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PROJECT ABSTRACT 
Various climate change models predict that global sea levels will rise up to 1.9 m by 2100. Sea 
level rise and changes in storm run up during large surf events will affect nearshore habitats, 
cultural resources, water resources and infra-structure worldwide. Tide gauges on the island of 
Hawaii have shown an average sea level rise of 3.5 mm/yr over recent decades and future 
accelerated rates are expected. The Ala Kahakai National Historic Trail includes an 
approximately 280 km portion of prehistoric trail on or parallel to the Hawai‘i Island shoreline 
and passes through numerous significant cultural and biological resources including resources 
within four national parks (Kaloko-Honokohau National Historical Park, Pu‘ukohola Heiau 
National Historical Site, Pu‘uhonua O Honaunau National Historical Park, and Hawai‘i 
Volcanoes National Park), all of which will be impacted by sea level rise. Incorporating detailed 
elevation data and sea level rise predictions in the early stages of planning could lessen impacts 
and aid in long term management of the trail. In this project, investigators at University of 
California, Berkeley collaborated with National Park Service staff to model the effects of future 
sea level rise on present cultural and natural resources within the Ala Kahakai National Historic 
Trail corridor. Specifically, LiDAR  and other existing spatial data were used to create high 
resolution Digital Elevation Models. Then a Geographic Information System (GIS) was used to 
create visualizations of resource inundation likely to occur by the year 2100 using a range of 
more conservative to more extreme sea-level rise predictions. Spatial analysis was also used to 
determine areas where particular habitats such as anchialine pools, fishponds, and wetlands will 
most likely occur in 2100 so that these future habitats can be protected. The inundation models 
are conservative because they do not include projections of wave run-up during storms, erosion, 
or groundwater elevations above sea level. Additionally, comparisons of LiDAR points to 
National Geodetic Survey Benchmarks indicates LiDAR elevations are offset by an average of + 
0.25 m. Correction of this error in DEMs resulted in greater inundation at each sea level rise 
scenario compared to the models without the correction. Final sea level rise scenarios incorporate 
corrections for the offset. Detailed elevation data and model results for the NPS units are 
provided in a GIS geodatabase format for trail planning, park management and resource 
protection within the ALKA corridor. 

INTRODUCTION 
Global mean sea level will rise between 0.2 m and 2.0 m by 2100 (Parris et al. 2012, IPCC 

2013). Sea level rise and changes in storm surge during large surf events will affect coastal 

habitats and resources worldwide (Nicholls and Cazenave 2010, IPCC 2013, Williams 2013). 

Sea level rise is caused by a combination of processes including the melting of polar ice caps and 

glaciers, thermal expansion of ocean water, mining of groundwater aquifers, and, in some 

regions, subsidence of land masses (IPCC 2013).  Global estimates of sea level rise vary 

depending on the future trajectory of global greenhouse gas emissions and are based on different 
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scenarios established by the IPCC (2013) (Figure 1). Recent studies support the estimates of the 

more extreme projection of 1.5 to 1.9 m by 2100 (Vermeer and Rahmstorf 2009). For example, 

Rignot et al. (2011) projects that sea levels will rise 32 cm by 2050 based solely on the melting 

of Greenland and Western Antarctic ice sheets.  Tidal gauge and satellite altimetry measurements 

indicate sea level rise has changed measurably over the last century averaging 3.2 ± 0.4  mm/yr 

since 1993 (Church and White 2011). Rates of sea level rise are accelerating and will continue to 

accelerate in the future (Vermeer and Rahmstorf 2009, Church and White 2011, Rignot et al. 

2011).  

 
Figure 1: Projection of sea level rise from 1990 to 2100, based on IPCC temperature 
projections for three different emission scenarios (A1FI, A2, B1). This is an update for 
projections made by Rahmstorf (2007) used in the IPCC AR4 report (2007). The 2007 
projections are shown for comparison in the bars on the bottom right. Also shown in red is 
the observation-based annual global sea-level data (Church and White 2006). Figure used 
with permission from Dr. Martin Vermeer and Dr. Stefan Rahmstorf (2009). 

Dates at which these heights are projected to occur vary depending on future carbon 

emissions (Figure 1). For example, based on the Vermeer and Rahmstorf model (2009) global 

mean sea levels could rise between 0.3 m to 0.53 m by 2050, and may reach 0.75 m to 1.9 m by 

2100. The more extreme values are those predicted for the future emission scenario (A1FI) in 

which global population growth is coupled with continued intensive fossil fuel use. In all 

scenarios, the rate of sea level rise increases over time. Because studies are continuing to update 
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the expected time frames within which we expect these sea level rise scenarios to occur, it is 

probably most useful to look at inundation levels while keeping in mind that dates may shift.  

Geospatial predictions of coastal change under sea level rise typically include coastal 

elevation data and sea level scenarios (Dasgupta et al. 2009, Gesch 2009, NOAA 2012). These 

models are conservative because they typically do not incorporate future tectonic uplift or 

subsidence, high wave events, or shoreline erosion which will exacerbate coastal inundation and 

change, especially during large episodic events (eg. Vitousek et al. 2010, Reynolds et al. 2012). 

In some coastal areas, groundwater floating on top of denser, more saline water, may exacerbate 

flooding as sea levels rise (Bjerklie et al. 2012; Rotzoll and Fletcher 2013). Components such as 

erosion, wave run up, and groundwater heights can be included in models but require local high-

resolution data on these components. In all sea level rise models, local predictions should be 

viewed with the understanding that there is considerable regional and local uncertainty in the 

future propagation of storms and waves, vertical land movement, and variation in basin wide 

processes such as the El Niño Southern Oscillation and the Pacific Decadal Oscillation (Marra et 

al. 2012).  

STUDY SITE 
Ala Kahakai National Historic Trail (ALKA) includes an approximately 280 km portion of 

prehistoric trail on or parallel to the shoreline on the island of Hawai‘i. The trail passes through 

Kaloko-Honokohau National Historical Park (KAHO), Pu‘ukohola Heiau National Historical 

Site (PUHE), Pu‘uhonua O Honaunau NHP (PUHO), and Hawai‘i Volcanoes National Park 

(HAVO), as well as numerous state and county parks and private lands (Figure 2). The ALKA 

corridor encompasses numerous significant cultural sites as well as biologically important 

nearshore habitats including fishponds, anchialine pools, turtle nesting areas and wetlands. 

Numerous threatened and endangered species rely on these habitats. ALKA works in partnership 

with federal, state, and county agencies as well as private land owners, native Hawaiian groups 

and other community members to manage these important and threatened resources. Many, but 

not all, of these resources fall within PUHE, KAHO, PUHO, and HAVO boundaries.  
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Figure 2: The National Park units on the island of Hawai‘i. 

 

Tide gauges on the island of Hawai‘i have undergone an average sea level rise of 3.19 

mm/yr since the 1950s on the east side of the island (Hilo) and 3.8 mm/yr since the 1990s on the 

west side of the island (Kawaihae) (Vitousek et al. 2010). These data fit the measured global 

averages of sea level rise (Church and White 2011). However Topex/Poseiden and Jason-1 

satellite altimetry data indicate that the global acceleration of sea level rise due to thermal 

expansion and melting ice has not reached Hawai‘i and that the local long-term trend has been 

approximately 1.5 mm/yr (Figure 3; Meyssignac and Cazenave 2012). Based on this information, 

the difference between local tide gauge measurements and the satellite altimetry measurements is 

most likely due to the island of Hawaii’s subsidence rates. Subsidence for the island of Hawaii is 

estimated to be an average of 2.6 mm/yr due to loading of the lithosphere by Kilauea volcano 

(Moore and Clague 1992, Zhong and Watts 2002). Although it is unclear if local subsidence 

rates and regional oceanographic processes will remain constant, sea level in Hawaii will 
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continue to rise and rates are expected to increase by the middle of the decade (Marra et al. 

2012).  

 

 
 

Figure 3: Topex/Poseidon satellite altimetry data showing average sea level rise trends 
between October 1992 to December 2010 (Aviso 2012). 

 
Detailed coastal hazard analysis by Vitousek et al. (2010) show that coastal erosion, 

tsunamis, and coastal inundation due to waves and sea level rise will have serious impacts on the 

future shorelines of KAHO and PUHE. These coastal impacts will also occur at PUHO, HAVO, 

and ALKA. Coastal cultural and natural resources will be altered by sea level rise however little 

is known about the extent of inundation and detailed coastal elevation data is lacking for most of 

the trail corridor. Incorporating detailed elevation data and sea level rise predictions in the early 

stages of trail and resource protection planning will aid in long term management of park trails 

and infrastructure and could lessen resource impacts. Furthermore, scenario planning for habitat 

migration due to rising ocean levels and retreating groundwater is essential so that the predicted 

future locations of important habitats will be protected from current and proposed coastal urban 

development.  
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OBJECTIVES 
Incorporating sea level rise scenarios into planning is becoming widely practiced by local and 

federal government, business, and agencies in many coastal states including California  (Cayan 

et al. 2009, Knowles 2010), Washington, Oregon, Florida (Geselbracht et al. 2011), and US 

Atlantic states (Titus et al. 2009, Grannis 2011, State of Massachusetts 2011). The various 

models used to examine future scenarios vary in complexity, spatial resolution, and focus, but all 

recognize that sea level rise is expected to accelerate in future years and that coastal areas will be 

impacted. This study maps inundation with a commonly used single-value surface model or 

“bathtub model” (Marcy et al. 2009, NOAA 2012). These models incorporate the inundation 

level (relative sea level rise + tidal surfaces) and ground elevation as the two primary variables. 

Relative sea level rise incorporates eustatic sea level rise as well as island subsidence. These 

models are conservative estimates, because they do not incorporate estimates of erosion, wave 

run up during storm events, or groundwater heights elevated above sea level.  

In this project, future sea level rise was modeled in relation to present cultural and natural 

resources within the ALKA corridor. Specifically, maps and vector files were created to 

visualize inundation of resources likely to occur by 2100 using a range of more conservative to 

more extreme sea-level rise predictions. The model can be used to determine areas where 

particular habitats such as anchialine pools, fishponds, and wetlands will most likely be in 2100. 

Areas that may not appear to be a priority now may be the new anchialine pool or wetland 

habitats of the future. Digital Elevation Models (DEMs) at a 1m scale were also produced for 

PUHO, KAHO, PUHE, HAVO, and ALKA using LiDAR data (Federal Emergency 

Management Agency Task Order 26, 2006). These will be made available for trail planning and 

management.  

This report summarizes the methods used to create the Geographic Information System 

(GIS) shapefiles that represent sea level rise scenarios along the entire ALKA trail corridor. 

Sources of uncertainty in the models are examined. Case studies showing the application of the 

scenarios to cultural and natural resources are also included. Ideally, resource managers and 

planners will incorporate the scenarios in long range coastal planning.  

METHODS 

Sea level rise was mapped using a single-value surface model approach (Marcy et al. 2009). The 

two variables used were the ground elevation and the inundation level. Ground elevation data 



 

10 
 

was created using Federal Emergency Management Agency (FEMA) - LiDAR data (2006) that 

is referenced to a Local Tidal Datum. Inundation levels were selected based on current global 

models and measured local tidal data. Various sea level inundation scenarios were then modeled 

over the landscape using ESRI’s ArcGIS 10.0 geoprocessing tools. Polygons were also created to 

illustrate uncertainty due to LiDAR using 95th percentile confidence interval bands. Preliminary 

assessments of LiDAR elevation data were conducted by comparing LiDAR data to National 

Geodetic Survey (NGS) Benchmark elevations. Three case studies were included to illustrate the 

types of analysis that can be done with the inundation layers: 1) Anchialine Pool Inundation and 

Future Habitat Locations; 2) Kaloko Fishpond Expansion; 3) Predicted Effect of Sea Level Rise 

on Puako Community and Kailua Pier. 

 

Elevation Data 

The elevation data used were derived from the FEMA LiDAR (2006) data set. The data extend 

from the water line to the 15 m elevation contour at the time of collection. Coverage of the west 

coast of Hawai‘i Island was made available through the National Park Service. It includes 1074, 

1000m x 1000m tiles that wrap from Upolu Point in the north to the eastern HAVO boundary 

(Figure 4). There are approximately 500,000 elevation points per tile, and the average point 

distance is 0.9 m. The vertical datum is referenced to a Local Tidal Datum with 0 m = Mean Sea 

Level (MSL). 

 

Horizontal Datum 

The survey report associated with the FEMA LiDAR data states that the data are referenced to 

the North American Datum of 1983 for epoch date 1993.62 (Aug. 14, 1993). The survey utilized 

the National Geodetic Surveys CORS network published on the 2002.00 Epoch which was 

shown to be consistent with the 1993.62 Epoch. 

 

Vertical Datum 

NAVD88 is specific to the continental US and does not exist for Hawai‘i.  The survey report 

associated with the FEMA LiDAR states that the LiDAR data is referenced to a Local Tidal 

Datum. This vertical datum is derived from the last National Geodetic Survey leveling network 

established circa 1975. Using the FEMA survey results from November 2006, the datum was 

updated to the present 1983-2001 tidal epoch based on three Kawaihae tidal benchmarks (MSL+ 
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0.16 m). An additional adjustment of  -0.031 m was applied to account for the rise in sea level 

between the 1960-1978 Tidal Epoch and the 1983-2001 Tidal Epoch (McGee 2007). Therefore 

the 2006 survey places the FEMA LiDAR data in a modernized Local Tidal Datum 

approximately 0.13 m above the Kawaihae Harbor MSL elevation.   

 
Figure 4: Coverage of 2006 FEMA-LiDAR data on the Big Island of Hawai‘i. 

 
Vertical Error  

Errors in measurement of the elevation surface due to LiDAR and other processing are typically 

reported as Root Mean Square Error (RMSE) values. In the case of LiDAR data, the RMSE 

values represent the difference between elevation at points on a surface created with interpolated 

LiDAR points and independent “on the ground” survey elevation samples.  

 
RMSE = sqrt[ ∑ ( zdata I  -  zcheck I ) 

2/ n ] 
Where: 

zdata I   =  vertical coordinate of the Ith check point of the elevation dataset (LiDAR) 
zcheck I =  vertical coordinate for the Ith check point of the  independent reference dataset 
I          =  integer from 1 to n 
n         =  number of points being checked 
 

Vertical accuracy values can then be calculated as RMSE x 1.96 when the data are normally 

distributed (ASPRS 2004, Gesch 2009, NOAA 2011). When error (RMSE) is not normally 
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distributed and skewness values are greater than ± 0.5, vertical accuracy should be determined by 

95th percentile testing (ASPRS 2004). Furthermore accuracy for all land cover types except open 

terrain shall also be determined with the 95th percentile testing (ASPRS 2004). 

Prior to this study, Dewberry and Davis (2007) tested the spatial accuracy of the LiDAR-

derived elevation data with independent ground-based measurements.  Elevation data from the 

FEMA data set are reported as horizontally accurate to 0.3 m with 68.2% of laser returns. In 

open terrain the tested vertical accuracy of the LiDAR data was ± 0.16 m (at the 95% confidence 

interval, corresponding to a RMSE of 0.08 m). In all terrain types including open, vegetated and 

urban landcover types the consolidated vertical accuracy at the 95th percentile was  ± 0.25 m 

(Table 1). More information on vertical and horizontal accuracy of LiDAR data can be found in 

“ASPRS Guidelines Vertical Accuracy Reporting for LiDAR Data V1.0.” 

http://www.asprs.org/Standards and the NOAA Digital Coast website 

(http://www.csc.noaa.gov/digitalcoast/data/coastalLiDAR/index.html).  

 
Table 1: Statistics on error and accuracy for FEMA-LiDAR data within four terrain 
classifications.  

  

RMS
E  

(m) 
Mean 
(m) 

Media
n (m) 

Skew 
 

# of 
points 

Accuracy 
(RMSE*1.96) 

Accuracy       
(95th percentile)

Open Terrain 0.08 0.03 0.04 0.98 24 0.16 0.13
Vegetation 0.14 0.09 0.08 0.36 23 0.28 0.29
Urban 0.09 0.04 0.06 -0.89 21 0.17 0.14

Consolidated 0.11 0.05 0.05 0.50 68 0.21 0.25

 

Sea Level Rise Scenarios 

For this study, sea level rise was mapped in 0.5 meter increments (0 m, 0.5 m, 1 m, 1.5 m, 1.9 

m). Dates at which these heights are projected to occur vary depending on future carbon 

emission (Figure 1; Vermeer and Rahmstorf 2009). For example, based on the Vermeer and 

Rahmstorf model (2009) global sea levels could rise between 0.3 m to 0.53 m by 2050, and may 

reach 0.75 m to 1.9 m by 2100. Managers may want to focus on the 0.5 m sea level rise scenario 

for 2050. 
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Tides 

In Hawai‘i, tides are semi-diurnal with the highest tide at 0.74 m above Mean Sea Level (MSL) 

recorded in 1993 (Kawaihae Tidal Bench Mark- 2008, NOAA).  Each sea level rise scenario was 

mapped under the Mean Higher High Water (MHHW) and an extreme high tide value. The 

MHHW datum is 0.374 m above MSL as measured at the Kawaihae Tidal Bench Mark (Table 

2). The MHHW value is the average daily high tide measured during the Epoch 1983 to 2001. 

The value used for the extreme tide level in this study is 0.7 m above MSL. This elevation is the 

mean of the six most extreme annual tides observed at Kawaihae from 2001 to 2011 (NOAA 

2011).  

 
Table 2: The tidal datum from the Kawaihae Tidal Benchmark (NOAA 2011). 

Station: 1617433 Kawaihae 
Epoch: 1983-2001 
Updated Nov 8, 2011 

Datum 
meters feet

Mean Higher High Water MHHW 0.374 1.23
Mean High Water MHW 0.216 0.71
Daily Tide Level DTL 0.047 0.15
Mean Sea Level MSL 0 0
Mean Low Water MLW -0.232 -0.76
Mean Lower Low Water MLLW -0.282 -0.92

 

Inundation Surfaces 

Inundation surface scenarios used  in this study included 0 m, 0.5 m, 1 m, 1.5 m, and 1.9 m sea 

level rise at MHHW and an annual extreme tide (Table 3). All elevations represent height above 

MSL as defined by the Local Tidal Datum. A polygon representing each sea level rise scenario 

was created using ESRI’s ArcGIS 10.0. 

Modeling Coastal Inundation 

FEMA- LiDAR data were provided in LAS, TIN, and Digital Elevation Model (DEM). The 

DEMs were 5 m resolution and considered to be too coarse in resolution for the purpose of this 

study because many features of interest such as anchialine pools fall within a 1 to 5 m2 size class 

(Marrack 2014). The average point density of the LiDAR data is 0.9 m, therefore 1 m DEMs 
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were considered reasonably representative of the data. Using ArcGIS geoprocessing tools, the 

TIN files created from bare earth returns were converted to 1 m raster elevation surfaces using 

the linear interpolation method. These elevation surfaces were then projected to the NAD 83, 

UTM 5 North datum to match the data projections commonly used by the National Parks on the 

island of Hawai‘i.  

Because of the extremely porous nature of the basalt bedrock in the study area, this model 

assumed excellent subsurface hydrologic connectivity between coastal areas and the ocean (Oki 

1999,  Bauer 2003). Therefore, areas that became flooded in the inundation model but were not 

connected overland to the ocean were kept in maps as potential new anchialine pool or wetland 

habitats. These flooded areas may have important management implications for impacted 

cultural sites as well. 

Once 1 m DEMs were created, ArcGIS tools were used to create polygons that would 

visualize each inundation scenario. Polygons represent the land surface covered by water at a sea 

level scenario. A set of polygons for each sea level scenario at MHHW and extreme tide were 

created for sections of the ALKA corridor.  The location of these trail sections and the naming 

convention used for each file are explained in Appendix 1.                                                                   

Each inundation polygon for a trail section was created using the following steps. 

For each elevation raster tile within the trail section: 

1. Extract inundation raster from the elevation raster: all cells < = sea level rise + tide value  

2. Reclassify extracted raster 

3. Convert raster to polygon  

4. Merge polygons within a trail section  

5.  Dissolve multiple polygons into one 

6. Clip polygon deleting marine edges that are > 200 m from shore 

7. Edit polygon to fix margins, gaps, and edges over the ocean surface that may be visually 

confusing.  

Each polygon was visually inspected for errors and to see if predicted 0 m sea level shorelines 

conformed with actual shoreline features. Edits did not change inundation results over the land 

and were only used over known marine surfaces.   
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Table 3: Inundation scenarios mapped for specific park units. For this study sea level 
scenarios are a combination of relative sea level rise (SLR) predictions and tidal state. 
Mean Higher High Water and an extreme tide of 0.7 m were used in this model.  

 
SLR 

scenario (m) 
SLR + tide  

(m) HAVO KAHO PUHO PUHE ALKA 

       MHHW 
0.0 m 0.37 x x x x x 
0.5 m 0.87 x x x x x 
1.0 m 1.37 x x x x x 
1.5 m 1.87 x x x x x 

   Extreme tide 
0.0 m 0.70 x x x x x 
0.5 m 1.20 x x x x x 
1.0 m 1.70 x x x x x 
1.5 m 2.20 x x x x x 

1.9 m 2.60 x x x x x 

 

Mapping Uncertainty 

The inundation polygons are not as certain as they appear because they are created from 

elevation surfaces that contain some error. RMSE is a measure of the error associated with 

collection and processing of the LiDAR data. Using the LiDAR accuracy assessment data 

collected by Dewberry and Davis (2007), maps and vector files were created to illustrate 

uncertainty using 95th percentile confidence interval bands. Uncertainty was mapped for the 

upper 95th percentile confidence interval (above inundation) but not the lower interval (below 

inundation) because of the high probability of inundation at the lower elevations (Gesch 2009, 

NOAA 2012; Table 4). Because inundation maps incorporate all types of terrain (open, 

vegetated, urban) the consolidated accuracy value (0.25 m) was used. Consolidated RMSE 

values have a skewed value of 0.5 which is within range to satisfy the assumption of normal 

distribution (ASPRS, 2004). However, to be conservative, confidence maps were created using 

the 95th percentile method instead of the RMSE* 1.96 method because RMSE values were not 

normally distributed for all terrain types (skew > ± 0.5) (Table 1). Any area within the error 

bands represent locations that could be expected to have the target inundation level (elevation) in 

95 out of 100 sampling efforts given constant sampling variability.  
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Table 4: Sea level rise (SLR) scenario elevations with 95th percentile confidence intervals.  
The confidence interval is + 0.25 m which is the 95th percentile of error measurements from 
consolidated terrain types (open, vegetated and urban).  Data used to create the confidence 
interval was collected by Dewberry and Davis (2007). 

  
SLR + 95th Percentile CI  

(m) 

SLR @MHHW      (m)     
0 0.62 

0.5 1.12 
1 1.62 

1.5 2.12 
SLR @Extreme        

0 0.95 
0.5 1.45 

1 1.95 
1.5 2.45 
1.9 2.85 

 
 

Accuracy Assessment of LiDAR with National Geodetic Survey Benchmarks 

Analysis of FEMA- LiDAR data over ocean surfaces indicated that either LiDAR were collected 

at high tides or that some vertical correction may be necessary. In the 1 km area around the 

Kawaihae tidal benchmark, the mean elevation of LiDAR points over the ocean surface was 0.3 

m above MSL. For most of the ALKA corridor including the KAHO study area, ocean surfaces 

were elevated by 0.5 m or more over MSL. These elevations could be explained by high tides. 

MHHW at the Kawaihae tidal benchmark is 0.374 m and the highest tide measured in August 

2006 when the LiDAR was collected was 0.61 m above MSL.  However, the LiDAR metadata 

does not indicate tidal stage or date and time of collection, therefore the tide height during 

LiDAR collection could not be confirmed.  Because of uncertainty in accuracy, the LiDAR data 

were examined for vertical offset using independent survey data.  

 To assess LiDAR elevation accuracy, LiDAR elevations were compared to National 

Geodetic Survey (NGS) benchmark elevations using the methods described by Cooper et al. 

(2013).  Benchmarks used in the accuracy assessment included the Kawaihae tidal benchmark -

1617433B (http://www.ngs.noaa.gov/CORS-Proxy/NGSDataExplorer/) along with five NGS 

benchmarks surveyed in the KAHO area in 2009 (Edward Carlson – National Geodetic Survey). 
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Other NGS benchmark location data available in the study region were not of high enough 

resolution to include in the accuracy assessment. The orthometric elevation for the Kawaihae 

tidal benchmark was derived using the NGS GEOID12A model, and for the 2009 benchmarks 

the GEOID03 was used. All benchmark orthometric elevations are relative to the Local Tidal 

Datum of Mean Sea Level (MSL) defined by the 1983-2001 Tidal Epoch. The LiDAR elevation 

data were derived using the NGS GEOID03 model and were referenced to the same NGS Local 

Tidal Datum, but were adjusted by  + 0.16 m to account for offset detected during the survey 

accuracy assessments and -0.031 m to account for sea level rise (McGee Surveying Consulting, 

2007). Therefore both NGS benchmark and LiDAR elevations are relative to MSL but may have 

differences due to the methods of derivation. 

As described in Cooper et al. (2013) and Marrack (2014), the elevations of all LiDAR 

points within 2 m of each benchmark were visualized in ESRI’s ArcScene 10.0 and recorded. 

Elevation values from points were compared with the associated NGS benchmark elevation to 

calculate mean elevation difference and RMSE. LiDAR DEM elevations were also compared to 

benchmark elevations to assess DEM accuracy. Results were used to determine if a correction 

factor should be applied to LiDAR DEMs prior to the next stages of analysis. Examples of sea 

level rise scenarios with the correction factor were created for comparison with uncorrected 

models. 

The NGS benchmarks measurements available for the initial accuracy assessment were 

collected in 2009 to 2010 and were limited in number (n=6) and spatial extent. Therefore the 

NGS and NPS staff conducted a more extensive survey during September, 2013 to revisit the 

Kawaihae tidal benchmark, some of the 2009 benchmarks, and additional sites along the ALKA 

corridor (Appendix 2). These benchmarks provided data for an additional accuracy assessment of 

the FEMA-LiDAR data to determine if a correction factor should be applied to LiDAR elevation 

data. The results of the accuracy assessment using both survey data sets are provided. 

Case Studies 

To illustrate the types of analysis that can be done with the inundation layers, three case studies 

were included in the report. Case studies include: (1) Inundation and Future Habitat Extent of 

Anchialine pools; (2) Future Extent of Kaloko Fishpond; (3) Predicted Effects of Sea Level Rise 

on Puako and Kailua Pier. 
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RESULTS/DISCUSSION 

Inundation polygons were created for 0 m, 0.5 m, 1 m, 1.5 m, and 1.9 m sea levels at Mean 

Higher High Water (MHHW) and extreme tides for the entire ALKA corridor (examples in 

Figure 6). Error polygons were created for all scenarios at MHHW and extreme tides.  Metadata 

was created for all shapefiles and 1m elevation rasters. Appendix 1 lists the shapefile coverages 

with sea level and tidal scenarios. 

Inundation polygons are best viewed by overlaying them onto Quickbird or similar true 

color satellite imagery. Polygons showing vertical error associated with collection of LiDAR 

data can also be overlain on inundation polygons to give a sense of the uncertainty of the 

location of the leading edge of inundation. In steep areas, there is almost no uncertainty. In 

gradually sloped areas the band of uncertainty widens (Figure 7).   

The 0 m sea level rise scenarios at MHHW (0.374 m) do a poor job of reflecting the 

current shoreline. This is due to the fact that the LiDAR data shows sea levels to be at or above 

0.5 m elevation in most areas during the time of collection (Figure 6). Airforce One, the 

company that collected the LiDAR data, has not been able to confirm the tide state or times and 

dates of data collection. LiDAR was collected in August 2006 during which tides did reach a 

maximum height of 0.61 m above MSL at the Kawaihae benchmark (NOAA 2011). Because it is 

unclear if the LiDAR was collected during a high tide or there is an offset in the vertical datum 

used for the LiDAR, an accuracy assessment was conducted to check the LiDAR point 

elevations.   
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Figure 5: Multiple inundation scenarios at: A) Pu‘uhonua O Honaunau National Historical 
Park; B) Kaloko Fishpond at Kaloko-Honokohau NHP; C) Pu‘ukohola NHP; D) Kiholo 
State Park. Green lines represent National Park boundaries. 

A. B.

C. D.

Kaloko Wall 
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Figure 6: Comparison of Mean Higher High Water (MHHW) and Extreme tide models at 
current sea levels for : a) Pu‘uhonua o Honaunau National Historical Park and b) Kaloko 
Honokohau National Historical Park.. The current sea level surface at MHHW (A1 & B1) 
is not sufficient to incorporate most of the known water surface up to the shoreline, but the 
more extreme 0.7 m tide level (A2 & B2) does. LiDAR was either collected at a higher tide 
level or there is some vertical offset across the study area. 
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Figure 7: Example of map showing inundation and error polygons north of Honokohau 
Harbor at Kaloko Honokohau National Historical Park. There is little uncertainty in steep 
areas such as walled areas within the Harbor and cliffs south of the Harbor. There is 
greater uncertainty illustrated by wider 95th percentile confidence interval bands in areas 
with gradually sloping land surfaces such as the area behind Aiopio Fishtrap. 

 
Validation of LiDAR with National Geodetic Survey Benchmarks  

Because the FEMA-LiDAR data is the basis for the topographic surfaces used in the sea level 

rise models, uncertainty in LiDAR accuracy translates to uncertainty in sea level rise predictions. 

Comparison between LiDAR point elevations and six National Geodetic Survey (NGS) 

benchmark elevations collected in 2009 showed a mean difference of 0.27 m. The mean 

difference between the LiDAR DEMs and NGS benchmark elevations was 0.25 m (Table 5a). 

The same analysis was conducted using 20 benchmark elevations collected by the National 

Geodetic Survey in 2013 and results were very similar showing an offset of 0.25 m between 

NGS benchmarks and LIDAR points as well as the DEMs (Table 5b). Even at the Kawaihae tidal 

benchmark, which was used to calculate the Local Tidal Datum on the island of Hawai‘i, LiDAR 
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points were 0.28 m higher compared to 2009 surveys and 0.39 m compared to 2013 surveys of 

the benchmark height. At the time of collection the FEMA LiDAR was assessed for accuracy 

using independent checkpoints by Dewberry and Davis (2007) who reported that for bare earth 

surfaces the mean vertical error of  LiDAR points was 0.03 m (RMSE  = 0.08 m). The mean 

error for all terrain types was reported as 0.05 m (RMSE = 0.11 m). Because the mean difference 

between the LiDAR point data and NGS benchmark orthometric heights were an order of 

magnitude higher than the reported sampling error, the LiDAR data was corrected by -0.25 m for 

subsequent analysis.  

Without an elevation correction, the sea level rise models created for this study are 

conservative. Revised models that utilize corrected LiDAR data show greater inundation over 

coastal resources. Examples of sea level rise scenarios with corrected LiDAR (-0.25 m) were 

created for visual comparison with scenarios created with uncorrected LiDAR (Figure 8).  

 

Table 5: Elevation differences in meters between National Geodetic Survey (NGS) 
benchmarks, FEMA LiDAR point data and 1m resolution DEMs created from FEMA 
LiDAR: (a) 2009 survey data including Kawaihae tidal benchmark (1617433B) and 5 NGS 
benchmarks recorded proximal to the KAHO study site (Ed Carlson, NGS); (b) 2013 
survey data from areas on the west coast of Hawaii with revisited benchmarks highlighted. 
All LiDAR points within a 2 m radius of each benchmark were examined (n = 6 to 15 
points). Zmin and Zmax represent the minimum and maximum LiDAR point elevation. Zmean 

represents the mean elevation of LiDAR points. ZDEM is the DEM elevation. ZBM is the 
benchmark orthogonal elevation. Zpts- ZBM  is the elevation difference between the mean 
elevation of LiDAR points and the benchmark. ZDEM- ZBM is the elevation difference 
between the DEM and the benchmark in meters. RMSE is the root mean square error.  

a). 

Benchmarks Date LiDAR Points ZDEM ZBM 
Zpts- 
ZBM 

ZDEM- 
ZBM

Zmean Zmin Zmax Zstdev 
1617433B 2010 2.33 2.24 2.40 0.04 2.28 2.05 0.28 0.23

KAHO Bound 2009 5.35 5.24 5.54 0.12 5.45 5.23 0.12 0.22

McKaskill 2009 11.67 11.50 11.72 0.06 11.57 11.32 0.35 0.25

Visitor Center  2009 12.90 12.83 12.94 0.04 12.90 12.57 0.33 0.33

Honokohau HB 2009 2.40 2.34 2.49 0.04 2.45 2.11 0.29 0.34

Well-MW 2009 21.99 21.90 22.12 0.07 21.90 21.75 0.24 0.15

Mean  0.27 0.25
RMSE           0.21 0.19
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TABLE 5b).  

Benchmarks Date LiDAR Points   ZDEM ZBM 
Zpts - 
ZBM 

ZDEM - 
ZBM 

Zmean Zmin Zmax Zstdev 
1617433B 2013 2.35 2.30 2.40 0.04 2.28 1.96 0.39 0.33
Lower Kaloko 2013 6.92 6.86 6.99 0.05 6.91 6.38 0.54 0.53
Gateway 2013 30.07 29.82 0.25
BehindFishpond 2013 2.31 2.21 2.43 0.09 2.41 2.09 0.22 0.32

Honokohau HB 2013 2.40 2.32 2.48 0.05 2.45 2.12 0.28 0.33
KAHO_13X 2013 0.80 0.77 0.82 0.02 0.80 0.65 0.15 0.15
Kaloko1995 2013 5.62 5.58 5.67 0.03 5.64 5.40 0.22 0.24
KalokoWallNthX 2013 0.77 0.71 0.90 0.08 0.75 0.61 0.16 0.14
Kona Airport 2013 18.24 18.23 18.25 0.01 18.23 17.90 0.34 0.33
PoolA1 2013 2.17 1.86 2.40 0.21 2.05 1.89 0.28 0.16
PoolA2 2013 2.11 1.99 2.17 0.07 2.06 1.85 0.26 0.21
PumpSth 2013 2.83 2.82 2.84 0.01 2.83 2.51 0.32 0.32
PumpNth4028 2013 2.67 2.63 2.72 0.04 2.71 2.47 0.20 0.24
RebarKaloko12 2013 1.15 1.12 1.18 0.03 1.11 0.98 0.17 0.13
RbrKalokoWall 2013 2.45 2.43 2.47 0.01 2.47 2.22 0.23 0.25
TNCpond 2013 2.64 2.37 2.99 0.24 2.58 2.63 0.01 -0.05

Visitor Center 2013 12.92 12.89 12.96 0.02 12.93 12.57 0.35 0.36
WellSet09 2013 9.67 9.59 9.73 0.06 9.68 9.48 0.19 0.20
WellSet10 2013 2.83 2.80 2.85 0.02 2.83 2.54 0.29 0.29
WellSet11 2013 3.59 3.58 3.60 0.01 3.58 3.38 0.21 0.20

Mean  0.25 0.25
RMSE            0.11 0.12
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Figure 8: Comparison of sea level rise models created with uncorrected and corrected 
LiDAR elevation data for the coastal area between Anaehoomalu Beach and Kapalaua. 
Corrected LiDAR elevations are 0.25 m lower than uncorrected LiDAR based on accuracy 
assessment using National Geodetic Survey Benchmarks. Models include 0.5 m at MHHW, 
1m at MHHW, and 1 m at Extreme tides. 



 

25 
 

Fine Scale Data Gaps and Uncertainty 

In some cases, rock features such as Kaloko Fishpond Wall are not completely included in the 

bare earth portion of the LiDAR data that were used to create the DEMs (Figure 5b). LiDAR 

data for the Kaloko Fishpond Wall feature is partially in the extracted features portion of the 

LiDAR data set which is meant to include trees and buildings. The data can be removed and 

added to maps, but park resource staff may decide that they would rather include more recent 

survey data. The wall has been fully restored since 2006 and the elevation over the northern 

section will have changed since the 2006 LiDAR data was collected. It is likely other cultural 

features such as heiau (temples) may be in the extracted features dataset as well. Analysts will 

need to work with park staff to decide the best method for including Kaloko Fishpond Wall and 

other missing features in maps.  

Because the laser spectrum used for the LiDAR collection was not intended to be water 

penetrating, elevations only exist at or above water surfaces. As a result, features and topography 

that would be exposed near the shoreline at lower tides and Mean Sea Level (MSL) are not 

visible and cannot be mapped. Anchialine pools, fishponds, and other water features are also 

mapped at the height of the water surface above MSL at the time of LiDAR collection. 

Elevation maps created from LiDAR data inherently have lower resolution than the actual 

earth surface. For example, the average point cover for the LiDAR data is 1 m therefore features 

smaller than 1 m may be missed. In addition to error introduced during LiDAR measurements, 

geoprocessing may also introduce small amounts of uncertainty during data point interpolation 

and conversion from raster to polygon formats. Initial analysis indicates most of the uncertainty 

comes from simplification of the topography. Within several small study areas, we hope to 

compare the FEMA LiDAR data to maps created with a Leica C10 Scanstation which is capable 

of sub-centimeter vertical and horizontal resolution. Comparison of these high resolution maps to 

the FEMA data set will give us another measure of data accuracy and precision. Although 

resolution for the FEMA dataset may be limited by point spacing and processing, it is still clearly 

useful for high resolution inundation modeling and features larger than 1 m. 
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CASE STUDIES 

Case Study 1: Inundation and Future Habitat Extent of Anchialine pools 

Anchialine pools are brackish coastal ecosystems without surface connection to the 

ocean, where groundwater and saltwater derived from the ocean mix (Holthius 1973).  In 

Hawai‘i, groundwater flows through pools and out to wetlands and coral reefs making pools 

valuable indicators of broad-scale groundwater recharge and contamination (Knee et al. 2008). 

Hawaiian anchialine pools are tidally influenced, range in size from less than 1 to over 3000 m2 

and support diverse endemic biota (Maciolek and Brock 1974), including seven species listed as 

Candidate Threatened or Endangered Species (USFWS 2011). A total of 193 anchialine pools 

have been mapped at KAHO, 14 at PUHO, and 16 at HAVO. 

When the pool locations are overlain on inundation scenarios, the extent of inundation 

can be calculated. At the 0.5 m sea level rise scenario at MHHW within all three parks, current 

pools become larger but none of them are inundated or connected overland to the ocean. In 

KAHO at a 1 m scenario at MHHW, 53% of pools are inundated and become connected to the 

ocean. For the 1.5 m scenario at MHHW, 95% become connected to the ocean. For the 1.9 m 

scenario at the extreme tide only 6 pools continue to be isolated while 97% become inundated 

(Figure 9). Inundation of current pools is expected at all three parks (Table 6).  
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Figure 9:  Present and future anchialine pool locations at various sea level rise scenarios. 
Maps represent varying sea level rise scenarios at Kaloko-Honokohau National Historical 
Park in relation to current anchialine pools. Blue polygons independent of current pool 
locations (yellow) represent areas where sea level rise will create new pools.   

 

 

Table 6: The percentage of pools inundated at various sea level rise scenarios within three 
national parks. 

  
    

% Pools Inundated at 
Sea Level Rise Scenarios   

Park #Pools 
0.5m + 

MHHW 
1.0m + 

MHHW 
1.5m + 

MHHW 
1.9m + 

Extreme 
KAHO 193 0 53 95 97 
PUHO 15 0 50 57 71 
HAVO 16 0 0 31 31 

 



 

28 
 

Although pools will become inundated, new pools will emerge in the porous basalt substrate. 

Future anchialine pool habitat locations within KAHO and PUHO were identified at different sea 

level rise scenarios using the inundation vector files. Any inundation surface that was not 

connected to the ocean surface was counted as a pool. These were placed in size categories (<10 

m2, 10-100 m2, 101-1000 m2, >1000 m2 ) and enumerated. Pool detection underestimates pools 

in fissures or those smaller than 1m2 due to fact that the mean LiDAR point spacing is 1 m 

(Marrack 2014). However, potential pool numbers may be elevated because some predicted 

future pools might be in areas that will become marsh habitat at the edge of fishponds. It is also 

important to consider that some areas that may appear disconnected to the ocean at a MHHW 

may become connected during high wave events or extreme annual tides. 

 
Table 7: Number of potential pools by size category created under different sea level rise 
and tidal scenarios at Kaloko-Honokohau National Historical Park and Pu’uhonua O 
Honaunau National Historical Park. New pool formation was examined for 1m sea level 
rise at Mean Higher High Water (MHHW), 1.5m sea level rise at MHHW, and 1.9m sea 
level rise at the measured extreme tide. 

        
Pool size ( m2) 

  
<10 10-100 100-1000 >1000 Total 

KAHO 1m+MHHW 420 81 15 1 517 
1.5+MHHW 416 90 23 2 531 
1.9+Extreme 238 47 10 0 295 

PUHO 1m+MHHW 161 30 4 0 195 
1.5+MHHW 92 13 8 2 115 

  1.9+Extreme 62 16 2 3 83 
 
Anchialine pools will be inundated as sea levels rise. However, if future open space is 

undisturbed, new anchialine pool habitats will emerge (Table 7). Along the Ala Kahakai 

National Historic Trail, ongoing studies are mapping current anchialine pool habitats and 

modeling where new habitat are expected to occur under future sea level rise scenarios.  

 
 

Case Study 2: Kaloko Fishpond Expansion  

Fishponds and wetlands will expand inland as sea levels rise. Predicted changes in the surface 

area of Kaloko Fishpond within Kaloko-Honokohau National Historical Park were calculated 
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between current sea level and various sea level rise scenarios using ArcGIS (10.0) Spatial 

Analyst tools. Kaloko Fishpond currently covers approximately 5.03 hectares at an extreme tide 

(0.7 m). The pond will expand by an additional 2.25 hectares with a 1.0 m sea level rise at Mean 

Higher High Water (MHHW), 4.25 hectares with 1.5 m sea level rise at MHHW, and 6.48 

hectares at 1.9 m sea level rise at a more extreme tide (Figure 10). The fishpond edges will move 

over the park boundary at 1m sea level rise at higher tides. This habitat was chosen as an 

example, but similar land surface change can be calculated for other areas of interest. 

 

 
 
Figure 10: Predicted changes in the surface area of Kaloko Fishpond within Kaloko-
Honokohau National Historical Park with various sea level rise scenarios. Note that the 
northern section of the pond crosses the park boundary at 1m high tides. 
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Case Study 3: Predicted Effects of Sea Level Rise on Puako and Kailua Pier 

Sea level rise scenario overlays show progressive inundation of low elevation areas along the 

ALKA trail corridor. Within the neighborhood community of Puako, the Mean Higher High 

Water (MHHW) at the current sea level model does not cover the entire ocean surface and swells 

are evident (Figure 11). The 0.5 m, 1 m, and 1.5 m at MHHW models along with the 1.9 m at 

Extreme tide model show progressively more inundation of the Puako area. The areas 

surrounding the Kailua-Kona Pier also become progressively more inundated with rising sea 

level scenarios (Figure 12). Other low lying coastal neighborhoods and infrastructure can be 

expected to be similarly inundated. It is important to note that these models are conservative, 

because they do not include storm wave run up, erosion, or groundwater heights above sea level. 

The sea level rise polygons created during this project can be used to create similar maps for 

planning purposes. 
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Figure 11: Sea level rise scenarios at Puako where blue represents water surfaces. Note that 
the Mean Higher High Water (MHHW) model at current sea levels does not cover all of the 
ocean surface and swells are evident. The 0.5 m, 1 m, and 1.5 m at MHHW models along 
with the 1.9 m at Extreme tide model show progressively more inundation of the Puako 
area. 
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Figure 12: Inundation at Kailua-Kona Pier and surrounding areas under various sea level 
rise scenarios. All scenarios are at Extreme high tide. 
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CONCLUSION 

Incorporating detailed elevation data and sea level rise predictions in coastal planning 

should aid in long-term management of both developed and natural areas. In particular this 

project aims to identify key areas to preserve for maintaining environmental and cultural 

integrity in the future. For example, while some features such as individual anchialine pools will 

be inundated, anchialine pool, fishpond and wetland habitats will emerge or shift in the 

landscape. Protecting future inundation areas from development will conserve valuable habitat 

and will eliminate the need to repair or relocate infrastructure placed in these areas.  

The models used here are a conservative method for estimating inundation and do not 

include storm run up, erosion, changes in sediment deposition, and geologic activities which will 

have additional effects on Hawaii’s future shorelines. Recently Marrack (2014) has developed 

methods to incorporate observed groundwater levels into geospatial models. Models that 

incorporate groundwater into sea level rise scenarios are available for the Kawaihae to South 

Kona section of the ALKA corridor. 

The goal of this project is to share sea level rise inundation and error polygons with NPS 

staff as well as various public and private partners so that they can plan for future conditions. 

This visualization tool will also be helpful in educating the public about the effects of global 

warming and resulting sea level rise. GIS data are available through the National Park Service at 

ALKA. 
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Appendix 1: Key for GIS shapefiles produced to visualize various sea level rise scenarios 
under various high tides. Table indicates shapefile name, spatial coverage, sea level rise 
scenario and tide state. Error polygons can be used in conjunction with the associated 
scenario files and represent the 95th percentile confidence due to LiDAR measurement 
error. Sea level rise scenarios with groundwater incorporate groundwater into flooding 
models (Marrack 2014). Hawaii Volcanoes National Park is identified as HAVO in the 
table. 

Type  File Name  Location  SLR Scenario  Tide 

Sea Level Rise Scenarios 
Nth_Koh_0.5mMHHW  North Kohala  0.5 meters  MHHW 
Nth_Koh_0.5mExt  North Kohala  0.5 meters  Extreme annual tide 
Nth_Koh_1mMHHW  North Kohala  1 meters  MHHW 
Nth_Koh_1mExt  North Kohala  1 meters  Extreme annual tide 
Nth_Koh_1.5mMHHW  North Kohala  1.5 meters  MHHW 
Nth_Koh_1.5mExt  North Kohala  1.5 meters  Extreme annual tide 
Nth_Koh_1.9mMHHW  North Kohala  1.5 meters  MHHW 
Nth_Koh_1.9mExt  North Kohala  1.9 meters  Extreme annual tide 
Kona_0.5m_MHHW  Kawaihae to Kahauloa 0.5 meters  MHHW 
Kona_0.5m_Ext  Kawaihae to Kahauloa 0.5 meters  Extreme annual tide 
Kona_1m_MHHW  Kawaihae to Kahauloa 1 meters  MHHW 
Kona_1m_Ext  Kawaihae to Kahauloa 1 meters  Extreme annual tide 
Kona_1.5m_MHHW  Kawaihae to Kahauloa 1.5 meters  MHHW 
Kona_1.5m_Ext  Kawaihae to Kahauloa 1.5 meters  Extreme annual tide 
Kona_1.9m_MHHW  Kawaihae to Kahauloa 1.9 meters  MHHW 
Kona_1.9m_Ext  Kawaihae to Kahauloa 1.9 meters  Extreme annual tide 
Sth_0.5m_MHHW   Kahauloa to HAVO  0.5 meters  MHHW 
Sth_0.5m_Ext   Kahauloa to HAVO  0.5 meters  Extreme annual tide 
Sth_1m_MHHW   Kahauloa to HAVO  1 meters  MHHW 
Sth_1m_Ext   Kahauloa to HAVO  1 meters  Extreme annual tide 
Sth_1.5m_MHHW   Kahauloa to HAVO  1.5 meters  MHHW 
Sth_1.5m_Ext   Kahauloa to HAVO  1.5 meters  Extreme annual tide 
Sth_1.9m_MHHW   Kahauloa to HAVO  1.9 meters  MHHW 
Sth_1.9m_Ext   Kahauloa to HAVO  1.9 meters  Extreme annual tide 
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Appendix 1 : continued 
 
Error Polygons (95th percentile confidence : + 0.25m) 

er_Koh_0.5mMHHW  North Kohala  0.5 meters  MHHW 
er_Koh_0.5mEXT  North Kohala  0.5 meters  Extreme annual tide 
er_Koh_1mMHHW  North Kohala  1 meters  MHHW 
er_Koh_1mEXT  North Kohala  1 meters  Extreme annual tide 
er_Koh_1.5mMHHW  North Kohala  1.5 meters  MHHW 
er_Koh_1.5mEXT  North Kohala  1.5 meters  Extreme annual tide 
er_Koh_1.9mMHHW  North Kohala  1.5 meters  MHHW 
er_Koh_1.9mEXT  North Kohala  1.9 meters  Extreme annual tide 
er_Kona_0.5mMHHW  Kawaihae to Kahauloa 0.5 meters  MHHW 
er_Kona_0.5mEXT  Kawaihae to Kahauloa 0.5 meters  Extreme annual tide 
er_Kona_1mMHHW  Kawaihae to Kahauloa 1 meters  MHHW 
er_Kona_1mEXT  Kawaihae to Kahauloa 1 meters  Extreme annual tide 
er_Kona_1.5mMHHW  Kawaihae to Kahauloa 1.5 meters  MHHW 
er_Kona_1.5mEXT  Kawaihae to Kahauloa 1.5 meters  Extreme annual tide 
er_Kona_1.9mMHHW  Kawaihae to Kahauloa 1.9 meters  MHHW 
er_Kona_1.9mEXT  Kawaihae to Kahauloa 1.9 meters  Extreme annual tide 
er_Sth_0.5mMHHW   Kahauloa to HAVO  0.5 meters  MHHW 
er_Sth_0.5mEXT   Kahauloa to HAVO  0.5 meters  Extreme annual tide 
er_Sth_1mMHHW   Kahauloa to HAVO  1 meters  MHHW 
er_Sth_1mEXT   Kahauloa to HAVO  1 meters  Extreme annual tide 
er_Sth_1.5mMHHW   Kahauloa to HAVO  1.5 meters  MHHW 
er_Sth_1.5mEXT   Kahauloa to HAVO  1.5 meters  Extreme annual tide 
er_Sth_1.9mMHHW   Kahauloa to HAVO  1.9 meters  MHHW 
er_Sth_1.9mEXT   Kahauloa to HAVO  1.9 meters  Extreme annual tide 

Sea Level Rise Scenarios with Groundwater 

GWKona_0.5mMHHW 
Kawaihae to Kailua 
Bay  0.5 meters  MHHW 

GWKona_0.5mEXT 
Kawaihae to Kailua 
Bay  0.5 meters  Extreme annual tide 

GWKona_1mMHHW 
Kawaihae to Kailua 
Bay  1 meters  MHHW 

GWKona_1mEXT 
Kawaihae to Kailua 
Bay  1 meters  Extreme annual tide 

GWKona_1.5mMHHW 
Kawaihae to Kailua 
Bay  1.5 meters  MHHW 

   GWKona_1.5mEXT 
Kawaihae to Kailua 
Bay  1.5 meters  Extreme annual tide 
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Appendix 2: Location of National Geodetic Survey benchmarks used for vertical accuracy 
assessments of FEMA LiDAR data.  Tidal benchmark #1617433B is located at Kawaihae. 
Both 2009 and 2013 surveys were conducted by Ed Carlson from the National Geodetic 
Survey.  

 

 




