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Abstract: Natural disturbances, such as fire and insect outbreaks, play important roles in natural
forest dynamics, which are characterized over long time scales by changes in stand composition and
structure. Individual-based forest simulators could help explain and predict the response of forest
ecosystems to different disturbances, silvicultural treatments, or environmental stressors. This study
evaluated the ability of the SORTIE-ND simulator to reproduce post-disturbance dynamics of the
boreal mixedwoods of eastern Canada. In 1991 and 2009, we sampled all trees (including seedlings
and saplings) in 431 (256 m2) plots located in the Lake Duparquet Research and Teaching Forest
(western Quebec). These plots were distributed in stands originating from seven wildfires that
occurred between 1760 and 1944, and which represented a chronosequence of post-disturbance stand
development. We used the 1991 inventory data to parameterize the model, and simulated short- to
long-term natural dynamics of post-fire stands in both the absence and presence of a spruce budworm
outbreak. We compared short-term simulated stand composition and structure with those observed
in 2009 using a chronosequence approach. The model successfully generated the composition and
structure of empirical observations. In long-term simulations, species dominance of old-growth
forests was not accurately estimated, due to possible differences in stand compositions following
wildfires and to differences in stand disturbance histories. Mid- to long-term simulations showed
that the secondary disturbance incurred by spruce budworm did not cause substantial changes in
early successional stages while setting back the successional dynamics of middle-aged stands and
accelerating the dominance of white cedar in late-successional post-fire stands. We conclude that
constructing a model with appropriate information regarding stand composition and disturbance
history considerably increases the strength and accuracy of the model to reproduce the natural
dynamics of post-disturbance boreal mixedwoods.

Keywords: wildfire; simulation; chronosequence; spruce budworm outbreak; disturbance;
old-growth forest

1. Introduction

Simulation of post-fire succession in forest ecosystems is a tool for processing and optimizing
knowledge contained within empirical data that are collected through field measurements, and for
providing a better vision of future dynamics of forest systems. In North American boreal forests, boreal
mixedwoods are an important source of timber [1]. Among boreal forest ecosystems, mixedwoods are
recognized as being structurally heterogeneous and the most productive [2]. In addition to traditionally

Forests 2020, 11, 3; doi:10.3390/f11010003 www.mdpi.com/journal/forests

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Depositum

https://core.ac.uk/display/322984218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0002-3292-7412
https://orcid.org/0000-0003-3707-3687
http://dx.doi.org/10.3390/f11010003
http://www.mdpi.com/journal/forests
https://www.mdpi.com/1999-4907/11/1/3?type=check_update&version=3


Forests 2020, 11, 3 2 of 28

recognized effects of site characteristics and climate on forest stand distributions at different scales
through the regulation of the recruitment and growth of tree species [3], disturbances, which are partly
driven by climate [4], also modify the composition and structure of forest ecosystems [5]. Specifically,
the structure and composition of boreal forest ecosystems are widely influenced by insect outbreaks [6]
and wildfires [7,8], which spatially and temporally vary in size, frequency, and severity.

Mixedwoods of the southern Canadian boreal forest consist of stands that are dominated by
shade-tolerant conifers mixed with intolerant hardwoods, particularly trembling aspen (Populus
tremuloides Michx.) [9]. Generally, after a stand-replacing disturbance, such as fire, the structural
pattern and species composition of boreal mixedwoods are the consequence of stand dynamics [2,8],
during which a gradual transition occurs, from early successional hardwoods to admixtures of
hardwood–conifer species to conifer-dominated stands [10]. These three successional developmental
stages of the boreal mixedwoods are at the core of the three-cohort model that was developed by
Bergeron et al. [10] to depict forest successional dynamics. Through processes, such as mortality of early
successional species and recruitment of mid- and late-successional species, each of these development
stages co-exists, which results in more complex multi-cohort forest structures at the landscape
level [11,12]. If intervals between fires (fire cycles) are short, then changes in species dominance are
limited, which leads to pre-fire and post-fire stands with similar compositions. More specifically,
this phenomenon is observed in stands that are dominated by trees bearing serotinous cones, such
as jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.), and stands that
are dominated by species possessing root systems that can survive fire, such as aspen and white or
paper birch (Betula papyrifera Marsh.) [8,13,14]. During the development of mixedwoods, gaps that are
generated by partial disturbances, such as insect outbreaks and windthrow, together with tree- and
stand-level processes, such as competition and senescence, facilitate the establishment and growth of
shade-tolerant conifers [8]. These species might stay suppressed in the understory for long periods
before the formation of canopy gaps (and the concomitant increase in light availability) induces an
acceleration of their growth rate. Thus, gap dynamics act as modulators of stand composition and
structure in late-successional conifer stands [15,16]. Moreover, changes in canopy composition are the
consequences of differential growth rates among species [17] and not just a replacement of species
that is driven by numerous inhibition or facilitation processes. That explains the occurrence of some
late-successional species immediately following fire, although species, such as balsam fir (Abies balsamea
(L.) Miller) and eastern white cedar (Thuja occidentalis L.), are favored by the increased availability of
suitable seedbeds in older mixed or conifer stands [8].

Stand replacement dynamics following disturbances depend upon the nature of the disturbance,
the composition of the disturbed stands, and site conditions [8,18,19]. For instance, seedbed
limitations [20,21], lack of seed sources of shade-tolerant conifers [8,22], and their poor establishment
and survival beneath hardwood canopies [23,24] prolong the dominance of shade-intolerant or pioneer
species. In addition, insect outbreaks can increase the regeneration of hardwood species if conifer
regeneration is not sufficient [12]. Defoliation affects tree regeneration and the soil organic layer
less severely than wildfire does, and exerts a species-specific influence on forest stands [2,25]. Insect
defoliation often extends over several years and has varying effects on species and stand development
dynamics. For example, repeated and severe defoliation of aspen stands by forest tent caterpillar
(Malacosoma disstria Hübner; FTC) accelerates the mortality of mature aspen trees and facilitates the
release and rapid growth of shade-tolerant conifers, such as spruce (Picea spp.) and balsam fir, into the
canopy [26,27]. In fir-dominated stands, outbreaks of spruce budworm (Choristoneura fumiferana
[Clemens]), a defoliator of both balsam fir and spruce, may help to maintain the continuous dominance
of balsam fir, through the growth release of suppressed saplings that results from the formation of
canopy openings [28,29]. Budworm outbreak may also induce the conversion of conifer-dominated
stands to mixedwood stands by favoring the recruitment of shade-intolerant tree species, such as
trembling aspen and white birch [30,31]. Moreover, the effects of other insects that selectively kill trees,
such as bark beetles (e.g., Dendroctonus ponderosae Hopkins), may considerably affect soil organic content
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due to additional litter inputs from killed trees [32]. The successional dynamics of boreal mixedwoods
from simple structured stands to more complex multi-cohort forest structures are thus the result of
complex interactions that are controlled by numerous allogenic and autogenic factors [12]. Several
factors, such as stand attributes (e.g., species composition and age), prior to and after disturbances,
as well as disturbance severity, intensity and spatial distribution, and time since disturbance define the
level of complexity in successional stand dynamics [33].

In the current study, we took advantage of empirical data from 431 forest inventory plots that
were sampled in 1991 and resampled in 2009 in the Abitibi region of Quebec, Canada, to simulate
the natural successional dynamics of stands originating from seven wildfires in the eastern Canadian
boreal mixedwoods. To do so, we used SORTIE-ND, a spatially explicit individual-based forest stand
dynamics model [34]. This mechanistic model has been previously used to explore natural forest
dynamics in a number of forest systems in Canada [35–38] and elsewhere in the world [39–42]. Spatially
explicit individual-based models have proved to be satisfactory tools in predicting stand succession
based upon species autoecology [43]; we hypothesized that SORTIE-ND would be able to reproduce
the compositional and structural dynamics of boreal post-fire stands from early to late-successional
stages. Our first objective was to parametrize SORTIE-ND for simulating the dynamics of post-fire
mixedwoods, which were sampled in 1991 over 18 years. Benefiting from the empirical data that were
sampled in 2009, we evaluated model performance in terms of the species composition, stem density,
and size distribution of trees within stands. Our second objective was to evaluate the contribution
of the recent spruce budworm outbreak to current post-fire stand composition and structure in 2019.
The recent outbreak extended from 1972 to 1987 and was severe, defoliating ca. 56% (of the total
number of stems per hectare) of host tree species, i.e., fir and spruce [44]. In taking advantage of
empirical data in 1991 that account for the status of stands both with and without including the effect
of the recent spruce budworm outbreak, we carried out two 28-year simulations that culminated in the
current age of stands in 2019. Comparing the two 28-year simulation outputs for data with and without
the outbreak effect enabled us to evaluate the short-term influence of spruce budworm outbreak on
the post-fire composition and structure of boreal mixedwoods stands that were located at the Lake
Duparquet Research and Teaching Forest (LDRTF). Finally, conducting long-term simulations, our third
objective was to determine how the reoccurrence of spruce budworm outbreaks would contribute to
changes in the natural successional dynamics of post-fire mixedwoods over a century.

2. Materials and Methods

2.1. Study Area

Our study landscape was located in the boreal mixedwoods of eastern Canada, more specifically
at the LDRTF (79◦19’ W–79◦30’ W, 48◦86’ N–48◦32’ N), where a dozen large wildfires occurred between
1760 and 1944. The study landscape is located within the balsam fir-white birch bioclimatic domain [45].
For the 1981–2010 period, the mean annual temperature was 1.0 ◦C, mean annual total precipitation
was 985 mm, of which 30% falls during the growing season, and the average number of degree
days (5 ◦C base temperature) was 1350 (Mont Brun weather station) [46]. Forests within the study
area are characterized by a mixed composition of boreal conifers and shade-intolerant hardwood
species. More specifically, early successional stands are dominated by trembling aspen, white birch,
and jack pine, whereas balsam fir and eastern white cedar, in association with white birch, dominate
late-successional stands [8].

The combined influences of catastrophic wildfires and defoliating insect outbreaks are the main
natural disturbances of the region. The fire regime of the past 300 years has been reconstructed and is
characterized by high-intensity fires covering vast areas, particularly in terrain with flat topography [47].
During that period, fire return intervals increased from 83 years prior to 1850 to 325 years since 1920 [48].
During the 20th century, three outbreaks of eastern spruce budworm were reported in the territory,
for the periods 1919–1929, 1930–1950, and 1972–1987 [49,50]. Bergeron et al. [44] qualified the last
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spruce outbreak as being very severe, i.e., killing more than 56% (percentage of the total number of
stems per hectare) of host species (i.e., balsam fir and spruces), especially balsam fir. The forest tent
caterpillar, with lesser effects on host species mortality [51] and shorter outbreak cycles than spruce
budworm [52], defoliates hardwood species, particularly trembling aspen. In Quebec, areas that were
affected by FTC outbreaks have been reported since 1985 and in 2018, 38,903 ha of forest were affected
across the province [53].

2.2. Sampling Design

We used a network of 431 sampling plots, which were distributed systematically within the study
area. Originally, the plots were set up to observe changes in stand composition and structure in stands
originating from seven fires representing a chronosequence of 249 years of forest succession [54,55].
The study plots (16 m × 16 m, or 256 m2) were located every 50 m along transects that were established
in each burned area and which were sampled in 1991 and 2009 (i.e., 18 years apart). Table 1 summarizes
the study plots according to the fire-related characteristics (year of occurrence, burned area, and stand
age at first sampling), number of transects, and sampling plots per fire and basal area (m2 ha−1) of the
main tree species at the first sampling (i.e., 1991). In each plot, all trees greater than 5 cm in diameter at
breast height (DBH), alive or dead (standing or fallen with bark and branches intact), were identified
and classified in 5-cm DBH classes. In addition, within each plot, a 64 m2 (8 m × 8 m) sub-plot and
12 one square meter (1 m × 1 m) micro-plots were installed to record saplings (stems ≤5 cm and height
>1 m) and seedlings (stems ≤1 cm and height <1 m), respectively. All plots were located primarily on
mesic or sub-hydric clay soils and occasionally on mesic loams.

Table 1. Characteristics of the seven study fires in the measurement year, 1991.

Fire
Date

Fire Area *
(ha)

Stand Age
(year)

Number of
Transects

Plots
Count

Mean Basal Area (m2ha−1, ±SE) of Standing Live
Trees (DBH > 1 cm)

Fir Birch Spruce Aspen Cedar

1760 >7760 231 6 54 2.60
(0.55)

6.69
(0.86)

2.04
(0.40)

2.44
(0.84)

10.89
(1.46)

1797 178 194 4 50 2.77
(0.42)

7.92
(0.83)

2.08
(0.39)

0.50
(0.20)

3.84
(0.62)

1823 288 168 5 66 4.32
(0.47)

3.88
(0.37)

2.46
(0.38)

8.03
(1.03)

0.53
(0.26)

1847 122 144 4 74 6.84
(0.50)

4.62
(0.45)

5.40
(0.58)

11.88
(1.00)

0.77
(0.29)

1870 555 121 6 64 3.46
(0.36)

5.86
0.60)

4.46
(0.56)

12.78
(1.51)

0.02
(0.02)

1916 35 75 3 52 4.54
(0.40)

7.63
(0.83)

1.99
(0.57)

16.74
(2.01)

0.97
(0.36)

1944 >298 47 4 71 3.81
(0.48)

9.34
(0.76)

0.81
(0.19)

11.57
(1.72)

0.22
(0.14)

* The fire area was extracted from Bergeron (2000), where the extent of fires that occurred in 1760 and 1944 is a
minimum estimate since the fire burned a larger area than the investigated area. The species are balsam fir (Fir),
white birch (Birch), white spruce (Spruce), trembling aspen (Aspen), and eastern white cedar (Cedar).

2.3. SORTIE-ND Simulator

SORTIE-ND is a spatially explicit, individual-based forest dynamics model that simulates changes
in tree populations over time [34]. Nothing in the model is pre-defined, default, or automatic, and the
model acts, based upon processes, which are also termed behaviors. Behaviors control whatever
happens during the simulation and are a combination of empirical and mechanistic processes. Empirical
behaviors correspond to biological and environmental processes, such as seed dispersal, individual
tree growth, and mortality, whereas mechanistic behaviors perform as helper functions to measure,
calculate, and record forest metrics [34,38]. The model is designed to study neighborhood processes,
in which trees are modelled individually. In SORTIE-ND, a large community of individual trees, which
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are classified according to their development stages (i.e., seedling, sapling, mature trees, or snags),
represents the forest. Every single tree has a location and is described as a discrete object with several
attributes (e.g., dimensions, age, species identify, growth rate; see Appendix A for attributes used by
the model). During the simulation of stand development, SORTIE-ND sums up the spatio-temporal
interactions of each tree with its surroundings to simulate the population-level dynamics of forest
stands. These interactions include the effect of neighboring species and distances to other individuals
on the growth of each individual, together with environmental conditions, such as light availability
and substrate type.

SORTIE-ND functions are based upon a parameter file (see details in Appendix A), which compiles
field data, local conditions, and a selected list of individual trees’ behaviors to make up the simulation
in a defined period set as the number of timesteps. Timestep is the unit of time in SORTIE-ND and can
have a length of one or more years. Once per timestep, each behavior, with a clearly defined action
in a run, performs in a pre-defined order to structure the forest dynamics correctly. In the late 2000s,
a parameter file was developed, tested, and modified for the LDRTF [38]. Several field experiments
and studies attempted to either parameterize specific functions as various behaviors (e.g., light, tree
allometry growth, and mortality) or modify the existing model parameters, for reconstructing the
natural stand dynamics in the boreal mixedwoods of the LDRTF in a more realistic fashion [37,38,55,56].
To date, the LDRTF parametrized model is available for the five species that are presented in Table 1,
jack pine and mountain maple (Acer spicatum Lamb.).

2.4. Simulation Runs

On the one hand, the observed post-fire stand composition of the study area was highly variable.
On the other hand, the model assumes that only species that are present in each plot can grow, develop,
and provide seeds. In order to account for the observed variability in the sampled plots, we created 431
starting conditions representing the empirical data that were collected from the 431 plots in 1991 (see
Table 2). The plot size (stem map) for simulation runs was set to 4 ha (200 m × 200 m), as the realistic
minimum size that is recommended for SORTIE-ND simulations [34]. Since some behaviors that are
included in the parameter file (e.g., competition mortality) could not handle timesteps longer than one
year, the timestep was set to one year.

Table 2. Overview of simulation scenarios.

Source of Empirical
Data Used for Setting

Initial Conditions

Number of Initial
Conditions * Simulation Period Purpose of Simulation

Short-Term Simulations

Empirical data in 1991
following spruce
budworm outbreak

431 18 years Model parameterization to reproduce empirical
data in 2009.

Mid-Term Simulations

Empirical data in 1991
following spruce
budworm outbreak

431 28 years (1) Evaluating the mid-term effect of the recent
budworm outbreak on stand dynamics.
(2) Estimating stand composition and species
proportion to define mortality rate of spruce
budworm event for the long-term simulations.

Empirical data in 1991
prior to spruce budworm
outbreak

431 28 years

Long-Term Simulations

Empirical data in 1991
following spruce
budworm outbreak

431 60 years (1) Evaluating the long-term performance of the
model.
(2) Evaluating the long-term effect of the recent
budworm outbreak on stand dynamics.Empirical data in 1991

prior to spruce budworm
outbreak

431 60 years

* The tree population in the LDRTF parameter file was adjusted separately for each plot, giving a total of 431 starting
conditions for simulation runs.
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2.4.1. Model Parameterizations and Evaluations through Short-Term Simulations

Using empirical data that were collected in 1991, we adjusted the initial densities (number per
hectare) of sapling and adult trees in 5-cm DBH classes and number of seedlings per hectare in the
LDRTF parameter file (see Appendix A). We then carried out short-term simulations over 18 years,
to reach the age of the empirical data in 2009. Consequently, we were able to evaluate the performance
of the model by comparing simulation outputs with empirical data that were collected in 2009 in
terms of stem size distribution and live stem basal area of tree species within each plot. We employed
polynomial regression analyses to describe the general trends of species abundance, which were
explained by their absolute basal area, in relation to the time since the fire. We also used non-parametric
kernel density estimation to visualize the underlying distribution of the species basal area within
431 inventory plots and their corresponding simulated outputs, and controlled their equality of
probability distributions with nonparametric two-sample Kolmogorov–Smirnov (K–S) tests. If the
simulated outputs differed significantly (p-value < 0.05) from the empirical data for any species,
we tried to identify various parameters that would have caused the discrepancies and modified the
behavior functions accordingly. To adjust the LDRTF parameter file, we went through previous reports
and published work for the LDRTF or similar sites and extracted new values for reparametrizing
the behaviors that we found problematic. Simulation runs, model parameterizations, and validation
analyses were repeated with the LDRTF-modified parameter file until the model could reconstruct
the 18-year dynamics of our empirical data with good accuracy in terms of species compositions and
diameter distributions (see Appendix B, Table A1, for parameter modifications).

2.4.2. Mid-Term Simulations

As previously mentioned, Bergeron et al. [44] reported a very severe spruce budworm outbreak
for the period 1972–1987, which killed more than 56% (percentage of the total number of stems per
hectare) of balsam fir and spruce trees. The first inventory in 1991 was conducted immediately after
the maximum mortality event that was caused by the spruce budworm outbreak had taken place [49].
Thus, most of the trees that died during this outbreak could be easily identified since they were
still standing (75%, on average) or present on the forest floor with bark and branches intact [44].
The inventory that was conducted in 1991 tallied dead trees (standing trees and fallen trees with bark
and branches intact) greater than 5 cm DBH. We are confident that this approximation of stand density
prior to spruce budworm outbreak is reliable. On the one hand, the natural mortality rate is generally
low in the absence of spruce budworm [57]. On the other hand, the odds of including trees that were
killed by intense suppression was decreased by considering trees greater than 5 cm DBH [44]. Table 3
summarizes the number, basal area, and mortality rate of balsam fir and spruce trees prior to and
following the 1972–1987 spruce budworm outbreak.

In order to account for episodic mortality that was caused by spruce budworm, we created another
set of 431 parameter files by including tallied dead balsam fir and spruce trees with the living tree
population. Eventually, having created two sets of parameter files for stands prior to and stands
following the spruce budworm outbreak, we carried out two 28-year simulations (see Table 2) to reach
the current age of post-fire stands in 2019.
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Table 3. Mean number (stems ha−1, ±SE), basal area (m2 ha−1, ±SE), and mortality rate (Mort, %) of
balsam fir and spruce prior to and following the recent spruce budworm outbreak (1972–1987).

Fire
Date

Balsam Fir White Spruce

Number Basal Area Number Basal Area

Prior Post Mort Prior Post Mort Prior Post Mort Prior Post Mort

1760 1560
(179)

489
(109) 68.65 15.16

(0.88)
2.60

(0.55) 82.85 67
(11) 43 (8) 35.82 2.77

(0.50)
2.04

(0.40) 26.35

1797 2303
(221)

1117
(192) 51.50 14.55

(1.04)
2.77

(0.42) 80.96 159
(24)

118
(20) 25.79 3.03

(0.42)
2.08

(0.39) 31.35

1823 2434
(211)

1485
(206) 38.99 13.87

(0.70)
4.32

(0.47) 68.85 209
(38)

188
(36) 10.05 2.90

(0.41)
2.46

(0.38) 15.17

1847 3289
(231)

1523
(174) 53.69 17.45

(1.06)
6.84

(0.50) 60.80 159
(16)

132
(14) 16.98 6.06

(0.65)
5.40

(0.58) 10.89

1870 1311
(132)

801
(95) 38.90 7.94

(0.61)
3.46

(0.36) 56.42 242
(27)

218
(25) 9.92 5.02

(0.61)
4.46

(0.56) 11.16

1916 1757
(144)

1319
(138) 24.93 7.72

(0.56)
4.54

(0.40) 41.19 254
(40)

246
(40) 3.15 2.04

(0.58)
1.99

(0.57) 2.45

1944 1272
(198)

1096
(174) 13.84 4.69

(0.66)
3.81

(0.48) 18.76 179
(50)

167
(47) 6.70 0.95

(0.23)
0.81

(0.19) 14.74

2.4.3. Long-Term Simulations

For our long-term evaluations, we simulated the inventory data in 1991 for a 60-year period,
i.e., for the data prior to the recent spruce budworm outbreak, by counting trees that were dead
due to the recent spruce budworm outbreak as live trees. The recent outbreak occurred during
1972–1987; indeed, it was the only spruce budworm event between 1951 and 2019 [49,50]. Therefore,
by simulating the stands with tree populations prior to the recent outbreak for a period of 60 years,
we eventually considered a century of post-fire stand development during the 1951–2051 period,
during which no spruce budworm outbreak occurred (see Figure 1). Note that this period of post-fire
development without insect disturbance was based upon the initial conditions of post-fire stands, in
which some stands had been affected by insect outbreaks prior to the 1972–1987 outbreak. We carried
out another long-term (60 years) simulation considering the mortality caused by spruce budworm.
To do so, we used the tree population of stands in 1991, following the recent (1972–1987) outbreak,
to account for the spruce budworm outbreak during 1951–2019. Since the frequency of budworm
outbreaks for the study region is about every 30 to 35 years [49], we expected the occurrence of another
outbreak during 2019–2051. Thus, we added a spruce budworm mortality episode for fir and spruce
(episodic mortality in SORTIE-ND) in 2020, i.e., 33 years after the end of the previous outbreak in 1987.
The budworm-induced mortality rate was set based on the research of Blais [58] for spruce in the boreal
region of eastern Canada and Bergeron et al. [44] for fir in the study region. In both aforementioned
studies, the magnitude of the fir and spruce mortality rates depends upon the relative proportion of
coniferous species to deciduous species; we used the model output after 28 years of simulation for
stands following the outbreak to estimate the basal area proportion of species in the year prior to the
budworm incident in 2020. Accordingly, depending upon the coniferous and deciduous relative (to
total) basal area proportions, we set the mortality rate for fir in 5–10-, 10–15-, and ≥15-cm DBH classes
and for spruce for trees greater than 10 cm DBH.
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One century of stand dynamics from

1951 to 2051, with and without spruce

budworm outbreaks

1919-1929 1930-1950 1972-1987

Pre 1972-1987 outbreak data: Live trees as well as dead trees due to 1972-1987 outbreak included

Spruce budworm outbreaks in 20th century

Simulated outbreak (2020)

Current year (2019)

1. without outbreak: Pre 1972-1987 outbreak data

2. with outbreak: Post 1972-1987 outbreak data

1. without outbreak: Pre 1972-1987 outbreak data, 2020 outbreak excluded

2. with outbreak: Post 1972-1987 outbreak data, 2020 outbreak included

With outbreak: Post 1972-1987 outbreak data

1900
2000

1951
2051

1972-1987

Post 1972-1987 outbreak data: Only live trees  included 

Inventory in 1991

Short-term simulations (1991-2009)

Two mid-term simulations (1991-2019)

Two long-term simulations (1991-2051)

Inventory in 2009

Figure 1. Conceptual model of the different simulation scenarios that are described in Table 2 to study
one century of post-fire stand dynamics, with and without spruce budworm outbreak events.

2.4.4. Assessing the Mid- to Long-Term Performance of the Model

For evaluating the mid- to long-term model performance, we used the simulation output over a
60-year period, accounting for spruce budworm incidents, at different lengths (timestep) of simulations,
in which the age of younger stands after some years of simulation (up to 60 years) attained the age of
older empirical stands in 1991 (see Table 1). Since the simulation accounted for two spruce budworm
incidents, for the model evaluation (see Figure 1), we used empirical data prior to the outbreak counting
for two outbreaks of three during the last century of stand development [49,50]. We then compared
the species compositions and stem diameter distributions of empirical data and simulated stands
representing stands of similar ages. Using the species relative (to total) basal area, we conducted
principal component analysis (PCA) to visualize the potential links between fire year (stand age)
and the composition of stands originating from each fire, in terms of the presence and dominance
of species measured by their relative (to total) basal area. For each set of empirical and simulated
data of the same age, we performed separate ordinations. The ordination axes were standardized to
the first two components explaining the greatest percentages of total variance. Gaussian bivariate
confidence ellipses enclosed 95% of the range of variability in stand composition and structure on the
two axes. Furthermore, two-way mixed ANOVA that included a data (empirical and simulation) ×
species interaction was used to test whether the abundance (basal area m2 ha−1) of species in post-fire
and simulated stands of the same age was different. We treated the species nested within the quadrats
in each post-fire stand as random effects. The empirical stand originating from the 1944 wildfire was
excluded from the analyses, since there was no available simulation of younger stands (than stand
1944) representing a similar age. However, the simulation output for the 1944 post-fire stand, for
various simulation years, was used as simulated data for older stands.

2.4.5. Mid- to Long-Term Influence of Spruce Budworm Outbreak

We used two-way mixed ANOVA, including a data (prior to and following the outbreak) × species
interaction, to test how the abundance (basal area m2 ha−1) of species in post-fire stands has changed
over 28 years (mid-term) because of the recent outbreak. For the long-term effect of episodic coniferous
mortality that was induced by spruce budworm, we compared the species composition and structure
of the two simulated stands over a 60-year period. To do so, we performed polynomial regressions to
describe the general trends of species abundance in relation to the time since the fire. The succession
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starts from 47, i.e., the age of the most recent post-fire stand (1944) at the time of first inventory in
1991, and ends at 291, the age of the oldest post-fire stand (1760) after 60 years of simulation. Given
the species identities, basal area, and age of stands, we were able to illustrate the chronosequence of
291 years of successional dynamics of post-fire stands at the LDRTF.

Given that we were dealing with a large dataset, we utilized the Compute Canada (www.
computecanada.ca) computing platform to implement the simulation runs and accelerate the process.
We then transferred outputs to the R environment (version 3.5.0) for further data preparation and
analyses [59]. We used the FactoMineR package to perform the ordinations, and ggpmsic and ggplot2
packages to perform the polynomial regressions and visualize the successional dynamics of species
following the occurrence of wildfire.

3. Results

3.1. Model Evaluations

3.1.1. Short-Term Model Evaluation

The output of short-term simulation runs showed good agreement (p-value >0.05) with the
empirical data that were collected in 2009 in terms of the live stem density, live stem basal area of the
study species, and the distribution of the live stem basal area in the 5-cm diameter classes. Table 4
summarizes the live basal area for the empirical data that were collected in 2009 and the 18-year
simulated output. As presented, the empirical and simulated basal areas of the study tree species
are statistically similar (p-value >0.05), except for birch in stands originating from wildfire in 1847,
with significant basal area overestimation (p-value <0.05). Since the DBH limit for saplings in the
LDRTF parameter file (stems ≤3–10 cm depending on tree species) differed from the field data (stems
≤5 cm), saplings and adult trees were considered as one group for further analyses that are described
throughout the results section.

Table 4. Comparison of species basal area (m2 ha−1, ±SE) for empirical data in 2009 and short-term
simulation output.

Fire
Date

Species Mean Basal Area for Standing Live Sapling and Adult Trees

Fir Birch Spruce Aspen Cedar

Emp. Sim. Emp. Sim. Emp. Sim. Emp. Sim. Emp. Sim.

1760 6.49
(0.81)

5.61
(0.88)

4.88
(0.67)

4.03
(0.68)

3.28
(0.61)

2.37
(0.43)

3.45
(1.21)

2.21
(0.68)

15.73
(1.89)

13.80
(1.77)

1797 10.38
(0.79)

8.43
(0.86)

7.40
(0.79)

5.88
(0.54)

4.53
(0.78)

3.04
(0.52)

0.73
(0.34)

0.67
(0.24)

5.11
(0.93)

5.09
(0.81)

1823 11.93
(0.74)

10.54
(0.84)

3.07
(0.34)

3.63
(0.35)

4.35
(0.60)

3.84
(0.50)

9.99
(1.30)

10.74
(1.25)

0.86
(0.40)

0.71
(0.35)

1847 11.36
(0.60)

11.97
(0.58)

2.58
(0.32)

3.88
(0.35)

6.47
(0.73)

6.85
(0.67)

13.67
(1.15)

11.56
(0.80)

0.63
(0.22)

0.85
(0.32)

1870 6.69
(0.64)

6.42
(0.62)

3.72
(0.53)

4.33
(0.46)

5.52
(0.74)

6.10
(0.71)

11.56
(1.33)

15.33
(1.72)

0.04
(0.04)

0.03
(0.03)

1916 9.13
(0.64)

7.98
(0.59)

5.51
(0.64)

6.52
(0.72)

3.33
(0.56)

2.56
(0.59)

17.80
(2.28)

16.20
(1.86)

1.37
(0.77)

1.22
(0.46)

1944 6.60
(0.62)

6.26
(0.71)

8.04
(0.78)

8.01
(0.68)

1.71
(0.36)

1.28
(0.31)

11.50
(1.66)

12.20
(1.78)

0.33
(0.25)

0.27
(0.17)

Species are balsam fir (Fir), white birch (Birch), white spruce (Spruce), trembling aspen (Aspen), and white cedar
(Cedar). Bold values indicate that basal area in the empirical dataset is significantly (p-value <0.05; two-sample K–S
test) different from the basal area in the simulated data set.

www.computecanada.ca
www.computecanada.ca
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Figure 2 illustrates the dynamics of the species basal area over 184 years, from the youngest
post-fire stand with an age of 65 years to the oldest post-fire stand with an age of 249 years, for both
empirical data in 2009 and model output at the end of the 18-year simulation. As demonstrated here
(Figure 2), the model could successfully capture the changes in the stem basal area of the study species
within the 95% confidence interval.
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Figure 2. Dynamics of tree species in terms of the stem basal area (m2 ha−1) over 184 years, from the
youngest post-fire stand with an age of 65 years to the oldest post-fire stand with an age of 249 years,
for both empirical data in 2009 and model output at the end of the 18-year simulation. Gray zones
display confidence intervals around the smooth curves, with a confidence level of 95%.

In addition (Table 4), the distribution of the species basal area among the empirical plots is not
significantly different (p-values >0.05; K–S test) from the simulated plots, except for birch trees in
stands originating from the fire in 1847 (p-value 0.025), which was slightly overestimated (see also the
kernel density curves in Appendix C, Figure A1).

To account for tree size distributions in terms of the stem number and basal area per hectare,
we also examined the distribution of the basal area in 5-cm diameter classes for standing live trees
for the empirical data and model output after an 18-year period of simulation (Figure 3). The 18-year
simulation proved efficient in reconstructing the tree species that were distributed in different size
classes. Yet, in some fire areas, the simulation projected a higher basal area/stem number of birch (DBH
< 10 cm), aspen (DBH < 20 cm), and cedar trees (DBH < 5 cm) (p-values <0.05).
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Figure 3. Distribution of the basal area (m2 ha−1) within 5-cm diameter classes for standing live tree
species for empirical data in 2009 and short-term (over 18 years) simulation outputs.

3.1.2. Mid- to Long-Term Model Evaluation

When comparing the simulated stands with the empirical data of the same ages, the mid- to
long-term simulation of post-fire stands could faithfully reconstruct the species composition and
diameter distributions of the empirical data (Figure 4); however, in some cases, the simulated basal
area (m2 ha−1) was significantly different from the empirical basal area (p-values <0.05 in Table 5).

Empirical data Simulated data

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

15

20

25

Fir

Empirical data Simulated data

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

2

4

6

8

Birch

Empirical data Simulated data

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

1

2

3

4

Spruce

Empirical data Simulated data

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

3

6

9

Aspen

Empirical data Simulated data

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

1

2

3

4

Cedar

Fire year

1760
1797
1823
1847
1870
1916

Diameter class (cm)

B
as

al
 a

re
a 

(m
2 ha

−1
)

Figure 4. Diameter distribution of the empirical and simulated stands (for long-term simulations up to
60 years, including budworm events) of similar ages within 5-cm diameter classes for standing live
tree species.
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Table 5. Basal area comparisons of empirical stands that were surveyed in 1991 (prior to the spruce
budworm outbreak) with the simulated stands of similar ages (with spruce budworm outbreak events).

Empirical Data Fire
(Stand Age)

Simulation Data

Fire Year + Length of Simulation (years)

1760 (231 y)
1797 + 37 (Total−)

Fir− Birch Spruce Aspen Cedar

1797 (194 y)
1823 + 26 1847 + 50 (Total)

Fir Birch− Spruce+ Aspen+ Cedar− Fir Birch− Spruce+ Aspen+ Cedar−

1823 (168 y)
1847 + 24 (Total+) 1870 + 47 (Total)

Fir Birch Spruce+ Aspen+ Cedar Fir− Birch− Spruce+ Aspen+ Cedar

1847 (144 y)
1870 + 23 (Total)

Fir− Birch Spruce Aspen Cedar−

1870 (121 y)
1916 + 46 (Total)

Fir+ Birch Spruce− Aspen Cedar+

1916 (75 y)
1944 + 28 (Total)

Fir Birch Spruce Aspen Cedar

The significant differences detected by two-way ANOVA (p-value <0.05) are in bold, where + and − superscripts
refer to significant (p-value <0.05) overestimation and underestimation of the model, respectively. Total refers to the
total basal area of stands, regardless of tree species.

As presented in Table 5, the total basal area of all tree species trees within the plots was
underestimated (p-value <0.05) for stands that are aged 231 years, and overestimated for stands at an
age of 168 years (post-fire stand 1847 after 24 years of simulation). In some stands that were older
than 121 years, the model underestimated (p-value <0.05) the basal area proportion of fir, birch, and
cedar, and overestimated (p-value <0.05) the basal area proportion of spruce and aspen. In younger
stands, there is some evidence for overestimation (p-value <0.05) for the fir and cedar basal area and
underestimation for the spruce basal area (Table 5).

Figure 5 illustrates the variability and composition of both empirical and simulated stands of
equal ages. The first and second axes of the PCA explained 51% to 70.7% and 16.7% to 25.9% of the total
variance, respectively. The model appeared to reproduce the variability that was found in post-fire
stands’ composition and structure with a good convergence. The ordinations seem to be driven by the
higher abundance of hardwoods in early successional post-fire stands, rather equal abundances of
hardwoods and softwoods in mid-successional post-fire stands, and the higher abundance of coniferous
species in late-successional post-fire stands. Simulated data show, more or less, greater variability (see
the relative size of the ellipses in Figure 5) than the empirical data of the same ages, more specifically
in the middle-aged to old post-fire stands.
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Figure 5. Principal component analyses based on the relative basal area of tree species in groups of
empirical stands and simulated stands for different times that are compared with empirical data of
equal ages. The first two axes explain the highest percentage of the total variance in stand composition.
The concentration ellipses include 95% of the stands of a specific stand age and the species vectors
(biplot) are associated with the two axes, where the ellipses were enclosed.

3.2. Mid- to Long-Term Influence of Spruce Budworm

Except for the youngest post-fire stand, the basal area proportion of balsam fir during 28 years of
development in post-fire stands was significantly (p-value <0.05) less for simulated outputs accounting
for the most recent spruce budworm outbreak during 1972–1987, compared to simulated outputs
without the spruce budworm effect (Table 6). The reduction in the balsam fir basal area varied from 9%
in the youngest stand, which originated from the wildfire in 1944, to 66% in the oldest stand, which
originated from the wildfire in 1760. Despite the decreased basal area of white spruce, the influence of
the recent spruce budworm outbreaks did not appear statistically significant (Table 6).
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Table 6. Comparison of species basal area (m2 ha−1, ±SE) for 1991 empirical data including or not
mortality induced by the spruce budworm outbreak after mid- and long-term simulations.

Fire
Date

Simulation
Length
(years)

Species Mean Basal Area for Standing Live Sapling and Adult Trees

Fir Birch Spruce Aspen Cedar

No-SBW SBW No-SBW SBW No-SBW SBW No-SBW SBW No-SBW SBW

1760
28 23.69

(0.96)
7.98

(1.09) 2.92 (0.61) 3.64
(0.65) 3.36 (0.56) 2.68

(0.48) 1.57 (0.52) 1.94
(0.58)

15.06
(1.91)

16.87
(2.07)

60 32.97
(1.26)

9.25
(1.06) 1.26 (0.4) 2.92

(0.56) 3.54 (0.66) 3.93
(0.78) 0.53 (0.17) 1.26

(0.35)
19.46
(2.22)

25.88
(2.63)

1797
28 25.73

(1.01)
12.65
(1.15) 4.52 (0.52) 5.26

(0.53) 4.89 (0.65) 3.72
(0.61) 0.56 (0.20) 0.70

(0.26) 5.71 (0.92) 6.52
(1.02)

60 35.74
(1.05)

15.02
(1.24) 1.93 (0.39) 3.53

(0.55) 6.7 (0.89) 5.57
(0.93) 0.49 (0.2) 0.82

(0.37) 8.24 (1.27) 12.04
(1.74)

1823
28 23.85

(0.96)
14.77
(1.04) 3.16 (0.32) 3.35

(0.33) 5.18 (0.60) 4.73
(0.57)

10.71
(1.31)

11.35
(1.29) 0.80 (0.39) 0.88

(0.42)

60 32.68
(1.18)

18.72
(1.09) 1.59 (0.26) 1.91

(0.28) 7.17 (0.80) 6.07
(0.68) 7.40 (1.06) 8.76

(1.03) 1.13 (0.52) 1.52
(0.66)

1847
28 23.60

(0.73)
15.56
(0.68) 3.13 (0.29) 3.47

(0.32) 8.47 (0.78) 7.71
(0.72)

10.76
(0.86)

11.14
(0.84) 0.90 (0.33) 0.97

(0.35)

60 31.79
(1.03)

20.46
(0.86) 1.32 (0.17) 1.82

(0.27) 9.31 (0.85) 7.24
(0.66) 6.25 (0.71) 7.33

(0.7) 1.28 (0.46) 1.72
(0.59)

1870
28 14.11

(0.95)
8.68

(0.83) 3.58 (0.39) 3.72
(0.40) 7.71 (0.86) 7.20

(0.83)
15.72
(1.76)

15.80
(1.74) 0.03 (0.03) 0.03

(0.03)

60 23.29
(1.32)

12.68
(1.13) 1.60 (0.2) 1.73

(0.23) 11.3 (1.15) 9.05
(1.01)

11.41
(1.32)

12.41
(1.36) 0.04 (0.04) 0.05

(0.05)

1916
28 14.29

(0.85)
10.70
(0.72) 6.42 (0.71) 6.47

(0.71) 3.12 (0.63) 3.09
(0.63)

14.67
(1.77)

14.73
(1.76) 1.43 (0.54) 1.60

(0.61)

60 24.13
(1.09)

15.04
(0.91) 4.90 (0.57) 5.12

(0.58) 5.67 (0.84) 4.62
(0.74) 6.99 (1.15) 7.40

(1.15) 2.33 (0.82) 3.01
(1.07)

1944
28 9.08 (1.02) 8.22

(0.88) 7.86 (0.64) 7.93
(0.65) 1.86 (0.45) 1.65

(0.41)
12.11
(1.73)

12.23
(1.73) 0.34 (0.22) 0.34

(0.22)

60 16.69
(1.50)

11.75
(1.17) 6.19 (0.54) 6.40

(0.55) 3.47 (0.79) 2.49
(0.61) 8.26 (1.27) 8.64

(1.28) 0.57 (0.36) 0.67
(0.41)

Species are balsam fir (Fir), white birch (Birch), white spruce (Spruce), trembling aspen (Aspen), and white cedar
(Cedar). The significant differences that were detected by two-way ANOVA (p-value <0.05) are in bold. SBW refers
to spruce budworm outbreak.

To summarize the successional dynamics of species in post-fire stands of the study area, with
and without spruce budworm outbreaks, we regressed the changes in the species basal area against
the time since the fire for the seven post-fire stands (Figure 6). The proportion of the species basal
area significantly changed through a gradual transition of post-fire stands from early stages to
late-successional stages (p-value <0.05). As illustrated in Figure 6, the relative proportion of hardwoods
(aspen and birch) is higher in early years following a wildfire and it decreases with the time since
the fire. The occurrence of a spruce budworm outbreak, as the secondary disturbance for post-fire
stands, increases hardwood proportions, specifically in old-growth post-fire stands (see significant
increases in Table 6). Throughout succession, the basal area proportion of coniferous species (fir,
spruce, and cedar) increases. Around the mid-successional stages, they dominate post-fire stands (see
Table 6). The mortality that was induced by two spruce budworm incidents significantly (p-value
<0.05) decreased the basal area proportion of fir in all post-fire stands. In contrast, spruce was not
meaningfully affected, given that it subsequently recovered its growth and dominance status prior
to the outbreak (60-year simulation output in Table 6). The spruce budworm outbreak set back the
successional dynamics of the middle-aged post-fire stands, by decreasing the proportion of conifers and
consequently increasing the relative abundance of hardwoods. Likewise, due to the high mortality of
balsam fir, the dynamics in stands in which cedar were already established accelerated the dominance
of cedar in post-fire stands around the age of 250. Within undisturbed stands, balsam fir is the most
important species in terms of the basal area.
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Figure 6. Simulated successional dynamics of the species basal area in post-fire stands of the Lake
Duparquet Research and Teaching Forest (LDRTF). The solid and dashed lines represent changes in the
species basal area of post-fire stands with and without spruce budworm outbreaks, respectively.

4. Discussion

We verified whether model parameterization allows reconstruction of natural post-fire successional
dynamics of our study area over various time steps by comparing model outputs to field observations
over three simulation horizons. As we discuss below, the short-term simulation proved competent
in reproducing the species composition and size distribution that was observed in the field data.
Moreover, using the mid- and long-term simulations while accounting for episodic spruce budworm
outbreaks made it possible to examine the model’s potential to generate the species compositions and
size distributions of empirical data that characterized old-growth forest. It also enabled us to assess
the potential changes in the successional dynamics of post-fire stands through coniferous mortality
that were induced by spruce budworm as a secondary disturbance, which reoccurs episodically in the
study region.

4.1. Short-Term Evaluation

Short-term simulation outputs showed good agreement with the empirical data in terms of the
species composition, species basal area, and species density. The empirical and simulated data were
generally similar, despite a slight basal area overestimation of white birch for the stands originating
from the 1847 fire, higher basal area/stem number of trembling aspen with diameters smaller than 20 cm,
and high ingrowth of small cedar trees (DBH < 5 cm). Various factors that affected the recruitment
and survival of species, but which were not incorporated into the model, may explain the significant
differences we detected. For instance, the model neither considered the reported defoliation of aspen
and birch trees in 2001, nor the dry summers in 2001 and 2002 [38,60]. The 2001 drought was severe,
which increased tree mortality with varying effects on species, depending upon their vulnerability to
drought [61]. Consequently, it can be reasonably expected that simulations deviated from empirical
data for some species, especially if the model is not simulating such drought events. The model also
did not account for any other sources of disturbance (i.e., major windthrow events) that might be
important, although less frequent than insect outbreaks [62,63]. These aforementioned disturbances
could possibly create small gaps, which are more suitable for birch regeneration compared to aspen,
which requires full sunlight for establishment. Nevertheless, the emergence of a few aspen suckers
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may help maintain aspen (co)dominance [32]. Although both aspen and birch exist along with conifers
in the mid-successional stands (i.e., 1823, 1847, and 1870 post-fire stands) [31], birch is also expected to
have lower recruitment than aspen [12,64,65]. Specifically, birch has the lowest proportion of basal
area in the 1847 post-fire stands (16% of the total basal area in the 1847 post-fire stand). The collective
effects of low proportions of birch trees, defoliation by forest tent caterpillar, and probable windthrow
likely reduced the recruitment of small birch trees into the larger diameter classes in the 1847 post-fire
stands, which were not addressed by the model. Likewise, the higher proportion of small birch
trees (DBH < 10 cm) that were observed in the field, when compared to simulation outputs, might be
explained by the aspen mortality that was induced by FTC defoliation, dry summers, or windthrow.
In the absence of aspen, birch possibly has enhanced sprouting or seeding [8], and stronger recruitment
in gaps that were created by aspen mortality [16,27].

The model simulated high ingrowth of small cedar trees (DBH < 5 cm), mainly in old stands
where white cedar establishment dominates. Yet, on the one hand, the model did not account for
the competitive effects of herbs and woody shrubs, except for mountain maple, on the growth and
survival of seedlings. On the other hand, the death of companion species (aspen, birch, spruce, and fir)
in old-growth stands and their fast decay rates following their death [66] would provide suitable
conditions for cedar recruitment. Thus, a small degree of cedar overestimation can be the consequence
of a high number of cedar trees in old stands that were dispersing seeds on decaying wood, as their most
favorable germination substrate [23,67,68], and growing in small canopy openings that would facilitate
their establishment and growth [69] in a less competitive environment. However, constructing a model
with proper behaviors defining the growth and mortality of adult white cedar trees would properly
control the recruitment of cedar trees into the larger diameter classes. Despite the aforementioned
contradictions between the field observations and simulation outputs in terms of the recruitment and
survival of birch, aspen, and cedar, the overall simulated dynamics of stands were consistent with the
observed dynamics of the empirical data, which we discussed in the following section.

Individual Species Dynamics within the Post-Fire Stands

The post-fire stands in the study represent a chronosequence of 249 years of forest succession
originating from seven wildfires. Within each fire area, the successional dynamics of species can be
appropriately explained by their life-history traits, such as longevity, mode of regeneration, growth rate,
and shade tolerance [8], together with inhibition or facilitation processes [8,70]. In utilizing suitable
parameters for species life-history traits and other individual- and stand-level processes, we could
successfully reproduce post-fire species and stand dynamics in the boreal mixedwoods of LDRTF
that were presented earlier by Bergeron [8]. In his study, Bergeron [8] pointed out three important
developmental stages that characterize the post-fire stand dynamics of the study region: The post-fire
cohort is dominated by hardwoods with a conifer understory; first, the aspen cohort’s breakup is
followed by subsequent cohorts of aspen mixed with conifers that are recruited into the canopy;
and finally, stands are dominated by coniferous species undergoing spruce budworm outbreaks.
The relative importance of each species in post-fire stands is controlled more by the initial numbers
than by different niches [71] and the model properly benefited from including the observed initial
numbers of species in the field data to simulate the stand dynamics following the wildfires.

The young stands originating from wildfires in 1944 and 1916 formed the early successional
post-fire hardwood cohort (also called the aspen cohort), which are dominated by fast-growing
trembling aspen and white birch [2,72]. Following the wildfires, massive aspen root suckers colonize
burned areas, together with the resprouting of white birch from the stem collars or from seeds dispersed
over long distances [2,8]. Similar to Bergeron [8], simulations displayed a decreasing importance of
trembling aspen and white birch in all post-fire stands throughout succession: The highest basal area
values for aspen were found in the first two cohorts, and for birch, in the first and last cohorts. Indeed,
due to its great longevity (exceeding 230 years of age), birch can remain suppressed under the aspen
canopy and grow slowly during the period of aspen dominance [8]. Although less abundant, where
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their seeds are available, slow-growing balsam fir and spruce appear in the post-fire cohort with a 5- to
10-year delay compared to hardwood species [8,73]. Moreover, the very low constancy of white cedar
that was observed in post-fire cohorts is possibly the result of its low seed dispersal capability [74] or
the absence of suitable seedbeds following fire [8]. As highlighted by Bergeron [8] and seen in both the
field and simulated data, variation in the species composition of the post-fire cohort has great influence
on the successional dynamics of stands from hardwood trees to conifer regeneration and establishment.

The breakup of the aspen cohort comes in the middle-aged stands, originating from the 1823, 1847,
and 1870 wildfires, where declining proportions of hardwoods, particularly aspen, and an increasing
occurrence of balsam fir and spruce form mid-successional mixedwoods. Gaps that are created in the
canopy due to the breakup of the aspen cohort are filled either through self-replacement, in which a
new aspen cohort re-establishes from successful root suckering [8,14,73], or by birch, fir, and spruce,
which have already established beneath the aspen canopy [8,30,75]. The continuous occurrence of
fir throughout the succession is the consequence of fir’s shade tolerance, which allows for abundant
regeneration under closed canopies or within small gaps [72], which was reflected appropriately in
simulations of the process. As Bergeron [8] suggested, the limited recruitment of spruce in undisturbed
soil following canopy disturbances is responsible for the low occurrence of spruce during succession
after the initial post-fire cohort, which was also adequately addressed by the model. Indeed, spruce
establishment on organic soil or on substrates other than mineral soil is likely limited because of its
small seeds [76]. Since the model used the number of surviving spruce and fir after spruce budworm
outbreak, the short-term simulation precisely reflected the status of these two species in the 2009
field observations.

Eventually, the old growth stands originating from wildfires in 1797 and 1760 form the old
successional coniferous cohort with a noticeable occurrence of white cedar trees. The simulated data
reveal the dominance of eastern white cedar in old-growth forests some decades after aspen cohort
breakup, which accords with the findings of Bergeron [8]. Some studies have related a higher cedar
abundance to the decreased inhibitory effects of hardwood litter, especially aspen litter [67,76], to the
increased amount of moss layer during succession [67,77–79], and to intense layering under the conifer
canopy in more humid conditions [8]. The model successfully reproduced cedar longevity [80] and
shade tolerance [74], as well as favorable conditions for cedar establishment. These conditions insured
the maintenance and increasing abundance of white cedar with time since the fire. In the coniferous
cohort, aspen abundance and its relative proportion decreased noticeably. Bergeron [8] related this
decline to reduced root sucker production with time. Aspen root sucker emergence or growth might
be weakened in small gaps receiving insufficient heat and sunlight [81], an increased humus layer
inhibiting aspen suckering [82], and in stands with high competition from other strongly established
species [8]. Through the actions of various behaviors, such as light, neighborhood competition,
and substrate (see Appendix A), the simulator managed to obtain recruitment of aspen that was
appropriate in different developmental stages of post-fire stands.

4.2. Mid- to Long-Term Evaluation—Can We Reconstruct the Post-Fire Forest Succession?

Simulating the development of post-fire stands of younger ages to reach the age of older post-fire
stands illustrated the ability of the model to reconstruct the species composition and stem size
distributions of not only young- to mid-successional stands but also old-growth post-fire stands.
The differences that were seen in the stand variability and species abundances in the observed and
simulated data might be the cumulative effect of the secondary disturbance history, such as insect
outbreaks and climatic disturbances. Different disturbance regimes with various patterns fluctuating
in space and time have been shown to be the result of different forest compositions, thereby promoting
species coexistence [83]. The empirical post-fire stands have passed through various disturbances for
which the model was not intended (i.e., not constructed to include the relevant information), or those
that it could not address accurately. For instance, older stands have suffered several conifer-defoliator
spruce budworm [49] and hardwood-defoliator tent caterpillar [53] outbreaks, which reduced the
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abundance of host species during the natural successional dynamics of stands. We simulated the
spruce budworm mortality of balsam fir and white spruce, but the adjusted mortality rates were based
upon the most recent documented outbreaks [44,58]. The simulations were probably different from
the real situations, when post-fire stands experienced episodic outbreaks during their developments.
During actual stand development, a spruce budworm outbreak and its consequences (i.e., mortality
and weakened growth of the host species) usually occur over the course of time [49,50] while the model
only simulated mortality that was induced by spruce budworm, immediately and within one year
of post-fire stand development. On the one hand, comparing the stands originating from different
wildfires of the same age at various spatial locations increases the risk of incurring different seed
dispersions from the neighboring stands beyond the plots, because the model does not allow for
interactions among plots and their neighborhoods [34]. On the other hand, the uncertainty is increased
regarding having similar initial stand compositions, which is a decisive factor in successional post-fire
stand development [8,71] and for simulation runs [34]. Dissimilar initial stand compositions are the
result of pre-fire stand compositions that frequently control post-fire stand composition [84,85].

4.3. Spruce Budworm Contribution to the Successional Dynamics of Post-Fire Stands

Budworm-induced fir mortality largely governs post-fire stand dynamics when the abundance of
host species defines the severity of a budworm outbreak [44,58]. Using mid- to long-term simulations,
we tested the effects of spruce budworm outbreak on species and stand dynamics over a century
of post-fire stand development. The model illustrated a loss in balsam fir basal area, which is the
lowest in young post-fire stands and the greatest in the oldest post-fire stands, both in the mid-term
and over the long term. Since budworm-induced mortality is supposed to be more severe in mature
than in immature stands [57,58], and the abundance of mature balsam fir gradually rises in mid- and
late-successional post-fire forests, increasing fir mortality caused by budworm with time since the
fire is expected. Following outbreaks, the basal area proportion of white birch and trembling aspen
gradually increases, which is most evident in old-growth post-fire stands. Several factors define the
recruitment of shade-intolerant birch and aspen into the older post-fire stands following the budworm
outbreak. Among these factors are defoliation severity and the degree of subsequent canopy mortality,
canopy composition, and density of coniferous advanced regeneration [8,27,86,87]. The simulation
produced a greater post-disturbance increase in the aspen basal area compared to white birch. Indeed,
fast-growing aspen root suckers can rapidly fill larger gaps that are created by budworm outbreaks,
whereas birch and fir recruit into smaller gaps in the absence of competition from aspen [30,72].

Compared to the high mortality rates of balsam fir that are incurred through spruce budworm
outbreaks, mortality was low for white spruce [44]. Spruce mortality mostly occurs in the two last
cohorts, more specifically in middle-aged post-fire stands. This difference between the two species
could be the consequence of a smaller proportion of spruce relative to fir, the faster emergence of buds
in fir [88], the greater ability of spruce to tolerate defoliation, and budworm preferences for balsam
fir [89]. Accordingly, despite the limited canopy recruitment of white spruce, mainly in the post-fire
cohort, and the occurrence of spruce budworm outbreaks, spruce survives to an old age [8] and exists
throughout the simulated succession of post-fire stands for over 291 years. Similar to observations that
were made by Bergeron [8], white spruce’s relative proportions in empirical post-fire stands decreased
throughout the succession following the outbreak. Yet, the model produced a higher abundance of
white spruce in late-successional post-fire stands compared to the observed data. Likewise, an increase
in white spruce abundance, following spruce budworm outbreaks, has been reported in other studies in
Ontario and Quebec [90]. In his study, Bergeron [8] stated that old stands had yet to recover from large
gaps that had formed in the fir canopy, and which were created by the 1972–1987 budworm mortality,
Further, the length of the chronosequence was not sufficient to predict future stand development.
The increased basal area proportion of white spruce in old-growth stands could be the consequence
of several factors: Low seedling mortality, longevity greater than the maximum age of all post-fire
stands, no signs of higher mortality in the oldest stands, and an ability to attain the highest canopy
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position [8]. Moreover, increased abundance of well-decomposed deadwood in old stands that is due
to budworm mortality can facilitate white spruce establishment [67,68]. These factors, together with
the increased growth of residual trees following the reduction in stand density and competition [35,91],
not only secure the continuous recruitment of white spruce in old growth post-fire stands but also
cause an increase in the white spruce basal area following the outbreaks.

The long-term simulation also suggested an increased basal area for eastern white cedar in post-fire
stands disturbed by budworm outbreaks. Compared to balsam fir and white spruce, white cedar is
generally a sub-canopy tree [8]. Like white spruce, cedar has a great longevity and an increase in the
deadwood component of the forest floor favors its establishment [8,23]. The greater persistence of white
cedar post-disturbance explains the exceptional cedar longevity, increased deadwood components due
to budworm mortality, and release from the surrounding fir and spruce, occurring mostly in small
canopy openings [69]. Openings in the canopy that result from defoliation and tree mortality also
increase the growth of advanced balsam fir regeneration, resulting in cyclical fir replacement [28,92].
Altogether, as shown by the long-term simulations and highlighted by Bergeron [8], budworm outbreak
did not reset the succession back to the hardwood stage, although it permitted some recruitment of
trembling aspen and white birch.

Simulations for both disturbed and undisturbed old-growth post-fire stands had projected
dominance of balsam fir and white cedar, as was observed by Kneeshaw and Bergeron [93]. As discussed
earlier, however, the high mortality of balsam fir and increased abundance of white cedar resulted in a
more rapid dominance of balsam fir by cedar. It must be noted that the study area did not experience
any windthrow immediately following the spruce budworm outbreaks [8].

5. Conclusions

The current study took advantage of short- to long-term simulations to reconstruct the successional
dynamics of post-fire stands, and examined the influence of defoliation by spruce budworm outbreaks,
over a century-long period of post-fire stand development. Using SORTIE-ND, we were able
to reasonably reproduce the compositional variability of LDRTF post-fire stands, which had been
previously identified by chronosequence analysis [94] and that were confirmed by a stand-reconstruction
approach [8]. This approach afforded us the opportunity to use SORTIE to predict responses to
specific silvicultural treatments, especially over the short term, where the model appeared to make
good predictions. In other words, the model apparently has great potential to evaluate alternative
management or disturbance scenarios. Despite the importance of understory vegetation, which may
compete with tree species regeneration for resources, the model only took into account the effects of
mountain maple on the simulation processes [93]. Therefore, we were unable to verify the influence
of herbs and woody shrubs, particularly pin cherry (Prunus pensylvanica L.f.) and willows (Salix
spp.), which were considered in the study conducted by Bergeron [8]. The simulator did not correctly
predict the density of seedlings for the study species; however, it showed its ability for reconstructing
successional dynamics in the eastern Canadian boreal mixedwood forest, following some model
adjustments (i.e., survival and recruitment of seedlings to saplings and adult trees). As understory
competition (e.g., grasses, forbs, or shrubs) may limit seedling recruitment [95,96], implementing
SORTIE-ND with some information about their competitive abilities could improve simulations
of seedling abundance. Moreover, the model’s efficiency could be improved through appropriate
quantification of seed production, dispersal, and germination, as well as seedling survival rates on
different seedbeds in LDRTF and mortality at different stages.
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Appendix A

Description of the LDRTF Parameter File that is Used by Sortie-ND

The LDRTF parameter file assigns behaviors to individual stems according to their life history
stages: Seed, seedling, sapling, adult, stump, snag, and woody debris. The population and allometry
functions control the number, size, and shape of individual stems in each stage. A behavior is
responsible for creating and distributing tree seeds for each species based upon the conditions that were
set (e.g., minimum DBH and maximum number of parent trees in each gap, seed distribution pattern,
and canopy openness). Other behaviors that are based upon substrate composition and forest cover
define which seeds survive, germinate, and turn into seedlings. Seedlings (DBH ≤ 1 cm and height
≤1.35 m) and saplings (DBH ≤ 3–10 cm depending on species and height >1.35 m) grow as a function
of the understory light availability [97] using a non-limited absolute growth equation. A number of
seedlings and saplings randomly die according to stochastic and growth-based mortality behaviors
while the rest survive and grow to the next level of their life history and turn into adult trees. Stochastic
and competition mortalities control the number of adult trees that survive, and senescence slightly
increases the death rate among large adult trees. Once the trees die, a Weibull function determines
the number of snags (standing dead trees) of a certain age at a given time to fall as woody debris
and form some types of germination and growth substrates. As briefly described, the model works
based upon a set of sub-models that must be carefully selected and parameterized to achieve an
appropriate simulation of the study stands. The main behaviors that we used to simulate the post-fire
stands in our study area are as follows. More detailed information about the simulator is available at
www.sortie-nd.org/help/manuals/help/index.html [34].

Appendix A.1. Plot

The plot is the physical space that is characterized by the geographical position, dimensions, and
climate. In order to eliminate the edge effect when dealing with spatial quantifications and analyses,
the plot is a torus (donut), on which trees near the “edges” of the plot see trees on the far edge as
being right next to them. Each plot is divided into cells (8 m × 8 m by default; adjustable for some
sub-models, such as episodic mortality, harvest, and planting), in which the sub-models will take effect.

Appendix A.2. Tree Population and Allometry Data

These parameters represent the state of the stand at the beginning of the simulation in terms of the
number (tree population), size, and shape (allometry) of each individual tree in different development
stages. Many behaviors work based upon equations that are functions of size in some way.

Appendix A.3. Light (GLI: Global Light Index)

The availability of light for each individual tree is calculated, based upon the Sun’s position
and movements during the growing season; more specifically, it is based upon the azimuth angles
and the solar altitude. The zenith angle (θ) of the Sun is calculated with the following formula:
cosθ = sin δ sinϕ+ cos δ cosϕ cosω and its azimuth angle (Ψ) is calculated by the following formula:

www.sortie-nd.org/help/manuals/help/index.html
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cos Ψ = (sinα sinϕ− sin δ)/ cosα cosϕ, where θ is the zenith angle, δ is the solar declination, ϕ is the
latitude of the plot, α is the solar altitude, and ω is the solar time.

Appendix A.4. Growth Sub-Models

Appendix A.4.1. Non-Limited Absolute Growth for Seedlings and Saplings

Absolute growth of the seedlings and saplings is calculated as Y = SF×
(

A×GLI
A
S +GLI

)
, where Y is log10

(radial growth + 1), A is the asymptotic diameter growth, S is the slope of the growth response, and
GLI is the global light index. SF is the suppression factor and is calculated as SF = e((g×YLR)−(d×YLS)),
where g is the length of the current release factor, YLR is the length of the last (or current) release period,
d is the length of the last suppression factor, and YLS is the length of the last (or current) suppression

period. Finally, diameter growth (Gd) per time step (T) is calculated as Gd =
(
(10Y

−1)×2
10

)
× T.

Appendix A.4.2. Neighborhood Competition Index Growth for Adult Trees

The growth of individual adult trees is adjusted based upon the maximum potential diameter
growth (max growth; cm, y−1), which is reduced due to different effects, such as competition, damage,
climate, and crowding [98]. For trees in our study area (except for jack pine and mountain maple),
the annual diameter growth of trees (cm) is calculated as Growth = Maxgrowth × Size e f f ects ×
Shading e f f ects×Crowding e f f ects. Size, shading, and crowding effects are maximum potential growth
modifiers with a value between 0 and 1, depending on the conditions in which the tree is located:

• Size e f f ects = e−0.5
(
ln

(
DBH

X0

)
/Xb

)2
, where DBH is the diameter of the target tree, X0 is the size

effect mode, and Xb is the size effect variance.
• Shading e f f ects = e−m.Sn

, where m is the shading effect coefficient, S is the amount of shadow that
is cast by the neighborhood, and n is the shading effect exponent.

• Crowding e f f ects = e−C×DBHγ
×NCID

, where C is the slope of the crowding effect, DBH is the
diameter of the target tree, γ is the NCI size sensitivity to target tree species type, D is the NCI
crowding effect steepness, and NCI is the individual-based tree NCI value.

Appendix A.4.3. Constant Radial Growth for Adult Trees

Due to the lack of sufficient data on neighborhood competition for jack pine and mountain maple,
a simple species-specific diameter increment function is used [99]. Thus, the growth function for

these species is Y =
g4

10 × 2× T, where Y is the amount of diameter growth to add to the tree, g4 is the
species-specific adult constant radial growth parameter, and T is the number of years per timestep.

Appendix A.5. Mortality Sub-Models

Appendix A.5.1. Juvenile Mortality

The model determines a growth-based mortality probability (m) for seedlings and saplings of

tree species as m = 1− e−(T×m1)e−m2
×G

, where T is the number of years per timestep, m1 is the mortality
parameter with zero growth, m2 is the light-dependent mortality parameter, and G is the amount of
radial growth added to the diameter of the tree during T.

Appendix A.5.2. Adult Stochastic Mortality

The model estimates the mortality probability of the adult trees as p = Max

1+
(

Age
X0

)
Xb

, where p is the

probability of mortality, Max is the suppression duration mortality—the adjusted max mortality rate
parameter ranging between 0 and 1, X0 is the suppression duration mortality—the X0 parameter, Xb is
the suppression duration mortality—the Xb parameter, and Age is the age of the tree.
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Appendix A.5.3. Weibull Snag Mortality

Weibull snag mortality is calculated as s = e−(a×T)b
, where s is proportion of snags still standing,

between 0 and 1; a and b are the respective Weibull scale and shape parameters; and T is the snag age
(or time-since-death) in years.

Appendix A.5.4. Competition Mortality

The mortality due to the competition is a growth-based mortality behavior and is related to
the neighborhood competition indices’ (NCIs) growth; the results of this behavior are used for its
calculation. Trees that are dead due to all sources of mortality that have been mentioned would have
“natural” as the mortality reason code.

Appendix A.5.5. Senescence

The probability of senescence mortality (ms) is ms =
e(∝+β(DBH−DBHs))

1+e(α+β(DBH+DBHs))
, where α is the mortality

alpha parameter, β is the mortality beta parameter, DBH is the diameter of the target tree, and DBHs is
diameter at the onset of senescence.

Appendix A.6. Substrate

The model includes six types of substrates upon which seedlings can germinate: Forest floor litter,
forest floor moss, scarified soil, tip-up mounds, fresh logs, and decayed logs. There is a relationship
between the different substrates, some of which arise from the decomposition or transformation of
other types of substrates. For instance, fresh logs are transformed into decayed logs, and decayed logs
as well as scarified soil and tip-up mounds are converted into forest litter floor and moss. The area of
new fresh logs (FL) is calculated as = DBH×h

2 , where DBH and h are, respectively, the diameter and
height of the fallen tree.

The surface of newly exposed tip-up mounds is calculated as OA = π× (r× F)2, where OA is the
new tip-up mound area (m2), r is the trunk radius of the tree (m), and F is the uprooted tree radius
increase factor for the root rip-out parameter, accounting for the influence of root disturbance.

Appendix A.7. Gap Spatial Dispersal and Substrate Seed Survival

These behaviors account for the forest cover, either a gap opening or closed canopy, as well as the
location and size of parent trees, when determining the number and locations of seed recruitment on
each substrate and cell. In each timestep, the forest cover of each cell will be updated. The model then
quantifies the number of seeds that are produced for each tree equal to or greater than the productive
age. The model accounts for the user-adjusted minimum diameter of parent trees and compares it to the

maximum number of parent trees that are allowed in each cell: Ri = STR
S∑

j=1
C j f j

T∑
k=1

(DBHk
30

)2 1
n e−Dm3

ik ,

where Ri is the seedling density (number/m2) and STR (standardized total recruits) is the potential
number of seedling recruits that are produced by a 30-cm DBH parent tree. Cj and f j are the cover and
favorability, respectively, of the substrate type; j = 1 . . . S. dbhk is the DBH (in cm) of the k = 1 . . . T
parent trees, D is a species-specific dispersion parameter, mik is the distance from the ith quadrant to
the kth parent tree, and n is a normalizer: n =

∫
∞

0 e
(
−Dm3

ik

)
.

Appendix A.8. Output

The simulation outputs for each timestep and for the whole plot or up to five subplots can be
saved as a summary or details for all living and dead trees, at different development stages, and
can be viewed as graphs, histograms, maps, and tables in SORTIE-ND or outside the simulator for
further analyses.
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Appendix B

The List of Modified Parameters

The following table provides the finalized list of modified parameters during 12 short-term
simulations and evaluations. We started the parameterizations with the most highlighted differences
that we noticed for each species. To understand the effect of each parameter, we just modified two to
three parameters for each simulation run. The parameter value modifications were done gradually and
within the ranges; we found these from different sources. Moreover, we added additional behaviors
(neighborhood competition index mortality) for controlling the overestimation of birch as one of the
most important flaws in the model. This addition did not improve the model performance, so we
removed it.

Table A1. The final list of modified parameters during short-term simulations.

Evaluations * Parameter Old Value New Value Source of New
Parameters

Overestimation for birch
>5 cm DBH

NCI maximum potential
growth 0.692 0.593 Figure 7 in [8]

DBH at onset of senescence 50 cm 30 cm [100]

Competition mortality shape
parameter 4.33E-8 4.33E-6

[56]
Competition mortality
maximum parameter 0.1 0.25

Adult stochastic mortality 0.00004 0.009

Underestimation for
aspen 5–15 cm DBH Seedling stochastic mortality 0.1 0.01

Underestimation for
aspen >50 cm DBH DBH at onset of senescence 30 40 [100]

* Evaluations show the significant differences (p-value >0.05) between 2009 empirical data and short-term simulation
output. Old values are the model parameters at the beginning of simulations and model parameterizations.
New values are the final adjusted values for model parameters.

Appendix C

The Kernel Density Curves

The kernel density curves illustrate the basal area (m2 ha−1) distribution of standing live tree species
in post-fire stands in 2009 compared to the species basal area (m2 ha−1) of the 18-year simulation output.
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Figure A1. Basal area (m2 ha−1) distribution of standing live tree species in post-fire stands in 2009
compared to the species basal area (m2 ha−1) of 18-year simulation output.
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