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Abstract 

To learn more about microbes and overcome the limitations of standard cultured 

methods, microbial communities are being studied in an uncultured stare. In such 

metagenomic studies, genetic matetial is sampled from the environment and sequenced 

using the whole-genome shotgun sequencing technique. This results in thousands of DNA 

fragments that need to be identified, so that the composition and inner workings of the 

microbial community can begin to be understood. Those fragments are then assembled into 

longer portions of sequences. However the high diversity present in an environment and the 

often low level of genome coverage achieved by the sequencing technology result in a low 

number of assembled fragments (contigs) and many unassembled fragments (singletons). 

The identification of contigs and singletons is usually done using BLAST, which finds 

sequences similar to the contigs and singletons in a database. An expen may then manually 

read these results and determine if the function and taxonomic origins of each fragment can 

be determined. 

In this thesis, an automated sysrem called Anacle is developed to annotate, following a 

taxonomy, the unassembled fragments before the assembly process. Knowledge of what 

proreins can be found in each taxon is built into Anacle by clustering all known proteins of 

that taxon. The annotation performances from using Markov clustering (MCL) and Self

Organizing Maps (SOM) are investigated and compared. The resulting prorein clusters can 

each be represented by a Hidden Markov Model (HMM) profile. Thus a "skeleton" of the 

taxon is generated with the profile HMMs providing a summary of the taxon's genetic 

content. The experiments show that (1) MCL is superior to SOMs in annotation and in 
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running time perfonnance, (2) Anacle achieves good perfonnance in taxonomic annotation, 

and (3) Anacle has the ability to generalize since it can correctly annotate fragments from 

genomes not present in the training dataset. These results indicate that Anacle can be vety 

useful to metagenomics projects. 
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Chapter 1: Introduction 

1.1 Introduction 

Relatively little is known about the majority of microbes despite the fact that they are 

virtually everywhere. This is largely due to their resistance to standard cultivation techniques 

[1]. In the case of viruses there is also no known conserved genetic element shared among 

them all, making it impossible to study the total viral diversity through a single conserved 

genetic marker. However, learning more about viruses and other microbes is desirable and 

would be incredibly useful, as they are major players in global marine biogeochemical cycles 

and genetic exchange [2]. For example, in the ocean approximately 50% of the CO2 fixed by 

photosynthesis each day ends up supporting the microbial community [3]. 

To overcome the limitations of standard cultured methods, microbial communities are 

being studied in an uncultured state. In such studies, genetic material is sampled from the 

environment, cloned, sequenced, and analyzed mathematically and algorithmically, as further 

described in Section 2.5. Rather than studying an individual genome, the collective microbial 

genomes of the community, called the meftJgenome, is studied. 

The computational analysis of a metagenomics project can be divided into two main 

steps. The first step is the assembly of the fragmenrs ideally into all the different genomes 

composing the microbial community. Current sequencing techniques normally target a single 

genome at a time. One example is the whole-genome shotgun sequencing technique (WGS). 

WGS produces an enormous amount of genome fragments. Afterward those fragments need 

to be assembled to get a clearer view of the genome. To do so, bioinformaticians have 

developed computer tools designed to help assemble these fragments into a continuous 
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genome. Although developed for single genomes, this sequencing method has been used to 

attempt to identify the entire metagenome of the microbial community. However, current 

assembly programs are optimized to assemble the genome of a single individual and not of 

an entire population, presenting a host of problems to be solved. It is clear that the assembly 

process needs to be adapted to the multi-genome problem. 

In the assembly step it is unrealistic to think that we could completely reconstruct alI the 

different genomes representing the biodiversity of the community. The number of sequences 

needed to cover all the different genomes is usually too large. Therefore, we will have, in 

most of the cases, only partial representations of the genomes. This fact will influence the 

subsequent step: the annotation. 

1.2 The Problem: Annotation 

The annotation process in a metagenome project seeks to identify assembled fragments 

(contigs) and the unassembled fragments (singletons) by comparing them to all known 

sequences found in a biological datahase. Current methods query the contigs and singletons 

against a database of known genes, such as GenBank', to find significant matches using a 

sequence comparison algorithm such as BLAST [4] further described in Section 3.1. 

Metagenomics projects give only portions of the different genomes present in the 

community. Partial genomes have a high probability of having only portions of genes. The 

high number of incomplete genes composing a metagenomic project and the fact that we 

target unknown genomes of an unknown abundance and diversity lead to very poor results 

'GenBank and other biological databases can be accessed here: 
http://www.ncbi.nIm.nih.gov/ 
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in the crucial step of annotation. Some studies show that up to 75% of the sequences in the 

uncultured sample do not match anything in the database significantly, leaving those 

fragments without annotation [2]. 

1.3 Contribution of this thesis 

In this context, the research described in this thesis seeks to annotate the metagenomic 

fragments before the assembly process. That is, we attempt to classify each fragment in a 

taxonomic structure. We thus aim to apply the machine learning methods of clustering and 

Hidden Markov Models (HMM), which have been used successfully in bioinformatics, to (1) 

reduce the number of unannotated fragments and (2) provide taxonomic annotation 

automatically. We show that the resulting system, which we call Anacle, leads to better 

results, in the sense that the annotation is more thorough and gives more information 

automatically than the current method. 

Furthermore we hypothesize that this taxonomic annotation will help, in a recursive 

process, the assembly of the genomes by first grouping together fragments under the same 

taxa. This will improve the assembly process by restraining the number of fragments to be 

assembled, allowing an assembly adapted for the presence of polymorphism. 

The work described in this thesis is part of a larger project being worked on by the 

Bioinformatics Laboratory (BiL) from the Information & Computer Science (ICS) 

department in collaboration with Dr. Grieg Steward from the Oceanography department at 

the Universiry of Hawai'i at Manoa that aims to improve metagenome assembly and 

annotation methods. 
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Chapter 2: Biology Background 

In this chapter we review the basic biological concepts of biological sequences and 

taxonomy. 

2.1 Biological S sf/lIsncss 

There are three main classes of biological sequences implicated in the storage, 

conversion, transmission, and expression of genetic information: (1) Deoxyribonucleic acid 

(DNA), (2) Ribonucleic acid (RNA), and (3) protein. These molecules are polymers formed 

from smaller molecules in a sequential manner. DNA and RNA are composed of nucleic 

acids, while proteins are composed of amino acids. Table 1 shows the "alphabet" of each 

class of biological sequences. Since these sequences are linear, we can represent a sequence 

as a string over irs respective finite alphabet. 

The linear order of molecules of a sequence is called its primary structure. Higher levels 

of structure are determined by the biophysical interactions of the molecules the sequence is 

composed of and by the interactions of the sequence to the environment. That is, the 

primary structore ultimately determines what the physical 3D structure of the molecule will 

be, as illustrated in the example protein folding in Figure 1. 
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0,,1\ R.t~1\ Prote in 

I'ucleic acid I-letter 1\ uclc ic acid I- letter Amino acid I-letter 

name name name name name name 

Alanine A 
Cysteine C 

Adenine A Adenine A Aspartic ac id 0 
Glmamic acid F 
Phenylalani ne r 
Glreine G 
Hisucti ne H 

T hymi ne T Uraci l Isoleucine I 
Lysine K 
L..eucine L 
~·lel hjoni ne 1\[ 

Asparagine N 
Guanine G Guanine G Pro line P 

Glutamine Q 
Argin ine R 
Serine S 
Threonine T 

Cytos ine C Cytosine C Valine V 
Trrpwphan W 

Tyrosine Y 
Table 1. Alphabe t of DNA, R:\A. and protein scyuences. 

Full names of the nucleic or amino ac id arc Listed along with thei r one ICLLer shorthand name. 

Figun:: 1. JUustration of pmtcin folding. 
This fif.,'1lre is from the public domain: http: //en,\\"ikipedia.org! wikd lmiwe- Protcjo folding pop . 
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2.1.1 DNA and RNA 

DNA was first isolated and discovered by Friedrich Miescher in 1869 [5] but it would 

not be known that it is the basis of heredity for a long rime to come. In the early 1900's 

Phoebus Levene studied DNA extensively and discovered that DNA is a linked string of 

nucleorides [6]. There are four types of nucleorides in DNA: cytosine (C), thymine (1), 

adenine (A), and guanine (G). A strand of DNA can therefore be represented by a string 

over a four-letter alphabet. A small example would be a string like "A TCAA TIG". It was 

then finally shown by Alfred Hershey and Martha Chase with their research on 

bacteriophages that DNA was indeed the generic material that biologist have long sought to 

find [7]. Some viruses alternatively use RNA as their basis of heredity. RNA is very similar to 

DNA but ,vith some differences, mostly notably of which is that thymine (1) is replaced 

with uracil (U). 

The nature of how DNA could be replicated was not understood until James Watson 

and Francis Crick, using Rosalind Franklin's X-ray diffraction images, discovered double 

stranded DNA's (dsDNA) double helix structure [8] illustrated in Figure 2. They deduced 

that between the two stands, "A" always paired with "T'2 and "G" always paired with "C". 

That is, the two strands are complementary. A way to replicate DNA now becomes clear: 

split the dsDNA into two separate strands and build the complement stand over both of 

them. The structure of DNA also tells us that it is directional, as denoted by what are called 

the 5' and 3' ends of the strand. That is, there is one correct way to read the sequence of 

nucleotides. For example if chemically we see 5'-G-A-T-T-A-C-A-3' then we know that the 

2Uracil (U) is the complement of adenine (A) for RNA strands. 
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strand is read from the 5' end to the 3' end as Gf\1TACA rather tban ACA1TAG. Also tbe 

complement of this D~A strand wou ld be 3'-C-T-A-A-T-G-T-S', and so would be read as 

TGTAATC since it was shown that complementary strands of dsDNA are aotipara lle!. 

Fihl1.lfC 2. The SlrUClUre of the D NA dOllblc helix. 
Cre:ncci by .\ lichacl Strock. Released under the C.i 1:OL. 

2.1.2 Protein Sequences 

Proteins are perhaps the most import,~nt substances in an organism. Their funcrions 

have a wide range: the storage and transport of other substances, communication bet:\veen 

different parts of an organism, to the defense of foreign substances 191. Despite trus 

diversity, all proteins are constructed fro m polymers of amino acids, call ed polypeptides. 

There arc 20 amino acids and thus polypeptides can be represented as a string over a 20-

letter alphabet (fable 1). The set of polypeptides of a protein interact chemically and fold 

into a 3D structure. It is this 3D structure tbat determines the protein's function . 

As mentioned earlier, the final 3D structure is primarily determined by the protein's 

primary strUCl1lre, wbich is simply its unique linear string of amino acids. One classic but 

extreme example of how a mod ification to d,e string can affect tbe final structure is 
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illustrated by hemoglobin. A single amino acid substirution at a particular position would 

rum the normally disk-shaped red blood cell into a sickle shape, a condition called sickle-cell 

disease [9]. While this is an extreme case but it illustrates the importance of the linear order 

of amino acids in determining the protein's 3D strucrure and thus function. 

Unforrunately it is not easy to detennine a protein's 3D strucrure and thus its function 

from just the primary strucrure. It has therefore become standard to infer protein function 

based on sequence similarity to a set of proteins of known function, as will be further 

described in Section 3.1. This works well, as the primary strucrure has a huge impact on the 

protein's strucrure. 

2.2 From DNA to Protein 

Biochemists have shown that proteins are the workhorse of organisms, providing the 

vast majority of an organism's functions and fearures. By contrast, geneticists have shown 

that DNA is the vehicle of inheritance-it is the physical substance that gets passed from 

parent to child. One may then find it surprising that the proteins themselves do not ditectly 

transfer from parent to child, but that only DNA does. Yet children are able to produce the 

same proteins as their parents and thus have the same traits. This caused some confusion in 

early biology and was finally solved with the discovery that genes in DNA can be translated 

into proteins [10]. Molecular biologists srudy the interaction of DNA, proteins, and other 

molecular substances and they provide the bridge between biochemistry and genetics. 

There is an intermediary step in the complex biological mechanisms that translate DNA 

to protein: the RNA. There are different forms of RNA: messenger RNA (mRNA), 

ribosomal RNA (rRNA), and transfer RNA (tRNA). We are mainly concerned with mRNA 
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here. mRNA is created from the complement of the coding DNA in a process called 

transcription. Thus mRNA is a copy of the gene. This RNA is called messenger RNA, as this 

mRNA travels in the cell to the actual location in which the protein translation will occur. In 

summary, information in the cell is passed from DNA to RNA and finally from RNA to 

protein. This is often called the central dogma of molecular biology (Figure 3). 

transcription translation 

DNA---+-RNA---+~ Protein 

Figure 3. Central dogma of molecular biology. 

Proteins are encoded into DNA, and thus RNA, by a non-overlapping triplet code called 

the genetic code. A triplet of nucleic acids is called a codon and its corresponding amino acid 

is known. Table 2 presents the 43 possible codons or 64 possible triplets. From those, 61 

encode for different amino acids and 3 force the end of the process (stop codon). As a result 

of this, there are 3 possible frames of translation for each DNA sequence fragment, as 

illustrated in Figure 4. When we have a complete gene it is easy to deduce the resulting 

protein since we know exactly where the protein starts, i.e. the frame of translation, however 

for a sequence fragment, the frame of translation is unknown. 

A DNA sequence usually encodes many proteins. In the case of dsDNA, both stands 

may have genes. So in the case of a sequence fragment, the origin of the strand is unknown 

so we need to consider 6 possible frames of translation (3 on one strand and 3 on the other) 

to deduce the 6 possible protein sequences. 
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2nd base 
U C A G 

1st base U UCU (F) UCU (5) UAU (y) UGU (C) 
UUC (F) VCC (5) VAC(y) UGe(C) 
OCA (L) VCA (S) UAA (Stop) UGA (Stop) 
UUG(L) UCG (S) CAG (Stop) VGG(W) 

C CUU (L) CCU (P) CAU (H) CGU (R) 
CUC (L) CCC (P) CAC (H) CGe (R) 
CUA (L) CCA (P) CAA (Q) CGA (R) 
CUG (L) CCG (P) CAG (Q) CGG (R) 

A AUU (I) ACU (T) AAU(N) AGU (S) 
AUC (I) ACC (T) AAC(N) AGe (S) 
AUA (I) ACA (I) AAA (K) AGA (R) 

AUG(M) ACG (T) AAG(K) AGG(R) 
G GUU (V) Gce (A) GAU (D) GGU(G) 

GUC (V) GeC (A) GAC(D) GGC (G) 
GUA (V) GCA(A) GAA (E) GGA (G) 
GCG (V) GCG CA) GAG (E) GGG(G) 
Table 2. Table of standard RNA codon,. 

This table shows the 64 codon' and the amino acid each codes for. Recall that the nucleotides U and Tare 
conceptually equivalent, so the above table can be used to translate DNA sequence, also. 

Note that the genetic code is not universal and may differ from species to species. 

AAGTGAGGACGCGAAGC 

AAG TGA GGA CGC GAA - KXGRE 

AGT GAG GAC GCG AAG - SEDAK 

GTG AGG ACG CGA AGC - VRTRS 
FIgUre 4. Three frame translation of DNA fragment. 

This example uses the genetic code specified in Table 2 and uses the letter X to represent Stop. 

Not all DNA are genes however, as there are sections of DNA with no known function. 

These noncoding DNA includes introns and intergenic DNA. In Eukaryotic DNA, introns 

are sections of DNA that are transcribed into RNA but later spliced out and missing from 

the final protein. The sections of DNA that produced the coding regions are called exons. 

The signals that mark the beginning of a gene and where the introns and exons lie are not 
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fully understood and is an area of open research that has lead to gene finding tools for use in 

genome projects. Thus the translation from DNA to proteins is a nontrivial matter. An 

example transcription of DNA to RNA and translation of RNA to protein is given in Figure 

5. 

DNA 
mRi"lA 
Protein 

TAC 
AUG 

M 

CGC 
GCG 

A 

GGC 
CCG 

P 

TAT 
AUA 

I 

TAC 
AUG 

M 

TGC 
ACG 

T 

CAG 
GUC 

V 

Figure 5. Example transcription and translation. 

2.3 LinnafJan Taxonol1lY 

GAA 
CUU 

L 

GGA 
CCU 

P 

ACT 
UGA 
Stop 

All living organisms are classified following many different taxonomic systems. The 

Iinnaean taxonomy that is still popular today is be described here. With this system species 

are classified in a ranked hierarchy. The lowest rank contains the individual species such as 

humans, Homo sapiens. The next rank in the hierarchy groups similar species into genera 

(singular: genus). Then in the next rank similar genera are grouped into families, and so on, 

as shown in Figure 6. The highest levels of the Linnaean taxonomy have changed over time 

and more recent proposals split all life into three domains [11]: Archaea, Bacteria, and 

Eukaryota. Archaea and Bacteria are two broad divisions of prokaryotes, simple single ceO 

organisms, while Eukaryota includes the more complex organisms such as those classified as 

animals and plants. 

11 



2.3.1 ICTV T axonomy 

Domain 

Kingdom 
--v 

Phylum 

Class 

Order 
--v 

Family 
--v 

Genus 

Species 

Figure 6. Linnean classification levels, 

Omitted from l .innaean taxonomy are vi ru ses, as they do no t fit the definiti on of "]jfe." 

Viruses are not cellu lar and do nOt reproduce using their own machinery, instead relying 

upon thei r host organi sm fo r such functions. The International Committee on Taxonomy of 

Viruses (lCTV) has devised a similar ranked hi erarchal classi fication simi lar to that of the 

Linnaea n system. The lCTV system in fact uses d,e same nami ng scheme as me lower levels 

of the Linnean system. 11,e highest level splits all viruses into different orders. Then each 

order is split into famili es, subfamili es, genera, and then finall y virus species. Figure 7 

illustrates the ICTV system with the species H uman herpesvimJ 1 (H HV -1). Our an notation 
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system, Anac1e, uses the ICIV virus taxonomy as it is popular and is used in sequence 

databases like GenBank to list a virus' classification. 

Domain: Virus 

2.4 G,nOf/J;tl 

L-. dsDNA virus, no RNA stage 
L-. Family: Herpesviridae 

L-. Subfamily: Alphaherpesvirinae 
L-. Genus: Simplexvirus 

L-. Species: Human herpesvirns 1 
Figure 7. Classification of HHV-1. 

Note that the taxon below the Domain rank is not marked as Order. 
Herpesvitidae is currendy not classified under an Order. 

The genome of an organism is its complete hereditary information contained in DNA 

(or in RNA in some viral cases). As described in the previous sections, the genome contains 

all the information about what proteins the organism may construct and thus what functions 

the organism may express. Genomics is the srudy of an organism's entire genome rather 

than just a single gene. A major aspect of genomics concerns the sequencing of the genes 

composing the genome. That is, biologists take the physical DNA or RNA and with the help 

of molecular biotechnology produce the sequence representation over the four-letter 

alphabet (e.p. ATGCTfCA ... ). This text representation of DNA is thus very convenient, 

allowing efficient communication, storage, and manipulation of genetic data for scientists, 

particularly for computer scientists. Once the sequenced genome is available, scientists can 

then begin to analyze the genome, annotate the locations and identity of genes, find where 

the introns and exons are located, ete. Due to the sheer magnirude of genomic data, the 

sequencing and the analysis of a genome is only possible because of the advances in 

computer algorithms and technology. 
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Current limitations prevent sequencing machines from determining an individual's 

genome directly. The WGS technique was designed especially to help overcome those 

limitations. This method employs a random shearing of the organism's genome into millions 

of pieces of different lengths. The retrieval of the genome sequence from the many smaller 

sequences is called assembly. Conceptually, assembly is analogous to piecing together a 

jigsaw puzzle: the assembler must piece together the shotter sequences by searching for 

overlaps between them until the complete genome is constructed. Many algorithms and tools 

have been proposed to solve the assembly problem. 

2.5 Metagenomi&.r 

Metagenomics, the application of modem genomics to the study of microbial 

communities directly in their natural environments, was born in 1985 with Pace's proposal 

of studying ribosomal RNA (rRNA) sequences of populations [12]. A metagenomics project 

begins with the retrieval of the genetic material of an environmental sample, such as from 

seawater or soil, and the construction of a clone library. With the great advances that have 

been made in sequencing technology, it is now feasible to sequence the entire clone library 

via WGS [13]. One of the first metagenomics projects that used this WGS approach studied 

two different marine communities [2] and there have been several others since, like the 

Sargasso Sea study [14]. 

Whereas the goal of a genomics project is to sequence one genome (an individual or of a 

single species), the goal of metagenornics is to sequence the genome of every species in the 

community. While Arachne and other assemblers are optimized for single genome assembly, 

such assemblers are being used for the multiple genomes assembly problem because there is 
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no alternative-a multi-genome assembler does not currently exist. Adapting a single

genome assembler to a multi-genome assembler brings about two issues that need to be 

overcome: 1) an increase in sequence polymorphism (DNA sequence differences between 

individuals of the same species) due to the use of fragments originating from different 

individuals in the population and 2) highly conserved sequences between species leading to 

false overlaps in the assembly process. Because of these issues, the results of running a 

single-genome assembler must be manually processed and corrected. The larger project that 

this thesis is under aims to make improvements to this multi-genome assembly process 

including the removal of this manual step. 

The result of the assembler in a metagenomics project is a set of scaffolds or 

supercontigs, which are partially assembled fragments. To get a sense of what sort of 

organisms are contained within the sampled community, the scaffolds need to be categorized 

as specifically as possible. This is the metagenome annoration problem this thesis studies and 

that will be further described in subsequent chapters. 
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Chapter 3: The Traditional Annotation Process 

This chapter reviews the traditional annotation process and a related method for 

metagenomics sequences. One important notion related to the annotation process is the 

similarity of sequences. This chapter also introduces this concept. 

J.1 S 'fJ'lefUI S illJilarity 

Pairwise sequence similarity is a measure of how related two protein or DNA sequences 

are. This measure is usually based on a pairwise alignment of the two sequences. An example 

similarity measure would be rhe percent identity, the percentage of identical residues (amino 

acids or nucleotides) that line up with each other in the alignment. Such measures can be 

used to quantify evolutionary changes or identify residues crucial to the protein's structure 

and function. 

Percent identity however does not suffice and more sophisticated methods have been 

developed to not only score matching residues but also to score residue substitutions, 

insertions, and deletions. The score for a particular substitution is calculated empirically 

through observations of substitution frequencies. Examples of scoring matrices for proteins 

are the PAM (point accepted mutation) [15] and BLOSUM (blocks substitution matrices) 

[16] matrices. 

The calculated similarity score of two sequences is then dependent on the alignment of 

the two sequences. Different alignments may lead to different similarity scores. It is up to 

algorithms to find the optimal alignment, the alignment that leads to the maximum similarity 

score. Dynamic programming algorithms have been formulated to solve this problem, but 
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heuristic algorithms that find approximate solutions are used in practice for their sheer 

speed. There are two types of optimal alignment and thus two types of sequence alignment 

algorithms. The first is known as global alignment, where the optimal alignment and score is 

found by considering the entirety of both sequences. An example is the Needleman-Wunsch 

algorithm [17] that uses dynamic programming. The other type of alignment is known as 

local alignment that calculates the optimal alignment and score of subsequences of the two 

quety sequences. It is up to the algorithm to find the subsequences that lead to the highest 

similarity scores. An example dynamic programming algorithm is the Smith-Waterman 

algorithm [18]. An example global and local sequence alignment is illustrated in Figure 8. 

Global FTFTALILLAVAV 
F--TAL-LLA-AV 

Local FTFTALILL-AVAV 
--FTAL-LLAAV--

Figure 8. Illustration of global and local alignment. 

BLAST (Basic Local Alignment Search Tool) is the most widely used technique for 

calculating sequence similarity. BLAST uses a heuristic algorithm to calculate the optirnal 

local alignment [4]. The output of BLAST against a database of sequences returns the top 

hits of the query sequence, reporting for each the score, expectation value, and the local 

alignments themselves. The expectation value (E) provides a statistical measure of the 

significance of the alignment and score (j). E reports the expected number of hits having a 

score of S or more by chance. Low E values imply biological significance, while high values 

imply false positives [19]. 
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1.2 Traditional Method: Annotation by BLAST 

The result of the assembler in a metagenomics project is a set of partially assembled 

fragments. Now to get a sense of what sort of organisms are contained within the sampled 

community, these fragments need to be categorized as specifically as possible. 

Metagenome annotation relies on the fact that prokaryotes have a high gene density and 

therefore current read lengths will likely contain a significant portion of at least one gene 

[20]. Thus if a gene on a fragment is a known gene or is closely related to one, the fragment 

should match closely in sequence to the known gene's sequence in a database. If the 

matched gene is known to be unique to a domain, family or species of microbes, it can be 

inferred that this is where the fragment originated. However a new sequencing technique, 

Pyrosequencing, generates fragments of only 100 nucleotides compare to the traditional 700-

800 nucleotides. Pyrosequencing has the advantage of being cheaper and faster than 

traditional sequencing methods, allowing for a more through sequencing coverage of the 

metagenome. However, these short pyrosequences have a vety low chance of containing an 

entire gene, making the annotation ptocess even harder. Thus there are tradeoffs between 

the different sequencing methods. 

The current approach is then to compare each fragment against GenBank., an open 

access and annotated sequence database, using BLAST. An expert can then manually infer 

the origins of a fragment using the top hits of the BLAST query. 

This approach showed that much of the diversity in an uncultured community is 

uncharacterized, as about 75% of the sequences have no significant matches to sequences in 

GenBank [3]. However some of the unclassified sequences may actually be similar to known 

genes in the database, and were simply missed because of the present partial genes or the 
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limitations of a tool like BLAST. Also considering that a metagenomics project can currently 

produce about a half of a million or more fragments and that future projects will produce 

much more as sequencing cost decreases, it may soon become infeasible to annotate without 

automation. Including taxonomic information into the annotator will lead to better and more 

automated results. 

J.J Relatea Methoa: PhyloPythia 

PhyloPythia is a recently published system that classifies DNA fragments taxonomically 

[21]. The system is able to automatically and taxonomically annotate fragments. Taxonomic 

information is integrated into PhyloPythia through the use of multiclass suppott vector 

machines (SVMs) at each rank. The number of classes at each rank varies, with for example 

the top rank of Domain consisting of three classes: Eukaryota, Bacteria, and Arachea. Note 

that PhyloPythia does not currently support viral taxonomy and thus will not be able to 

annotate virus fragments. Since SVMs are binary classifiers, each rank consists of N (N-l) / 2 

distinct pairs of SVMs (one for each possible pair of taxa), where N is the number of taxa in 

the rank. A voting mechanism among the SVMs decides which taxon to assign the fragment 

to. A £ina! one-versus-all SVM is then run to detect and discard false positives. This is very 

computationally expensive due to the sheer number of SVMs that need to be ttained and 

queried. 

Phylopythia classifies at the DNA level omitting the more informative protein stage. 

Also this method works better with longer fragments or even contigs and was not tested on 

pyrosequences. However this method shows that the addition of the taxonomic information 

in the annotation process clearly increases the number of annotated sequences. 
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Chapter 4: Clustering Methods 

In this chapter we review the clustering methods of Self-organizing Maps and Markov 

clustering, particularly as related to the protein clustering problem. These techniques are 

used by the new skeleton annotation method, as will be described in Chapter 5. 

4.1 Protein CINstering 

The goal of cluster analysis, in general, is to group a set of objects into subsets, or 

clusters, such that the objects within each cluster are more similar to each other than to 

objects belonging to different clusters [22]. The goal of protein clustering methods is then to 

group proteins that share, for example, similar functions or similar sequence motifs together 

while separating them for those proteins that are dissimilar. The notion of similarity must be 

explicitly defined in order for a clustering method to be formulated, and the measure often 

used in protein clustering is the sequence similarity score, as described in Section 3.1, ftom a 

tool such as BLAST. Alternatively, a protein can be represented by a set of numerical 

measurements, such as those described in Section 4.2, and a metric such as Euclidean 

distance can be used as the measure of similarity. 

It is common for a clustering method to require that the user specify the number of 

clusters. It is also often the case, as in this thesis research, that the number of clusters is not 

known. The determination of the number of clusters given a dataset is recognized as one of 

the most difficult problems of cluster analysis [23]. It is common pracrice then to use 

heuristics, for instance via an addirional criterion like the GAP-statistic [24] or via cross

validation methods, to determine the maximal number of clusters present in the data. 
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For these reasons, in choosing the clustering methods for this thesis research it was 

important that the methods do not require the number of clusters to be explicitly specified 

and that the methods have been previously shown to produce biologically meaningful 

clusters. The two methods investigated and described in this chapter are Self-organizing 

Maps (SOM) and Markov clustering (MCL). As described in Section 4.2 and 4.3 SOMs 

require that the protcins be represented by a vector of numerical measurements, while MCL, 

described in Section 4.4, uses sequence similarity as reported by BLAST. Thus these two 

methods are quite different. MeL was chosen for the majority of this thesis research's 

experiments due to its superior running time speed, better multiple alignments of the 

members of a cluster, and better annotation results, as discussed in Section 5.3. 

4.2 Protein Representation 

In order for a dataset of protcins to be clustered using SOMs or some of the other 

clustering methods, the proteins must be represented or encoded by a vector in some chosen 

feature space. For example protein representations based on dipeptide frequencies, further 

described below, can be used. These representations based on frequencies are an example of 

protein encodings that do not preserve the original amino acid sequence. Such sequence 

representations are called indirect encodings. Alternatively representations that preserve the 

original amino acid sequence couId be used and are called direct encodings. However 

proteins exists in a variety of sequence lengths, and thus direct encoding over the entire 

protein length will lead to feature vectors whose dimension vaty from protein to protein in 

the dataset. This is a problem for methods like SOMs that require a fixed input dimension. 

This problem could be overcome if the direct encoding of some fixed length subsequence, 
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such as the last 50 amino acids, that we knew was sufficient enough to solve the original 

problem was taken instead. This is not the case for this thesis research however, and only 

indirect encoding will be further described. 

It has been shown that indirect encoding based on dipeptide frequencies leads to 

meaningful clustering of protein sequences into families [25]. An example protein sequence 

represented with such encodings is illustrated in Figure 9. The largest of such encodings is 

the straightforward dipeptide count resulting in a 400-dimensional (2Dx20) input vector. 

Furthermore, the input vector should be normalized to transform the representation to a 

percent composition. Since proteins come in many lengths, percentages are more useful thar 

raw counts. 

ASVFGPASGP 

[0 0 • • o • • • • • • • • • 
Figure 9. Example protein encoding. 

The frequency counts of all ordered pairs of amino acids are taken. Thus the encoding is 400 dimensional. 
The pairs AS and GP occur twice each and so their components are set to 2. 

FG. PA SV. SG. and VF occur once. All other possible ordered pairs are set to O. 

Smaller encodings based on dipeptide counts can be created by grouping the 20 amino 

acids into related groups based on common properties such as hydrophobicity. An example 

encoding would split the amino acids into 11 groups and count the frequencies of ordered 

pairs of these groups, resulting in a 121-dimensional (llxll) input. The eleven groups are: 

{V, L, I}, {T, S}, {N, Q}, {E, D}, {K, R, H}, {Y, P, Wi, {M}, {P}, {C}, {A}, and {G}. It 
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was shown that this representation leads to clustering results very similar to the 20x20 

representation with the added benefit of having about a 3.3 reduction factor in computing 

time [25]. Another encoding uses six groups: hydrophobic {V, L, I, M}, hydrophobic 

aromatic {Y, F, W}, neutral/weakly hydrophobic {P, A, G, S, T}, hydrophilic acid {N, Q, 

E, D}, hydrophilic base {K, R, H}, and crosslink forming {C}, leading to a 36-dimensional 

input. Experiments indicate that the 36- and a smaller 9-dimensional encodings give fairly 

similar clustering results, but do not perform as closely to the larger encodings [25]. Similarly 

to the 400-dimensional encoding, these smaller encodings should also be normalized. 

4.3 S eJj-Organiting Maps 

SOMs are a type of artificial neural network (ANN) originally developed by Kohonen 

[26]. Unlike MeL, a SOM requires that the protein dataset be represented by fixed-length 

numerical vectors, such as the encodings described in Section 4.2. The measure of similarity 

used by SOMs is the Euclidean distance between feature vectors. The result of the SOM 

algorithm is a topology-preserving mapping of the dataset constructed using competitive 

learning. That is, the SOM maps, in a nonlinear fashion, the original feature vectors to 

vectors in another feature space of smaller dimension than the original feature space. The 

mapping is topology-preserving in that relative proximity of the data is the same in the 

mapped feature space as the original feature space. The mapped feature space is usually 2D 

so that the dataset is more easily visualized. If a small number of clusters are expected, the 

clustering may be easy to see visually with a 2D SOM. Otherwise a clustering method may 

be applied to the mapped feature vectors to find the clusters. 

23 



A SOM consists of two layers of uni ts : the input layer and the competitive layer. The 

competitive layer is usualiy orga ni zed in a 2D grid of units, as illustrated in Figure 10. Each 

unit in the competitive layer is linked to every input unit. A competitive learning algorithm to 

construCt the mapping is summari zed below [27] . 

Figure 10. t\ simple SO~I. 

T he compe ti tive layt:r is 4:-:4 units and the input 1a}'t: T is h vO dimensional, 
rcprcscmeJ by the: rwo smaUcr green units below. 

Graphic taken from: http://www.ai-junkit"cornlann / som / <.;o ml .hrml 

1. I llitia/izatioll : Let W j deno te the weight " ector o f the j-th urut 1n the compeotlve 

layer. Randoml y cboose initial we ights W j (O) for aU competiti ve uruts. 

2. Sillli/miry lIIalciJillg. Draw a sample x from the dataset. Find the best-matching unit 

(BMU) bmu(x) at time II using the minimum IC: uclidean di stance cri teri on: 

bmu(x) := argmin jllx(ll) - W j(Il)11 

3. lJ7e;;'ghlllpdallf. Update all weight vectors using the fo llowing fo rmula: 

wen + 1) := wen) + Ij(ll)h .",.(, )(Il )(x(n) - wen»~ 
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where 11(11 ) is the learning-rate parameter and "" mm(,)( I1 ) is the neighborhood 

function centered around the EMU. The learning- rate and neighborhood arc usualJy 

decreased aftet each iteration or epoch. 

4. Repeat steps 2 and 3 until cotwergence of weight vectors. 

The goa l of the neighborhood function is to make the mapping topology preset .... ing by 

affecting the update of the weight vectors of units closer to the BMU more than the weight 

vectOrs of units further away. The fimling of the EMu and learning of the units in the 

" neighborhood" of the B]'vIU is the competitive learn ing used by SOM algorithms. An 

example neighbohood is illustrated in Figure II. 

Figure 11. EX:lmplc neighborhood of a Hi\! U. 
Coits closer tu the center unit, the B~[l · . are updated more s[[ongiy than the units f1.lrthc[ away. 

This is caUed the Gaussian neighborhood. 
Graphic taken from: hrtp'/Iww\\" m-juokie.com / ann /<1;om / som3 btm! 

Cpon completion of the construction of a SOM, we now have a mapping ftom the 

samples in the dataset to the ElIlUs of the samples. As mentioned abm'e, the BM Us of the 
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samples can be used as a visualization of the dataset, where the clustering of the dataset may 

be easily seen by eye or may be computed using another clustering method. 

4.4 Markov CINstBring 

MeL is a graph clustering algorithm that has been shown to be applicable to protein 

clustering [281. A node in the graph represents a protein in the dataset. The weight of the 

edge between two nodes represents the similarity between the two proteins. The weight 

assigned to an edge is the average -loglO(E) leading to a symmetric matrix representation of 

the graph. Thus MeL uses the BLAST expectation value E as the measure of similarity 

between two protein sequences. 

The graph's matrix is then turned into a Markov chain by nonnalizing the weights 

column-wise, resulring in a stochastic matrix M. Row entry i in column j, Mil' is the 

probability of transitioning from node j to node i. The weights can now be viewed as 

transition probabilities where the probability of transitioning to a highly similar node is larger 

than that of a transition to a less similar node. The aim of the MeL algorithm is to augment 

"flow", i.e. the number of random walks, within a cluster and eliminate the "flow" between 

clusters. This is accomplished using the following algorithm: 

1. Expansion: Square the stochastic matrix M. The resulring matrix is still a stochastic 

matrix. 

M:=M2 

2. Inflation: Raise each weight of M to the I-th power and then nonnalize the resulring 

weights column-wise. The nonnalization ensures the new matrix M is still stochastic. 

The inflation value I is the only parameter of this algorithm. Essentially the I value 
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indirectly determines the number of clusters. Formally each matrix is updated with 

the following formula: 

3. Repeat steps 1 and 2 until convergence of matrix M. 

The expansion step corresponds to computing random walks of higher length. while the 

inflation step has the effect of boosting intra-cluster walks and demoting inter-cluster walks 

[28]. Upon completion of the MeL algorithm, the connected components of the final graph 

correspond to the individual clusters. This process is illustrated in Figure 12. 
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Figure 12. Visual MCL example. 
The top left sub figure illustrates the initial graph. The darker edges represent close similarity between nodes, 
while lighter edges represent less similarity between nodes. Iterations of the MCL algorithm strengthen and 

weaken edges till convergence. The final graph on the bottom right shows the final clustering. 
Figure taken from [29]. 
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Chapter 5: The Skeleton Method 

In this chapter we describe our work and the main contribution of this thesis, the 

skeleton method. The skeleron method is described and we present the experimental 

evaluation of the method's performance. 

J.1 A Nelli MethOd: Annotation by Skeleton 

Knowledge of what genes exist together in certain taxa would help the classifier create 

better annotations. This thesis research seeks to integrate such information into the 

annotator by constructing profile "skeletons" for different taxa. These skeletons consist of 

profiles of proteins, called profile Hidden Markov Models (profile HMMs), that are known 

to be found in the skeleton's taxon. The use of the protein sequences instead of the DNA 

sequences allows us to take advantage of the more informative stage represented by the 

protein and also gives less weight to sequencing error that are very common in DNA 

sequences from metagenomics or any sequencing project. 

5.1.1 Profile Hidden Markov Models 

A critical part to the new annotator, which we call Anacle, is clearly the profile HMMs 

that represent each protein. Profile HMMs are already commonly used in bioinformatics to 

represent the profile of a protein. In brief, HMMs are probabilistic models. There is an 

underlying model of states that is unobservable (hence the term "hidden" in HMM) and 

above that. each state has a probability of emitting observable events. The HMM can be 

thought of as a stochastic machine that generates a sequence of symbols over time. In the 
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case of profile HMMs, the symbols are amino acids and the generated sequence is the 

protein. One of the first uses of profile HMMs in computational biology was presented by 

Krogh and collaborators in 1994 [30]. Multiple sequence aIigrunent is widely used to find 

functional and structural information important in the definition of a family of protein. The 

use of HMMs helped this task by allowing the use of position-specific score models and has 

been implemented in the software package called Ill\1MER [31]. The profile HMM 

architecture used by HMMER is shown in Figure 13. The squares indicate match or 

consensus states (M#) that model highly conversed residues. Diamonds indicate insertion 

states (1#) and random sequence emitting states (N, q that model additional residues 

before, after, and between consensus residues. Finally circles indicate delete states (D#) and 

begin! end states (S, 1). The delete states models the deletion of consensus residues. Each 

state transition (arrows) has a probability associated with it. HMMs, however, can be used 

for more than just modeling a protein profile. HMMs have found widespread and successful 

use in bioinformatics, including such areas as gene finding, genetic linkage mapping, and 

protein secondaty structure prediction [31]. HMMs have become an essential tool in 

bioinformatics. 
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Figure 13. HMMER', profile HM~l architecture. 
From HMMER user manual: http://hmmer.janelia.org 

However, the probabilities on which the models rely are not generally known and 

therefore must be estimated using multiple alignments of known representations of the 

protein in the case of profile HMMs or by using supervised machine learning. Once a profile 

fU\1M has been created, it can be used to calculate the estimated probability that a given 

sequence was generated by the HMM. That is, the likelihood that the given protein sequence 

is the same protein as the profile can be calculated, and this likelihood also serves as a degree 

of confidence. 

Unlike pairwise comparison methods like BLAST, any number of sequences can be used 

to construct profiles. This allows more information, including the positions more conserved 

than others and different tolerances to insertion and deletion from region to region, to be 

used during comparison. This position specific information has lead to methods to better 

detect more distantly related proteins and improves the results of searching databases for 

homologous sequences [32]. Anacle, through the use of profile HMMs along with the 
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higher-level taxonomic information provided by the skeletons, should decrease the number 

of unannotated sequences and provide a more precise and automated annotation process. 

5.1.2 Skeleton Construction 

The first step in constructing the skeleton of a taxon is to find the genetic commonalities 

of all the known member species of the taxon. For example to construct the skeleton of the 

virus family Hetpesviridae, we would first need to analyze the genomes of all known 

herpesviruses. As specified before, for the construction of the skeleton we use information 

at the the protein level. So we are interested in the proteins shared among some or all of the 

herpesviruses. That is, we want to divide the protein products of all herpeviruses into groups 

with similar proteins in the same group and dissimilar proteins in different groups. This 

grouping or clustering can be accomplished with the methods of cluster analysis described in 

Chapter 4. This analysis can be done \vith any other taxa, including but not limited to other 

virus families, genera of any type of organism, orders, etc. All known sequenced genomes 

and their genes and protein products can be found in databases such as GenBank. 

Completion of the protein clustering step leads to a number of groups or clusters of 

proteins that represent the desired taxon. Each cluster can then be summarized and modeled 

with a profile HMM. The profile HJI.1M of a cluster can be constructed through 

unsupervised machine learning, such as the simulated annealing Viterbi algorithm 

implemented in the program hnunt of the software package HMMER 1.8.5. Alternatively 

the profile HMM may be constructed from the multiple aligrunents of all member proteins 

of the cluster using, for example, the tool ClustaiW. We chose to use the unsupervised 

learning provided by HJI.1MER rather than the multiple aligrunent alternative due to the 
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difficulty in obtaining good alignments. In any case, the resulting profile HMMs, one for 

each cluster, represent the commonalties of all the membets of the taxon. That is, these 

profile HMMs provide a summary and model of the genetic elements found in the taxon. It 

is this set of profile HMMs that we call the skeleton of the taxon. 

5.1.3 Querying the Skeletons 

The set of fragments of a metagenomics project can be queried against the skeletons of 

all taxa. The resulting output would be a score (likelihoods) for each fragment to all profile 

HMMs of every taxon skeleton. Naturally the profile HMM for which the fragment has the 

highest score, that is the profile HMM with which the fragment has the highest probability 

of membetship, is the proftle the fragment putatively belongs to. The taxonomic origins of 

the fragment can then be inferred from the taxon in which the highest scoring profile HM1\1 

belongs to. Thus rhe fragment is annotated taxonomically. If however the fragment scores 

low on all profile HMMs and thus is not likely to belong to any of the profile HMMs, we 

have no choice but to annotate the fragment as coming from unknown origins. 

Alternatively, we may want to give more bias toward annotating a fragment with a lower 

ranking taxon. For example, even if a fragment's top hit is Hetpesviridae, we may want to say 

that the fragment is from the subtype simplexvirus, which may have scored lower. This can 

be desirable since lower ranking taxa give more information about the fragment's origin than 

higher ranking taxa. This can be done by querying a fragment bottom-up, from lower 

ranking taxa to higher ranking taxa. Fragments that have high scoring hits on a lower taxon 

can be annotated as such, and the remaining fragments with low scores or not hits at all can 
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then be queried on the taxa in the next rank up. This can save a lot of computational time, as 

each fragments does not need to be tested against on all HMMs. 

Since we use the protein sequences in the construction of the skeleton we need to 

translate all DNA fragments into its 6 possible frames of translation, as was described in 

Section 2.2. Our implementation of this analysis queries the 6-frame translated DNA 

fragment database to each profile HMM using the hmmsw program of HMMER 1.8.5. The 

resulting HMMER reports are then parsed to generate a report listing the top profile HMM 

hits for each fragment. 

While annotation by skeleton is more computationally complex, especially in the initial 

skeleton construction, than annotation by BLAST, this new method does provide fuller, 

taxonomically based annotation that BLAST is incapable of producing. 

5.2 Dataset 

The Integrated Microbial Genomes (IMG) database' offers the complete DNA genome, 

along with all known protein sequences, of all sequenced virus genomes. Using the lineage 

listed in the database, the genomes can be grouped taxonomically and can then be used to 

build skeletons for selected or all taxa. These protein sequences were used to build our 

skeletons. 

To evaluate the taxonomic annotation process, we build a simulated meragenome. To 

simulate a meragenomics project, a selection of virus genomes are taken and a number of 

random fragments are taken from their DNA. The skeleton annotator can then take these 

'IMG website: http://img.jgi.doe.gov/ 
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fragments and classify each one taxonomically. Unlike a true metagenomic dataset, we know 

the true origin of each fragment and thus we are able to evaluate the performance of the 

annotator. The length of the DNA fragments is set to either 700 basepairs (hp) or 100 bp. 

The length of 700 bp is the typical length of a fragment when using standard DNA 

sequencing, while 100 bp is the typical length for Pyrosequencing, the fastest sequencing 

method to date. Note that the majority of the preliminary tests were done on the 700 bp 

datasets. We afterward confirmed the possibility of annotating 100 bp fragments by redoing 

some of the tests using the 100 bp datasets. The final tests done on all the possible virus taxa 

were done for both fragment lengths. 

Since the skeleton is ttained using protein sequences, the DNA fragment dataset needs 

to be translated into protein fragments using the genetic code. As shown in Section 2.2, the 

translation of a DNA fragment is however ambiguous, as we do not know where the non

overlapping code begins. The first nucleotide of the fragment may not necessarily be the first 

nucleotide in the codon, it could be the second or last That is, we do not know the correct 

reading frame. With this consideration then, we end up with three protein translations of the 

DNA fragment. Since the protein may be encoded on the complementary strand of dsDNA. 

we must also translate and consider the three additional protein translations from the DNA 

fragment complement Among these six translations is the true translation from the correct 

reading frame. In our simulated metagenome the correct translation of a DNA fragment can 

be determined by using BLAST. 

It should also be noted that Anacle currently assumes the standard genetic code (fable 

2) in its protein translations. and that the inclusion of alternate genetic codes is a future 

extension would most definitely improve annotation results. 
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A script using BioPerl4 was written to generate the artificial meragenome by cutting 

random DNA fragments from a set of genomes and ttanslating the six frames into protein 

sequences. 

5.3 C/flstering M/1thods: SOM and MCL Sk/1/etons 

We evaluated two different methods of clustering for the construction of the skeletons: 

the SOM and MCL methods. The SOM clustering of proteins was done using a Matlab 

library' that also clustered the resulting BMU s via linkage (a variety of linkage options is 

given and used for the evaluation). The MCL clustering was done using the successor of 

TribeMCL in the C-implementation of MCL [28]. A script was written to generate protein 

sequence files for each resulting cluster, which is then used to generate HMMs using 

HMMER [31). 

It is unclear what clustering method and parameters would provide better taxa skeletons 

without doing some experimentation. This set of experiments aimed to determine what 

method and parameters looked the most promising for use in the next sets of experiments. 

5.3.1 Experimental Design 

All known proteins of a subset of the virus family Herpesviridae were used for clustering 

using SOM and MCL under a variety of parameters. The resulring clustering was used to 

generate the HMM skeleton for Herpesviridae. The same subset of herpesviruses along with 

4 BioPerl available at http://www.bioperl.org 
; SOM Toolbox developed by the Laboratoty of Computer and Infonnation Science 
Adapative Infonnatics Research Centre: http://www.cis.hut.fi/projects/somtoolbox/ 
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other viruses outside the family was used to generate the test metagenome. The test 

metagenome consists of fragments each of length 700 bp. For each genome 50 fragments 

were generated. Appendix A.l lists the genomes used for training and for the fragment 

generation. 

Two SOMs are trained, one using the llxll protein encoding and the second using the 

20x20 encoding, with a 4Ox40 unit competitive layer, as described in Section 4.2. For each 

trained SOM, the BMUs were clustered using all available linkage options given in the SOM 

toolbox: single, complete, average, centroid, ward, neighf, and closest. This results in seven 

different clustering results per SOM. The annotation performance of each resulting 

clustering was tested. For MCL, we clustered using a range of inflation values. The inflation 

value essentially determines the number of clusters and is MCL's one and only parameter. 

5.3.2 Results 

The average top hit score and hit percentage of a genome's fragments are the statistics 

used for the comparison. The average top hit score and hit percentage of a Herpesviridae 

genome should be high and close to 100%, respectively. Ideally for a non-Herpesviridae 

genome, the average top hit score and hit percentage should both be low. The score 

HMMER reports is the log-odds score, 

S I 
P(seqIHMM) 

= og2 , 
P(seq I null) 

where P(seq I HMM) is the probability of the target sequence according to the profile HMM 

and P(seq I nll/~ is the probability of the sequence given the null hypothesis that the sequence 

is random [31]. Since the log is base two, the score is in units of bits. We are interested in 

hits with high positive scores, which imply that the sequence is highly similar to those hits. 
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The skeletons constructed using a SOM with a variety of parameters resulted in very 

similar performance, as the type of linkage made little difference. As such, we will only show 

the results from the skeletons constructed using the 11 x 11 and 20x20 encodings and 

clustered using complete linkage. When clustering with MeL, it was observed that an 

inflation value below 1.2 resulted in a few clusters that were too large. The larger clusters 

would contain proteins that were unrelated in terms of function and sequence, as determined 

by known annotation and multiple sequence alignment. For example, the results of 

clustering the proteins of the herpesviruses with an inflation value of 1.1 contains one 

unusually large cluseer with 223 members (the next largest cluster only has 73 members) that 

contains proteins from a variety of different functions, from translation regulation to capsid 

assembly and transport. On the other hand, larger inflation values lead to too many clusters, 

leaving many singleton clusters where it was observed that proteins that were similar were 

not grouped together. For herpesviruses, an inflation value of 1.3 leads to 54% of the 

clusters being singletons. It is observed that an inflation value of 1.2 leads to more balanced 

results where for herpesviruses the largest cluster contains 20 members and the number of 

singleton clusters is reduced to 50%. This is the value used in the MeL results below. 

Figures 14 and 15 compare the average top hit scores and hit percentages for the 

skeletons generated by MeL and SOM clustering. In Figure 14 we can see that there is no 

clear advantage between using the llxll and 20x20 protein encodings in the case of SOMs. 

All three clusterings shown offer similar, good performance with high scores for Herpesviridae 

fragments and low scores for non-Herpesviridae fragments. There is an apparent advantage of 

using MeL over SOM, as the average top hit scores in general are higher than those from 

the SOMs for Herpesviridae genomes and lower for non-herpesviruses. 
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Figure 15 shows that around 90-100% of a herpesvirus' fragments earned hits for both 

clustering methods, indicating that the skeleton is detecting herpesvi rus fragments welL The 

percentage of hits among the non-l-j"peSl'il1dae genomes is a mixed bag, with some genomes 

being low and some being as high as 100%. MCL shows an advantage here again with lower 

hit percentages than the SOMs. Since the difference bet\vcen the score of a herpesvirus 

fragnlent and a non-herpesvirus fragme nt is large on average, we can elinlinate many false 

positi ve hits with an appropriate threshold score. Thus rega rdless of the encodi ngs and 

clustering methods tested, good results are observed. This may ind icate that the skeleton 

method is not very sensiti\·c to different clusterings. Since the MeL results show some 

advantages and the running time of MCL is orders of magnitude faste r than training a SOM", 

we choose to run the next experiments using Mel. exclusi\oely. 

1 

1 
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-;-1 
o 
o 

(f) 

11x11 encoding 
I L..:J~~'" 20x20 encoding 

1=1 .2 
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Figure;: 14. Clusrering compa ri son: Average lOp hit score. 

22 

" In this case, it rook hours to train a SOM whereas running Bl .AST and then MeL took 
mlflutes. 
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Tht: genumes arc li sted in Appendix A. !, Gcn mes 1· 10 are from H ffpm:ilidae and rht: others are not. 

8 10 12 14 16 18 20 22 
Genome number 

Fig\lfe l:i. Clustering comparison: Percentagt: of fragmt:nts with hi ts. 
The genomes arc lisled in Appendix A.!, Gcnomcs 1· 10 arc from H erpest'ilidllf and the o lhers art: nur. 

Blue bars represent the SOM using 11 xl l encoding, grecn bars for the SOi\r using 20:<20 encoding, and red 
bars for [he rcsu1rs using ,\ ICL with I = 1.2. 

5.4 Cross-validation of M CL Skeleton! 

f\ cross-validation test was conducted to determine the generalization power of the 

skeleton annotator for unknown fragments (i.e., in the face of fragments not from the 

genome::; with which it was trained). 

5.4.1 Experimental Design 

A 3-fold cross-validation test was conducted on fragments of 700bp and 100bp 

originating from three vi rus families: l-1e,pesvitidtle, BlVlIJov;ndae, and Poxvilidae. The genomes 

of H8Ipem.,idfll' are partitioned into three groups of approxlmmely the same size. Pairs of 
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these groups are clustered using MeL and a skeleton is trained, resulting in three HMM 

skeletons each of which has not been trained with one of the three partitions. Each HMM 

skeleton is then tested with the fragments generated from the partition it was not trained 

with. This setup is likewise repeated with the other two families. The list of genomes and the 

partitioning is given in Appendix A.2. 

5.4.2 Results 

The cross-validation results against the fragments oflength 700 bp will be discussed first. 

For all three families, the cross-validation skeletons gets hits from 90-100% of the fragments 

of most of the genomes, with only a couple gerring a low 60-70%. The average top hit score 

of each genome's fragments is charted for each skeleton in Figures 16-18. Figure 16 shows 

the results for the 3-fold cross-validation test for HerpesviridtJe. Partition 1 contains genomes 

#1-14, partition 2 contains genomes #15-29, and partition 3 contains genomes #30-44. The 

results on the chart for partition 1 is from the HMMs trained from the genomes in partitions 

2 and 3, the results for partition 2 is from the HMMs trained from the genomes in partitions 

1 and 3, and finally the results for partition 3 is from the HMMs trained from the genomes 

in partitions 2 and 3. The chart shows that the top hits for genomes #14,21,26, and 27 of 

Herpesviridae score very low at below 10 bits. This occurred since these viruses are more 

unique than the others, with no other similar viruses having been part of the skeleton's 

training. In the presence of fragments from genomes of other families, the skeleton may not 

be able to classify these fragments correctly. However given the high hit percentage and 

average top hit scores for the majoriry of the Herpesviridae genomes, this skeleton detects 

fragments from family members outside the training set very well. 
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Figure 16. I-I erpes,-irid:u: 700 bp 3-fold cross-,-alidation: !\,-crage lOp hit score. 
Bar colors denote:: the three paririons. 

The skeletons for Bmlllo!';,id", and I'oxl'in(/ae performed even better than H n/JeSl.ilidm's 

skeleton as shown in Figures 17 and 18. ror BlVlllovilidae the parti tions are: genomes # 1-7, 

#8-15, and # 16-23, fo r partitions I, 2, and 3, respectively. For Poxtilidae the three partitions 

arc: genomes #1-7, #8-14, and # 15-22. Combined, these two skeletons achieve a low 

average top hi t score of abou t 50 bits fo r on ly three genomes. Unlike H eI/Jmilidae then, these 

ske letons can detect the low scoring genomes well . ln short, these teSts indicate that the 

H Ml\l skeleton method can annotate 700 bp DKA fragments very well . 
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Figure 17. BromO\"jridae 700 bp 3-fuld cross-,'aJjdation: Average lOp hit score. 
Bar colors denOle the lhree partitions. 

FihYU fC 18. Pox\'iridae 700 bp 3- fold cross-\'alidation: 1\ ,'erage rap hit score. 
Bar colors denote the three partitions. 

Next we analyze the resu lts of the cross-validation tests for the H"pesvi,idae skeleton 

with 1 00 bp fragments. Figure 19 shows that, like the 700 bp case, fragments from genomes 

# 14, 21, 26, and 27 score relatively low. T herefore the fragments from these genomes 
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cannot be classified with confidence, as was the case with 700 bp fragments. The scores 

overall are also lower compared to the 700 bp case, as these short fragments cannot achieve 

very long and high scoring matches. 

Figure 20 shows the percentage of fragments of each genome in the 100 bp dataset that 

generated a hit against the Herpesviridae skeleton. While on average 94% of a genome's 

fragments got hits ,vith the 700 bp dataset, only an average of 45% was obtained with 100 

bp fragments with the remaining fragments being uncIassifiable. Looking at all the fragments 

overall we see similar percentages with the skeleton detecting only 45% and 94% of the 

Herpesvirdae 100 bp and 700 bp fragments, respectively. Clearly, 700 bp fragments, which 

contain more information, are easier to detect and classify correcdy. Bear in mind that the 

45% achieved with 100 bp fragments is actually quite high. A preliminary study of a random 

subset of unassembled, 100 bp virus fragments from the Sargasso Sea using BLAST only 

achieved hits for 6% of the dataset. 
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Figure 19. Herpesvi ridat: 100 bp 3-fold cross-va lidation: r\"cragc top hi t score. 
B:lr colors denute;: the th ree parritions. 

Figure 20. Ikrpcs\'i riclac 100 bp 3-fold cross-validatiun: Percenrage of fra!:,ttllcnrs \\<;rh hi ts. 
Rar culors denore the three partitions. 

45 



5.5 MII/tijafIJi[y Test 

In this experiment, we build HMM skeletons for three viral skeletons and take fragments 

are from a range of families. The resulting skeletons are used to determine if the skelerons 

indeed recognize fragments from the family it represents and not fragments from others. 

Two sets of fragments were generated: one set of fragments with length 700 bp and the 

other set with length 100 bp. 

5.5.1 Experimental Design 

Unlike in the cross-validation test above, all genomes are used in the virus families to 

generate HMM skeletons for Hetpesviridae, Bromoviridae, and Poxviridae. The test metagenome 

is generated by creating a total of 2350 fragments taken from the three virus families along 

with fragments from other viral genomes. The fragments were generated by random 

selection of 50 fragments from 47 different genomes: 12 genomes from Hetpesviridae, 12 

genomes from Bromoviridae, 12 genomes from Poxviridae, and 11 genomes from outside those 

families. This experiment tests the performance of the HMM skeletons against fragments 

that do not belong to the family it represents. The list of genomes contained in the fragment 

dataset is listed in Appendix A.3. 

5.5.2 Results 

First the results from the 700 bp fragment dataset are discussed. Figures 21-28 shows the 

average top hit score and hit percentage of each genome's fragments using the three family 

skeletons side-by-side for easy comparison. It is easily seen that each skeleton gets high 

average top scores on fragments from genomes they represent, and low scores from 
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fragments from genomes outside the skeleton's family. Figure 27 shows how low the top hit 

scores are for genomes outside of all three family skeletons. Figures 22, 24, 26, and 28 show 

that the genome hit percentages are a mixed bag. While for example the Herpesviridae 

skeleton catches most herpesvirus fragments, it also has a high rate of catching fragments 

from other families. But since these hits to outside family members score low on average, we 

can remedy the situation by setting an appropriate threshold score to reduce the number of 

false positives. Thus the results are desirable since we want each skeleton to only be sensitive 

to fragments originating from the taxon it represents. 
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Since we want to also target the Pyroscllucncing projects, we also query the 100 bp 

version of the dataset to the Helpesri/idae skeleton. The results are illustrated in Figures 29 

and 30. Compared to the 700 bp tcst, the scores and hit percentages have dtopped. This is 

logical since the fragments ate much shortcr, making long high scoting sequence matches 

between the query sequence and a profi le HM tvl impossible. Fewer fragments in this case 

can be classi fi ed with confidence, as wili be further iliustrated in the next section. 

Q) 

(; 1 
u en 

I"igu rc 29. J-I erpcs\-iridac skclclOn: Average top hit score of 100 bp mu lti fami ly datase t. 
Red bars denote Herpes\' iridat: genomes and the blue bars denote outside gcnomcs. 
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Figure 30. Ilcrpcsviridac: Percentage 01 fmgmt: ll1 s wirh hits fur 100 bp multi family darasct. 
Red bars denute I ltrpcs\-irid<lc gcnomcs and the blue bars denote outside gcnomes. 

5.6 All Viral Taxa 

In thc prc,-ious section we undertook the analysis of three different fa milies of ,"iruses. 

But to validate the method, we need to cvaluate the classification process for all the possible 

taxonomic classification of the viruses. I n the following sections we will present the result of 

the analysis done on skeletons built from all possible viral taxa. For the selection of a good 

hit we divide this part of the experiment into twO different threshold strategics: the single 

th reshold and the mul tiple thresholcl strategies. 
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5.6.1 The Single Threshold Strategy: Experimental Design 

A Hl\1M skeleton is built from every known viral taxa using all the available viral 

sequence data. The taxonomic data is taken from each genome's NCBI" database lineage 

listing, which is based on the ICTV taxonomy. The taxa are then divided into nine lineage 

levels that do not correspond exactly to the ICTV ranks (Order, Family, Subfamily, etc.), as 

some viruses may be classified under more subclasses than others or may omit an ICTV 

rank. For example, Figure 7 shows the lineage of the species Hllman hetpesvims 1. The highest 

ranking taxon, Virus, is placed in level 0 in Anacle and the next ranking taxon, "dsDNA 

virus, no RNA stage," is placed into level 1, and so on with the genus Simplexvirus being 

placed into level 4. Some taxa are further divided into smaller-sublevels for up to four more 

levels. For levels 0-4, the training resulted in about 15,000 HMMs each. Levels 5 and above 

contain progressively less HMMs, as less and less genomes are classified up to these levels. 

New 100 bp and 700 bp fragment datasets were created for this experiment. Each 

dataset consists of 5 fragments taken from 200 different genomes, for a toral of 1000 

fragments. The genomes were randomly selected and consist of 150 virus species and 50 

non-virus species. The fragments are queried against all HMM skeletons. The fragments are 

then annotated or classified using the first approach described in Section 5.1.3, where the 

fragment is classified based on its top scoring HMM over all levels. To reduce false 

classifications we also introduce a threshold score. The top HMM must score above this 

threshold, or else we leave the fragment unannotated. Part of this experiment is to determine 

a threshold score that leads to good results. 

• National Center for Biotechnology Information (NCB!): http://www.ncbi.nIm.nih.gov/ 
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5.6.2 The Single Threshold Strategy: Results 

In this section we leave a fragment unannotated or unclassified if the fragment has no 

hits or its top hit is below a certain threshold score. Otherwise we classify each fragment to 

the taxon containing the highest scoring HMM. Figure 31 and Table 3 shows the behavior of 

the system with threshold scores from 0 to 100 bits for the 100 bp dataset. For each 

threshold we count the number of virus fragments left unclassified, true positives (fP, virus 

fragments classified into a correct taxon), false negatives (FN, virus fragments classified into 

an incorrect taxon), false positives (FP, non-virus fragment classified into a viral taxon), and 

true negatives (TN, unclassified non-virus fragments). We tben calculate the true positive 

rate (fPR) and false positive rate (FPR) as follows, TPR Q TP I(TP + FN) and 

FPR Q FPI(FP+ TN). We plot the TPR (blue curve) and the ftaction of unclassified virus 

fragments (green curve) versus the FPR. This is similar to the receiver operating 

characteristic (Roq curve for binary classifiers, but here we also allow fragments to remain 

unclassified. The general trend is that as the threshold increases, our confidence in the 

predicted classifications also increases as the number of misclassifications drop. However the 

number of unannotated sequences also increases. So for example the experiment estimates 

that a threshold around 9 bits will classify about 8% of the non-virus fragments falsely, 1% 

of virus fragments falsely, 66% correctly, and leave 33% of virus fragments unannotated. 

More fragments can be annotated at the cost of having more false annotations. 
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Tablc 3 also shows the ttend of the number of fragments classified to a taxon in Icvels 0-

3 at various threshold scores. Note that the number of fragments classified into levels 4 and 

above are 0, regardless of rhe threshold in this case. There is always a higher scoring HjVIlVl 

in a lower level. The trend shows that level 3 (approximately the taxa of the subfamily rank) 

obtains the highcst counts than the lower, more general, levels. This is desirable, as we would 

ptefer a more specific classification to a more general one. Of course raxa in levels 4 and 

above give more information than those of level 3, as they are even more specific, lower 

ranking taxa. So it would be even more desirable to obtain classifications in even higher 

levels. To do this, we try a classification approach that works from the bottom-up, from the 

lower ranking taxa to higher ranking taxa, as wi ll be described in Section 5.6.3. 
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Threshold (bits) TPR FPR Unclassified Lvi 0 Lvii Lvi 2 Lvi 3 
(%) F T F T F T F T 

0 .851 .972 .933 0 175 21 107 34 103 56 247 
5 .956 .256 21.3 0 133 6 99 11 100 9 232 
9 .986 .076 328 0 119 1 89 1 94 5 195 
15 .998 .016 41.2 0 108 0 77 1 83 0 172 
20 1.00 0.00 47.3 0 99 0 70 0 73 0 153 

Table 3. Distnbubon of classIfied VIrus fragmenrs for 100 bp dataset. 
For a selection of threshold scores, the number of true (I') and false (Fj classifications is shown for each 

lineage level. 

Figure 32 and Table 4 for the 700 bp dataset are analogous ro Figure 31 and Table 3. 

The data was generated by testing threshold scores from 0 to 100 bits in increments of 1. 

While the graph shows the same trends as the 100 bp case, clearly the results here are 

superior since the number of unclassified virus fragments have dropped significantly. Figure 

32 indicates that we can lower the FPR to 2.0 with not much of an increase in unclassified 

fragments. There is however a sharp increase in the number of unclassified fragments if one 

tries to lower the FPR further. The trend of the distributions of the fragments classified at 

the various levels is similar, where level 3 again obtains the most classifications. With the 

higher number of classified virus fragments and high TPR in general, this is clear evidence 

that the traditional sequencing methods are superior to the cheaper Pyrosequencing that 

generates the smaller 100 bp fragments in terms of obtairting quality annotation. 
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Figure 32. TPR/FPR curve for 700 bp dataset. 

Threshold TPR FPR Unclassified LvI 0 LvII LvI 2 LvI 3 
(bits) (%) F T F T F T F T 
0 .988 .996 0 0 160 2 110 3 135 4 336 
5 .991 .928 .933 0 155 1 110 2 135 4 336 
10 .993 .528 1.47 0 154 0 109 2 135 3 336 
15 .996 .356 2.40 0 153 0 107 1 134 2 335 
20 .996 .252 2.80 0 153 0 106 1 133 2 334 
25 .996 .204 3.20 0 153 0 105 1 132 2 333 
30 .997 .180 4.27 0 153 0 105 1 130 1 328 

Table 4. Dismbunon of clasSified Virus fTagments for 700 bp dataset. 
For a selection of threshold scores. the number of true (f) and false (F) classifications is shown for each 

lineage level. 

5.6.3 The Multiple Threshold Strategy: Experimental Design 

In the previous section, we saw that annotating a fragment based on its top hit overall 

resulted in no annotations in the more specific taxa in levels 4 and above. However, it is 

desirable for fragments to be annotated as specifically as possible. In this section, we take a 

different approach to annotating the fragments that will remedy this situation. 

58 



The same 100 bp and 700 bp fragment datasets and the HMM skeletons of all the viral 

taxa of Section 5.6.1 are used here. However here we use the second approach to annotating 

a fragment described in Section 5.1.3. In thls approach we classify a fragment to the lowest 

ranking taxon that contains a hit above a certain threshold score. That is, we first query a 

fragment to all taxa of the lowest rank, level 8 in this case. If the top hit at thls level is above 

a certain threshold score, we classify the fragment based on that hit and we no longer need 

to query the fragment to further levels. Otherwise the fragment is left unclassified and is 

queried to all the taxa in the next rank up, level 7, where we repeat the process. This 

approach allows a fragment to be annotated to a more specific taxon despite gerting a higher 

scoring hit with a cluster of a more general taxon. This approach also saves computing time, 

as a fragment does not have to be queried against every taxa skeleton. 

In general, we can have a different threshold score for each level So unlike for the first 

method, we need multiple threshold scores, one for each level. We try to estimate good 

threshold scores by producing ROC-like TPR/FPR curves for each level. We first use the 

entire fragment dataset to query the level 8 taxa and produce the level 8 TPR/FPR curve. 

Any fragments classified at thls level are then removed from the dataset. The resulting 

smaller dataset is used to query against the level 7 taxa and to produce the level 7 TPR/FPR 

curve. We then shrink the dataset again by removing the classified fragments, and query 

against the next level, as so on. 

5.6.4 The Multiple Threshold Strategy: Results 

The results of the 100 bp dataset will be discussed first. Figures 33-39 give the TPR/FPR 

curves for levels 6 to O. Only a tiny fraction, 10 fragments, of our dataset have lineages that 
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go all the way down to levels 7 and 8. The TPR/FPR curves for these levels are then not 

informative, and have been omitted. The threshold scores for these two levels were set low 

enough to classifY the 10 fragments to a level 8 taxon. 
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1 

The plots show that as we lower the threshold score, the TPR decreases and the FPR 

increases, similar to what we saw in the Section 5.6.2. lbis occurs because with a lower 

threshold score, we classifY more fragments. Of course, the more non-virus fragments that 

are successfully annotated, the higher the FPR. We are also classifYing more virus fragments, 

but we are accepting more FNs than TPs, resulting in a lower TPR. According to the 

TPR/FPR curves, the peak TPR for levels 1-6 occur at a low FPR, and so these points are 

good threshold candidates. Since level 0 only consists of the taxon Virus, the TPR is always 

1, and we need to pick a threshold score that obtains a desirable FPR and number of 

unannotated fragments. For levels 1-6 we selected the threshold score that gave the peak 

TPR and for level 0 we picked the threshold that gave about 0.01 FPR. We then calculated 

the overall TPR and FPR based on all the classifications made across all levels, and 
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compared it to the to result with similar FPR of the single threshold approach in the last 

section. This is summarized in Table 5. 

Method TPR FPR U nelass. (%) 

SING. .986 .076 32.8 
MULT. .782 .072 26.13 

Method LvI 0 LvII LvI 2 LvI 3 LvI 4 LvI 5 LvI 6 LvI 7 LvI 8 
F T F T F T F T F T F T F T F T F T 

SING. 0 119 1 89 1 94 5 195 0 0 0 0 0 0 0 0 0 0 
MULT. 0 7 0 2 0 6 1 58 86 261 30 66 4 23 0 0 0 10 

Table 5. 100 bp: StOgIe threshold vs multiple thresholds. 

From Table 5 we can see that while the single threshold approach results in a higher 

TPR at a similar FPR, the multiple threshold approach resulted in less unannotated 

fragments and many annotations at level 4 (representing approximately the rasa of the genus 

rank) and above, which the single threshold approach does not obtain at all. In fact for this 

multiple threshold approach, level 4 achieves the highest annotation count. Again this is very 

desirable, as it is more informative to have annotation as specific as possible. This however 

does come at the cost of more false classifications. It is up to users to decide which approach 

is more suitable for their research. 

The results of the 700 bp show the same trends as the 100 bp, as can be seen in Figures 

40-46. Again we picked threshold scores that had the peak TPR for levels 1-8, and picked 

the threshold that corresponds to roughly 0.01 FPR. We also again calculate the overall TPR 

and FPR of the classifications and compare them to the single threshold results of similar 

FPR, which is shown in Table 6. We again see that the single threshold is superior in terms 

of having fewer false classifications with its low TPR, but the multiple threshold approach 

again obtains more specific classifications. Note that in comparison to the 100 kb case where 

level 4 earned the most hits, our results show the 700 kb earned the most in level 3. If we 
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lower the threshold for level 4, however, we can boost the number o f fragments classified at 

thi s level at the cost uf a lower '"[PRo 
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Method TPR FPR Unci ..... (%) 

SING. 1.00 .008 \0.0 
MULT. .970 .008 11.9 

LviI Lvi 2 Lvi 3 Lvi 4 Lvi 5 Lvi 6 Lvi 7 Lvi 8 
F T F T F T F T F T F T F T F T 
0 94 0 129 0 305 0 0 0 0 0 0 0 0 0 0 
0 7 0 89 0 339 12 138 6 12 2 22 0 0 0 10 

Table 6. 700 bp: Single threshold vs multiple thresholds. 
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Chapter 6: Discussion 

The results of the experiments comparing MeL and SOM clustering show that MeL is 

superior to SOMs in running time performance and in the annotation performance of the 

resulting skeletons. We therefore chose to use MeL exclusively in our experiments. The 

cross-validation experiments on three virus families indicated that Anacle has great 

generalization since it can correctly annotate fragments from genomes not present in the 

training set. We then showed that Anacle achieves good performance in taxonomic 

annotation using experiments through a small multiple family test and through a large test 

against all viral taxa. For example, we were able to classify 67.2% of our artificial 

metagenome consisting of small unassembled 100 kb fragments with 0.986 TPR and a low 

FPR of 0.076. We also showed that we can trade-off among the TPR, FPR, the percentage 

of fragments left unclassified, and how specific the classifications are by tuning the threshold 

scores. We saw that annotating a fragment based on its top scoring HMM over a single 

threshold score resulted in high TPR and low FPR, but at the cost of having the 

classifications being in more general taxa (subfamily rank and above). On the other hand we 

saw that when using a multiple threshold scores, one for each level of taxonomy, we can 

obtain more specific classifications at the genus rank and below at the cost of having a lower 

TPR. 

Therefore Anacle is capable of giving quality annotation to short, unassembled 

fragments, unlike other methods, like PhyloPythia, that require longer sequences or contigs 

that would be obtained by first assembling the fragments. The assembly process is not 

perfect, especially in metagenomics, and it very frequently leads to fragments falsely 
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assembled together (e.g., combining a virus and bacteria fragment together). These false 

contigs were shown to be detrimental to PhyloPythia's results [21]. Thus its capability to 

annotate unassembled fragments allows Anacle to avoid this issue. 

By allowing fragments to be assigned to a taxon first, we can split the overall assembly 

task into smaller tasks. Rather than trying to assemble all the fragments at once, we can 

assemble the fragments in each individual taxon instead. This approach could perhaps 

reduce the number of false assemblies, as for example the virus and bacteria fragments 

would end up in different bins and therefore cannot be combined. This then reverses the 

current method of metagenornic analysis where we first assemble the fragments and then try 

to annotate the contigs and the remaining unassembled fragments. With Anacle we can 

annotate the fragments first and then assemble them. The annotation can then be further 

refined at the end by annotating the resulting contigs of the assembly. 
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Chapter 7: Conclusion 

7.1 SRflJflJfJry of ContribRtions 

We developed an automated system called Anacle to annotate taxonomically the 

unassembled fragments of a metagnomics project before the assembly process. Knowledge 

of what proteins can be found in each taxon is built into Anacle by clustering all known 

proteins of that taxon. The resulting protein clusters can each be represented by profile 

HMMs. Thus a "skeleton" of the taxon is generated with the profile HMMs providing a 

summary of the taxon's genetic content. The experiments show that for short, unassembled 

fragments (100-700 bp), (1) MeL is superior to SOMs in clustering and in running time 

performance, (2) Anacle achieves good performance in taxonomic annotation, and (3) 

Anacle has the ability to generalize since it can correctly annotate fragments from genomes 

not present in the training dataset. Preliminary resulrs on a subset of the unassembled, 100 

bp virus fragments from the Sargasso Sea show a dramatic increase in annotation compared 

to BLAST. Using the typical threshold e-value of 0.001, BLAST only produces hits to 6% of 

the fragments. Whereas Anacle annotates 63-70% of the fragments, depending on the 

threshold score. Using our single-threshold results as a reference, this annotation range 

corresponds to roughly to a TPR of 0.98-0.99 and FPR of 0.02-0.10. 

Therefore Anacle is capable of giving quality annotation to short, unassembled 

fragments, unlike other methods that require the fragments to be assembled first. By 

allowing fragments to be assigned to a taxon first, we can split the overall assembly task into 

smaller subtasks. This then reverses steps of the current method of metagenomic analysis. 
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With Anacle we can annotate the fragments first and then assemble them. The annotation 

can then be further refined at the end by annotating the resulting contigs of the assembly. 

7.2 Future Work 

There are many ways in which this work may be extended and applied. In this thesis we 

focused on the viral genomes, but the same principles can be applied to non-virus genomes. 

Further work in tuning threshold scores for use with real-world data for both the single and 

multiple threshold strategies needs to be done. In this thesis the thresholds were tuned to 

genomes in the classifier's training set This work can also be applied to a new assembly 

method where the fragments are annotated first and the resulting taxa are assembled 

individually, perhaps reducing the number of false assemblies. Finally, the work can be 

applied to annotating real metagenomics datasets such as the fragments from the Sargasso 

Sea. 
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Appendix A: Fragment Dataset Genome Lists 

A. 1 Genomes 'lied in clflstering comparison 

The following is the Jist of genomes used the clustering comparison discussed in Section 

5.3. The number scheme here is used in the Figures 14 and 15 of Section 5.3. Genomes #1-

10 are herpesviruses and were used for training. All other genomes are from a variety of 

other viral families. 

Genome # 
01 
02 
03 
04 
OS 
06 
07 
08 
09 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 

Accession 
NCOO1806.1 
NC_OOI798.1 
NC_OOI348.1 
NC00760S.1 
NC_OO6273.1 
NC_OOI664.1 
NCOO\7l6.2 
NCOO3409.1 
NC_OO7016.1 
NCOOIB47.1 
NCOOI6S3.2 
NC_007611.1 
NC_OO268S.2 
NC_003714.1 
NCOOBOI8.1 
NC_OO4706.1 
NCOOS031.1 
XC_OOS2IB.1 
NCOO3790.1 
NC_OOI782.1 
NCOO70S8.1 

Description 
Human herpesvirus I, complete genome 
Human herpesvirus 2, complete genome 
Human herpesvirus 3, complete genome 
Human herpesvirus 4, complete genome 
Human herpesvirus S (wild type strain Merlin), complete genome 
Human herpesvirus 6A, complete genome 
Human herpesvirus 7, complete genome 
Human herpesvirus 8, genome 
Macaca fuscata rhaciinovirus, complete genome 
Bovine herpesvirus 1, complete genome 
Hepatitis 0 virus, complete genome 
Bahoon polyomavirus I, complete genome 
Bovine adenovirus D, complete genome 
Pseudomonas phage phi-6 segment S, complete sequence 
Banana streak virus, complete genome 
Papaya leaf curl virus-associated DNA beta, complete genome 
Tomato leaf curl Java virus, complete genome 
Hantaan virus segment S, complete sequence 
Chicken astrovirus, complete genome 
Saharomyces cerevisiae killer virus MIt complete genome 
Bacteriophage ROSA, complete genome 

A.2 Genomes flud for familY cross-validation 

The following subsections contain lists of genomes used in the cross-validation tests in 

Section 5.4. 
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A.2.1 Herpesviridae 

The following lists the genomes used in the cross-validation of Hetpesviridoe. Partition 1, 

2 and 3 consists of Genome #1-14, 15-29, and 30-44, respectively. This numbering scheme 

is used in Figures 16, 19, and 20. 

Genome # Accession 
01 NCOO6560 
02 NC_OOI844 
03 NC_OO2577 
04 NC_OOI347 
OS NCOO2665 
06 NCOO2686 
07 NCOOl826 
08 NCOO3409 
09 NC_002512 
10 NC006150 
II NC_OOO898 
12 NC_OOI348 
13 NC_OO5261 
14 NC_OO8210 
IS NCOOI806 
16 NCOOl798 
17 NC_OOI350 
18 :-.ICOOI847 
19 NC_OO5264 
20 NC_OO7605 
21 NC_OO8211 
22 NC_001650 
23 NC_OO2531 
24 NC_OO6146 
25 NCOO6623 
26 :-.IC_OOI493 
27 NC_OO5881 
28 NCOO6151 
29 NC_007646 
30 NC_004065 
31 NC004812 
32 NC_006273 
33 NC_OO1491 
34 NCOO2229 
35 NC_OO7016 
36 NC_OO3521 
37 NCOO3401 
38 NC_OOI664 
39 NC_004367 
40 NC_OO2641 
41 NC_OO1987 
42 NCOO7653 
43 NCOO2794 
44 NC_OO1716 

Description 
Cercopithecine herpesvirus 2, complete genome. 
Equid herpesvirus 4, complete genome. 
Gallid herpesvirus 3, complete genome. 
Human herpesvirus 5 (laboratory strain AD169), complete genome. 
Bovine herpesvirus 4, complete genome. 
Cercopithecine herpesvirus 7, complete genome. 
Murid herpesvirus 4, complete genome. 
Human herpes\-irus 8, genome. 
Murid herpesvirus 2, complete genome. 
Cercopithecine herpesvirus 8, complete genome. 
Human herpesvirus 6B, complete genome. 
Human herpesvirus 3 (strain Dumas), complete genome. 
Bovine herpesvirus 5, complete genome. 
Ranid herpesvirus 2, complete genome. 
Human herpesvirus 1, complete genome. 
Human herpesvirus 2. complete genome. 
Saimiriine herpesvirus 2, complete genome. 
Bovine herpesvirus I, complete genome. 
Psittacid herpeS\-irus I, complete genome. 
Human herpesvirus 4, complete genome. 
Ranid herpesvirus I, complete genome. 
Equid herpesvirus 2, complete genome. 
Alcelaphine herpesvirus I, complete genome. 
Cercopithecine herpesvirus IS, complete genome. 
Gallid herpeS\-irus I, complete genome. 
Ictalurid herpesvirus I, complete genome. 
Ostreid herpesvirus t, complete genome. 
$uid herpesvirus I, complete genome. 
Ovine herpesvirus 2, complete genome. 
Murid herpesvirus I, complete genome. 
Cercopithecine herpesvirus I, complete genome. 
Human herpesvirus 5 (wild type strain Merlin), complete genome. 
Equid herpesvirus I, complete genome. 
Gallid herpesvirus 2, complete genome. 
Macaca fuscata rhadinovirus, complete genome. 
Chimpanzee cytomegalovirus, complete genome. 
Cercopithecine herpesvirus 17, genome. 
Human herpesvirus 6, complete genome. 
Callitrichine herpesvirus 3, complete genome. 
Meleagrid herpesvirus I, complete genome. 
Ateline herpesvirus 3, complete genome. 
Cercopithecine herpesvirus 16, complete genome. 
Tupaia herpesvirus, complete genome. 
Human herpesvirus 7, complete genome. 
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A.2.2 Bromoviridae 

This list shows the genomes used in the Bromoviridae cross-validation test. Partition 1, 2 

and 3 consists of Genome #1-7, 8-15, and 16-23, respectively. This numbering scheme is 

used in Figure 17. 

Geoome# 

01 
02 
03 
04 
OS 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Accession 
NCOOl495 
NCOO3838 
NC_004120S 
NCOO3546 
NC_OO8037 
NC_OO3568 
NC_OO3671 
NC_OO3541 
NCOO3464 
NC_OO2026 
NC_OO3842 
NCOO3808 
NC_004362 
NC_OO5848 
NC_OO6566 
NC_006999 
NCOO3833 
NC_OO2038 
NC_004006 
NCOOI440 
NCOO3451 
NC_006064 
NCOO3649 

A.2.3 Poxviridae 

Description 
Alfalfa mosaic virus R.'1A 1, complete sequence. 
Tomato aspenny virus RNA 2, complete sequence. 
pring beauty latent virus R.'1A 1, complete sequence. 
Citrus leaf rugose virus R.'IA 3, complete sequence. 
Prune dwarf virus RNA 2, complete sequence. 
Elm mottle virus RNA 2, complete sequence. 
Olive latent virus 2 RNA 3, complete sequence. 
Cowpea chlorotic mottle virus RNA 2, complete sequence. 
Apple mosaic virus RNA 1, complete sequence. 
Brome mosaic virus RNA 1, complete sequence. 
Tobacco streak virus RNA 2, complete sequence. 
Spinach latent virus RNA 1, complete sequence. 
Prunus necrotic ringspot virus RNA 1, complete sequence. 
Parietaria mottle virus RNA I, complete sequence. 
Fragaria chiloensis latent virus RNA I, complete sequence. 
Cassia yellow bloteh virus RNA I, complete sequence. 
Tulare apple mosaic virus RNA I, complete sequence. 
Peanut stunt virus RNA 1, complete sequence. 
Broad bean mottle virus RNA 3, complete sequence. 
Cucumber mosaic virus RNA 3, complete sequence. 
American plum line pattern virus RNA I, complete sequence. 
Humulus japonicus latent virus, complete genome. 
Pelargonium zonate spot virus RNA I. complete sequence. 

This list shows the genomes used in the Poxviridae cross-validation test. Partition 1,2 and 

3 consists of Genome #1-7, 8-14, and 15-22, respectively. This numbering scheme is used in 

Figure 18. 

Geootne # 
01 
02 
03 
04 
05 

Accession 
NC_003027 
NCOOl993 
NC_OO5337 
NCOO1611 
NC_OO1731 

Description 
Lumpy skin disease virus NI·2490, complete genome. 
Melanoplus sanguinipes entomopoxvirus, complete genome. 
Bovine papular stomatitis virus, complete genome. 
Variola virus, complete genome. 
Molluscum contagiosurn virus, complete genome. 
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06 
07 
08 
09 
\0 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 
22 

NC_OO5336 
NC_OO3663 
NCOO2642 
NC_OO6998 
NC_004002 
NC_OO5309 
NC_OO6966 
NC_OO33\O 
NC_004105 
NC_OO3389 
NC_OO1266 
NCOO1132 
NCOO2520 
NCOO5179 
NC_OO8291 
NC_OO3391 
NC_OO2188 

Orf virus, complete genome. 
Cowpox virus, complete genome. 
Yaba-like disease virus, complete genome. 
Vaccinia virus, complete genome. 
Sheeppox virus 17077-99, complete genome. 
Canarypox virus, complete genome. 
Mule deet poxvirus, complete genome. 
Monkeypox virus, complete genome. 
Ectromelia \irus, complete genome. 
Swinepox virus, complete genome. 
Rabbit fibroma virus, complete genome. 
Myxoma virus, complete genome. 
Amsacta moorei enromopoxvirus, complete genome. 
Yaba monkey tumor virus, complete genome. 
Taterapox virus, complete genome. 
Camelpox virus, complete genome. 
Fowlpox virus, complete genome. 

A.J GenOf/JeS flsed in f/Jfllti/af/Jily test 

The following lists the genomes in the fragment dataset used in the experiments in 

Section 5.5. The numbering scheme corresponds with Figures 21-28. This is an extension of 

the genomes listed in Appendix A.1. Genomes #1-12 are herpesviruses. Genomes #13-24 

and #25-36 are bromoviruses and poxviruses, respectively. Genomes #37-47 are from of an 

assortment of viruses from other families. 

Genoroe# 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

ACCession 
NC_OOI806.1 
NCOO1798.1 
NCOO I 348. I 
NC_OO7605.1 
NC_006273.1 
NC_OOI664.1 
NCOO1716.2 
NC_OO3409.1 
NC_007016.1 
NC_OOI847.1 
NC_OOI493.1 
NC_OO82\O.1 
NC_004362 
NC_OO3546 
NC_OO3842 
NC_OO2026 
NC_OO5848 
NC_004006 
NC_OO3451 
NC_006566 

DescriWiOQ 
Human herpesvirus I, complete genome 
Human herpesvirus 2, complete genome 
Human herpesvirus 3, complete genome 
Human herpesvirus 4, complete genome 
Human herpesvirus 5 (wild type strain Merlin), complete genome 
Human herpesvirus 6A, complete genome 
Human herpesvirus 7, complete genome 
Human herpesvirus 8, genome 
~1acaca fuscata rhadinovirus, complete genome 
Bovine herpesvirus 1, complete genome 
Ictalurid herpesvirus t, complete genome 
Ranid herpesvirus 2, complete genome 
Prunus necrotic ringspot virus RNA I, complete sequence. 
Citrus leaf rugose virus RNA 3, complete sequence. 
Tobao streak virus RNA 2, complete sequence. 
Brame mosaic virus RNA 1. complete sequence. 
Parietaria mottle virus RNA I, complete sequence. 
Broad bean mottle virus RNA 3, complete sequence. 
American plum line pattern virus RNA I, complete sequence. 
Fragaria chiloensis latent virus RNA I, complete sequence. 
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21 NC_002038 Peanut stunt virus RNA I, complete sequence. 
22 NC_003833 Tulare apple mosaic virus RNA 1, complete sequence. 
23 NC_OO3671 Olive latent virus 2 RNA 3. complete sequence. 
24 NC_OOI440 Cucumber mosaic virus RNA 3, complete sequence. 
25 NCOO8291 Taterapox virus, complete genome. 
26 NC_004002 Sheeppox virus 17077-99, complete genome. 
27 NC_OO2520 Amsacta mooeei entomopoxvicus, complete genome. 
28 :\iC_OOI266 Rabbit fibroma virus, complete genome. 
29 NC_OO2642 Yaba-like disease virus, complete genome. 
30 NCOOI132 Myxoma virus, complete genome. 
31 NCOOI611 VarioIa virus, complete genome. 
32 NC_001731 Molluscum contagiosum virus. complete genome. 
33 NC0021811 Fowlpox virus, complete genome. 
34 NC003391 Camelpox virus, complete genome. 
35 NC003310 Monkeypox virus, complete genome. 
36 NC_OO3663 Cowpox virus, complete genome. 
37 NC_001653.2 Hepatitis D virus, complete genome 
38 NCOO7611.1 Baboon polyomavirus I, complete genome 
39 NC_OO2685.2 Bovine adenovirus D, complete genome 
40 NCOO3714.! Pseudomonas phage phi-6 segment S, complete sequence 
41 NCOOSO!8.1 Banana streak virus, complete genome 
42 NC004706.1 Papaya leaf curl virus-associated DNA beta, complete genome 
43 NCOO5031.1 Tomato leaf curlJava virus. complete genome 
44 NC_OO5218.1 Hantaan virus segment S, complete sequence 
45 NCOO3790.1 Chicken ascrovirus, complete genome 
46 NC_OOI782.1 Saharomyces cerevisiae killer virus MI, complete genome 
47 NC_OO7058.1 Bacteriophage ROSA, complete genome 
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