

THE LANE TABLE METHOD OF CONSTRUCTING LR(1) PARSERS

ABSTRACT. The first practical application of the LR algorithm was by [1] for the
LALR(1) subset of LR(1) grammars. In [2] an efficient method of producing an LR(1)
parser for all LR(1) grammars was described which involves resolving conflicts at states
of the LR(0) parsing machine, employing two phases. In Phase 1 the contexts of the
productions involved in conflicts are evaluated by a process described there called “lane
tracing”. If conflicts cannot be resolved by these means, then in Phase 2 the parts of
the machine involved in lane tracing are regenerated, avoiding the combination of states
that potentially lead to conflicts. Other works along the same lines include [4, 5]. The
criterion employed in [2] for determining whether or not states may be combined was
that of weak compatibility, as defined in [3]. In this paper we describe an alternative
method for determining whether states can be combined. According to testing by [6]
this method requires less computation. It is also more efficient. when extending the
method from LR(1) to LR(k) parsing as described in [7] where very large grammars may
be used for the purposes of natural language translation. Taken together with Phase 1,
this new method of Phase 2 will, as before, produce a conflict-free LR(1) parser for all
LR(1) grammars.

With each significant increment in processing speed and storage capacity in the last 30
years, there have been articles in the popular computer press discussing how such
developments could be put to use. It does not appear to the correspondents that the
efficiency of the software of the day will be significantly affected, and the main uses for
the enhanced computer power is usually ascribed to resource intensive applications
such as weather forecasting. With current processing speed and storage capacity, we
have reached a stage where efficient implementations of the original Knuth LR(1)
algorithm [6] can, in an acceptable amount of time, produce parsers of acceptable size
for most current languages. It may thus appear that the improvement of the original
Knuth algorithm described in this paper, which significantly reduces its space and time
requirements, is of less interest. But just as the speed and capacity of computers have
risen, so have the complexity and scope of computer languages, from the early versions
of Fortran and Basic to the languages that are current today. It seems clear that this
process will continue, and that more ambitious computer and language development will
occur to take full advantage of whatever speed and capacity is available, including
forms that we cannot now predict. Examples may include gigantic grammars employed
in combination with other techniques for the purpose of natural language translation, or
the combination of voice recognition systems with computer and natural language
applications.

After a few definitions we describe the new Phase 2 method for the Lane tracing
algorithm [2] by means of an example.

Let the conflicting actions at the state considered be π1,π2,..,πr. If a state S contains
configurations that for 1 ≤ i ≤ r, generate a set of contexts Ci along a lane leading to πi,
then the collection of contexts generated by S is defined as the set {(Ci, i)|1 ≤ i ≤ r}.

Note that if the sets {Ci|1 ≤ i ≤ r} are not pairwise disjoint, then the grammar is not LR(1).

The collection of contexts associated with any state S is initially the collection of
contexts it generates.

The criterion according to which regenerated states may be combined is as follows.
Let {S1,…,St} be a set of connected regenerated states, and let the (same) collection of
contexts associated with S1,…, Sr be in each case {(Ai, i)|1 ≤ i ≤ r}. If we now regenerate
a state T that is a successor of one of S1,…,St, then:

1. if there is an existing copy of state T whose associated collection of contexts is
{(Bi, i)|1 ≤ i ≤ r} and the set of states {(Ai  Bi)|1 ≤ i ≤ r} are pairwise disjoint, then
this existing copy of state T is taken as the successor involved, and the collection
of contexts associated with {S1,…,St,T } is defined to be {(Ai  Bi, i)|1 ≤ i ≤ r}.

2. otherwise, a new copy T’ of T is regenerated as the successor involved, and if the

collection of contexts generated by T is {(Bi
!, i)|1 ≤ i ≤ r}, then the collection of

contexts associated with {S1, . . . , St,T’} is defined to be {(Ai  Bi
!, i)|1 ≤ i ≤ r}.

Note that if the sets {(Ai  Bi
!, i)|1 ≤ i ≤ r} are not pairwise disjoint, then the

grammar is not LR(1).

Example. Given the following grammar:

G → xWa | xVt | yWb | yVt | zWr | zVb | uUXa | uUY r
W → UXC
V → UYd
X → ktUXP | kt
Y → ktUYu | kt
U → Ukt | s
E → a | b | c | v
C → c | w
P → z

The part of the LR(0) parsing machine generated for this grammar involved in conflicting
lanes (as well as state 0) is shown below. It contains conflicts at state I. At this state
π1, π2, π3 are defined as follows:
 π1 is U → UKt
 π2 is Y → kt
 π3 is X → kt

π1

π3

π2

 ,

a

 0

u

U

 a

Here is a depiction of the states involved in lanes traced and how
they are connected to each other. (The lanes are shown in the
direction leading to the state with the conflicting actions).

The information collected is stored in a lane table as shown:

State

π1 π2 π3
Connected
to

B k a {G}
C k b {G}
D k r {G}
E k {F}
F r a {H}
G d c, w {H}
H {I}
I k {J}
J u {H}

For each of the productions involved in the conflict at a given state
(π1,π2,π3 at state I in our example), we regenerate the states
involved in lane tracing to that production, starting at the states
where lanes in Phase1 lane-tracing ended. Referring to our

π1

π2

k

 D

 B

F E

J I

 π3

example parsing machine, for π1 we regenerate B,G,H,I and
C,G,H,I and D,G,H,I and E,F,H,I and I,J,H,I. Then we will similarly
regenerate the lanes leading to π2 and π3. We employ the
criterion defined that was defined above for deciding whether copies
of the same LR(0) state can be combined or need to be constructed
as separate states (so in effect performing state-splitting). For
instance in regenerating states B,G,H,I and C,G, H,I we need to
determine whether these copies of state G, H, I can be combined,
i.e. taken to be the same state.

An example of combining regenerated states is given below. Note
that no states other than states B, C,…, J involved in lane tracing
are regenerated. For example, the X and Y successors of all the
copies of state J are the original X and Y successors of the original
state J.

Step 1. Show initially the collection of contexts associated with
each state (which at this stage is simply the collection of context
generated by the state)1, as obtained from the Lane table.

Step 2. Consider the states leading to π1 starting with B, i.e. BGHI.
The collection of contexts associated with B is simply the collection
of contexts it generates, i.e. (k, 1) (a, 3) and that associated with G
is (d, 2) (c, w, 3). Thus the set of contexts associated with the
regenerated connected set of states {B, G} is
(k, 1) (d, 2) (c, w, 3).

1 From here on, for the sake of readability, we will omit the curly parentheses, and
separating commas in specifying collections of contexts, e.g. instead of
({d},2), ({c,w},3) we will write (d, 2) (c,w,3)

(k, 1) (a, 3)

(k, 1) (b, 3)

(k, 1) (r, 3)

(k, 1)

(r, 2) (a, 3)

(d, 2) (c, w, 3)

(k, 1)

(u, 2)

Step 3. Add state H, the successor of state G to the set of
regenerated connected states. The collection of contexts
associated with {B, G, H} remains as before (k, 1) (d, 2) (c, w, 3).

Step 4. Add state I, the successor of state H.
The collection of contexts associated with {B, G, H, I} remains as
 (k, 1), (d, 2) (c, w, 3).

Step 5. Add state J, the successor of state I.
The context sets associated with {B, G, H, I, J} now becomes
 (k, 1) (d, u, 2) (a, c, w, 3).

Step 6. Add state H, the successor of state J. State H is already in
the set so the context sets associated with {B, G, H, I, J} remains
 (k, 1) (d, u, 2) (a, c, w, 3).

Step 7. We now consider the states along a lane to π1 that start
with state C, ie. C,G,H,I. The context sets associated (i.e.
generated by) C is (k, 1) (a, 3) and that associated with G is
(d, 2) (c, w, 3). So the set of contexts associated with {C, G} is
(k, 1) (d, 2) (a, c, w, 3). But state G already occurs in the set of
regenerated connected states {B, G, H, I, J} considered in Step 6
whose associated set of contexts is (k, 1) (d, u, 2) (a, c, w, 3). We
can thus without violating the disjointness between the contexts
associated with each of the productions, connect C to {B, G, H, I, J}.
In fact the set of contexts associated with {B, C, G, H, I, J} remains
as occurred before (k, 1) (d, u, 2) (a, c, w, 3).

Step 8. We now consider the states leading to π1 starting at state
D. By similar reasoning to that employed in step 7, state D can be
added to our set of regenerated connected states. The collection of
context sets associated with {B, C, D, G, H, I, J} then becomes
(k, 1) (d, u, 2) (a, b, c, r, w, 3).

Step 9: We now consider states leading to π1 starting with E, i.e.
EFHI. The set of contexts associated with E is the set it generates,
which as shown in the Lane table is (k, 1), while the set of contexts
associated with F is (r, 2) (a, 3). So the collection of contexts
associated with the connected generated states {E, F} is

 D

(k,1) (r, 2) (a, 3).

Step 10. Add state H, the successor of state F. Now state H is
already in the first set of states. So adding H to the current set of
states means we need to consider whether to combine the new set
of states with the old one. But the combined contexts would then be
(k, 1), (d, r, u, 2), (a, b, c, r, w, 3). This is not pairwise disjoint
because “r” is in sets for configurations 2 and 3. So we have to keep
the current set separate from the old one, and create a copy H’ of
state H to insert into the new set. The collection of contexts
associated with {E, F, H’} is then (k, 1), (r, 2), (a, 3).

Step 11. Add state I, the successor of state H’. Similarly, we have
to create a copy I’ of state I to to avoid merging with the old set,
which in order to maintain pairwise disjointness of the context sets.
The collection of contexts associated with {E, F, H’, I’} is then
(k, 1), (r, 2), (a, 3).

Step 12. Add state J, the successor of state I’. For the same
reason, we need to create a copy J’ of state J. The collection of
contexts associated with E, F, H’, I’, J’is then (k, 1), (r, u, 2), (a, 3)

Step 13. Add state H, the successor of state J’. Again, for the
same reason, we need to employ a copy H’ of H. But there already
exists a copy of H in the present set, so we just use that state. The
collection of contexts associated with E, F, H’, I’, J’ is then
(k, 1), (r, u, 2) (a, 3)

All the states along lanes leading to π1 and π2 have now also been
generated. The final result of combining regenerated states is
then:

The portion of the parsing machine involved in lane
tracing given previously has now been transformed into:

0

U

B

C

D

E

G

H

I

J

F H’

I’

J’

x

y

z
u

U

U

U k

k

t

t

π1 if {k}

π1 if {k}

π2 if {d, u}

π2 if {r, v}

π3 if {a, b, c, w}

π3 if {a}

k

U

U

k

(k, 1) (d, u, 2) (a, b, c, w, 3)

(k, 1) (r, v, 2) (a, 3)

REFERENCES

1. Frank L. DeRemer. Practical translators for LR(k)
languages. Ph.D. thesis, MIT, Cambridge, 1969.

2. David Pager. The lane-tracing algorithm for constructing

LR(k) parsers and ways of enhancing its efficiency.
Information Sciences, 12: 19-42, 1977.

3. David Pager. A practical general method for constructing

LR(k) parsers. Acta Informatica, 7: 249-268, 1977.

4. David Spector. Full LR(1) parser generation. ACM
SiGPLAN Notices, 58-66, 1981

5. David Spector. Efficient full LR(1) parser generation. ACM

SIGPLAN Notices, 23(12), 143-150, 1988.

6. Xin Chen. Measuring and extending LR(1) parser
generation. Ph.D thesis, University of Hawaii, 2009.
http://sourceforge.net/projects/hyacc/

7. David Pager. Resolving LR type conflicts at compiler or

translation time. Tech. Report ICS2009-06-03, ICS Dept.,
University of Hawaii, June 2009.
http://www.ics.hawaii.edu/research/tech-reports

