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Stochastic cost-optimization and risk assessment of in situ chemical
oxidation for dense non-aqueous phase liquid (DNAPL) source
remediation

Ungtae Kim • Jack C. Parker 
• Robert C. Borden

Abstract
This study involved development of a computer program to determine optimal design variables for in situ chemical 
oxidation (ISCO) of dense nonaqueous phase liquid (DNAPL) sites to meet site-wide remediation objectives with mini-

mum life-cycle remediation cost while taking uncertainty in site characterization data and model predictions into con-
sideration. A physically-based ISCO performance model computes field-scale DNAPL dissolution, instantaneous reaction 
of oxidant with contaminant and with readily oxidizable natural oxidant demand (NOD), second-order kinetic reactions for 
slowly oxidizable NOD, and time to reach ISCO termination criteria. Remediation cost is computed by coupling the 
performance model with a cost module. ISCO termination protocols are implemented that allow different treatment 
subregions (e.g., zones with different estimated contaminant concentrations) to be terminated independently based on 
statistical criteria related to confidence limits of contaminant concentrations estimated from soil and/or groundwater 
sampling data. The ISCO model was implemented in the program called Stochastic Cost Optimization Toolkit, which 
includes modules for additional remediation technologies that can be implemented serially or in parallel coupled with a 
dissolved plume model to enable design optimization to meet plume-scale cleanup objectives. This study focuses on 
optimization of ISCO design to meet specified source zone remediation objectives. ISCO design parameters considered for 
optimization include oxidant concentration and injection rate, frequency and number of soil or groundwater samples, and 
cleanup criteria for termination of subregion injection. Sensitivity studies and example applications are presented to 
demonstrate the benefits of proposed stochastic optimization methodology.

Keywords Stochastic optimization � In situ chemical oxidation � Risk assessment � DNAPL source remediation � 
Uncertainty analysis

1 Introduction

A variety of technologies have been applied to remediate

dense non-aqueous phase liquid (DNAPL) source areas

over the last 40 years, including thermal source reduction,
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of the research reported here is to develop a decision

protocol for ISCO design for incorporation into the

Stochastic Cost Optimization Toolkit (SCOToolkit), which

couples performance models for multiple remediation

technologies with a dissolved transport module to identify

the most cost-effective strategies to meet compliance cri-

teria for sites with DNAPL sources (Parker et al. 2011;

Kim et al. 2013; Lee et al. 2012).

2 Methods

2.1 DNAPL source depletion during ISCO

We consider a DNAPL source zone of bulk aquifer volume

V0 [L3] to which we wish to apply ISCO. The total con-

taminant mass prior to ISCO is M0 [M] and the corre-

sponding contaminant dissolution rate is J0 [MT-1]. We

wish to consider potential efficiency improvements by

dividing the source zone into smaller operational units that

are monitored and managed independently. For example,

field data may indicate one or more ‘‘hot spots’’ having

high soil concentrations, other areas with moderate con-

centrations, and peripheral zones of lower concentrations.

Since lower concentration zones will likely require fewer

oxidant injections, earlier termination may be possible

making less aggressive design variables more cost effective

in these areas. Therefore, we consider dividing the source

area into NTZ treatment zones (TZ) based on initial con-

taminant distributions within the source area. For each TZi,

the DNAPL source dissolution rate is described by a power

function source depletion model as

JiðtÞ ¼ Fmt iðtÞFk iðtÞJ0 i
MiðtÞ
M0 i

� �b

ð1Þ

where Ji(t) is the dissolution rate from source zone for TZi

as a function of time [MT-1], Mi(t) is the DNAPL mass

remaining at time t [M], M0i is the mass just prior to ISCO

[M], J0i is the initial dissolution rate [MT-1], b is a

depletion exponent [–], Fmt i is a mass transfer enhance-

ment factor associated with high oxidant concentrations,

which is 1 with no enhancement and[ 1 with increasing

enhancement [–], and Fk i is a mass transfer inhibition

factor due to pore clogging that ranges from 1 with no pore

clogging to 0 with complete clogging [–]. The power

function DNAPL source model has been widely used and

validated by high resolution numerical simulations, labo-

ratory experiments and field studies (Rao and Jawitz 2003;

Parker and Park 2004; Falta et al. 2005; Jawitz et al. 2005;

Park and Parker 2005; Parker and Falta 2008; Cardiff et al.

2010; Parker et al. 2010a; Parker and Kim 2015; Yang

et al. 2016). The depletion exponent b depends on the

enhanced bioremediation, and in situ chemical oxidation 
(ISCO). Our focus here is on ISCO, which involves 
injection of a chemical reagent into the subsurface to 
oxidize contaminants. The technology has been studied 
since the early 1990s and has been used extensively in the 
field for a variety of contaminants (Huling and Pivetz 2006; 
McGuire et al. 2006; Siegrist et al. 2006, 2008; Borden 
et al. 2010; Krembs et al. 2010). Common reagents include 
potassium or sodium permanganate, persulfate, ozone, 
hydrogen peroxide (H2O2), and modified Fenton’s reagent 
(H2O2 plus ferrous iron).

One of the most common oxidant delivery methods 
involves injecting pulses of oxidant solution into a network 
of injection wells, followed by periods in which oxidant 
reacts with contaminants and migrates with the natural 
groundwater flow. This approach is well adapted to the 
treatment of DNAPL source zones in moderate permeability 
aquifers (Crimi and Siegrist 2005; Siegrist et al. 2006, 2008; 
Borden et al. 2010; Cha and Borden 2012). In aquifers with a 
high groundwater velocity, low residence times in the target 
zone diminish the cost effectiveness of this method.

Remediation system design is to a great degree a 
problem of managing uncertainty. Although ISCO is a 
mature technology with well-documented design protocols, 
including available software for design and cost estimation 
(Borden et al. 2010; Siegrist et al. 2010), these tools do not 
address the effects of uncertainty in site characteristics or 
measurements used to make termination decisions on sys-
tem performance and cost. Considerable work has been 
reported on optimization of long-term monitoring to trade 
off costs against the value of information (Loaiciga et al. 
1992; U.S. EPA 2000, 2007; Reed et al. 2000). Compared 
to deterministic optimization, stochastic optimization can 
consider the prediction uncertainty by simulating a forward 
model for realistic ranges of parameters in decision-making 
(Freeze 2004; Bastante et al. 2008; Cardiff et al. 2010; 
Parker et al. 2011).

Stochastic optimization methods employ Monte Carlo 
simulations to define probability distributions of perfor-
mance and cost for a given design and use optimization 
algorithms to determine design variables that minimize 
probability-weighted cost subject to performance con-
straints (Bastante et al. 2008; Cardiff et al. 2010; Parker 
et al. 2011; Li et al. 2015, 2017). Optimal remediation 
solutions may also be affected by economic and political 
uncertainty, such as changes in inflation, interest rates or 
regulations (Freeze 2004). These factors can, in principle, 
be addressed by Monte Carlo simulations. However, given 
the difficulty to quantify the associated probability distri-
butions, a more practical approach may be to use sensi-
tivity analyses to qualitatively factor their effect into the 
decision process, and to reoptimize design parameters 
periodically to consider evolving conditions. The purpose



DNAPL ‘‘architecture,’’ i.e., the geometry within the pore

space. Values\ 1 are typical of DNAPL pools or lenses,

while values [ 1 reflect residual DNAPL with a more

discontinuous structure (Parker and Park 2004).

The mass transfer enhancement factor, Fmt, may be

estimated based on Reitsma and Dai (2001) as

FmtðtÞ ¼ 1þ fmt
CoxðtÞWct

SctWox

fmt ¼
Dox

nox=ctDct

ð2Þ

where Cox(t) is the current aqueous oxidant concentration

[ML-3], Sct is the effective solubility of contaminant in the

DNAPL [ML-3], Wox is the molecular weight of oxidant

[M mol-1], Wct is the molecular weight of contaminant

[M mol-1], Dox is the aqueous oxidant diffusion coefficient

[L2T-1], Dct is the aqueous contaminant diffusion coeffi-

cient [L2T-1], and nox/ct is the molar ratio of oxidant to

contaminant for the redox reaction.

If permanganate is used as the ISCO oxidant, pore

clogging by MnO2 precipitation can inhibit DNAPL dis-

solution. This is modeled following West et al. (2007) and

West and Kueper (2012) as

FkðtÞ ¼ 1� Srindj jCMnO2
ðtÞ ð3Þ

where CMnO2
ðtÞ is the mass of precipitated MnO2 per

volume of water in the TZ [ML-3] as a function of time,

and Srind is the slope of the relationship between relative

permeability and MnO2 concentration.

Contaminant soil concentrations are assumed to be log-

normally distributed, which has been shown to be a good

approximation for DNAPL source zones by Parker et al.

(2017). Therefore, initial mass M0i and mass flux J0i values

in each TZ are generated stochastically using a log-normal

distribution for Monte Carlo simulations from the esti-

mated upper and lower confidence limits of soil concen-

trations (Cmin
soil and C

max
soil ) within each TZ with a bulk volume

V0i based on site characterization data. For example, using

a log-normal distribution, the log mean of soil concentra-

tion is the median and the confidence limits is assumed as

95% (& ± 2r) for practical applications. Now, we can

generate a mass for TZi as M0i ¼ exp 0:5 ln Cmin
soilC

max
soil

� �
þ

�
0:25 ln Cmax

soil =C
min
soil

� �
U 0; 1ð Þg, where U(0, 1) is a uniform

random number. Finally, the generate mass and mass flux

values are reconditioned to meet the mass conservation

requirements

XNTZ

i¼1

M0 i ¼ M0;
XNTZ

i¼1

J0 i ¼ J0; and
XNTZ

i¼1

V0 i ¼ V0: ð4Þ

2.2 ISCO reaction model

Within each TZ an injection well network is constructed to

inject oxidant at a specified concentration and flow rate for

a defined duration such that injection zones for each well

overlap at the end of an injection period. Following the

injection period, oxidant is assumed to migrate under nat-

ural gradient conditions until treatment is terminated or

another injection event is undertaken. Since TZs consist of

multiple overlapping injection zones with injection periods

that are short compared to subsequent natural gradient

periods, it is reasonable to approximate the oxidant con-

centration in the TZ as uniform at the end of the injection

period and to treat the TZ as a stirred reactor. Mass balance

equations are solved for the following components within

each TZ.

• DNAPL contaminant

• Aqueous and adsorbed phase contaminant

• Rapidly oxidizable natural oxidant demand (‘‘fast’’

NOD or NODf)

• Slowly oxidizable natural oxidant demand (‘‘slow’’

NOD or NODs)

• Aqueous phase oxidant

DNAPL serves as a rate-limited source of aqueous

contamination described by Eqs. (1)–(3). Direct oxidation

of DNAPL contaminant is assumed to be negligible.

However, DNAPL dissolution rate is coupled with aqueous

oxidant concentration via Eq. (2). Following Cha and

Borden (2012), oxidant is assumed to react instantaneously

with aqueous and adsorbed contaminant and with NODf.

Oxidation of NODs is modeled as a second-order kinetic

reaction. Equilibrium is assumed between aqueous phase

and adsorbed contaminant.

NOD is characterized by the total NOD per dry soil

mass (CNODtot
soil ), the ratio of fast NOD to total NOD (fNODf),

and the second order rate coefficient for NODs (kNODs).

NOD parameters may be determined on soil samples using

the laboratory protocol described by ASTM method

D7262-07 (ASTM 2007). Since potassium permanganate is

the oxidant in this lab test, the quantity of NOD is typically

reported as moles of KMnO4. Typical ranges for NOD

parameters are given in Table 1 based on Cha (2012).

The reaction between a chlorinated solvent and an O2-

equivalent oxidant (O2eq) may be written generically as

CaClbHc þ nO2eq=ctO2eq ! nCO2
CO2 þ nCl2Cl2 þ nH2OH2O

ð5Þ

with stoichiometric coefficients nO2eq=ct = a ? c/4,

nCO2
= a, nCl2 = b/2, and nH2O = c/2. For common chlori-

nated solvents, O2-equivalent oxidant requirements for

complete oxidation of one mole of contaminant ðnO2eq=ctÞ



are thus 1 for CCl4 (carbon tetrachloride, CT), 2 for C2Cl4
(perchloroethylene, PCE), 2.25 for C2HCl3 (tri-

chloroethylene, TCE), 2.5 for C2H2Cl2 (dichlororethylene,

DCE), and 2.75 for C2H3Cl (vinyl chloride, VC). Oxidation

reactions for other contaminants may be written in a similar

manner to determine nO2eq=ct.

The net stoichiometry for contaminant-oxidant pairs (ct,

ox) may be computed as

nox=ct ¼
nO2eq=ct

nO2eq=ox
ð6Þ

where nox/ct is the molar ratio of actual oxidant utilized to

contaminant for a given ct-ox pair, nO2eq=ct is the O2-

equivalent moles of oxidant per mole of the contaminant of

interest (Eq. 5), and nO2eq=ox is the O2-equivalent moles of

the oxidant. For common ISCO oxidants, nO2eq=ox is

approximately 0.75 for permanganate (MnO4
-), 1.5 for

ozone (O3), and 2 for hydrogen peroxide (H2O2) or Fen-

ton’s reagent, although values can vary due to reaction

complexity. Approximate net reaction stoichiometries for

various contaminants and oxidants computed from Eq. (6)

are summarized in Table 2.

Mass balance equations for DNAPL contaminant, dis-

solved and adsorbed contaminant, oxidant, NODf and

NODs are solved for each TZ over time based on the

sequential modeling approach proposed by Cha and Borden

(2012) as follows:

(1) Compute quantity of contaminant released from

DNAPL due to dissolution over the current time

step. Update DNAPL mass remaining and dissolved

plus adsorbed contaminant mass.

(2) Solve mass balance for oxidant reactions with

aqueous and adsorbed contaminant.

(3) Compute oxidant loss by downgradient outflow from

TZ and dilution by upgradient inflow.

(4) If aqueous oxidant mass[ 0, compute mass balance

for NODf oxidation.

(5) If aqueous oxidant mass[ 0, solve second-order rate

equation for NODs oxidation.

(6) Update values of Fmt and FK.

Initial contaminant quantities in DNAPL, dissolved, and

adsorbed phases may be obtained from an upscaled NAPL

dissolution transport model if the ISCO model is coupled to

an analytical transport model (e.g., Parker et al. 2011;

Parker and Kim 2015). Otherwise, they must be estimated

directly from site characterization data such as soil con-

centration data.

Prior to commencing ISCO, no oxidant species is

assumed present. Initial quantities of total, fast and slow

NOD are computed as

mNODtot ¼ 0:75CNODtot
soil qbVTZ=1000 ð7Þ

mNODf ¼ fNODf mNODtot ð8Þ

mNODs ¼ ð1� fNODf ÞmNODtot ð9Þ

where mNODtot, mNODf, and mNODs are total, fast, and slow

NOD in moles O2eq; C
NODtot
soil is the total NOD quantity

expressed as equivalent mmol-KMnO4 per mass of dry soil,

qb is the soil bulk density [ML-3], VTZ is the TZ volume

[L3], and the factor 0.75 is the ratio of mol-O2eq to mol-

KMnO4.

Mass balance equations for DNAPL contaminant,

aqueous and adsorbed contaminant, oxidant, chloride, and

NODf for each treatment zone are solved iteratively for

each timestep. Advective losses of aqueous phase oxidant

and contaminant are assumed to occur in proportion to the

product of the average darcy velocity and current average

concentration. DNAPL and NOD are assumed to be

immobile. Model calculation details are given in Appendix

A in ESM.

Table 1 Typical natural oxygen

demand (NOD) parameter

ranges (Cha 2012)

Parameter 10% LCLa Median 90% UCLa Unitb

Total NOD per soil mass (CNODtot
soil ) 2 28 158 mmol/kg

Fraction of ‘‘fast’’ NOD (fNODf) 0.028 0.126 0.361 –

‘‘Slow’’ NOD rate constant (kNODs) 0.003 0.018 0.395 L/mmol day

aLCL and UCL = Lower and Upper Confidence Limit, respectively
bReported as mmol of MnO4

-1 (to obtain mmol O2eq multiply by nO2eq=ox = 0.75)

Table 2 Estimated reaction stoichiometries for various contaminants

and oxidants

Contaminant O2 equivalent Oxidant utilization ratio (nox/ct)

nO2eq=ct MnO4 Ozone H2O2

CT 1.00 1.33 0.67 0.50

PCE 2.00 2.67 1.33 1.00

TCE 3.24 4.32 2.16 1.62

DCE 2.50 3.33 1.67 1.25

VC 2.75 3.67 1.83 1.38



2.3 ISCO performance monitoring

Our objective here is to formulate performance monitoring

protocols to facilitate reliable real-time operational deci-

sions to be made. To minimize decision lags due to travel

times to downgradient locations, performance monitoring

needs to focus on measurements within or near the aquifer

volume being treated. Remediation progress is commonly

monitored by measuring contaminant concentrations in soil

and/or groundwater samples. But what is the relationship

between these two types of measurements to each other and

to the downgradient plume? To answer this question,

consider a DNAPL source zone of volume V [L3], with an

area Avert perpendicular to flow downgradient of the source

[L2], mean darcy velocity q [LT-1], contaminant retarda-

tion factor RCH, source dissolution rate versus time J(t)

[MT-1], and contaminant mass remaining in the source

versus time M(t) [M]. The flow-averaged groundwater

concentration Cgw
avg[ML-3] on the downgradient plane is

Cgw
avgðtÞ ¼

JðtÞ
qRCHAvert

ð10aÞ

while the average soil concentration Csoil
avg [MM-1], within

the source volume is

Csoil
avgðtÞ ¼

MðtÞ
qV

ð10bÞ

where q is the soil dry density [ML-3]. Combining

Eqs. (10a) and (10b) with Eq. (1) assuming no effects of

oxidant (Fmt = Fk = 1), yields

Csoil
avg ¼ M0

qV

qRCHAvertC
gw
avg

J0

� �1=b

ð11Þ

which allows us to compute ‘‘equivalent’’ average soil or

groundwater concentrations.

A complicating factor for using groundwater concen-

tration data to monitor ISCO performance (and in using

Eq. 11) is that aqueous contaminant concentrations will be

negligible as long as dissolved phase oxidant is present.

Following oxidant injection, aqueous phase oxidant will

deplete over time due to reactions and advection and

aqueous contaminant concentrations will subsequently

rebound. However, full rebound can take many months,

depending on the DNAPL dissolution rate and groundwater

velocity. Therefore, measurements of dissolved contami-

nant within or near the downgradient edge of a source zone

will provide limited information on the progress of reme-

diation until rebound occurs. This will require longer

waiting times between oxidant injection events to make

termination and reinjection decisions than if soil sample

data is used.

Since pre-existing groundwater monitoring wells will

generally be present within the ISCO treatment area, which

are required to be monitored at a specified interval (e.g.,

quarterly, semi-annual), we assume that groundwater con-

centration will be measured at all such wells at the regu-

latory-mandated intervals. Additional numbers of

groundwater monitoring locations may be stipulated

strictly for ISCO performance monitoring (i.e., ‘‘tempo-

rary’’ wells or push-probe water samples). All groundwater

sampling locations will be sampled at no less than the

regulatory-mandated frequency. At each groundwater

sampling date following oxidant injection, oxidant con-

centration will be measured until oxidant concentration

drops below a practical detection value (Cox min). Prior to

reaching this level, contaminant concentrations will not be

measured and afterwards, oxidant concentration will not be

monitored until after the next injection event.

In addition to mandated and optional water samples, we

also consider collection of soil samples for ISCO perfor-

mance monitoring. Decision logic soil and groundwater

data or groundwater data only are described below.

2.4 Decision logic for ISCO termination
and reinjection

The criterion for terminating ISCO treatment is commonly

specified as

Ctype
avg �Ctype

stop ð12Þ

where Ctype
avg = Csoil

avg [MM-1] or Cgw
avg[ML-3] represents

average soil or groundwater concentrations, respectively,

and C
type
stop = Csoil

stop or C
gw
stop represents corresponding termi-

nation criterion. In practice, we never know true values of

Ctype
avg , but only estimates of the average Ctype

avg smp calculated

from a finite number of samples. If we substitute Ctype
avg smp

for the true average Ctype
avg in Eq. (12), resulting termination

decisions will have a significant probability of erroneously

terminating treatment before the target criterion is actually

met due to differences between Ctype
avg smp and Ctype

avg .

A more conservative approach that explicitly accounts

for this uncertainty is to modify the termination criteria as

C
type
UCL �Ctype

stop ð13Þ

where C
type
UCL is the upper confidence limit of the estimated

average concentration at significance level a (e.g., 0.1 for a

90% upper confidence limit). Since C
type
UCL [Ctype

avg smp for

0\ a\ 0.5, Eq. (13) is a more stringent criterion than

Eq. (12). The ratio of C
type
UCL and Ctype

avg smp represents a safety

factor that reduces the likelihood of erroneous decisions

that terminate too early. Note that a = 0.5 corresponds to

C
type
UCL = Ctype

avg smp.



High variance properties of quantities that are physically

constrained to be non-negative, such as contaminant con-

centrations, necessarily exhibit positively skewed distri-

butions. Normal probability distributions cannot describe

such behavior. Lognormal distributions capture the major

features of such data and are commonly used as a rea-

sonable and mathematically expedient approximation. If

the average concentration is estimated from ntypesmp samples

and a log-normal distribution is assumed, then

C
type
UCL ¼ exp ln Ctype

avg smp

� �
þ t1 a;Nð ÞStypeln avg

� �
�Ctype

stop ð14aÞ

where

S
type
ln avg ¼

S
type
lnffiffiffiffiffiffiffiffiffi
n
type
smp

q ð14bÞ

in which Ctype
avg smp is the arithmetic average of ntypesmp sam-

ples, S
type
ln is the population standard deviation of ln con-

centration, S
type
ln avg is the standard deviation of ln Ctype

avg smp;

and t1 a;Nð Þ is the one-sided t-value for significance level a
with N degrees of freedom (Snedecor and Cochran 1967).

If S
type
ln is computed from ntypesmp samples then N = ntypesmp - 1,

while if S
type
ln is based on prior site characterization data or

experience with other sites, then N = !. Equation (14)

may also be written

Ctype
avg smp �C

type
stop SF ¼

C
type
stop

exp t1 a;Nð ÞStypeln avg

� � ð15Þ

where C
type
stop SF is the ‘‘true’’ stop criterion divided by a

safety factor to account for uncertainty. Note that

decreasing population uncertainty S
type
ln and/or increasing

the number of samples ntypesmp will yield lower C
type
UCL and

higher C
type
stop SF values at a given confidence level, which

enable earlier ISCO termination at the specified confidence

level. Alternatively, if the same termination criteria (C
type
UCL

and C
type
stop SF) are employed, more reliable data will result in

a lower probability of erroneously terminating before

actual concentrations meet the desired levels.

As an example, consider a source zone with a cleanup

target of Csoil
stop = 1000 lg/kg. It is planned to take nsoilsmp = 15

soil samples to assess whether the objective has been met.

Assume a prior estimate of Ssoilln ¼ 2:9: If we want a 95%

probability (a = 0.05) that the actual average soil concen-

tration will be less than 1000 lg/kg when we terminate

treatment, then t1 = 1.646 and Eq. (15) indicates that the

average concentration computed from 15 samples needs to

be less than C
type
stop SF = 291 lg/kg to achieve the desired

reliability. If the number of samples is increased to 30, we

could terminate earlier with the same decision confidence

when Csoil
avg smp \ 418 lg/kg.

Since the time to reach C
type
stop or C

type
stop SF will vary spa-

tially, it may be possible to reduce operating costs by

applying the foregoing criteria independently to sub-re-

gions to terminate injection earlier in areas that reach

cleanup objectives before site-wide termination criteria are

met. Alternatively, we could treat less contaminated zones

longer to reach a local C
type
stop that is less than the site-wide

value, allowing earlier termination of more contaminated

areas when the site-wide criteria is met.

Anticipating that regions with higher initial contaminant

concentrations are likely to take longer to cleanup, a sys-

tem designer may divide a site into multiple treatment

zones (TZ) based on ranges of pre-remediation contami-

nant concentrations observed during site characterization.

When independent TZ termination is considered, the cri-

teria for ISCO termination in a single TZ is taken as

C
type
avg smp TZi �

C
type
stop TZi

exp t1 a;Nð ÞStypeln avgTZi

� � ¼ C
type
stop SF TZi ð16aÞ

S
type
ln avgTZi ¼

S
type
ln TZiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nsoilsmp TZi

q ð16bÞ

where all variables are for TZ i. Criteria for simultaneous

termination of all currently operating TZs are formulated in

a similar fashion, while taking into consideration that site-

wide statistical properties can be described by upscaling

individual TZ statistics as follows

C
type
avg smp all ¼

PNTZ

i¼1

VTZiC
type
avgTZi

PNTZ

i¼1

VTZi

�
C
type
stop all

exp t1 a;Nð ÞStypeln avgall

� �

¼ C
type
stop SF all

ð17aÞ

S
type
ln avg all ¼

PNTZ

i¼1

n
type
smp TZi

PNTZ

i¼1

n
type
smp TZi

S
type

ln TZið Þ2
� �1=2

ð17bÞ

where VTZi is the bulk volume of TZ i. Note that the stop

criterion for individual TZs is permitted to differ from that

for site-wide termination, subject to the constraint that

C
type
stop TZi �C

type
stopall, i.e., the TZ stop criteria cannot exceed

the site-wide stop criteria. When evaluating Eq. (17) for

TZs that have previously terminated operation, the average

concentration and number of samples from the last sam-

pling event prior to termination are conservatively assumed

to apply.



In addition to determining when oxidant injection can be

terminated, a corollary decision must be made regarding if

or when reinjection should be initiated must be made. The

reinjection criteria for a given TZ is specified as

C
type
UCL smp TZi [C

type
reinject TZi ð18Þ

where C
type
reinject TZi is the average concentration above which

reinjection is indicated ðCtype
reinject TZi �C

type
stop TZiÞ, and S

type
ln avgTZi

is defined by Eq. (16b). Due to the inconvenience and cost

of commencing injection in TZs at different times, rein-

jection is not initiated until criterion for either reinjection

or termination has been met for all TZs.

The time interval Dtgwmon between potential groundwater

sampling events for ISCO monitoring is assumed to be

equal to or an integer fraction (e.g., 1, 1/2, 1/3) of the

regulatory mandated interval. Following an oxidant injec-

tion event, oxidant concentration will be monitored prior to

taking samples for contaminant analysis. If the oxidant

concentration exceeds its detection limit for the method

utilized (Cox min), samples for contaminant analysis are not

taken, as values would not be meaningful. Subsequently,

average contaminant concentrations from groundwater

samples are not deemed to represent full rebound condi-

tions until the current average value is less than or equal to

the previous value for the TZ or site-wide depending on the

level for which the termination decision is to be made. A

minimum number of groundwater sampling rounds N
gw
min is

stipulated before a termination decision is allowed, where

N
gw
min is at least 2. If Dtgwmon is very short and/or rebound is

very slow, larger N
gw
min values may be necessary to avoid

erroneous early termination due to multiple rounds below

detection limits prior to exhibiting rebound. The minimum

number of sampling rounds is not applicable for making

reinjection decisions.

To coordinate soil monitoring (when utilized) with

groundwater monitoring, the period between soil sampling

events Dtsoilmon is constrained to be an integer fraction or

multiple (notated as Fsoil/gw) of Dtgwmon (e.g., 1/3, 1/2, 1, 2,

3). Since rebound is not an issue with soil data, termination

or reinjection decisions do not require a minimum number

of soil sampling rounds. Operational decisions may be

based on groundwater data only, soil data only, or on sta-

tistically-pooled soil and groundwater data (Appendix B in

ESM) for the site as a whole or for individual TZs at the

specified confidence level a. However, to maintain site-

wide coordination of injection events, reinjection in indi-

vidual TZs is not implemented until all TZs have met either

reinjection or termination criteria following each injection

event. A flowchart of the performance monitoring and

decision-making protocol given in Appendix B (Fig. B-1)

in ESM.

2.5 ISCO cost model and design optimization

Life cycle cost to meet cleanup criteria are computed for a

given set of design parameters using the model described

above for a range of site characteristics (Monte Carlo

realizations) generated stochastically based on uncertainty

inferred from site characterization data. Since ISCO

applications are typically conducted over relatively short

time periods (less than a few years), an annualized discount

rate (Eq. C-1a in Appendix B in ESM) was not considered

in computing annual operating and monitoring costs. The

ISCO cost model includes the following cost categories

Total Cost ¼ Fixed Cost þ Operating Cost

þMonitoring Cost þ Penalty Cost ð19Þ

where Fixed Cost is an initial charge for design and con-

struction; Operating Costs include cost per volume of fluid

volume injected and per unit oxidant mass, cost per oxidant

injection event, and additional cost per treatment duration

(e.g., administration, reporting); Monitoring Costs include

mobilization cost per sampling event, cost per monitoring

well, cost per water sample, cost per soil boring, and cost

per soil sample; and Penalty Cost is a cost that is incurred

if the ISCO system fails to meet termination criteria within

a specified timeframe. The penalty cost may be regarded as

the cost to implement an alternative remediation plan if the

initial design fails to perform adequately or it may be

treated as merely a parameter to ensure a high probability

of success (i.e., reduced risk of failure) for optimization. In

either case, the penalty cost is only used for optimization

calculations and is not included in reported total costs. Cost

model details are given in Appendix C in ESM.

Specified design variables are optimized within defined

constraints to minimize expected cost (i.e., cost averaged

over 100 equal-probability Monte Carlo realizations).

ISCO design variables that may be optimized include the

following.

• Oxidant concentration in injected fluid per TZ, Cox0

• Target average groundwater or soil concentration for

individual TZ termination, C
type
stop TZi

• Average groundwater or soil concentration above which

reinjection is initiated, C
type
reinject

• Number of sampling locations and depths per TZ for

each data type

• Time intervals between groundwater and soil sampling

events (Fsoil/gw), Dtsoilmon/Dt
gw
mon, and

• Minimum number of sampling rounds following injec-

tion before a termination or reinjection decision can be

made, N
gw
min.

The ISCO model was implemented in the program SCO-

Toolkit, which includes models for other remediation



technologies, a 3-D dissolved transport model, and cali-

bration modules, as well as stochastic optimization tools.

When simulation is coupled with the dissolved plume

model, average source zone cleanup targets for soil and/or

dissolved concentration can be optimized to meet site-wide

dissolved plume criteria. However, in the present study, we

focus on the optimization of ISCO design to meet specified

source zone cleanup criteria to identify operational and

monitoring strategies that minimize total expected (i.e.,

probability-weighted) cost to reliably achieve cleanup

objectives. Details regarding numerical implementation are

given in Appendix D in ESM.

3 Example problems

3.1 Example 1: ISCO performance sensitivity
to aquifer parameters

Essential ISCO design variables, such as oxidant injection

rates and concentrations, are determined by considering the

uncertainty of groundwater velocity and NOD parameters

based on site characterization of a DNAPL site (Crimi and

Siegrist 2005). Example 1 investigates the effects of those

key parameters on ISCO performance for a hypothetical

problem. A PCE DNAPL source is assumed within

1125 m2 area with an average thickness of 5.5 m corre-

sponding to a volume of 6188 m3. Source width perpen-

dicular to groundwater flow is 75 m resulting in a vertical

plane area of 413 m2. Best estimates and standard devia-

tions of DNAPL source, aquifer, and NOD parameters are

summarized in Table 3 for the base case of Example 1.

It is noted that the performance of ISCO in a hetero-

geneous aquifer generally depends on the combined

uncertainty from both site characterization and perfor-

mance monitoring. To account the combined contribution

of these uncertainty to decision-making in ISCO operation

with regard to the success probability and cost, in Example

2 we perform Monte Carlo simulations to present the range

of cost predictions while considering propagation of mea-

surement uncertainty into each Monte Carlo simulation.

A source zone remediation target of C
gw
stop = 100 lg/L is

assumed to yield concentrations below regulatory standards

at stipulated downgradient compliance locations. This

groundwater concentration corresponds to a soil concen-

tration ðCsoil
stopÞ of 26 lg/kg via Eq. (11). These targets are

applied to a single treatment zone. A total of 18 injection

wells is used with oxidant solution injected at

16.35 m3/day (3 gallons per minute) in each well until 1.25

pore volumes of oxidant solution is injected per well to

ensure overlapping injection zones. Since there is only a

single TZ, all injection wells are utilized during each

reinjection event until the cleanup criteria is met. For all

simulations in Example 1, average groundwater concen-

tration in each TZ was determined quarterly (i.e.,

Dtgwmon = 90 days) with a minimum of two monitoring

events (N
gw
min = 2). Groundwater sampling commences after

the oxidant concentration drops below Cox min of 50 mg/L

and continues until Cgw
avg exceeds 200 lg/L, in which case

oxidant reinjection is performed, or until Cgw
avg is less than

or equal to C
gw
stop and to Cgw

avg from the previous sampling

round.

Deterministic simulations were performed to evaluate

the effect of groundwater velocity and injected oxidant

concentration for the following cases:

(a) q = 0.008 m/day and Cox0 = 5 g/L,

(b) q = 0.008 m/day and Cox0 = 25 g/L,

(c) q = 0.08 m/day and Cox0 = 5 g/L, and

(d) q = 0.08 m/day and Cox0 = 25 g/L.

Figure 1 shows average TZ concentrations versus time

for each case for dissolved oxidant as green dashed lines,

equilibrium dissolved PCE (asymptotic rebound computed

from mass flux as cyan dashed lines, ‘‘observed’’ dissolved

PCE (i.e., actual nonequilibrium concentrations) as solid

blue lines, and soil PCE concentrations as red solid lines.

All concentrations are normalized as Cox(t)/Cox0 for oxi-

dant and as Ctype
avg ðtÞ � C

type
stop

� �
= Ctype

avg ðt0Þ � C
type
stop

� �
for soil

Table 3 Base case model

parameters for example

problems

Parameter Best estimate Log uncertainty (Sln)

Initial source mass, Mo 100 kg 0.2

Initial dissolution rate, Jo 0.1 kg/day 0.1

Depletion coefficient, b 0.75 0.1

Darcy velocity, q 0.008 m/day 0.05

Porosity, / 0.3 –

Bulk density, qb 1855 kg/m3 –

Total NOD concentration, CNODtot
soil

2.0 g/kg 0.3

Fast NOD fraction, fNODf 0.15 0.3

NOD rate coefficient, kNODs 0.02 L/mmol MnO4
-1/day 0.3



and groundwater contaminant concentrations, where t0 is

the time immediately prior to ISCO such that Csoil
avgðt0Þ is

9000 lg/kg and Cgw
avgðt0Þ is 7000 lg/L for Cases (a) and

(b) and 700 lg/L for Cases (c) and (d).

Time series curves for Case (a) (Fig. 1a) indicate that

soil and groundwater concentrations met the remediation

objectives in about 16 months following three oxidant

injections (open circle in Fig. 1). However, because high

oxidant concentrations persisted in the treatment zone

much longer due to the low velocity, the groundwater

monitoring protocol was unable to confirm completion

until month 41. Three months after the first injection, the

nonequilibrium groundwater contaminant concentration is

predicted to rebound to only 10% of the equilibrium value.

A similar percent rebound was observed in 9 months after

the second injection, reflecting slower DNAPL mass

transfer as DNAPL mass decreases. This phenomenon will

contribute to the lag between the time remediation criteria

are actually met and when it can be confirmed by

groundwater monitoring.

A five-fold increase in oxidant concentration for Case

(b) is predicted to reduce the time to reach the cleanup

target by 50% to 7 months with only a single oxidant

injection (Fig. 1b), although the groundwater monitoring

protocol does not confirm termination until 30 months, due

largely to slow flushing of excess oxidant from the TZ. The

faster contaminant reduction is largely attributable to an

increase in DNAPL mass transfer kinetics.

Case (c) with a high velocity and low oxidant concen-

tration (Fig. 1c) exhibits more rapid rebound than Case (a),

with about 85% rebound in 3 months for the first injection

and 17% in 3 months for the second injection—about 8

times faster than Case (a). The faster rebound allows the

third injection to be implemented sooner than for Case

(a) resulting in attainment of the cleanup goal in only

12 months. However, the monitoring protocol triggered a

fourth injection shortly before this, which extended the

duration of monitoring to about 21 months. Due to more

rapid flushing of excess oxidant at the higher velocity, the

extended monitoring period was much shorter than for

Cases (a) and (b).

Enhanced mass transfer rates associated with a higher

oxidant concentration for Case (d) sharply accelerated

remediation with actual attainment occurring in less than

2 months and confirmation from groundwater monitoring

in 9 months (Fig. 1d).

The foregoing simulations were repeated with pore

clogging. The mass transfer inhibition factor (Fk) in

Eq. (3), representing pore clogging effects, was computed

to range from 0.96 (slow flow) to 0.97 (fast flow), indi-

cating that mass transfer was minimally affected. Reme-

diation duration did not increase by more than 2 days for

any of the cases. These observations agree with results of

Huling and Pivetz (2006) and West and Kueper (2012). It

should be noted that our results are based on a value for

Srind in Eq. (3) of - 4.6 9 10-6 L/mg reported by West

et al. (2007) for a test column. However, the value of Srind
is likely to vary for different aquifer materials, so pore

clogging effects may be larger or smaller than indicated by

the simulations if Srind exhibits substantial variability.

Localized pore clogging effects have been reported in

DNAPL zones and near well screens at field sites (Reitsma

and Randhawa 2002). If pore clogging is a concern, it

would be advisable to calibrate Srind from laboratory or

field pilot test data.

Another geochemical factor that can affect the avail-

ability of oxidant during ISCO is the rate constant for NOD

oxidation (Eqs. A-1 and A-2). Table 4 presents remediation

Fig. 1 Example 1 results with groundwater monitoring only and no

pore clogging for a q = 0.008 m/day with 5 g/L oxidant, b
q = 0.008 m/day with 25 g/L oxidant, c q = 0.08 m/day fast flow

with 5 g/L oxidant, and d q = 0.08 m/day conditions with 25 g/L

oxidant. Empty circle (s) indicates the time when the ‘‘true’’ average

groundwater concentration is less than C
gw
stop = 100 lg/L and solid

circle (d) indicates the termination time based on the monitoring

protocol. ‘CH’ indicates chlorinated hydrocarbon



times and numbers of injection events for simulations of

the foregoing test problem with different groundwater

velocities and NOD rate constants (kNODs) for an oxidant

injection concentration (Cox0) of 5 g/L. The range of kNODs
values is based on Yan and Schwartz (2000) and Waldemer

and Tratnyek (2006). NOD rate exerts a greater effect on

remediation period than pore clogging especially at lower

oxidant injection concentrations for the cases simulated.

The NOD rate coefficient and groundwater velocity jointly

affect remediation duration. At low groundwater velocities,

advective oxidant loss is slow and higher NOD rates allow

NOD to deplete more quickly, allowing contaminant oxi-

dation to proceed. However, at high groundwater veloci-

ties, oxidant losses due to flushing become predominant

and higher NOD rates scavenge more oxidant before it is

flushed from the TZ leaving less for contaminant oxidation,

increasing remediation duration.

The above simulations considered the use of ground-

water sampling alone to make reinjection and termination

decisions. We now reconsider Case (a) using soil and

groundwater sampling, which are assumed to be taken on

the same schedule. Comparison of Case (a) using ground-

water data only (Fig. 1a) with that using soil and ground-

water data (Fig. 2) indicates that the second oxidant

injection is initiated at the same time (3 months after start)

for both cases. However, soil monitoring triggers the third

and final injection only 3 months later (6 months after

start), while using the groundwater data only delayed the

third injection to 12 months after start. Actual concentra-

tions met cleanup criteria 16 months after start with

groundwater data only, but only 11.5 months after start

with soil data. The monitoring protocols required moni-

toring to continue 41 months after start using groundwater

data alone but only 12 months after start with soil and

groundwater data. Cost savings may or may not result

depending on the savings from less groundwater sampling

versus additional costs for soil sampling. However, in

circumstance where remediation duration is important, soil

sampling should be considered.

3.2 Example 2: Monte Carlo simulations
and stochastic design optimization

In this example, we evaluate effects of selected design

variables and design approaches without and with opti-

mization on ISCO performance and cost based on data

from a PCE DNAPL-contaminated contaminated site

located in North Carolina. Three TZs—A, B and C from

most to least contaminated—were identified from site

characterization data (Fig. 3, Table 5). Measurement

uncertainty (Sln) was assumed to be 0.5 for individual

groundwater samples and 1.15 for soil samples when taken

to simulate ‘‘noisy’’ soil and groundwater performance

monitoring data. For all cases, groundwater samples were

assumed to be taken quarterly (Dtgwmon = 90 days) from

existing compliance monitoring wells. Four monitoring

location are assumed in each TZ. Following each oxidant

injection, oxidant concentration was determined on the

quarterly schedule. Contaminant samples were not col-

lected until the oxidant concentration dropped below

Cox min taken to be 50 mg/L for all cases. Soil sampling and

additional groundwater sampling were considered for

selected cases.

The objective for this example problem is to compare

expected cost-to-complete and failure probability for var-

ious unoptimized (conventional) designs and for designs

Table 4 Time in months to attain an aqueous PCE concentration less

than 100 lg/L for Example 1 with various NOD rate coefficients

(kNODs) and groundwater velocities with Cox0 = 5 g/L

Darcy velocity kNODs (L/mmol MnO4
-1/day)

0.002 0.02 0.2

0.008 m/day (slow) 30.48 (3) 16.27 (3) 12.16 (3)

0.08 m/day (fast) 9.93 (3) 11.90 (4) 11.93 (4)

Values in parentheses indicate the number of injection events

Fig. 2 Results for case shown in Fig. 1a except using soil and

groundwater monitoring data. Empty circle (s) indicates the time

when ‘‘true’’ average groundwater concentration is less than

C
gw
stop = 100 lg/L (equivalent to Csoil

stop all = 26 lg/kg) and solid circle

(d) indicates the time when the system terminates based on

monitoring protocol. ‘CH’ indicates chlorinated hydrocarbon

Fig. 3 Configuration of treatment zones for Example 2



determined using stochastic optimization. SCOToolkit was

used to perform stochastic optimization and to assess per-

formance uncertainty for both optimized and nonoptimized

designs. Stochastic optimization identifies design parame-

ters that minimize expected (i.e., probability-weighted

average) total remediation cost to meet specified remedi-

ation criteria considering uncertainty in model predictions

and monitoring data. Uncertainty in remediation perfor-

mance and cost are quantified by Monte Carlo simulations

for a given set of design variables (Appendix C and

Fig. B-1, respectively in ESM). One hundred Monte Carlo

realizations of model parameters were generated assuming

log-normal distributions of parameters in Table 3, in line

with previous studies (Cardiff et al. 2010; Parker et al.

2010b; Kim et al. 2013; Parker et al. 2017). SCOToolkit is

capable of coupling effects of source mass reduction

technologies (e.g., ISCO, thermal source reduction) to

downgradient dissolved plume attenuation. However, our

focus here is on optimization of monitoring parameters to

meet specified source cleanup objectives without direct

consideration of downstream plume behavior. A total of 8

cases was investigated with four unoptimized Monte Carlo

simulations (NoOpt1–NoOpt4) and four stochastic opti-

mization cases (Opt1–Opt4), all using the same parameter

set realizations. Assumed unit costs used for all simulations

are summarized in Table 6. Details of the cost model are

described in Appendix C in ESM.

Fixed and optimized design variables for all cases are

summarized in Table 7. Design variables for NoOpt1 were

selected to be representative of current ‘‘best engineering

practice.’’ Other NoOpt cases consider sensitivity of per-

formance to specific design variables. All unoptimized

cases terminate ISCO treatment independently for each TZ

with a fixed termination criterion C
gw
stop TZ of 100 lg/L. A

minimum of two sampling rounds after each injection is

stipulated before a termination or reinjection decision can

be made. The termination criteria for NoOpt1 compares the

average measured groundwater concentration in each TZ to

the cleanup target without consideration of uncertainty in

the average. NoOpt2, NoOpt3, and NoOpt4 employ more

stringent termination criteria with NoOpt3 and NoOpt4

using 95% upper confidence limits of average concentra-

tions for termination, and NoOpt2 and NoOpt4 requiring

more groundwater sampling events (Table 7).

Optimized cases are designed to evaluate the perfor-

mance of remediation systems using stochastic optimiza-

tion to determine various design variables. All four cases,

Opt1–Opt4, optimize the number of groundwater moni-

toring wells (NMWnew), groundwater concentration targets

for termination and reinjection decisions (C
gw
stop and

C
gw
reinject), and injected oxidant concentrations for each TZ

(Cox0 TZ). Opt1 and Opt2 assume groundwater monitoring

only, while Opt3 and Opt4 optimize the number of soils

borings per TZ (Nloc/TZ) and the number of soil samples per

boring (Nsmp/loc). Opt1 and Opt3 use mean values of

monitoring data to make decisions (a = 0.5), while Opt2

and Opt4 use 95% upper confidence limits (a = 0.05). All

optimized cases assume a minimum of 2 sampling events

prior to making termination or reinjection decisions.

Optimized designs terminate ISCO injection for all TZs

when the site-wide groundwater concentration confidence

limit is below C
gw
stop all = 100 lg/L, and terminate individual

TZs when the TZ groundwater concentration confidence

limit is below C
gw
stop TZ , which is optimized subject to the

constraint that it cannot exceed C
gw
stop TZ . For cases with soil

sampling, termination may occur at a soil concentration

confidence limit corresponding Csoil
stop value computed from

Eq. (11). The Csoil
stop value corresponding to best estimates of

model parameters is 26 lg/kg. Note, however, that Csoil
stop

will vary for each Monte Carlo realization depending on

Table 5 Treatment zones and

initial PCE concentrations for

Example 2

TZ Area (m2) Width (m) Thickness (m) Soil concentration (mg/kg)

A 200 25 5.5 10–100

B 460 60 5.5 1–10

C 465 75 5.5 0.1–1

All 1125 75 5.5 0.1–100

Table 6 Unit costs for Example 2

Parameter Unit cost Parameter Unit cost

$base 108.16 $k $GPsoilsmp 0
0.90 $k/sample

$mass 0.0055 $k/kg $GPsoilsmp 1
0.30 $k/sample

$vol 0.02076 $k/m3 $OXsmp 0.10 $k/event/TZ

$time 0.30 $k/day $penalty 106 $k/failure

$base: fixed cost excluding other itemized cost variables, $mass: cost

per unit oxidant mass injected, $vol: cost per volume of injected fluid

excluding $mass, $time: cost per unit time for project management,

reporting, etc., $GPsoilsmp 0 : cost to collect and analyze of first soil sample

depth, $GPsoilsmp1 : cost to collect and analyze of each additional sample

depth at same time, $OXsmp: cost per oxidant measurement, $penalty:

cost incurred if the system fails to meet termination criteria within a

specified timeframe



stochastic values for source parameters and groundwater

velocity (Eq. 11). The oxidant reinjection criterion C
gw
reinject

concentration, expected treatment duration, expected total

volume of oxidant solution, and expected total mass of

injected KMnO4. ENPV costs in Table 7 are probability-

weighted total costs averaged across Monte Carlo simula-

tions excluding penalty costs. Also tabulated is an adjusted

ENPV cost, which is the ENPV cost divided by the prob-

ability of successful completion (= 1-failure probability).

The latter is a normalized measure of cost to compare

design alternatives with the probability of failure (i.e., risk)

taken into account. Probability distributions of NPV cost

excluding penalty costs are illustrated in Fig. 4 for all

NoOpt and Opt cases.

Table 7 Results for Example 2 unoptimized design (NoOpt1–NoOpt4) and stochastic optimization scenarios (Opt1–Opt4)

Case NoOpt1 NoOpt2 NoOpt3 NoOpt4 Opt1 Opt2 Opt3 Opt4
ENPV ($k) 1034 1062 1035 1066 955 959 952 957
Adjusted ENPV ($k) 1 1077 1073 1067 1066 955 959 952 957
Failure probability (%) 4 1 3 < 1 < 1 < 1 < 1 < 1
Expected Cgw (µg/L) 50 2 49 1 6 5 11 4
Expected duration (yrs) 4.20 4.29 4.16 4.29 3.93 3.89 4.07 4.20
Expected oxidant vol (m3) 5260 5344 5335 5410 4293 4680 3952 3845
Expected oxidant mass (kg) 52.6 53.4 53.3 54.1 46.2 46.1 47.6 48.0

Expected number of 
injection events

TZA 4.7 4.8 4.8 4.9 4.5 4.6 3.7 3.5
TZB 1.9 1.9 1.9 1.9 1.4 1.6 1.3 1.4
TZC 1.6 1.6 1.7 1.7 1.2 1.3 1.3 1.1

Number of monitoring 
wells per TZ

TZA 4 4 4 4 4 4 4 4
TZB 4 4 4 4 4 4 4 4
TZC 4 4 4 4 4 4 4 4

Number of soil borings 
per TZ

TZA 0 0 0 0 0 0 0 0
TZB 0 0 0 0 0 0 1 1
TZC 0 0 0 0 0 0 2 1

Soil samples per boring 0 0 0 0 0 0 1 2
Min. sampling events 2 3 2 3 2 2 2 2
Soil sampling frequency (Fsoil/gw) 0 0 0 0 0 0 3 3
Significance level, α 0.50 0.50 0.05 0.05 0.50 0.05 0.50 0.05

gw
stop TZC (μg/L) 100 100 100 100 95 25 47 94
gw
reinjectC (μg/L) 200 200 200 200 306 269 344 339

Cox0 (g/L)

TZA 10.0 10.0 10.0 10.0 7.0 6.4 9.2 8.4
TZB 10.0 10.0 10.0 10.0 13.2 11.6 15.5 14.5
TZC 10.0 10.0 10.0 10.0 14.1 13.0 12.2 15.5

1 Adjusted ENPV = no penalty ENPV / (1-Failure probability/100).

Bold = fixed variables, underlined = optimized variables, others = computed results

was taken as 200 lg/L for unoptimized cases and was 
optimized for other cases. The concentrations of injected
oxidant Cox0 were assumed to be 10 g/L for all TZs for
unoptimized cases, but were optimized for the optimized 
cases.

In Table 7, results of all Example 2 cases include the 
expected net present value (ENPV) cost (Eq. C-1 in 
Appendix C in ESM), probability of average groundwater 
concentration failing to meet the target value, failure-ad-
justed ENPV cost, expected average groundwater



NoOpt1 Results NoOpt1 had a 4% failure probability

(i.e., probability of C
gw
avg all [ 100 lg/L) with an ENPV cost

of $1,034 k and an adjusted ENPV cost of $1,077 k.

Inspection of the 4 NoOpt1 Monte Carlo realizations that

failed to meet actual remediation criteria (based on ‘‘true’’

noise-free simulations) indicated that three of the four

failures occurred because observed aqueous concentrations

in one TZ remained at non-detect for the required min-

imium of two quarterly sampling events, thus triggering

ISCO termination for that TZ. However, the actual full

rebound concentration was much above the cleanup target.

The erroneous early terminations were thus attributable to

slow rebound.

NoOpt2 Results This case is identical to NoOpt1, except

that ‘the minimum number of sampling events’ following

each injection event was increased from 2 to 3 to avoid

erroneous early termination decisions noted in NoOpt1.

Increasing the minimum number of sampling rounds

Fig. 4 Probability distributions of unadjusted NPV total cost excluding penalty cost for Example 2 cases: a NoOpt1, b NoOpt2, c NoOpt3,

d NoOpt4, e Opt1, f Opt2, g Opt3, and h Opt4



eliminated the three erroneous early termination decisions

associated with slow rebound in the NoOpt1 case, leaving

only 1 noncompliant realization (1% failure probability).

The reduced failure probability comes at the expense of an

increase in the ENPV cost to $1,062 k with a slightly lower

adjusted ENPV cost of $1,073 k.

NoOpt3 and NoOpt4 Results These two cases are iden-

tical to NoOpt1 and NoOpt2, respectively, except that a

significance level a of 0.05 was used rather than 0.5—i.e.,

the 95% UCL of average measured concentration rather

than the average itself was compared with the target level

to make termination decisions. NoOpt3 with a minimum of

2 sampling rounds has a 3% failure, which corresponds to

the three Monte Carlo realizations that failed in NoOpt1

due to slow rebound. Using the lower a value of 0.05 in

NoOpt3 eliminated the single NoOpt2 failure case, which

was attributable to average measured concentrations sub-

stantially less than actual averages because of measurement

‘‘noise.’’ NoOpt4, with a minimum of three sampling

rounds, has a failure probability\ 1% (i.e., less than the

resolution of 100 Monte Carlo realizations). Using a higher

minimum number of sampling events for NoOpt4 elimi-

nated the remaining failure realizations associated with

slow rebound. The ENPV and adjusted ENPV costs for

NoOpt4 were $1,066 k.

Opt1 and Opt2 Results These simulations optimize the

number of groundwater monitoring wells from a minimum

of 4 in each TZ (currently available compliance wells) to a

maximum of 10 in each TZ. Quarterly sampling is

assumed. No soil sampling is considered. A fixed value of

two is specified for the minimum number of groundwater

sampling rounds following each injection before termina-

tion or reinjection decisions can be made. Fixed values of

a = 0.5 for Opt1 and a = 0.05 for Opt2 are assumed.

Additional optimized variables for these cases are injected

oxidant concentrations for each TZ, average groundwater

concentration below which ISCO can be terminated for an

individual TZ C
gw
stop TZ , and average groundwater concen-

tration above which oxidant reinjection will be intitated for

a TZ C
gw
reinject. Note that since a and C

gw
stop TZ are explicitly

related via Eq. (14), both cannot be optimized.

Results for Opt1 indicate a failure probability of\ 1%

(Table 7). The ENPV cost is $955 k, which is $79 k

(7.6%) lower than that for NoOpt1, the ‘‘best engineering

practice’’ case, which had a 4% failure probability. The

adjusted NPV cost for Opt1 is $122 k (11.3%) lower than

that for NoOpt1. Compared to NoOpt4, which had a failure

probability\ 1%, the Opt1 ENPV cost is $111 k (10.4%)

lower. Savings for Opt1 are achieved by a 3 month shorter

expected duration, 18% lower total oxidant volume, and

12% lower oxidant mass utilized compared to NoOpt1.

Optimization of the number of monitoring wells for

Opt1 kept the number at their initial values of four per TZ.

The optimized oxidant concentration was 7 g/L for TZ A

(the smallest, most contaminanted zone) and about 14 g/L

for TZs B and C. The TZ stop criteria C
gw
stop TZ was slightly

more aggressive (95 lg/L) compared to the site-wide value

C
gw
stop all (100 lg/L) and the optimized C

gw
reinject value of

306 lg/L was significantly more aggressive than the value

used for the NoOpt cases (200 lg/L). The probability-

weighted average number of oxidant injection events was

4.5 for TZ A, 1.4 for TZ B and 1.2 for TZ C.

Results for Opt2 with a = 0.05 differ little from Opt1.

The failure probabilities were both \ 1% and the ENPV

cost of Opt2 was only $4 k higher than Opt1. The more

stringent a value used for Opt2 was offset by slightly less

aggressive optimized TZ oxidant concentrations and a less

aggressive C
gw
reinject, while the optimized value of C

gw
stop TZ

was more aggressive than for Opt1. Interactions among the

optimized variables are clearly complex and nonlinear.

Opt3 and Opt4 Results These cases are the same as Opt1

and Opt2, except that soil sampling is considered in addi-

tion to groundwater monitoring. We still assume existing

groundwater monitoring wells will be sampled and allow

additional wells (up to 10 per TZ) to be installed. From 0 to

10 soil borings are also allowed for each TZ with up to 2

sample depths per boring. The frequency of soil sampling

as a multiple of the quarterly frequency of groundwater

sampling was also optimized between once a quarter to

once every 4 quarters.

Opt3 with a = 0.5 yielded a failure probability \ 1%

and an ENPV cost of $952 k, just $3 k less than Opt1. Opt4

with a = 0.05 also had a failure probability \ 1%. Its

ENPV cost was $957 k, slightly higher than Opt1 and

slightly lower than Opt2. The optimized number of moni-

toring wells for both Opt3 and Opt4 was 4 for each TZ,

corresponding to the initial wells available. The optimized

number of soil borings was zero in TZ A and one in TZ B

for both cases. The optimized number of soil borings for

TZ C was two for Opt3 and one for Opt4. In addtion, the

optimized frequency of soil sampling (Fsoil/gw) was once

every three groundwater samplings for both Opt3 and

Opt4, i.e., optimized Fsoil/gw = 3 indicating Dtsoilmon = 3

Dtgwmon.

Optimized oxidant concentrations for each TZ were

higher for Opt3 and Opt4 than for Opt1 and Opt2, resulting

in fewer oxidant injections for Opt3 and Opt4 compared to

Opt1 and Opt2. However, the average treatment duration

for Opt3 and Op4 were longer due to longer intervals

between injection events to perform additional sampling.

As observed for Opt1 and Opt2, similar cost and perfor-

mance was achieved for Opt3 and Opt4 by optimizing

C
gw
stop TZ , C

gw
reinject, Cox0, and performance monitoring



variables, regardless of the assumed fixed value of a. We

regard Opt4 as the best case for optimization as it permits

soil sampling to the extent justified by performance and

cost and uses a conservative significance level which

reduces failure probability.

Inspection of cost probability distributions for the vari-

ous cases (Fig. 4) reveals a distinct positive skew for all

NoOpt cases as evidenced by expected values that are

significantly greater than the medians. This is much less the

case for optimized simulations, which exhibit essentially

zero skew for Opt3 and Opt4, slightly negative skew for

Opt2, and positive skew for Opt1 (which was largely

constrained by NoOpt assumptions). Narrowing our atten-

tion to the ‘‘current best practice’’ case (NoOpt1) and the

most conservative optimization case (Opt4), we consider

the probability of exceeding various adjusted total costs for

these cases (Table 8). Minimum costs are nearly identical

for both cases. However, the adjusted expected cost for

Opt4 is $120 k less than that for NoOpt1, the maximum

adjusted cost is $156 k less. Thus, optimization not only

reduced the adjusted expected cost by 11.1%, but reduced

the worst-case cost by an even greater amount (14.5%).

4 Summary and conclusions

We have presented a simplified model for DNAPL source

remediation using ISCO that incorporates the most

important physical and chemical processes with a variety

of performance monitoring options for making real-time

decisions and implementing most cost-effective solutions.

Stochastic cost optimization is employed to determine

design variables that minimize the expected total cost to

achieve defined remediation objectives. Findings can be

summarized as follows.

(1) Higher groundwater velocities, NOD reaction rate

coefficients, and injected oxidant concentrations

decreased the duration of ISCO to achieve cleanup

objectives for a hypothetical case study.

(2) Pore clogging was not found to have a significant

effect for the conditions studied using a literature

value for the pore clogging coefficient Srind. How-

ever, as little information is available on the

variability of this coefficient, we suggest field data

be collected to calibrate the value if pore clogging is

a concern.

(3) Cases studied that had\ 1% probability of failing to

meet cleanup criteria showed post-remediation aver-

age groundwater concentrations ranging from 1 to

11 lg/L (see expected Cgw in Table 7)—far below

the cleanup target of 100 lg/L. This implies that if

one rigorously designed for average site conditions,

the probability of failure would be very high.

Simulation results reported here clearly demonstrate

the importance of accounting for uncertainty in site

characterization and monitoring data in the design

process.

(4) A unique feature of the proposed ISCO operational

methodology is the introduction of a termination

criteria that compares the upper confidence limit of

average measured concentration at a specified prob-

ability level with the cleanup target to provide a

margin of safety to termination decisions. Derived

statistical termination criteria allow site-wide and

treatment zone termination decisions to be made

with equal reliability. In some cases, cleaning up less

contaminated TZs to more stringent criteria can

allow site-wide average concentration targets to be

met earlier and with lower costs.

(5) Non-optimized cases revealed that ‘‘noisy’’ measure-

ments and limited numbers of samples can lead to

termination decisions before actual cleanup criteria

are met. The likelihood of such errors can be reduced

by using upper confidence limits of average mea-

sured concentrations at a suitable significance level

and/or using TZ stop criteria for soil or groundwater

that is less than the site-wide criteria, i.e.,C
gw
stop TZ \

C
gw
stop all. Considering the complexity of optimized

parameter interactions evident in the optimization

examples and the fact that confidence level proba-

bility and C
gw
stop TZ (or Csoil

stop TZ) cannot be simultane-

ously optimized, we suggest to use a modest fixed

value for a (e.g., 0.2 corresponding to an 80% upper

confidence limit) and optimize C
gw
stop TZ values.

Table 8 Probability of exceeding failure-adjusted costs for NoOpt1

and Opt4 cases

Adjusted cost ($k) NoOpt1 (%) Opt4 (%)

600 100 100

700 98 94

800 95 81

900 82 63

1000 61 37

1100 41 17

1200 27 9

1300 16 3

1400 5 0

1500 1 0

1600 0 0



(6) If a minimum of groundwater sampling events (N
gw
min)

after oxidant injection is required before making

termination decisions, but it takes more than N
gw
min

rounds before the concentration rebounds above the

termination criteria, the decision will be in error.

(7) Stochastic optimization yielded a failure-adjusted

expected cost about 11% lower than a non-optimized

case representative of current best engineering

practice. Furthermore, optimization reduced positive

skew evident in the ‘‘best practice’’ case such that the

worst case cost for the optimized design was 14.5%

lower than that for the non-optimized design (Fig. 4).

Since the number of monitoring wells assumed for

the ‘‘best practice’’ case was greater than is often

available, and the assumed number fortuitously

turned out to be optimal, significantly larger cost

savings are likely in many cases.

assessment and optimization at DNAPL sites for early identification

and correction of problems.’’
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