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Abstract

In light of concerns about climate change, there is interest in how sustainable

management can maintain the resilience of ecosystems. We use flow-kick dynami-

cal systems to model ecosystems subject to a constant kick occurring every τ time

units. We classify the stability of flow-kick equilibria to determine which manage-

ment strategies result in desirable long-term characteristics. To classify the stability

of a flow-kick equilibrium, we classify the linearization of the time-τ map given

by the time-τ map of the variational equation about the equilibrium trajectory.

Since the variational equation is a non-autonomous linear differential equation, we

conjecture that the asymptotic stability classification of each instantaneous local lin-

earization along the equilibrium trajectory indicates the stability of the variational

time-τ map. In Chapter 3, we prove this conjecture holds when all of the asymp-

totic and transient behavior of the instantaneous local linearizations is the same.

To explore whether the conjecture holds in general, we ask: To what degree can

transient behavior differ from asymptotic behavior? Under what conditions can this

transient behavior accumulate asymptotically? In Chapter 4, we develop the radial

and tangential velocity framework to characterize transient behavior in autonomous

linear systems. In Chapter 5, we use this framework to construct an example of

a non-autonomous linear system whose time-τ map has asymptotic behavior that

differs from the asymptotic behavior of each instantaneous linear system that com-

poses it. Future work seeks to determine whether this constructed example can arise

as a variational equation, and thus provide a counterexample for our conjecture.
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Chapter 1

Introduction to Flow-kick Systems

In recent years, the scientific community has become increasingly alarmed by current

and projected reports of rapid climate change. Global warming, rising sea levels, melting

ice caps, and increased frequency of extreme weather events threaten ecosystems which

we are reliant on both for resources and for the sustained biodiversity of the planet [7].

In light of these growing concerns, there is renewed interest in investigating the role that

sustainable management techniques could have in the resilience of ecosystems. How might

regular intervention affect the natural stable states of ecosystems whose underlying behavior

is being affected increasingly by changes in the climate? Having predicted the eventual

extinction of a species if the current conditions persist, how might we subvert this eventuality

by regular management of that species or its environment? Even if that disaster can be

avoided, is the required intervention realistic? Is it possible to minimize the effort required

to change the stable state of the system?

All of these questions and more can be addressed through a flow-kick modeling frame-

work [8, 11, 9], a special case of impulsive differential equations [2, 1]. In short, flow-kick

dynamical systems are used to model systems that exhibit continuous growth (“flow”) in-

terspersed by discrete changes (“kick”). Before defining what we mean precisely, let’s set up

an example to provide us with a concrete illustration of flow-kick systems at work.
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Chapter 1 Haslam

1.1 A Gardening Example

To establish how to build a flow-kick model, suppose you have a vegetable garden which

you tend during the beautiful summers of Maine. You may have a bed of peas. In this bed

of peas it is inevitable that weeds will also want to grow. The weeds will benefit from the

fertilizer, minerals, and water you put into your soil so that your peas will grow. The pea

plants and the weeds growing in the same bed will naturally compete for resources. Perhaps,

in recent years, the summers have been unnaturally hot and dry. You can keep watering

your peas but the natural weather is just not ideal for them. Instead, the weeds are taking

over; they don’t seem to mind the heat.

Left only with your usual watering and fertilizing routine, the peas and weeds are

growing according to a competition model. If we let P represent the size of the pea population

and W represent the size of the weed population, we can represent their growth in relation

to one another as a system of ODEs:

dP

dt
= rpP

(
1− P + αwpW

kp

)
dW

dt
= rwW

(
1− W + αpwP

kw

)
(1.1)

In a Lotka-Voltera competition model as we see above, ri represents the intrinsic per

capita growth rate of species i, Ki represents the carrying capacity of each species, and αij

represents the negative impact of species i on species j. Since weeds often grow faster and

more densely, we will assume that rw > rp and kw > kp. We will also assume that since peas

are more delicate than weeds, the presence of the weeds would affect the growth of the peas

more than the peas would affect the weeds (ie. αwp > αpw). For the purpose of simulation,

let’s assign these parameters values.

dP

dt
= 0.05P

(
1− P + 3W

8

)
dW

dt
= 0.15W

(
1− W + P

10

)
(1.2)

As can be seen from the phase plane of this Lotka-Voltera model (see Figure 1.1),

2



Chapter 1 Haslam

the stable equilibrium of this system is extinction for the peas and growth to full carrying

capacity for the weeds. Clearly this is not a desirable stable equilibrium. We want our peas

to grow, if not to carrying capacity, than at least to the extent that they will produce some

pods for us to enjoy.

size of pea population (P)

si
ze

 o
f w

ee
d 

po
pu

la
tio

n 
(W

)

Underlying Flow of Pea Garden with Weeds

Figure 1.1: A phase portrait for the system of differential equations given in

Equation 1.2. Though the natural attracting equilibrium is at (0, 10), there are

some regions of the phase plane where solutions are attracted temporarily to

(8, 0). Keeping our garden in this region is desirable.

The natural course of action would be to remove some amount of the weeds every couple

of days.1 This is not a continuous or gradual decrease in the size of the weed population,

but a rapid decrease modeled as instantaneous. Thus if we were to chart the size of pea and

1In this case, it is conceivable that the size of the weed population prior to a weeding event is less than

the fixed amount we had determined to weed. Weeding by this amount would then result in a negative

population. This is clearly not realistic, however we do want our model to exhibit the regularity of a fixed

weeding amount. For the sake of illustration, we will choose the initial values and predetermined weeding

parameter such that this event does not occur. Note that there are similar dynamical systems in which we

could model the same scenario but instead of removing a fixed amount, we could remove a fixed fraction of

the weeds. For related work see [9, 11].
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Chapter 1 Haslam

weed populations in our garden we would not have one smooth curve, but rather disjointed

sections of smooth curve (see Figure 1.1). Such an altered system is what we mean when we

say flow-kick system. The flow refers to the periods of natural, undisturbed growth and the

kick refers to the regular weeding event.

0          1           2          3          4           5          6

6

5

4

3

2

1

0

State of Pea Garden during 4 days
of Weeding Management

size of pea population (P)
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n 
(W

)

2nd flow
& kick

X
0

12
XX

1st flow
& kick

Figure 1.2: The two day periods between weeding events are represented by

the smooth solid curves. Our weeding events themselves take “instantaneously”

relative to the growth timescale are represented by the dashed lines. Pictured

here are two iterations of this weeding regime if our garden starts in state X0.

1.2 Defining Flow-kick Systems

Now that we have an intuitive example of what we mean when we say flow-kick system,

we are ready to formalize this understanding. Before formally defining a flow-kick system,

let’s gather the materials that allow us to build the model.

Notation 1.1. Our recipe for a flow-kick dynamical system has three ingredients.

4
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1. A system of ODEs that describes the continuous flow behavior:

dX

dt
= F (X). (1.3)

where F ∈ C1 is a continuous, differentiable vector field. Note that here X ∈ Rn

because we assume that the state of our model can have an arbitrary dimension n.

2. A flow time τ ∈ R. This describes how much time elapses between each kick. In other

words, between each kick, the system flows for τ time units.

3. A kick vector k ∈ Rn. This is the disturbance that occurs after each time-τ flow

period. Note that k has the same dimension as X. This is because each component

of k describes how the corresponding component of X gets shifted at the time of the

kick.

With this notation we are now ready to define the flow-kick map which formally describes

the behavior of a flow-kick system.

Definition 1.2. Given a triple (F, τ, k) as in Notation 1.1,

The flow φ(t,X0) : R×Rn → Rn generated by dX
dt

= F (X) is the solution to dX
dt

= F (X)

for all t ∈ R with initial condition X0 ∈ Rn.

The time-τ map φτ generated by dX
dt

= F (X) is given by

φτ : Rn → Rn

φτ : X0 7→ φ(τ,X0)

where φ(τ,X0) is the value of the flow at time τ .

The flow-kick map Gτ,k is given by

Gτ,k : Rn → Rn

Gτ,k : X0 7→ φτ (X0) + k

where φτ is the time-τ map generated by dX
dt

= F (X).

Notice that the time-τ map takes an initial point and gives a snapshot of its location in

state space after flowing for τ units of time. The flow-kick map describes what happens to

a point after it has undergone a flow period of τ units as well as a kick.

5



Chapter 1 Haslam

Example 1.3. Recall our gardening example from Section 1.1.

What are the three ingredients from our example?

1. We already constructed a system of ODEs to model the underlying growth and

competition of the two species. Therefore, this first component of the flow-kick

system is given by Equation 1.2. Written in vector form, X = ( P
W ) and

dX

dt
=

(
dP
dt
dW
dt

)
= F (X) =

(
0.05P

(
1− P+3W

8

)
0.15W

(
1− W+P

10

))

2. We said that we would weed every couple of days. To make that precise, let τ = 2

days.

3. Weeding means the removal of some weed biomass from the system. For the purpose

of our model let’s assume that we can always remove the exact same amount of

biomass (say ω). Then the kick vector of the flow-kick system is given by k = ( 0
−ω ).

What is the flow-kick map?

Gτ,k(X) = Gτ,k (( P
W )) = φ2 (( P

W )) + ( 0
−ω )

where φ2 is the 2 day map derived from F .

If we know that the biomass of the peas and weeds are currently P0 and W0 respectively,

then Gτ,k

((
P0
W0

))
tells us the biomass of the peas and weeds after two days of growth and

one weeding session.

Now that we have a clear understanding of the components that make up our flow-kick

model and the formal definition of the flow-kick map, we are ready to formally define a

flow-kick system using the language of discrete dynamical systems [5].

Definition 1.4. Given a triple (F, τ, k), the flow-kick system associated with that triple

is defined by iterating the flow-kick map Gτ,k. For each initial condition X0 ∈ Rn, Xn+1 =

Gn
τ,k(X0).

The sequence obtained by iterating the flow-kick map with initial value X0 is called the

flow-kick orbit. The initial value X0 is called the seed of the orbit.

6
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The flow-kick system consists of iterations of the flow-kick map Gτ,k(Xn). One way of

describing this is as the collection of the obits generated by all possible seeds X0 ∈ Rn. One

flow-kick orbit fully describes what would happen to the state of the system we are modeling

if it started out at X0 and then continued to be flowed and kicked for all time under (τ, k)

management.

Example 1.5. To fix our ideas, let’s go back to our gardening example.

It’s early July so your garden is just getting started. It’s becoming apparent that you

need to do something about those weeds if the peas are going to survive. You decide to

weed every τ days, every time removing a fixed amount of weeds.

Because you love your garden, you are excited to see the progress of your garden and

you are careful to record the state of your garden after every weeding session. This record

is the orbit.

We can describe what happens under the dynamics of flowing and kicking by solely

looking at the obits, that is the the discrete sequences of post-kick points. During the

periods between kicks, the solution flows through state space according to the vector field

F . That behavior is implicit in the flow-kick map. However, having an explicit way of

talking about these flow periods is useful and, as such, we will establish language for them

in Definition 1.6.

Definition 1.6. Given a triple (F, τ, k)

The time-τ trajectory of a single point Xn in a flow-kick orbit describes the path taken

through state space during [0, τ ] according to the underlying dynamics of the system. It

is given by:

φ(t,Xn)
∣∣∣
0≤t≤τ

Given a seed X0, the flow-kick trajectory is the sequence of time-τ flows corresponding

to each point in the flow-kick orbit.

∞⋃
n=0

φ(t,Xn)
∣∣∣
0≤t≤τ

In essence, the flow-kick trajectory is a continuous-time view of the orbits that make

7



Chapter 1 Haslam

up our flow-kick system. For a summary of all of the ways we describe the dynamics of the

flow-kick system, see table 3.1.

Term Definition Description

time-τ map

φτ (X)

1.2 Input is a point, output is where that point will be

after flowing for τ time.

flow-kick map

Gτ,k(X)

1.2 Input is a point, output is where that point will be

after flowing for τ time and being kicked.

flow-kick orbit

{Gn
τ,k(X)}∞n=0

1.4 The sequence of post-kick points originating an initial

condition (seed) X0.

time-τ trajectory

φ(t,X)|0≤t≤τ

1.6 The smooth curve from X to φτ (X) obeying

differential equation 1.3.

flow-kick trajectory⋃∞
n=0 φ(t,Xn)|0≤t≤τ

1.6 The sequence of time-τ flows originating at each point

in the flow-kick orbit.

Table 1.1: A summary of the many ways we talk about the dynamics of a flow-kick system.

Example 1.7. Continuing our gardening example, remember that if you keep a record of

the state of your garden after every weeding session you will have orbit of that flow-kick

system. If you were to try and collect the data to describe the flow-kick trajectory, you

would need to set up a magical measurement device that continually measures and records

the biomass of peas and weeds at all hours of every day. You would still measure your

garden after weeding but you would also have a record of what happened at every moment

in between. (See Figure 1.2).

The flow-kick orbit and the flow-kick trajectory are two ways to approach the same

model. Both give a record of the behavior of the system over time, but the flow-kick trajec-

tory yields a more explicit record of the behavior of the system in time and space.

From an applied perspective, the flow-kick trajectory can be very useful as it addresses

the health of the system in between, as well as directly, after each kick. It is often the

case that we care about the system being in a healthy state not just immediately after the

kicks. For example, an insulin-dependent diabetes patient may have healthy blood-sugar

level immediately after taking their regular dose of insulin, however it is important that this

blood-sugar level also stays within a healthy target range between doses.

From a theoretical perspective, the flow-kick trajectory carries important information

8
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Flow-kick trajectory Flow-kick orbit

Figure 1.3: Both figures describe how our population of peas and weeds changes

under the dynamics of Equation 1.2 subject to our prescribed weeding regimen.

(a) The flow-kick trajectory shows how solutions move in state space for all

moments of continuous time. The post-kick point is represented as a point at the

beginning of each flow-trajectory. (b) The flow-kick orbit keeps a record of all

the post-kick points.

about the behavior of the system that is implicit in the flow-kick orbit. Though observation

of the post-kick points does say a lot about the long-term behavior of the system, one of the

biggest factors that drives this actual behavior is the underlying flow. The output of the flow-

kick map is dependent on solving the underlying flow. Implicit in the map Gτ,k(X0) = X1 is

the continuous instruction that the vector field F gives at each point in the time-τ flow. X0

cannot get to X1 without the influence of all of the points along the flow. For this reason, as

we will see in Chapter 2, the flow-kick trajectory is central to our analysis of what classifies

the behavior of the flow-kick system.

1.3 Flow-kick Equilibria

A primary way that we can understand more about how solutions to a flow-kick system

behave, is by looking for solutions that are fixed in place by the dynamics of our flow and

kick. Solutions that are invariant under the dynamics of the flow-kick map (equilibrium

9
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solutions) or that belong to sets that are invariant under the flow-kick map (periodic orbits

and other types of steady state solutions) provide landmarks in state space to describe what

kind of behavior may be expected from other solutions.

In particular, we will look at equilibrium solutions as a way of determining what kinds of

flow-kick management can help to achieve desirable long-term behavior in any given system

that we are modeling. This type of application of flow-kick systems is called decision support.

We will discuss how it motivates our study of flow-kick systems in greater detail in Section

1.4.

One benefit of looking at equilibrium solutions is that it is an analytic method can be

generalized to many flow-kick systems at once. For example, we can think about the one

particular flow-kick model that we used in Example 1.3, or we can think about all flow-

kick systems that can arise from the ODE model of our pea garden, or we can think about

all flow-kick systems that arise by applying flow-kick management to general Lotka-Voltera

competition models.

Definition 1.8. Given a triple (F, τ, k). A point X∗ ∈ Rn is a flow-kick equilibrium if

and only if it is a fixed point of the flow-kick map. That is, if and only if

X∗ = Gτ,k(X
∗)

The corresponding flow-kick equilibrium trajectory is the time-τ flow trajectory

originating at the equilibrium point:

φ(t,X∗)
∣∣∣
0≤t≤τ

Given a (F, τ, k), the above definition does not give us a way to find flow-kick equilibria,

which is, in general, a non-trivial task. With an applied focus on decision support, however,

we often consider a large set of flow-kick systems all with the same underlying vector field

F ∈ C1. Given a two parameter family of flow-kick systems corresponding to (F, τ, k) with

τ ∈ R and k ∈ Rn as parameters, the following lemma and corollary state that any X∗ ∈ Rn

is a flow-kick equilibrium in the family of systems. Given F and a choice of (τ,X∗) there is

a k to make X∗ an equilibrium of (F, τ, k).

Lemma 1.9. Given a vector field F ∈ C1, a flow time τ , and a point in state space X∗ ∈ Rn,

there exists a kick vector k ∈ Rn such that X∗ = Gτ,k(X
∗) is an equilibrium solution to the

flow-kick system.

10
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Figure 1.4: The underlying flow of the Lotka-Voltera competition model given in

Example 1.11. Pictured in red is an equilibrium X∗ = (2.5, 5) of the flow-kick

system when τ = 10 and k = (1.32, 1.47). Notice the distinction between the

equilibrium point X∗ and the equilibrium trajectory φ(t,X∗ for t ∈ [0, τ ].

Proof. We are given a vector field F and a flow time τ . Thus we can construct a time-τ map

φτ . Let k = X∗ − φτ (X∗). Then,

Gτ,k(X
∗) = φτ (X

∗) + k

= φτ (X
∗) +X∗ − φτ (X∗)

= X∗

Therefore, X∗ is a flow-kick equilibrium of the flow-kick system associated with (F, τ, k).

Corollary 1.10. Given a vector field F ∈ C1, all points in state space X ∈ Rn are flow-kick

equilibria under some management regime (τ, k).

Example 1.11. To fix our ideas, let’s introduce another example model of underlying flow.

This Lotka-Voltera competition model will be used for our examples and figures for the

11
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remainder of the thesis. It is given by:

dX

dt
= F (x, y) =

(
f(x, y)

g(x, y)

)
=

 0.09x

(
1− x− y

3

)
0.18y

(
1− y − 2x

6

)


Notice that this competition model is similar to our peas and weeds model. Here, just like

the weeds, population y has a stronger intrinsic per capita growth rate and a larger carrying

capacity than the other population. However, unlike in our peas and weeds example, the

population with the weaker population dynamics overall (the peas/population x) has a

stronger negative effect on the stronger population (the weeds/population y) rather than

vice versa.

We can think of this model as corresponding to the interaction between competing

native and exotic species of grass. The exotic species, y, has a stronger capacity for growth

than the native species, x, however, species x is better at exploiting the resources around it.

Thus, the presence of the native species x (and the corresponding decrease in the available

resources) has a stronger negative impact on the exotic species y than vice versa.

In Figure 1.3, we see that the underlying flow has equilibria at (0,0), (0,6), and (3,0).

Undisturbed, this grasslands ecosystem would see the extinction of the native grass and the

full growth to carrying capacity of the exotic grass. We also see in Figure 1.3 that a flow-kick

management pattern of τ = 10, k = (1.32, 1.47) yields a flow-kick equilibrium at (2.5, 5).

Suppose that we still τ = 10 so our management of the system will take place every 10

units of time, but we’d prefer the flow-kick equilibrium to show more of a balance between

the native and exotic grass species. By Corollary 1.10, this is not a problem! Any state

(x∗, y∗) can be a flow-kick equilibrium if we pick the kick management that balances how

much the grass populations will change over the 10 time units.

For example, let’s say we want our grasses species to balance at a flow-kick equilibrium

of X∗ = (4, 4.2). How do we find the kick k for which this occurs? First we observe that

if the system starts at X0 = (4, 4.2) then after 10 units of their uninterrupted, natural

dynamics, the population of grass x will be measured by 1.96 and the population of grass y

12
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will be measured by 2.3. We want to pick k = (xk, yk) so that this flow balances:

(1.96, 2.3) + (xk, yk) = (4, 4.2)

=⇒ (xk, yk) = (4, 4.2)− (1.96, 2.3) = (2.04, 1.9)

Thus X∗ = (4, 4.2) is a flow-kick equilibrium under Gτ,k if τ = 10 and k = (2.04, 1.9).

This process is illustrated in Figure 1.3.

Figure 1.5: (a) We pick a point (4, 4.2) that we want to have as a flow-kick

equilibrium. (b) We flow for a period of τ = 10 time units from the point (4, 4.2)

to the point (1.96, 2.30) (c) We construct the kick k so that we end up right back

at (4, 4.2). Now the point (4, 4.2) is a flow-kick equilibrium of the flow-kick map

Gτ,k.

Now that we know that any point in state space can be an equilibrium, we want to

know which equilibria are important in predicting the long term behavior of a system or

identifying a management regime that results in desirable behavior. This can be determined

in two ways.

First, when working closely with an expert in the area of application, it may be possible

to narrow down which region(s) of state space are desirable for the application in question.

In that case, the analysis can be tailored to exploring management regimes that result in a

desirable equilibrium trajectory.

Another way of determining the importance of an equilibrium is by characterizing it as

13
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Figure 1.6: (a) A flow-kick equilibrium is attracting when nearby solutions get

closer and closer to it as they keep getting iterated through the flow-kick map.

(b) A flow-kick equilibrium is repelling if the flow-kick map takes points close to

the equilibrium to points further away from the equilibrium.

either attracting or repelling nearby solutions in time. If an equilibrium is attracting then

there will exist some basin of attraction in which solutions will asymptotically reach that

equilibrium state (see Figure 1.3). If this attracting equilibrium is also desirable (as the

application might require), then you may have found a management regime that forces the

application system into a desirable behavior pattern.

This task of classifying equilibrium will become our primary focus. We will come back

to it in greater detail in Chapter 2.

1.4 Motivational Goals

As mentioned in Section 1.3, one of the central applications of flow-kick systems is

decision support for ecological management. In such situations we presume to be modeling a

general ecological system in which humans wish to drive the natural behavior to a desirable

equilibrium means of regular management.

14
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An example to this type of application is found in Andrew Brettin’s undergraduate

thesis [4]. Brettin applied data collected by the University of Minnesota at the Cedar Creek

Ecosystem Science Reserve to build a flow-kick model of how native and exotic grass species

interact under various haying patterns. By simulating this model and varying its parameters,

he explored the relative degree of success that various management regimes would have in

re-stabilizing the native species of grass, maintaining biodiversity, and counteracting the

effects of nutrient loading.

Brettin’s work is an excellent example of how flow-kick systems can be used to analyze

dynamic behavior at the scale of an individual ecosystem. This analysis could be generalized

to the scale of all grassland ecosystems, leading us to ask how the general dynamic structures

present in grasslands may suggest one or another general type of management. Abstracting

to the next scale, we could ask how the structure of inter-species competition interacts with

potential management strategies.

Another application of flow-kick systems is the measurement of resilience in ecosystems

subject to disruption. In this framework, the regular kicks don’t represent management

strategies, but rather disturbances caused by climate change or other ‘unnatural’ changes

in the ecological landscape. Instead of asking what combinations of τ and k recover the

resilience of a system, we ask how much wiggle room a system has to flow-kick disturbances.

An example of this framework is Kate Meyer’s work in one dimension [9]. Instead of

measuring the basin of attraction in state space of a natural stable equilibrium to quantify

resilience, she works in parameter space and measures how much of (τ, k) “disturbance”

space causes flow-kick solutions to settle within the basin of attraction of the underlying

equilibrium. While decision support applications lead to questions about how to find a

particular desirable (τ, k) pair, the resilience approach to flow-kick systems leads to questions

about the general behavior arising from large regions of (τ, k) disturbance space.

Because of the general treatment of disturbance space in the resilience framework, it is

not sufficient to test a few (τ, k) candidates. Developing a complete resilience metric in this

way requires full analytic classification of disturbance space. Though this paper will describe

classification analysis primarily from the perspective of decision support, much of the work

also contributes to the goal of attaining a resilience metric in higher dimensions.
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Linearization of Flow-kick Systems

2.1 Introduction to Linearization

As we established in Chapter 1, there are two big picture goals to motivate us: decision

support for ecological management and the development of a resilience metric that takes

real, continued disturbance into account. From these two motivational goals, we established

a primary working goal: to analytically characterize the behavior of flow-kick dynamical

systems. More specifically, our goal is to classify the stability of flow-kick equilibrium.

Remark. Though we are primarily focused on equilibrium points in the flow-kick orbit,

there may be other types of steady state solutions (eg. periodic solutions, limit cycle, etc.)

that could describe the long-term behavior of flow-kick systems. These could be explored

in future research to further expand the toolbox of analytic techniques for classifying the

long-term behavior of flow-kick systems. The research presented here focuses on expanding

that toolbox through studying the classification of equilibria.

Given a flow-kick system generated by (F, τ, k) and a flow-kick equilibrium X∗ of that

system, our task then is to determine whether X∗ is an attracting equilibrium, a repelling

equilibrium, or a saddle equilibrium. This will tell us whether, under (τ, k) management,

X∗ is a viable prediction of the long-term state of the system.

16
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Language 2.1. In Chapter 3 we will establish how to characterize the stability classification

of an equilibrium formally. For now, we will present an intuitive explanation of stability and

introduce the language of stability that we will use through this and later chapters.

Recall that at an equilibrium, the dynamics of the system balance to achieve no change.

The stability classification of an equilibrium refers to how stable that balance is.

If the system is balanced at the equilibrium and small perturbations in any direction

don’t affect that balance very much, the equilibrium is stable. This is like a ball sitting at the

bottom of a bowl; it can be pushed in any direction and will still settle at equilibrium. For

this reason, a stable equilibrium is also called a attracting equilibrium or a sink equilibrium.

If the system is balanced at the equilibrium but becomes more and more unbalanced if

it is perturbed by even a small amount, then the equilibrium is unstable. You can imagine a

ball balancing on top of a hill; if it is pushed just a little it will be repelled from its resting

position at the top of the hill.

Note that in higher dimensions an equilibrium could be unstable in a variety of ways.

Imagine the ball on top of a hill again; a nudge in any direction will cause the ball to be

repelled from the equilibrium. Such an unstable equilibrium is referred to as a repelling

equilibrium or a source equilibrium.

You could also imagine a ball sitting in the middle of a riding saddle. The equilibrium in

the middle of the saddle is unstable because if you push the ball towards the side of the horse

it will fall off. However, if you could push the ball precisely towards the horse’s head it would

(in theory) eventually return to the middle of the saddle, showing that the equilibrium is

attracting in one direction. This type of unstable equilibrium is called a saddle equilibrium.

The process of classification begins with linearization of the system about the equilib-

rium (in both discrete and continuous dynamical systems). The aim is to determine whether

solutions nearby the equilibrium tend toward the equilibrium or away from the equilibrium.

Linearization is a natural way to approximate this local behavior so as to simplify the prob-

lem.

Recall from Definition 1.4 that the flow-kick orbit with seed X0 ∈ Rn is generated by

the following difference equation:

17
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Xn+1 = Gτ,k(Xn) (2.1)

To linearize the equilibrium X∗, we consider a nearby seed X0 ∈ Rn that has some

perturbation U0 ∈ Rn from X∗. The seed can then be expressed as X0 = X∗ + U0 and the

orbit Xn = Gn
τ,k(X0) can be expressed as Xn = X∗+Un. By Equation 2.1 we also know that

the orbit satisfies:

Xn+1 = X∗ + Un+1 = Gτ,k(Xn) = Gτ,k(X
∗ + Un) (2.2)

The linearization of this expression is merely the first order Taylor approximation ofGτ,k(Xn) =

Gτ,k(X
∗ + Un) centered around X∗. Thus we can write:

Xn+1 = X∗ + Un+1 = Gτ,k(Xn) = Gτ,k(X
∗ + Un)

≈ Gτ,k(X
∗) +D[Gτ,k(X

∗)]((X∗ + Un)−X∗)

= X∗ +D[φτ (X
∗) + k] (Un)

= X∗ +D[φτ (X
∗)] (Un)

=⇒ Un+1 ≈ D[φτ (X
∗)] (Un) (2.3)

where D represents the spatial derivative operator.

Equation 2.3 means that the linearization of the flow-kick map is the linearization of the

time-τ map. In other words, the linear approximation of how perturbations evolve through

one iteration of flow and kick is the same as the linear approximation of how perturbations

evolve through one iteration of flow. Intuitively this makes sense since adding the same kick

to both φτ (X) and φτ (X
∗) does not effect their relative distance (see Figure 2.1). Lemma

2.2 makes this explicit: the kick has no role in determining the evolution of perturbations

from the equilibrium trajectory under the dynamics of the flow-kick map.

Lemma 2.2. Let Xn+1 = X∗ + Un+1. Then Un+1 = Xn+1 −X∗ = φτ (Xn)− φτ (X∗).

Proof.

Xn+1 −X∗ = Gτ,k(Xn)−Gτ,k(X
∗)

= φτ (Xn) + k − (φτ (X
∗) + k)

= φτ (Xn)− φτ (X∗)
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Figure 2.1: (a) As solutions nearby an equilibrium undergo flow-kick dynamics,

they evolve relative to the equilibrium trajectory. The kick part of the flow-kick

dynamics does not change this relative distance. (b) We see that the x distance

between a solution (in blue) and the equilibrium solution (in red) changes during

the time-τ flow but is unaffected by the kick. (c) Similarly the y distance between

a solution and the equilibrium solution is unaffected by the kick.

Lemma 2.2 confirms that the way solutions behave relative to the equilibrium trajectory

under flow-kick dynamics is unaffected by the kick. Thus both Equation 2.3 and Lemma 2.2

indicate that the linearization of the flow-kick map is obtained by linearizing the time-τ map.

We know that algebraically this linearization is given by Equation 2.3, however, calculating

the spatial derivative of the time-τ map is a non-obvious task. In the next two sections,

we will use our intuition about the dynamics of time-τ flow to derive an approximation

for how perturbations evolve under the time-τ map. In Section 2.4, we will show that this

approximation, called the variational equation, is equivalent to the linearization given by

Equation 2.3.

19



Chapter 2 Haslam

2.2 The Variational Equation

From the previous section, we see that the linearization of the flow-kick map is equivalent

to the linearization of the time-τ map. Thus to classify the stability of flow-kick equilibria, we

must classify the linear approximation of how perturbations from the equilibrium trajectory

evolve under the dynamics of time-τ flow. To derive this linear approximation, we can use

our intuition about the cumulative dynamics of the vector field along the time-τ flow. Our

goal in this section is to derive the variational equation, a tool in dynamical systems used

to describe how perturbations spatially evolve through a vector field. In Section 2.4, we will

show that the variational equation is the linear approximation of the time-τ map.

Since the goal is to uncover how the dynamics of the vector field evolve solutions relative

to the equilibrium trajectory, it seems reasonable to linearize the local dynamics about each

point on equilibrium trajectory. Recall from Section 1.2, that the dynamics of the vector

field are given by
dX

dt
= F (X) (2.4)

By the same process we used in Section 2.1, we can find an instantaneous local lineariza-

tion of Equation 2.4 about each point on the solution curve X(t) = φ(t,X∗).

Since we want to consider the evolution of perturbations from X∗, let Y (t) be a solution

of Equation 2.4 with initial condition close to X∗. Let U(t) be the perturbation of Y (t) from

X(t) = φ(t,X∗). So Y (t) = X(t) + U(t) and at any instance t = α we can write:

dY

dt

∣∣∣
t=α

=
d

dt
[X + U ]

∣∣∣
t=α

=
dX

dt

∣∣∣
t=α

+
dU

dt

∣∣∣
t=α

(2.5)

by the linearity of the time derivative operator.

We can also say

dY

dt

∣∣∣
t=α

=
d

dt
[X + U ]

∣∣∣
t=α

= F (X(α)) + U(α))

≈ F (X(α)) +D [F (X(α))]U(α) (2.6)
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Figure 2.2: (Adapted from Bradley [3].) We think of each point on the equilibrium

trajectory contributing something towards the evolution of the perturbation (the

red ball). We string together these contributions to get the cumulative effect on

the right.

We can now combine 2.5 and 2.6

dX

dt

∣∣∣
t=α

+
dU

dt

∣∣∣
t=α
≈ F (X(α)) +D [F (X(α))]U(α)

=⇒ dU

dt

∣∣∣
t=α
≈ D [F (X(α))]U(α) (2.7)

This is helpful but we want to know how to approximate the cumulative effect of the

vector field all along the equilibrium trajectory, not just at one point. Intuitively, we can do

this by “stringing along” each of these point-wise approximations (see Figure 2.2). At each

moment t = α, we approximate dU
dt

∣∣
t=α

= D [F (φ(α,X∗))] (U(α)). This yields a differential

equation known as the variational equation, defined below.

Definition 2.3. Given a vector field F ∈ C1, a flow-kick equilibrium X∗, and the flow

φ(t,X∗), the variational equation of F about φ(t,X∗) is given by

dU

dt
= D [F (φ(t,X∗))] · (U)

where D [F (φ(t,X∗))] is the spatial derivative of F evaluated at φ(t,X∗).

The concept of the variational equation is visualized in Figure 2.3. At each point along

the equilibrium trajectory, we can linearly approximate the local behavior determined by the

differential equation dX
dt

= F (X). We imagine that nearby solutions evolve instantaneously

according to each of these approximations before moving on to the next.

Just like we have the flow and the time-τ map for the ODE generated by vector field

F (Equation 2.4), we also have the variational flow and the variational time-τ map.
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Figure 2.3: The variational equation is obtained by stringing along the instan-

taneous linear approximation of F about a point on the equilibrium trajectory.

The figure shows the instantaneous linear approximation for three points on the

equilibrium trajectory. Each is asymptotically attracting with a slightly differ-

ent speed (indicated by the color gradient) and direction. As time moves in

the variational equation, perturbations can be imagined to hop from one lin-

ear approximation to another down the equilibrium trajectory, at each moment

behavior according to the corresponding linearization.

Definition 2.4. The variational flow U(t, U0) generated by (F,X∗) is the solution to the

variational equation along φ(t,X∗) with initial perturbation U0 ∈ Rn.

The variational time-τ map is the time-τ map of the variational equation along

φ(t,X∗). Using our previous notation:

Uτ : U0 7→ U(τ, U0)

where U(τ, U0) is the value of the variational flow with initial perturbation U0 at time τ .

The goal of this section was to construct a way of approximating the evolution of

a perturbation from the equilibrium after one iteration of flow (ie. approximating Un+1
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from Un). The result was a construction of the variational equation which approximates

the instantaneous rate of change of perturbations. The variational time-τ map is thus an

approximation of the cumulative effect of these dynamics in perturbation space. In the next

section, we will look at some properties of the variational equation, and in Section 2.3 we

rigorously state the relationship between the variational equation and the linearization of

the flow-kick map.

2.3 Properties of the Variational Equation

When F ∈ C1, the variational equation along a solution to Equation 2.4 is a continuous,

linear, non-autonomous differential equation. The variational equation is linear because each

component of the derivative is linear with respect to the state variables. It is non-autonomous

because the derivative depends not only on the current location in state space but also on

the current time. The continuity of the variational equation is inherited from the fact that

F ∈ C1.

Continuous linear, non-autonomous differential equations have nice, generally well-

understood properties [?] which creates a helpful framework from which to start analysing the

variational equation. In particular, unique solutions exist for all time by the basic existence

and uniqueness theorem for ODEs [5], and we have the following two nice lemmas:

Lemma 2.5. Given (F,X∗), consider the variational equation along φ(t,X∗) corresponding

to vector field F . Let U(t, U0) be the solution to the variational equation. U(t, U0) can be

expressed:

U(t, U0) = U0e
∫ t
0 D[F (φ(s,X∗))]ds (2.8)

Proof. Let’s verify the statement by differentiating the expression:

d

dt
[U(t, U0)] =

d

dt

[
U0e

∫ t
0 D[F (φ(s,X∗))]ds

]
= U0

d

dt

[∫ t

0

D [F (φ(s,X∗)]

]
e
∫ t
0 D[F (φ(s,X∗))]ds

Since F ∈ C1, D [F (φ(s,X∗))] is continuous, and we can apply the fundamental theorem of

calculus:

d

dt
[U(t, U0)] = U0D [F (φ(t,X∗)] e

∫ t
0 D[F (φ(s,X∗))]ds = D [F (φ(t,X∗)]U(t, U0)

Thus the expression in equation 2.8 does satisfy the variational equation. It is, in fact a

solution curve.
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Lemma 2.6. The time-τ variational map is a linear transformation.

Proof. To show that Uτ is linear, we must show additivity and scalablity.

Suppose Z0 = aX0 + bY0. By the basic existence and uniqueness theorem [5], we know

that U(t, Z0), U(t, aX0), and U(t, aY0) exist and are unique. By definition, aU(0, X0) +

bU(0, Y0) = aX0 + bY0. Also

d

dt
[aU(t,X0) + bU(t, Y0)] = a

d

dt
[U(t,X0)] + b

d

dt
[U(t, Y0)]

= aD [F (φ(t,X∗))]U(t,X0) + bD [F (φ(t,X∗))]U(t, Y0)

= D [F (φ(t,X∗))] (aU(t,X0) + bU(t, Y0))

Thus aU(t,X0) + bU(t, Y0) is a solution to the variational equation that goes through aX0 +

bY0 = Z0. This means that aU(t,X0) + bU(t, Y0) = U(t, Z0) and Uτ (X0) +Uτ (Y0) = Uτ (Z0).

Another aspect of the variational equation that to address is the way that it operates

in perturbation space. This means that while the flow-kick trajectories and orbits take

place in state space, the dynamics described by the variational equation happen in a space

that is related but not equivalent to state space. To clarify this relationship, we define the

variational origin:

Definition 2.7. Given the variational equation of F about φ(t,X∗), the variational origin

is the origin of the tangent perturbation space (ie. where U = 0 ∈ Rn). At any moment t in

time, the variational origin is identified with the point φ(t,X∗) in state space.

Since at each moment t the variational origin is identified with φ(t,X∗) on the equilib-

rium trajectory, we can similarly identify each perturbation U in the variational system with

a point X = φ(t,X∗) + U in state space. In the next section we formalize the relationship

between the dynamics in perturbation space defined by the variational equation and the

dynamics in state space defined by the flow generated by dX
dt

= F (X).
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2.4 Linearization via the Variational Equation

Now that we have established the properties of the variational equation, we have the

language required to state that the variational equation does what it was constructed to do:

it linearly approximates the behavior of perturbations under the dynamics of the system
dX
dt

= F (X).

For clarity, note that in the following proposition, we use Xn rather than X0 to denote

the initial condition since, in the context of our flow-kick systems, the flow trajectories which

we are linearizing start with points on the flow-kick orbit {Xn}.

Proposition 2.8. (Adapted from Hirsch, Smale, & Devaney) Given (F,X∗), let φ(t,Xn) be

the flow generated by dX
dt

= F (X) through Xn = X∗ + Un and let U(t, Un) be the solution to

the variational equation along φ(t,X∗) through Un ∈ Rn. Then

lim
Un→0

||φ(t,Xn)− (φ(t,X∗) + U(t, Un))||
||Un||

converges uniformly to zero for t ∈ [0, τ ].

Proof. See Hirsch, Smale, & Devaney Chapter 17 [5].

Proposition 2.8 formally justifies our intuition: φ(t,X∗ + Un) ≈ φ(t,X∗) + U(t, Un).

From this result, we now have an even better way of approximating Un+1 given Un.

Corollary 2.9. If Un is sufficiently small, than Uτ (Un) is a good approximation for Un+1.

Proof.

φ(t,X∗) + U(t, Un) ≈ φ(t,Xn) by Proposition 2.8

=⇒ φτ (X
∗) + Uτ (Un) ≈ φτ (Xn)

=⇒ Uτ (Un) ≈ φτ (Xn)− φτ (X∗) = Un+1 by Lemma 2.2 (2.9)

Now we have two approximations of Un+1, one from the linearization approach (Equation

2.3) and the other from the variational approach (Equation 2.9). The following result shows

that these two approximations are identical!
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Theorem 2.10. (Adapted from Hirsch, Smale, & Devaney) Given (F, τ,X∗), let D[φτ (X
∗)]

be the spatial derivative of the time-τ map generated by dX
dt

= F (X) and evaluated at the flow-

kick equilibrium X∗. Let Uτ be the variational time-τ map associated with the variational

equation along φ(t,X∗). Then for any perturbation Un from the equilibrium

D[φτ (X
∗)](Un) = Uτ (Un)

Proof. (Adapted from Hirsch, Smale, & Devaney)

First, note that the spatial derivative applied to any vector is the directional derivative in

the direction of that vector scaled by the norm. By linearity, we can assume without loss

of generality that ||Un|| = 1. Thus D[φτ (X
∗)](Un) is the directional derivative of φτ in the

direction of Un evaluated at X∗.

We can write this directional derivative using the limit definition of the derivative:

D[φτ (X
∗)](Un) = lim

h→0

φτ (X
∗ + hUn)− φτ (X∗)

h
(2.10)

By Proposition 2.8,

lim
h→0

||φτ (X∗ + hUn)− (φτ (X
∗)− Uτ (hUn)) ||

h

converges to zero uniformly. This is equivalent to saying that

lim
h→0

(φτ (X
∗)− Uτ (hUn))

h
= lim

h→0

φτ (X
∗ + hUn)

h

Thus we can simplify the right-hand side of 2.10:

D[φτ (X
∗)](Un) = lim

h→0

φτ (X
∗) + Uτ (hUn)− φτ (X∗)

h

= lim
h→0

Uτ (hUn)

h
= lim

h→0

hUτ (Un)

h
by linearity, Lemma 2.6

= Uτ (Un)

Not only does Theorem 2.10 mean that our two approximations are identical, it means

that we have a way of calculating the spatial derivative of the time-τ map and, more impor-

tantly, we have a way to linearize the flow-kick map Gτ,k.
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In Chapter 3, we will develop analytic approaches to characterizing the variational

equation so as to use this linearization to classify the stability of flow-kick equilibrium. In

Chapter 5 we will discuss how numerical techniques can be used to find the stability of the

variational time-τ map, and thus the flow-kick equilibrium, for a given flow-kick system with

equilibrium X∗.
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Chapter 3

Reactivity and the Variational Equation

3.1 Stability of Autonomous, Linear Systems

In Chapter 2, we established that the variational time-τ map is the linearization of

the flow-kick map around the flow-kick equilibrium (Theorem 2.10). We will now turn to

how to classify the stability of the variational time-τ map and the variational equation in

general. In this section we will build our intuition by reviewing known techniques for stability

classification of both continuous and discrete autonomous, linear approximations.

Before we dig into current classification techniques, let’s establish which systems we

are working with. In this chapter we will primarily focus on two-dimensional systems with

the knowledge that many of the techniques and results presented in two dimensions can be

generalized to higher dimensions. We will work with both discrete and continuous dynamical

systems. Since we are thinking about how to classify linearizations, we will be considering

autonomous, linear dynamical systems. A discrete autonomous, linear system is given by a

difference equation of the form:

Xn+1 = AXn (3.1)

where A is a real 2 × 2 matrix. Similarly a continuous autonomous, linear system is given

by a differential equation of the form:

dX

dt
= AX (3.2)

where A is again a real 2× 2 matrix.
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The stability of an autonomous linear system is most often determined by the eigenvalues

of the corresponding matrix A. The eigenvalues of A, denoted λ1 and λ2, solve the eigenvalue

problem AV = λV for eigenvectors V ∈ R2. To fix our ideas, consider the case when A has

a real eigenvalue λ. If we pick an eigenvector V0 as the initial value through which to solve

either the discrete system (Equation 3.1) or the continuous system (Equation 3.2), we get

an eigenvector solution. In the discrete case, an eigenvector solution can be expressed as:

Vn = λnV0 with AV0 = λV0 (3.3)

An eigenvector solution in a continuous system can be expressed as:

V (t) = V0e
λt with AV0 = λV0 (3.4)

A nice property of autonomous, linear systems is that their general solutions can always

be expressed by linear combinations of the eigenvector solutions. Thus, besides being well-

behaved special cases, eigenvector solutions can tell us a lot about the general classification

of their corresponding linear systems.

With this in mind, let’s continue to analyze the properties of eigenvector solutions.

From Equations 3.3 and 3.4 we observe that eigenvalue solutions lie on straight lines are

invariant under the dynamics of their corresponding linear systems. We often talk about

these invariant sets as eigenlines under which the dynamics of the linear system can be

reduced to one-dimension. In that one-dimension the dynamics consist simply of movement

toward or away from the origin (or possibly a line of fixed points). As can be seen in

Equations 3.3 and 3.4 the coefficient that the determines this movement is the eigenvalue.

The criteria that determines whether an eigenvalue results in attraction or repulsion

along the invariant eigenline differs between continuous and discrete systems. In a discrete

system (like the time-τ variational map), the eigenvalue λ describes the proportionality

constant for the growth or shrinkage of the vector in its next iteration: Vn+1 = λVn. Thus

|λ| < 1 results in the eigenvector being scaled down in each iteration (ie. the movement

toward the origin). If |λ| > 1, the eigenvector is being scaled up in each iteration (ie. the

movement is away from the origin). If |λ| = 1, then the eigenvector itself is invariant under

the dynamics of the discrete system.

In a continuous system, the eigenvalue λ describes the velocity with which the solution

moves along the invariant eigenline in time: dV
dt

= λV . This means that if λ < 0, the velocity
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is in the opposite direction as the eigenvector and the solution moves toward the origin in

time. If λ > 0, velocity is in the same direction as the eigenvector and the solution moves

away from the origin in time. If λ = 0, then the eigenvector is actually an equilibrium of the

system since it always has zero velocity.

In the case when λ1, λ2 ∈ C, they form a complex conjugate pair, and the criteria for

continuous systems applies to the real part re(λi) of the eigenvalues while the criteria for

discrete systems applies to the modulus |λi| of the complex eigenvalue. For more information

about how to interpret complex eigenvalues and eigenvectors, see [5].

Since the general solutions to autonomous linear systems in higher dimensions involve

linearly combining eigenvector solutions, we apply the criteria discussed above to multiple

eigenvalues simultaneously. If all eigenvalues show attraction, then the equilibrium is attract-

ing. If all eigenvalues show repulsion, then the equilibrium is repelling. If some eigenvalues

show attraction and some repulsion, then the equilibrium is a saddle. Note that for the pur-

poses of this chapter, we will not state the special cases where one or more of the eigenvalues

shows neither attracting nor repelling. For a broader overview of this classification, see [5].

This eigenvalue method of characterizing the stability of equilibria is outlined for the

general cases in Table 3.1.

Criteria Classification

Discrete system

|λ1| ≤ |λ2| < 1 stable, attracting, sink

|λ1| < 1 < |λ2| unstable, saddle

1 < |λ1| ≤ |λ2| unstable, repelling, source

Continuous system

re(λ1) ≤ re(λ2) < 0 stable, attracting, sink

re(λ1) < 0 < re(λ2) unstable, saddle

0 < re(λ1) ≤ re(λ2) unstable, repelling, source

Table 3.1: A summary of the eigenvalue criteria for stability classification in

both discrete and continuous systems.

We now have a method for classifying both discrete and continuous autonomous linear

dynamical systems based on their eigenvalues. Note that by Lemma 2.6, the discrete system

30



Chapter 3 Haslam

generated by iterating the variational time-τ map is itself a discrete autonomous, linear

system. If we had a matrix representation of Uτ , we could classify the stability of our flow-

kick equilibrium based on the criteria given in Table 3.1. Though we don’t have a general

matrix representation of Uτ , we can generate it computationally for specific examples by

simply simulating the variational equation for two linearly independent initial conditions.

We will briefly discuss uses for this numerical approach used in Chapter 5.

In the interest of understanding the dynamics of the variational equation and develop-

ing an analytic technique for classifying the variational time-τ map, the next section will

address how to generalize the techniques of eigenvalue analysis outlined in this section to

the variational equation.

3.2 Analyzing the Variational Equation

Recall that our goal is to classify the stability of an equilibrium of a flow-kick system by

analyzing the dynamics of the associated variational equation along the equilibrium trajec-

tory of the flow-kick system.

Notation 3.1. To establish our notation, consider a flow-kick map Gτ,k with an equilibrium

point at X∗. In the notation of Definition 1.2, Gτ,k is generated by a triple (F, τ, k) ∈
C1(Rn)×R×Rn. However, as we have seen in Lemma 2.2, the kick vector, k, plays no role

in determining the linearization of Gτ,k at X∗. Moreover, from Lemma 1.9, we know that

given any triple (F, τ,X∗) ∈ C1(Rn)×R×Rn, there is a unique kick vector k such that X∗

is an equilibrium of Gτ,k. Thus, we can use the triple (F, τ,X∗) to define a flow-kick map

Gτ,k with equilibrium point at X∗. Similarly given a vector field F ∈ C1(Rn), we can use

the pair (τ,X∗) to define the flow-kick map Gτ,k.

Focusing on flow-kick systems that all have the same underlying vector field F is very

useful to many applications. In a decision support scenario, for example, we would most

likely have a fixed model for the underlying ecological system in the form of a vector field F .

We would then be interested in finding the set of (τ,X∗) pairs for which X∗ is an attracting

flow-kick equilibrium that represents a healthy ecological system.

Notice that for any choice of (F, τ,X∗), the stability classification of X∗ is based on how

the instantaneous linearizations along the equilibrium trajectory contribute to the dynamics
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of the variational time-τ map. Since any point in state space could be on the equilibrium

trajectory for some pair (τ,X∗), we will perform an eigenvalue analysis of the instantaneous

linearization of F about every point in state space.

To begin this generalized eigenvalue analysis of the linearization of F at any X in state

space, let’s walk through the symbolic computations that are required. Note that, as in the

previous section, we will assume that our systems are two-dimensional, knowing that most

results generalize to higher dimensions. Given a vector field F ∈ C1(R2), the autonomous

linear approximation around an arbitrary point X ∈ R2 is given by:

dU

dt
= D[F (X)]U (3.5)

The eigenvalues of D[F (X)] can be found by solving the characteristic polynomial:

0 = λ2 − tr (D[F (X)])λ+ det (D[F (X)]) (3.6)

where tr (D[F (X)]) represents the trace and det (D[F (X)]) represents the determinant of

the matrix D[F (x)].

Up to this point we have done three sets of symbolic computations: D[F (X)], tr (D[F (X)]),

and det (D[F (X)]). Although we could perform a fourth symbolic computation to solve the

characteristic polynomial, this is a more computationally expensive calculation. Instead,

we note that for stability classification, we are concerned with which criteria the eigenvalues

meet rather than the actual values of λ1 and λ2. Fortunately, we can create an equivalent set

of criteria based on the coefficients of the characteristic polynomial (Equation 3.6). These

new criteria are given for continuous systems in Lemma 3.2 and visually summarized in

Figure 3.2.

Lemma 3.2. (Trace-Determinant Criteria) Consider a two-dimensional linear differential

equation dX
dt

= AX.

1. If det(A) < 0, then re(λ1) < 0 < re(λ2) and the equilibrium is a saddle.

2. If det(A) > 0 and tr(A) < 0, then re(λ1) ≤ re(λ2) < 0 and the equilibrium is an

attractor.

3. If det(A) > 0 and tr(A) > 0, then 0 < re(λ1) ≤ re(λ2) and the equilibrium is a repeller.
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Figure 3.1: Since the trace-determinant criteria are based on when trace and de-

terminant are positive or negative, we can characterize the general classifications

as belonging to one of the regions of the trace determinant plane. For example,

in the first quadrant of the trace-determinant plane we have repellers since it is

here where both the trace and the determinant are positive.

With expressions for the trace and determinant of D[F (X)], the criteria in Lemma 3.2

provides systems of inequalities which define regions of state space in which the instantaneous

linearization around every point has the same classification. These regions are defined below:

These regions are outlined in Definition 3.3. Example 3.4 shows the symbolic calcula-

tions needed to generate these regions for Figure 3.2.

Definition 3.3. Given a vector field F ∈ C1(R2),

The attracting region A of state space is the set of all points X ∈ R2 such that the

linearization of F about X (Equation 3.5) has an attracting equilibrium.

The saddle region S of state space is the set of all points X ∈ R2 such that the

linearization of F about X (Equation 3.5) has a saddle equilibrium.

The repelling region R of state space is the set of all points X ∈ R2 such that the

linearization of F about X (Equation 3.5) has a repelling equilibrium.
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Figure 3.2: (a) The linearization of F about each point in the state space can

be classified using the trace-determinant criteria. Depicted is state space broken

into classification regions colored to correspond with Figure 3.2. (b) The equilib-

rium trajectory of interest for this flow-kick system is composed of points in state

space that are each contained in the attracting region. We can imagine the lin-

earized dynamics at each point, characterized by their asymptotic classification,

accumulating in time.

Example 3.4 shows the symbolic calculations needed to generate the regions given in

Definition 3.3. Figure 3.2 visualizes the classification regions generated by the system in

Example 3.4.

Example 3.4. Consider the family of flow-kick systems associated with the two-dimensional

ODE:

dX

dt
= F (x, y) =

(
f(x, y)

g(x, y)

)
=

 0.09x

(
1− x− y

3

)
0.18y

(
1− y − 2x

6

)


We need to find an expression for the instantaneous linearization of the ODE at any
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point in state space. We know this is done by computing the Jacobian matrix of F (x, y).

D[F (x, y)] =

(
fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

)
=

(
0.09− 0.06x− 0.03y −0.03x

−0.06y 0.18− 0.06x− 0.06y

)

By the trace-determinant criteria (Lemma 3.2), all we must do now to classify the

asymptotic stability of each instantaneous linearization is to calculate the trace and deter-

minant of D[F ].

tr(D[F (x, y)]) = (0.09− 0.06x− 0.03y) + (0.18− 0.06x− 0.06y)

= 0.27− 0.12x− 0.09y

det(D[F (x, y)]) = (0.09− 0.06x− 0.03y)(0.18− 0.06x− 0.06y)− (−0.03x)(−0.06y)

= 0.0036(4.5− 4.5x+ 1.x2 − 3.y + 1.xy + 0.5y2)

Now we have an expression for tr(D[F ]) and det(D[F ]) in terms of (x, y) we can use the

trace-determinant criteria to find and plot the attracting, repelling, and saddle regions of

state space. To fix our understanding, let’s follow this procedure for the attracting region.

For (x, y) to be in the attracting region, the instantaneous linear approximation of F

about that point must be attracting. That means that we need

det(D[F (x, y)]) = 0.0036(4.5− 4.5x+ 1.x2 − 3.y + 1.xy + 0.5y2) > 0

tr(D[F (x, y)]) = 0.27− 0.12x− 0.09y < 0

The region where both of these inequalities hold is represented by the white region of state

space in Figure 3.2. Similarly the repelling and saddle regions are represented by the red

and green regions respectively.

Though these regions refer to the classification of the instantaneous linearization of F ,

we can use them to build intuition about the dynamical behavior of a variational equation.

Remember that for any F ∈ C1(R2), every point in state space is of an equilibrium trajectory

for some pair (τ,X∗). If a point X is on the equilibrium trajectory and is in the attracting

region, then we might hypothesize that its contribution to the cumulative dynamics of the

variational equation is attraction. Similarly, if the point was in the saddle or repelling region

we might hypothesize that it contributes saddle or repelling behavior respectively.

In other words, we can think about all the points on the equilibrium trajectory, and
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which stability region they are contained in, to try and get a moment-by-moment classifica-

tion of the dynamical behavior of the variational equation. In Conjecture 3.5, we consider

the question: Can we apply the logic of “stringing along” stability classifications in the same

way that we did linearized dynamics to construct the variational equation?

Conjecture 3.5. Given a triple (F, τ,X∗) and the associated flow-kick map Gτ,k:

Let A denote the attracting region of state space. If, ∀t ∈ [0, τ ], φ(t,X∗) ∈ A, then X∗

is an attracting flow-kick equilibrium.

Let R denote the repelling region of state space. If, ∀t ∈ [0, τ ], φ(t,X∗) ∈ R, then X∗

is a repelling flow-kick equilibrium.

It would seem that if an equilibrium trajectory is entirely contained within a particular

classification region, then the accumulation of those dynamics (ie. the variational time-τ

map) should have that same stability classification.

We seem to have a good intuitive basis for this conjecture being true: we used the method

of stringing along dynamics in order to generate the variational equation and we ended up

with a formal linearization of the flow-kick map. It might seem that if an equilibrium trajec-

tory is entirely contained within a particular classification region, then the accumulation of

those dynamics (ie. the variational time-τ map) should have that same stability classifica-

tion. We must recognize, however, that the case of stringing along classifications is different

than stringing along linearized dynamics. Significantly, an eigenvalue classification describes

the asymptotic behavior of the system while the contribution of linearized dynamics along

the equilibrium trajectory is implicitly of an instantaneous and transient nature. While it

is true for each instantaneous linearization all solutions end up conforming to the behavior

described by the eigenvalues, Example 3.6 will show that it is possible for the transient be-

havior of the system (and thus its contribution to the variational equation) to differ from its

asymptotic classification.

Example 3.6. To illustrate how asymptotic and transient behavior can differ from one

another, consider the system:

dX

dt
= AX =

(
−1 10

0 −3

)
X (3.7)
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The eigenvalues of A are λ1 = −1 and λ2 = −3 and we can see from Figure 3.2 that the

solution is being attracted to the origin. However for some solutions there is a short period

of time (highlighted in red) during which the solution moves away from the origin.

Phase Plane of Reactive Attracting Linear System

Figure 3.3: Solutions to this linear system dX
dt

=
( −1 10

0 −3
)
X are attracted to the

origin, but during their approach they move further away from the origin before

being asymptotically attracted. These periods of temporary movement away from

the origin are highlighted in red. The blue concentric circles provide landmarks

for recognizing when a solution’s approach switches between movement away from

the origin and movement toward.

The difference between asymptotic and transient behavior is significant because the

systems we are classifying operate not as stand-alone linear systems but as instantaneous

linear approximations of underlying flow dynamics. We are primarily concerned with the

instantaneous contribution these approximations make to the cumulative behavior of the

variational equation. Though it is possible that the asymptotic behavior of a system could

describe its instantaneous contribution to the variational equation, we see from Example 3.6

that we can’t assume it will.

Based on Example 3.6, we can imagine a scenario in which at each moment t ∈ [0, τ ], the

perturbation U(t, U0) is driven further away from the variational origin by the instantaneous

contribution of the linear approximation at φ(t,X∗). In this scenario, one iteration of the
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variational time-τ map would have a repelling effect even if the trajectory about which we

are constructing the variational equation is contained entirely withing the attracting region.

In Chapter ??, we construct an example of a non-autonomous linear differential equation

(though not a variational equation) where this happens for many choices of τ ∈ R.

It is these conceived scenarios that make our conjecture non-obvious. As we continue to

explore whether or not we can prove or disprove our conjecture, we must consider the follow-

ing questions: To what degree can transient behavior differ from the asymptotic behavior as

described by the eigenvalues? If they do differ, which behavior dominates the system’s con-

tribution to variational equation? Under what circumstances can we be confident that the

asymptotic classification does describe the system’s contribution to the variational equation?

These questions are addressed in the next two section of Chapter 3.

3.3 Reactivity and Transient Behavior

To characterize transient behavior and address the effect it has in the cumulative dy-

namics of the variational equation, we must introduce some new language. In particular we

want a way to describe the “worst case” transient behavior. Reactivity is a property of linear

systems that describes the maximum instantaneous amplification of solutions.

Definition 3.7. The reactivity of an autonomous, linear system dX
dt

= AX is the maximum

radial velocity of that system on the unit circle:

ρ(A) = max
||X0||=1

{
d||X||
dt

∣∣∣
t=0

}
(3.8)

Note that because the system is linear, the reactivity ρ gives not just the maximum

amplification of points on the unit circle but also the maximum normalized amplification for

all points in state space.

A key feature of reactivity is that it provides an upper bound for transient growth

behavior. It says, “The reactivity ρ measures the fastest any solution could be moving away

from the origin at any instant in time.”

Having an upper bound for transient growth behavior is extremely useful when deter-

mining whether an asymptotically attracting linear system ever exhibits transient repelling
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behavior. If the reactivity is negative, then solutions to the system can only ever be moving

toward the attracting equilibrium. If the reactivity is positive, then there are some solutions

that move away from the origin for some period of time before asymptotically being attracted

back to the origin (see Figure 3.3).

Figure 3.4: Two linear systems can have the same eigenvalues without showing

the same transient behavior. The phase portrait on the left is given by dX
dt

=( −1 10
0 −2

)
X and is reactive. The phase portrait on the right is given by dX

dt
=( −1 2

0 −2
)
X and is non-reactive.

Definition 3.8. An autonomous linear system dX
dt

= AX is reactive if its reactivity is

positive. It is non-reactive if its reactivity is negative.

Remark 3.9. Let’s take a moment to build an intuition for why these systems are called

“reactive.” Consider graphing a solution’s distance from the origin at each point in time

(ie. the solutions norm over time). In a system that is not reactive, any perturbation from

the origin would just slowly diminish and return the solution to the origin. In a reactive

system, solutions “react” to the perturbation before returning to equilibrium. In a sense, the

perturbation is like a catalyst in a chemical reaction or a stimulating voltage for a neuron’s

action potential. See Figure 3.3.

Reactivity gives us the language to discuss one extreme of a system’s transient behavior.

Fortunately the reactivity is also a value we can calculate symbolically with relative ease as we

will see in Theorem 3.11. First, we review the decomposition of a matrix A into its Hermitian
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"Reacting" to a perturbation from the origin in the phase plane

Time

D
is

ta
nc

e 
fr

om
 th

e 
or

ig
in

Figure 3.5: In a reactive attracting system perturbations from the origin cause

solutions to move further away from the origin before attracting back to it. On

the right, we see the the solution’s distance from the origin over time. From this

perspective, it appears that the solution is “reacting” to being perturbed from

the origin.

(symmetric) and antihermitian (skew-symmetric) parts. A definition of this decomposition

is given below.

Definition 3.10.

The Hermitian part of a matrix A, also called the symmetric part of A, is given by:

H(A) =
A+ AT

2

The antihermitian part of A, also called the skew-symmetric part of A, is given by:

S(A) =
A− AT

2

Notice that A = H(A) + S(A). In Chapter 4, we explore the properties of H(A) and

S(A). In particular we will build intuition about which properties of A this decomposition
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extracts and how they relate to our present context. For now, we will use H(A) to calculate

the reactivity. Note that since H(A) is real and symmetric, all its eigenvalues are real.

Theorem 3.11. (Adapted from Neubert & Caswell [10]) Consider an autonomous, linear

differential equation dX
dt

= AX. Then the reactivity of the system is given by the largest

eigenvalue of the Hermitian part of A:

ρ(A) = max {Λ(H(A))} (3.9)

where Λ(H(A)) is the set of eigenvalues of H(A).

Proof. (Adapted from Neubert & Caswell [10])

Recall that the definition of reactivity involves calculating the derivative of the norm of

X (ie. d||X||
dt

). Assuming we are working with the usual Euclidean distance, we can make the

following computations: if ||X|| = 1,

d

dt

[
||X||

]
t=0

=
d

dt

[√
XTX

]
t=0

=
1

2

1√
XT

0 X0

(
XT

0

dX

dt

∣∣∣
t=0

+
dXT

dt

∣∣∣
t=0
X0

)
=
XT

0 AX0 +XT
0 A

TX0

2

=
XT

0 (A+ AT )X0

2

= XT
0 H(A)X0 (3.10)

Note that this last expression 3.10 is the Rayleigh quotient of H(A) at X0. By Rayleigh’s

Theorem the maximum Rayleigh quotient over all points on the unit circle is the largest

eigenvalue of H(A) [6]. We can thus write

ρ(A) = max
||X0||=1

{
d||X||
dt

∣∣∣
t=0

}
= max
||X0||=1

{
XT

0 H(A)X0

}
= max{Λ(H(A))}

Theorem 3.11 is significant not only because it offers a way of calculating the the re-

activity, but also because it provides a way to characterise the maximum transient growth

behavior in a handful of symbolic computations similar to those performed in Section 3.2.
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So far we have focused on attracting systems that may exhibit reactivity. We can

also conceive of repelling systems that may have transient attracting behavior. In essence

this is the same as reactivity but in reverse. Instead of having solutions that are ultimately

attracted to the origin but react first, we have solutions that are ultimately repelled from the

origin but backtrack towards the origin before heading to infinity. In the following definition,

we establish the language of reverse reactivity in order to talk about this type of system.

Definition 3.12. The reverse reactivity of an autonomous, linear system is the minimum

radial velocity of that system on the unit circle.

σ = min
||X0||=1

{
d||X||
dt

∣∣∣
t=0

}
(3.11)

A system is reverse reactive if its reverse reactivity is negative. A system is reverse

non-reactive if its reverse reactivity is positive.

Fortunately, just like the reactivity, reverse reactivity is easy to symbolically calculate:

Theorem 3.13. Consider an autonomous, linear differential equation dX
dt

= AX. Then the

reverse reactivity of the system is given by the smallest eigenvalue of the Hermitian part of

A:

σ(A) = min {Λ(H(A))} (3.12)

where Λ(H(A)) is the set of eigenvalues of H(A).

The proof of Theorem 3.13 follows similarly to the proof of Theorem 3.11. In fact, many

of the results for reactivity have a parallel result for reverse reactivity. This is a product

of the innate connection between reactivity and reverse reactivity suggested by their names

and described formally in Lemma 3.14 and Corollary 3.15.

Lemma 3.14. The linear system dX
dt

= AX is reverse reactive if and only if it is reactive in

reverse time.

Proof. First note that dX
dt

= AX in reverse time is given bydX
dt

= −AX. In other words,

every time dynamics has been reversed.
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Suppose that the linear system dX
dt

= AX is reverse reactive. Then we can write:

σ(A) = min{Λ(H(A))} < 0

⇐⇒ −max{Λ(H(−A))} < 0

⇐⇒ − ρ(−A) < 0

⇐⇒ ρ(−A) > 0

The last statement means that dX
dt

= −AX is reactive. Thus dX
dt

= AX being reverse

reactive implies that it is reactive in reverse time and vice versa.

Corollary 3.15. The linear system dX
dt

= AX is reverse non-reactive if and only if it is

non-reactive in reverse time.

We now have a way to compute and discuss both extremes of transient behavior for

general linear non-autonomous differential equations. In particular, we can apply this method

for characterizing transient behavior to the instantaneous linearizations of the vector field F

that make up the variational equation. This reactivity classification and its use in conjunction

with our asymptotic classification (see Definition 3.3 and Figure 3.2) are discussed in the

following sections.

3.4 Reactivity Classification of State Space

We will begin this reactivity classification process from the same place we began our

asymptotic classification process. Let F ∈ C1(R), and consider the instantaneous lineariza-

tion of F about any point X ∈ R2:

dU

dt
= D[F (X)]U (3.13)

Any point X ∈ R2 can be on the equilibrium trajectory for some choice of (τ,X∗). Thus for

anyX ∈ R2, Equation 3.13 may be one of the contributing autonomous linear approximations

of the variational equation. We have already classified every such linearization based on their

asymptotic behavior (as indicated by the eigenvalues of D[F (X)]).

In this section, we want to go a step further to measure the range of possible tran-

sient behavior in each of these instantaneous linear approximations. Using Theorems 3.11
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and 3.13, we can find this range for any point X ∈ R2 by characterizing the eigenvalues of

H(D[F (X)]). In fact, because the classification of reactive/non-reactive and reverse reac-

tive/reverse non-reactive depends only on with the sign of the eigenvalues of H(D[F (X)])

and not the values themselves, we can establish trace-determinant criteria for reactivity that

will ease the computational cost of characterizing the reactivity ρ(D[F (X)]) over all of state

space.

Lemma 3.16. (Trace-determinant criteria for reactivity) Consider a two-dimensional au-

tonomous linear differential equation dX
dt

= AX. Let λ1, λ2 ∈ R be the eigenvalues of H(A).

1. If det(H(A)) < 0, then λ1 < 0 < λ2 and the system is both reactive and reverse

reactive.

2. If det(H(A)) > 0 and tr(H(A)) < 0, then λ1 < λ2 < 0 and the system non-reactive

and reverse reactive.

3. If det(H(A)) > 0 and tr(H(A)) > 0, then 0 < λ1 < λ2 and the system is reactive and

reverse non-reactive.

The proof of Lemma 3.16 follows quickly by applying Lemma 3.2 to the Hermitian part

of A and using the calculations presented in Theorems 3.11 and 3.13 to identify reactive and

reverse reactive systems. From this result, we are able to divide state space into regions that

characterize the reactivity of D[F (x)], and hence the range of possible transient behavior.

See Example 3.17 and Figure 3.4a.

Example 3.17. Let’s continue our calculations from Example 3.4. Recall that we are

working with the Lotka-Voltera system given by:

dX

dt
= F (x, y) =

(
f(x, y)

g(x, y)

)
=

 0.09x

(
1− x− y

3

)
0.18y

(
1− y − 2x

6

)


We had found that the Jacobian of this vector field at an arbitrary point (x, y) is given

by:

D[F (x, y)] =

(
0.09− 0.06x− 0.03y −0.03x

−0.06y 0.18− 0.06x− 0.06y

)
(3.14)
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Figure 3.2 gave a visualization of the asymptotic stability classification regions of this

system that were generated by applying the trace-determinant criteria to the Jacobian matrix

(Equation 3.14). Now we are interested in characterizing state space based on the range of

possible transient behavior. That is, we want to use the Hermitian part of the Jacobian to

determine which regions of state space correspond to reactive, non reactive, reverse reactive,

or reverse non-reactive linearizations. To do this, we must first calculate the Hermitian part

of the Jacobian as well as its trace and determinant.

The Hermitian part of the Jacobian is given by:

H(D[F (x, y)]) = 1
2

(
D[F ] +D[F ]T

)
=

(
0.09− 0.06x− 0.03y 1

2
(−0.03x− 0.06y)

1
2

(−0.03x− 0.06y) 0.18− 0.06x− 0.06y

)

The trace and determinant of the Hermitian part are give by:

tr(H(D[F (x, y)])) = (0.09− 0.06x− 0.03y) + (0.18− 0.06x− 0.06y)

= 0.27− 0.12x− 0.09y

det(H(D[F (x, y)])) = (0.09− 0.06x− 0.03y)(0.18− 0.06x− 0.06y)−
(
1
2

(−0.03x− 0.06y)
)2

= 0.0036(4.5− 4.5x+ 1.x2 − 3.y + 1.xy + 0.5y2)

We can now apply Lemma 3.16 to determine in what regions of state space the instan-

taneous linear approximation is reactive or reverse reactive. For illustration, let’s consider

the set of inequalities (2) for the non-reactive condition.

Suppose that the instantaneous linearization at the point (x, y) satisfies the following

inequalities:

det(H(D[F (x, y)])) = 0.0036(4.5− 4.5x+ 1.x2 − 3.y + 1.xy + 0.5y2) > 0

tr(H(D[F (x, y)])) = 0.27− 0.12x− 0.09y < 0

Then, at the point (x, y) the Hermitian part of the Jacobian has two negative eigenvalues.

This means that the instantaneous linear approximation about (x, y) is non-reactive and

reverse reactive (see the white region in Figure 3.4a).

This process can be carried out for the other two regions given by inequalities (1) and
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(3) in Lemma 3.16. In Figure 3.4a, systems that are both reactive and reverse reactive are

shown in blue while systems that are reactive but reverse non-reactive are shown in red.

Figure 3.6: Both figures show the phase portrait for the system given in Example

3.17. (a) The figure shows state space broken into regions that describe the

extremes of transient behavior. (b) We can combine the stability classification

regions from Figure 3.2 with the regions in the figure on the left. The result is

shown in the figure on the right. Of particular interest is the white region in

which linearizations show non-reactive attraction.

Via the process outlined in Example 3.17, we obtain a region-by-region characterization

of the possible transient behavior exhibited by the instantaneous linear approximations to
dX
dt

= F (X) at points in state space. This is what we wanted when we first defined reactivity!

We can now cross-reference the asymptotic behavior of a linearization with the possible

transient behavior to gain a more accurate view of the behavior a system may contribute to

the variational equation.

As we go about this process of cross-referencing asymptotic with transient behavior, it

is important to keep in mind that our primary concern is whether the transient behavior can

differ from the asymptotic behavior. Corollary 3.19 will state that repelling systems are, by

default, reactive, just as attracting systems are, by default, reverse reactive. For this reason,

we are concerned about the relationship between attracting systems and reactivity and the

relationship between repelling systems and reverse reactivity.
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With this in mind, in Figure 3.4b, the relevant reactivity characterizations regions are

superimposed on the asymptotic classification regions. In particular we can see the white

region in which instantaneous linearizations of the underlying flow are both attracting and

non-reactive and the blue region in which these linearizations are attracting but reactive.

Based on our previous concerns about Conjecture 3.5, the ability to distinguish between

linearizations that may have transient repelling behavior and those that most certainly don’t

is significant. In the next section we will prove that if an equilibrium trajectory is contained

entirely within this non-reactive attracting region, then the flow-kick equilibrium is itself

attracting.

3.5 Analytic Characterization Results

In this section, we find analytic criteria under which Conjecture 3.5 is true. Before

we present these results, it is helpful to outline when our characterization of a system’s

transient behavior inherently implies a particular asymptotic classification or vice versa. For

example, if a system is non-reactive, then the radial velocity of all solutions at all moments in

time is bounded above by zero. This precludes any repelling behavior whatsoever; the only

asymptotic behavior any solution could possibly display is attraction. This statement and

similar statements about the relationship between reactivity classifications and asymptotic

classifications are given in Lemma 3.18 and Corollary 3.19.

Lemma 3.18. Consider an autonomous, linear system dX
dt

= AX.

1. If A is non-reactive, then the equilibrium attracts solutions monotonically by the norm,

and the system is attracting.

2. If A is not reverse reactive, then the equilibrium repels solutions monotonically by the

norm, and the system is repelling.

Proof. We will present a proof for the first claim. The second claim follows similarly.

Suppose that A is non-reactive. Consider a solution X(t) to dX
dt

= AX with initial value

X0 6= 0. Note that because the system is linear, X∗(t) = 0 is an equilibrium solution and by
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uniqueness X(t) is non-zero for all t ∈ R. Then for each s ∈ R, we can write

X(s) = ||X(s)||X̂s where X̂s =
X(s)

||X(s)||

Recall from the proof of Theorem 3.11 that in a linear setting, we can write:

d||X||
dt

=
1

||X||
XTH(A)X

The above equation shows that the rate of change of the norm inherits linearity from

the differential equation. In particular, if we let X̂s(t) represent the solution of the system

through X̂s(0) = X̂s, this means that for any s ∈ R we can write:

d||X||
dt

∣∣∣
t=s

= ||X(s)|| · d||X̂s(t)||
dt

∣∣∣
t=0

Now we can use the fact that the system is non-reactive:

d||X(t)||
dt

∣∣∣
t=s

= ||X(s)|| · d||X̂s(t)||
dt

∣∣∣
t=0

≤ ||X(s)|| · max
||X0||=1

{
d||X||
dt

∣∣∣
t=0

}
= ||X(s)|| · ρ(A) < 0

Since the above inequality is true for all s ∈ R and for any non-zero choice of the initial

condition X0, all solutions to the system always move toward the origin. This means that

the origin is attracting every solution monotonically by the norm and is thus an attracting

equilibrium of the system.

Note that this proof is equivalent to proving that the Euclidean norm || · || is a Lyapunov

function [5].

Corollary 3.19. Consider an autonomous, linear system dX
dt

= AX.

If the system is repelling, then it is reactive.

If the system is attracting, then it is reverse reactive.

Proof. By the contrapositive of Lemma 3.18, any system that is not attracting is reactive.

Thus if a system is repelling, it will also be reactive.
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Similarly, any system that is not repelling is reverse reactive. Thus if a system is

attracting, it will also be reverse reactive.

Corollary 3.19 formalizes our intuition that reactivity and reverse reactivity are, for

our purposes, inconsequential in repelling and attracting systems respectively. Lemma 3.18

formalizes our intuition that non-reactive systems are those for which we can expect not only

asymptotic, but also transient, attracting behavior. This result and the corresponding result

for reverse non-reactive systems is important for identifying regions in which Conjecture 3.5

holds. Before we prove that Conjecture 3.5 holds under these additional criteria, we will

prove a similar claim generalized to non-autonomous linear systems.

Theorem 3.20. Consider a non-autonomous linear differential equation

dX

dt
= A(t)X (3.15)

If, for all α ∈ [0, τ ], the autonomous linear differential equation given by

dX

dt
= A(α)X (3.16)

is non-reactive, then the time-τ map φτ of the non-autonomous system 3.15 has an attracting

equilibrium at the origin.

Proof. We will begin by showing that every solution to Equation 3.15 is a strictly decreasing

function by the norm.

For each α ∈ [0, τ ], consider the system as given in Equation 3.16. Let Yα(t) be the

solution to Equation 3.16 with initial condition Yα(0). Since A(α) is non-reactive, Lemma

3.18 tells us that for all initial conditions Yα(0) and for all t ∈ R,

d||Yα(t)||
dt

< 0

Consider again the non-autonomous system given in Equation 3.15. Let X(t) be the

solution to Equation 3.15 with initial condition X0. For each α ∈ [0, τ ], let Yα(t) be the

solution to Equation 3.16 as before, but now with initial condition Yα(0) = X(α).
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d||X(t)||
dt

∣∣∣
t=s

=
d

dt

[√
X(t)TX(t)

] ∣∣∣
t=s

=
1

2

X(s)T dX
dt

∣∣∣
t=s

+
(
dX
dt

) ∣∣∣T
t=s
X(s)√

X(s)TX(s)

=
1

2

X(s)TA(s)X(s) +X(s)TA(s)TX(s)√
X(s)TX(s)

=
1

2

Ys(0)TA(s)Ys(0) + Ys(0)TA(s)TYs(0)√
Ys(0)TYs(0)

=
d

dt

[√
Ys(t)TYs(t)

]
t=0

=
d||Ys(t)||

dt

∣∣∣
t=0

Thus
d||Ys||
dt

∣∣∣
t=0

< 0 ∀ s ∈ [0, τ ] =⇒ d||X(t)||
dt

< 0 ∀ t ∈ [0, τ ]

and X(t) is a strictly decreasing function by the norm on the interval [0, τ ].

Consider the time-τ map φτ of the non-autonomous system 3.15. Since ||X(t)|| is a

decreasing function for any initial conditionX0, we have in particular that ||φτ (X0)|| < ||X0||.
Thus one iteration of the time-τ map brings any point in state space closer to the origin.

Consider the orbit {φnτ (X0)} generated by iterating the time-τ map on any seed X0 ∈ R2.

Since the norm of the points in this orbit is monotonically decreasing and bounded below

by zero, we can say that:

lim
n→∞

||φnτ (X0)|| = x̃

Similarly since {φnτ (X0)} is bounded, we can, by the Bolzano-Wierstrass Theorem, find

a subsequence {φmτ (X0)}m∈M that converges to some point X̃. Since ||φnτ (X0)|| → x̃, we also

know that ||φmτ (X0)||m∈M → x̃. Thus, by the continuity of the norm, ||X̃|| = x̃.

Now consider applying the time-τ map to every point in the subsequence to get a new

subsequence {φm+1
τ (X0)}m∈M . By continuity of the time-tau map, we know that this new

subsequence must converge to φτ (X̃).

Suppose for the purpose of contradiction that x̃ 6= 0. Then X̃ 6= 0 so ||φτ (X̃)|| < ||X̃|| =
x̃, but ||φm+1

τ (X0)||m∈M → x̃. This is a contradiction. Therefore x̃ = 0 for all seeds X0 ∈ R2.
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Thus, we have that the orbit of the time-τ map for any seed X0 is attracted to the

origin, and the origin is an attracting equilibrium of the time-τ map.

Corollary 3.21. Consider the flow-kick system generated by F with flow time τ and flow-

kick equilibrium X∗. If, for all α ∈ [0, τ ], the instantaneous linear approximation about

φ(α,X∗) is non-reactive, then X∗ is an attracting flow-kick equilibrium.

Proof. Consider the variational equation generated by the vector field F about the equilib-

rium trajectory φ(t,X∗). Suppose that the instantaneous linear approximations about each

point on the equilibrium trajectory is non-reactive. Then we can apply Theorem 3.20 to say

that system generated by the variational time-τ map Uτ has an attracting equilibrium at

the origin.

Recall that the variational time-τ map is the linearization of the flow-kick map. This

means that the orbits generated by the time-τ map linearly approximated the evolution of

perturbations from the flow-kick equilibrium X∗ as the system undergoes many iterations of

the flow-kick map. Since the variational origin is attracting, every solution to the flow-kick

system with an initial condition sufficiently close to X∗ is attracted to it. Thus we classify

X∗ as an attracting flow-kick equilibrium.

Theorem 3.20 and Corollary 3.21 confirm that the cumulative dynamics that arise by

piecing together non-reactive systems instantaneously in time is attraction. In particular

Corollary 3.21 shows that, under the extra assumption that the equilibrium trajectory is

entirely contained within the non-reactive attracting region, the first claim of Conjecture 3.5

holds. In Theorem 3.22 and Corollary 3.23 we state the corresponding results for reverse

non-reactive systems.

Theorem 3.22. Consider a non-autonomous linear differential equation as in Equation

3.15. If, for all α ∈ [0, τ ], the autonomous linear differential equation given by Equation

3.16 is reverse non-reactive, then the time-τ map φτ of the non-autonomous system 3.15 has

a repelling equilibrium at the origin.

Corollary 3.23. Consider the flow-kick system generated by F with flow time τ and flow-

kick equilibrium X∗. If, for all α ∈ [0, τ ], the instantaneous linear approximation about

φ(α,X∗) is reverse non-reactive, then X∗ is a repelling flow-kick equilibrium.
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The proof of Theorem 3.22 follows similarly to the proof of Theorem 3.20, just as the

proof of Corollary 3.23 follows similarly to that of Corollary 3.21.

With the results from this section, we have seen that the reactivity and reverse reactivity

of the instantaneous linearizations along a trajectory of dX
dt

= F (X) indicate what kind of

transient behavior may be contributed to the variational equation along that trajectory. We

have also identified two regions of state space in which we can be confident that the transient

behavior cannot differ from the asymptotic classification. Within each of those regions, we

have proved Conjecture 3.5, showing that characterizing the behavior of the instantaneous

linear approximations along the equilibrium trajectory of a flow-kick system can tell us

about the cumulative dynamical behavior of the variational equation along that trajectory.

We have also identified regions of state space where the transient behavior may differ from

the asymptotic classification, and in which Conjecture 3.5 remains open. In the next chapter

we will continue to explore how to characterize the transient radial motion of linear systems

so as to further identify criteria under which reactive or reverse reactive behavior may be

instantaneously contributed to the dynamics of a non-autonomous linear system.
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A Radial and Tangential Velocity Approach

to Classification

4.1 Introduction

In our exploration of Conjecture 3.5 so far, we have described what we will refer to in this

chapter as the eigenvalue approach to analyzing the variational equation along a flow-kick

equilibrium trajectory. This is the process of finding the eigenvalues of each instantaneous

linear approximation along the equilibrium trajectory and using the classification of each

approximation to deduce the classification of the variational time-τ map. As we were de-

veloping this view of the variational equation, we realized that the eigenvalue approach is

incomplete because of the asymptotic nature of eigenvalue analysis and the transient role

that each approximation plays in the cumulative dynamics of the variational equation. To

address that issue, we introduced the concept of reactivity and reverse reactivity which

describe the extremes of the transient behavior exhibited by a linear system.

In this chapter, we will develop a radial and tangential velocity approach to understand-

ing the transient behavior that each instantaneous linear approximation along the equilib-

rium trajectory may potentially contribute to the variational equation. It has surprising and

insightful connections to the method of calculating the reactivity presented in Theorem 3.11,

and will lead us, in the next chapter, to further our exploration of the reactive attracting

region of equilibrium space where Conjecture 3.5 remains open.
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The radial velocity approach captures the idea that what we are really trying to de-

termine while analyzing the variational equation is whether trajectories get closer to the

variational origin or further away from the variational origin. Note that “closer to” and

“further away from” are statements intrinsically about radial distance. As we analyze the

variational equation we want to know: is the radial displacement positive or negative? Is

the cumulative effect of the radial velocity across these approximations positive or negative?

An immediate benefit of this approach is that we can view the radial contribution of the

transient behavior of solutions. In the eigenvalue approach, we tried to “factor out” the radial

behavior of solutions by looking at the eigenvalues. Though the eigenvalues do characterize

asymptotic radial movement, they only characterize the transient radial movement for the

eigensolutions. Even the reactivity and reverse reactivity only characterize the possible

extremes of transient radial movement. When we take the radial velocity approach, we are

going directly to the source of radial movement and trying to determine the overall time-τ

radial displacement. Instead of asking what eigenvalues say about the asymptotic radial

movement of each approximation or even the extremes of the transient radial movement, the

radial velocity approach examines the full array of possibilities for transient radial movement

at each approximation.

4.2 Calculating the Radial and Tangential Components

of Velocity

Given a two-dimensional autonomous linear system dX
dt

= AX, there are multiple ways

to compute the radial and tangential components of the velocity. One approach is to think

geometrically about how the velocity vector AX can be decomposed into perpendicular

components in the radial direction and in the tangential direction as in Figure ??. The

corresponding calculation is to take the dot product of AX with a unit vector in the radial

direction and a unit vector in the tangential direction to find the projection of the velocity

onto these vectors.

The second approach to finding the radial and tangential velocity is to think in terms

of polar coordinates. Recall that in polar coordinates we write X = (x, y) = (r cos θ, r sin θ).

The radial velocity is the rate of change, dr
dt

, of the radius r. The tangential velocity is
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related to the angular velocity dθ
dt

; the difference is that the tangential velocity is measured

in terms of distance in state space, whereas the angular velocity is measured in terms of

angular distance. We can convert between these two velocities easily: for a point with radius

r, the tangential velocity is equal to r times the angular velocity (calculated using radians).

To compute the the radial and tangential velocity now we will use the latter approach.

Lemma 4.1. Given a two-dimensional autonomous linear system dX
dt

= AX, the radial

component of the velocity is given by:

dr

dt
=
r

2
((a+ d) + (a− d) cos 2θ + (b+ c) sin 2θ)

and the tangential component of the velocity is given by:

r
dθ

dt
=
r

2
((c− b) + (d− a) sin 2θ + (b+ c) cos 2θ)

Proof. Writing the system with X in Cartesian coordinates, we have:

dX

dt
=

(
dx
dt
dy
dt

)
=

(
a b

c d

)(
x

y

)

With X in polar coordinates this is:(
d
dt

[r cos θ]
d
dt

[r sin θ]

)
=

(
a b

c d

)(
r cos θ

r sin θ

)
=

(
ar cos θ + br sin θ

cr cos θ + dr sin θ

)

Differentiating the left hand side, yields a system of linear equations for dr
dt

and dθ
dt

:

d

dt
[r cos θ] = ar cos θ + br sin θ

=⇒ dr

dt
cos θ − r sin θ

dθ

dt
= ar cos θ + br sin θ, and

d

dt
[r sin θ] = cr cos θ + dr sin θ

=⇒ dr

dt
sin θ + r cos θ

dθ

dt
= cr cos θ + dr sin θ

Solving this system for dr
dt

and dθ
dt

, we have:

dr

dt
=
r

2
((a+ d) + (a− d) cos 2θ + (b+ c) sin 2θ)

dθ

dt
=

1

2
((c− b) + (d− a) sin 2θ + (b+ c) cos 2θ)

and the lemma follows since the tangential velocity is given by r dθ
dt

.
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Notice that dθ
dt

is independent of the radius and thus the tangential velocity depends on

the radius only for a scaling factor. Similarly, the radial velocity, dr
dt

, depends on the radius

only for a scaling factor. This is a consequence of the linearity of the system. As such, we can

characterize the radial and tangential transient movement of all solutions while restricting

attention to the unit circle.

Definition 4.2. Given a two-dimensional autonomous linear system dX
dt

= AX, we let

R : R→ R denote the radial component of the velocity on the unit circle, given by:

R(θ) =
dr

dt

∣∣∣
r=1

=
1

2
((a+ d) + (a− d) cos 2θ + (b+ c) sin 2θ)

and we let T : R → R denote the tangential component of the velocity on the unit circle

given by:

T (θ) = r
dθ

dt

∣∣∣
r=1

=
1

2
((c− b) + (d− a) sin 2θ + (b+ c) cos 2θ)

Now that we have equations for the radial and tangential components of the velocity,

we can use graphical and algebraic manipulation to observe certain properties about them.

We will start by underlining some of the intrinsic properties of R and T we can draw from

their algebraic form.

First we notice that both the radial and tangential components have a vertical shift

which is independent of the position on the unit circle: R is shifted up by 1
2
(a + d) and

T is shifted up by 1
2
(c − b). We will consider these vertical shifts to be the baseline radial

movement in the case of R and the baseline rotation in the case of T .

Next we describe, in Theorems 4.3 and 4.4, the tight relationship between R(θ) and

T (θ).

Theorem 4.3. For a two-dimensional autonomous linear system dX
dt

= AX, if the matrix

A = ( a bc d ) has a 6= d or b 6= −c, then the radial and tangential components of the velocity on

the unit circle have the following properties:

(i) R(θ) and T (θ) are both sinusoidal functions with period π.

(ii) The oscillations of R(θ) and T (θ) have the same amplitude.

(iii) The oscillations of T (θ) are related to the oscillations of R(θ) by a phase shift of π
4
.
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Proof. To prove property (i), notice that the modulation of both the radial and tangential

velocity along the unit circle is dependent on two trigonometric functions. In both cases,

the trigonometric functions have matching periods of π. This means that the sum of the

trigonometric functions will also be periodic with period π. Thus, R and T are sinusoidal

functions with period π. This is not unexpected since we know that the linearity of the

underlying system creates symmetry across the origin. Finally, we note that the hypotheses

on the coefficients of A ensure that R and T are not constant functions.

To prove properties (ii) and (iii), we must first notice the similarities between the coeffi-

cients in R and T . The sine coefficient of T is equal to the negative of the cosine coefficient

of R, while the cosine coefficient of T is equal to the sine coefficient of T . This observation

is highlighted in the equations below:

R(θ) =
1

2
(a+ d) +

1

2

(
(a− d) cos 2θ + (b+ c) sin 2θ

)
T (θ) =

1

2
(c− b) +

1

2

(
− (a− d) sin 2θ + (b+ c) cos 2θ

)
Recall that sine and cosine are equivalent up to a phase shift:

sin(x) = − cos(x+ π
2
) and cos(x) = sin(x+ π

2
)

Using this trigonometric identity, we can show that the modulation of T is, in fact,

equivalent to the modulation of R shifted by π
4
.

sin(2θ) = − cos(2θ + π
2
) = − cos(2(θ + π

4
))

cos(2θ) = sin(2θ + π
2
) = sin(2(θ + π

4
))

and thus

R(θ) =
1

2
(a+ d) +

1

2
((a− d) cos 2θ + (b+ c) sin 2θ)

T (θ) =
1

2
(c− b) +

1

2

(
(a− d) cos(2(θ+π

4
)) + (b+ c) sin(2(θ+π

4
))
)

Properties (ii) and (iii) follow directly from these equations.

Summarizing: in the case when either a 6= d or b 6= −c, R and T both take the form

of sinusoidal functions of period π, with the same amplitude, but translated vertically by
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different amounts. They are related to each other by a phase shift of π
4
, so that each reaches

its extremes as the other passes through its midpoint.

In Theorem 4.4 we show that in the remaining case, when a = d = α and b = −c = −β,

the radial and tangential components of the velocity are constant for all θ. These dynamics

are to be expected since matrices of the form
(
α −β
β α

)
are in canonical form, and yield systems

that spiral around the origin with perfect rotational symmetry [5].

Theorem 4.4. Consider a matrix A of the form
(
α −β
β α

)
. Then the radial velocity is equal

to α and tangential velocity is equal to β for all points on the unit circle.

Proof. We will prove this claim from two perspectives.

Firstly, the result follows immediately from Definition 4.2:

R(θ) =
1

2
(α + α) +

1

2
((α− α) cos 2θ + (−β + β) sin 2θ) = α

T (θ) =
1

2
(β + β) +

1

2

(
(α− α) cos(2(θ + π

4
)) + (−β + β) sin(2(θ + π

4
))
)

= β

Secondly, from a dynamical systems perspective, we know that the general solution to

linear systems of this form is given by:

X(t) = c1e
αt

(
cos βt

− sin βt

)
+ c2e

αt

(
sin βt

cos βt

)
Thus solutions spiral uniformly around the origin with angular velocity β and normalized

radial velocity α. Recall from Definition 4.2 that the tangential velocity T (θ) on the unit

circle is equal to the angular velocity. Similarly, the normalized radial velocity is precisely

the radial velocity on the unit circle.

Corollary 4.5. Consider a skew-symmetric matrix A =
(
0 −β
β 0

)
. Then the radial velocity is

equal to zero and the tangential velocity is equal to β for all points on the unit circle.

In the previous section we discussed how the radial and tangential approach has the

benefit of extracting transient radial behavior of the system from the rest of the dynamics.

From Theorems 4.3 and 4.4 we now know that the radial and tangential approach also reveals

an intriguing underlying structure relating the transient radial and tangential behavior, as

illustrated in Figure 4.2. In the next section we will explore how this structure relates to the

reactivity and reverse reactivity defined in Chapter 3.
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Figure 4.1: The horizontal red line shows the midpoint of the radial velocity os-

cillations. Similarly the horizontal blue line shows the midpoint of the tangential

velocity oscillations. The vertical dashed lines show that the extremes of each

oscillation occur at the same time as the midpoint of the other oscillation.

4.3 Radial Velocity and the Hermitian Matrix

Recall that reactivity is defined as the maximum radial velocity on the unit circle of a

linear system dX
dt

= AX. In Definition 3.7, we wrote:

ρ(A) = max
||X0||=1

{
d||X||
dt

∣∣∣
t=0

}
Now, with our new notation, we can write:

ρ(A) = max
0≤θ<π

{R(θ)}

Similarly, reverse reactivity is defined as the minimum radial velocity on the unit circle

and can now be written:

σ(A) = min
0≤θ<π

{R(θ)}
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Recall from Theorems 3.11 and 3.13 that reactivity and reverse reactivity are calculated

by finding the eigenvalues of the Hermitian part of the coefficient matrix A. This implies

that the asymptotic characteristics of the linear system corresponding to Hermitian part

of A have some relationship with the transient radial and tangential behavior of the linear

system corresponding to A.

This section aims to break down that relationship so as to create an elegant framework

for understanding Theorems 3.11 and 3.13 and for analytically constructing R(θ) and T (θ).

To begin, let’s formalize the systems we are working with. Recall from Definition 3.10

that the Hermitian and antihermitian parts of A form an arithmetic decomposition of A into

symmetric and skew-symmetric components:

A = H(A) + S(A)

Note that this decomposition can also be applied to the linear system corresponding to A:

dX

dt
= AX = H(A)X + S(A)X (4.1)

Thus we can think about the dynamics that arise from the linear systems corresponding to

H(A) and S(A) as components of the dynamics arising from Equation 4.1.

dX

dt
= H(A)X (4.2)

dX

dt
= S(A)X (4.3)

In particular, Lemma 4.6 tells us that we can also think about the radial and tangential

components of 4.2 and 4.3 forming a decomposition of the radial and tangential components

of 4.1.

Lemma 4.6. Let A ∈M2(R) be a real 2×2 matrix. Let RH and TH represent the radial and

tangential components of the Hermitian system given by Equation 4.2. Similarly let RS and

TS represent the radial and tangential components of the skew-symmetric system by Equation

4.3. For all θ ∈ [−π, π],

RH(θ) +RS(θ) = R(θ)

TH(θ) + TS(θ) = T (θ)
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Proof. Let the Hermitian matrix H(A) be represented by the the matrix
(
aH bH
cH dH

)
and the

skew-symmetric matrix S(A) be represented by the the matrix
(
aS bS
cS dS

)
. Then, because

A = H(A) + S(A), we can write:

(
a b

c d

)
=

(
aH + aS bH + bS

cH + cS dH + dS

)

Notice that the radial velocity (as given in Definition 4.2) is linear with respect to the

coefficients a, b, c, and d. Thus the sum RH(θ) +RS(θ) can be refactored:

RH(θ) +RS(θ) =
1

2
((aH + dH) + (aH − dH) cos 2θ + (bH + cH) sin 2θ)

+
1

2
((aS + dS) + (aS − dS) cos 2θ + (bS + cS) sin 2θ)

=
1

2
((a+ d) + (a− d) cos 2θ + (b+ c) sin 2θ) = R(θ)

The second claim follows similarly.

Now that we know the dynamics arising from H(A) and S(A) sum to the dynamics of

A, we want to know what kind of dynamics each component of the decomposition extracts

from the dynamics of A. We already know from Theorems 3.11 and 3.13 that the eigenvalues

of H(A) reveal the maximum and minimum radial velocity. Let’s construct some intuition

about what drives this relationship by using our radial and tangential framework.

To begin, we ask the question: how do our eigenvalues and eigenvectors fit into this

approach? We answer this question in the following three results.

Lemma 4.7. Let A ∈ M2(R). Consider the autonomous linear system dX
dt

= AX. If there

exists θv ∈ [0, π] such that T (θv) = 0, then for all r ∈ R, V =
(
r cos θv
r sin θv

)
is a real eigenvector

with real eigenvalue R(θv).

Proof. Suppose that for some θv ∈ [−π, π], T (θv) = 0. Let V =
(
cos θv
sin θv

)
. Then, since there

is no tangential component of the velocity, dV
dt

= AV is entirely in the radial direction. This

means that the radial velocity is equal to the magnitude of the velocity at V :

R(θv) = ||AV ||
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Similarly, because the velocity is only radial, we can write:

dV

dt
= R(θv)V

Thus V is a unit eigenvector with eigenvalue λ = R(θ).

Because real eigenvectors lie along a line, this also means that any vectors rV =
(
r cos θv
r sin θv

)
are eigenvectors with the same eigenvalue R(θv).

Lemma 4.7 says that anytime T (θ) = 0, we have a real eigenvector with angle θ and

real eigenvalue λ = R(θ). In the next lemma we show that the converse is also true.

Lemma 4.8. Consider a system dX
dt

= AX such that A ∈M2(R) has real eigenvectors V1, V2

and eigenvalues λ1 6= λ2. Let θ1, θ2 be the angles corresponding to the eigenvalues. Then

T (θ1) = T (θ2) = 0, R(θ1) = λ1 and R(θ2) = λ2

Proof. Consider V1. Since eigenvectors are only unique up to scalar multiplication, we can

assume, without loss of generality, that ||V1|| = 1. Since V1 is an eigenvector we can write

its velocity as
dV1
dt

= AV1 = λ1V1

Note that the radial direction at a point X is the vector from 0 to X. Thus, since the velocity

at V1 is in the direction of V1, the velocity is the radial velocity. So we have that T (θ1) = 0

and R(θ1) = ||λ1V1|| = λ1.

The same argument can be applied to the second real eigenpair.

Thus, for systems with real eigenvalues and eigenvectors, the eigenpairs can be found

in our radial and tangential approach by looking for where T (θ) = 0. We can’t necessarily

“find” complex eigenvectors and eigenvalues in the same way, however our result for real

eigenpairs leads directly to the result that systems with complex eigenvalues and eigenvectors

can never have T (θ) = 0:

Corollary 4.9. Let A ∈M2(R). Consider its corresponding linear system dX
dt

= AX. A has

complex eigenvector and eigenvalues if and only if T (θ) 6= 0 for all θ ∈ [0, π].

Proof. The forward direction is the contrapositive of Lemma 4.7: if A doesn’t have real

eigenvectors and eigenvalues, then T (θ) cannot have zeros.
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The backward implication is the contrapositive of Lemma 4.8: if T (θ) has no zeros,

then A cannot have real eigenvalues and eigenvectors.

Corollary 4.9 is consistent with our observation of complex systems in canonical form

from Theorem 4.4. Since the tangential velocity can never equal zero, it can never switch

sign. Solutions spiral entirely clockwise or entirely counter clockwise in the phase plane.

Now that we have an understanding of how the eigenvalues and eigenvectors of a sys-

tem appear in the radial and tangential approach, we want to uncover the role that the

eigenvalues of the Hermitian play. Let’s start by considering what properties the Hermi-

tian/antihermitian decomposition posses in particular. Recall that the Hermitian part H(A)

is a symmetric matrix and the antihermitian part S(A) is a skew-symmetric matrix.

Corollary 4.5 characterizes the radial and tangential velocities of a system whose co-

efficient matrix is skew-symmetric like S(A). By this corollary, we know that the system

corresponding to S(A) (given in Equation 4.3) has zero radial velocity and constant tangen-

tial velocity. This is seen for the matrix A =
( −0.21 −0.075
−0.3 −0.27

)
in Figure 4.3

Now let’s use our radial and tangential framework to characterize some special properties

of symmetric matrices.

Lemma 4.10. If A ∈M2(R) is a symmetric matrix, then

(i) A has real and orthogonal eigenvectors,

(ii) and A has real eigenvalues ρ = max{R(θ)} and σ = min{R(θ)}.

Proof. Suppose that A is symmetric. Then we can write A = ( a bb d ).

So T (θ) becomes:

T (θ) = 1
2

((b− b) + (a− d) cos 2θ + (b+ b) sin 2θ)

= 1
2

(a− d) cos 2θ + b sin 2θ

We observe that T is sinusoidal with period π and has no vertical shift. In other words,

T crosses the θ axis every π
2

radians. Let θ1 and θ2 = θ1 + π
2

represent the angles in [0, π]

for which T (θ) = 0.
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By Lemma 4.7, A has real eigenvectors V1 and V2 corresponding to θ1 and θ2 with real

eigenvalues R(θ1) andR(θ2). Because θ2 = θ1+ π
2
, the eigenvectors V1 and V2 are orthogonal.

This proves statement (i).

To prove statement (ii), note again that θ1 and θ2 are where T passes the middle of its

oscillation. Since, by Theorem 4.3, T (θ) and R(θ) are related by a phase shift of π
4
, we know

that θ1 and θ2 correspond to the extremes of the radial velocity R. Thus the real eigenvalues

of A are the extremes of the radial velocity: ρ = max{R(θ)} and σ = min{R(θ)}.

We now have a way of characterizing both the Hermitian part H(A) and the antiher-

mitian part S(A) within our radial and tangential approach (see Figure 4.3). With these

characterizations, we are now able to give an alternative proof of Theorems 3.11 and 3.13

using our new framework.

Theorem 4.11. Let A ∈ M2(R). Consider the associated autonomous linear differential

equation dX
dt

= AX. The maximum and minimum radial velocity on the unit circle are given

by the eigenvalues of the Hermitian part H(A).

Proof. Consider the decomposition of A into the Hermitian (symmetric) and antihermitian

(skew-symmetric) parts: A = S(A) + H(A). As in Lemma 4.6 let RH , RS, TH and TS be

the radial and tangential components of H(A) and S(A) respectively.

By Lemma 4.6, we have that RH(θ)+RS(θ) = R(θ). But, by Corollary 4.5, RS(θ) = 0.

Thus RH(θ) = R(θ).

Since H(A) is symmetric, we know by Lemma 4.10 that its eigenvalues are the extremes

of RH(θ). Since RH = R, this means that the eigenvalues of H(A) give the extremes of the

radial velocity on the unit circle according to the dynamics of A.

Though Theorem 4.11 does not present new results, it does highlight the elegance of the

Hermitian/antihermitian decomposition when viewed in the radial and tangential framework.
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Figure 4.2: The radial velocity of S(A) (shown in pink) is zero and the tangential

velocity of S(A) (shown in light blue) is constant. The tangential velocity of

H(A) (shown in dark blue) is centered around the origin. The radial velocity of

H(A) (shown in dark red) is the same as the radial velocity of A (see Figure 4.2).

4.4 Applying the Radial Velocity Approach

We developed this radial and tangential velocity approach to better understand the

transient behavior of any given autonomous linear system dX
dt

= AX. We saw through

Sections 4.2 and 4.3 that the transient behavior of a linear system decomposed into its

radial and tangential components has incredible structure with deep connections to the

Hermitian/antihermitian decomposition of the coefficient matrix A. In the following theorem

we will apply all of this structure to re-write the radial and tangential velocities in terms of

the eigenvalues and eigenvectors of the Hermitian part H(A) and antihermitian part S(A)

of the coefficient matrix A.

Theorem 4.12. Given an autonomous linear system dX
dt

= AX, consider the radial and

tangential components, R(θ) and T (θ), of the velocity on the unit circle parameterized by
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the angle θ. We can write

R(θ) = 1
2
(ρ+ σ) + 1

2
(ρ− σ) cos(2(θ − θρ)) (4.4)

T (θ) = ω − 1
2
(ρ− σ) sin(2(θ − θρ)) (4.5)

where ρ = max{Λ(H(A))} is the reactivity, σ = min{Λ(H(A))} is the reverse reactivity,

θρ is the angle corresponding to the eigenvector of H(A) with eigenvalue ρ, and ω is the

constant rotation arising from dX
dt

= S(A)X.

Proof. First, recall from Theorem 4.3 that R(θ) and T (θ) are sinusoidal with period π. Thus

we can write them in the form:

M + A sin(2(θ − θ0)) or M + A cos(2(θ − θmax))

where M is the midpoint or vertical shift of the oscillation, A is the amplitude of the

oscillation, θ0 is the angle for which the oscillation increases through the midpoint, and

θmax is the angle for which the oscillation passes through the maximum.

From Theorem 4.3 we also know that R(θ) and T (θ) have the same amplitude and that

T (θ) is related to R(θ) by a phase shift of π
4
. Thus if we write:

R(θ) = MR + A cos(2(θ − θmax(R)))

then we can also write:

T (θ) = MT + A cos(2((θ + π
4
)− θmax(R)))

= MT − A sin(2(θ + θmax(R)))

By Theorem 4.11, the eigenvalues of H(A) are the maximum and minimum values of

R(θ). These values are already defined as the reactivity ρ and the reverse reactivity σ.

Let the angles corresponding to the eigenvectors of H(A) be θρ and θσ respectively. Note

that θmax(R) = θρ. Also note that the vertical shift of the oscillations is the average of the

extremes ( ie. 1
2

(ρ+ σ)), and the amplitude of the oscillations is half the distance between

the extremes (ie. 1
2

(ρ− σ)). Thus we can now write:

R(θ) = 1
2
(ρ+ σ) + 1

2
(ρ− σ) cos(2(θ − θρ))

T (θ) = MT − 1
2
(ρ− σ) sin(2(θ − θρ))

Finally, we can find MT in terms of the dynamics of S(A) since:
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1. T (θρ) = MT since R and T are related by a phase shift of π
4

(Theorem 4.3),

2. TH(θρ) = 0 since θρ corresponds to an eigenvector of H(A) (Lemma 4.8),

3. and TH(θρ) + TS(θρ) = T (θρ) (Lemma 4.6).

Putting these three facts together: MT = TS(θρ).

We can characterize this further since S(A) is a skew-symmetric matrix of the form

( 0 −ω
ω 0 ) whose corresponding dynamics have TS(θ) = ω (by Corollary 4.5). Recall that since

S(A) is skew-symmetric, the corresponding system dX
dt

= S(A)X has solutions that stay at

a constant radial distance from the origin but rotate with constant angular velocity ω.

With this last piece of information, we can write:

R(θ) = 1
2
(ρ+ σ) + 1

2
(ρ− σ) cos(2(θ − θρ))

T (θ) = ω − 1
2
(ρ− σ) sin(2(θ − θρ))

as desired.

Note that this characterization works even in the special case where A =
(
α −β
β α

)
, since

H(A) = ( α 0
0 α ) has eigenvalues with algebraic multiplicity of two (ie. ρ = σ = α). This

means that the sinusoidal terms in the above equations would zero coefficients and we would

be left with

R(θ) = ρ = σ = α

T (θ) = ω = β

as desired.

Equations 4.4 and 4.5 give a satisfying way to representR and T in a way that explicitly

relates them to the eigenvalues and eigenvectors of the Hermitian/antihermitian decompo-

sition. This provides a way of representing R and T via a handful of symbolic calculations

that is perhaps more meaningful than using the individual coefficients of the matrix A.

What does this give us? Remember that our goal is to characterize the transient be-

havior of autonomous linear systems so that we can understand how transient contributions

piece together to create the accumulated behavior of the variational equation. In this chap-

ter we have been thinking about the radial and tangential components of the velocity for
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a single autonomous linear system. To extend this approach to how autonomous linear

systems may be “strung along” non-autonomously, we can think about the time-dependent

radial and tangential velocities R(θ, t) and T (θ, t) of a non-autonomous linear system (like

the variational equation). By linearity, the time-dependent radial and tangential velocities

at each time t are equivalent to the radial and tangential velocities of the corresponding

instantaneous linear system. We can then write:

R(θ, t) = 1
2
(ρ(t) + σ(t)) + 1

2
(ρ(t)− σ(t)) cos(2(θ − θρ(t)) (4.6)

T (θ, t) = ω(t) − 1
2
(ρ(t)− σ(t)) sin(2(θ − θρ(t))) (4.7)

Viewing the variational equation in this way gives rise to a list of natural questions

about how to characterize the change in possible transient contributions over time.

1. How does ρ(t) change on the interval t ∈ [0, τ ]? Is it always positive or always negative?

Can we characterize ∂ρ
∂t

or
∫ τ
0
ρ(t)dt? Does the latter provide a bound for the overall

radial repulsion on the interval [0, τ ]?

2. How does σ(t) change on the interval t ∈ [0, τ ]? Is it always positive or always negative?

Can we characterize ∂σ
∂t

or
∫ τ
0
σ(t)dt? Does the latter provide a bound for the overall

radial attraction on the interval [0, τ ]?

3. How does θρ(t) change on the interval t ∈ [0, τ ]? That is, how is the reactive direction

rotating in time? Can we characterize ∂θρ
∂t

?

4. How does ω(t) change on the interval t ∈ [0, τ ]? That is, how is the average tangential

velocity changing in time? Can we characterize ∂ω
∂t

?

Addressing each of these questions would help us to understand how transient behavior

is “strung along.” Conjecture 3.5 would have that the concerted transient behavior all along

the equilibrium trajectory is represented by the asymptotic classifications of each instan-

taneous linearization. We have proved in Theorems 3.20 and 3.22 that the accumulated

asymptotic classification does characterize the accumulated transient behavior if the tran-

sient behavior is always the same as the asymptotic classification. Now we are asking: if

the transient behavior can differ from the asymptotic classification, in what way does the

transient behavior of the instantaneous linearizations accumulate? In particular, we want

to know if it is possible for transient behavior that differs from the asymptotic behavior to
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accumulate to yield an asymptotic classification of the non-autonomous system that also

differs from the asymptotic behavior of all the instantaneous components. If this is possible,

and we can prove the existence of a variational equation with this feature, then we will have

disproved Conjecture 3.5.

In the next chapter we will use the radial and tangential velocity approach to construct

an example of a non-autonomous linear differential equation that does have this property:

although each instantaneous autonomous linear component of the non-autonomous system

is asymptotically attracting, the non-autonomous system is not asymptotically attracting.
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Non-autonomous Accumulation of

Asymptotic Attraction can Yield Repulsion

5.1 Introduction

In Chapter 4, we developed the radial and tangential velocity approach to better un-

derstand how to characterize the transient behavior of linear systems. In Section 4.4, we

extended this approach to non-autonomous linear systems such as the variational equation.

Remember that our goal in all of this is to be able to characterize the stability of any given

flow-kick equilibrium. This involves being able to characterize the variational time-tau map

which linearizes the flow-kick map.

This thesis works to build analytic techniques for classifying the asymptotic stability of

the variational time-τ map. To work towards this goal we are now in the midst of answer-

ing the following question: does the asymptotic stability classification of each instantaneous

linearization on the equilibrium trajectory imply the asymptotic stability of the variational

equation? That is, can we judge the stability of a flow-kick equilibrium based purely on the

eigenvalues of the instantaneous linearizations about points on its equilibrium trajectory?

Conjecture 3.5 posits that the answer to both of these questions is yes. At the moment it is

not obvious whether the conjecture is true or false. On the one hand, we have found criteria

under which the conjecture does hold (Theorems 3.21 and 3.23), and we have yet to find a

counterexample to disprove it. On the other hand, we also know that the instantaneous lin-

earizations along the equilibrium trajectory contribute transient behavior to the variational
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equation, and in some cases, such as reactive attracting systems, the transient behavior may

differ from its asymptotic classification. In particular, we can conceive of a non-autonomous

system composed of instantaneous reactive attracting linearizations in which the positive ra-

dial transient behavior accumulates so as to create asymptotic repulsion in the time-τ map

of the non-autonomous system. In the next section we will construct an example of such a

system. In Section 5.3, we will draw what conclusions we can from this constructed example

and propose new research directions that will contribute to the further pursuit of our goal.

5.2 Example with positive radial velocity accumulation

In this section, we will construct an example which illustrates that the positive radial

velocity of reactive systems can accumulate endlessly in a non-autonomous linear system

leading to instability rather than attraction in the time-τ map. To begin our construction,

consider the reactive attracting linear system used in Example 3.6:

dX

dt
= AX =

(
−1 10

0 −3

)
X (5.1)

Note that A has two negative eigenvalues λW = −1 (the weak eigenvalue) and λS = −3

(the strong eigenvalue) with corresponding eigenvectors VW = (1, 0) and VS = (−10, 1).

Figure 5.2, shows the phase portrait for System (5.1). We see that most solutions

start by moving roughly parallel to the strong eigenline (highlighted in purple), which takes

them into the reactive region (highlighted in red). After they exit the reactive region, they

approach the origin along the weak eigenline (highlighted in cyan).

Viewed algebraically: every solution can be written as the linear combination of the

eigensolutions. Even though both components are decreasing (a result of two negative eigen-

values), the component corresponding to the strong eigenvector VS is decreasing so much

more rapidly than the component corresponding to the weak eigenvector VW , that solutions

travel rapidly along a curve whose slope is similar to that of VS until the strong eigenvector

component of the solution is so small that the rate of change of the weak eigensolution is

comparable to that of the strong eigensolution. Once the VS component is small enough, the

weak eigensolution has more of an influence on the solution curve, which then approaches

the origin along a curve tangent to the weak eigenline.
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Strong and Weak Eigenvectors of
Reactive Attracting Linear System

Figure 5.1: The phase plane of the reactive attracting linear system given by

Equation 5.1. The strong eigenvector is highlighted in green. The weak eigenvec-

tor is highlighted in purple. As solutions are attracted to the weak eigenvector,

the pass through the reactive region (in red) where they have positive radial

velocity.

We can formalize these radial and tangential dynamics using the radial and tangential

velocity framework.

Lemma 5.1. Consider a reactive attracting system dX
dt

= AX with eigenvalues λS < λW < 0

and corresponding eigenvectors VS and VW . Then the unique attracting angle of the system

(up to modulo π) is the angle θW corresponding to eigenvector VW .

Proof. Recall that
dθ

dt
= T (θ). (5.2)

Equation 5.2 is an autonomous one-dimensional differential equation for θ(t) telling us how

θ(t) evolves along solutions X(t) of the autonomous linear system dX
dt

= AX. By Theorem

4.3, T (θ) is sinusoidal with period π. By Lemma 4.7, T (θ) has zeros at θS, θW ∈ [0, π)

corresponding to eigenvectors VS and VW respectively. So θS and θW are the only equilibria

of the θ dynamics (modulo π).

The stability of the equilibria is given by the sign of dT
dθ

. We want to show that when

θ(t) is increasing for θ just below θW , and decreasing for θ just above θW . That is, we want

to show that T (θ) > 0 for θ just below θW , and T (θ) < 0 for θ just above θW . In other

words, we want to show dT
dθ

(θW ) < 0
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By Definition ??,

dT
dθ

= (a+ d)− 2R(θ) = tr(A)− 2R(θ)

Now, tr(A) = λS + λW . Thus 2λS < tr(A) < 2λW , since λS < λW . So

dT
dθ

(θW ) = tr(A)− 2R(θW ) = tr(A)− 2λW < 0

dT
dθ

(θS) = tr(A)− 2R(θS) = tr(A)− 2λS > 0

Thus, modulo π, the angle θS corresponding to the strong eigenvector VS is the repelling

equilibrium of Equation 5.2, and all other initial values of θ are attracted to θW . So for all

trajectories of the system dX
dt

= AX that are not on the strong eigenline, θ(t) converges to

θW

Lemma 5.2. Consider a reactive attracting system dX
dt

= AX with eigenvalues λS < λW < 0

and corresponding eigenvectors VW and VS. If a solution X(t) = (r(t), θ(t)) has an initial

condition X0 = (r0, θ0) sufficiently close to VW , then dr
dt

∣∣∣
X(t)

< 0 for all t > 0.

Proof. Let θW be the angle corresponding to the weak eigenvector VW . Consider the solution

X(t) = (r(t), θ(t)) with initial condition X0 = (r0, θ0) sufficiently close to VW . By the

continuity of R(θ), there is some sufficiently small distance δ such that

|θ − θW | < δ =⇒ |R(θ)− λW | < |λW | = −λW

Suppose that X0 is sufficiently close to VW in the sense that |θ0 − θW | < δ. Then

|R(θ0)− λW | < −λW

If R(θ0) < λW , then R(θ0) < 0. So dr
dt

∣∣∣
X0

= rR(θ0) < 0.

If R(θ0) > λW , then we can write:

R(θ0)− λW < −λW

Thus dr
dt

∣∣∣
X0

= r0R(θ0) < 0.

Recall that by Lemma 5.1, θW is an attracting equilibrium of the autonomous one-

dimensional equation (5.2). We can therefore choose our original δ sufficiently small so that

if |θ0 − θW | < δ, then for all t > 0,

d

dt

[
|θ(t)− θW |

]
< 0
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Figure 5.2: The radial and tangential components of the velocity for the reactive

attracting system given by Equation 5.1. Noticing that θ-axis is a phase line, we

see that solutions attracted to the weak eigenvector from the counterclockwise

direction pass through the reactive region where R(θ) is positive. Once solutions

get close enough to the weak eigenvector, however, R(θ) becomes negative again.

This means in particular that

|θ(t)− θW | < |θ0 − θW | < δ

Thus, by the same argument we used for θ0, we can show that dr
dt

∣∣∣
X(t)

= r(t)R(θt) < 0 for

all t > 0.

Seeing how these radial and tangential dynamics play out in the phase plane is supremely

helpful in developing intuition about what circumstances give rise to reactivity, and how we

might exploit a reactive autonomous system to maintain this positive radial velocity in a

non-autonomous system. We see in Figure 5.2 that because of the obtuse angle between the

eigenvectors, the positive radial velocity arises as the solutions “seek out” the weak eigenline.

Once they get sufficiently close to the eigenline, their radial velocity becomes negative again.

This provides the key to constructing our non-autonomous system. To force a solution

to continue having positive radial velocity, we will rotate system (5.1) so that the attracting

angle θW keeps moving away from the solution curve. We will choose the speed of rotation

so that solution curves are trapped in the region of positive radial velocity in pursuit of θW ,
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never getting close enough to regain negative radial velocity, and therefore traveling ever

further from the origin.

We therefore construct a non-autonomous linear system by taking the reactive system

in Equation 5.1 as a base and conjugating it by time-dependent rotation with rotational

velocity κ:

dX

dt
= A(t)X =

(
sinκt − cosκt

cosκt sinκt

)(
−1 10

0 −3

)(
sinκt − cosκt

cosκt sinκt

)−1
X (5.3)

For each t the matrix A(t) inherits the same eigenvalues as A, and at any instant in

time α, the phase portrait of the autonomous linear system

dX

dt
= A(α)X (5.4)

is the phase portrait of system (5.1) rotated counterclockwise by angle κα. Since we want

the weak eigenvector to rotate in the clockwise direction over time, away from the reactive

region, we’ll choose a rotational velocity κ < 0.

Now, for the positive radial velocity to accumulate in our construction, we need to choose

the rotational speed |κ| to be fast enough that solutions can never catch up with θW (t) but

slow enough that solutions get stuck in the reactive region of positive radial velocity. The

very special structure of our construction allows us to use the radial and tangential approach

to determine upper and lower bounds for κ.

To understand the radial and tangential velocities in the non-autonomous system, we

change to the frame of reference of the rotating coordinates. In that frame, at each moment

in time, the dynamics are given by system (5.1) and the tangential and radial velocities are

the same as for system (5.1). However, as the frame rotates, the relative measure of θ is

decreased by the amount of rotation, κt, and so the angular velocity dθ
dt

is decreased by κ.

In other words, because of the very special structure of our construction and the uniform

rotation speed, in the rotating frame of reference the radial and tangential dynamics of the

non-autonomous system 5.3 are governed by the autonomous differential equations

1

r

dr

dt
= RA(θ)

dθ

dt
= TA(θ)− κ

where RA(θ) and TA(θ) denote the radial and tangential velocities of system (5.1) on the

unit circle.
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Figure 5.3: Graphs of RA(θ) (red) and dθ
dt

= TA(θ) + 4 (blue), where RA(θ) and

TA(θ) are the radial and tangential velocities of system (5.1) on the unit circle.

To fix ideas, consider the case when κ = −4. Figure 5.2 shows the graphs of RA(θ) and
dθ
dt

= TA(θ) + 4. Now we can apply the same ideas as in the proof of Lemma 5.1 to analyze

the tangential dynamics, and then draw conclusions for the radial dynamics.

Whenever dθ
dt

= 0, we have an equilibrium angle, in the rotating frame of reference. The

angular equilibria correspond to invariant lines in the rotating frame of reference, akin to

eigenvectors in autonomous linear systems. When κ = −4, we find that there are angular

equilibria at θ = 0.19π and θ = 0.75π. In particular, θ∗ = 0.19π is an attracting equilibrium

angle since dθ
dt
< 0 when θ > 0.19π, and dθ

dt
> 0 when θ < 0.19π.

Because θ∗ = 0.19π is the only attracting equilibrium angle (modulo π), the asymptotic

radial behavior of almost all solutions to our non-autonomous system are determined by

R(θ∗). But R(θ∗) > 0! This is the whole point of our construction! It means that in the

rotating frame of reference, solutions with initial angle θ∗ move exponentially away from the

origin along the invariant line for all time. In other words, θ∗ is a direction of repulsion from

the origin. Even though the origin is attracting for each instantaneous autonomous snapshot

of this non-autonomous system, the transient reactivity accumulates to yield a direction of

pure repulsion from the origin.

Almost all other solutions converge to the invariant line with angle θ∗, and hence follow

the same motion away from the origin. The only exceptions are solutions with initial angle
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Figure 5.4: System as given in Equation 5.3. Initial value is X0 = (0.01, 2π
3

) in

polar coordinates.

at the other equilibrium θ = 0.75π. From Figure 5.2, we see that R(0.75π) < 0, and hence

solutions are attracted to the origin along this invariant line in the rotating frame of reference.

The repelling behavior also confirmed through numerical simulation. Figure 5.2 shows

the solution flow obtained by simulating the system for initial valueX0 with polar coordinates

(0.01, 2
3
π). The solution spirals away from the origin in the fixed frame of reference of the

coordinate axis, corresponding to convergence to the invariant line of repulsion in the rotating

frame of reference.

We now have an example of a non-autonomous linear system in which the reactivity

accumulates to yield trajectories of pure repulsion from the origin even though each of its

instantaneous autonomous systems is asymptotically attracting.

The next question is, can we observe this same repulsion when we consider the time-τ

map of this non-autonomous linear system? Certainly, yes! In the rotating frame of reference,

we have a direction of pure repulsion and a direction of pure attraction. The time τ map is

the linear autonomous map that results from following these dynamics over the time interval

[0, τ ]. Thus in the rotating frame of reference for one iteration of time-τ , θ = 0.19π is an

eigendirection with eigenvalue |λ| > 1 and θ = 0.75π is an eigendirection with eigenvalue

|λ| < 1. The eigenvalues and thus the stability classification persist in the fixed frame of

reference. Thus the origin is a saddle for the autonomous, linear time-τ map.

This is show through simulation for τ = 9π
32

. By Lemma 2.6, we know that the time-τ
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Figure 5.5: The orbit generated from the time-τ = 9π
32

map of the system given

in Equation 5.3 with seed X0 = (0.01, 2π
3

) in polar coordinates.

map of any non-autonomous linear system is a linear transformation. Thus we can find a

matrix representation of the time-τ map and confirm the asymptotic stability we observe by

checking the eigenvalues.

Simulating this system using standard numerical methods, we find that

Uτ (( 1
0 )) ≈

( −9.998
−2.001

)
and

Uτ (( 0
1 )) ≈

( −9.997
−2.003

)
Thus the time-τ map can be represented via

Uτ (X) ≈

(
−9.998 −9.997

−2.001 −2.003

)
X

The eigenvalues of this matrix are λ1 = −1.100 and λ2 = −0.002. Since |λ1| > 1 and

|λ2| < 1, by the criteria for discrete systems outlined in Table 3.1, the origin is a saddle

equilibrium of the discrete linear system generated by the time-τ map of Equation 5.3.
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We now have an example of a non-autonomous linear system for which the time-τ map

is unstable even though each of its instantaneous linear systems have negative eigenvalues.

Thus we have an example that shows that it is possible for the reactive positive radial

velocity of attracting linear systems can accumulate to exhibit instability if strung along in

a non-autonomous linear system for t ∈ [0, τ ].

5.3 Return to Conjecture 3.5, and Moving Forward

In Section 5.2, we were able to construct an example of a non-autonomous system

whose time-τ map has asymptotic behavior that differs from the asymptotic behavior of

each instantaneous linear system that composes it. The existence of a non-autonomous

system with these properties confirms that the distinction between transient and asymptotic

behavior is significant in the context of classifying the stability of time-τ maps of non-

autonomous linear systems. We now have evidence that stringing along the asymptotic

classification of instantaneous linear systems is not enough to classify their cumulative non-

autonomous dynamics.

The non-autonomous example we constructed does not, however, disprove Conjecture

3.5. To use this example as a counterexample for our conjecture, we would need to prove that

it can arise as the variational equation of a flow-kick equilibrium trajectory for some system
dX
dt

= F (X), flow time τ , and equilibrium trajectory γ(t,X∗). It is not obvious whether

there exists a flow-kick system for which the variational equation can have this pattern of

rotation, and, if such a flow-kick system does exist, it is not obvious how to find it.

One reason why determining whether Equation 5.3 can arise as a variational equation is

a non-trivial task is because of the constraints on the composition of a variational equation.

For a non-autonomous linear system dX
dt

= A(t)X to be a variational equation, we need the

following criteria to be met:

(i) There exists a vector field F ∈ C1 such that for all α ∈ [0, τ ], A(α) = D[F (X)] for

some X ∈ Rn.

(ii) Given the function X(t) that describes the points X(α) such that for all α ∈ [0, τ ],

A(α) = D[F (X(α))], X(t) must be a solution curve φ(t,X0) of dX
dt

= F (X) on t ∈ [0, τ ]

for some initial condition X0 = X(0) ∈ Rn.
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These seem to be strict criteria that, at the very least, make it hard to prove that

a non-autonomous linear system like Equation 5.3 is a variational equation. In fact the

criteria seem to be strict enough that they would impose a particular structure on variational

equations that may constrain the dynamic behavior. The questions arises: do these criteria

preclude the type of dynamic behavior that would allow for accumulated transient behavior

that differs from the asymptotic behavior at every instant?

We can start exploring the answer to this question by first breaking it into smaller, but

no less significant, questions:

• What kind of behavior do we observe in the variational equations of flow-kick systems

that we can simulate?

• What kind of behavior can we observe in variational equations for which the each

instantaneous linear approximation exhibits very positive reactivity?

• What kind of structures can we determine preclude the accumulation of transient

behavior that differs from the asymptotic behavior?

• The one example we have constructed of a non-autonomous linear system that accu-

mulates reactivity uses pure rotation. Are there other non-autonomous structures that

can allow for this accumulation?

To move forward in answering these questions, we are using numerical simulation (as

described in Section 3.1) to help build our intuition about what can happen in the variational

equation, and what seems not to happen in the variational equation. As we build up a library

of observations to address the first two questions, we will begin to develop analytic intuition

that will guide our exploration of the last two questions.

Though this phase of research is still ongoing, preliminary numerical observations show

that for flow-kick systems in which the underlying differential equation is a Lotka-Voltera

competition model (as in Example 3.4), even for equilibrium trajectories whose associated

attracting instantaneous linearizations have great amounts of reactivity, the variational time-

τ map is attracting. Instead of observing unstable variational time-τ maps, we have observed

partial accumulation of reactivity leading to reactive variational time-τ maps.

These preliminary results seem to suggest that, at least in Lotka-Voltera competition

models, accumulated reactivity can lead to reactive but not unstable variational time-τ maps.
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However, much work remains to be done before determining that this idea can be supported

analytically.
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