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1. Introduction

The compensation of harmonic uncertainty is an important, yet challenging, task in control engineering. Its practical sig-
nificance is noticeable, for example, in suppressing vibration in mass-damper systems [1,2], controlling overhead cranes 
[3,4] as well as in energy-harvesting systems [5,6]. Throughout the years, numerous approaches have been developed in aca-
demia to address the problem with some representative examples [7–11].

This work, however, focuses solely on the developments coming from the area of active disturbance rejection control 
(ADRC [12]) methodology. The justification of such deliberate exclusion comes from the fact that the ADRC-based techniques 
have recently became a serious alternative to conventional industrial controllers (like the omnipresent PID). With a track-
record of successful deployments in power [13,14], motion [15–18], and process [19,20] control settings, the ADRC-based 
methods have been verified to bring significant enhancement to the usual PID control performance (in terms of accuracy,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2019.106300&domain=pdf
https://doi.org/10.1016/j.ymssp.2019.106300
mailto:j.yang84@seu.edu.cn
https://doi.org/10.1016/j.ymssp.2019.106300
http://www.sciencedirect.com/science/journal/08883270
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repeatability, and/or energy efficiency), while retaining its implementation simplicity and intuitiveness of each control term.
What is more, the ADRC-based techniques are the few approaches that made a successful transition from academia to indus-
try and are now incorporated by control software and instrumentation manufacturers (like Texas Instruments or Danfoss) in
form of off-the-shelf motor and process control solutions. Hence, their commercial success motivates to find new ADRC-
inspired solutions to well-known problems in order to find, not only quantitative improvements, but also qualitative ones.
For these reasons, the treated problem of harmonic uncertainty is reformulated here to be a disturbance-rejection problem,
from which a novel, creative, and practically appealing solution is conceived.

The problem of harmonic uncertainty compensation have been studied before in the context of ADRC with representable
works [21–27]. From analyzing them, the usual approach is to design an output-based two-stage ADRC structure, where the
first stage is responsible for real-time estimation and rejection of the generalized disturbance, and the other stage governs
the resultant (theoretically disturbance-free) system dynamics in accordance to the given control objective. And although
such two degree-of-freedom (2DOF) composition has its advantages in academic deliberations (like the ability to design,
tune, and analyze the two stages separately), it may not always be desirable in practice, which favors simplicity of having
a single, compact structure, explicitly expressing the feedback error-to-control signal channel. Furthermore, the majority
of industrial controllers (lead by PID) are designed in explicit 1DOF feedback error-based form, which is easily understood
and handled by the industry staff. Hence, in order to practically tackle the problem of harmonic uncertainty, the need is to
reformulate the typical 2DOF output-based ADRC and express it in a more industry-familiar PID-like error-based form,
straightforwardly deployable across different industrial platforms, without losing its on-line disturbance rejection
capabilities.

Hence, in it this work, an error-based 1DOF ADRC is introduced and customized to handle multiple sources of distur-
bances, including harmonic ones. A modified, error-based version of the recently introduced resonant extended state obser-
ver (RESO [27]) is used as the core component in the new ADRC to deal with various sources of uncertainties, including those
being the sinusoidal character of the target signal and/or the sinusoidal influence of external factors on the governed plant.
The proposed approach simplifies the original output-based formulation and reduces its application restrictions making the
improved control method as convenient as PID in its commission. The specific contributions of this work are thus as follows:

(i) introduction of a new, customized, error-based ADRC control scheme capable of effectively compensating complex
(including harmonic) uncertainties;

(ii) its rigorous stability proof using singular perturbation theory;
(iii) its tracking performance and disturbance rejection analysis in frequency domain;
(iv) and its multi-criteria experimental validation on a challenging laboratory testbed.

The proposed control topology, although applicable to a larger class of systems, will be introduced and exemplified
throughout this work using solely the case of a 3DOF torsional mechanism, which is well-known and representable model
of vibration in many mechanical systems.

2. Preliminaries

2.1. Plant physical and design models

The considered torsional system, seen in Fig. 1, consists of three discs suspended vertically on an anti-friction ball bear-
ings mounted on a metal structure. The discs are connected through two torsional springs with positive coefficients j1;j2.
The second (middle) and third (top) discs are considered to be the load of the first (bottom) disc, which is driven (actuated)
with an electric motor. Signals h1; h2, and h3 denote the angular positions of first, second, and third disc, respectively. The
total inertia of each corresponding disc is: J1 ¼ Jd þ Jm þ 2mr2; J2 ¼ Jd þ 2mr2, and J3 ¼ Jd þ 2mr2. Extra two masses are
attached to each plate, where m is the weight of each mass, r is the distance of the mass to the center of the disc, Jm is
the motor inertia, and Jd is the plate inertia. Term s represents the control input (torque) to the system. A simplified design
model of the considered torsional mechanism can be thus obtained as [28]:

J1€h1 þ j1h1 � j1h2 ¼ s;
J2€h2 � j1h1 þ j1 þ j2ð Þh2 � j2h3 ¼ 0;

ð1Þ

J3€h3 � j2h2 þ j2h3 ¼ 0:

Unlike the idealized design plant model (1), a real torsional mechanism (with its subsequent physical model) is a challenging
control problem subjected to multiple sources of uncertainties, like friction in the motor and pulleys, amplifier nonlineari-
ties, vibration modes, sensor noise, actuator saturation, and torque ripple in the brushless motor commutation (up to 13%).
Some of them are reviewed briefly below to show the complexity of the real mechanism and the amount of uncertainty that
the control system will have to deal with.1

1 A distinction is made here between a physical model and a design model of the torsional plant. The former comes from physics and encapsulates the acting
physical phenomena. The latter is a simple, useful representation of the governed plant for the purpose of a straightforward control formulation.



2.1.1. Unmodeled dynamics
While (1) is useful in capturing the predominant dynamic plant behavior, it purposefully neglects certain non-ideal

effects. Among these are electrical part (associated with input torque generation), torques associated with motor cogging,
Coulomb (or static) and viscous friction from the pulleys and bearings. Upon Fig. 2, a more precise approximation of the tor-
sional system is:

J1€h1 þ �cv1 _h1 þ �kc sin nh1 þ /ð Þ þ �cs1sign _h1
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{f ud1

þj1h1 � j1h2 ¼ s;

J2€h2 þ �cv2 _h2 þ �cs2sign _h2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fud2

�j1h1 þ j1 þ j2ð Þh2 � j2h3 ¼ 0;

J3€h3 þ �cv3 _h3 þ �cs3sign _h3
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fud3

�j2h2 þ j2h3 ¼ 0;

where �cs1–�cs3 and �cv1–�cv3 are the Coulomb and viscous friction coefficients, respectively. While motor cogging is not a true
sinusoid, it may be approximated by �kc sin nh1 þ /ð Þ, where n is equal to the drive pulley diameter ratio times the number of
motor poles (in the considered case n ¼ 2� 3). Terms f ud1; f ud2, and f ud3 are the lumped unmodeled dynamic components of
the first, second, and third equation in the above system, respectively.

2.1.2. Parametric uncertainties
Note, that even the simplified analytical representation of the plant requires measurement or estimation of several plant

parameters, which may be physically difficult to obtain in practice. What is more, some of them may be also time-varying.
For example, inertia (including both motor and load) increases with time in electric winding machine. It is thus reasonable to
assume that a parametric modeling mismatch will exists when considering controlling a real system. For that reason the sys-
tem can be modeled as:

J01€h1 þ j01h1 � j01h2 ¼ s� f ud1 � f pu1;

J02€h2 � j01h1 þ j01 þ j02ð Þh2 � j02h3 ¼ �f ud2 � f pu2;

J03€h3 � j02h2 þ j02h3 ¼ �f ud3 � f pu3;

Fig. 1. Real system (left) and its simplified diagram (right).



where J01; J02; J03;j01;j02 are approximated values of corresponding parameters, while f pu1 J1;j1;j2; �ð Þ; f pu2 J2;j1;j2; �ð Þ, and
f pu3 J3;j2; �ð Þ represent the lumped parametric uncertainties of the first, second, and third equation in the above system,
respectively.

2.1.3. External disturbances
The load torque is generally regarded as the most serious disturbance limiting performance. The angular position of the

controlled disc will inevitably fluctuate when the load torque is imposed on (or displaced from) the motor. For that reason,
an input-additive uncertainty in load torque can be added in the control channel as:

J01€h1 þ j01h1 � j01h2 ¼ s� sex � slt
zfflfflfflfflffl}|fflfflfflfflffl{f ed

�f ud1 � f pu1; ð2Þ
where f ed is the overall torque disturbance, which consists of uncertainty in load torque (slt) and external input-additive tor-
que disturbance (sex). Furthermore, in practice, the output measurement is inevitably corrupted with noise due to quanti-
zation of sensors.2

2.1.4. Vibration modes
The vibratory tendencies of the torsional plant, crucial in the context of this particular work, are best illustrated by con-

sidering a modal representation of the plant [29]. First, the system model (1) in matrix notation yields: J€hþ kh ¼ T , with
h ¼ h1h2h3½ �>,

k ¼
j1 �j1 0
�j1 j1 þ j2 �j2

0 �j2 j2

2
64

3
75; J ¼

J1 0 0
0 J2 0
0 0 J3

2
64

3
75;

and T ¼ s00½ �>. The homogeneous (s tð Þ ¼ 0) solutions of the above are harmonic and have a general form:

hi ¼ viC cos xt þ /ð Þ; i ¼ 1;2;3: ð3Þ
Substituting the above into (1) yields an eigenvalue problem:

j1 � J1x2 �j1 0
�j1 j1 þ j2 � J2x2 �j2

0 �j2 j2 � J3x2

2
64

3
75

v1

v2

v3

8><
>:

9>=
>; ¼ 0;

with characteristic equation:

J1J2J3x6 � J1 J2j2 þ J3j1 þ J3j2ð Þ þ J2J3j1½ �x4 þ J1j1j2 þ J2j1j2 þ J3j1j2½ �x2 ¼ 0;

which contains x2 as a factor and hence a rigid body mode (x ¼ 0) is present.

Remark 1. Given the above sources of different disturbances/uncertainties, the simplified representation (1) will be
deliberately used for the upcoming observer and controller synthesis nevertheless and it is due to the underlying design
principle behind ADRC, which states that as long as the overall, lumped uncertainty is compensated for in real time, an exact
mathematical model of the plant is not required [30].

2.2. Control objective

A trajectory tracking task is assumed here, for which the system output (h1), being the angular position of the first disc
manipulated by the control signal (s), has to follow a smooth user-defined polynomial-type reference signal h�1

� �
. The goal is

Fig. 2. Free body diagram considering friction and nonlinearities.

2 Direct use of noisy feedback signals can result in deterioration of the control performance which, in extreme cases, can lead to closed-loop instability.



to track the target profile in absence of a detailed plant mathematical model for controller synthesis and in spite the influ-
ence of perturbations (including those of harmonic nature) acting on the plant output during its operation. The reference
signal h�1

� �
additionally satisfies following assumptions:

A1. it is bounded and known only at current time instant t,

A2. its consecutive time-derivatives _h�1; €h
�
1

� �
exist for all t P 0 and are bounded,

A3. it is not known in advance, nor its consecutive reference time-derivatives _h�1; €h
�
1

� �
. In order to make the control solu-

tion more practical, additional assumptions are made:
A4. Output h1 is the only one available for control synthesis.
A5. Structure (1) is known but its parameters are uncertain.

3. Proposed error-based ADRC structure

The proposed control solution consists of three distinctive design steps, namely: system transformation, controller
design, and observer design. Following subsections document details of each step.

3.1. System transformation

Given the above control objective, it is beneficial to analyze first how the underactuated dynamics of the middle and top
discs affects the actuated disc in the bottom and the governed output in result. In (1), substitution of second and third equa-
tions in the first one, leads to a following second order dynamics (n ¼ 2) from the controlled output perspective:

€h1 ¼ s tð Þ
J1

� j1j2

J1 j1 þ j2ð Þ h1 þ
j1j2

J1 j1 þ j2ð Þ h2 �
J2j1

J1 j1 þ j2ð Þ
€h2 � J3j1

J1 j1 þ j2ð Þ
€h3; J1 – 0: ð4Þ

The system (4) can be expressed alternatively as a causal input–output relation of a perturbed chain of integrators, for
which ADRC schemes are most conveniently derived for, which yields:

€h1 ¼ s tð Þ=J1 þ ~d tð Þ; ð5Þ

where ~d tð Þ is the internal disturbance, which lumps the effects of higher-order dynamics from middle and top discs:

~d tð Þ ¼ � j1j2

J1 j1 þ j2ð Þ h1 þ
j1j2

J1 j1 þ j2ð Þ h2 �
J2j1

J1 j1 þ j2ð Þ
€h2 � J3j1

J1 j1 þ j2ð Þ
€h3: ð6Þ

In order to solve the given trajectory tracking problem, tracking error is defined as: eh1 , h�1 � h1, and, following the
methodology independently developed in [31,32], the corresponding tracking error dynamics writes:

€eh1 ¼ €h�1 � €h1;

¼5ð Þ �bs tð Þ þ ~f tð Þ;
¼ �b0s tð Þ þ ~f tð Þ þ s tð Þ b0 � bð Þ;

ð7Þ

¼ �b0s tð Þ þ f tð Þ; ð8Þ

where b ¼ 1=J1 is the input gain and b0 is a design parameter, representing user’s best knowledge of b. Term f tð Þ is the resul-

tant disturbance defined as: f tð Þ ¼ 1
J1
s� tð Þ þ ~d� tð Þ � ~d tð Þ þ s tð Þ b0 � bð Þ þu tð Þ, which lumps the effects of neglected internal

dynamics ~d tð Þ, unmodeled frictions, nonlinear dynamics, uncertainty in input gain selection s tð Þ b0 � bð Þ, and external distur-
bance u tð Þ. It is also a function of unknown nominal control input s� tð Þ, desired trajectory, and the desired nominal internal

dynamic ~d� tð Þ.

3.2. Control rule

In order to synthesize control rule in accordance to A4, methodology from [31,32] is used, in which a derivative feedback
term k2 _eh1 is first added to both sides of the dynamic error Eq. (8), which gives:

€eh1 þ k2 _eh1 ¼ �b0s tð Þ þ k2 _eh1 þ f tð Þ; ð9Þ
leading to even simpler perturbed error-based model:

€eh1 þ k2 _eh1 ¼ �b0s tð Þ þ F tð Þ; ð10Þ
where F tð Þ ¼ k2 _eh1 þ f tð Þ is the system assumed total disturbance [12], to be estimated later using a specialized observer.
Term F tð Þ combines all the unknown/uncertain external and internal dynamics that affects the system output, including
the term k2 _eh1 , which consists the unknown target signal derivative.



A following control action can be now proposed:

s tð Þ ¼ u0 þ bF tð Þ
h i

=b0; ð11Þ

which avoids using (directly) reference time-derivatives, which is of great practical advantage. The outer-loop feedback con-

troller (u0) for stabilizing the resultant dynamics (assuming proper disturbance rejection bF tð Þ � F tð Þ), can be chosen to be
just a static proportional action:

u0 ¼ k1eh1 : ð12Þ
The application of (11) with (12) to system model (10) results in a following closed-loop error dynamics:

€eh1 þ k2 _eh1 þ k1eh1 ¼ F tð Þ � bF tð Þ � 0: ð13Þ
In order to get the controller coefficients k1; k2f g > 0, a pole-placement method from [33] is used. The closed-loop track-

ing error characteristics polynomial can be matched with a Hurwitz polynomial: s2 þ k2sþ k1 ¼ sþxcð Þ2, from which the
controller gains can be straightforwardly calculated as k1 ¼ x2

c and k2 ¼ 2xc , where xc[rad/s] represents the desired,
user-defined closed-loop bandwidth.

Remark 2. One can now clearly notice that the burden of delivering required control performance has been almost
completely shifted onto an accurate and timely reconstruction of the total disturbance F tð Þ. This can be a determinative
factor in selecting the proposed methodology to certain applications, as the target control system has to fulfill certain
requirements related to minimum sampling time and maximum level of measurement noise.

3.3. State and total disturbance reconstruction

3.3.1. Error-based RESO (proposed)
Due to compliant nature of the considered torsional system, the undesired oscillations appear in the top two discs when

the bottom one is moving relatively fast. In that case, both middle and top discs are generating a harmonic motion (distur-
bance) affecting bottom disc. Such periodic disturbance negatively effects the trajectory tracking performance, hence has to
be mitigated by the proposed governing scheme, as stated in the control objective in Section 2.2.

Following the methodology presented in [27], the total disturbance can be treated as a sum of two signals
F tð Þ ¼ Fp tð Þ þ Fw tð Þ, where Fp ¼ c0 þ c1t þ c2t2 þ � � � þ cm�1t m�1ð Þ is a polynomial disturbance approximation and
Fw tð Þ ¼ a1 sin xrtð Þ þ a2 cos xrtð Þ is a sinusoidal disturbance approximation. The harmonic disturbance Fw tð Þ can be modeled
as an unforced harmonic oscillator with resonant frequency xr [rad/s], with its characteristic equation:

€Fw tð Þ þx2
r Fw tð Þ ¼ 0; ð14Þ

Such sinusoidal disturbance model can now be included in the observer form by augmenting the system with two extra
state variables: xnþmþ1 ¼ F mð Þ

w tð Þ and xnþmþ2 ¼ F mþ1ð Þ
w tð Þ, where m represents the number of extended states for Fp. One can

thus rewrite (14) also as:

F mþ2ð Þ
w tð Þ þx2

r F
mð Þ
w tð Þ ¼ 0: ð15Þ

In this particular work, one extended state variable (m ¼ 1) is chosen to represent the polynomial disturbance Fp tð Þ. This,
together with the baseline second order system dynamics (n ¼ 2) and the above-mentioned harmonic disturbance Fw tð Þ
resulting in two extra states: _x4 ¼ x5; _x5 ¼ �x2

r x4, makes the error dynamics (10) being expressed in state-space as:

_xR ¼ ARxR þ bRs tð Þ þ ER
_Fp tð Þ;

yR ¼ CRxR;
ð16Þ

where:

xR ¼

x1
x2
x3
x4
x5

2
6666664

3
7777775 ¼

eh1
_eh1
F tð Þ
_Fw tð Þ
€Fw tð Þ

2
6666664

3
7777775; ER ¼

0
0
1
0
0

2
6666664

3
7777775; C>

R ¼

1
0
0
0
0

2
6666664

3
7777775; AR ¼

0 1 0 0 0
0 �k2 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 �x2

r 0

2
6666664

3
7777775; bR ¼

0
�b0

0
0
0

2
6666664

3
7777775:

For the above system, an error-based RESO is:

_̂xR ¼ ARx̂R þ bRs tð Þ þ LR yR � ŷRð Þ; ð17Þ
ŷR ¼ CRx̂R;



where:

LR ¼

c1
c2
c3
c4
c5

2
6666664

3
7777775; x̂R ¼

x̂1
x̂2
x̂3
x̂4
x̂5

2
6666664

3
7777775 ¼

êh1
_̂eh1bF tð Þ

_bFw tð Þ
€bFw tð Þ

2
666666664

3
777777775
:

One can notice that the state matrix AR contains the design control coefficient k2, which is embedded in the new observer.
This is one of the key points of the proposed governing concept, which allows avoiding derivatives in the control rule (see
A4), hence only a proportional feedback term can be used in (11). The derivative terms are conveniently reconstructed in the
proposed framework by the means of the error-based observer. The observer state matrix AR also contains an internal model
of the harmonic dynamics with its resonant frequency xr . For cases in which the frequency of harmonic disturbance xr is
unknown or highly uncertain, specific method of obtaining it will be given later.

Now, similar to the controller tuning, a pole-placement technique can be used here to compute the observer gains. The
estimation error state matrix is first given as:

HR ¼ AR � LRCR ¼

�c1 1 0 0 0
�c2 �k2 1 0 0
�c3 0 0 1 0
�c4 0 0 0 1
�c4 0 0 �x2

r 0

2
6666664

3
7777775;

and the characteristic estimation error polynomial is:

Pr sð Þ ¼ det sI � HRð Þ; ð18Þ
Pr sð Þ ¼ s5 þ c1 þ k2ð Þs4 þ w2

2 þ c2 þ c1k2
� �

s3 þ c3 þ k2w2
r þ c1w

2
r

� �
s2 þ c4 þ c2w

2
r þ c1k2w

2
r

� �
sþ c3w

2
r þ c5

� �
:

The goal is to place the roots of a characteristic polynomial in the left-hand side of the complex plane. Matching the char-
acteristic polynomial Pr sð Þ with a Hurwitz polynomial Pr sð Þ ¼ sþxoð Þ5 gives a following new set of observer gains:
c1 ¼ 5xo � k2; c2 ¼ 10x2

o �x2
r � k2c1; c3 ¼ 10x3

o � c1x2
r � k2x2

r ; c4 ¼ 5x4
o � c2x2

r � k2c1x2
r ; c5 ¼ x5

o � c3x2
r .

An illustrative depiction of the proposed error-based ADRC solution is presented in Fig. 3 and its comprehensive stability
proof is given in the next section.

3.3.2. Error-based GPIO (conventional, for comparison)
A design of a generalized proportional integral observer (GPIO) is also shown here for the considered uncertain system

(10), as it will be later used in a comparison study. The class of GPIO-based controllers is considered to be standard solution
for cases in which the system is subjected to complex disturbances [15,34,35]. The GPIO utilizes solely a polynomial-type
representation of lumped uncertainty, meaning the more complex the overall disturbance is, the more extended state vari-
ables, representing higher orders of a polynomial signal, are introduced to represent its behavior accurately. Comparing it
with the total disturbance F tð Þ defined previously for the error-based RESO, it is similar to considering just the Fp tð Þ part
of certain order.

In this work, the considered system (10) is artificially augmented with three extra state variables (m ¼ 3), representing
the lumped uncertainty,3 to match its order with the order of the proposed error-based RESO (for the purpose of upcoming
comparison). The extended plant model for the GPIO design purpose is thus expressed as:

_xG ¼ AGxG þ bGs tð Þ þ EGF
3ð Þ tð Þ;

yG ¼ CGxG;
ð19Þ

with:

xG ¼

x1
x2
x3
x4
x5

2
6666664

3
7777775 ¼

eh1
_eh1
F tð Þ
_F tð Þ
€F tð Þ

2
6666664

3
7777775; EG ¼

0
0
0
0
1

2
6666664

3
7777775; C>

G ¼

1
0
0
0
0

2
6666664

3
7777775; AG ¼

0 1 0 0 0
0 �k2 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

2
6666664

3
7777775; bG ¼

0
�b0

0
0
0

2
6666664

3
7777775;

3 It is assumed that F tð Þ has higher-order dynamics, which seems reasonable given the oscillatory influence of the underactuated dynamics.



where term F tð Þ is assumed to be a smooth function with bounded time derivatives. For the above system, a conventional
GPIO in error domain is proposed as:

_̂xG ¼ AGx̂G þ bGs tð Þ þ LG yG � ŷGð Þ; ð20Þ
ŷG ¼ CGx̂G;

where:

LG ¼

l1
l2
l3
l4
l5

2
6666664

3
7777775; x̂G ¼

x̂1
x̂2
x̂3
x̂4
x̂5

2
6666664

3
7777775

T

¼

êh1
_̂eh1bF tð Þ
_bF tð Þ
€bF tð Þ

2
666666664

3
777777775

T

:

For consistency, same tuning is used as for the error-based RESO. Here, however, the estimation-error state matrix has the
form:

HG ¼ AG � LGCG ¼

�l1 1 0 0 0
�l2 �k2 1 0 0
�l3 0 0 1 0
�l4 0 0 0 1
�l4 0 0 0 0

2
6666664

3
7777775; ð21Þ

and the characteristic estimation error polynomial is:

Po sð Þ ¼ det sI � HGð Þ;
Po sð Þ ¼ s5 þ k2 þ l1ð Þs4 þ l2 þ k2l1ð Þs3 þ l3s2 þ l4sþ l5:

ð22Þ

which results in a following set of GPIO gains:

l1 ¼ 5xo � k2; l2 ¼ 10x2
o � k2l1;

l3 ¼ 10x3
o ; l4 ¼ 5x4

o ; l5 ¼ x5
o :

ð23Þ

Fig. 3. Proposed custom ADRC scheme, in which RESO and feedback controller are merged into a 1DOF structure expressed in error-based form.



4. Stability analysis

The theoretical investigation of the generalized version of the proposed error-based ADRC with RESO is presented next
and its analysis is based on singular perturbation theory [36–38]. Compared to [36], here the stability proof will not be
divided explicitly into slow and fast dynamics part, representing the controller and observer loops, respectively, since in
the considered error-based ADRC these two loops are incorporated into a single closed-loop error dynamics.

First, a general expression combining observer and controller parts can be written as:

_q ¼ A� lc>
� �

qþ hg; g ¼ _F; ð24Þ

A ¼

0 1 0 0 0
�k1 �k2 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 �x2

r 0

2
6666664

3
7777775; h ¼

0
0
1
0
0

2
6666664

3
7777775; c ¼

1
0
0
0
0

2
6666664

3
7777775:

with q> ¼ q1q2q3q4q5½ � ¼ eh1 � êh1
� �

_eh1 � _̂eh1
� �

F � bF� �
_Fw � _̂Fw

� �
€Fw � €̂Fw

� �h i
being the state vector of new system coordi-

nates, l> ¼ c1 c2 . . . c5½ � being vector of observer gains, and k1 and k2 being the proportional and derivative controller gain,
respectively.

Next, calling both the estimation error matrix H ¼ A� lc> and the previously used pole-placement-based observer tuning
[33], one can induce, by analyzing their forms for different observer orders, that:

det kI � Hð Þ ¼ k5 þ s1k
4 þ s2k

3 þ s3k
2 þ s4kþ s5; ð25Þ

¼ kþxoð Þ5; ð26Þ
for s1; . . . ; s5½ � ¼ b1xo; . . . ; b5x5

o

� �
. The above yields:

km Hf g ¼ �xo; 8m ¼ 1; . . . ;5: ð27Þ
The coefficients polynomial (25) are thus computed as:

s1 ¼ k2
z}|{r1

þl1 ¼ b1xo ) l1 ¼ b1xo � r1;

s2 ¼ x2
r þ k2l1

zfflfflfflfflfflffl}|fflfflfflfflfflffl{r2

þk1 þ l2 ¼ b2x2
o ) l2 þ k1 ¼ b2x2

o � r2;

s3 ¼ x2
r l1 þx2

r k2
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{r3

þl3 ¼ b3x3
o ) l3 ¼ b3x3

o � r3

s4 ¼ x2
r l2 þx2

r k2l1 þ k1x2
r

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{r4

þl4 ¼ b4x4
o ) l4 ¼ b4x4

o � r4;

s5 ¼ l3x2
r

zffl}|ffl{r5

þl5 ¼ b5x5
o ) l5 ¼ b5x5

o � r5;

ð28Þ

where ri are uniquely defined by ki and x2
r . This further allows the estimation error state matrix H to be rewritten as:

H ¼

�c1 1 0 0 0
�c2 � k1 �k2 1 0 0

�c3 0 0 1 0
�c4 0 0 0 1
�c5 0 0 �x2

r 0

2
6666664

3
7777775 ð29Þ

¼

�b1xo 1 0 0 0
�b2x2

o 0 1 0 0
�b3x3

o 0 0 1 0
�b4x4

o 0 0 0 1
�b5x5

o 0 0 0 0

2
66664

3
77775þ

r1 1 0 0 0
r2 �k2 1 0 0
r3 0 0 1 0
r4 0 0 0 1
r5 0 0 �x2

r 0

2
66664

3
77775



Now, for the system given in (24), a following change of coordinates is introduced: q1 ¼ x�4
o n1; q2 ¼ x�3

o n2; . . . ; q5 ¼ n5,
with its general form qi ¼ xi�3

o ni, for i ¼ 1; . . . ;5, or expressed alternatively in matrix representation as q ¼ Kn, with
K ¼ diag x�4

o x�3
o � � �x�1

o 1
� �

and n ¼ n1n2 � � � n4n5½ �. This allows to rewrite (24) as:

K _n ¼ A� lc>
� �

Knþ hg ¼ HKnþ hg; ð30Þ
which yields:

1
xo

_n ¼ Hqnþ 1
xo

hg ) e _n ¼ Hqnþ ehg; ð31Þ

with e ¼ 1
xo
, and Hq ¼ Aq þ eHe, where:

Aq ¼

�b1 1 0 0 0
�b2 0 1 0 0
�b3 0 0 1 0
�b4 0 0 0 1
�b5 0 0 0 0

2
6666664

3
7777775; ð32Þ

He ¼

r1 0 0 0 0
e r2 � k1ð Þ �en�2k2 0 0 0

e2r3 0 0 0 0
e3r4 0 0 0 0
e4r5 0 0 �ex2

r 0

2
6666664

3
7777775; ð33Þ

with xo;xr ; bi’s, and ki’s being completely determined in (28).
A proper stability analysis of the general error-based ADRC with RESO can now be performed. Let us consider an observer

error dynamics (31) with its initial condition:

e _n ¼ Hqnþ eh � g; n 0ð Þ ¼ n0: ð34Þ
It is an initial value problem of a standard singularly perturbed linear system of differential equations with a small pos-

itive parameter e ¼ 1
xo
, that depends on the observer bandwidth xo. Note that matrix Hq and the estimation-error state

matrix H are similar (H ¼ KHqK
�1 with Hq ¼ Aq þ �H�) and have the same eigenvalues. Thus, ki Hq

� � ¼ ki Hð Þ ¼ �xo and
ki Aq
� � ¼ �1;8i ¼ 1; . . . ;5, which implies Hq and Aq are Hurwitz. This implies that xr in state matrix A does not affect the

stability of the coefficient matrix Hq in (34) as long as xr is finite. As in [36], it can be thus concluded that for the existing

of the derivative of total disturbance _F, if n0k k ¼ O eð Þ i.e. n0 lies in its stable initial manifold, there will be no danger of large
magnitude transients in system (34) as e ! 0 for t > 0, and the system is exponentially stable and uniformly asymptotically
stable (for stability within the stable initial manifold for n0, it is not the stability in the Lyapunov sense). On the other hand, it
is easy to verify that Hq is Hurwitz for any finite xr in Hq. This implies that xr in state matrix A (24) does not affect the
stability of the coefficient matrix Hq as long as its value is finite. In the spirit of Theorems 3.1 and 4.1 of [36], main stability
theorem is presented as shown below.

Theorem 1. If n0k k ¼ O eð Þ and g ¼ _F exists, then:

(i) the asymptotic solution of (34),

e _n ¼ Hqnþ eh � g ¼ Aq þ eHe
� �

nþ eh � g; n 0ð Þ ¼ n0; ð35Þ
is uniformly valid for all finite time L with 0 6 t 6 L < 1, and it has the following form:

n e; tð Þ ¼ exp Aq
t
e

	 

n0 þ O e2

� �þ e A�1
q h � gþ exp Aq

t
e

	 

A�1

q h � g 0ð Þ
n o

� H0

Z t

0
exp Aq

t � s
e

	 
� �
A�1

q h � g sð Þds
� �

; ð36Þ

(ii) there exists an e� > 0 such that for all e 2 0; e�½ � the leading term of the solution n e; tð Þ in the initial layer of system (34) is
exponentially stable;

(iii) for all n 2 X ¼ �q1;q2½ �5 � R5 with q2 ¼ cmax xc;
1
xo

; Hq

 n o
for some constant c > 0, then there exists positive con-

stant C2, independent of e, and the solution of (34) satisfies:

n e; tð Þk k 6 eC1 exp � 1
2 � eC1C2
� �

t
e

� �
;

gk k � n e; tð Þk k�1 6 C2

where C1 ¼
ffiffiffi
5

p
þ 1

xc

P4
j¼1

Lj

j! Hq þ I5
� �j2  with I5 is the fifth order identity matrix and:



H0 ¼

2xc 0 0 0 0
0 �2xc 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
6666664

3
7777775: ð37Þ

Also, following remarks can be made.

	 One can see that from (i) of Theorem1 and the classic result of the singular perturbation theory, (ii) holds if (i) of Theo-
rem1 holds.

	 Theorem1 states that the system (34) is exponentially stable and uniformly asymptotically stable if n0k k ¼ O eð Þ ¼ O 1
xo

� �
and g ¼ _F exists (the result holds, for stability within the stable initial manifold for n0, it is not the stability in the Lya-
punov sense). This means that the stability results in [36] can be extended to the proposed error-based ADRC with RESO,
which the error dynamic system (34) has a more general coefficient matrix Hq ¼ Aq þ eHe.

	 The restriction of the condition of the existing of _F could be relaxed. If we allow the total disturbance F to belong to some
larger class of functions, for example, F is a function of Sobolev classW1;1

loc and it is differentiable a.e.4, then its weak deriva-
tive is represented by the point-wise derivative (for details see [39]), thus all the results in Theorem1 hold.

5. Frequency analysis

The performance of the proposed RESO-based control algorithm is compared here with conventional GPIO-based
approach through numerical simulations in frequency domain. The considered system is presented in the transfer function
form (see Fig. 4), with h�1 sð Þ; h1 sð Þ; Eh1 sð Þ; s sð Þ;N sð Þ, and slt sð Þ representing the reference signal, system output, tracking error,
control input, measurement noise, and external disturbance (load torque), respectively.

The plant transfer function Gp sð Þ is derived system using the following relations between the input torque and the angular
positions of corresponding discs:

h1 sð Þ
s sð Þ ¼ N1 sð Þ

D sð Þ ;
h2 sð Þ
s sð Þ ¼ N2 sð Þ

D sð Þ ;
h3 sð Þ
s sð Þ ¼ N3 sð Þ

D sð Þ ; ð38Þ

for N1 sð Þ ¼ a11s4 þ a12s3 þ a13s2 þ a14sþ a15;N2 sð Þ ¼ a21s2 þ a22sþ a23;N3 sð Þ ¼ a31, and D sð Þ ¼ a41s6 þ a42s5 þ a43s4 þ a44s3þ
a45s2 þ a46s, with specific values of coefficients given in the Appendix A.

The transfer function of the proposed error-based ADRC with RESO given as:

Gc sð Þ ¼ g11s
5 þ g12s

4 þ g13s
3 þ g14s

2 þ g15sþ g16

b0 s2 þxrð Þ s2 þ k2 þ c1ð Þsþ c2 þ c1k2½ � ; ð39Þ

is obtained from (12) and (16) using Laplace transforms, with coefficients: g11 ¼ k1, g12 ¼ k1c1 þ k1k2, g13 ¼ k1c2 þ k1k2c1þ
k2c3 þ c4 þx2

r k1, g14 ¼ k1b3 þ k2b4 þ b5 þx2
r g12, g15 ¼ k1c4 þ k2c5 þx2

r k1c2 þ k1k2c1 þ k2c3ð Þ and g16 ¼ k1c5 þ k1c3x2
r . On

the other hand, the transfer function of the error-based ADRC with conventional GPIO is derived according to (12) and
(19) by substituting xr ¼ 0 and ci ¼ li for i ¼ 1;2;3;4;5 in (24).

In order to analyze the system robustness under different control frameworks, stability margins, including positive gain
margin (+GM), negative gain margin (-GM), and phase margin (PM), are calculated based on Bode diagrams [40] of a loop
transfer function W sð Þ ¼ Gc sð ÞGp sð Þ. The analysis is performed for different values of tuning parameters (xc;xo;xr) and
the obtained comparison results between the proposed RESO- and the standard GPIO-based control systems are gathered
in Table 1 (for xc ¼ 10 rad/s) and in Table 2 (for xc ¼ 20 rad/s). It can be noted that, for low values of RESO parameter
xr , both control algorithms have similar stability margins, and increasing xr provides better robustness in RESO-based con-
trol than in GPIO-based control. Also, increasing the observer bandwidth xo increases the robustness of the overall system.

To evaluate tracking and external disturbance rejection performance, the transfer function from reference h�1 sð Þ to track-
ing error Eh1 sð Þ:

Ge sð Þ ¼ Eh1 sð Þ
h�1 sð Þ ¼ 1� Gc sð ÞGp sð Þ

1þ Gc sð ÞGp sð Þ ; ð40Þ

and from external disturbance slt sð Þ to output h1 sð Þ:

Gd sð Þ ¼ h1 sð Þ
slt sð Þ ¼

Gp sð Þ
1þ Gc sð ÞGp sð Þ ; ð41Þ

4 Definition. An almost everywhere differentiable function g is a function that is differentiable except on a set of measure zero. That is, g exists point-wise a.e.



are derived and their magnitude frequency responses are shown in Figs. 5 and 6, respectively. The results are presented for
different xc and xr but with a fixed xo ¼ 16xc. From the figures, one can notice that if the reference signal and/or load tor-
que have the same tuned resonant frequency (xr ¼ 8 rad/s and xr ¼ 16 rad/s), the RESO-based control systems achieves
practically ideal reference tracking and disturbance rejection.5 Moreover, it is evident that for the same controller bandwidth
xc , RESO-based control provides better tracking performance and disturbance rejection performance than the GPIO-based
scheme in the relative wide frequency ranges Dx1 (for xc ¼ 10 rad/s) and Dx2 (for xc ¼ 20 rad/s). Also, one can see that
the control performance for lower frequency can be improved by increasingxc and, as expected, the GPIO-based control enables
better performance in that frequency range.

Regarding the measurement noise sensitivity, it is analyzed based on frequency response of the transfer function from the
measurement noise N sð Þ to the control signal s sð Þ:

Gn sð Þ ¼ s sð Þ
N sð Þ ¼

Gc sð Þ
1þ Gc sð ÞGp sð Þ : ð42Þ

The frequency responses of (42) for GPIO- and RESO-based control methods with different tuned parameters xc and xo

are presented in Fig. 7. It should be pointed out that the measurement noise is mainly concentrated at high frequencies and
thus the behavior of the Gn sð Þ at high frequencies is of primary importance. From Fig. 7, one can see that for the same value of
tuned parameters xc and xo, both control algorithms have practically identical robustness to measurement noise. Conse-
quently, it means that tuning of parameter xr does not have effect on the measurement noise sensitivity, but increasing
xc and xo reduces the measurement noise robustness. Therefore, it should be noted that tuning of xc and xo in practice
should be a trade-off between tracking performance, robustness indices, and measurement noise sensitivity.

Remark 3. The straightforwardness and application simplicity of the pole-placement tuning methodology in ADRCmade it a
practically appealing approach, which has been successfully transitioned into industry and now can be found, for example, in
embedded chips from Texas Instruments called InstaSPIN.

Fig. 4. Transfer function form of the considered control system.

Table 1
The systems robustness indices for xc ¼ 10 rad/s.

xo 8xc 16xc 24xc

xr 4 rad/s 16 rad/s 32 rad/s 4 rad/s 16 rad/s 32 rad/s 4 rad/s 16 rad/s 32 rad/s

GPIO +GM[dB] 9.96 10.8 11.1
�GM[dB] �6.18 �8.82 �9.32
PM[�] 18.6 25 27.2

RESO +GM[dB] 9.97 10 10.2 �8.82 10.9 10.9 11.1 11.1 11.2
�GM[dB] �6.2 �6.64 �7.28 10.8 �8.89 �9.13 �9.32 �9.35 �9.7
PM[�] 18.7 18.9 19.9 25 25 25.3 27.2 27.3 27.4

Table 2
The systems robustness indices for xc ¼ 20 rad/s.

xo 8xc 16xc 24xc

xr 4 rad/s 16 rad/s 32 rad/s 4 rad/s 16 rad/s 32 rad/s 4 rad/s 16 rad/s 32 rad/s

GPIO +GM[dB] 10 10.8 11.1
�GM[dB] �6.27 �8.16 �9.02
PM[�] 18 24.1 27.2

RESO +GM[dB] 10 10.1 10.3 10.8 10.9 10.9 11.1 11.1 11.1
�GM[dB] �6.28 �6.48 �7.19 �8.17 �8.23 �8.46 �9.02 �9.03 �9.19
PM[�] 18.1 18.4 19.4 24.8 24.9 25.1 27.2 27.2 27.3

5 The magnitude frequency response of Ge sð Þ and Gd sð Þ is less than �160dB, resulting in eh1 < 10
�160
20 .



6. Experimental validation

In order to verify the efficacy of the proposed error-based control structure in dealing with harmonic uncertainty, several
experimental tests have been conducted. The tests have been performed in a hardware-in-the-loop setup, in which the con-
trol algorithm was implemented in a Matlab/Simulink environment with sampling frequency of Ts=1 kHz. The utilized con-
trol system was comprised of three subsystems: the mechanism (including motor and sensors), the real-time

Fig. 5. Magnitude frequency responses of transfer function Ge sð Þ.

Fig. 6. Magnitude frequency responses of transfer function Gd sð Þ.



controller/drive electronics, and the user/system (”executive”) interface software. Such architecture, illustrated in Fig. 8, is
consistent with modern industrial control implementation. The experimental setup is a commercially available testbed
M205a from ECP,6 details of which can be found in [28].

6.1. Methodology

The methodology behind the performed multi-criteria control evaluation assumed the execution of following tests:

Fig. 7. Magnitude frequency responses of transfer function Gn sð Þ.

Fig. 8. A functional overview of the used real-time control system.

6 www.ecpsystems.com

http://www.ecpsystems.com


–Exp1: establishing nominal performance,
–Exp2: robustness test against parametric uncertainty,
–Exp3: robustness test against external disturbance,
–Exp4: quantitative comparison with standard solution:

-Exp4a: results of standard GPIO-based control,
-Exp4b: results of proposed RESO-based control,
-Exp4c: direct comparison of Exp4a and Exp4b.

In the experiment Exp1, the nominal performance of the proposed control structure is established. Since the character-
istics of the lumped disturbance is assumed to be unknown (which is often the case in practice), the error-based RESO is
implemented with an approximated frequency of harmonic uncertainty x̂r � xr . Its rough value (x̂r ¼ 2:44Hz) is obtained
from a power spectral density (PSD) analysis, conducted a’priori during a single open-loop system run, in which the system
controlled output (h1) has been used as an input for the analysis. Both the used input profile and the obtained outcome of the
PSD analysis are depicted in Fig. 9. Following general ADRC tuning guidelines from [41], the desired observer and controller
bandwidths are set as xo ¼ 150 rad/s and xc ¼ 8 rad/s, respectively. In practice, selection of xc results from a compromise

Fig. 9. [Exp1] Estimation of input signal frequency (a) using the PSD analysis (b).

Fig. 10. [Exp1] Results of the proposed error-based ADRC structure with RESO in terms of: angular discs positions *(a), with its zoomed-in version for better
legibility (b), feedback error and its estimation from RESO (c), estimation error (d), control signal (e), and estimated total disturbance compared with the
‘‘real” total disturbance obtained in a simulated environment (f).



between a desired decay-time for the output error (largerxc) and such factors as a limited admissible amplitude of a control
signal, the presence of a high-frequency noise in a feedback loop, and a limited sampling frequency when the control system
is implemented in discrete-time. On the other hand, the observer bandwidth xo should be always wider relative to the con-
trol bandwidth determined by xc. It is worth to emphasize that the proposed forms of error-based RESO gains have been
computed upon the prescribed structure of polynomial P�

o sð Þ , sþxoð Þ5 from (22), which seems especially justified under
conditions when a sharp frequency separation between the low-frequency content of the output error and a high-
frequency content of the measurement noise is possible. In other circumstances, one can replace the form of polynomial
P�
o sð Þ and the forms of error-based RESO gains by appropriately optimized formulas. The established nominal case in

Exp1 is used as a point of reference for upcoming robustness tests (Exp2, Exp3) and comparison with GPIO-based technique
(Exp4). From that point on, no additional observer/controller retuning is performed.

In the experiment Exp2, the performance of the proposed governor in dealing with uncertainty in user-defined selection
of signal frequency xr is evaluated. This test emulates a scenario in which just a rough value of xr is known. The feedback
errors are compared for three cases, namely for the nominal x̂r (obtained in Exp1) as well as its artificially decreased
(90%x̂r) and increased (110%x̂r) values. In the same experiment, the performance of the introduced control structure in
dealing with uncertainty in selecting b0 is evaluated. This test emulates a scenario where only an approximated value of
b0 is known and thus can be used for controller synthesis. It verifies the robustness of the used disturbance observer, as
the uncertainty in the system gain is also the part of the total disturbance term (cf. (7)). The quality of trajectory tracking,
understood in terms of obtained feedback errors, is compared for three cases, namely for the nominal b0 (used in Exp1) as
well as its artificially decreased (75%b0) and increased (125%b0) value.

In the experiment Exp3, the performance of the proposed control scheme is investigated in dealing with unmodeled
external disturbance, here defined as an extra torque being applied at different levels (discs) of the torsional plant. This test
emulates a scenario in which there is extra dynamics in the system, which has not been taken into consideration during sys-
tem tuning in Exp1. The quality of trajectory tracking, being function of corresponding feedback errors, is compared in four
cases, first one being the nominal case (no external disturbance) and in three cases where external disturbance is applied to:
top, middle, and bottom disc, respectively.

In the experiment Exp4, a comparison of the proposed method with GPIO-based scheme is conducted. In order to make
the comparison fair, a set of GPIOs is used that utilizes different pole-placement-based tuning strategies, namely: moderate
(nominal bandwidth: xo ¼ 150 rad/s), conservative (decreased bandwidth: 66%xo), and aggressive (increased bandwidth:

Fig. 11. [Exp2] Accuracy of trajectory tracking under different selection of frequency x̂r (a) and system gain b0 (b).



133%xo). The moderate tuning is deliberately set the same as the nominal case of the error-based RESO from Exp1 to make a
common base for comparison.

6.2. Experimental results

The results of experiment Exp1 with the nominal case are gathered collectively in Fig. 10. The realization of trajectory
tracking is depicted in subplot (a) and its zoomed-in version in (b). The control objective is realized with satisfactory per-
formance, which is also confirmed by resultant feedback error e 
 eh1

� �
in (c). Same subplot shows high quality of observer

estimation which results in � , e� ê, seen in (d), being in close vicinity of zero. The generated control action u 
 sð Þ in (e)
does not exceed physical limitations of the system and is practically acceptable, despite the presence of noise (being the
byproduct of observer/controller tuning methodology), which does not noticeably influence system output. Additionally,
since the actual total disturbance is not available through measurement in the considered experiment, its estimation is addi-
tionally compared in (f) with the total disturbance modeled in a dedicated simulation. This, alongside observer error conver-
gence seen in (c) and (d), validates the correctness of the proposed error-based RESO design.

The outcomes of test Exp2 are depicted in Fig. 11. It can be seen that despite the artificially introduced uncertainty in x̂r

selection (compared to the value identified for the purpose of test Exp1), the tracking performance, in terms of obtained
feedback error signal (i.e. zoomed in plot), did not suffer noticeably. Although the proposed control scheme is robust, the
level of its parametric robustness is limited, hence more significant mismatch in x̂r selection would result at some point
in worsening of the closed-loop performance, since instead of unburdening the observer as a partial modeling information
about the controlled plant, the injected incorrect term x̂r would introduce more uncertainty. Same test Exp2 also showed
that the quality of target trajectory realization, in terms of resultant feedback error (i.e. zoomed in plot), remained at similar
level when the artificially introduced parametric mismatch in b0 is applied (in relation to the nominal value established in
Exp1).

The outcomes of experiment Exp3 are gathered in Fig. 12. From the plots, it can be concluded that, when compared to the
nominal case of no external disturbance in (a), the presence of additional, unmodeled dynamics in top and middle discs
(cases (b) and (c), respectively) did influence visibly corresponding profiles h2 and h3 but did not influence the task realiza-
tion in a significant way (as h1 ! h�1). The application of extra torque in the bottom disc, depicted in (d), had however visible
unwanted effect on the system output.7 The influence of such unmodeled external interference, thanks to the utilized on-line
disturbance observer-based control scheme, is effectively estimated and compensated in a timely manner (as highlighted by the
zoomed in plots).

The results of experiment Exp4 are depicted in Figs. 13–15. First, in Exp4a, the GPIO-centered control scheme was eval-
uated using different tuning strategies. Fig. 13 shows quality trajectory tracking, resultant feedback error, GPIO estimation
error, and control effort, respectively. From the plots, one can notice that the aggressive tuning results in the trajectory being

Fig. 12. [Exp3] Accuracy of trajectory tracking in case of no extra load disturbance (a) and in cases of the load placed at the top (b), middle (c), and bottom
(d) disc.

7 This effect makes sense from the mechanical point of view, since in this case, the load has been placed near the actuated degree-of-freedom, hence its effect
on the output is the most significant among the considered scenarios.



tracked more accurately but at the same time, due to noise amplification in the observer, the control signal contains more
high-frequency noise components. Opposite conclusions can be made when analyzing the results obtained with conservative
tuning, namely lower observer bandwidth solved the problem of noise over-amplification but resulted in worsening of the

Fig. 13. [Exp4a] Results of conventional GPIO-based control scheme in terms of (from the top): angular discs positions (h1–h3), feedback error (e),
estimation error (�), and control signal (u).



tracking precision. This relation is well-known in observer-based control algorithms and has been studied to date also in the
context of GPIO (for details see [34,35]). Here, it means that it is possible to compensate polynomial-type uncertainty (Fp tð Þ)
effectively using GPIO, but to reject fast harmonic-type perturbation (Fw tð Þ) it is necessary to increase the number m of

Fig. 14. [Exp4b] Result of proposed RESO-based control scheme in terms of (from the top): angular discs positions (h1–h3), feedback error (e), estimation
error (�), and control signal (u).



extended states in GPIO or use high observer bandwidth (xo). By doing so, the GPIO is more sensitive to measurement noise
(due to larger observer gains), which leads to degradation of the control signal (11). It usually comes down to a compromise
that has to be made between tracking accuracy and control action profile. It is thus desirable to have a control technique that
would go beyond this compromise and provide high-precision tracking with reasonable energy consumption profile. For that
reason, the proposed error-based ADRC with RESO was tested next (Exp4b) and its results are gathered in Fig. 14. Similar
tests to Exp4a have been conducted here, which utilized different tuning approaches. From the figures, one can notice that
the aggressive tuning here also results in the trajectory being tracked more accurately with the noise being amplified in the
observer and the control signal containing noises as a result.8 However, when compared to the results of GPIO-based scheme
(for corresponding tuning strategies), the control accuracy is quantitatively higher for RESO-based solution, while the noise
amplification in the observer, and consequently the control signal, are smaller.

This calls for a cross-comparison of GPIO- and RESO-based techniques with different tuning strategies, which has been
performed here and its outcomes are depicted in Fig. 15. From the top figures, it can be noticed that the GPIO-based scheme
(with aggressive tuning) still did perform worse than the RESO-based scheme (with just moderate tuning). It is seen in terms
of both feedback errors (a) and energy efficiency (b). Furthermore, even the results obtained with the use of RESO-based
approach with conservative tuning show better tracking in steady state than GPIO-based method with either moderate or
aggressive tuning (c), while keeping the control signal at similar level in those cases (d).

By analyzing the results, it can be deduced that the combination of polynomial and sinusoidal disturbance models in the
proposed error-based ADRC with RESO increases the quality of partial modeling information about the working environ-
ment, thus unburdens the user as it decreases the overall system uncertainty the observer has to reconstruct in each time
instant. It has direct consequence on the convergence of the estimation error, which leads to the speed and accuracy of on-
line total disturbance reconstruction and rejection being the back-bone of the proposed observer-centered technique. In the
introduced control framework, the sinusoidal disturbance model is elegantly incorporated in the error-based RESO, which
overcomes one of the most common problems of observer-based controllers for highly uncertain systems, being the mea-
surement noises amplification due to high gains.

Fig. 15. [Exp4c] Direct comparison of conventional GPIO- and proposed RESO-based control schemes in terms of feedback error (e) and control signal (u).

8 Such outcome was expected due to the fundamental structure of the observer in which the observer error, containing the system output inevitably
subjected to sensor noise, is amplified by the user-selected tuning gains.



6.3. Discussion on potential applications and further development

The future work related to the introduced control method will revolve around two aspects. One is to focus on further
increasing the tracking performance through introduction of an on-line resonant frequency estimation (e.g. [42,43]) as well
as observers with finite-time convergence (e.g. [44]). The second one is expanding the applicability range of proposed control
approach scheme to different systems. Several target scenarios are considered, including high-order systems (e.g. buck
converter-fed DC motor) and systems with states and inputs constraints [45].

7. Conclusions

In this article, a new practically appealing control structure for tackling harmonic uncertainties has been proposed and
exemplified using a laboratory benchmark system. Vibration suppression has been formulated as a fundamental problem
of disturbance rejection, for which a tailored-made ADRC scheme has been conceived. The introduced governing framework
utilizing a resonant version of an extended state observer was shown to be an effective tool for real-time estimation and then
compensation of sinusoidal-type uncertainties. Its expression in industry familiar error-based form made it easily imple-
mentable across different control platforms. The utilized methodology introduced a significant simplification to control syn-
thesis and tuning without the loss of robustness, adaptability, and intuitiveness of the original output-based ADRC design. It
also eliminated the common assumption about availability of higher order target derivatives, thus making the use of extra
sensors or differentiators obsolete.
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Appendix A. Plant transfer functions coefficients

a41 ¼ J1J2J3; a42 ¼ J1J2c3 þ J1J3c2 þ J2J3c1;
a43 ¼ J1 J2j2 þ J3j1 þ J3j2 þ c2c3ð Þ; þJ2 J3j1 þ c1c3ð Þ þ J3c1c2;

a44 ¼ J1 c2j2 þ c3j1 þ c3j2ð Þ þ J2 c1j2 þ c3j1ð Þ; þJ3 c1j1 þ c1j2 þ c2j1ð Þ þ c1c2c3;

a45 ¼ J1 þ J2 þ J3ð Þj1j2; þc1 c2j2 þ c3j1 þ c3j2ð Þ þ c2c3j1;

a46 ¼ c1 þ c2 þ c3ð Þj1j2;

a11 ¼ J2J3; a12 ¼ J2c3 þ J3c2;

a13 ¼ J2j2 þ c2c3 þ J3j1 þ J3j2;

a14 ¼ c2j2 þ c3j1 þ c3j2; a15 ¼ j1j2;

a21 ¼ j1J3; a22 ¼ j1c3; a23 ¼ j1j2; a31 ¼ j1j2:

with nominal values of the torsional plant being J1 ¼ 0:0037; J2 ¼ 0:0011; J3 ¼ J2;j1 ¼ 1:3;j2 ¼ 1:2, as well as
c1 ¼ 0:002; c2 ¼ 0:0015; c3 ¼ c2 which are the generalized friction coefficients related to the motions of first, second, and
third disc, respectively.
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