 14.4 ± 0.1 4.0 ± 0.06 18.6 ± 0.5 4.9 ± 0.7   
24:0 4.1 ± 0.1 0.9 ± 0.08 0.2 ± 0.1 0.02 ± 0.01 0.1 ± 0.1 0.02 ± 0.01   

Bacterial 2.7 ± 0.1 0.6 ± 0.04 4.8 ± 0.1 1.3 ± 0.02 4.5 ± 0.1 0.8 ± 0.1   
Σ Saturated 26.2 ± 1.1 5.6 ± 0.7 22.2 ± 0.1 6.6 ± 0.1 29.2 ± 0.4 5.8 ± 0.7   
Σ MUFA 7.2 ± 0.8 1.5 ± 0.04 21.1 ± 0.1 6.2 ± 0.1 20.1 ± 0.4 3.7 ± 0.5   
Σ PUFA 64.5 ± 0.4 13.8 ± 1.1 54.5 ± 0.1 15.1 ± 0.3 48.6 ± 0.8 12.1 ± 1.7   
Σ ω3 24.6 ± 2.0 5.3 ± 0.9 37.1 ± 0.1 10.4 ± 0.2 41.0 ± 1.0 10.9 ± 1.5   
Total  21.3 ± 1.8  28.6 ± 0.5  22.0 ± 3.0   
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 Table 3.4. Proportion (%) of biomarker fatty acids in Mytilus edulis. Proportion (%) of endmember fatty 
acids in Mytilus edulis collected from Saco Bay, ME USA, throughout 2016 and 2017. Endmembers: 
Zooplankton (20:1 and 21:1), Vascular plants (18:2ω6 and 18:3ω3), Macroalgae (18:1ω9, 18:3ω6, 
20:2ω6, 20:4ω3, and 20:4ω6), Diatoms (16:1ω7, 16:4ω1 and 20:5ω3), Dinoflagellates (22:6ω3), and 
Bacteria (iso, anteiso and odd-chained). Data shown are average ± 1 standard error. 
 

 Diatom Dinoflagellate Zooplankton Macroalgae Vascular plant Bacterial 
Date % % % % % % 

5/20/16 19.3 ± 0.5 15.6 ± 0.4 6.2 ± 0.1 9.1 ± 0.2 3.5 ± 0.1 4.1 ± 0.1 
6/23/16 15.6 ± 0.2 15.9 ± 0.1 6.2 ± 1.2 8.6 ± 0.2 2.8 ± 0.1 4.4 ± 0.1 
7/8/16 13.0 18.1 7.0 10.5 3.3 5.2 
9/7/16 17.9 ± 0.2 15.7 ± 0.1 6.0 ± 0.1 7.3 ± 0.1 3.1 ± 0.1 5.4 ± 0.2 
10/3/16 15.4 ± 0.2 17.6 ± 0.1 6.7 ± 0.1 8.3 ± 0.1 3.3 ± 0.1 5.5 ± 0.1 
12/20/16 19.7 ± 0.9 14.9 ± 0.2 5.0 ± 0.3 5.8 ± 0.3 2.6 ± 0.1 4.3 ± 0.2 
5/1/17 21.9 ± 0.2 16.4 ± 0.1 5.7 ± 0.1 6.6 ± 0.1 2.7 ± 0.1 4.9 ± 0.1 
6/26/17 19.0 ± 0.4 16.3 ± 0.3 6.8 ± 0.3 7.3 ± 0.2 2.7 ± 0.2 4.8 ± 0.1 
9/25/17 10.8 ± 0.2 20.4 ± 0.1 6.4 ± 0.1 8.3 ± 0.1 5.0 ± 0.1 3.9 ± 0.1 

 
    
 

Principal coordinate analysis was able to separate all endmember groups based on their FA 

profiles (Figure 3.5). Samples within each endmember group were highly similar (>75%), with exception 

to POM (61% similarity), likely a result of the varied composition of POM. The FA profiles of zooplankton 

and M. edulis were similar (65%) to each other, both groups of vascular plants (S. alterniflora and oak) 

also resembled each other (65%), while the three macroalgal groups were more loosely grouped 

together. POM was the most variable group interspersed between all the other groups. However, there 

was a larger proportion of POM samples grouped closer to zooplankton than either macroalgae or 

vascular plants, suggesting zooplankton (and presumably phytoplankton) more strongly influenced POM 

FAs.  
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Figure 3.5. Principal coordinates analysis of fatty acids. Includes <100 µm particulate organic matter 
(POM), zooplankton, oak leaves, Spartina alterniflora, Saccharina latissima, Ascophyllum nodosum, 
Chondrus crispus and Mytilus edulis from Saco Bay, Maine USA, throughout 2016 and 2017. Circled 
groupings are based on similarity (%) determined from similarity percentage analysis (SIMPER) and 
cluster analysis. 
 

3.3.2 Stable isotopes 

 The isotopic composition of M. edulis closely resembled that of <100 µm POM (Figure 3.6). 

Unsurprisingly, the δ13C (-19.4 ± 3.7‰) and δ15N (7.0 ± 2.8‰) of POM <100 µm varied the most among 

all endmembers, ranging from -12 to -25‰ δ13C and 2.9 to 15.2‰ δ15N. In contrast, the δ13C (-20.0 ± 

1.1‰) and δ15N (7.0 ± 0.9‰) of M. edulis occupied a very narrow range between -18 to -21‰ and 6.0 to 

7.6‰ respectively.  All three macroalgae had similar δ13C and δ15N values (combined average -18.8 ± 

2.0‰ and 5.3 ± 1.0‰ respectively). Macroalgal isotopic values were very close to the δ13C and δ15N 

values for diatoms (-18.5‰ and 5.3‰ respectively) based on literature sources and estimated δ15N 
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values from zooplankton, which were the most enriched in δ15N (Figure 3.6). Both C3 and C4 vascular 

plants were isotopically distinct from marine endmembers. Oak leaf litter (C3) was the most depleted 

source of both δ13C and δ15N (-30.5 ± 1.2‰ and -2.5 ± 0.6‰ respectively) while S. alterniflora (C4) was 

the most enriched in δ13C (-13.3 ± 1.1‰). The δ13C of all marine endmembers fell between the values of 

C3 and C4 vascular plants and were more enriched in δ15N (Figure 3.6). 

 

Figure 3.6. Carbon (δ13C) and nitrogen (δ15N) biplot. Includes Mytilus edulis and all endmembers (<100 

µm POM, zooplankton, Spartina alterniflora, Saccharina latissima, Ascophyllum nodosum, Chondrus 

crispus, oak leaves, dinoflagellates and diatoms), prior to consolidation, used in the stable isotope 

mixing model. Data shown are average ± 1 standard deviation of endmember δ13C and δ15N. 
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3.3.3 Isotope mixing model 

Credibility intervals (95%) from the dual isotope (δ13C and δ15N) Bayesian mixing models 

estimating endmember contributions to the diet of M. edulis were relatively large, suggesting 

uncertainty in the model (Figure 3.7). Because diatoms and macroalgae are traditionally difficult to 

separate based on their δ13C (-18 ± 2‰ and -18.8 ± 2.0‰ respectively), they were initially combined for 

the model. Therefore, their combined impact on mussel diets was relatively high (20.1 to 32.3%).  In a 

subsequent model formulation, we used the relative proportions of diatom and macroalgal FAs to 

estimate their separate impacts on the diet. In the updated model, S. alterniflora comprised the largest 

proportion (18 to 42%) of M. edulis diet based on the dual isotope mixing model followed by 

dinoflagellates (13 to 22%), zooplankton (10 to 22%), diatoms (13 to 21%), oak leaf litter (11 to 18%), 

and finally macroalgae (5 to 11%).  

Importantly, the stable isotope mixing model and the FA composition analysis largely agree 

regarding the contributions of diatoms, dinoflagellates and macroalgae to mussel diets (Figure 3.7a, b, 

and c). However, there was more discrepancy between the contributions of zooplankton (Figure 3.7d) 

and vascular plant detritus (Figure 3.7e and f) between the two methods. Differences between 

measured FA biomarkers and the stable isotope model are likely the result of two factors: (1) poor 

assumptions in the stable isotope model or (2) endmembers may contribute differently to the overall C 

budget of M. edulis than to their lipid and FAs. Because credibility intervals of the model were wide, and 

frequently approaching zero, we used the raw model output to determine the probability of zero 

contribution (<1%) to the diet of M. edulis for each endmember (Table 3.5). In general, the probability of 

zero contribution for most endmembers was low (<1%), with exception to oak detritus which had 

significantly higher probabilities (p < 0.01) of zero diet contribution.  
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There were two major model assumptions to evaluate: (1) that there is one trophic level 

between zooplankton and phytoplankton and (2) that using no lipid correction of M. edulis δ13C values is 

reasonable. To test these assumptions, we re-ran the Bayesian mixing model using 1.75 trophic levels 

between zooplankton and phytoplankton and lipid corrections for M. edulis δ13C values.  The estimated 

phytoplankton δ15N value was 2.7 ± 1.4‰ after assuming a 1.75 trophic level increase of zooplankton 

consumers. Lipid correction of mussel δ13C values resulted in an average increase in δ13C values of 

0.17‰ (range 0.05‰ to 0.35‰). Endmember contributions to the diet of M. edulis based on the revised 

model were similar to the original model (Table 3.6). Differences between the original and revised 

estimated diet contributions were ≤9% for all endmembers and usually ≤5%, suggesting that these two 

assumptions only minimally impacted our results.  
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Figure 3.7. Comparison of model estimates and fatty acid biomarkers. Endmember diet contribution (%) to Mytilus edulis in Saco Bay, ME USA, 

throughout 2016 and 2017. Values shown are the mean diet contribution (%) estimated from the dual isotope (δ13C and δ15N) Bayesian mixing 

model along with accompanying credibility interval (95%) and the proportion (% total FAs) of endmember biomarker FAs measured in M. edulis. 

Endmembers: (a) Diatoms (16:1ω7, 16:4ω1 and 20:5ω3), (b) Dinoflagellates (22:6ω3), (c) Macroalgae (18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3, and 

20:4ω6), (d) Zooplankton (20:1 and 21:1), (e) Spartina alterniflora (18:2ω6 and 18:3ω3), and (f) oak leaf litter (18:2ω6 and 18:3ω3). Values 

shown are average ± 1 standard error. 
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Table 3.5. The probability of zero (<1%) diet contribution. The proportion (%) of Bayesian mixing model iterations (30 × 103) that estimated 
contributions <1% for each endmember (Diatom, dinoflagellate, zooplankton, macroalgae, Spartina alterniflora, and oak) to the diet of Mytilus 
edulis in Saco Bay, Maine USA, throughout 2016 and 2017. Diatoms and macroalgae were originally combined in model estimates, when 
available fatty acid proportions were used to separate diatom and macroalgae contributions. 
 

 Diatom/Macro Diatom Macroalgae Dinoflagellates Zooplankton S. alterniflora Oak 
Date # Obs. <1% (%) # Obs. <1% (%) # Obs. <1% (%) # Obs. <1% (%) # Obs. <1% (%) # Obs. <1% (%) # Obs. <1% (%) 

5/5/16 0.13 - - 0.6 0.18 0 0.96 
5/20/16 - 0.28 0.62 0.79 0.05 0.01 2.32 
6/9/16 0.03 - - 0.28 0 0 0.38 
6/23/16 - 0.04 0.07 0.97 0.05 0.12 0.68 
7/10/16 - 0.11 0.16 0.29 0 0 0.5 
7/28/16 0.04 - - 0.36 0 0 0.35 
8/22/16 1.11 - - 1.9 0.05 0.07 3.57 
9/6/16 - 0.02 0.11 0.24 0 0 3.06 
10/3/16 - 0.07 0.12 0.30 0 0 4.6 
11/21/16 1.7 - - 2.81 4.62 0.01 3.16 
12/19/16 - 0.05 0.24 0.39 0.01 0 1.97 
        
5/1/17 - 0.07 0.51 0.27 0.01 0 0.35 
6/26/17 - 0.08 0.27 0.39 0 0 0.33 
7/25/17 0.05 - - 0.34 0 0.01 2.3 
8/28/17 0.05 - - 0.23 0 0.04 0.78 
9/25/17 - 0.14 0.18 0.28 0 0.01 2.63 
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Table 3.6. Comparison between the original and revised model estimates. Comparison of modeled 95% 
mean credibility estimate of endmember contribution (%) to the diet of Mytilus edulis from our original 
Bayesian mixing model (assuming 1 trophic level between zooplankton and phytoplankton and no lipid 
correction for δ13C values) and an updated model (1.75 trophic level difference and δ13C values 
corrected for lipid).  Values are averaged across all samplings in 2016 and 2017 and values shown are 
average ± 1 standard deviation. 
 
 Original model estimate Corrected model estimate 
Contribution to M. edulis Average (%) Range Average (%) Range 

Dinoflagellate 18.6 ± 0.1 13.1 to 22. 20.8 ± 1.2 17.5 to 22.5 
Diatom 16.7 ± 2.6 12.8 to 21.0 17.7 ± 2.9 13.8 to 22.8 
Macroalgae 8.3 ± 2.1 5.3 to 11.3 8.8 ± 2.3 5.7 to 12.3 
Terrestrial 40.1 ± 5.6 32.7 to 56.7 31.5 ± 5.8 24.1 to 49.0 
Zooplankton 17.2 ± 3.0 10.1 to 21.8 22.1 ± 4.2 11.1 to 28.3 

 

3.4.0 Discussion 

It has long been hypothesized that detritus food chains predominate in salt-marsh ecosystems 

(Odum, 1980), and more recently that differential utilization of POM allows filter feeders to partition 

into trophic niches to reduce competition (Lefebvre et al., 2009; Tallis, 2009; Antonio and Richoux, 

2016). Mussels incorporated phytoplankton, zooplankton, macroalgal detritus, and vascular plant 

detritus into their diets in varying degrees.  There were only very low probabilities (<1%) that macroalgal 

and S. alterniflora detritus did not contribute to the diet of M. edulis in Saco Bay based on our stable 

isotope model outputs (Table 3.5). Although it is likely that M. edulis did make some use of oak detritus, 

the significantly (p < 0.01) higher likelihood (<5%) and frequency that oak detritus had zero-contribution 

to mussel diets suggests oak detritus use may be less important and a more sporadically used food 

source. Using the measured FA biomarkers, along with insights from the Bayesian stable isotope mixing 

model results, we characterized the potential roles of each food source for M. edulis (Figure 3.8). 

Unsurprisingly, diatoms, dinoflagellates, and zooplankton were the primary contributors to the diet of 

mussels. These three food sources explained 40% of M. edulis FAs and 53% of their isotopic signature. 

Mussels primarily obtained the essential FAs 20:5ω3, 22:6ω3, and to a lesser extent 20:4ω6 (depending 
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on resuspension of benthic diatoms) from phytoplankton and zooplankton. In addition to their primary 

food sources, mussels also incorporated macroalgal detritus into their diet, which accounted for 8% of 

their FAs and isotopic composition (Figure 3.7c). We suspect that although macroalgal detritus 

comprised a small proportion of their diet, macroalgal detritus could be important to M. edulis in 

supplying the essential FAs 20:4ω6 and 20:5ω3. In contrast, although bacteria and vascular plants also 

contributed to the FAs of M. edulis (5 and 3% respectively), they do not supply essential FAs. As such, 

the role of bacteria and vascular plant detritus is likely only to aid mussels in meeting their energetic or 

carbon requirements.  
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Figure 3.8.  Flowchart depicting the contributions of dinoflagellates, diatoms, zooplankton, macroalgal detritus, bacteria, and vascular plant 

detritus to the diet of Mytilus edulis. Contributions are shown based on measured fatty acid (FA) biomarkers and model estimates from stable 

isotope (SI) composition. Important FA contributions are also shown, bold indicates essential FA, underline denotes limiting FA, and * denotes 

likely model overestimations.   



 

72 
 

We assume that vascular plant (salt marsh and oak leaf litter) and macroalgal material present 

in POM are detrital in origin. Although M. edulis FAs primarily resembled dinoflagellate (22:6ω3) and 

diatom (20:5ω3 and 16:1ω7) based on their biomarker content in both PCoA and SIMPER analyses, 

mussels did contain proportions of zooplankton (20:1 and 22:1), vascular plant detritus (18:2ω6 and 

18:3ω3), and macroalgal detritus (18:1ω9, 18:3ω6, 20:2ω6, 20:4ω3, and 20:4ω6) markers (Figure 3.5). 

Zooplankton were the most similar group to M. edulis, based on dinoflagellate and diatom markers, 

similarities which are likely due to a shared diet of phytoplankton. However, M. edulis did contain 

zooplankton FAs (6.2 ± 0.1%) which could only be obtained by direct consumption of either live 

zooplankton or zooplankton derived detritus. In addition, M. edulis contained small proportions of 

macroalgal (7.9 ± 0.1%), bacterial (4.8 ± 0.1%), and vascular plant FAs (3.3 ± 0.1%), suggesting that M. 

edulis on average obtains 22.2% of their FAs from a combination of detritivory and carnivory. Mussels 

and oysters have previously been reported to make use of non-phytoplankton food sources such as 

bacteria, protozoans, zooplankton and detritus  (Newell and Langdon, 1986; Baldwin and Newell, 1991; 

Bustamante and Branch, 1996; Davenport et al., 2000). Our results further support that M. edulis are not 

solely herbivorous. Detrital contributions to the diet of M. edulis in this study are comparable to 

estimated salt marsh detritus contributions to the carbon requirement of oysters (5.5%) and ribbed 

mussels (31%; Langdon and Newell, 1990), but are lower than previous contributions of kelp detritus 

(50%) to carbon requirements of Mytilus galloprovincialis (Bustamante and Branch, 1996). 

Although there is little doubt that M. edulis consumes phytodetritus, our methods used in this 

study cannot differentiate between contributions of live vs dead phytoplankton to their diets. By 

assuming all phytoplankton ingested are fresh our estimates of detrital usage are inherently 

conservative. Diatom FAs comprised 17.2 ± 0.05% of M. edulis FAs, which agrees with the range of 

modeled contributions estimated with stable isotopes (Figure 3.7a). Proportions of dinoflagellate FAs in 

M. edulis averaged 16.9 ± 0.03%, which also fell within the range of modeled dietary contributions 
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(Figure 3.7b). Taken together, these results suggest that M. edulis obtains at least 34% of their diet from 

herbivorous grazing. As such, phytoplankton contribute more FAs, and presumably lipids as well, to the 

diet of M. edulis than detrital sources. This contribution of phytoplankton FAs is slightly lower than that 

previously reported (39 to 46%; Alkanani et al., 2007)  

  While vascular plant FAs contributed only a small proportion to M. edulis FAs (3.3 ± 0.01%), 

vascular plant detritus, particularly S. alterniflora detritus, comprised a significant portion of mussel 

diets (minimum 19.3 to 29.1%) based on modeled estimates from stable isotopes (Figure 3.7e and f). 

There are several possible explanations for this discrepancy: (1) Degraded vascular plant detritus is 

relatively deplete in lipids compared to their parent material and contribute more to M. edulis C 

requirements than lipids. (2) Vascular plant detritus contributions based on FAs are underestimates due 

to conversion of vascular plant FAs into bacterial FAs. (3) Diet contributions of diatoms and 

dinoflagellates are overestimations due to selective retention of FAs (e.g. 22:6ω3 and 20:5ω3) by M. 

edulis. (4) Inherent differences in what each method measures; FA biomarkers are only a subset of 

dietary lipids (do not sum to 100%), whereas isotope mixing models consider all C and N sources (an 

explicit assumption in some Bayesian models). (5)  Overlap in endmember stable isotope signatures 

could mislead the Bayesian mixing model. For example, Using an isotopically heavier δ13C for diatoms 

closer to -16 or -14‰, still within the reported range (Fry and Wainright, 1991), would result in lower 

estimations of S. alterniflora contributions. In our stable isotope mixing model S. alterniflora and 

macroalgae/diatoms were highly negatively correlated (r = -0.77), so improper estimation of 

macroalgae/diatom contributions would lead to overestimations of S. alterniflora detritus. Similarly, 

benthic pennate diatoms are enriched in δ13C (-13‰) and their contributions to mussel diets would be 

misinterpreted as S. alterniflora detritus in our isotope model (Currin et al., 1995). Although less 

prevalent than centric diatoms, pennate diatoms do contribute to the water column of Saco Bay, 

particularly in September (see Chapter 2).  
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The mixing model used in this study makes several assumptions, which could have influenced 

the results. We used whole mussel tissues when measuring δ13C and did not correct for the effect of 

δ13C depletion in lipids. Additionally, we estimated the δ15N of phytoplankton by subtracting one trophic 

level (3.4‰) from the values measured from mixed assemblages of zooplankton. This assumes all 

zooplankton graze directly on phytoplankton, which may not be a valid assumption. However, 

zooplankton within the Gulf of Maine have a large trophic overlap between size classes and only small 

differences in trophic level were measured (0.5 to 0.75 trophic levels) between zooplankton from 64 to 

8000 µm in size (Fry and Quiñones, 1994). Lacking direct measurements of zooplankton trophic levels, it 

is impossible to tell the trophic distance between phytoplankton and zooplankton. However, the two 

models tested represent two extremes in model parameters: (1) no lipid δ13C correction and all 

zooplankton are grazers (1 trophic level, 3.4‰ δ15N, between zooplankton and phytoplankton), (2) lipid 

δ13C correction and all zooplankton incorporate carnivory (1.75 trophic levels, 5.95‰ δ15N, between 

zooplankton and phytoplankton). By comparing results of the two model extremes we can determine 

how much our model was affected by our assumptions. With only minimal differences (≤9% to 

estimated contributions; Table 3.6) between the two models, we conclude that our assumptions did not 

significantly impact the conclusions of this study.   

While it is surprising that isotope modeled contributions of S. alterniflora detritus to M. edulis 

diets were so high, it is not impossible. Although Crassostrea virginica and Geukensia demissa only 

obtained small amounts of their required carbon from S. alterniflora detritus (0.7% and 8.6% 

respectively), they obtained larger proportions of their carbon requirements (5.5% and 31% 

respectively) from the associated bacteria (Langdon and Newell, 1990). Minimum isotope modeled 

contributions of S. alterniflora detritus in this study (9.7 to 25.0%) fall within the upper range of Langdon 

and Newell’s (1990) values suggesting they are feasible. However, the mean (17.7 to 41.7%) and 

maximum (25.0 to 58.0%) estimates seem less likely. Combined bacterial and vascular plant FAs 
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represented 8.1% of mussel FAs, much lower than the 19 to 29% minimum modeled contributions of 

vascular plants based on stable isotopes. Attributing bacterial FAs to vascular plant detritus 

consumption, assumes that all bacterial FAs measured in M. edulis were from their tissue and not from 

bacteria growing on them, as well as that all bacterial FAs ingested by M. edulis were from vascular plant 

sources. Both assumptions are unlikely and, even considering that detritus is likely to be lipid depleted, 

our model almost certainly over-estimated S. alterniflora contributions to mussel diets.  Due to the 

vicinity of Scarborough marsh, the largest salt marsh in Maine, and the “outwelling hypothesis” we 

expected an abundance of S. alterniflora detritus for M. edulis to consume (Odum and de la Cruz, 1967). 

Our minimum contribution model estimates of S. alterniflora (9.7 to 25.0%) are comparable to isotope 

modeled S. alterniflora contributions to mussel diets (10 t0 12%) near other large marshes (Riera, 2007). 

However, the mean (17.7 to 41.7%) and maximum (25.0 to 58.0%) estimates are again much higher, 

further corroborating they are likely overestimations.  

Macroalgae comprised a modest proportion (~10%) of the diet of M. edulis (Figure 3.7c). 

Consumption of macroalgal detritus by M. edulis is unsurprising given that macroalgal detritus is known 

to contribute to nearshore food webs and bivalve diets elsewhere (Duggins et al., 1989; Fredriksen, 

2003; Kaehler et al., 2006; Tallis, 2009; Allan et al., 2010; Von Biela et al., 2016). Detrital contributions 

from macroalgae were on the lower end of previously reported values for other bivalves. Macroalgal 

detritus can contribute small (10 to 20%) to large (> 50%) proportions of bivalve diets (Bustamante and 

Branch, 1996; Fredriksen, 2003; Allan et al., 2010) and have also been successfully incorporated into 

hatchery diets at rations of 50 to 90% (Camacho et al., 2007; Carboni et al., 2016). Lower contributions 

of macroalgal detritus in this study, could be due to differences in the quality of detrital particulates, or 

the abundance of salt marsh detritus. Quality of macroalgal detritus varies with species, age, and 

concentration of secondary metabolites, such as polyphenols (Cranford and Grant, 1990; Duggins and 

Eckman, 1997). There are large amounts of polyphenols (5 to 15% DW) in both A. nodosum and S. 



 

76 
 

latissima (Ragan and Jensen, 1978; Wang et al., 2009). These concentrations are equivalent to or greater 

than those previously shown to inhibit bivalve grazing of fresh material (Duggins and Eckman, 1997), 

suggesting polyphenols could have deterred ingestion by M. edilus.  

Although macroalgal detritus did not comprise a large proportion of M. edulis diets, its role may 

be significant. Macroalgae have large proportions (7 to 18%) of the essential FA arachidonic acid 

(20:4ω6; Table 3.3), which is found only in small amounts (~1%)  in dinoflagellates and most diatoms 

(Ackman and Tocher, 1968; Nichols et al., 1984; Dunstan et al., 1994; Mansour et al., 1999, 2003; 

Leblond and Chapman, 2000; Arts et al., 2001). Arachidonic acid, when used in conjunction with other 

ω6 FAs, is significantly correlated with mussel growth (Alkanani et al., 2007) and was selectively retained 

by mussels in the current study (Figure 3.4). Proportions of saturated FAs, PUFA, MUFA, ω3, essential 

FAs and NMIDs measured in this study for M. edulis were comparable to previously reported values 

(Table 3.2; Alkanani et al. 2007; Murphy et al. 2002).  

Decreases in lipid and total FA concentrations in M. edulis throughout the summer, 

accompanied by an increase in the proportion of NMIDs and essential FAs (20:4ω6 and 22:6ω3), 

suggests that mussels were physiologically stressed and preferentially retaining essential FAs (Figure 3.2 

and 3.3). Between May and July mussel lipid content decreased by 70%, a decrease that was generally 

mirrored across all FAs (SAT: 72%, MUFA: 78%, PUFA: 67%, ω3: 69%). Mussel 20:5ω3 content decreased 

similarly (77%); however, the decreases in 20:4ω6 (51%) and 22:6ω3 (58%) were lower, suggesting 

selective retention of these FAs. Growth of M. edulis has been negatively correlated with the proportion 

of NMIDs present in their FAs and NMIDs are negatively correlated with essential FAs (Alkanani et al., 

2007). Mussels are capable of synthesizing NMIDs de novo and are believed to do so to substitute 

essential ω3 FAs lacking in their diet (Zhukova and Svetashev, 1986; Zhukova et al., 1992; Alkanani et al., 

2007). 



 

77 
 

Selective retention of FAs could affect interpretation of diet contributions based on biomarker 

FAs. Both selectively retained FAs (20:4ω6 and 22:6ω3) were used as biomarkers in this study, for 

macroalgae and diatoms respectively. By selectively retaining these biomarker FAs, the contribution of 

both macroalgae and diatoms to mussel diets will appear larger. Effects of consumer metabolism on the 

interpretation of biomarker FAs is well known and has led to the development of Quantitative Fatty Acid 

Signature Analysis (QFASA; Iverson et al., 2004). In QFASA, calibration coefficients are used to account 

for the lipid metabolism of consumers, like trophic retention factors account for changes in consumer 

stable isotopes. Although useful for dealing with effects of consumer lipid metabolism, controlled 

feeding experiments are required to compute QFASA calibration coefficients. Due to a lack of controlled 

feeding experiments, we are unable to calculate calibration coefficients for M. edulis consuming diatoms 

and macroalgae. As such, it is important to recognize that contributions of macroalgal detritus and 

diatoms to the diet of mussels in this study may be slight over-estimations because of mussels 

selectively retaining 20:4ω6 and 22:6ω3.  

Possibly limited by 20:5ω3, mussels may have used macroalgal detritus to supplement their 

dietary requirements. Macroalgae contained the essential FA 20:5ω3 in large proportions (8 to 26%; 

Table 3.3). Eicosapentaenoic acid (EPA; 20:5ω3) is important for maintaining membrane fluidity and 

there is a strong relationship between 20:5ω3 and temperature in the gills of scallops (Hall et al., 2002). 

In the current study, only the proportion of the essential FA 20:5ω3 decreased in conjunction with 

increasing NMIDs (Figure 3.4), suggesting that NMIDs were synthesized to replace 20:5ω3. Based on this 

negative correlation, 20:5ω3 may have been a limiting FA for mussels. The phytoplankton community of 

Saco Bay is dominated by dinoflagellates (see Chapter 2), so it is possible that limitations in diatom 

availability caused the limitation of 20:5ω3 for mussels. As such, it is possible that mussels make use of 

macroalgal detritus to supplement their diet with 20:4ω6 and 20:5ω3; this supplemental effect might 

explain why bivalve growth was found to increase when supplied with a mixed diet of macroalgal 
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detritus and live phytoplankton in previous studies (Camacho et al. 2007). Macroalgae has a history of 

use as a supplemental diet in agriculture. Although considered an inferior ingredient, based on 

proximate composition and low digestibility, macroalgae is still supplemented into animal diets in low 

amounts (3 to 10%) due to prebiotic effects which result in increased health and productivity (Evans and 

Critchley, 2014). Could macroalgal detritus serve a similar role for bivalves and provide small amounts of 

micronutrients such as essential FAs?  

While 20:4ω6 only occurs in small proportions in most diatoms, some pennate diatoms can have 

larger proportions (2 to 6%: Dunstan et al. 1994). Microphytobenthos production can represent a 

significant portion of total productivity, which when resuspended can directly contribute to the water 

column phytoplankton assemblage (MacIntyre et al., 1996). Pacific oysters, Crassostrea gigas, are 

capable of selectively feeding on resuspended pennate diatoms from the microphytobenthos (Cognie et 

al., 2001). Additionally, microphytobenthos have been shown to contribute (0.4 to 4.4%) to the diets of 

both wild and cultivated bivalves (Riera, 2007). Another bivalve, Macoma balthica, has been shown to 

make use of benthic diatoms in their diet in another Maine estuary connected to the Damariscotta river 

(Incze et al., 1982). It was hypothesized based on δ13C values that M. balthica was feeding on the 

isotopically heavy (-12.4‰) Amphipleura rutilans. Pennate diatoms were present in the water column of 

Saco Bay in September, a time when POM δ13C values became enriched (see Chapter 2). It therefore 

seems likely that pennate diatoms contributed 20:4ω6 to the diet of M. edulis during September, 

potentially explaining some of the discrepancy between stable isotope modeled estimates and 

measured FAs. However, at other times (e.g. June) when pennate diatoms were less abundant 

macroalgal detritus may be a more important source of 20:4ω6 (see Chapter 2). Considering 

resuspension of benthic pennate diatoms, macroalgal detritus may not be needed by bivalves as an 

arachidonic acid supplement; however, through multiple lines of evidence, our study makes it clear that 

mussels have a diverse diet with multiple pathways to obtain essential FAs.  
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Results of this study clearly show M. edulis in Saco Bay are omnivores and incorporate detrital 

material into their diet. However, more work is needed to understand not only when, but why, and in 

what environments mussels make use of detrital subsidies. Feeding trials to confirm the ingestion and 

bioavailability of macroalgal FAs could help validate macroalgal detritus as an avenue for mussels to 

obtain essential FAs. Compound specific stable isotope analysis of detrital FA biomarkers could be used 

to more clearly trace organic matter within ecosystems. Additionally, more work is needed to determine 

whether detrital subsidies are required to meet mussel metabolic demands. These are important 

ecological questions and regarding aquaculture siting, if M. edulis does not require detrital inputs then 

siting strictly based on available chlorophyll is valid. However, if detrital inputs are required, estimates of 

detrital abundance and quality will be needed to properly predict growth, carrying capacities, and 

environmental interactions of bivalve aquaculture. Understanding detrital requirements could be 

particularly important for offshore aquaculture, which may result in growing areas with minimal 

contributions from nearshore detrital inputs and water depths that inhibit the ability of resuspended 

material to contribute to bivalve diets.     
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3.5.0 Conclusions 

 Mytilus edulis obtained 22.2% of their assimilated lipid from omnivorous feeding, 16% of which 

was detrital feeding based on FAs. Of all the detrital sources ingested, macroalgal detritus arguably 

warrants the most attention for further studies. Although macroalgal detritus only comprised a small 

proportion (5 to 11%) of M. edulis diet, its contribution could be significant. Macroalgal detritus had 

large amounts of the essential FAs 20:4ω6 and 20:5ω3 and could be an avenue for mussels to 

supplement their essential FA requirements. Although phytoplankton is a more important food source 

for bivalves, detrital food sources offer alternate pathways for mussels to supplement their catabolic 

energy and essential FA requirements. Although the importance of detrital subsidies is still unclear in an 

ecological context, detrital material (e.g. macroalgal detritus) may be a useful resource to consider when 

siting bivalve aquaculture.  
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CHAPTER 4 

BIOMIMETIC DETERMINATION OF THE BIOAVAILABILITY OF LIPIDS FROM THREE PRIMARY 

PRODUCERS TO BIVALVE CONSUMERS USING SODIUM TAUROCHOLATE 

4.1.0 Introduction 

 Due to their importance as fishery and aquaculture products, there has been great interest in 

understanding the growth and dietary requirements of filter-feeding bivalves (Kreeger et al., 1995; 

Pettersen et al., 2010; Hawkins et al., 2013a). While phytoplankton is viewed as the primary food-source 

for bivalves, other food-sources are known to contribute to bivalve diets to varying degrees, e.g. 

macroalgae (Bustamante and Branch, 1996; Duggins and Eckman, 1997) and marsh grass (Lucas and 

Newell, 1984; Langdon and Newell, 1990). There has been interest in alternative food-sources, other 

than phytoplankton, by bivalve hatcheries looking to reduce costs associated with culturing live 

phytoplankton (Uchida and Murata, 2002; Camacho et al., 2004, 2007). Many of the alternative food-

sources for bivalves are detrital in nature and their importance, especially in an ecological context, is not 

yet fully understood.     

 Bioavailability is an important factor to consider when evaluating the importance of a food 

source, especially detrital sources. The bioavailability of a given food item is dependent not only on the 

biochemical composition of the food source but also the ability of the consumer to digest it (Mayer et 

al., 1995, 1996).  Assimilation efficiencies are an effective way to assess the bioavailability of organic 

matter available to bivalve consumers and multiple studies have measured assimilation efficiencies for 

bivalves ingesting a variety of material ranging from phytoplankton (Kiørboe et al., 1980) to macroalgal 

detritus (Duggins and Eckman, 1997) to marsh detritus (Arambalza et al., 2014). Recently, assimilation 

efficiencies of bivalves have also been measured for specific biochemical components (proteins, 

carbohydrates, and lipids) of ingested food. Fernández-Reiriz et al. (2017) measured the absorption 

efficiency of proteins, carbohydrates, and lipids by Mytilus galloprovincialis ingesting natural seston.  
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Measured absorption efficiencies varied with season, which they attributed to changes in the lability of 

the seston. While these studies are important to understand the energy budgets of bivalve consumers, 

they may overlook the importance of dietary supplements that are not major dietary components but 

instead provide essential micronutrients such as essential fatty acids.  

 Biomimicry and biomimetic assays, which simulate the digestive and enzymatic capabilities of 

organisms, are another approach used to assess the bioavailability of organic particulates (Choo et al., 

1981; Laursen et al., 1996; Bünemann, 2008). Biomimetic assays offer a controlled and more easily 

manipulated method to estimate the bioavailability of refractory detrital material. Biomimetic assays 

have been used to measure the amount of enzyme hydrolysable amino acids (EHAA) in sediments 

(Mayer et al., 1995) as well as within particulate organic matter (Adams et al., 2019). Adams et al. (2019) 

correlated bioavailable EHAA with estuarine oyster growth and found the amount of bioavailable EHAA 

could not be explained by phytoplankton alone. In addition, Adams et al. (2019) found oysters to readily 

take up phytodetrital proteins and suggested that bioavailable detrital proteins may supplement oyster 

diets. The study by Adams et al. (2019) serves as a good example of the usefulness of using biomimetic 

assays to understand the contributions of detrital material to the diets of bivalves in lab and field 

settings.      

While proteins are an important dietary component for bivalves and amino-acid derived N may 

at times be limiting (Kreeger et al., 1995; Knauer and Southgate, 1999), lipids and their fatty acid (FA) 

constituents, especially polyunsaturated fatty acids (PUFA), are also important for bivalve nutrition and 

physiology (Leonardos and Lucas, 2000). Several PUFA (22:6ω3, 20:5ω3, and 20:4ω6) are of particular 

importance due to their roles as essential FAs not only for bivalves but also aquatic food webs (Parrish, 

2009). Lipids serve as important substrates for both catabolic as well as anabolic processes. Lipids serve 

as the densest form of energy in food webs, providing two thirds more energy per gram than protein or 

carbohydrates (Parrish, 2013). Additionally, lipids and their fatty acid (FA) constituents are essential 
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components of membranes and are important for mediating membrane fluidity, also known as 

homeoviscous adaptation (Arts and Kohler, 2009; Parrish, 2013). Essential FAs are correlated with 

growth in bivalves (Alkanani et al., 2007) and are especially important for bivalve membrane fluidity as 

well as for adaptation to environmental temperature changes (Hall et al., 2002; Parent et al., 2008). 

Some essential FAs are most frequently associated with fresh phytoplankton, a fact reflected by the use 

of 20:5ω3 and 22:6ω3 as biomarkers for both diatoms and dinoflagellates respectively (Kelly and 

Scheibling, 2012; Parrish, 2013). However, other sources of essential FAs do exist, such as macroalgae, 

which contain both 20:5ω3 and 20:4ω6 (Kelly and Scheibling, 2012). Macroalgae are known to produce 

large amounts of detrital material (Krumhansl and Scheibling, 2012), which can be of dietary importance 

for bivalves and coastal food webs (Bustamante and Branch, 1996; Kaehler et al., 2006). The ingestion of 

macroalgal detritus by bivalves raises the question, how important are detrital lipids, especially FAs?   

 Unlike proteins, biomimetic assays have not been used to assess the dietary bioavailability of 

nutritional lipids, including FAs. To date most bioavailability assays for lipids have focused on organic 

contaminants (Mayer et al., 1996; Simpson et al., 2006). Due to their hydrophobic nature, the ability to 

dissolve or solubilize lipids is an important limiting step in their digestion by consumers (Shiau, 1987). 

Surfactants, which encapsulate hydrophobic materials in micelles or promote emulsification, are an 

effective way to solubilize lipids (Carey et al., 1983; Lichtenberg, 1985). Emulsification and micelle 

formation are important steps in the digestion of lipids as they serve as the site of hydrolysis by 

promoting the binding of co-lipase, phospholipase, and eventually lipases (Carey et al., 1983). As a 

result, surfactants are frequently found within invertebrate gut fluids (Tugwell and Branch, 1992; Mayer 

et al., 1997; Smoot et al., 2003). Sodium taurocholate (STC), a commercially available surfactant, was 

found to adequately mimic the gut fluids of an invertebrate deposit feeder (Arenicola marina) for some 

purposes, e.g. it has been used to assess the amount of bioavailable lipid contaminants within sediments  

(Voparil and Mayer, 2004). Because of its prior use as a gut fluid proxy, STC is a reasonable candidate to 
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explore the bioavailability of nutritional lipids. Solubilization by gut-fluids is known to be an excellent 

predictor of absorption efficiency of lipid contaminants for invertebrates (Ahrens et al., 2001). 

Surfactants do not act alone within animal guts; lytic enzymes also lyse large molecules into 

their smaller constituents. Lipases and phospholipases hydrolyze lipids into smaller constituents, which 

aids in lipid absorption (Carey et al., 1983). While bivalves are known to possess both lipases (George, 

1952) and phospholipases (Hoehne-Reitan et al., 2007), in this study we focus only on the ability of STC 

to solubilize lipids and FAs. We omitted lipases and phospholipases from our approach due to possible 

interference caused by lipases when separating lipids by thin-layer chromatography. Due to the 

omission of lytic enzymes, our study focuses on only a single, but important, mechanistic step in 

determining the bioavailability of lipids.   

 The purpose of this study is to determine the relative bioavailability of lipid classes and FAs 

from several ecologically important primary producers (phytoplankton, marsh grass, and macroalgae). 

We used STC as a proxy for bivalve gut fluids and tested its ability to solubilize lipids from homogenates 

of both fresh primary producers and degraded products from them. We compared the lipid class and 

FAs from fresh primary producers, as well as their degradation products, solubilized by STC with those 

recovered using conventional non-polar solvent lipid extractions to estimate the bioavailability of lipids 

and FAs from each source. The relative bioavailability based on results from our biomimetic approach 

were used to draw inferences into the importance and potential use of detrital material by estuarine 

bivalves.  

4.2.0 Methods 

 To test the ability of STC to solubilize lipids from three primary producers (Ascophyllum 

nodosum, Spartina alterniflora, and Isochyrsis galbana) we produced a slurry of each producer in 

artificial seawater. Immediately after each slurry was made, sub-samples were taken to represent the 

fresh primary producers. After the initial sampling, each slurry was allowed to degrade naturally over a 
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period of two-months and sub-sampled regularly to represent detrital products for each producer. We 

compared the amount of extractable lipid, extracted using conventional non-polar solvent extractions, 

to the amount of lipid solubilized by STC. By comparing the amount of extracted lipid to solubilized lipid 

we calculated a recovery efficiency (RE) of lipids and FA which served as a measure of bioavailability 

(Figure 4.1). 

 

Figure 4.1. Flowchart of the experimental design used to obtain solubilized lipids with sodium 

taurocholate (STC) and extractable lipids from primary producer slurries. Primary producers used to 

create slurries were Ascophyllum nodosum, Spartina alterniflora, and Isochrysis galbana.  

4.2.1 Sample preparation and decay 

 Brown macroalgae (A. nodosum) and marsh grass (S. alterniflora) were collected by hand from 

Saco Bay, Me USA. Whole fronds of A. nodosum and S. alterniflora were cut into smaller fragments, 

added to 0.45 µm filtered seawater from Saco Bay, and then blended into a slurry using a commercial 
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blender. Filtered seawater was used as a medium in order to maintain the natural bacterial population 

of the estuary. The produced slurries, along with a culture of Isochrysis galbana (henceforth considered 

another slurry), were then placed in an open Erlenmeyer flask the dark at 5 °C and allowed to degrade 

naturally for a period of two months.  

 Sub-samples from each slurry were collected initially (t0) and then weekly throughout the first 

month; afterwards slurries were left for another month before a final sub-sample was taken. 

Unfortunately, there was only enough material in the I. galbana slurry to sample for two weeks. Sub-

samples from each slurry were taken for extractable lipid and solubilizable lipid. Sub-samples were taken 

by passing a known volume of slurry through a 0.45 µm Whatman GF/C filter. Filtered samples for 

solubilized lipid were placed in chloroform and methanol rinsed test tubes (three rinses each), capped 

with nitrogen, and stored at -20 °C, while extractable lipid samples were treated similarly except that 1 

ml of chloroform was added to each sample prior to storing at -20 °C.  

4.2.2 Lipid solubilization using sodium taurocholate 

Sodium taurocholate was dissolved in artificial seawater at a concentration of 28.7 mM, well 

above the critical micelle concentration (CMC) of 2.3 mM (Voparil and Mayer, 2004). Prior to testing the 

ability of STC to solubilize lipids from primary producers and decay products, we tested the ability of STC 

to solubilize analytical standards of solid phospholipids (phosphatidylcholine) and triacylglycerols (liquid 

triolein and solid tripalmitin). Aliquots of STC containing an excess of micelles (molar ratio of STC above 

CMC:lipids >10) were added to test-tubes containing filtered samples or analytical standards. Filtered 

samples in STC solutions were then ground using a glass rod until roughly homogeneous, vortexed, and 

then sonicated for 4.5 min. Once sonicated, samples were capped under nitrogen and placed in the dark 

at 5 °C for 15 hours. Samples were kept at a constant temperature during the experiment to prevent 

temperature fluctuations from influencing the extent of solubilization, while a digestion time of 15 h was 

chosen to represent the maximum gut passage time of Mytilus edulis (Hawkins et al., 1990). Afterwards, 
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samples were re-vortexed, sonicated again for 4.5 min, and then centrifuged at 3000 rpm for 3 min. The 

resulting supernatant of STC, containing lipids solubilized from the substrate, was pipetted into a lipid-

clean test tube, leaving behind any solids and un-solubilized lipids.  

Non-polar solvent (chloroform) lipid extractions were performed on the recovered STC to 

determine the amount of lipid that had been solubilized. The amount of solubilized lipid recovered from 

STC was compared to extractable lipid of paired samples to determine a lipid RE, calculated as 

𝑅𝐸 (%) =  
𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝑙𝑖𝑝𝑖𝑑 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 𝑙𝑖𝑝𝑖𝑑
× 100. Subsamples of lipid extracts from both extractable lipid and 

solubilized lipid samples were derivatized into fatty acid methyl esters (FAME) and quantified via gas 

chromatography (GC). Like lipids, a RE of FAs was determined by comparing the extractable fatty acids 

to the amount of solubilizable fatty acids, 𝑅𝐸 (%) =  
𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑧𝑒𝑑 𝐹𝐴

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝐹𝐴
× 100.  

4.2.3 Lipid class and fatty acid determination 

 Lipids were extracted from samples using a modified chloroform:methanol (2:1) Folch extraction 

as described by Parrish (1999). Filtered samples were homogenized in chloroform:methanol (2:1), 

vortexed, sonicated for 4.5 mins, and then centrifuged at 3000 rpm for 3 mins. Once centrifuged, the 

heavier chloroform layer along with dissolved lipids was removed via double pipetting, more chloroform 

was added to the sample and the entire process was repeated three additional times. The recovered 

lipid from each subsequent wash was pooled and reduced, via evaporation under nitrogen to prevent 

lipid oxidization, into a concentrated lipid extract.  

 Thin-layer chromatography and an Iatroscan Mark V were used for class separation and 

quantification of lipids as described by Parrish (2013). Additionally, small aliquots of lipid extracts were 

derivatized into FAMEs by heating (100°C) for one hr with sulfuric acid. Once derivatized, FAMEs were 

measured using an 7890A Agilent Series GC equipped with a ZB Wax+ column (Phenomenex: 30 m and 

0.25 µm internal diameter) along with flame ionization detection (FID) and identified by comparing with 

a Supelco 37 component FAME analytical standard (Product number 47885-U). Column temperature 
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began at 65 °C for 0.5 min before ramping to 195 °C at a rate of 40 °C min-1, temperature was then held 

for 15 min before ramping again to 220 °C at a rate of 2 °C min-1 and held for 3.25 min. The detector 

temperature was a constant 260 °C, while injector temperature started at 150 °C and ramped to a final 

temperature of 250 °C at a rate of 200 °C min-1. Helium was used as the carrier gas, with a flow rate of 2 

ml min-1, and nonadecane was used as an internal standard for FAME quantification.   

4.3.0 Results 

4.3.1 Lipid solubilization using sodium taurocholate 

 Using STC we were successfully able to solubilize both phospholipids (PL) and triacylglycerol 

(TAG) standards. Sodium taurocholate was able to solubilize triolein with a recovery efficiency of 53 ± 

19% (n = 6). Although STC was able to solubilize phosphatidylcholine, we were unable to accurately 

quantify the recovery efficiency of PLs due to contamination interference. We were able to confirm the 

solubilization of PLs by STC in early standard runs, prior to contamination building up sufficiently on 

Chromarods to make quantification difficult. The presence of contamination, suspected to be 

incombustible phytates (Ackman and Woyewoda, 1979), resulted in ghost peaks on chromatograms 

produced using the Iatroscan Mark V; these ghost peaks overlapped with the PL peak making 

quantification difficult and lowered our confidence in the reliability of measured PL recovery 

efficiencies. As a result, although we were able to solubilize PL standards using STC only REs of TAG will 

be reported. In contrast, our measured REs for acyl FAs will include FAs derived from PL and thus 

provide some insight into their bioavailability. 

 Sodium taurocholate was able to solubilize a fraction of the lipids from all three primary 

producers tested, although the REs varied with producer (Figure 4.2). Averaged throughout the 

experiment, RE of TAG was significantly (2-way ANOVA p < 0.01) higher for S. alterniflora (56 ± 19%) and 

I. galbana (48 ± 2%) than they were for A. nodosum (9 ± 3%). Although time was a significant factor (p < 

0.01) with respect to RE, a post-hoc Tukey’s test revealed only a single timepoint (day 20) to be 
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significantly different from the others, likely a result of the high RE for S. alterniflora. These results 

suggest that the initial source of TAG was more important in determining its bioavailability than any 

effects from the degradation process.  

 

Figure 4.2. Proportion (%) of extractable triacylglycerols (TAG) solubilized by sodium taurocholate. 

Solubilized TAG, considered bioavailable, from three primary producers (Ascophyllum nodosum, Spartina 

alterniflora, and Isochrysis galbana). Error bars represent ± 1 standard deviation. 

 Our inability to completely solubilize TAG from natural substrates in STC may have been due to 

saturation of STC with lipid. Even though we provided STC micelles far in excess of that of TAG (>50× 

higher on a molar basis; Table 1), we were unable to completely solubilize the extractable TAG from any 

of the primary producers. To ensure the validity of our results we tested to see if there were any effects 

of STC saturation. Subsequent tests with triolein standards yielded solubilized TAG:micelle STC ratios 

approximately an order of magnitude greater than those from primary producers (Table 4.1). These 

results suggest that the STC was not saturated with TAG; however, unlike our triolein standards the 

tested primary producers contain other lipid classes besides TAG. In a further test, we ran replicate 

samples of fresh I. galbana as well as Nanochloropsis oculate using 50% higher concentrations of STC. 
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The resultant REs for samples with increased micelles (I. galbana 36 ± 0.3%, N. oculata 29 ± 1.3%) were 

nearly identical to REs of samples with fewer micelles (I. galbana 36 ± 0.1%, N. oculata 26 ± 0.6%), 

further suggesting STC saturation was not an issue.  

Table 4.1. The molar ratio of triacylglycerols to sodium taurocholate. The initial molar ratio (µmol:µmol) 

of triacylglycerols (TAG) to sodium taurocholate (STC), above the critical micelle concentration, and the 

molar solubilization ratio (MSR) of TAG by STC for each primary producer (Ascophyllum nodosum, 

Spartina alterniflora, and Isochrysis galbana) and a TAG standard (triolein). Values reported are average 

± 1 standard deviation.  

    
 Initial concentration  Recovered 
 TAG:STC (µmol:µmol)  MSR (µmol:µmol) 

A. nodosum 1.9 ± 0.8 × 10-2  1.6 ± 0.4 × 10-3 
S. alterniflora 1.7 ± 1.0 × 10-3  8.6 ± 2.1 × 10-4 
I. galbana 1.5 ± 0.2 × 10-3  7.3 ± 1.1 × 10-4 
Triolein 2.0 × 10-2  1.2 ± 0.2 × 10-2 

 

Testing similar STC-to-TAG increases when solubilizing triolein yielded similar results (Figure 

4.3). Although there was an initial increase in TAG RE when increasing STC above CMC:TAG from 10 to 

20 (REs: 31 ± 13% and 66 ± 7% respectively), there was no subsequent increase in RE (54 ± 11%) when 

the STC above CMC:TAG was increased to 40. The lack of TAG RE following a subsequent doubling of the 

STC above CMC:TAG beyond 20, suggests that so long as STC above CMC:TAG is above 20 there will be 

an excess STC. This result, again suggests that STC saturation was not an issue as the STC above 

CMC:TAG for our samples was well above 20 (Table 4.1).  
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Figure 4.3. Proportion (%) of triolein solubilized by sodium taurocholate (STC) at varying ratios of STC 
above the critical micelle concentration (CMC) to triolein (µmol:µmol).  
 

At the conclusion of the degradation experiment we found a mass of pulp, consisting of tangled 

fibrous material, at the bottom of the S. alterniflora slurry. This finding suggests that the higher REs of S. 

alterniflora, relative to A. nodosum, resulted from sampling only smaller, more easily suspended 

particulates and not the larger fibrous pulp. To test this possibility, we analyzed samples of the S. 

alterniflora pulp to see if the resultant REs differed. There was no difference in the RE of S. alterniflora 

pulp (48 ± 4%) and that of S. alterniflora slurry samples (56 ± 19%), suggesting that particle size did not 

influence REs and that our sub-sampling method did not influence the results.  

 Quantification of FA REs using gas chromatography generally corroborated the results of TAG 

REs obtained from Iatroscan analysis (Table 4.2). In general, both TAG and FA REs were lower for A. 

nodosum than the other producers and the state of degradation did not affect the FA RE (no significant 

difference between initial and degraded REs), suggesting once again that the original source of lipid was 

more important than any degradation processes. The FA RE for A. nodosum (18 ± 6%) and S. alterniflora 
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(42 ± 13%) were comparable to their TAG REs (9 ± 3% and 56 ± 19% respectively); however, the FARE (20 

± 2%) was lower than the TAG RE (48 ± 2%) for I. galbana. Both producer and FA types, bacterial (iso , 

anteiso, odd-branched), saturated, monounsaturated, polyunsaturated, and ω3 significantly affected the 

FA RE (p < 0.01); however, a post-hoc Tukey-test found only the FA RE of S. alterniflora to be significantly 

different (p < 0.01) than the other producers and there was no consistency in RE differences among FA 

types (Table 4.2). 

Table 4.2. Proportion (%) of fatty acids solubilized in sodium taurocholate from three primary producers 

(Ascophyllum nodosum, Spartina alterniflora, and Isochrysis galbana) expressed as fatty acid recovery 

efficiency (RE). Reported values are average ± 1 standard deviation, * denotes significant differences 

among producers while abc denotes significant differences among fatty acid groups.  

 A. nodosum S. alterniflora I. galbana 
 RE (%) RE (%) RE (%) 

Total FA 18 ± 6 42 ± 13* 20 ± 2 
Bacterial 28 ± 19 36 ± 13 43 ± 9a 
Saturated 24 ± 6 47 ± 12a 31 ± 8 
MUFA 15 ± 5 37 ± 19 11 ± 9b 
PUFA 18 ± 6 37 ± 13 27 ± 8 
ω3 PUFA 19 ± 7 20 ± 9b 16 ± 11b 

 

4.3.2 Degradation effects on lipid classes and fatty acids 

 There were significant (p < 0.05) changes in the extractable lipid class composition of all 

producers throughout the course of the degradation experiment (Figure 4.4). There were no significant 

differences between the initial total lipid concentration (mg/g WW) and the end of the experiment. For 

all producers, there was a significant reduction in the proportion of PLs in conjunction with an increase 

of free fatty acids (FFA) and diacylglycerols (DAG) throughout the course of the degradation experiment 

(Figure 4.4b - d). Additionally, two measures of lipid degradation, the hydrolysis index (HI) and lipolysis 

index (LI), significantly increased for all producers throughout the experiment (Figure 4.4e + f). While we 

did observe the production of DAG for all producers suggesting degradation of TAG, the proportion of 

DAG remained low (<10% total lipid) and there were no significant decreases in the proportion of TAG 
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for any producers (Figure 4.4a and c). Although changes in lipid class composition were significant (p < 

0.05) for all producers, the magnitude of change was greater for S. alterniflora and I. galbana than for A. 

nodosum, suggesting A. nodosum had the slowest degradation rate.  

 

Figure 4.4. Summary of primary producer lipid changes during degradation. Proportion of total lipids (%) 

of triacylglycerols (TAG), phospholipids (PL), diacylglycerols (DAG), free fatty acids (FFA), as well as the 

lipolysis (LI) and hydrolysis (HI) index for three primary producers (Ascophyllum nodosum, Spartina 

alterniflora, and Isochrysis galbana) as they degrade. Values shown are average ± 1 standard deviation.  

 Accompanying changes in the lipid class composition, there were significant (p < 0.05) changes 

in the FA composition of A. nodosum and S. alterniflora (Figure 4.5). There was a significant increase in 

the proportion of bacterial FAs (iso, anteiso, and odd-chained) with degradation, although the increase 

for A. nodosum was very small (<1%). As with changes in lipid composition, the magnitude and extent of 

change was greatest for S. alterniflora. In addition to an increased proportion of bacterial FAs, the 
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proportion of saturated (SAT) and monounsaturated (MUFA) FAs in S. alterniflora increased with time, 

along with a corresponding decrease in the proportion of polyunsaturated (PUFA) FAs (Figure 4.5a – d). 

These results suggest once again that S. alterniflora showed the greatest amount of degradation, 

corroborating the lipid class results.   

 

Figure 4.5. Summary of primary producer fatty acid changes during degradation. Proportion (% total 

fatty acids) of bacterial (iso, anteiso, and odd-chained), saturated, monounsaturated, polyunsaturated, 

and ω3 fatty acids in three primary producers (Ascophyllum nodosum, Spartina alterniflora, and 

Isochrysis galbana) as they degrade. Values shown are average ± 1 standard deviation.  
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4.4.0 Discussion 

 The amount of lipid solubilizable by STC was always only a fraction of EL (<50%), regardless of 

primary producer and bioavailability varied with FA types. This is not the first study to show incomplete 

bioavailability, roughly defined here as RE, of lipids for consumers or differences in bioavailability among 

lipid and FA types. Copepods are able to digest the majority (>65%) of ingested organic matter when 

feeding upon diatoms but are less capable (30%) of digesting pigments (Cowie and Hedges, 1996). 

Zooplankton also digested FAs at high efficiencies (>60%) when feeding on dinoflagellates, though 

efficiency varied with the type of FA ingested (Harvey et al., 1987). In contrast, although larvae of the 

oyster Crassostrea gigas were able to efficiently assimilate the essential FAs 20:4ω6 and 22:6ω3 (82 and 

76% respectively), they had lower assimilation efficiencies (<60%) of other FAs, including the essential 

FA 20:5ω3 (Da Costa et al., 2015). However, our inability to completely solubilize triolein, which is 

expected to be fully bioavailable (Carroll and Richards, 1958), even when STC was in excess, suggests REs 

of 50% or greater likely represents full bioavailability. This is under the assumption that there are no 

other structural or matrix effects preventing producer lipids from solubilization.  

Primary production source was more important than detrital processing in terms of affecting the 

bioavailability of lipids and their constituent FAs for consumers. Lipids and FAs from A. nodosum were 

consistently less bioavailable than those from S. alterniflora and I. galbana and bioavailability did not 

change with time or state of decay, suggesting an inherent difference between A. nodosum and the 

other two producers. It has previously been suggested that the rate limiting step in the solubilization of 

PLs by STC was membrane permeability and that the presence of cholesterol significantly lowered the 

permeability of membranes to STC (Ramaldes et al., 1996). Our results would then imply that A. 

nodosum had higher levels of cholesterol and less permeable membranes than S. alterniflora or I. 

galbana. However, cholesterol is only a minor component of A. nodosum (Knights, 1970; Rayirath et al., 

2009), S. alterniflora (Lee et al., 1980), and I. galbana (Bandarra et al., 2003). As such, it seems unlikely 
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that the concentration of cholesterol in A. nodosum was sufficiently elevated compared to that of S. 

alterniflora or I. galbana to result in the observed differences in RE. Other sterols have also been found 

to decrease membrane permeability to surfactants, dihydrocholesterol and coprostanol both increased 

membrane resistance to the surfactant sodium dodecyl sulfate (Apel-Paz et al., 2005). The proportion of 

sterols in A. nodosum (7.9 ± 0.2%) was larger than S. alterniflora (5.2 ± 0.1%) and I. galbana (5.5 ± 0.2%), 

suggesting that A. nodosum membranes were more resistant to surfactant attack. However, the 

PL:sterol ratio of A. nodosum (3.6 ± 3.0) was like that of S. alterniflora (3.4 ± 4.1) and both were lower 

than I. galbana (6.2 ± 2.9). Based on this ratio, we would expect I. galbana lipids to be the most 

bioavailable and A. nodosum to have comparable bioavailability to S. alterniflora. This was not the case, 

suggesting it is unlikely that membrane permeability is the sole factor affecting the observed 

bioavailability differences.   

 Alginates might lower RE of A. nodosum relative to S. alterniflora or I. galbana. Alginic acids can 

emulsify with bile acids and interfere in the formation of lipid micelles (Dumelod et al., 1999; Rajapakse 

and Kim, 2011). Incorporation of seaweeds into the diets of humans and rats can decrease the 

absorption of cholesterol and increase the cholesterol content of feces (Dumelod et al., 1999; Hall et al., 

2012; Seal and Mathers, 2019). Structural alginates comprise roughly 15% (wt/wt) of A. nodosum 

(Schiener et al., 2017); if the alginates in A. nodosum prevent formation of STC micelles it would explain 

the lower REs compared to S. alterniflora and I. galbana. Given that STC is a vertebrate bile salt (Voparil 

and Mayer, 2004), it seems likely that alginates in A. nodosum would be able to interfere with lipid 

micelle formation as observed previously in humans and rats. Another possible cause of the lower REs 

for A. nodosum compared to the other producers, may be the presence of polyphenols. Polyphenols 

could interfere with digestion by precipitating gut surfactants of consumers (Zimmer, 1997). Although 

both S. alterniflora (~1.5% wt/wt) and A. nodosum  (~6% wt/wt) contain secondary metabolites, A. 

nodosum in particular contains much higher concentrations of polyphenols than S. alterniflora (Haddad 
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et al., 1992; Tibbets et al., 2016). It is possible that the higher concentration of polyphenols in A. 

nodosum was enough to precipitate enough STC to cause the reduction observed in REs. Bivalves have 

been shown to select against particulates with higher polyphenolics (>3% wt/wt) and particulates with 

higher polyphenolic concentrations resulted in inferior growth rates (Duggins and Eckman, 1997; 

Levinton et al., 2002). Based on previous studies, we would expect the polyphenol concentration in A. 

nodosum to be high enough to adversely affect bivalve consumers, a result consistent with our REs.   

 The observation, that the original source of lipid was more important than the effects of 

degradation to the bioavailability of nutritional lipids, has several ecological implications. First, unlike 

conventional wisdom based on C:N ratios (De la Cruz, 1965; Odum and de la Cruz, 1967), the quality of 

detrital material, based on RE, did not improve with degradation in terms of nutritional lipids, nor were 

detrital products more bioavailable than their fresh counterparts. If degradation does not increase 

bioavailability, bivalves may be able to more directly make use of nutritional lipids from macrophytes 

such as macroalgae and marsh grasses than previously thought. This finding is important because it 

suggests less processing is required before lipids of shed macrophyte material is bioavailable for 

bivalves, reducing the likelihood that material is exported out of the ecosystem before it’s bioavailable. 

That is not to say material shed from macrophytes is immediately available to bivalves, other factors 

including particle size and secondary metabolites, such as polyphenols that inhibit grazing (Duggins and 

Eckman, 1997), need to be taken into consideration as well. In addition, regarding alternative diets for 

aquaculture, our results suggest that testing the bioavailability of the parent primary producer is a 

suitable and relatively easy first step to identifying potential food sources. It should also be noted that, 

although the bioavailability of nutritional lipids did not change with degradation, the quality of lipids 

changed with degradation. The loss of PUFA throughout degradation will result in particulates of lower 

nutritional quality than the those prior to degradation.      
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Second, although previous studies have found S. alterniflora and its detrital products were only 

assimilated at low efficiencies (<10%) by oysters and mussels based on C and N budgets (Lucas and 

Newell, 1984; Langdon and Newell, 1990), our results indicate that a fair amount (~50%) of nutritional 

lipids from S. alterniflora are bioavailable. The discrepancy between the assimilation efficiency of C and 

N and the apparent bioavailability of nutritional lipids raises some interesting questions. Although salt 

marsh detritus does not contribute significantly to their overall C and N budget, could marsh detritus 

serve as a lipid and FA supplement for bivalves? Although S. alterniflora is deficient in many essential 

FAs compared to marine primary producers, e.g. 20:5ω3 and 22:6ω3, it is rich in 18:2ω6 and 18:3ω3 

which are precursors of essential FAs (Kelly and Scheibling, 2012). While most vertebrates are incapable, 

or limited, in their ability to chain elongate 18:2ω6 and 18:3ω3 into essential FAs, many invertebrates 

possess the elongase and desaturase enzymes required to modify dietary FA (Kelly and Scheibling, 

2012). Crassostrea gigas and their larvae are capable of chain-elongation and desaturation of MUFA into 

PUFA and have been shown to convert 18:3ω3 into 20:5ω3 (Waldock and Holland, 1984; Da Costa et al., 

2015). Through this process, bivalves capable of chain-elongation and desaturation could make use of 

ingestible particulates of S. alterniflora to supplement their essential FA requirements. If bivalves did 

make use of S. alterniflora detritus in this way, marsh detritus may play a more important role in bivalve 

nutrition than previously thought based on C and N budgets alone. In contrast to S. alterniflora, A. 

nodosum and other macroalgae do contain essential FAs, particularly 20:4ω6 and 20:5ω3. While lipids 

and FA from A. nodosum were less bioavailable than the other two primary producers tested, a small 

proportion (~20%) of PUFA and ω3 FAs were bioavailable. Although we did not detect substantial 

amounts of 20:5ω3 in A. nodosum, 20:4ω6 was recovered with a RE of 17 % (data not shown), 

suggesting that bivalves could supplement some of their essential FA requirements from macroalgal 

detritus as well. If bivalves did supplement their essential FA requirements with macroalgal detritus, it 
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could explain why some studies found higher growth rates of bivalves when fed a combination of 

macroalgal detritus and conventional phytoplankton diets (Camacho et al., 2007).  

We did not observe any changes in the bioavailability of lipid classes and FAs throughout the 

course of our experiment, but qualitative changes in the lipid and FA composition of producers suggest 

that some degradation occurred. There were significant increases in DAG, FFA and bacterial FAs, which 

are all expected products of degradation. The increases of degradation products caused increases in the 

HI and LI which are used to show the proportion of breakdown of neutral acyl lipids and total acyl lipids 

respectively (Weeks et al., 1993; Parrish, 1998). The decreases in PL and PUFA that occurred in 

conjunction with increases in degradation products and indices suggests that PL and PUFA are more 

susceptible to degradation than TAG, SAT and MUFAs. Taken together, the increases in degradation 

products and indices show clearly that degradation occurred in our slurries, although to varying degrees. 

Based on the magnitudes of change observed, S. alterniflora underwent the greatest amount of lipid 

degradation and A. nodosum the least. The reduced degradation observed in A. nodosum might be 

attributed to polyphenols. The presence of polyphenols is known to reduce colonization of microbes 

(Ragan and Glombitza, 1986; Krumhansl and Scheibling, 2012) and their higher concentration in A. 

nodosum could have slowed the degradation process by inhibiting the colonization of microbes more 

than S. alterniflora. Due to the nature of the closed system used in our rot experiment, the bacterial 

inhibition of polyphenols was likely magnified. Even after they leached from producer tissues, 

polyphenols would still be present in the seawater medium and be able to inhibit the growth of bacteria. 

Another potential factor is the sourcing of our filtered seawater; marsh grass and macroalgae are known 

to degrade at different rates depending on where they are located in an estuary (Quintino et al., 2009). 

Marsh grasses degraded faster farther inside an estuary and closer to where they grew than macroalgae 

which degraded faster towards the mouth of the estuary. The intake for the filtered seawater used in 

this experiment was upstream of the estuary mouth and as a result could have had a bacterial 
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community primed to more readily decompose S. alterniflora than A. nodosum as a result. Regardless of 

the differences in the amount of degradation, degradation of primary producer slurries did occur, and 

degradation did not significantly affect the bioavailability of lipids and FAs. 

Bioavailability measured as RE’s in this study may be minimum values because we only 

measured a single step in the digestion process. We focused on the ability of gut surfactants (STC in this 

case) to solubilize nutritional lipids. In addition to surfactants, bivalves are known to possess both 

lipases and phospholipases (George, 1952; Hoehne-Reitan et al., 2007), which will aid the solubilization 

of lipids by breaking them down into smaller constituent parts. Because we did not include lipases and 

phospholipases in our digestions, we only measured the initial step in digestion, the ability of gut 

surfactants to solubilize nutritional lipids. Because co-lipase, phospholipase, lipase, and bile salts all act 

synergistically (Carey et al., 1983), addition of lipases and phospholipases would be expected to increase 

the solubilization of lipids and as such, our measured bioavailabilities should be viewed as minima only. 

Although the addition of lipases and phospholipases would be expected to increase solubilization of 

nutritional lipids, the increases may not be uniform across lipid sources. Depending on the biochemical 

composition of each primary producer, lipases and phospholipases may be better or worse at accessing 

and lysing lipids from each source and further testing will be required to fully understand the 

bioavailability of nutritional lipids. For example, bivalves possess laminarinases (Brock and Kennedy, 

1992), a carbohydrase that breaks down laminarin. Laminarin is an abundant structural carbohydrate in 

macroalgae (Schiener et al., 2015) and the presence of laminarinases in bivalves suggests they are 

equipped to digest macroalgal material. As such, bivalves may contain lipases similarly tooled to deal 

with lipids from macroalgal sources. So, while our study represents a first step in developing a 

biomimetic approach to assess the bioavailability of nutritional lipids, more work is required to fully 

represent the digestion process of lipids. 
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We made the decision to omit lipases, phospholipases, and co-lipase from out digestion because 

of early difficulties associated with quantifying phospholipids. As previously mentioned, there were 

ghost peaks that appeared in the same area as PLs in chromatographs obtained from Iatroscan analysis. 

We initially believed these peaks to be caused by lipases, which prompted us to remove them from our 

cocktail. It was only later, and after the experiment had begun, that we realized the ghost peaks were 

not caused by lipases; the now suspected cause is incombustible phytates (Ackman and Woyewoda, 

1979). If it is indeed incombustible phytates, and not lipases, that are the cause of ghost peaks it should 

be possible to re-introduce lipases into the cocktail to better mimic a digestive system. Furthermore, by 

altering Chromarod development times prior to Iatroscan analysis it may be possible to shift the 

retention time of PLs away from the ghost peaks to allow for proper quantification. As such, the re-

introduction of lipases along with changes in chromarod development times would be easy first steps to 

begin improving upon the methods used in this study. In addition, more robust bioassays, e.g. feeding 

trials of live animals using radiolabeled essential FAs or compound specific stable isotopes, to determine 

digestive performance of bivalves should be conducted to properly ground truth the bioavailabilities 

measured within this study.  
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4.5.0 Conclusions 

 The initial source of nutritional lipids and FAs influenced bioavailability more than the state of 

decay, of the parent material. The bioavailability of lipids and FAs from A. nodosum was lower than 

those of S. alterniflora or I. galbana, perhaps due to presence of alginates which interfered with the 

formation of micelles. Sodium taurocholate was able to successfully solubilize TAG from slurries of 

primary producers and could serve as a proxy for measuring the bioavailability of nutritional lipids and 

FAs; however, further refinement, e.g. the addition of lipases and phospholipases, is required to 

adequately represent the digestive systems of bivalves. Additionally, comparisons of the ability of STC to 

solubilize lipids with the digestive fluids of bivalves, live animal assays, and bioassays (e.g. 14C-labelling 

or compound specific stable isotopes) is required to properly assess the viability of our biomimetic 

approach.  
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CHAPTER 5 

CONCLUSIONS 

 Saco Bay, ME USA, had a phytoplankton community dominated by dinoflagellates, followed by 

centric diatoms, which was reflected by the availability of essential fatty acids (FA). As such, 22:6ω3 was 

the most abundant essential FA followed by 20:5ω3, while there was relatively little 20:4ω6. There were 

two broad categories of particulate organic matter (POM) in Saco Bay, marine POM (phytoplankton, 

zooplankton, and macroalgal detritus) which contained essential FA and vascular plant POM which 

lacked essential FAs but was rich in their precursors 18:2ω6 and 18:3ω3. Macroalgal detritus was 

differentiated from other marine POM by the presence of secondary metabolites and difficult to digest 

structural materials; however, it could be a supplemental source of 20:5ω3 and 20:4ω6 for consumers 

able to digest it. In contrast, vascular plant detritus lacked essential FAs while also possessing secondary 

metabolites and difficult to digest structural material. While of a relatively poorer quality when 

compared to macroalgal detritus and other marine POM, consumers possessing FA desaturase and 

elongase enzymes could potentially make use of vascular detritus to supplement essential FAs.  

 Mytilus edulis within Saco Bay were omnivores making use of both fresh phytoplankton and 

zooplankton in their diets as well as detrital sources, which comprised a minimum of 16% of their diet 

based on FAs. Vascular plant FAs comprised a relatively small proportion of M. edulis FAs (3.3 ± 0.01%). 

In contrast, although macroalgae only comprised a small proportion (5 to 11%) of the diet of M. edulis, 

macroalgal detritus contained large proportions of 20:5ω3 and 20:4ω6. Mussels within the bay may 

have been limited by 20:5ω3, suggesting their ingestion of macroalgal detritus may have been to 

supplement their diet with 20:5ω3. More work is needed to determine if detrital supplements, 

particularly detrital FAs, are required by M. edulis.  
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The initial source of lipid and FAs influenced bioavailability, based on the solubilization ability of 

sodium taurocholate (STC), more than the state of decay. The bioavailability of lipids and FAs from 

Ascophyllum nodosum was significantly lower than Spartina alterniflora or Isochyrsis galbana. 

Differences in bioavailability were perhaps due to the content of alginates and polyphenols which could 

have interfered with the formation of micelles and precipitate gut-fluids. Although STC was able to 

solubilize TAG and FAs from slurries of primary producers and could serve as a proxy to measure the 

bioavailability of nutritional lipids, further development is needed to properly simulate the digestive 

environment of bivalves.  

 Based on the results of this study, macrolagal detritus shows the most promise to be 

incorporated into bivalve aquaculture models. Macroalgal detritus contributed to both POM and the 

diets of M. edulis in Saco Bay and may serve as a supplemental source of essential FAs. However, poor 

bioavailability of A. nodosum lipids and FAs, suggests caution is required when considering macroalgal 

detritus as a food-source for bivalves. Close attention should be paid to the content of secondary 

metabolites (>3% wt/wt) and structural material (e.g. alginates) when assessing macroalgal, or any, 

detritus as a food-source for bivalve aquaculture. Additionally, the digestive capabilities and ability to 

modify dietary FAs of the cultured bivalve should be considered when considering detrital food-sources.     
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