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Potential changes in forest composition could reduce impacts
of climate change on boreal wildfires
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Abstract. There is general consensus that wildfires in boreal forests will increase
throughout this century in response to more severe and frequent drought conditions induced
by climate change. However, prediction models generally assume that the vegetation
component will remain static over the next few decades. As deciduous species are less
flammable than conifer species, it is reasonable to believe that a potential expansion of
deciduous species in boreal forests, either occurring naturally or through landscape
management, could offset some of the impacts of climate change on the occurrence of boreal
wildfires. The objective of this study was to determine the potential of this offsetting effect
through a simulation experiment conducted in eastern boreal North America. Predictions of
future fire activity were made using multivariate adaptive regression splines (MARS) with fire
behavior indices and ecological niche models as predictor variables so as to take into account
the effects of changing climate and tree distribution on fire activity. A regional climate model
(RCM) was used for predictions of future fire risk conditions. The experiment was conducted
under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest
types does not differ from the present one, and the unlimited dispersal scenario, which allows
forest types to expand their range to fully occupy their climatic niche. Our results show that
future warming will create climate conditions that are more prone to fire occurrence. However,
unlimited dispersal of southern restricted deciduous species could reduce the impact of climate
change on future fire occurrence. Hence, the use of deciduous species could be a good option
for an efficient strategic fire mitigation strategy aimed at reducing fire propagation in
coniferous landscapes and increasing public safety in remote populated areas of eastern boreal
Canada under climate change.

Key words: boreal forest; climate change; climatic envelope; deciduous species; future fire occurrence;
mitigation management; multivariate adaptative regression splines.

INTRODUCTION

It is now well recognized that wildland fires are

essential to boreal forest dynamics. They shape forest

structure and composition, for instance by increasing

landscape-level forest productivity (Johnstone and

Chapin 2006, Lecomte et al. 2006) and by favoring the

conservation of shade-intolerant species (e.g., Pinus

banksiana; Johnson 1992). However, fires in boreal

forests also have their negative effects owing to their

high suppression costs, the infrastructure disasters they

cause in remotely populated areas, and the loss of

harvestable forests during extreme fire years. In 2010,

the Russian boreal forest was affected by several

hundred fires due to exceptional drought conditions. A

state of emergency was declared and damages were

estimated at $15 billion (US$; HuffPost World 2010).

Eastern boreal Canada was also hit in 2011 by major

fires that forced a state of emergency and the evacuation

of communities. In May 2011, for example, wildland

fires spread in Alberta, and the Slave Lake fire (western

boreal Canada) forced the evacuation of 15 000 resi-

dents, causing damage totaling over $700 million

(Canadian$; Flat Top Complex Wildfire Review Com-

mittee 2012).

The processes governing wildland fire activity operate

at several time scales (days, seasons, interannual,

decadal) and are influenced by several climatic and

environmental factors such as temperature, precipita-

tion, wind, and the structure and composition of forests.

From 1905 to 2005, rising concentrations of carbon

dioxide in the atmosphere have contributed to a global

warming estimated at 0.748C (6 0.188C; IPCC 2007).
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The response of the boreal forest to further warming is a

major concern because high-latitude boreal regions are

likely to be most affected by these changes (IPCC 2007),

and the expected response of fire activity is closely linked

to warmer and drier weather (Balshi et al. 2009). Recent

temperature increases have been associated with increas-

ing fire activity in Canada since about 1970 (Gillett et al.

2004) and exceptionally warm summer conditions in

Russia during the 2010 fire season (Rahmstorf and

Coumou 2011). This increased warming will likely result

in more fire-prone weather conditions by the end of the

21st century (Yang et al. 2011) that will directly impact

the number of fire occurrences (Girardin and Mudelsee

2008, Flannigan et al. 2009, Wotton et al. 2010) and area

burned (Amiro et al. 2009, Balshi et al. 2009, Flannigan

et al. 2009, Le Goff et al. 2009, Bergeron et al. 2010).

Fire management capacity will eventually be over-

whelmed (Podur and Wotton 2010).

Predictions of future fire activity are generally

obtained using empirical models calibrated with vari-

ables describing the processes of drying in organic soil

layers and fire behavior (Flannigan et al. 2005, Bergeron

et al. 2006, Girardin and Mudelsee 2008, Lafleur et al.

2010). Most of these models do not consider feedback

effects on fire ignition and spread resulting from changes

in vegetation and fuel types (Flannigan et al. 2001, Hély

et al. 2001, Krawchuk et al. 2009, Hessl 2011). Models

assume that the vegetation component will remain

relatively static in the course of the next few decades.

However, deciduous species are less flammable than

coniferous species (Päätalo 1998, Campbell and Flanni-

gan 2000, Hély et al. 2001, 2010, Lefort et al. 2004,

Arienti et al. 2006, Krawchuk et al. 2006) and thus one

could expect that the increasing risks brought about by

more fire-prone climatic conditions could be offset by an

increasing deciduous component in boreal landscapes.

While in the long term a potential northward migration

of limited temperate deciduous species and an expansion

of other deciduous species in the boreal forest are

expected to occur in response to climate change (Iverson

and Prasad 1998, McKenney et al. 2007, O’ishi and Abe-

Ouchi 2009, O’ishi et al. 2009, Berteaux et al. 2010,

McKenney et al. 2011), it might not be the case in the

medium term owing to low species migration and

dispersal rates. Nevertheless, the question of potential

vegetation feedback on fire activity is important when

placed in the following context: to what extent can

changes in vegetation offset predicted increases in fire

risk driven by more severe and frequent drought

conditions if species dispersal is unlimited or facilitated

through, for instance, strategic forest management

planning aimed at mitigating increasing climate risks?

Such planning could include fuel treatments through

prescribed burning and modification of vegetation

composition around forest communities to reduce the

fuel load (e.g., Hirsch et al. 2004).

The objective of this study is to determine whether

increases in the occurrence of boreal fires predicted to

occur by the end of the 21st century can be mitigated by

changing the vegetation composition. We used a

previously published method of predicting future fire

behavior coupled with ecological niche models that take

into account the effect of changing tree species distribu-

tion. Ecological niche models present correlative de-

scriptions of the current environment and species

distribution and, based on predicted future environmen-

tal conditions, they can be used to project future species’

suitable ranges (Franklin 2009). In order to fulfill data

requirements for the wildfire and ecological niche

models, we focused our modeling effort on eastern

boreal North America. Three hypotheses related to

wildfire risk response to climate change were statistically

tested. These hypotheses were formulated on the basis of

the widely accepted evidence that temperatures will be

rising in boreal regions over the present century (IPCC

2007) and that fire activity will be increasing (e.g.,

Flannigan et al. 2009, Bergeron et al. 2010). The

hypotheses are that (1) weather and tree composition

are both important explanatory variables of fire occur-

rence in boreal forests; (2) future climate conditions will

be more conducive to fire; and (3) changes in tree

composition may limit the increase in fire occurrence.

STUDY AREA

Our study area is located in the province of Quebec,

Canada (Fig. 1). The climate is predominantly continen-

tal, with warm and short summers, and cold, long, and

snowy winters (Natural Resources Canada 2007). Tem-

perature and precipitation differ across the province due

to maritime effects, latitude, topography, and the

presence of the Labrador Current along the east coast

(Richard 1987). Mean annual temperature decreases with

latitude and elevation, ranging from 78C in the south to

�3.18C in the north (Natural Resources Canada 2007).

Total annual precipitation varies from 800 to 1600 mm,

with maximum values in the eastern part due to maritime

effects (Richard 1987, Natural Resources Canada 2007).

Forests located south of 478 N are dominated by

deciduous and mixed stands. Dominant tree species

include, but are not restricted to, sugar maple (Acer

saccharum Marsh.), yellow birch (Betula alleghaniensis

Britt.), beech (Fagus sp.), balsam fir (Abies balsamea (L.)

Mill.), red pine (Pinus resinosa Ait.), and white pine

(Pinus strobus L.). Coniferous species cover small areas

(Bérard et al. 1996, Saucier et al. 1998) and the region is

rich in vascular plants (.1600 species) and tree species

(;40 species) (Richard 1987). Forests located between

478 and 588 N are dominated by conifers, including black

spruce (Picea mariana (Mill.) BSP.), white spruce (Picea

glauca (Moench) Voss.), and balsam fir. However,

deciduous species such as trembling aspen (Populus

tremuloides Michx.), paper birch (Betula papyrifera

Marsh.), and yellow birch also occupy extended areas

in these forests (Bérard and Côté 1996, Saucier et al.

1998). Vascular plants are abundant in deciduous stands,

and abundance, diversity, and evenness decrease with
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increasing coverage of conifer species (De Grandpré et al.

1993, Hart and Chen 2006). Where coniferous trees

dominate, lichens and mosses occupy the subarctic forest

floor (Gauthier et al. 2000, Bergeron et al. 2002). Above

588 N, the subarctic tundra forest extends from the

continuous forest limit to the northernmost limit of tree

growth (Payette 2001). Plant diversity is poor and

landscapes are generally occupied by scattered black

spruce individuals (Richard 1987, Payette 2001).

METHODS

The structure and organization of the methods used

are illustrated in Fig. 1. Hereafter, we formulate the

FireOcc quantity as follows:

FIG. 1. Diagram of the statistical analyses conducted in this study. (A) Quebec regionalization based on conditions (fire
weather and tree composition) prone to fire from 1971 to 2000. (B) Modeling of fire occurrence with fire weather variables and tree
composition categories from 1971 to 2000. (C) Fire occurrence projections for 2071–2100.
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FireOccj ¼
X
ðc1BF1 3 FWj þ c2BF2 3 TreeCompÞ ð1Þ

where FireOcc is the number of fires per year per 1000

km2 for a given fire size class (� 1 ha; � 10 ha; � 200 ha)

for the decade j. Predictor variables are sets of fire

bioclimatic zones determined from fire weather (FW)

variables and tree species composition (TreeComp).

Finally, c1 and c2 correspond to constants, while BF1

and BF2 are basis functions for nonlinear interactions

(see Methods: Parameterization of the FireOcc model ).

For the purpose of developing predictions of future

FireOcc that take into account regional climate and tree

composition changes, the following intermediate analy-

ses were undertaken: (1) division of the study area into

fire bioclimatic zones using a clustering method applied

to gridded FW variables and tree species distributions;

(2) parameterization of the FireOcc model using a

nonlinear regression technique relating FireOcc to FW

variables and TreeComp; and (3) inclusion of simulation

outputs of a regional climate model into the FireOcc

models. Data and methods are described in detail in the

following sections.

Fire statistics

Forest fire data from the Ministère des Resources

Naturelles et de la Faune du Québec were used for this

study. The database contains information on the

location, date of detection, size (ha), and cause

(lightning or human) of all fires recorded in the province

of Quebec. The period covered by the data encompasses

that during which systematic fire detection was made by

detection planes. We considered lightning fires from

1971 to 2009 only. Fires of size ,1 ha were not included

as the database for these fires is considered incomplete

(Boulanger et al. 2012). Fires ,10 ha of unknown origin

were removed from the analysis. Remaining fires were

grouped in the following size classes: �1 ha, �10 ha, and
�200 ha. These classes correspond to the first, second,

and third percentiles of the fire size distribution.

Climate data and fire weather (FW) variables

We used the Canadian Fire Weather Index (FWI)

System (Van Wagner 1987) to estimate fuel moisture

and generate a series of relative fire behavior indices

based on weather observations and simulations. Briefly,

the FWI System calculates three fuel moisture codes at

different forest floor levels based on daily temperature,

precipitation, relative humidity, and wind velocity.

These codes are the fine fuel moisture code (FFMC),

duff moisture code (DMC), and drought code (DC).

FFMC estimates the moisture contents of the litter and

other fine fuels in a forest stand in a layer of ;0.25 kg/

m2 dry mass. It is an indicator of sustained flaming

ignition and fire spread. DMC represents the average

moisture content of loosely compacted, decomposing

organic layers of moderate depth weighing ;5 kg/m2

when dry. It relates to the probability of lightning

ignition and fuel consumption. DC represents the

average moisture content of deep, compact organic

layers (about 10–25 cm from the surface) weighing ;25

kg/m2 when dry. It relates to the consumption of heavier

fuels and the effort required to extinguish a fire. For a

temperature of 258C, relative humidity of 30%, and wind

speed of 10 km/h, the response times of the FFMC,

DMC, and DC are ;0.5, 10, and 50 days, respectively

(Wotton 2009). These moisture codes feed into other

codes related to fire behavior, including a numerical

rating of fire spread (initial spread index, ISI), the fuel

available for combustion (build-up index, BUI), and an

approximation of the difficulty of controlling fires (daily

severity rating, DSR). It is important to note that the

FWI System estimates fire behavior without regard for

fuel types and, hence, forest composition (Van Wagner

1987, Wotton 2009). All indices are unitless, with the

zero value indicating low fire risk and high values

indicating high fire risk. Winter precipitation is included

in the algorithms of the FWI so fire behavior indices also

depend on snow accumulation (Girardin and Wotton

2009). Additionally, we also considered the length of the

fire season (FS) as a potential predictor of FireOcc. The

start of the fire season was assumed to begin either on

the third consecutive day with noon temperature above

128C, or three days after snowmelt (i.e., after seven

consecutive days with ,2 cm of snow on the ground;

Brown et al. 2003), depending on which of the two

criteria came first. The end of the season was set based

on the accumulation of .2 cm of snow on the ground

for seven consecutive days or on the occurrence of three

consecutive days with daily minimum temperature

,08C, whichever happened first (Brown et al. 2003).

To begin with the computation of the FW variables, a

set of 1000 locations was randomly selected across the

study area using a random location list generator, and

weather data (maximum daily temperature, precipita-

tion, wind, and relative humidity) were obtained for

each location using the BioSIM software (Régnière and

Bolstad 1994). As part of the procedure, daily data were

interpolated from the four closest weather stations,

adjusted for differences in latitude, longitude, and

elevation between the data sources and the location,

and averaged using a 1/d2 weight, where d is distance.

Data for the 1971–2009 period were interpolated from

Environment Canada’s historical climate database

(Environment Canada 2011). Data for 2071–2100 were

obtained from gridded simulation outputs of the

Canadian regional climate model, version 4.1.1

(CRM4.1.1 acs and act runs; Biner et al. 2007, Music

and Caya 2007). The simulations were carried out on a

horizontal grid-size mesh of 45 km. Simulations were

performed using the IPCC SRES A2 emission scenario

(Naki�cenovi�c et al. 2000). The A2 storyline from which

it is developed represents a very heterogeneous world

with continuously increasing global population and

regionally oriented economic growth that is more

fragmented and slower than in other SRES storylines.

The CO2 concentration therein increases from 476 ppm
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in 1990 to 880 ppm by the late 21st century. To account

for differences between model development data and

RCM predictions, the delta method was applied. This

method involves calculating differences in temperature

and ratios of precipitation, wind speed, and specific

humidity projected by the RCM model in relation to the

model’s average climate during the time period for

which historical climate data are available (i.e., 1971–

2000). Those changes are then added (for temperature)

or multiplied (for precipitation, wind speed, and specific

humidity) to historical climate data averages. Specific

humidity was converted into relative humidity.

Mapping of tree species’ potentially suitable habitats

Previously published tree species distributions predict-

ed by ecological niche models for the baseline and future

periods were used to estimate tree species presence and

absence at each of our locations (Berteaux et al. 2010).

The potentially suitable habitats predicted by the models

correspond to areas that species can occupy under current

and changing climate conditions without any dispersal

constraint (McKenney et al. 2007, Engler and Guisan

2009). Details on the data and methods can be found in

Berteaux et al. (2010). Briefly, multiple statistical models

of species-suitable habitats were parameterized using

Quebec data on forest composition, altitude, soil types,

soil drainage class, and climate (1961–1990 normals).

These multiple statistical models were then averaged to

obtain ensemble means, and parameter settings were

applied to adjusted outputs of the Canadian regional

climate models and scenarios described earlier for the

projection of future suitable habitats. We retained the

following 10 tree species, which are generally considered

dominant in Quebec’s bioclimatic domain (Saucier et al.

1998): balsam fir, sugar maple, yellow birch, paper birch,

bitternut hickory (Carya cordiformis (Mill.) K.), black

spruce, white spruce, jack pine (Pinus banksiana Lamb.),

trembling aspen, and American basswood (Tilia ameri-

cana L.). All results were centered on 2080 for future

periods. Locations without tree information were deleted.

We obtained a total of 638 random locations for analysis

(Fig. 1).

Spatial clustering

Baseline reference conditions for the different FW

variables were computed at each of our locations from the

averages of the daily quantities over 1971–2000. Spatially

constrained clustering (Legendre and Fortin 1989, Legen-

dre and Legendre 2012) was then applied to the baseline

FW variables, and to tree species distributions to divide

the study area into homogeneous fire and tree composi-

tion zones, respectively (Fig. 1). For several of our

locations, the fire weather variables were calculated from

the same weather stations, which induces an overlap in

location information and, hence, an inflated autocorrela-

tion. Spatial clustering analysis made it possible to

eliminate this autocorrelation. Owing to the high collin-

earity between some of the FW predictor variables, we

restrained our application of the clusteringmethod toDC,

DSR, and FS variables; sensitivity analyses indicated that

inclusion of other variables such as temperature and other

FW variables did not improve model performance. We

computed space-constrained agglomerative clustering

using a multivariate dissimilarity (distance) matrix

(Legendre 2011). Ward’s minimum variance hierarchical

cluster analysis was used as the clustering method (Ward

1963). Hellinger transformation was applied to the tree

species distribution data set followed by calculation of

Euclidian distance; the result was a matrix of Hellinger

distances among sites (Legendre andGallagher 2001). The

number of clusters that minimized the cross-validated

residual error (CVRE) was retained. One hundred cross-

validation iterations were also conducted to calculate the

CVRE. The clustering analysis was performed with the

‘‘const.clust’’ package (Legendre 2011) included in the R

freeware (R Development Core Team 2010).

Fire bioclimatic and future tree composition

zone delimitation

Fire bioclimatic zones were delimited using FW

variables and TreeComp spatial clustering results. This

was done to obtain homogeneous zones of both FW

variables (FW clusters) and tree composition (Tree-

Comp clusters). Spatial clustering analysis made it

possible to assign to each location two values corre-

sponding to its cluster membership (FW variables and

TreeComp). The ‘‘factor’’ function in the R freeware was

used to encode each location with a cluster code (one fire

bioclimatic zone). A new cluster was created when two

points belonged to the same FW cluster, while their

TreeComp cluster was different, or vice-versa.

To reflect that tree-suitable habitats would change in

response to climate change, new TreeComp clusters were

assigned. Potential presence or absence of the 10 tree

species over the 2071–2100 period was attributed to each

of the 638 locations from habitat suitability models

centered on 2080. New TreeComp clusters were ob-

tained for each location by calculating Hellinger

distances between locations and centroids of TreeComp

clusters for the 1971–2000 period. The cluster with the

shortest Hellinger distance was assigned to each

location. Maps of fire and vegetation zones were then

delimited by agglomerating the Thiessen polygons of the

locations for each cluster using ESRI ARCGIS 9.3

(ESRI, Redlands, California, USA).

Parameterization of the FireOcc model

Development of a predictive model for FireOcc was

carried out using multivariate adaptative regression

splines (MARS; Friedman 1991). Descriptions of the

method are provided by Leathwick et al. (2006) and by

Balshi et al. (2009). MARS is a nonparametric spline

regression approach that models nonlinear relationships

between a response variable (e.g., FireOcc) and predic-

tor variables (e.g., FW variables and TreeComp). The

main principle is the division of the space of explanatory
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variables into regions. A set of linear regressions, named

basis functions (BF in equations), are then fitted for

each region to describe the relationships between the

response and explanatory variables. Knots separate

regions and correspond to positions where the slope of

basis functions changes. The procedure builds models in

a parsimonious manner by minimizing mean square

error (MSE), while selecting combinations of variables

and the number and location of knots in a forward

stepwise manner (Friedman and Roosen 1995). It starts

with a maximum of candidate knot locations and all

predictor variables. Progressively, knots and variables

that contribute the least to the fitting are removed.

Generalized cross-validation (GCV) selects the model

with the best predictive fit. Various studies have

illustrated the strong performance of MARS models in

various ecological studies (De Veaux et al. 1993,

Abraham and Steinberg 2001, Moisen and Frescino

2002, Leathwick et al. 2006), particularly under moder-

ate sample sizes (50 , N , 1000; Friedman and Roosen

1995). This method has previously been used in the

modeling of burned areas in Canada (Balshi et al. 2009,

Bergeron et al. 2010).

Decadal averages (1971–1980, 1981–1990, 1991–2000,

and 2001–2009) of the FW variables were computed at

each of our locations from the averages of daily

quantities. FW predictors were the same as those used

for the cluster analysis. These decadal averages were

then aggregated to the level of the fire bioclimatic zones

using averaging and used as input in Eq. 1 (Fig. 1).

Decadal averages of annual FireOcc for the different

size classes (�1 ha; �10 ha; �200 ha) were also

computed at the level of fire bioclimatic zones and used

as the response variable in Eq. 1. Decadal averages were

used instead of annual or long-term averages to avoid

having too many zeros in the response matrix and to

satisfy variance requirements. TreeComp was entered in

the form of binary variables to indicate the presence of a

given vegetation category. Models were computed with

the 1971–2000 FW decadal data and baseline TreeComp

data (n ¼ 117 observations), and verified with indepen-

dent FW decadal data covering the 2001–2009 and

baseline TreeComp data (n ¼ 39 observations). Note

that here we made the assumption that TreeComp did

not change from one decade to the other. Goodness of

fit over the independent period was measured using the

regression R2 of observed data as a function of predicted

data. MARS models were computed using Salford

System Software (Salford Systems 2001). The nonpara-

metric method of this software has the advantage to

support zero values. A maximum of two interactions

was allowed, but interactions between TreeComp and

FW variables were disabled. Other software parameters

were set by default.

Predictions of FireOcc in a changing climate

Our final goal was to produce a map of the potential

response of fire occurrence (FireOcc; Eq. 1) to climate

change over the 2071–2100 horizon. Two assumptions

were made to account for the migration ability of each
tree species. The no migration scenario assumed that

species dispersal was null. It represents the status quo, in
which TreeComp 2071–2100 is the same as TreeComp

1971–2000. In the second scenario, unlimited dispersal
assumes that climate, topographic, and edaphic condi-
tions are the only factors that limit dispersal of tree

composition. Scenarios of no migration vs. unlimited
dispersion are widely used to interpret predictions from

species distribution models (Araújo et al. 2005, Thuiller et
al. 2006, McKenney et al. 2007, Engler and Guisan 2009,

Meier et al. 2011). We applied the FireOcc models to the
1971–2000 decadal averages of the FW variables and to

the TreeComp variables across the 638 locations.
Prediction of future FireOcc was done by substituting

historical FW and TreeComp conditions by the future
ones obtained from the RCM simulations. Decadal

results were averaged to obtain one value for a 30-year
period. FireOcc 1971–2000, FireOcc 2071–2100, and FW

ratio of change ([FW 2071–2100]/[FW 1971–2000]) were
interpolated from the 638 locations to obtain continuous

maps. We used ordinary kriging interpolation in ESRI
ARCGIS 9.3 with 1-km grid mesh and a spherical model
to fit the variograms. Significant differences between

future projections and current values were tested using
Student’s t test; points that passed the 5% significance

level were projected on the map.

RESULTS

Analysis of baseline conditions

Constrained spatial analysis led to the delimitation of

39 fire bioclimatic zones (Fig. 2). FireOcc varied
spatially with values ranging from 0.02 to 0.90, 0 to

0.39, and 0 to 0.15 fires per year per 1000 km2 for
FireOcc �1 ha, �10 ha, and �200 ha, respectively
(results not shown). The lowest fire occurrences were

observed in the eastern fire bioclimatic zones (Fig. 2C).
Zones of low FireOcc �1 ha are coherent with the

relatively low DC and DSR indices observed in eastern
zones (I, III, VIII, XI; Fig. 2A, Table 1).

FireOcc �10 ha was low or null in the hotter and drier
southern fire bioclimatic zones (Fig. 2C). The majority

of these fires occurred in regions where habitats are
unsuitable for American basswood, bitternut hickory,

and sugar maple (Fig. 2B, Table 2). FireOcc �200 ha
was concentrated in the northwestern part of Quebec,

where climatic conditions are suitable for fire-prone
coniferous species and, to a much lesser extent, Populus

tremuloides (Fig. 2B, Table 2). Values of DSR and FS
are higher in the south than in the north (Fig. 2A, Table

1), indicating that fire risk should be higher in the south.
Values of DC did not show the similar north–south

trends.

Predictive models of FireOcc

We regressed the FireOcc quantity for each fire size
class against FW variables and TreeComp variables using
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MARS. Models explained 64%, 79%, and 30%, respec-

tively, of the deviation between FireOcc �1 ha (general-

ized cross-validation, GVC R2 ¼ 0.62), FireOcc �10 ha

(GVC R2¼ 0.76) and FireOcc �200 ha (GVC R2¼ 0.22).

Verification of model performance on independent data

(2001–2009 period) indicated good predictive skills for size

classes�1 ha and�10 ha (Fig. 3) withR2 of 0.32 and 0.51,

respectively. Predictive skills for size class �200 ha were

low with R2 ¼ 0.17. DSR was selected as a predictor of

FireOcc for fire size classes �1 ha and �10 ha, while DC

was selected as a predictor for fire size class �200 ha.

Predictors and the model for fire size class �1 ha took on

the following form:

FireOcc �1 ha ¼ maxð0; 0:11þ 9:29 3 BF2Þ ð2Þ

BF1 ¼
�

Jð0Þ
�

ð2aÞ

BF2 ¼ maxð0; DSR� 0:92Þ3 BF1 ð2bÞ

so that FireOcc progressively increases as DSR increases

above 0.92 units; if DSR is smaller than 0.92, BF2 of Eq.

2b takes on the value of 0 (no fire). On the other hand, the

presence of tree composition category J contributes

significantly to a decrease in FireOcc (via Eq. 2a, in which

BF1 takes on a value of 0 in the presence of this

compositional group). This compositional group contains

all tree species included in the analysis, except jack pine.

More specifically, it is the only group that combines sugar

maple, bitternut hickory, and American basswood (Table

2).

Model results for size class �10 ha are more complex

and include several compositional groups:

FireOcc �10 ha ¼ 0:25� 0:11 3 BF3 � 0:10

3 BF4 þ 9:51 3 BF6 ð3Þ

BF3 ¼
�

Fð0Þ
�

ð3aÞ

BF4 ¼
�

Að0Þ
�

ð3bÞ

BF5 ¼
�

Jð0Þ
�

ð3cÞ

BF6 ¼ maxð0; DSR� 1:02Þ3 BF5 ð3dÞ

so that FireOcc progressively increases as DSR increases

above 1.02 units (Eq. 3d). The presence of tree compo-

FIG. 2. Map of fire bioclimatic zones in Quebec. Fire bioclimatic zones were obtained by intersecting (A) the fire weather (FW)
variables clustering and (B) the tree species distribution clustering. Annual natural forest fire occurrences (number of fires per year
per 1000 km2) of all (fire � 1 ha), medium (fire � 10 ha), and large fires (fire � 200 ha) were calculated for (C) each fire bioclimatic
zone. The period of analysis is 1971–2000.

TABLE 1. Summary of 30-year averages (1971–2000) of daily
drought code (DC), daily severity rating (DSR), and fire
season length (FS, in days) for each region of Quebec (FW
clusters) computed from the fire weather (FW) variables
(DC, DSR, and FS).

FW clusters DC DSR FS

I 89.38 0.33 162.68
II 130.03 0.58 167.75
III 102.04 0.37 157.26
IV 101.34 0.51 174.56
V 108.04 0.71 180.04
VI 122.54 0.73 171.46
VII 118.69 0.80 181.26
VIII 61.19 0.39 164.21
IX 120.74 0.73 187.73
X 97.16 0.68 192.56
XI 74.94 0.41 193.03
XII 127.93 0.96 199.43
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sition category J contributes significantly to a decrease in

FireOcc (Eq. 3c, in which BF5 takes on a value of 0 in the

presence of this compositional group). In contrast,

compositional groups F (Eq. 3a) and A (Eq. 3b)

contribute significantly to increasing FireOcc as BF3 and

BF4 take on a value of 0 in their presence. Both

compositional groups are dominated by coniferous species

(Table 2).

Finally, the following model was selected for fire size

class �200 ha:

FireOcc �200ha ¼ 0:08� 0:07 3 BF7 þ 0:004 3 BF9

ð4Þ

BF7 ¼
�

Fð0Þ
�

ð4aÞ

BF8 ¼
�

Kð0Þ
�

ð4bÞ

BF9 ¼ maxð0; DC� 125:14Þ3 BF8 ð4cÞ

so that FireOcc progressively increases as DC increases

above 125.14 units (Eq. 4c). The presence of tree

composition category K (essentially deciduous; Eq. 4b)

contributes significantly to a decrease in FireOcc (via

BF8, which takes on a value of 0 in the presence of this

compositional group). In contrast, compositional group

F contributes significantly to increasing FireOcc as BF7

(Eq. 4a) takes on a value of 0 in its presence.

FireOcc projections over 2071–2100

Projections of explanatory variables and FireOcc

under the A2 IPCC scenario (greenhouse gas and

aerosol projected changes) are shown in Figs. 4 and 5.

Increases of DSR and DC are predicted under the A2

IPCC climate change scenario over almost all of the

study area (Fig. 4). More specifically, the predicted

increases of DSR are higher, with ratios of (DSR 2071–

2100)/(DSR 1971–2000) ¼ 1.5–2.5, with a maximum

reaching above 2.5. Higher increases are predicted for

the northern and eastern parts of the study area. In

response to DSR change, FireOcc �1 ha and FireOcc

�10 ha are predicted to increase (Fig. 5, status quo

scenario). The southern areas of the boreal forest will be

affected by higher increases of FireOcc �1 ha and

FireOcc �10 ha. Small DC increases are predicted for

the north. DC increases get increasingly important in

southern regions of the boreal forest (Fig. 4; [DC 2071–

2100]/[DC 1971–2000]¼ 1–1.5). Predicted changes in the

frequency of large fires (�200 ha) are generally not

significant under the status quo scenario, except for

some southern locations (Fig. 5).

The A2 IPCC unlimited tree dispersal scenario of tree

composition showed that future climatic conditions in

the north could be suitable for the expansion of

southern tree species, especially for tree composition

categories containing sugar maple, American basswood,

and bitternut hickory (expansion of categories G, H, I,

J; Fig. 4). Increases of FireOcc �1 ha and FireOcc �10
ha are predicted to be less important in the boreal

forest, and trends could even be reversed under

unlimited dispersal scenarios. More specifically in the

southern boreal, FireOcc �1 ha is predicted to be

similar to baseline conditions and FireOcc �10 ha is

expected to decrease. Changes in FireOcc �200 ha

should be more significant because northwestern regions

that are currently affected by frequent large fires are

predicted to undergo a change toward a lower

frequency of small- and medium-size fires if a change

in tree composition category occurs (Fig. 4)

DISCUSSION

This study is the first that we are aware of to report on

the integration of ecological niche models and fire

weather indices in empirical fire models with the

objective of projecting future spatial patterns of

wildland fires in boreal forests. Our description of fire

occurrence distributions was based on clustering of fire

weather and vegetation components. This approach

differs from previous studies in which fire properties

TABLE 2. Tree species composition in each region of the province of Quebec based on tree species occurrences.

Species

Site clusters

A B C D E F G H I J K

Coniferous

Balsam fir X X X X X X X X X X
Jack pine X X X X X X X X X
White spruce X X X X X X X
Black spruce X X X X X X X X X X X

Deciduous

Sugar maple X X X X X
Bitternut hickory X
Yellow birch X X X X X X
White birch X X X X X X
Trembling aspen X X X X X X X X
American basswood X X X

Note: Spatially constrained site clusters (columns) are identified by letters A–K.
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were projected at the scale of ecozone and ecoregion

classifications of the National Ecological Framework of

Canada (NEFC; e.g., Bergeron et al. 2004, Lefort et al.

2004, Flannigan et al. 2005, Girardin and Mudelsee

2008). Boulanger et al. (2012) recently showed that the

use of these NEFC zones could prevent researchers from

capturing the real fire spatial variability. Spatially

constrained clustering of fire weather indices should

address some of the limitations reported by Boulanger et

al. (2012). In addition, our approach made it possible to

circumvent the problem of spatial dependence in

locations induced by our modeling experimentation,

notably that resulting from the spatial interpolation of

weather data in the fire weather calculations. Finally, we

used RCM output instead of global climate models.

Unlike global climate models, RCMs simulate climatic

characteristics at a fine scale; the boundaries are clearly

defined and include realistic simulations of orographic

effects (Plummer et al. 2006).

In agreement with Balshi et al. (2009), our results

show that fire can occur only if particular weather

conditions are reached (drought and wind speed through

DC and DSR). For the whole study area, we found that

decadal averages of fire occurrence increase significantly

over a tipping point of DSR equaling about 0.92 and

1.02 units for all fires and medium fires (Eqs. 2b and 3d),

respectively, and of DC equaling 125 units for larger

fires (Eq. 4c). A strong statistical relationship between

seasonal DC and annual large fire occurrences was

previously found by Girardin and Mudelsee (2008).

Also, the importance of DSR as a predictor of Canadian

area burned has previously been highlighted (e.g.,

Flannigan et al. 2005, Balshi et al. 2009). Models

developed by Wotton et al. (2010) to explain lightning-

ignited fires in Canadian ecoregions selected DC, DMC,

and FFMC as explanatory fire weather variables and did

not identify east–west differences in fire occurrence

within Quebec. The latter study was slightly different

from ours in that it included fires smaller than 1 ha and

encompassed different periods (1985–2000). Moreover,

the delimitation of fire occurrences along an east to west

gradient is coherent with a previously published

moisture map (expressed using July DC) presented by

Girardin and Wotton (2009), suggesting that moister

regions are less prone to fire than dry regions (Hély et al.

2001).

Our study also suggests that north–south distributions

of various classes of fire occurrence in Quebec are

governed by differences in tree composition. Generally,

fire control is more effective in the southern part of the

province due to the ease of detection and accessibility.

However, fire suppression should not affect the analysis

of fire size classes �10 ha and �200 ha because when a

large fire occurs, weather conditions are extreme and the

human capacity to control a fire is reduced. Fires of .3

ha (Arienti et al. 2006) or 4 ha (Podur and Wotton 2010)

are attributed to escaped fires. Their distribution can

also be assigned to tree composition change. Previous

comparisons between coniferous stands and deciduous
or mixed stands in boreal forests highlighted the

importance of tree composition in fire regimes (Hély et

al. 2001, 2010). Lower fire activity in deciduous-
dominated stands and landscapes has already been

documented (Quinby 1987, Päätalo 1998, Campbell and

Flannigan 2000, Hély et al. 2001, 2010, Lefort et al.

FIG. 3. Observations vs. MARS (multivariate adaptative
regression splines) model predictions from 2001 to 2009 of (A)
all fire occurrences (fire � 1 ha), (B) medium fires (fire � 10 ha),
and (C) large fires (fire � 200 ha).
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2004, Arienti et al. 2006, Krawchuk et al. 2006, Drever

et al. 2008). These differences come from higher

coniferous species flammability in comparison with

deciduous species. Coniferous species contain highly

flammable oils and resin, and moisture content in the

needles is low, while deciduous species have leaves with a

higher moisture content that acts as a fire break. Quinby

(1987) compared temperate tree species flammability in

laboratory experiments. Pine species showed high

ignition probability, whereas sugar maple and poplar

species showed the lowest probabilities of flammability.

Our study highlighted the fire break role of sugar maple

forests, largely because the presence of these forests is

associated with a reduced frequency of medium and

large fires, and because of offsetting effects in FireOcc

models of tree composition categories that include sugar

maple forests. This study confirmed that weather and

tree composition are both important explanatory

variables of fire occurrence in boreal forests.

Our analyses are consistent with previous studies

indicating that future warming will create climatic

conditions more prone to fire occurrence (Girardin

and Mudelsee 2008, Amiro et al. 2009, Drever et al.

2009, Flannigan et al. 2009, Le Goff et al. 2009, Wotton

et al. 2010). Across our study area, increases in fire

occurrence will vary spatially, with the most important

changes projected to occur at the eastern and southern

limits of the boreal forest. The projected changes (an

increase of 10–25% by 2090) are in the range of those

predicted in an earlier study by Wotton et al. (2010),

with the exception of two regions where the magnitude

of change was predicted to be higher by Wotton et al.

(2010). That being said, our experiment indicates that

the projected increase in fire-conducive weather condi-

tions could be offset by changing tree species distribu-

tions. Regions in which this offsetting effect holds true

include the western fire bioclimatic zones and the

southern limit of the boreal forest. It is important to

remember that tree composition changes in this study

are governed by climatic, edaphic, and topographic

conditions. However, other factors will influence tree

migration in addition to these environmental variables.

Notably, the fire regime itself is an important factor

affecting species distribution (Flannigan and Bergeron

1998, Tremblay et al. 2002, Asselin et al. 2003). For

example, fire frequency was a barrier in the past for jack

pine expansion (Asselin et al. 2003). Red maple (Acer

rubrum L.) (Tremblay et al. 2002) and red pine (Pinus

resinosa Ait.) (Flannigan and Bergeron 1998) are limited

to the southern limits of their predicted climatic

envelopes because the fire regime prevents these species

from spreading farther north. Competition could also

FIG. 4. Maps of changing drought code (DC), daily severity rating (DSR), and unlimited tree dispersal projected with the
regional climate model (RCM, scenario A2) for the 2071–2100 period. DC and DSR changes are expressed as ratios of change ([30-
year average 2071–2100]/[30-year average 1971–2000]). The unlimited tree dispersal scenario represents the dispersion of tree
species clusters.
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play a role in limiting tree species migration (Engler and

Guisan 2009). The unlimited dispersal scenario of tree

composition change shows that northward migration of

tree composition clusters dominated by southern limited

species (e.g., sugar maple, American basswood, and

bitternut hickory) offsets the impact of climate change

on fire occurrence. However, these species are unlikely

to migrate to such high latitudes in the short to medium

terms, even though areas of sugar maple can be found

north of its specific climatic range, for example in the

western boreal forest of Quebec (F. Tremblay, personal

communication). Further studies are needed, but future

fire regimes and climatic conditions could lead to

increasing sugar maple abundance at its northern limit.

Our results should be used preferentially when building

scenarios of future fire occurrence that take into account

a potential expansion of deciduous northern zones in

boreal forests.

Uncertainties and limitations

Many uncertainties lie in the vegetation data. First,

tree composition was represented here by the presence

and absence of 10 major tree species; uncertainties could

be reduced by using abundance data. Forest type limits

do not correspond to an abrupt transition from the

presence of a species to an absence; exact species limits

may be unknown (Berteaux et al. 2010). The lack of

empirical data for the baseline period prevented the use

FIG. 5. Map of Quebec showing baseline and 2071–2100 projections (status quo and unlimited dispersal scenarios) for the three
classes of fire occurrence (FireOcc � 1 ha; � 10 ha; � 200 ha). Interpretation of the results was limited to the closed-canopy boreal
forest owing to biases associated with the application of kriging to northern regions (buffer effect, rarity of data). In the southern
part of Quebec, future species composition should be different from the projected one owing to the potential northward migration
of southern-limited species not included in our analysis. Points correspond to locations that showed significant differences between
current and future projections (Student t tests, P , 0.05).

January 2013 31FOREST COMPOSITION AND BOREAL WILDFIRES



of abundance data. Second, climate change would not

imply the sudden appearance of a species in a region

where present climatic conditions are not suitable (for

example, sugar maple in the boreal forest). Climate

change will have an impact on the relative abundance of

deciduous compared with coniferous species (Bergeron

and Danserau 1993, de Groot et al. 2003, Lecomte et al.

2006) and is also likely to change the understory

vegetation. Future projections of fire occurrence should

integrate the impacts of vegetation change in forest types

as a whole (species abundance, including understory

vegetation) rather than the presence/absence of species.

On the other hand, the forest as a whole does not

constitute a continuous set of forest; it should rather be

seen as a fragmented landscape (such as from lakes and

human infrastructures) that acts as a firebreak (Parisien

et al. 2005). Finally, projections developed in this work

assume that the current boreal vegetation distribution is

governed only by climatic, edaphic, and topographic

factors. However, the climatic envelope observed does

not necessarily translate into a potential climatic

envelope (Morin and Thuiller 2009). Wildfires play a

major role in the distribution of species, and vegetation

can respond faster to indirect impacts from shifts in fire

regimes than to direct climate change effects (Bergeron

and Archambault 1993, Weber and Flannigan 1997). It

has been suggested that the combined use of process-

based models, including feedback effects of fire activity,

in addition to niche-based models could reduce uncer-

tainties related to species distribution (Morin and

Thuiller 2009).

The characterization of fires also brings uncertainties

related to random effects on fire distribution. Even if the

conditions are favorable to fire, the ignition source

(lightning, human) was not included in our predictive

models. A prediction may therefore be incorrect if a

significant change takes place in the frequency of fire

occurrences (Hessl 2011), particularly in connection with

the increased use of forestland by humans. Other

uncertainties are related to human control. Climate

change may exceed our ability to control fires (Podur

and Wotton 2010); however, this control ability

influences fire size (Martell and Sun 2008). Improve-

ments and a better knowledge could make it possible to

better control fire and reduce burned areas in the future.

Finally, future projections are always associated with

uncertainties because of the chaotic nature of climatic

systems (Rind 1999) and future anthropogenic green-

house gas emissions. The Intergovernmental Panel on

Climate Change (IPCC 2007) recommends the use of

multiple climate models and emission scenarios in a

context of climate change impact assessment (IPCC

2000). Only one climate model (CRM4.1.1) and one

climate change scenario (IPCC A2) were used for this

study. The RCM runs used in this study were driven

with atmospheric and oceanic data from the coupled

Canadian General Circulation Model version 2

(CGCM2; Flato and Boer 2001). Balshi et al. (2009)

showed that the Canadian General Circulation Model

ranks among the best IPCC models with respect to the

level of predictability at high northern latitudes. On the

other hand, the A2 scenario is at the higher end of other

SRES emission scenarios (Naki�cenovi�c et al. 2000);

while it is not the highest, it is quite realistic in terms of

greenhouse gas emissions estimate (Raupach et al.

2007). Within an ensemble of 19 GCM experimenta-

tions, the CGCM3 A2 ranks third in terms of level of

increase in seasonal drought severity for western boreal

Quebec from the late 20th to the late 21st century

(Appendix). From an impact and adaptation point of

view, if adaptation to a larger climate change is possible,

then adaptation to the smaller climate changes at the

lower end is also possible (NARCCAP 2007). Finally, a

model correction (delta method) was used to reduce bias

in modeled climate data. Although this method is

considered a very robust method (Déqué 2007), it has

the disadvantage of constraining the same frequency and

magnitude of extreme weather events relative to the

mean climate throughout all periods under study.

Nevertheless, a sensitivity analysis on DC projections

in which data were treated using different correction

methods showed results similar to those reported in this

study (T. Logan, personal communication). Future

projections should use an ensemble approach with

multiple corrections, models, and scenarios.

CONCLUSION

The potential influence of changing forest composi-

tion on the impacts of climate change on fire activity in

Quebec was examined. Both climate and forest compo-

sitions were important factors explaining the distribu-

tion of fire occurrences in this province. Each factor had

its own relative importance with regard to fire size

classes, with large fires being more influenced by forest

composition. These results have important implications

for fire management in a context of climate change

adaptation. In fact, our results indicate that climate

change will increase fire occurrence in boreal forests

(Girardin and Mudelsee 2008, Amiro et al. 2009, Drever

et al. 2009, Flannigan et al. 2009, Le Goff et al. 2009,

Wotton et al. 2010). A change in tree composition

toward an increasing deciduous component has the

potential to significantly offset the impact of increased

fire risk in many areas, particularly in areas affected by

fires that are difficult to control (�200 ha). These results

suggest that the presence of deciduous species, and more

specifically of forest types dominated by temperate

species, should be promoted in fire management

strategies that attempt to reduce communities’ long-

term vulnerability to climate change in eastern Canadian

boreal forests. Given the uncertainties associated with

the various assumptions inherent to the use of ecological

niche models, these results should be seen as first

estimates of the impacts of changing tree distributions

on boreal wildfires in the context of global warming.

Future studies should include feedback effects of fire on
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vegetation distribution and an ensemble modeling

approach that integrates several anthropogenic gas

emission scenarios and models. Notably, there is

potential for expanding this study to the scale of the

North American boreal forest using recently mapped

tree distribution projections simulated using an ensem-

ble approach of general circulation models (McKenney

et al. 2011). The spatial resolution may be coarser, but

analysis could gain robustness.
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Laprise for their helpful information about climatic models. We
extend our thanks to Alain Leduc for reviewing the paper and
providing helpful comments and Isabelle Lamarre for technical
editing. Finally, we are grateful to two anonymous reviewers for
their helpful comments on an earlier version of the manuscript.

LITERATURE CITED

Abraham, A., and D. Steinberg. 2001. MARS: still an alien
planet in soft computing? Pages 235–244 in V. Alexandrov, J.
Dongarra, B. Juliano, R. Renner, and C. Tan, editors.
International Conference on Computational Science. Spring-
er, Berlin/Heidelberg, Germany.

Amiro, B. D., A. Cantin, M. D. Flannigan, and W. J. de Groot.
2009. Future emissions from Canadian boreal forest fires.
Canadian Journal of Forest Research 39:383–395.
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tion Science 12:261–272.

Drever, C. R., M. C. Drever, C. Messier, Y. Bergeron, and M.
Flannigan. 2008. Fire and the relative roles of weather,
climate and landscape characteristics in the Great Lakes-St.
Lawrence forest of Canada. Journal of Vegetation Science
19:57–66.

Engler, R., and A. Guisan. 2009. MigClim: predicting plant
distribution and dispersal in a changing climate. Diversity
and Distributions 15:590–601.

Environment Canada. 2011. National Climate Data and
Information Archive. http://climate.weatheroffice.gc.ca/

Flannigan, M. D., and Y. Bergeron. 1998. Possible role of
disturbance in shaping the northern distribution of Pinus
resinosa. Journal of Vegetation Science 9:477–482.

January 2013 33FOREST COMPOSITION AND BOREAL WILDFIRES



Flannigan, M. D., I. Campbell, M. Wotton, C. Carcaillet, P.
Richard, and Y. Bergeron. 2001. Future fire in Canada’s
boreal forest: paleoecology results and general circulation
model—regional climate model simulations. Canadian Jour-
nal of Forest Research 31:854–864.

Flannigan, M. D., M. A. Krawchuk, W. J. de Groot, B. M.
Wotton, and L. M. Gowman. 2009. Implications of changing
climate for global wildland fire. International Journal of
Wildland Fire 18:483–507.

Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner,
and B. D. Stocks. 2005. Future area burned in Canada.
Climatic Change 72:1–16.

Flat Top Complex Wildfire Review Committee. 2012. Flat Top
Complex. Final report submitted to the Minister of
Environment and Sustainable Resource Development. Ed-
monton, Alberta, Canada.

Flato, G. M., and G. J. Boer. 2001. Warming asymmetry in
climate change simulations. Geophysical Research Letters
28:195–198.

Franklin, J. 2009. Mapping species distributions: spatial
inference and prediction. Cambridge University Press, Cam-
bridge, UK.

Friedman, J. H. 1991. Multivariate adaptive regression splines.
Annals of Statistics 19:1–67.

Friedman, J. H., and C. B. Roosen. 1995. An introduction to
multivariate adaptive regression splines. Statistical Methods
in Medical Research 4:197–217.

Gauthier, S., L. De Grandpré, and Y. Bergeron. 2000.
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SUPPLEMENTAL MATERIAL

Appendix

Climate model and emission scenario ranks based on the ratio of mean seasonal drought code index of 2071–2100 to 1961–1990
(Ecological Archives A023-002-A1).
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