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Abstract 

Memory is undoubtedly one of the most important processes of human cognition. A long 

line of research suggests that recognition relies on the assessment of two explicit memory 

phenomena: familiarity and recollection. Researchers who support the Dual Process Signal 

Detection (DPSD) model of recognition memory link the FN400 component (a negative 

ERP deflection peaking around 400 ms at frontal electrodes) with familiarity; however, it 

is currently unclear whether the FN400 reflects familiarity or implicit memory. Three 

event-related potentials (ERP) studies were conducted to determine whether implicit 

memory plays a role in setting up encoding strategies, and how these encoding strategies 

influence recognition.  

Experiment 1 consisted of two phases; an encoding/study phase and recognition/test phase. 

During the encoding phase, participants viewed pictures of common objects and later 

during a recognition test phase they made remembered/not-remembered judgments about 

previously seen (old) pictures and new pictures. ERP analysis of the encoding phase 

compared subsequently-remembered and subsequently-not-remembered stimuli and 

revealed marginally significant subsequent memory effects for the FN400 and LPC 

components. Because participants first saw the pictures during the encoding phase, the 

FN400 effect during this phase suggested that it was driven by conceptual fluency. 

Additionally, the fluency ERP (a positive ERP deflection during the time window ~200 - 

400 ms) during the encoding phase significantly distinguished subsequently-remembered 

stimuli from subsequently-not-remembered stimuli, indicating that processing during 

encoding determined the stimuli to-be-remembered during the recognition test. During the 
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recognition test, the FN400 component correlated with the behavioral indicators of 

recollection and appeared to benefit from repetition. 

Experiment 2 was similar to Experiment 1 except that participants saw meaningless novel 

stimuli (fractals). ERP results from recognition indicate that the FN400 effect did not 

capture repetition-based familiarity, however, the fluency ERP appeared to gain from the 

repetition of the stimuli. These results suggest that the FN400 potentials were driven by 

conceptual implicit memory during encoding, whereas during recognition, the behavioural 

indicators of recognition linked with the perceptual implicit memory, suggesting that 

explicit memory is not the only source of familiarity and the neural correlates of perceptual 

(fluency ERP) and conceptual (the FN400 component) implicit memory can influence 

decisions made by explicit memory. 

Experiment 3 manipulated perceptual fluency, conceptual fluency, and repetition-driven 

familiarity. Participants viewed primed and unprimed, blurred and clear images of common 

objects that were presented once, twice or three times. Based on recognition performance, 

ERPs were back-sorted into their corresponding conditions. Fluency and FN400 

components correlated with the behavioral indicators of recognition. Additionally, a 

conceptual implicit priming effect was significant over anterior and right frontal electrodes 

and perceptual implicit priming was significant at the occipital electrodes.  

Conclusion: Collectively, the behavioural and ERP results add support the idea that the 

FN400 is “multiply determined” and may reflect familiarity (explicit memory driven) or 

conceptual fluency (implicit memory) depending on the task and stimulus, revealing that 

performance on recognition is not explicit memory driven. The Discrepancy Attribution 
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Hypothesis may provide a better understanding of the heuristics of familiarity, however, 

further research is needed to better examine the processes that underlie recognition.  
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1    Chapter: Introduction 

Memory performance is not a unitary ability; rather it is the product of multiple 

blends of processes that are specific to different circumstances. Encoding refers to the 

memory process that binds our everyday life experiences into memory traces, and retrieval 

is the process of retrieving this encoded information (Dudai et al., 2015). These memory 

processes, encoding and retrieval, can be explicit or implicit (Roediger & McDermott, 

1993; Roediger et al., 1990). Explicit memory typically refers to conscious voluntary 

recollection of prior experiences, whereas implicit memory involves an unconscious, 

unintentional involuntary retrieval of information, such that people may not be aware of 

using memory at all (Jacoby, 1984). Conducting a memory experiment generally involves 

an encoding phase usually denoted as ‘study’ that is followed by a recognition phase 

referred to as ‘test’. During encoding/study phase, participants study memory items 

whereas during recognition/test phase, participants are tested on their study items. One way 

to investigate these memory processes is to examine the underlying neural mechanisms by 

using a variety of noninvasive neuroimaging techniques. In particular, event-related 

potential (ERP) techniques have been very useful in revealing cognitive mechanisms and 

their neural substrates during memory tasks (Luck, 2014) The goal of this dissertation is to 

examine the neural processes engaged during memory encoding and recognition by using 

ERP techniques. 

1.1 Event-related potentials (ERP) and Electroencephalogram (EEG) 

It was reported by Hans Berger in 1929 that the electrical activity of the human 

brain could be recorded from the scalp using electrodes (Luck, 2014; Berger, 1929). 

Changes in brain activity are revealed by plotting the changes in voltage over time once 
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the signal is amplified. This electrical activity is called the electroencephalogram or EEG 

(Cohen, 2017). EEG signal contains the neural responses linked to stimuli known as task-

related-events (or simply events). These events can be extracted by means of a simple 

averaging technique that yield an ERP. With this simple averaging technique, task 

unrelated events are averaged out as they are temporally inconsistent. Whereas ERPs 

elicited by stimuli produce time-coherent data akin to time series data of voltage changes 

over time in the form of positive and negative deflections (Paller et al., 2017). The shape, 

polarity and timing of these deflections differ with the nature of the stimuli, cognitive task 

and response. In memory paradigms, EEG is usually recorded both at encoding and at test, 

while participants are busy doing a memory task. Different ERPs have been associated with 

memory processes during both stages. We discuss these ERPs in the following sections. 

1.1.1 Encoding ERPs 

In a standard ERP study of memory encoding, brain activity is recorded while 

participants process a given task. Later, at the testing phase, the participants are tested on 

the studied items randomly mixed with some new items. Based on the test, the encoding 

activity is sorted out as subsequently remembered (SR) or subsequently not remembered 

(SNR). The difference between SR and SNR ERPs is called the subsequent memory 

effect (SME) based on the assumption that SMEs are the neural substrates of successful 

memory formation (Wilding & Ranganath, 2011; Wagner & Paller, 2002). Therefore, 

these SMEs depend upon the type of stimuli (e.g. words or images) and the depth of 

processing (Wilding & Ranganath, 2011; Otten & Rugg, 2001a). Additionally, SMEs for 

recall are more pronounced than those for merely recognition processes due to the reason 

that recall refers to the retrieval of a memory item without any cue and therefore rely 
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greatly on associative information (Johnson, 1995; Paller, 1995). In contrast, recognition 

refers to our ability to recognize an event based on a cue. 

1.1.2 Recognition Memory Processing and Recognition ERPs 

Most previous studies are based on the widely accepted assumption that recognition 

performance is based only on explicit memory processing, i.e. familiarity and recollection 

(Yonelinas et al., 2007; Parks & Yonelinas, 2007; Rugg & Curran, 2007; Curran et al., 

2006). Recollection refers to a slow process of conscious awareness that involves the 

retrieval of contextual details and source information of a test item.  Familiarity, on the 

other hand is a relatively fast-acting sense of knowing a test item that does not provide 

contextual details about the test item (Wixted, 2007; Parks & Yonelinas, 2007; Tsivilis et 

al., 2001). A substantial amount of neurophysiological evidence supports the idea that 

familiarity and recollection are produced by functionally distinct neural mechanisms 

(Murray et al., 2015; Curran & Hancock, 2007; Rugg & Curran, 2007; Parks & Yonelinas., 

2007; Rugg & Yonelinas., 2003; Yonelinas, 2002; 1999).  

A large line of research supports the dual-process-signal-detection (DPSD) theory, 

which is based on the idea that recognition performance uses only explicit memory 

processing, i.e. familiarity and recollection (Yonelinas et al., 2007; Parks & Yonelinas, 

2007; Rugg & Curran, 2007; Smith & DeCoster, 2000). Based on this model, familiarity 

reflects, “shallow encoding” of the stimulus and entails only a quantitative basis for 

judgment.  Conversely, recollection provides a qualitative account of the judgment and 

reflects “deep encoding” (Wilding & Ranganath,, 2011; Rugg et al., 1998). The shallowest 

level refers to the perceptual processing such as the physical and sensory characteristics of 
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the stimulus, and the deepest level is the semantic processing such as comprehension and 

pattern recognition (Craik, 2010; Lockhart & Craik, 1972). 

1.2 Dual-Process-Signal Detection Model 

A substantial amount of neurophysiological evidence supports the DPSD model by 

distinguishing neural correlates of recollection and familiarity, suggesting that they are 

produced by functionally distinct neural mechanisms (Yonelinas ET AL., 2014; Rugg & 

Curran, 2007; Parks & Yonelinas., 2007; Curran et al., 2006; Rugg & Yonelinas., 2003; 

Yonelinas, 1999, 2002). For example, event-related potential (ERP) studies reveal 

neurophysiological indices of these two processes. There is almost a general consensus that 

the ERP component known as the late-parietal component (LPC) is linked to recollection-

based recognition memory (Addante et al., 2012; Wilding & Rugg, 1996; Wilding, 2000; 

1999; Sanquist et al., 1980). Initially, it was shown by Sanquist and colleagues (1980) and 

later replicated by Rugg (Rugg et al., 1995; 1994) that ERPs elicited by previously studied 

stimuli are more positive than ERPs elicited by new stimuli. This effect was found to be 

largest over left-parietal areas in a 500 - 800ms time window and was therefore called the 

left-parietal old-new effect (Curran & Cleary, 2003; Curran, 2000; Rugg & Allan, 2000; 

Rugg, 1994). Likewise, another ERP component, which is more negative for 

new/unfamiliar stimuli over mid-frontal regions between the 300-500 ms time window, 

and mostly referred to as FN400, has been linked to familiarity-driven recognition (Curran 

& Hancock, 2007; Rugg et al., 1998). The dual-process account assumes that there exists 

a dissociation between the mid-frontal and left-parietal effect, and that these two effects 

are temporally, spatially and functionally distinct because they are linked to different 

aspects of memory (Rugg & Curran, 2007; Curran et al., 2006; Rugg et al., 1998). For 
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instance, the mid-frontal effect is linked to the type of memory when a memory item is 

recognized as being experienced somewhere in the past without any contextual details. 

This aspect of memory just gives a sense of familiarity. Whereas the left-parietal effect is 

associated with recollection; when a memory item is recognized vividly with all its 

contextual and temporal details. These ERP findings represent pivotal support for the 

DPSD model’s assertion that the familiarity and recollection processes arise from distinct 

neural mechanisms (Sweeney-Reed et al., 2016; Frithsen & Miller, 2014; Rugg & Curran, 

2007; Eichenbaum et al., 2007; Düzel et al., 1997).  

1.3 Single-Process Model 

In contrast to the DPSD model, there is the ‘single-process’ model, which suggests 

that recognition is determined by the strength of a unitary process continuum, of which, 

familiarity and recollection lie at opposite ends of two hierarchical levels (Squire et al., 

2007; Wixted, 2007; Squire et al., 1995). This idea is based on the assumption that 

recognition memory relies on a single, continuously varying process that results from the 

strength of a neural signal in response to a stimulus, which leads to either recollection or 

familiarity (Wixted, 2007; Wilding & Ranganath, 2011; Donaldson, 1996). The classic 

version of signal-detection theory, which is known as the equal-variance model, holds that 

the decision criterion of recognition stems from two equal-variance Gaussian distributions; 

one being targets and the other lures. A test item is considered “old” if it elicits a memory 

strength that exceeds the decision criterion or else it is “new” (Wixted, 2007). However, a 

relatively new version of the equal-variance model suggests that recognition relies on 

recollection and familiarity such that recollection is a threshold-like retrieval process 

whereas familiarity is a signal-detection process that is independent of recollection. 
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Additionally, familiarity is functionally associated with conceptual implicit memory; 

however, it is distinct from perceptual implicit memory (Yonelinas, 2002). Consequently, 

the signal-detection model assumes that recognition may not necessarily rely on the explicit 

representation of memory i.e. familiarity. It is possible that implicit memory supports 

recognition based on the context (Paller et al., 2012; Nessler et al., 2006; Schott et al., 

2005; Tulving & Schacter, 1990). Relatively little is known about implicit memory’s 

contribution to recognition memory despite the fact that it plays a crucial role in human 

behavior and cognition.  

1.3.1 Implicit Memory and Recognition 

Despite growing neurophysiological and behavioural evidence suggesting that 

implicit memory influences recognition (Park & Donaldson, 2016; Keane at el., 2006), it 

is still a challenging issue to determine when and where in the brain this influence occurs. 

Multiple studies have shown that priming affects explicit memory during recognition 

(Voss et al., 2012; Paller et al., 2007; Paller et al., 2007; Gabrieli, 1998; Gabrieli et al., 

1995; Rugg et al., 1998; Rugg, 1985; Jacoby & Dallas, 1981). Priming effects are an 

exhibit of implicit memory that is driven by prior experience (Schacter & Buckner, 1998; 

(Roediger & McDermott, 1993; Roediger et al., 1990; Tulving & Schacter, 1990; 

Schacter, 1987), such that a prior experience with a certain stimulus may unconsciously 

facilitate the response to that stimulus or to a related stimulus in a certain way. In other 

words, priming enhances the “fluency” of processing, which is reflected in behavioural 

measures of memory (Voss et al., 2010; Schacter & Buckner, 1998; Rugg, 1985; 

Schacter, 1987). Priming induces fluency in multiple ways based on the stimulus type 

and the relationship between the priming stimulus and the test stimulus. Whittlesea 
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(1993) described fluency as an unconscious attribution process that that is capable of 

altering the perception about a stimulus and the time required to process (Whittlesea, 

1993; Whittlesea et al., 1990). The types of priming effects have been categorized as 

perceptual fluency and conceptual fluency (Voss et al., 2012; Paller et al., 2007). 

Perceptual fluency arises from sensory processing and does not involve meaning, 

whereas conceptual fluency is driven from the meaning of the stimulus and it goes 

beyond the physical characteristics of the stimuli (Paller et al., 2007). However, in most 

cases, a stimulus may trigger perceptual fluency based on its physical features as well as 

conceptual fluency based on its meaning (Guo et al., 2015; Voss et al., 2010). Conceptual 

fluency and the FN400 share the same neuronal mechanism and therefore FN400 may 

reflect conceptual fluency and not familiarity (Paller et al., 2007; Yonelinas, 2002; 

Rajaram & Geraci, 2000; Whittlesea et al., 1990; Jacoby & Dallas, 1981). Below we 

describe both conceptual and perceptual fluency in more detail.  

1.3.1.1 Conceptual Fluency 

Conceptual fluency is the ease of conceptually driven processing (Gabrieli, 1998; 

Whittlesea, 1993). A stimulus that involuntarily triggers or initiates a concept may 

constitute the basis for conceptual fluency. Seeing a meaningful stimulus (a picture or 

word) may facilitate fluency or ease of processing when the same stimulus or a 

semantically related one is subsequently presented (Whittlesea, 1993). This process can 

happen in several different ways; however, the repeated exposure of a meaningful stimulus 

has been shown to be particularly effective for generating conceptual fluency (Janiszewski 

& Meyvis, 2001; Dallas & Jacoby, 1981). 
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Although the dual-process model holds that recognition memory is driven by 

explicit memory processing, there exists some neurophysiological evidence that goes 

against this notion, which suggests that conceptual fluency is an expression of implicit 

memory that contributes to recognition memory (Wang et al., 2015a; Rajaram & Geraci, 

2000). For example, several studies challenged the idea that the FN400 component reflects 

familiarity as an expression of explicit memory. Instead, these studies suggested that the 

FN400 component is closely linked to the N400 component, which reflects conceptual 

implicit memory and that the observed FN400 and N400 effects reflect a shared underlying 

mechanism (Packard et al; 2017; Ortu et al., 2013; Paller et al., 2012). Specifically, these 

researchers claim that the meaningful stimuli such as namable pictures or words prompt 

the retrieval of concepts in semantic memory. Therefore, the experience of familiarity and 

conceptual implicit memory (referred to as conceptual fluency hereafter) co-varied such 

that, in many studies, the FN400 component captured conceptual fluency instead of 

familiarity (Voss et al., 2012; Paller et al., 2007).  

Conversely, when familiarity and conceptual implicit memory are distinguishable, 

the FN400 component correlates with behavioural measures of conceptual implicit 

memory rather than familiarity (Voss et al., 2012; Paller et al., 2007). In a review paper, 

Paller and colleagues argued that familiarity and conceptual priming (a form of implicit 

memory) are tightly correlated.  In addition, they argued that the FN400 effects may 

actually index conceptual priming rather than familiarity due to the reason that their 

respective neural signatures are difficult to disentangle (Paller et al., 2007; Voss et al., 

2007).  
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1.3.1.2 Perceptual Fluency  

Perceptual priming or perceptual fluency is generally considered to arise from 

sensory processing and refers to the ease of processing perceptual features of an item 

because of its prior presentation (Susser et al., 2015; Snodgrass et al., 1996). Snodgrass 

and colleagues (1996) argued that perceptual fluency uses the sensory match effect to 

influence recognition memory, which is based on the retrieval of stored information 

(Snodgrass et al., 1996; Snodgrass, 1972). In other words, perceptual fluency is a form of 

implicit memory that can influence the response to a stimulus based on its previous 

experience without the participant necessarily being aware of the previous exposure or the 

meaning of the stimulus (Voss & Paller, 2010; Paller et al., 2012). There is behavioural 

and electrophysiological evidence that suggests that perceptual fluency plays a crucial role 

in shaping recognition judgments (Bruett & Leynes, 2015; Leynes & Zish, 2012). 

However, according to the discrepancy attribution hypothesis, fluency is not inherent to 

the physical properties of a stimulus; instead, it is interpreted via top-down control 

processing (Whittlesea & Leboe, 2003; Whittlesea & Williams, 2001a, b). This notion is 

supported by other studies, which have shown that stimulus repetition becomes a source of 

perceptual fluency by affecting the semantic memory system (Nessler et al., 2006; 

Snodgrass et al., 1996; Conroy et al., 2005). In other words, Nessler and colleagues suggest 

that a part of the recognition-based familiarity of meaningful stimuli stems from the same 

neuronal circuits that also contribute to perceptual fluency. 

Interestingly, perceptual fluency has been shown to have distinct neural correlates 

from explicit memory at encoding (Schott et al., 2005; 2002; Tulving & Schacter, 1990). 

Schott and colleagues (2002) observed that processes associated with perceptual fluency 
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occurred earlier than those processes that were associated with explicit memory. Likewise, 

Nessler and colleagues (2006) conducted multiple experiments to examine the ERP indices 

of perceptual fluency and familiarity. By using a paradigm where participants recognized 

famous and non-famous faces, they found that perceptual fluency correlated with an early 

ERP effect (~200-400 ms) at centro-parietal electrodes, whereas familiarity correlated with 

the FN400 component (Nessler et al., 2006). Similar results have been observed in other 

studies (Kurilla & Gonsalves, 2012; Rugg et al., 2000; 1998). Particularly, Rugg and 

colleagues noted that an ERP component (280-400 ms) at parietal sites was distinct from 

the ERP pattern at frontal sites. Furthermore, regardless of the accuracy of the response, 

this component was more positive for the old stimuli as compared to new stimuli (Rugg et 

al., 1998). Hence, Rugg et al. (1998) suggested that this effect is the neural correlate of 

memory in the absence of conscious recognition, which is known as implicit memory. The 

evidence from Rugg et al. (1998) and other studies suggests that this early parietal fluency 

ERP effect is linked to perceptual fluency, which is a qualitatively different ERP effect 

from the FN400 effect (Leynes & Addante, 2016; Leynes & Zish, 2012; Kurilla & 

Gonsalves, 2012; Rugg et al., 1998).  

1.4 Link between Encoding and Recognition Memory Processing 

Relatively little is known about implicit memory’s contribution to recognition memory 

even though it plays a crucial role in human behavior and cognition. On the other hand, it 

is also a question of great concern whether processes at encoding are linked to FN400 at 

recognition. ERP studies of encoding have shown that subsequently-remembered (SR) 

stimuli are more positive than subsequently-not-remembered (SNR) stimuli, usually 

around 400 ms and beyond. The effect was initially called ‘difference due to subsequent 
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memory (Dm), but was later called the subsequent memory effect (SME) (Duarte et al., 

2004; Yovel & Paller, 2004; Friedman & Johnson, 2000). To our knowledge, studies of 

encoding have not attempted to examine the subsequent FN400 effect by sorting their trials 

based on recognition performance. Several studies have shown that the level of processing 

(i.e. shallow or deep) at the encoding phase can affect the retrieval outcome revealing that 

these processes are linked (Craik, 2002; Fabiani et al. 1990). Further, ERPs at the time of 

encoding/study have been found to be predictive of subsequent memory performance in 

certain cases (Paller et al., 2017; Bridge and Paller, 2012). In general, early ERP deflections 

have been associated with shallow stimulus-driven processes (Luck 2005). Moreover, the 

FN400 has been linked to shallow memory processes (Rugg et al, 1998). One could expect 

that the earlier SM ERPs and FN400 should have some common grounds (Chen et al., 

2014). Furthermore, Griffin and colleagues have shown that ERP components that are 

typically linked with recognition were observed during encoding, and were predictive of 

some of the subsequent memory performance (Griffin et al., 2013). Thus, it is a question 

of great interest whether an SM ERP at study, in a similar time interval to that of the FN400 

effect is predictive of the FN400 effect at test, with the understanding that ERPs during 

study and test reflect different processes (i.e. encoding and recognition).  

  A number of recognition studies have shown that conceptual implicit memory 

contaminates the neural measures of familiarity when familiarity and conceptual implicit 

processing co-occur (Paller et al., 2012; Voss et al., 2012; Voss & Paller, 2010a). Voss and 

Paller (2012)  suggest that implicit memory (e.g. perceptual or conceptual) contributes to 

familiarity during recognition and that processing may get reflected in the FN400 

component. If true, the FN400 may reflect multiple mechanisms involved in recognition 
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(Mecklinger et al., 2012; Zarella et al., 2005). Moreover, the FN400 may not reflect a 

process exclusive to the memory processes related to familiarity, rather this ERP 

component may also reflect conceptual fluency and/or familiarity depending upon the 

context (Bruett & Leynes, 2015; Lucas & Paller, 2013; Paller et al., 2007).  

In sum, many studies suggest that the repetition of a stimulus appears to initiate 

several cognitive processes, including perceptual fluency, conceptual fluency, and/or 

familiarity. DPSD model posits that the FN400 component reflects familiarity, whereas 

univariate signal detection (UVSD) model suggests that this component is linked to 

conceptual implicit memory (Berry et al., 2008).  Others appear to disagree by suggesting 

that the FN400 component is multiply determined and indexes an unknown combination 

of familiarity and implicit memory processes (Paller et al., 2017; Leynes & Bruett, 2017). 

The basic question that we asked in these studies is how and when familiarity or conceptual 

implicit memory influence recognition judgment and how do these processes modulate 

encoding. Three EEG experiments were conducted to test these hypotheses. All three 

experiments consisted of two phases, encoding (study) and recognition (test). In 

Experiment 1, images of common objects were used as stimuli, Experiment 2 used the 

meaningless fractals and Experiment 3 used a combination of primed and unprimed clear 

and blurred images of common objects. Participants were tested for their memory during a 

recognition test phase by making remembered and not-remembered judgments about the 

studied items. 
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2    Chapter: An ERP Study of Encoding and Recognition Memory for 

Pictures of Common Objects 

2.1 Introduction 

Encoding refers to the memory process that binds our everyday life experiences 

into memory traces, while retrieval is the process of retrieving this encoded information. 

These memory processes, encoding and retrieval, can be explicit or implicit. Explicit 

memory typically refers to conscious voluntary recollection, whereas implicit memory 

refers to unconscious, unintentional and involuntary recollection of prior experiences 

(Jacoby, 1984). It is interesting to note that most studies have tried to understand memory 

from a retrieval perspective; despite the fact that the processes that lead to encoding 

strongly influence the way information is retrieved (Craik & Lockhart, 1990; 1972).  

A large line of research supports the dual-process-signal-detection (DPSD) theory, 

which is based on the widely accepted assumption that recognition performance is based 

only on explicit memory processing, i.e. familiarity and recollection (Yonelinas et al., 

2014; Parks & Yonelinas, 2007; Rugg & Curran, 2007; Smith & DeCoster, 2000). 

Recollection is a slow deliberate process that involves the retrieval of contextual details 

and source information of the test item, whereas familiarity is a relatively fast-acting sense 

of knowing the test item that does not provide contextual details about the test item 

(Wixted, 2007; Parks & Yonelinas, 2007). Based on this theory, familiarity reflects 

“shallow encoding” of the stimulus and entails only a quantitative basis for judgment 

whereas recollection provides a qualitative account of the judgment and reflects “deep 

encoding” (Wilding & Ranganath,, 2011; Rugg et al., 1998).  
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Alternatively, in contrast to the DPSD model, there is the ‘single-process’ model, 

which suggests that recognition is determined by the strength of a unitary process 

continuum, of which, familiarity and recollection lie at the two hierarchical levels (Squire 

et al., 2007; Wixted, 2007). This idea is based on the assumption that recognition memory 

relies on a single, continuously varying process that results from the strength of a neural 

signal in response to a stimulus, which leads to either recollection or familiarity (Wixted, 

2007; Wilding & Ranganath, 2011; Donaldson, 1996). Consequently, the single-process 

model assumes that recognition may not necessarily rely on the explicit representation of 

an item i.e. familiarity and recollection. It is possible that implicit memory supports 

recognition based on the context (Paller & Voss, 2012; Nessler et al., 2006; Schott et al., 

2005; Tulving & Schacter, 1990). Relatively little is known about implicit memory’s 

contribution to recognition memory despite the fact that it plays a crucial role in human 

behavior and cognition.  

A substantial amount of neurophysiological evidence supports the DPSD model by 

distinguishing distinct neural correlates of recollection and familiarity and suggesting that 

familiarity and recollection are produced by functionally distinct neural mechanisms 

(Murray et al., 2015; Rugg & Curran, 2007; Parks & Yonelinas., 2007; Curran et al., 2006; 

Rugg & Yonelinas., 2003; Yonelinas, 2002; 1999; Hockley & Consoli, 1999). In particular, 

event related potential (ERP) studies reveal neurophysiological indices of these two 

processes. There is almost a consensus that the ERP component known as the late-parietal 

component (LPC) is linked to recollection-based recognition memory (Wilding, 2000; 

Wilding & Rugg, 1996; Sanquist et al., 1980). Initially, it was shown by Sanquist and 

colleagues (1980) and later replicated by Rugg (Rugg et al., 1995; 1994) that ERPs elicited 
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by previously studied stimuli are more positive than ERPs elicited by new stimuli. This 

effect was found to be largest over left-parietal areas in a 500 - 800 ms time window and 

was therefore called the left-parietal old-new effect (Curran, 2000; Rugg & Allan, 2000; 

Rugg, 1994). Likewise, another ERP component, which too is more positive for 

old/familiar than new/unfamiliar stimuli over mid-frontal regions between the 300-500 ms 

time window, and mostly referred to as FN400, has been linked to familiarity-driven 

recognition (Curran & Hancock, 2007; Rugg et al., 1998). Dual-process accounts assume 

that there exists a disassociation between the left-parietal and mid-frontal effects, 

indicating that these two effects are temporally, spatially and functionally distinct and 

linked to different aspects of memory (Rugg & Curran, 2007; Curran et al., 2006; Rugg et 

al., 1998). Thus, the LPC and FN400 have been used as pivotal support for the DPSD 

model and assertion that the familiarity and recollection processes arise from distinct neural 

mechanisms (Sweeney-Reed et al., 2016; Rugg & Curran, 2007; Düzel et al., 1997).  

Despite much neurophysiological and behavioural support for the DPSD model, 

according to which the FN400 potentials reflect familiarity (Rugg & Hancock, 2007), it is 

still a challenging issue to validate the neural signature of familiarity, mostly because the 

nature of familiarity is disputed (Voss & Paller, 2012; Rugg & Curran, 2007; Whittlesea et 

al., 2001). Paller and colleagues (Paller et al., 2007; Voss & Paller, 2012) challenged the 

claim that the FN400 component reflects familiarity; instead, they suggested that the 

FN400 component is closely linked to the N400 component, which reflects implicit 

memory (Cheyette & Plaut, 2017). They showed that in circumstances when familiarity 

and implicit memory are distinguishable, the FN400 component correlates with a 
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behavioural measure of implicit memory rather than familiarity (Paller et al., 2007; Voss 

& Paller, 2012).  

In a review paper, Paller and colleagues (2007) argued that familiarity and implicit 

memory are tightly correlated, and the FN400 may index implicit memory rather than 

familiarity due to the reason that their respective neural signatures are difficult to 

disentangle (Paller et al., 2007; see also Voss et al., 2007). Implicit memory stems from 

different forms of fluency, such as perceptual fluency and conceptual fluency, based on 

stimulus properties (Voss et al., 2012; Paller et al., 2007). Therefore, it is important to 

explore the exact form of implicit memory that may contribute to the FN400 amplitudes 

(Voss et al., 2012). 

Conceptual fluency stems from the meaning of an item and goes beyond the 

physical characteristics of the stimulus whereas perceptual fluency appears as the ease of 

sensory processing of a stimulus, driven by prior experience without having awareness of 

having experienced it before (Voss et al., 2012; Paller et al., 2007). Hence, it is plausible 

to assume that distinct neural measures are associated with these two forms of implicit 

memory (Paller et al., 2012). A number of recognition studies have shown that conceptual 

implicit memory contaminates the neural measures of familiarity when familiarity and 

conceptual implicit processing co-occur (Paller et al., 2012; Voss et al., 2012; Voss & 

Paller, 2010a). For instance, Voss and Paller (2012) conducted a series of experiments to 

identify the neural correlates of conceptual implicit memory and familiarity using semantic 

and non-semantic stimuli (Voss et al., 2011; 2010; Voss & Paller, 2007). The FN400 

component was found to correlate with familiarity when familiarity co-varied with 

conceptual implicit memory. No FN400 was observed when conceptual fluency was 
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disassociated from stimuli (Voss & Paller, 2007). Therefore it can be speculated that 

FN400 does not reflect a process exclusive to the memory process related to familiarity, 

rather this effect may also reflect conceptual fluency and/or familiarity depending upon the 

context (Bruett & Leynes, 2015; Lucas & Paller, 2013; Paller et al., 2007). 

Although numerous studies have shown that the mid-frontal effect (FN400) reflects 

conceptual implicit memory, it remains to be seen whether and how perceptual fluency is 

linked to the FN400 effect (Paller et al., 2012; Voss et al., 2012). As mentioned earlier, 

implicit memory stems both from perceptual as well as conceptual fluency; therefore, the 

ERP correlates of these two forms of fluency should be examined separately. Perceptual 

fluency emerges from the sensory processing of the physical attributes of a stimulus mostly 

because of repetition (Schacter, 2008; Snodgrass et al., 1996). It has been widely 

documented now that perceptual implicit memory, or simply perceptual fluency, is linked 

with the early positive ERP peaking around ~300 ms at parietal sites (Bruett & Leynes, 

2015; Leynes & Zish, 2012; Nessler, et al., 2005). This component is more positive for the 

new stimuli as compared to old stimuli and it a temporally and spatially dissociated from 

the FN400 effect (Leynes & Addante, 2016; Leynes & Zish, 2012; Kurilla & Gonsalves, 

2012; Woolman et al., 2008). Depending upon different testing scenarios, implicit memory 

through perceptual or conceptual fluency, can contribute to familiarity (Lucas et al., 2012; 

Voss & Paller, 2012). Studies have shown that the perceptual features of a stimulus can 

affect the neural correlates of familiarity (Wang et al., 2015; Lucas & Paller, 2013). For 

example, the FN400 varied when perceptual features were manipulated while conceptual 

information was kept constant (Mecklinger et al., 2012). Additionally, repetition of a 

stimulus (i.e. oldness) may also increase the perceptual fluency of a stimulus, as well as 
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increase responses due to familiarity and elicit the FN400 effect (Bruett & Leynes, 2015; 

Schacter et al., 2007). Therefore, it is necessary to examine the fluency ERP effect in 

conjunction with the FN400 ERP and its association with perceptual implicit memory. 

Collectively, these studies suggest that implicit memory (e.g. perceptual or 

conceptual fluency) contributes to familiarity during recognition and that implicit memory 

/ fluency may be reflected by the FN400 component (Mecklinger et al., 2014).  A separate 

but related question of great concern is whether the processes at encoding are linked to the 

FN400 at recognition. Based on the performance from recognition test, subsequent memory 

encoding studies have shown that subsequently remembered (SR) ERPs are more positive 

than subsequently not remembered (SNR), usually around 500 ms and beyond, initially 

called ‘difference due to subsequent memory (Dm) and later became subsequent memory 

effect (SME) (Duarte et al., 2004; Yovel and Paller, 2004; Friedman and Johnson, 2000).  

A very few recognition studies have attempted to examine the FN400 effect by 

back-sorting their trials based on recognition performance. ERPs at the time of 

encoding/study have been found to be predictive of the retrieval outcome revealing that 

these processes are linked (Craik & Lockhart, 2002; Fabiani et al. 1990). Furthermore, 

Griffin and colleagues have shown that the FN400 and old/new parietal components that 

are typically linked with recognition were also observed during encoding in a task that did 

not require explicit memory judgment (Griffin et al., 2013). In a simple encoding task, 

images of common objects were presented in random order and subjects were instructed to 

classify them as natural or man-made. Their task did not involve an explicit memory 

judgment during encoding. Some stimuli were presented twice and for other stimuli their 

exemplars were presented. This task was then followed by a surprise recognition task. 
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One could expect that the earlier SM ERPs and the FN400 ERP should be operating 

under common grounds (Chen et al., 2014). Thus, it is a question of great interest whether 

an SM ERP at study, similar time interval to that of the FN400 effect is predictive of the 

FN400 effect at test knowing that ERPs during study and test reflect different processes 

(i.e. encoding and recognition). 

In order to investigate the hypothesis that the FN400 ERP reflects conceptual 

implicit memory whereas the fluency ERP reflects perceptual fluency, we used a paradigm 

that only allowed a shallow level of encoding (Fukuda et al., 2015). Given that the time 

and the attention that is taken to process a stimulus determines the depth of the processing, 

a shallow encoding task was used to decrease the likelihood of recollection during 

recognition (Craik & Rose, 2012; Craik, 2002; Rugg et al., 1998). Recognition 

performance relies on the depth of processing (Craik & Lockhart, 1990; 1972; Craik, 

2002). Processing of a stimulus involves a hierarchy of analyses running from early sensory 

processing to later in-depth analysis of conceptual features. The time and the attention that 

is taken to process a stimulus determines the depth of the processing, where “depth” is the 

qualitative nature of the processing performed on the stimulus (Craik & Rose, 2012; Craik, 

2002). The recruitment of different levels of memory-related tasks (shallow or deep / easy 

or hard) by different mechanisms is based on the idea that these levels of processing are 

part of a continuum (Anderson & Hanslmayr, 2014; Craik, 2002; Friedman & Johnson, 

2000). Lockhart and colleagues used the term “domain of processing” to imply that 

processing proceeds through multiple stages in a hierarchical manner. Thus, the process 

when encountering a word is such that the phonology of the word would recruit the 

shallowest level of encoding whereas articulation, lexicon and conception to apprehend the 
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word would employ higher/deeper levels respectively (Craik, 2010; Lockhart & Craik, 

1990; 1972). Thus, the order of processing is somewhat hierarchical and strictly depends 

upon the task. Familiarity corresponds to a shallow level of processing whereas recollection 

captures higher/deeper levels of processing (Marzi, et al., 2010; Rugg et al., 1998).  

The stimuli we used in this paradigm were pictures that possessed similar 

perceptual fluency and conceptual fluency (Brady et al., 2008). Pictures are better 

remembered than words (Grady et al., 1998). Therefore, given that there were a large 

number of trials for our participants to remember, we chose pictures of common objects as 

our stimuli.  There were two phases in the study: the encoding phase and the recognition 

testing stage.  In the first phase, participants passively viewed pictures and in the second 

phase, participants provided a recognition judgment indicating whether they remembered 

seeing the stimuli previously. As mentioned, shallow level of processing leads to implicit 

memory encoding (Craik, 2002) so we predicted that implicit memory would guide the 

behavior of participants when they were asked to remember the pictures. An FN400 might 

act as an index of conceptual memory if it were to be observed during the encoding phase 

since this would be the first time the participants would be encountering the images in the 

experiment (Leynes et al., 2017; Griffin et al., 2012).  

During recognition, participants viewed pictures a second time along with some 

new pictures and it is assumed that the repetition of some of the pictures during the 

recognition test should distinguish old (old/new familiarity ERP effect) against new stimuli 

(DPSD model: Rugg & Curran, 2007; Yonlinas, 2000). Thus, if repetition-based familiarity 

is reflected by the FN400 component (DPSD model: Rugg & Curran, 2007; Yonlinas, 

2000), then we expected more positive amplitudes for the FN400 components for 
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remembered stimuli (Hit) during the recognition testing compared to the FN400 ERPs 

elicited by the new pictures. During encoding, however, if the FN400 component does 

reflect conceptual fluency, more conceptually fluent stimuli should be recognized more 

easily and therefore the FN400 amplitudes for SR stimuli should be more positive than 

SNR.  

2.2 Methods 

2.2.1 Participants 

After consenting to procedures approved by Wilfrid Laurier University Research 

Ethics Board, 27 healthy participants (12 F, 14M, 1 other) participated voluntarily in the 

study. All participants were right-handed and had normal or corrected to normal vision. No 

participant reported having any psychiatric illnesses or brain trauma. None of the 

participants were on psychotropic medications. Analyses were conducted on all 27 

participants who were between 19 to 31 years of age (mean age = 21 years). Participants 

signed informed consent forms prior to taking part in the study. They were granted course 

credits for their participation. 

2.2.2 Stimuli and procedures 

Stimuli were adapted from a published set of photographs (Brady et al., 2008). A 

MATLAB script was used to randomize the process of selection of these stimuli and stimuli 

were included from all categories. There were two phases in the experiment; the encoding 

task and the recollection or recognition task. During the encoding task, participants were 

sequentially presented with 800 pictures from a published set of photographs (Brady et al., 

2008). There were short breaks every 8-minutes (every 100 pictures), which divided the 

encoding session into 8 blocks of 100 pictures each. Participants initiated each block by 
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pressing a button on a response pad. However, for the rest of the trials within the block, 

participants were not in control. Each trial started with a 1 s pre-encoding period, where 

participants focused on a blank screen with a central fixation dot. Each picture was 

presented for 250 ms, followed by a 1s-encoding period, during which the computer screen 

remained blank (see Figure 2.1). Participants were told in advance that they would be tested 

for their memory of the photographs and to watch each item carefully in order to perform 

the recognition memory test. 

After a short break, participants performed the recognition test during which 500 

pictures (300 old, 200 new taken from the same database) were randomly presented. The 

ratio of old to new stimuli was a bit higher for two reasons: first, the performance on 

recognition test was retrospectively used to categorize the encoding trials and more old 

trials gave us more SR and SNR trials. Second, the number of CR trials is always higher 

than FA and a smaller number of new trials gave us almost an equal number of trials for  

Hits and Misses. During the recognition test, pictures were presented on the screen until a 

response was recorded. Participants were instructed to press ‘1’ on the response pad if they 

remembered seeing the picture or press ‘2’ if they didn’t remember seeing the picture.  

Figure 2.1.  Schematic diagram of the timeline of a trial in the encoding and recognition test 

phases. 
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2.2.3 EEG data and Acquisition 

EEG data were recorded from a 32-channel NeuroScan Quik-Cap (Compumedics, 

Charlotte, SC, USA) in a sound-attenuated, electrically shielded booth (Raymond EMC, 

Ottawa, ON, Canada) while participants performed the encoding and recognition tasks. 

Impedances were kept below 5kΩ. 

An EEG cap was placed onto the participant’s head such that electrodes fixed over 

the frontal lobes (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, FCz, FC4), temporal lobes (FT7, FT8, 

T7, T8, TP7, TP8), parietal lobes (CP3, CPz, CP4, P7, Pz, P4, P8), occipital lobes (O1, 

O2), and at the central position of the scalp (C3, Cz, C4). Electrode Cz was visually 

centered above the central vertex found halfway between the glabella and the external 

occipital protuberance medially and the preauricular points laterally. Electro-gel was used 

to improve conduction between the skin and the electrode surface. Surface 

electromyographic electrodes were positioned at the outer canthii of both eyes and above 

and below the left eye. EEG signals were initially referenced to mastoid electrodes (M1, 

M2), which were placed on the mastoid process behind each ear. 

 

2.2.4 Behavioural Analyses  

Performance in the recognition task was analyzed. Specifically, we investigated 

participants’ task accuracy and response time. Each participant’s hit, miss, correct-rejection 

and false alarm rates were calculated.  

ERPs based on subsequently-remembered (SR) trials during the encoding task were 

compared to subsequently-not-remembered (SNR) trials based on the performance in the 

recognition test for each participant. Reaction times during the recognition task were 
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analyzed using a one-way ANOVA with the within-subject factor as the subsequent 

memory effect (subsequently remembered/SR, not-remembered/SNR). 

The perceptual sensitivity of the recognition task based on signal detection theory 

(SDT) was calculated by computing A′ for each participant. We used A′ as our main index 

of performance (Stanislaw & Todorov, 1999) because A′ is capable of distinguishing 

response bias from sensitivity. Usually in memory studies, where responses are mainly 

based on a yes/no paradigm, participants are highly responsive to suggestion or direction. 

In that case, recall or recognition is improved but the false alarm rate also increases. 

Therefore, it is important to measure response bias and sensitivity separately. A′ was 

computed in the following manner: 

A′ =

{
 
 

 
 0.5 +

(𝐻 − 𝐹)(1 + 𝐻 − 𝐹)

4𝐻(1 − 𝐹)
 𝑤ℎ𝑒𝑛 𝐻 ≥ 𝐹

0.5 −
(𝐹 − 𝐻)(1 + 𝐹 −𝐻)

4𝐹(1 − 𝐻)
 𝑤ℎ𝑒𝑛 𝐻 < 𝐹

  

 

𝐻 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
     

 

𝐹 =
𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠

(𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠 +  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
 

 

A′ can take any values between 0.5 and 1, with 1 being perfect performance, while 0.5 

occurs when a participant completely failed to distinguish old from new stimuli. 
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2.2.5 Controlling for Fatigue 

Our experiment was almost two hours long and could cause fatigue. We ran an 

analysis to establish that the spectral measures from our data came from brain activity that 

resulted from memory processes rather than fatigue. Most importantly, studies report that 

alpha oscillations (9-12 Hz) increase with fatigue and drowsiness (Tanaka et al., 2012; 

1999). Therefore, it was important to ensure that the alpha we observed in our results was 

not a spurious effect stemming from fatigue. To explore that, we divided our data from the 

encoding task into 8 blocks and extracted and averaged the oscillatory measures for each 

block for all participants. Our results revealed that there was no significant difference in 

the oscillatory activity across time (Hits across time: F (7, 192) = 1.8, p = n.s; Oscillatory 

activity: F (7, 192) = .52, p = n.s). 

Figure 2.2.  A schematic diagram of the encoding and recognition phases of the experiment. Based 

on the recognition performance, ERPs of subsequently remembered and subsequently not 

remembered stimuli were chosen for the encoding analysis. 
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2.3 ERP Preprocessing and Analyses  

  The EEG data preprocessing and analysis were performed using custom 

MATLAB (The Mathworks, Inc.) scripts operating in conjunction with the open-source 

EEGLAB toolbox (Delorme and Makeig 2004, http://sccn.ucsd.edu/eeglab). A four-step 

analysis approach was used to analyze our data, which is given as follows. 

Step 1- Preprocessing: Continuous EEG signals were down-sampled to 250 Hz. 

Continuous data were filtered using a high-pass finite impulse response (FIR) at 1 Hz and 

then re-referenced to average reference (Winkler et al., 2015). The continuous data signals 

were then inspected and corrected for outliers, body movements and muscle and cardiac 

artifacts by using Artifact Subspace Reconstruction (ASR) (Bigdely-Shamlo et al., 2015).  

Step 2- ICA: Next, an Adaptive Mixture ICA (AMICA) was applied separately to single 

subject datasets (Palmer et al., 2008). An ICA decomposition method has the ability to 

linearly un-mix EEG channel data into temporally independent component activities with 

a fixed spatial projection pattern (Onton & Makeig, 2011; Onton et al., 2006; Makeig et 

al., 2004a). The ICA decomposition method assumes EEG channel signal a linear mixture 

of the activities of brain and non-brain sources with almost independent time courses 

(Onton & Makeig, 2011). Therefore, ICA un-mixes the traditional channel data into a 

channel-weighted sum of temporally near-independent component activity with a fixed 

spatial projection pattern. Thus, ICA decomposition offers temporal and spatial resolution 

of separable and near-independent EEG source-level activities or more precisely 

independent components (IC). In short, an IC can be regarded as spatially coherent local 

field activity of a near-single cortical source of temporally near-independent time course 

and near-dipolar scalp projection (Delorme et al., 2012; Onton et al., 2006; Makeig et al., 
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2004; 1996) as opposed to the traditional scalp channel signal analysis where several 

cortical sources contribute to the same channel. ICA decomposes channel data into as many 

as the number of channels. For instance, we used a 32-channel cap; therefore ICA 

decomposition of our channel data yielded 32 independent components for each subject. 

This way, with the ICA decomposition method, it is easier to un-mix brain cortical signals 

from the noisy non-brain source activities. Thus, all 64 ICs were inspected for their 

spectral, temporal and spatial properties to identify brain activity components from non-

brain activities such as eye-blinks, cardiac and muscle artifacts, lateral eye movements and 

line noises etc. ICs associated to non-brain activities were excluded from further analyses. 

Step 3 – Epoching and IC processing: Next, we calculated a single equivalent dipole 

model for the scalp topography of each IC, to further exclude ICs that could not be 

attributed to any cortical sources. For this purpose, we used DIPFIT toolbox of EEGLAB 

(Oostenveld, Delrome, & Makeig., 2003). For the source modeling, each participant’s 

electrode locations were registered to an MNI (Montreal Neurological Institute) template 

head model, which uses a Boundary Element Method (BEM) to calculate an electrical 

forward solution. This way, the equivalent dipole for the scalp projection pattern of each 

remaining IC was estimated and was fit to its scalp map. The data were then sliced into 

segments of three seconds (from 1 s before to 2 s after task stimulus onsets) (Makeig, 

1993).  

Step 4 – ERP Analysis: For ERP analysis, the epoched signals were then low-pass filtered 

at 30 Hz. All trials above 5 μV voltage potential from baseline were rejected. On average, 

11% of the trials per participant were rejected. Trials were referenced to a 200 ms pre-

stimulus baseline. For encoding ERPs, epochs were grouped into subsequently 
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remembered items (SR) and subsequently not remembered items (SNR), based on the 

participants’ performance during the recognition task (see Figure 2.2; Encoding).  

After a short delay, participants were tested with these “old” pictures randomly 

intermixed with “new” pictures during the recognition test. participants had to discriminate 

whether each picture presented was old or new. Based on the performance of each 

participant during the recognition test, the studied pictures in the encoding task were 

categorized as remembered and not-remembered items for analysis and the difference 

between the neural activities for the remembered and not-remembered stimuli was called 

a subsequent memory effect (SME) (Paller et al., 2002; 2001; Rugg & Allan, 2000). ERPs 

at the recognition test were averaged separately for the recognized/remembered (Hit) items 

correctly identified as new (correct rejection, CR) responses, and items that were 

incorrectly identified as new (miss) (see Figure 2.2; Session 2). 

In general, we focused on three effects; the fluency ERP, which is an early parietal 

effect (200-400 ms) that has been associated with perceptual fluency of stimuli (Paller et 

al., 2007; Rugg & Curran, 2007); the FN400 effect, an ERP component during the 300–

500 ms time interval at some of the mid-frontal electrode sites such as F3, Fz, and F4 (Voss 

et al., 2012); and the LPC-effect, a late parietal component ERP elicited during the 500–

800 ms time interval at left-parietal electrodes (Leynes & Zish, 2012; Paller et al., 2007; 

Rugg & Curran, 2007; Curran & Hancock, 2007; Curran, 2000;).  

For our statistical analysis, we ran several levels of analyses to identify whether 

fluency, the FN400, and the LPC ERPs contributed to recollection based on recognition 

judgments. In our first analysis, we ran a global analysis for all three effects by computing 

averages at frontal (F3, Fz, F4), frontal-central (FC3, FCz, FC4), central (C3, Cz, C4) 
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central-parietal (CP3, CPz, CP4), and parietal electrodes (P3, Pz, P4) (Leynes et al, 2017; 

Bruett & Leynes 2015; Leynes & Zish, 2012). Next, we focused more on a local analysis 

specific to the above stated three effects, i.e a fluency ERP effect at central-parietal (CP3, 

CPz, CP4) and parietal electrodes (P7, P3, Pz, P4, P8), the FN400 effect at mid-frontal 

electrodes and fronto-central electrodes (F3, Fz, F4; and FC3, FCz, FC4) and the LPC 

effect at left-parietal electrodes (P7, P3, Pz).  

For the encoding phase, an ANOVA with within-subjects factors of condition 

(Subsequently-Remembered/SR, Subsequently-not-remembered/ SNR), electrode location 

as anterior to posterior (AP; with 5 levels - frontal, fronto-central, central, centro-parietal, 

and parietal), and laterality (LCR; 3 levels - left/center/right) was conducted (Leynes et al., 

2017). Likewise, another ANOVA with the factors of response types (Hit, Miss, CR), 

electrode location and laterality (LCR) was used to analyze the recognition data.  

Prior studies have shown that the FN400 and parietal components are distinct, with 

the FN400 maximal over anterior sites, and the fluency and LPC ERPs maximal over 

posterior locations. Topographic visualizations were prepared with the EEGLAB Matlab 

toolbox (Delorme & Makeig, 2004). All significant effects were corrected for non-

sphericity by using Greenhouse–Geisser corrections and corrected degrees of freedom are 

reported wherever appropriate. 

2.4 Results 

2.4.1 Behavioural Results 

Our results showed that participants, in general, were capable of discriminating old from 

new pictures, as indicated by an average A′ of 0.74 (SD: +/− .09; range 0.56 to 0.88). The 

average response time (RT) for all types differed, F(3,14075)=46.50, p<0.001. Pairwise 
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comparisons indicated that participants recognized hit items faster than all other responses. 

However, none of the other responses were different among themselves ( p> 0.05).  

On average, participants performed the recognition task accurately. They 

successfully rejected 78.65% of the new photographs but failed to reject 21.3% of the new 

items. For the old items, participants recognized 50.22% of the old stimuli objects and 

failed to recognize the remaining 49.78% of the stimuli. It is clear from Table 2.1 that we 

had large standard deviations for both the accuracies and RTs. Two participants were 

excluded from the analysis due to excessive amount of ocular artifacts and muscular 

artifacts as well as their performance were below chance. 

Table 2.1 

Accuracy (percentage) and response time (ms) values, reported along with their standard 

errors across participants in parentheses. 

 

2.4.2 ERP Results 

2.4.2.1 Encoding Task 

SME analysis: A visual inspection of the ERPs indicated the presence of an overall 

subsequent memory effect for SR when compared to SNR stimuli. In accordance with 

previous studies (Fellner et al., 2013; Schnieder et al., 2016), our results revealed 
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significant subsequent memory effects (SME) for early latencies. Significant effects from 

the analysis of the ERP amplitudes from the encoding and recognition phases are presented 

in Table 2.2. Figure. 2.3 and 2.4 display the grand-averaged ERPs with topographic maps 

for SNR vs SR and Hit, Miss, and CR stimuli, respectively. The detailed results that follow 

present the focused ERP analyses. 

Fluency ERP (200 – 400 ms): Our three-way repeated-measures ANOVA (condition x 

anteriority/ posteriority x laterality) did not reveal a significant main effect of condition 

although significant interactions of condition X anterior/posterior (AP) location and 

condition X laterality (left/center/right (LCR)) location were observed (Table 2.2). These 

AP and LCR interactions were explored with post hoc analyses that examined effects at 

parietal electrodes (P7, P3, Pz, P4, P8). ERPs elicited by SNR were more positive than SR 

during the encoding phase, revealing a fluency ERP effect. The analysis of right-parietal 

electrode effects did not reveal any significant old/new differences, whereas the analysis 

of left parietal and occipital ERPs revealed significant SR/SNR differences (Fluency ERP 

at P3: t(24) = 2.98, p = 0.007; O2: t(24) = 2.89, p = 0.008), indicating that SR stimuli 

elicited less positive ERPs than the SNR stimuli. 

FN400 (300 – 500 MS): Our 3-way repeated-measures ANOVA revealed only a 

significant main effect of condition at the encoding stage, limited to the mid-frontal 

electrodes. Additionally, a two-way repeated-measures ANOVA with the factors 

SME and electrode sites (fronto-polar/mid-frontal electrodes , FP1, FP2, F3, Fz, F4) 

conducted for the FN400 time interval revealed a significant main effect of SME 

[F(1,24) = 4.79, p = 0.04, η2= 0.17], reflecting less positive amplitudes for SR stimuli 

than SNR. This effect was confirmed by separate t-tests for SR and SNR ERPs, 
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which revealed that the FN400 amplitudes were more positive for the subsequent hits when 

compared to subsequent misses [Fz: t(24) = 3.05, p = 0.006; FCz: t(24) = 3.07, p < 0.005]. 

The topographic map for the FN400 effect appeared to be bilaterally distributed over mid-

frontal locations and appears to be less negative for the SR stimuli, contributing to the 

marginal significance of this interaction (see Table 2.2). 

 

Figure 2.3.  Grand-average ERPs at the left-parietal, mid-frontal electrodes (top panel) 

elicited by SR and SNR pictures averaged across all participants. Topographic maps 

depict the time course of fluency (200-400 ms), FN400 (300-500 ms), and LPC effects 

during the encoding phase. Small circles represent electrode locations as viewed from 

above. 



 

 

48 

48 

Table 2.2 

Significant effects from the analysis of ERP amplitudes for encoding phase and recognition 

test. 

 

Late positive component (500 – 800 ms):  The three-way ANOVA did not reveal a 

significant LPC main effect of condition, although a significant two-way interaction was 

observed between SME and laterality (left/center/right), revealing that SNR stimuli elicited 

more positive amplitudes only at the left-frontopolar electrode (FP1). This effect was 

confirmed by a paired sample t-test (t(24) = 2.08, p = 0.05). 

2.4.2.2     Recognition Task 

Fluency ERP Effect (200–400 ms): Our three-way repeated-measures ANOVA did not 

reveal any significant differences in the amplitudes for the fluency ERP, however, an 

interaction between the fluency SME and Anterior/Posterior location was observed. The 

topographic map of the fluency ERP was very similar to the pattern observed in the 

encoding phase as can be seen from Figure 2.4b and 2.5, bottom panels. Paired samples t-

tests revealed that correctly identifying new ‘CR’ stimuli and ‘Miss’ ERPs were more 
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positive than ‘Hit’ ERPs and that the effect was maximal at right parietal electrodes [P8: 

t(24) = 2.99, p = 0.008; P4: t(24) = 2.57, p = 0.02] (see Table 2.2).  

FN400 (300–500 ms): In our 3-way repeated-measures ANOVA we did not observe a 

significant main effect for the FN400 that could discriminate correctly identified items 

(old/hit) from correctly identified new (CR) stimuli. However, an omnibus two-way 

analysis of response-type and fronto-polar/mid-frontal electrodes (FP1, FP2, F3, Fz, F4) 

sites for the FN400 time interval yielded a significant main effect of response type [F(2.21, 

52.95) = 4.1, p = 0.02, η2= 0.15], reflecting that more positive ERPs were elicited by Hit 

than Miss and CR stimuli. This effect was confirmed by separate t-tests, which revealed 

that FN400 amplitudes were more positive for Hits such that Hit >  CR > Miss [Fz: t(24) 

= 2.63, p = 0.006; F3: t(24) = 2.43, p = 0.03; FP2: t(24) = 2.73, p = 01; FP1: t(24) = 2.43, 

p = 0. 02] consistent with prior findings (Rugg & Curran., 2007) (see Figure 2.4d). 

Moreover, the topography of the FN400 effect was very similar to the pattern observed in 

the encoding phase as can be seen from Figure 2.5, bottom panels. 

Late positive component (500–800 ms): Our three-way repeated-measures ANOVA 

revealed a marginally significant main effect for the three response types during the late 

positive component interval [F(1.89, 45.39) = 3.03, p = 0.06, η2 = 0.11]. Significant 

interactions between amplitude differences for LPC amplitudes - laterality and 

anterior/posterior sites were also observed (See Table 2.2; also Figure 2.5c). A paired t-test 

comparison between old (Hit) and new (CR) stimuli revealed a significant difference 

between the amplitudes at left-parietal sites and central sites where Old ERPs elicited more 

positive amplitudes than new stimuli [P3: t(24) = 3.46, p = 0.002; Pz: t(24) = 3.02, p = 

0.006; CPz: t(24) = 3.90, p = 0.001; CP3: t(24) = 6.64, p < 0.001; Cz: t(24) = 4.14, p < 
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0.001] consistent with prior findings (Paller et al., 2007; Rugg & Curran, 2007). There was 

also a significant decrease at P8 and T8 in the voltage potentials for the old (hit) ERP 

amplitudes when compared to new (CR) ERPs  [P8: t(24) = -2.63, p = 0.02; T8: t(24) = -

4.86, p < 0.001]. It is important to note that the topographic map of the LPC effect was 

very different from the pattern observed in the encoding phase (see Figure. 2.3 and 2.5, 

bottom panels). The LPC topography pattern for SR stimuli observed during the encoding 

phase was more central and towards right-frontal sites, whereas the same topographic map 

observed during the recognition phase was mostly centered at the central-parietal and 

parietal electrodes. 
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Figure 2.4. Mean ERP amplitudes for subsequent- fluency ERP, FN400, and LPC effects elicited by SNR 

and SR stimuli (a), (c), and (e) respectively during the encoding study phase. Panels (Nee) (d) and (e) depict 

the mean ERP amplitudes for fluency ERP, FN400, and LPC effects elicited by Hit, Miss, and CR stimuli 

during the recognition phase. 

 

 

 

 

Figure 2.5. Grand-average ERPs at the left-parietal, mid-frontal electrodes (top panel) elicited by 

Hit, Miss, and CR stimuli, averaged across all participants. Topographic maps (bottom panel) 
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depict the time course of fluency ERP (200-400 ms), FN400 (300-500 ms), and LPC effects during 

the recognition test. Small circles represent electrode locations as viewed from above. 
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2.5    Discussion 

The present study investigated the disputed nature of the FN400 component in 

regards to familiarity (an exhibit of explicit memory) and conceptual fluency (implicit 

memory). Additionally, we examined the claim of Griffin et al (2013) that FN400 and 

old/new parietal effects (which are linked to recognition at test) could also be observed 

during encoding (Griffin et al., 2013). Our results showed that the FN400 component was 

observed during recognition revealing that Hit items were more positive than Miss and CR 

(see Table 2.2) and that relative to the FN400 effect observed during encoding, the FN400 

during the recognition phase was more positive. Additionally, SR items were more positive 

than SNR items during encoding. 

As mentioned earlier, advocates of the DPSD model assume that familiarity occurs 

when a prior exposure to a stimulus creates a sense of feeling-familiar during the second 

exposure and that the participant is aware of the repetition (Rugg & Curran, 2007; Nessler 

et al., 2005). Our FN400 results from the recognition test indicate that, relative to the 

FN400 observed during the encoding phase, the FN400 became more positive  due to 

repetition (the second presentation); not only were Hit (old items) more positive than CR 

(new items) but the difference between Hits and Miss was larger for the second 

presentation during the recognition phase. We hypothesized that during encoding, since 

this was the first time participants would see the pictures, the presence of an FN400-like 

ERP (similar to the one observed during recognition) would suggest that this ERP 

component is at least in part driven by conceptual fluency. The fact that the FN400 during 

recognition was more positive than during the encoding phase suggests that the FN400 
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component reflects both repetition-based familiarity during recognition, as well as 

conceptual fluency.  

As can be seen in Figure 2.5, the FN400 potentials gained from repetition (see 

Figure 2.5, Table 2.2; Recognition (Hit/Miss)). That is, the FN400 amplitudes in the 

recognition phase were significantly more positive than the amplitudes in the encoding 

phase. However, the finding that Hit > CR > Miss is difficult to explain. The FN400 effect 

at fronto-polar electrodes showed a Hit > CR > Miss pattern, whereas at the mid-frontal 

electrode (FZ), the effect discriminated old from new stimuli such that Hit > CR, Miss (see 

Table 2.2, Figure 2.5). If the FN400 component reflected familiarity driven by repetition, 

then one would expect that Miss (old) items would be more positive than CR (new) items 

(Rugg et al, 1998), but this was not the case. Also, the FN400 effect produced during 

recognition was very similar, in terms of ERP latency, time window and scalp location, to 

the one we observed during the encoding phase. Based on these results, it is plausible that 

the FN400 component reflected two neural processes. During encoding, the FN400 effect 

reflected conceptual implicit memory, whereas during the recognition phase it reflected a 

conceptual fluency effect as well as a repetition effect.  

Additionally, a fluency ERP difference was observed both during encoding and 

recognition, During encoding, SR were less positive than SNR whereas during recognition 

Hits were the less positive than all the other responses. Fluency, in general, refers to the 

ease of processing (Jacoby & Dallas, 1989). Those stimuli which are fluently processed 

use less neuronal sources and therefore elicit less positive ERPs (Whittlesea & Williams, 

2001a; Jacoby & Dallas, 1981). Thus, it is plausible to assume that during recognition those 
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stimuli which were conceptually more-fluent + old were less negative than both stimuli 

that were fluent + new (CR) and less-fluent + old (Miss).   

Collectively, in line with UVSD studies, our ERP results suggest that the 

mechanisms that underlie the FN400 were “multiply determined” during recognition 

whereas during encoding the FN400 potentials were primarily reflective of conceptual 

fluency (Paller et al, 2012; Voss et al., 2010a; Voss & Paller, 2007).  

Furthermore, findings from other recognition studies have shown that conceptual 

implicit memory contaminates the neural measures of familiarity when familiarity and 

conceptual implicit processing co-occur (Voss & Paller, 2017; Voss et al., 2012; Voss & 

Paller, 2010).  

Advocates of the UVSD model have shown evidence that recognition judgments 

are influenced by perceptual and/or conceptual implicit memory (Bruett & Leynes, 2015; 

Lucas and Paller, 2013; Oppenheimer, 2008). In contrast, according to the DPSD model, 

the FN400 component is an “old/new” mid-frontal effect that reflects familiarity based on 

recent exposure to a stimulus (Rugg & Curran, 2007). However, the presence of the FN400 

component during the encoding phase, before any previous exposure to the stimuli, 

suggests that the FN400 component in our experiment may have indexed conceptual 

fluency (implicit memory) derived from a participant’s semantic memory regarding the 

stimulus (Voss & Paller, 2010; 2007). There is a possibility that familiarity itself stems 

from conceptual attributions from previous experiences (Jacoby & Dallas, 1981). 

According to the level of processing framework, bottom-up processes during encoding 

influence the next level of processing (Meeuwissen et al., 2011). For instance, a visual 

analysis of a picture would determine which neural mechanism triggers the concept 
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attached to that visual stimulus (Craik, 2002). Therefore, for a participant who has never 

heard of Buddha, bottom-up stimulus-driven processes would activate structural 

processing that would focus on the physical qualities of the Buddha. This structural 

processing of the physical features is perhaps reflected in the fluency ERP. On the other 

hand, a participant who was aware of Buddha may have bypassed the middle stage of 

structural processing by moving up to the processing of the concept/meaning of Buddha. 

This processing may have activated the neural sources responsible for the implicit memory 

processing, which would have been eventually reflected in the FN400 amplitudes (Lucas 

& Paller, 2013; Voss et al., 2012; Paller). 

Another interesting finding from this experiment was the fluency ERP effect 

during encoding. We found that the SNR ERP amplitudes were more positive than SR 

amplitudes. A similar effect was observed during encoding in other studies (Wang et al., 

2015; Bruett & Leynes., 2015; Woollams et al., 2008). Rugg (1998) suggested that the 

fluency ERP component is the neural correlate of the familiarity with old/new items 

without recollection (implicit memory) (Rugg et al., 1998). However, in our experiment 

this effect appeared during the encoding stage as well as during recognition.￼ 

It is particularly of interest to note that perceptual fluency has been defined as the 

ease of perception due to repetition (Snodgrass et al, 1996). In other words, perceptual 

fluency arises from the sensory processing of the physical attributes of a stimulus and 

refers to the ease of perception of an item because of repeated exposure to those physical 

attributes (Snodgrass et al., 1996). Given that perceptual fluency uses the sensory match 

effect to influence recognition memory based on the retrieval of stored information 

(Nittono et al., 2007; Snodgrass et al., 1996), it is possible that the perceptual fluency 
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effect that we observed during encoding (first exposure) arose from long-term stored 

information. The sensory match effect refers to the earliest interactions between sensory 

information and stored memory traces (Waldhauser et al., 2016; Snodgrass et al., 1996; 

Tulving, 1995). There are studies that support this view as they consider perceptual 

fluency to be a part of the semantic memory system and suggest that fluency stems from 

long-term stored information rather than repetition over the short-term (Nessler et al., 

2005; Tulving, 1995; Mandler, 1980). This view is based on multiple studies that Nessler 

and colleagues (2005) conducted to examine the ERP indices of perceptual fluency and 

familiarity. By using a paradigm where participants recognized famous and non-famous 

faces, they found that perceptual fluency correlated with an early positive ERP (~300-450 

ms) at centro-parietal electrodes, whereas pre-experimental familiarity correlated with the 

FN400 component (Nessler et al., 2005). Similar results have been observed in other 

studies (Kurilla & Gonsalves, 2012; Woolman et al., 2008; Rugg et al., 1998). Therefore, 

our current study is in line with previous work suggesting that different forms of fluency 

(perceptual or conceptual) may contribute to recognition memory (Lucas & Paller, 2013). 

These two fluencies are linked to two different ERP components such that perceptual 

fluency is associated to a positive component peaking around ~300 ms post stimulus at 

parietal sites (Voss & Paller, 2010; Nessler et al., 2005) whereas conceptual fluency is 

linked to FN400 (Voss et al., 2012). 

It is important to note that the fluency ERP (200-400 ms at parietal electrodes) 

produced amplitudes that were less negative for Hit trials as compared to the other response 

types. Voss and Paller (2010) reported similar results and argued that perceptually more 

fluent stimuli use less cortical resources to process stimuli, hence elicit less positive ERP 
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amplitudes. Others have also suggested that more fluent or easily perceived stimuli use 

fewer neurocognitive resources for processing as compared to less fluent stimuli which 

require more resources to process and therefore elicit larger ERP amplitudes (Leynes et al., 

2015; 2012). Moreover, studies have shown that processing more fluent or easily perceived 

stimuli weakens subsequent recognition performance (Guo et al., 2015; Beskin & 

Mulligan, 2013). Perhaps the reason for this impaired memory performance is that 

perceptually more fluent stimuli require less neural resources to be active (Guo et al., 2015; 

Paller & Wagner, 2002). This idea is similar to the level of processing framework (Craik 

et al, 2002; 1972), which suggests that memory traces are the byproduct of the cognitive 

processes that are carried out during the time of encoding. Thus, shallow encoding would 

yield relatively low memory performance as compared to a deeper level of processing.  

Although we assumed that our stimuli were equally fluent based on Brady et al’s 

study (2008), some pictures may have been more fluent for some participants than others. 

In support of this post hoc supposition, our behavioural results showed that some of the 

stimuli were remembered more by the participants than other stimuli. This indicates that 

some pictures may have carried more conceptual fluency than others. For instance, 25 out 

of 27 participants remembered the picture of Buddha or a nude female figurine; however, 

only two were able to remember a yarn of wool or a case of contact lenses (see Figure 

2.6b). 

Note that the fluency ERP effect at the encoding stage was observed only at left-

parietal electrodes (P7, P3) where the SNR ERPs were more positive when compared to 

SR ERPs. Interestingly, the fluency ERP at the recognition test phase was observed at right-

parietal electrodes (P8, P4), where Hits were less positive than the other response types i.e. 
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correctly identified new stimuli and Miss stimuli, respectively. We are not aware of any 

reason for this laterality shift; on the contrary, similar results from previous studies indicate 

that viewing a novel to-be-remembered stimulus produces a visual perceptual learning 

effect, which is right-lateralized at the parietal cortex (Voss & Paller, 2010; Schott et al., 

2006). This perceptual learning effect leaves a memory trace that allows more fluent 

processing of the same item if encountered again. During a second encounter, a participant 

may unconsciously be able to discriminate old from new because of the “implicit 

recognition” effect as described by Voss and Paller (2010). This phenomenon is observed 

particularly in a two-alternative forced-choice paradigm. Therefore, consistent with 

previous observations (Leynes et al., 2017; Voss & Paller, 2013; Voss & Paller, 2010; 

2007), the fluency ERP effect during recognition seems to reflect implicit memory driven 

by perceptual fluency. Regardless of the repetition and behavioural indices, old stimuli 

produced the least negative amplitudes than all others again suggesting that old items used 

less neuronal resources as a result of their enhanced fluency (Voss & Paller, 2012).  

 



 

 

60 

60 

 

Figure 2.6. A list of the picture used in the study: (a) contains pictures that were remembered 

more by participants; (b) contains the pictures, which were remembered by less than five 

participants. 

 

We did not observe an LPC-like effect (i.e., old items are typically observed to be 

more positive between the time window ~500 - 800 ms post stimulus at parietal sites) 

during the encoding stage at the parietal electrodes. However, during the 600-1000 ms 

post-stimulus onset time window, more positive amplitudes were elicited by SNR stimuli 

when compared to SR stimuli at frontal electrodes, whereas no such effect was observed 

at parietal or occipital electrodes. During the recognition stage, a significant LPC effect at 

parietal electrodes was observed. A discrimination effect between Hit and other response 

types (Miss and CR) at left-parietal electrodes was also observed.  However, this effect 
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appeared to be more centralized (see Figure 2.5, Topographic map) as compared to the 

LPC effect observed in other studies, which was more posterior (Paller and Voss, 2013; 

Leynes et al., 2017). Furthermore, the LPC discriminated correctly identified old (hit) from 

all other response types (new and miss) and these differences were observed at almost all 

parietal electrodes (see Figure 2.5).  

2.6    Conclusion 

Our results are compatible with the view that the FN400 component does not reflect 

a process exclusive to the memory process related to familiarity, rather this effect may also 

reflect conceptual fluency and/or familiarity depending upon the context (Bruett & Leynes, 

2015; Lucas & Paller, 2013; Lucas, Voss, & Paller, 2012; Paller et al., 2007). 

Unfortunately, using the current paradigm we were not able to disentangle these individual 

processes. However, we have shown that when participants are asked to discriminate old 

items from new items, the second presentation of a stimulus may initiate several cognitive 

processes such as perceptual fluency, conceptual fluency, and familiarity because all three 

of these concepts appear to co-vary with the second presentation (Lucas & Paller, 2013; 

Lucas, Voss & Paller, 2012; Leynes & Zish, 2012; Voss et al., 2012; Paller et al., 2007). 

Consistent with previous observations, the present results using pictures of common 

objects indicate that the FN400 effect may be driven by top-down processing via 

conceptual implicit memory, and thus contaminate the explicit memory indices during 

recognition testing (Bruett & Leynes, 2015; Leynes & Zish, 2012; Voss et al., 2012; Paller 

et al., 2007). Further, we support the view that the phenomenon of familiarity is more 

complicated than the dual-process theory suggests (Parks and Yonelinas, 2007; Smith & 

DeCoster, 2000).  
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3    Chapter: Familiarity and Implicit Memory 

3.1 Introduction 

There is a growing consensus that recognition memory is supported by familiarity 

and recollection. Familiarity is the memory retrieval process where one has a feeling of 

“knowing” about a past event in question, whereas recollection refers to remembering a 

past event with all contextual details (Friedman & Johnson, 2000; Rugg et al., 1998). At 

present, there is controversy about whether familiarity is an expression of explicit memory 

(Rugg et al., 1998) or implicit memory (Paller et al., 2007; Voss et al., 2007). When it 

comes to memory research, there is a distinction between explicit and other forms of 

memory in terms of behavioural, neural, cognitive and subjective features (Voss et al., 

2008; Paller et al., 2008). Explicit memory refers to an expression of memory where the 

participant is fully aware of recalling a prior learning event. For instance, if a participant 

identifies stimuli based on repetition, this would be called an expression of explicit 

memory. In contrast, implicit memory is a form of memory where a participant might have 

no conscious awareness that his/her behavior is being guided by previous experience 

(Schacter, 1987).  

A large body of research supports the dual-process signal detection (DPSD) theory, 

which proposes that recognition memory is based on familiarity and recollection and 

assumes that these two processes are two distinct expressions of explicit memory (Rugg et 

al., 2008; Yonelinas et al., 2002; Friedman et al., 2000; Rugg et al., 1998). Findings from 

ERP studies on recognition memory have revealed that familiarity and recollection are 

associated with two distinct ERP components. Generally, recollection is attributed to the 

late positive component or left parietal complex (LPC) that is elicited in the 500-800 ms 
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time range, mostly at parietal sites in the brain, whereas familiarity is associated with the 

mid-frontal FN400 component elicited in the 300–500 ms time window at mid-frontal sites 

(Rugg & Curran, 2007; Curran & Cleary, 2003; Curran, 2000). These studies appear to 

confirm the propositions of the DPSD theory and suggest that the FN400 effect is produced 

by familiarity-driven recognition and the LPC effect is the reflection of a threshold-based 

recollection process (Yonelinas et al., 2002).  

Although at present researchers appear to agree that the LPC reflects the 

recollection process, the belief that the FN400 reflects the processes involved in familiarity 

is disputed. The dispute, in part, arises from the fact that the FN400 resembles the well-

known N400 component, which reflects semantic or conceptual priming (i.e. a form of 

implicit memory) and occurs in the same time window as the FN400 (e.g.300-500 ms) 

(Packard et al; 2017; Kutas & Federmeier, 2010; 2000; Voss et al., 2010). Findings from 

previous studies have shown that conceptual semantic processing of meaningful stimuli is 

indexed by the standard N400 potential (Kutas & Hillyard, 1980). Paller and colleagues 

showed that the FN400 effect is functionally identical to the centro-parietal N400 effect 

(Voss & Paller, 2012; Paller et al., 2007). Therefore, in contrast to the FN400-reflects-

familiarity theory, there is another view that conceptual fluency, guided by implicit 

memory, provides the basis for familiarity judgments and not explicit memory. In a series 

of studies, Paller and colleagues showed that familiarity and conceptual priming are 

correlated and that their respective neural signatures are difficult to disentangle (Voss et 

al., 2010; Paller et al., 2007; Voss et al., 2007). More support for this idea comes from the 

findings that cortical mechanisms underlying familiarity and conceptual priming 

processing highly overlap and rely on the same neural system (Manns et al., 2003). In our 
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previous study, we observed that the second presentation of a stimulus during the 

recognition test phase may have initiated several cognitive processes such as perceptual 

fluency, conceptual fluency, and familiarity, because all three of these processes appeared 

to co-vary with the second presentation of a stimulus. Hence, there is the possibility that 

during recognition testing, the FN400 component reflects some of the same cognitive 

processes that influence implicit memory as well as familiarity (Wilding & Ranganath,, 

2011). It is plausible that the FN400 effect may be driven by top-down processing via 

conceptual implicit memory, and thus contaminates the explicit memory indices during 

recognition testing (Bruett & Leynes, 2015; Leynes & Zish, 2012; Voss et al., 2012; Paller 

et al., 2007).  

Findings from numerous studies have suggested that under restricted 

circumstances, the FN400 signals reflect conceptual implicit memory rather than 

familiarity (Paller et al., 2012; Voss et al., 2010a). Paller and colleagues showed that the 

FN400 potentials correlate with familiarity judgments only when stimuli have meanings 

associated with them (e.g. words, pictures with names). Thus, viewing a stimulus rich in 

meanings may initiate the activation of neural processes that lead to conceptual implicit 

memory (Wilding & Ranganath, 2011; Yovel & Paller, 2004; Olichney et al., 2000). The 

FN400 effect was absent when stimuli with no meaning were presented (complex 

geometrical patterns). Instead, they observed another ERP (280-400 ms) that was different 

in polarity and scalp location from the FN400 effect. This ERP, which could be called the 

fluency ERP was observed at parietal sites and has been reported to be associated with 

perceptual fluency (Paller et al., 2012; Rugg et al., 2007; Rugg et al., 1998). Interestingly, 

perceptual fluency is also found to modulate recognition performance under various 
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conditions (Schott et al. 2005; 2002; Whittlesea & Williams, 2001a, 2001b; Paller et al. 

2003; Rugg et al. 1998; Jacoby & Dallas, 1981). For instance, fluency can affect our 

subjective experience of familiarity because our sense of familiarity is sensitive to the 

facilitation of sensory processing (Jacoby & Dallas, 1981). If one experiences a stimulus 

to be more fluent than expected, the stimulus might feel familiar. Whittlesea and Williams 

(1998) asked participants to read words from a pool of real words (e.g., frog, cancer) and 

nonwords that included some pseudohomophones (e.g., phrawg, kanser) and decide if they 

had seen the words earlier. Although, real words were more fluent than nonwords, some 

new pseudohomophones were erroneously “recognized” as items previously presented. 

Therefore, they concluded that, fluency can generate an illusion of familiarity when a 

stimulus is processed more fluently than expected in a given situation (Whittlesea & 

Williams, 1998). These results also indicate that multiple forms of fluency contribute to 

shape recognition judgment and they are linked to different neural indices (Lucas & Paller, 

2013). 

While perceptual and conceptual fluencies are distinguishable from each other on 

the bases of polarity and scalp locations, it is hard to disentangle the neural correlates of 

conceptual implicit memory from familiarity processes as these processes tend to occur 

simultaneously and apparently share the underlying mechanism (Boehm et al., 2005; Paller 

et al., 2003). One of the main reasons is that the cortical mechanisms underlying familiarity 

and conceptual priming processing appear to overlap and may rely on the same neural 

system (Manns et al., 2003). Hence, there is the possibility that during recognition testing 

the FN400 component reflects some of the same cognitive processes that influence implicit 

memory as well as familiarity (Wilding & Ranganath,, 2011). Therefore, in order to ensure 
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that the FN400 or any other neural signature exclusively reflects the processes involved in 

the expression of familiarity, it is important to discriminate between the neural signals of 

familiarity and the neural signals of implicit memory driven by priming effects.  

If the FN400 effect reflects conceptual priming, then in principle, during 

recognition there should be no FN400 effect for meaningless stimuli or a stimulus with 

little meaning. In line with this assumption, some studies have shown that no FN400 was 

obtained when meaningless stimuli were used (Mackenzie & Donaldson, 2007; Yovel & 

Paller, 2004); however, other studies have observed FN400 effects for meaningless stimuli 

(Curran & Hancock, 2007). Paller and colleagues argued that FN400 effects are possible 

when participants see meaningless stimuli because participants can find meaning even in 

the most abstract stimuli (Paller et al., 2007). Moreover, they showed in multiple studies 

that in the absence of familiarity, the FN400 component reflected conceptual implicit 

memory during recognition tests (Paller et al., 2012; Voss et al., 2012). In defence of the 

FN400-reflects-familiarity effect account, it was argued that the FN400 is sensitive to the 

perceptual features of the stimuli and the magnitude of the FN400 effect changes according 

to manipulations of perceptual features of the stimuli (Wilding & Ranganath,, 2011; 

Stenberg at al., 2009). Hence, it remains unclear why the FN400 potentials were observed 

in some studies (Curran & Hancock, 2007) and not in others (Mackenzie & Donaldson, 

2007; Yovel & Paller, 2004).  

Some studies have shown that participants often attribute familiarity to “perceptual 

fluent” stimuli when being tested for recognition (Olds & Westerman, 2012; Kurilla & 

Westerman, 2008; Nessler et al., 2005; Westerman et al., 2002; Whittlesea, 2002; 

Westerman, 2001; Whittlesea et al., 1990; Jacoby & Whitehouse, 1989). Nessler and 
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colleagues conducted a series of experiments to examine the ERP indices of perceptual 

fluency, semantic memory (which they refer to as semantic familiarity) and repetition using 

famous and non-famous faces. They found that repetition and perceptual fluency 

influenced the fluency ERP (~300 -450 ms) at parietal electrodes, whereas semantic 

familiarity influenced the FN400 effect. Similar findings from other studies suggested that 

repetition enhances perceptual fluency during recognition and that fluency ERPs are more 

positive for repeated stimuli as compared to stimuli that were presented only once (Henson 

et al., 2008; Kurilla & Westerman, 2008; Nessler et al., 2005). In other words, participants 

are more likely to associate perceptual fluency of a stimulus with a prior encounter if they 

are unaware of the source of the fluency of that stimulus. Therefore, in the absence of 

FN400 effects (familiarity or conceptual priming), it is likely that recognition responses 

are influenced by perceptual fluency, which is reflected in the early parietal fluency effect 

component (~200- 400 ms) (Bruett & Leynes, 2015; Leynes & Zish, 2012). 

Similar effects of perceptual fluency were observed in an implicit memory task that 

involved primed and unprimed complex geometric figures (Wang et al., 2015; Voss et al., 

2010a), suggesting that in the absence of conceptual implicit memory, recognition 

judgments were influenced by perceptual fluency. Also, these studies provide an 

explanation for the case when stimuli are considered familiar and there is no presence of 

FN400 effect. However, in these studies the polarity of the perceptual fluency ERP was 

reversed. Repetition of primed stimuli apparently enhanced perceptual fluency resulting in 

decreased amplitudes for the fluency ERP effect, which suggested that less cortical 

resources were required to process the more fluent stimuli. 
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Based on the controversy associated with the FN400, we chose an experimental 

design that would elicit shallow encoding to replicate and extend our previous results 

(Chapter 2) with an important new design modification – the presentation of meaningless 

and nameless stimuli as opposed to the meaningful stimuli presented in the previous 

experiment. A “shallow encoding” of the stimulus entails only a quantitative basis for 

judgment (i.e. familiarity) whereas “deep encoding” provides a qualitative account of the 

judgment (i.e. recollection; Baucher et al., 2016; Wilding & Ranganath,, 2011; Marzi et 

al., 2010).  

Participants viewed fractals during the encoding phase and then had to provide 

recognition judgments about some of the old fractals along with some new fractals. Thus, 

in the recognition phase, we had two sets of stimuli (old and new) and could therefore 

control for perceptual fluency (due to repetition). To improve our understanding of 

familiarity and recognition memory, this study examined the effects of stimuli with little 

or no meaning (fractals) on visual memory using ERPs recorded during the encoding task 

and a recognition test. Voss and Paller (2012) reported that the FN400 component 

correlated with familiarity when familiarity co-varied with conceptual implicit memory. 

No FN400 was observed when conceptual fluency was reduced or eliminated in the stimuli 

(Voss & Paller, 2012; 2007). Voss and Paller (2007) used squiggles with variable 

conceptual associations such that some squiggles were capable of evoking 

conceptual associations in semantic memory while others were not. During 

recognition test, only meaningful squiggles correlated with FN400 (Voss, et al., 

2011; Voss & Paller, 2007). Those squiggles, which were semantically empty, could 

not evoke an FN400 effect (Voss & Paller, 2007). Thus, the FN400 does not reflect 
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a process exclusive to the memory process related to familiarity; rather this effect 

reflects conceptual fluency (Bruett & Leynes, 2015; Lucas & Paller, 2013; Paller et 

al., 2007). 

Hence, to control for conceptual fluency, we created geometrical abstract shapes 

called fractals using mathematical functions and MATLAB scripts.  These fractals are hard 

to associate with any known objects. It is important to note that our design enabled a unique 

test of the hypothesis concerning the conceptual and perceptual fluency captured by the 

FN400. This design allows us to avoid conflating neural correlates of conceptual 

fluency. Given that, repetition triggers fluency, familiarity or conceptual priming, one 

would expect that during the first exposure (i.e. encoding) of a stimulus there should be no 

FN400 or fluency ERP effect for meaningless stimuli. If the FN400 reflects familiarity 

(due to previous experience with a stimulus), then during the encoding phase, our fractals 

should not elicit an FN400 because the stimuli were novel and unfamiliar to the 

participants. If the FN400 reflects conceptual fluency, then during the encoding phase, the 

fractals would still not elicit an FN400 because these stimuli have no meanings associated 

with them. On the other hand, if the FN400 does indeed reflect familiarity, then during the 

recognition test, our fractals should elicit an old/new effect (explicit memory effect). 

 

3.2 Method 

3.2.1 Participants 

After consenting to procedures approved by the Wilfrid Laurier University 

Research Ethics Board, 18 healthy individuals (n=18, nine females, ages 18-28 years) 

participated. All participants were right-handed and had normal or corrected to normal 
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vision. No participant reported ever experiencing a psychiatric illness. Participants signed 

informed consent forms before the study and were granted course credit for their 

participation. 

3.2.2 Stimuli and Procedures 

During the encoding task, participants were sequentially presented with 800 fractals 

that were created by using custom Matlab scripts. To ensure that no semantic concepts or 

meanings were associated with these stimuli, we used the escape-time technique to 

generate these fractals. By using a recurrence relation at each point in the complex plane, 

we generated a series of Mandelbrot, Julia set, and Lyapunov fractals. Participants were 

told in advance that they would be tested for their memory of the photographs and to watch 

each item carefully. Encoding session was divided into 8 blocks of 100 fractals each. There 

were short breaks after each block (approximately 8 minutes). Participants initiated each 

block by pressing a button on a response pad, however, they were not in control of the rest 

of the trials of the block. Each trial started with a 1,000 ms pre-encoding period, where 

participants had to focus on a blank screen with a central fixation dot. Each picture was 

presented for 250 ms, followed by a 1,000-ms encoding period, during which the computer 

screen remained blank. After a short break, participants performed the recognition session 

during which 500 fractals (300 old, 200 new) were randomly presented. During the 

recognition test, fractals were presented on the screen until a response was recorded. 

Participants were instructed to press ‘1’ on the response pad if they remembered seeing the 

picture or press ‘2’ if they did not previously see the picture.  
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Figure 3.1: Schematic diagram of the experimental trials during the encoding and recognition test 

phases. 

 

3.2.3 EEG data and Acquisition 

EEG data were recorded using a NeuroScan GSN 64 1.0 Ag/AgCl electrode Quik-

cap (Compumedics, Charlotte, NC, USA) in a sound-attenuated, electrically shielded booth 

(Raymond EMC, Ottawa, ON, Canada) while participants performed the encoding and 

recognition tasks. Electrodes were positioned according to the International 10-20 EEG 

System with one ground electrode such that electrodes were fixed over the frontal lobes 

(FP1, FP2, F7, F3, FZ, F4, F8, FC3, FCZ, FC4), temporal lobes (FT7, FT8, T7, T8, TP7, 

Tp8), parietal lobes (CP3, CPZ, CP4, P7, PZ, P4, P8), occipital lobes (O1, O2), and at the 

central position of the scalp (C3, CZ, C4). Electrode CZ was visually centered above the 

central vertex found halfway between the glabella and the external occipital protuberance 

medially and the preauricular points laterally. Electro-gel was used to improve conduction 

between the skin and the electrode surface. Surface electromyographic electrodes were 

positioned at the outer canthi of both eyes and above and below the left eye. EEG signals 

were initially referenced to mastoid electrodes (M1, M2), which were placed on the 

mastoid process behind each ear. Impedances were kept below 5kΩ. The presentation of 
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stimuli was controlled by programmable experiment generation software Stim2 

(Compumedics, Charlotte, NC, USA) and signals were acquired across all 64 electrodes.  

3.2.4 ERP preprocessing and analyses  

Custom MATLAB scripts in conjunction with the open-source EEGLAB toolbox 

(Delorme and Makeig 2004, http://sccn.ucsd.edu/eeglab) were used to analyze the data. 

We inspected and corrected the continuous data for outliers, body movements, and muscle 

and cardiac artifacts by using Artifact Subspace Reconstruction (ASR) (Bigdely-Shamlo 

et al., 2015). For further artifact correction, independent component analysis (ICA) 

(Delorme &Makeig 2004) was applied separately to single subject datasets (Palmer et al., 

2008). The ICA decomposition method has the ability to linearly un-mix EEG channel data 

into temporally independent component activities with a fixed spatial projection pattern 

(Onton & Makeig, 2011; Onton et al., 2006; Makeig et al., 2004a). Thus, ICA is capable 

of isolating cortical signals from the noisy non-brain source activities (Onton & Makeig, 

2011) (see Chapter 2 for details). Statistical analyses were carried out using SPSS Statistics 

(SPSS, Inc., 2009, Chicago, IL, www.spss.com) on the mean voltage differences at the 

corresponding electrodes and time windows. 

Signals were averaged, re-referenced and initially high-pass filtered (1 Hz) 

(Winkler et al., 2015). For ERP analysis, signals were passband filtered between 1 and 30 

Hz. Trials above 5 μV voltage potential from baseline were rejected. On average, 15% of 

the trials per participant were rejected. For encoding ERPs, trials were grouped into 

subsequently remembered items (SR) and subsequently not remembered items (SNR), 

based on the participants’ responses during the recognition task. After a short delay, 

participants were tested with these “old” fractals randomly intermixed with “new” fractals 
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during the recognition test. Participants had to discriminate whether each fractal was old 

or new.  

3.2.5 ERP data and analysis procedures: 

ERP components were computed as the average voltage relative to a -200 to 0 ms 

pre-stimulus baseline voltage (Luck, 2014). Based on the performance of participants 

during the recognition test, studied fractals in the encoding task were categorized as 

subsequently-remembered (SR) and subsequently-not-remembered (SNR) items and the 

difference between the neural activities of the SR and SNR was called the subsequent 

memory effect (SME) (Voss et al., 2010; Paller & Wagner, 2002; Rugg & Allan, 2000). 

ERPs at the recognition test were averaged separately for recognized/remember old items 

(Hit), new items that were correctly identified as new items (correct rejection; CR), old 

items that participants failed to remember as old items (Miss), and new items that 

participants reported to be old items (False Alarm; FA). Findings from previous studies 

have linked perceptual fluency with an ERP in an early time window (~200–400 ms), 

where new items elicit more positive  ERPs than old items revealing that old items use 

fewer neural resources as being fluent (e.g., Wang et al., 2015; Bruett & Leynes, 2015; 

Leynes & Zish, 2012).  

To investigate the hypotheses, we used several levels of analysis. First we analyzed 

our ERP with a repeated-measures ANOVA with the factors of SME (Subsequently-

Remembered/SR, Subsequently-not-remembered/SNR) X Electrode location (5 levels 

from anterior to posterior; frontal, fronto-central, central, centro-parietal, and parietal) X 

Laterality (3 levels, left, center, right) for the encoding phase and response types (Hit, Miss, 

CR, FA) X Electrode location (5 levels) X Laterality (3 levels) for the recognition task. In 
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our second analysis, in order to analyze the effect of laterality and topography, an ANOVA 

model that contained a within-subjects factor of Condition (SR, SNR), electrode site as 

anterior to posterior (3 levels, frontal, central, and parietal), and left/center/right (LCR) 

electrode site (3 levels, left, center, and right) was conducted (Leynes et al., 2017). Next, a 

series of pair-wise, post hoc t-tests further examined ERP differences across response 

types. Fluency ERPs were quantified by computing the average activity at the central (C3, 

C1, CZ, C2, and C4) and parietal electrodes (P7, P3, PZ, P4, and P8; Bruett & Leynes, 

2015). The FN400 analyses examined ERP measures during the 300–500 ms time interval 

at mid-frontal electrode sites (i.e., F3, F1, Fz, F2, F4, and FC3, FCz, FC4). The LPC 

analyses evaluated ERPs during the 500–700 ms time interval at central (C3, C1, CZ, C2, 

and C4) and parietal electrode sites (P7, P3, Pz, P4, P8; Curran, 2000; Curran & Hancock, 

2007; Leynes & Zish, 2012; Paller et al., 2007; Rugg & Curran, 2007).  

Group Comparison between Experiment 1 and Experiment 2: Finally, a comparison 

analysis of the group effect between the two experiments (Chapter 2: Pictures and Chapter 

3: Fractals) was conducted. For comparison, amplitude measures were computed as the 

average activity during our intervals of interest i.e. Fluency (200-400 ms), FN400 (300-

500 MS), and LPC (500-800 ms) intervals. Note that in Experiment 1, a 32-channel  EEG 

cap and in Experiment 2 a 64-channel cap were used. Therefore, the ERP measures were 

averaged at electrodes that were common in both caps. Such that, ERP potentials were 

analyzed and averaged at frontal (F3, Fz, F4), frontal-central (FC3, FCz, FC4), central (C3, 

Cz, C4), central-parietal (CP3, CPz, CP4), and parietal clusters (P3, Pz, P4) as well as left-

parietal (P7, P3) and right-parietal (P4, P8) for all intervals. An analysis of variance model 

that contained a between-subjects factor of Group (pictures, fractals) and within-subject 
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factor memory (SR/SNR for encoding and Hit/Miss/CR for recognition) and electrode-

sites was conducted.  

  Significant effects were corrected for non-sphericity using Greenhouse–Geisser 

corrections, and significant effects are reported with the corrected degrees of freedom when 

appropriate. 

3.3 Results 

3.3.1 Behavioural Results 

The performance in the recognition task was analyzed. We investigated participant 

task accuracy and reaction time. Each participant’s Hit, Miss, Correct-Rejection (CR) and 

False Alarm rates (FA) were extracted. Performance during the encoding phase was 

compared between the SR and SNR trials based on the performance in the recognition task 

that was extracted for each participant. Reaction times during the recognition task were 

analyzed using a one-way ANOVA with the within-subject factor Condition (Hit, Miss, 

CR, and FA). The perceptual sensitivity of the recognition task was estimated using signal 

detection theory (SDT) by computing A′ for each participant. A′ was used as our main 

index of performance (Stanislaw & Todorov, 1999) because A′ is capable of distinguishing 

response bias from sensitivity. A′ can take any values between 0.5 and 1, with 1 denoting 

perfect performance and 0.5 denoting failure to distinguish the old from the new stimuli. 

Our results for memory performance showed that participants, in general, were 

capable of discriminating old from new pictures above chance, as indicated by an average 

A′ of 0.54 (SD: +/− .07; range 0.47 to 0.61). Reaction times differed among the four 

primary responses used for ERP analyses i.e., F(3, 9290) = 3.34, p = .02. Pairwise 

comparisons revealed that Hit responses were faster than Miss (all p < 0.01). However, the 
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differences between Hit and other responses were not significant (p > .05). On average, 

participants performed the recognition task successfully. They successfully rejected 

64.87% of the new objects and were able to identify 36.99% of the old stimuli objects. It 

is clear from Table 3.1 that there were large standard deviations for both accuracy and RTs, 

demonstrating the variability across participants and the type of stimuli.  

Additionally, we compared the hit, FA rates and A’ means from Experiment 1 

(pictures) and 2 (fractals) and found that all measures except FA rates were higher for 

fractals as compared to pictures  (see Figure 3.2).  

 

Table 3.1 

Accuracy (percentage) and response time (ms) values, reported along with their standard 

deviations across participants in parentheses. 
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Figure 3.2. Mean A’, Hit and False Alarm rates from Experiment 1 (pictures) and Experiment 2 

(fractals).  

 

3.2    ERP Results 

3.3.2.1   Encoding Task 

At the encoding phase, for the three time windows reflecting the fluency ERP (200 

– 400 ms), FN400 (300 – 500 ms) and the LPC effect (500 – 800 ms), a three-way repeated-

measures ANOVA with SME (Subsequently-Remembered/SR, Subsequently not 

remembered/SNR) X Electrode locations (from anterior to posterior) X Laterality was 

computed to quantify these effects. In agreement with previous studies (Fellner et al., 2013; 

Schnieder et al., 2016), our results revealed a significant SME (e.g., Fluency ERP (200 – 

400 ms: F(1, 17) = 5.753, p = 0.028, η2 =0.253; FN400 effect (300-500 ms): F(1, 17) = 

16.88, p = 0.001, η2=0.0.498; LPC effect (500-800 ms): F(1, 17) = 4.52, p = 0.048, 

η2=0.21) as shown in Table 3.2 
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In a separate analysis of group comparisons between pictures and factors revealed 

significant differences for the following intervals, which are listed as follows: 

Fluency ERP (200–400 ms): A three-way repeated-measure ANOVA revealed a main 

effect of subsequent fluency ERP effect as well as a significant interaction of SME X 

electrode location, and condition X laterality (see Table 3.2; Encoding). Further analysis 

revealed that this effect was maximal at left-parietal sites where subsequently-not-

remembered ERPs were significantly more positive than subsequently- remembered ERPs 

(P7: t(17) = -3.03, p=0.008), which is in accordance with previous studies (Yonelinas et al, 

2014; Lucas & Paller, 2013; Voss et al., 2010; Rugg et al., 2008; Voss & Paller, 2006; 

Yonelinas et al., 2002; Friedman et al., 2000; Rugg et al., 1998). 

FN400 (300 – 500 MS): We were able to replicate classic mid-frontal ERP components at 

the encoding stage for subsequently remembered items at frontal and mid-frontal sites. 

Details are given in Table 3.2. Our three-way ANOVA revealed a significant main effect 

and interactions of the subsequent memory effect for the FN400 latency (see Table 3.2, 

Encoding). There was a significant three-way interaction of SME (SR/SNR) X 

anterior/posterior location of electrodes X Laterality. Thus, we conducted further analyses. 

A paired-sample, two-tailed t-test for the subsequent hits and subsequent misses further 

revealed significantly higher negative amplitudes for SNR items than for SR items at 

frontal and mid-frontal regions of the brain, whereas the effect was maximal at FC4 [FC4: 

t(17) = 5.25, p < 0.001; F4: t(17) = 4.01, p = 0.001; Fz: t(17) = 2.94, p = 0.008; FCz: t(17) 

= 3.16, p = 0.006; CZ: t(17) = 3.66, p = 0.002]. These results show that this effect was 

slightly more robust at the right hemisphere of the brain (see Figure 3.3d(ii)). 
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Late positive component (500 – 800 ms):  Our repeated-measures three-way ANOVA 

conducted for the 500-800 ms time window revealed a three-way interaction between 

Condition (SR/ SNR), laterality and electrode location [F(8, 136) = 3.07, p = 0.003, η2= 

0.21] (see Table 3.2, Encoding, LPC).  Paired samples t-tests indicated that the two SR 

ERPs were more positive at central [Right-central: C4: t(17) = 2.64, p = 0.02; Mid-central: 

CZ: t(17) = 2.61, p = 0.02] and negative at parietal sites [ Right-parietal: P8: t(17) = -2.11, 

p = 0.05; P4: t(17) = -2.28, p = 0.04; Left-parietal] when compared to SNR ERPs. It is 

interesting to note that the polarity of the effect is altogether different at parietal electrodes 

as compared to central electrodes; subsequently remembered items stimuli were more 

positive at central electrodes than subsequently not remembered items, whereas the polarity 

of amplitudes for subsequently remembered stimuli at parietal electrodes was the opposite.  

Group Effect: An ANOVA model that contained a between-subjects factor of group 

(pictures, fractals) and within-subject repeated–measure factors memory (SR/SNR) and 

clusters (central (C3, Cz, C4), central-parietal (CP3, CPz, CP4), and parietal (P3, Pz, P4) 

revealed that there was no effect of group for fluency ERP interval. Likewise, no significant 

effect of group was observed for the FN400 and LPC intervals (see Table 3.3). 
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Table 3.2 

Significant fluency ERP, FN400, and LPC effects from the encoding and recognition 

phase.  

 

3.3.2.2   Recognition Task 

Fluency ERP (200–400 ms): A repeated-measure ANOVA for response-types revealed a 

main effect of the latency of fluency ERP and an interaction between electrode location 

and response type (see Table 3.2, Recognition, Fluency). However, further analysis 

revealed that the difference between amplitudes were mainly between Hit and Miss ERPs. 

ERP amplitudes for correct rejection ‘CR’ (for identifying stimuli as new) was observed 

only at left-parietal electrode P8 (P8: t(17) = -2.32, p = 0.04) (see Figure 3.4a).  
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FN400 Effect (300–500 ms): Our three-way repeated-measures ANOVA revealed a 

significant difference between the amplitudes for all four response-types during the 300-

500 ms interval. However, further analysis revealed that the difference of amplitudes was 

mainly between Hit and Miss ERP amplitudes. A marginal difference between the 

amplitudes for correctly remembered old items (Hits) and correctly identifying new items 

(CRs) was observed (see Figure 3.4b) at mid-frontal electrodes [Fz: t(17) = 2.13, p = 0.05; 

FCz: t(17) = 2.04, p = 0.06]. 

Late positive component (500–800 ms): During the recognition test, a main effect of 

response-type emerged [F(3, 51) = 6.73, p = .001, η2= 0.28 ], indicating more positive 

ERPs for Hits when compared to CRs. No significant interaction was observed (see Table 

3.2, Recognition, LPC). However, a more pronounced difference between ‘Hit’ and all 

other response types was observed at central and central-parietal electrodes [CPz: t(17) = 

4.33, p < 0.001; Cz: t(17) = 3.66, p = 0.002; Pz: t(17) = 2.93, p = 0.009; C2: t(17) = 3.56, 

p = 0.002; C1: t(17) = 3.4, p = 0.003] (see Figure 3.4c).   
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Table 3.3 

Significant effects in Experiment 1 (Pictures) and Experiment 2 (Fractals). 

 

 

Group Effect During Recognition: A mixed 3x3x2 ANOVA analysis with one between-

subjects factor group  (pictures/ fractals) and two within-subject repeated–measure factors 

memory (Hit/ Miss/ CR) and clusters frontal (F3, Fz, F4), fronto-central (FC3, FCz, FC4), 

and central (C3, Cz, C4) was conducted to examine the group effects of the two different 

kinds of stimuli (pictures with meanings and fractals with no meanings). Our analysis 

revealed that there is no significant between-group difference between the FN400 

potentials for picture and fractal groups [F(1, 41) = 1.55, p= 0.22]. However, we observed 
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that despite there being no main effect of groups, the picture-group elicited higher 

amplitudes than the fractal-group. Interestingly, no significant group effects were observed 

for the fluency ERP and LPC intervals (see Table 3.3). Further analysis revealed that the 

main difference in the potentials was at a fronto-central cluster (FC3, FCz, FC4). 

Topographical Differences During the Encoding and Recognition Phases: In order to 

investigate the effect of condition on hemisphere and region during the encoding phase, an 

exploratory 3x5x3 ANOVA model that included laterality (left, mid, right), region (frontal, 

front-central, center, centro-parietal, parietal), and response-type (SR/ SNR for the 

encoding phase and Hit/Miss/CR for the recognition test) as factors was conducted for our 

three time windows of interest; i.e. Fluency ERP (200-400 ms), FN400 (300-500 ms), and 

LPC (500-800 ms). Topographic visualization was performed with the EEGLAB Matlab 

toolbox (Delorme & Makeig, 2004). A careful observation of topographic maps regarding 

fluency ERP, FN400, and LPC effects revealed that fluency ERPand FN400 effects were 

not only similar to each other, but also similar across the studies i.e. these effects had 

similar patterns during the encoding as well as the recognition phase as can be seen in 

Figures 3.2d and 3.3d. 

The exploratory analysis revealed significant interactions for all durations during 

the encoding and test phases (see Table 3.2, for details). Overall, laterality was significantly 

influential in this analysis. The topographic patterns of the FN400 effects between SR and 

SNR were not different from those of Hit and Miss.  
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Figure 3.3. Grand-average ERPs at selected electrode sites elicited by novel fractals during the 

encoding phase. Topographic maps show the activity elicited by subsequent remembered (SR) and 

subsequently not remembered (SNR) stimuli during fluency, FN400, and LPC time intervals.  

 

 

Figure 3.4. Grand-average ERPs at selected electrode sites elicited by novel fractals during the 

recognition test. Topographic maps show the activity elicited by Hit, Miss, and CR stimuli during 

fluency ERP, FN400, and LPC time intervals. 
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3.4    Discussion 

The purpose of the present study was to replicate the results presented in Chapter 2 

and determine whether the FN400 component reflects conceptual implicit memory (Voss 

et al., 2012; Voss & Paller, 2010; Paller et al., 2007) or familiarity (Yonelinas et al., 2007; 

Parks & Yonelinas, 2007; Rugg & Curran, 2007) or a combination of both (Mecklinger et 

al., 2012). Assuming that repetition of a stimulus triggers fluency, familiarity or conceptual 

priming, we expected that during the first exposure (i.e. encoding) of a stimulus there 

should be no FN400 or fluency ERP for meaningless stimuli. However, our results indicate 

that both forms of fluency (perceptual and conceptual) were reflected by the FN400 

component and that the neural correlates of conceptual implicit memory during the 

encoding phase were not different from the neural correlates of conceptual implicit 

memory exhibited during the recognition test phase. 

3.4.1 Encoding ERPs  

During the encoding task, a comparison of SR and SNR stimuli revealed significant 

subsequent memory effects (see Figure 3.3). A brief presentation of the novel unfamiliar 

meaningless stimuli (250 ms) was not expected to activate any implicit memory 

associations during the encoding phase (Bruett & Leynes, 2015; Paller et al., 2012; Schupp 

et al., 2004). However, previous studies have shown that early subsequent memory (SM) 

ERPs, ERP components that are typically linked with recognition, were observed during 

encoding and were predictive of some of the subsequent memory performance (Chen et al., 

2014; Griffin et al., 2013). To our surprise, we found a robust FN400 during the encoding 

phase, such that SR stimuli triggered more positive amplitudes than SNR stimuli. This 

effect was maximal at fronto-central electrodes. Moreover, a fluency ERP was also 
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observed at left-parietal sites where SNR stimuli were more positive than SR stimuli. We 

did not observe a late positive component (LPC) at parietal sites during the encoding phase, 

which can be reconciled with the fact that participants had never seen these fractals before, 

hence there could be no recollection. Interestingly, at central electrodes, particularly at 

right-central sites, the SR stimuli elicited significantly more positive ERPs than SNR 

stimuli. We discuss these findings in detail in the following paragraphs. 

The result that SR stimuli elicited a more positive FN400 than SNR during the 

encoding/study phase is difficult to reconcile with either the view that “FN400 reflects 

familiarity” or the view that the “FN400 captures conceptual implicit memory”, 

particularly when there was no familiarity and no meanings that would trigger conceptual 

associations. According to the classic view of familiarity, it is a form of ‘explicit memory’; 

a feeling that an event in question has been experienced before. If that is the case, then it 

is not possible that the FN400 amplitudes elicited during the encoding phase could reflect 

familiarity because, first, our stimuli were novel so there was no way that participants had 

seen them before, and second, these stimuli could not be unitized or labelled. Similarly, if 

the FN400 component is solely linked to conceptual implicit memory (Lucas & Paller, 

2013; Voss et al., 2010; Voss & Paller, 2006), then again we would not expect an FN400 

effect when the stimuli are meaningless fractals that cannot be unitized or labeled, and 

should therefore trigger no implicit processing (Parks and Yonelinas, 2007; Wixted, 2007). 

However, we did observe a strong FN400 effect at mid-frontal and frontal electrodes and 

in the following section, we discuss a few problems strictly attributing this effect to 

conceptual implicit memory.  
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Based on the view that the FN400 effect captures conceptual implicit memory 

processing, it is possible that the perceptual fluency of the stimuli triggered the activation 

of implicit memory processing, which eventually produced the observed FN400 effect. It 

has been shown that familiarity is sensitive to both conceptual and perceptual fluency of 

stimuli (Bruett & Leynes, 2015; Lucas and Paller, 2013). However, the possibilities that 

participants would have conceptual implicit associations to these fractals are remote, 

although these possibilities still exist. The only fluency that is associated with our stimuli 

was expected to come from the stimuli’s perceptual fluency (i.e., colors, shape).  

To understand the presence of the FN400 during our encoding phase, we sorted the stimuli 

based on their frequency of subsequent remembrance by the participants. Next, we 

examined those stimuli that were subsequently remembered by almost all participants and 

those which were missed by all participants. Interestingly, SR-by-most fractals anecdotally 

appear to be perceptually more fluent than SNR-by-most fractals (see Figure 3.5). On the 

other hand, we maintain our assumption that these fractals cannot be obviously unitized 

into a label. It is important to note, however, that we used a shallow encoding task; i.e. 

participants viewed each fractal for a fraction of a second (250 ms) and thus created a weak 

memory trace, such that recognition was driven by conceptual and perceptual fluency 

and/or familiarity rather than recollection (Leynes and Zish, 2012; Whittlesea and Price, 

2001). It is possible that the remembered-by-most fractals were less complex and that the 

brief look (250 ms) might have led participants to think that these less complex fractals 

resembled a familiar shape. Upon visual inspection, these fractals appear to contain fewer 

colors than those that were missed. Thus, we speculate that the remember-by-most fractals 
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possessed greater perceptual fluency, which triggered an associative concept that was 

reflected by the FN400.  

 

Figure 3.5. Fractals in category (a) were remembered by most of the participants whereas fractals 

in category (b) were missed by most of the participants.  

 



 

 

89 

89 

  The presence of the fluency ERP, both during the encoding phase and during 

recognition, suggests that recognition judgments were supported by perceptual fluency 

(Whittlesea and Leboe, 2003). The fluency ERP is a positive deflection that appears at 

parietal sites a little earlier than the FN400 component (peaking around 300 ms) and it is 

linked to perceptual fluency (Kurilla & Gonsalves, 2012; Leynes & Zish, 2012; Nessler et 

al., 2005).  It is temporally and spatially distinct from the FN400 effect (Kurilla & 

Gonsalves, 2012; Rugg et al., 1998). In sum, findings from these studies suggest that 

perceptual and conceptual fluency, which are differed by polarity, time course and scalp 

location (hence driven by different neural mechanisms) contribute to the behavioural 

indices of recognition (Wang et al., 2016; Lucas & Paller, 2013; Voss et al., 2012; Leynes 

& Zish, 2012). 

On the other hand, the presence of an FN400 (SR more positive than SNR) during 

the encoding phase, but the absence of the classic FN400 (old more positive than new) 

during recognition is hard to explain on the basis of either of the models. We believe that 

these effects may be explained by the Discrepancy Attribution Hypothesis (Whittlesea & 

Williams, 2001a; 2001b). Based on the discrepancy-attribution hypothesis, when 

encountering a stimulus, subjects tend to create a context based on their previous 

experiences with the stimulus, their subjective biases and the type of task they are engaged 

in. That context is used by participants to establish an expectation regarding the 

stimulus  (e.g., “norm on the fly”, Kahneman & Miller, 1986). This expectation is 

compared to their next experience with another stimulus. The outcome of this evaluation 

can lead to different behavioural responses. One possible outcome that can result from this 

evaluation process is the conclusion that their experience processing the stimulus matches 
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their expectations. In this case participants perceive their processing outcome as 

“coherent”. Another possible outcome of the evaluation is that their experience processing 

the stimulus does not match their expected experience so that they perceive their processing 

experience as “incongruent” or surprising. Whittlesea and Williams (2001a; 2001b) 

proposed that the surprise caused by a violation of expectation can lead to the illusion of 

familiarity as participants always look for the source of the surprise. If the stimulus was 

expected to be easy to process (more fluent) but was surprisingly difficult to process (less 

fluent), then the violation of expectation would not be attributed to familiarity (Whittlesea 

& Williams, 2001a; 2001b). If the stimulus was expected to be difficult to process (less 

fluent) but was surprisingly easy to process (less fluent), but the source of surprise is 

obvious, then the violation of expectation again would not be attributed to familiarity 

(Whittlesea & Williams, 2001a; 2001b). However, when a participant encounters a 

stimulus that is un-expectantly easy to process, but there is uncertainty regarding the source 

of this fluency participants will attribute this ease of processing to an earlier experience 

with the stimulus (repetition), even if they have not seen that stimulus before.  

Therefore, during encoding, some fractals may have been processed more fluently 

relative to other fractals. The ease of processing of these stimuli may have violated 

expectations of fluency based on the participant’s experience processing the large number 

of other fractals. The discrepancy between one’s expectations and the processing 

complexity of the stimulus may have given rise to an illusion of “knowing” the stimulus 

from the past based on the relative ease of processing the stimulus (Bruett & Leynes, 2015; 

Leynes & Zish et al., 2012; Whittlesea & Williams, 2001a, 2001b) and this evaluation 
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would be reflected in the FN400 ERP. If the source is perceived to be coming from 

perceptual fluency, however, it may be reflected in the fluency ERP.  

 It is also possible that the subjective biases of participants contributed to the 

experience of familiarity, according to the norm theory (Kahneman & Miller, 1986). 

Kahneman and Miller propose that upon exposure to a stimulus, a person adopts a “norm” 

or pattern that is driven by some of its features and that this norm is applied to the rest of 

its features. This process of setting up a norm is purely subjective and may happen 

instantaneously when one encounters a stimulus (Whittlesea & Leboe, 2003; Kahneman & 

Miller, 1986). In terms of our experiment, the norm during the encoding phase may have 

derived from the sum of the subjective expectations stimulated by geometrical shapes 

hidden in these stimuli (fractals). Unnamable fractals may have caused the participants to 

focus more on individual features within each fractal instead of the whole picture and a 

familiar shape within each fractal may have triggered richer associations in terms of 

implicit memory processing. Also, those fractals that were different in shape from the 

majority of other fractals(e.g., some fractals from Julia set) may have caused a violation of 

the norm and may have triggered an associated neural process (see Figure. 3.4).  As 

mentioned previously, it has been shown that participants have managed to find meanings 

(subjectively) when viewing subsequently remembered meaningless stimuli or stimuli with 

little meanings (Voss & Paller, 2007). 

As expected, we did not observe an LPC-like effect during the encoding phase at 

parietal electrodes. However, during a similar time window (500-700 ms) post-stimulus, 

SR stimuli elicited more positive amplitudes when compared to SNR stimuli at central and 

centro-parietal electrodes, whereas no such effect was observed at parietal or occipital 
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electrodes. This effect was maximal at central electrodes, particularly at Cz and C4. 

Interestingly, this effect was also observed in our previous experiment (see Chapter 2). In 

line with the previous studies, a positive ERP for SR stimuli peaking around ~500 ms post 

stimulus reflects successful encoding process (Paller et al., 2017). 

3.4.2     Recognition ERPs 

During the recognition test, participants viewed a random mix of old and new 

fractals and discriminated between the old (repetition) and new stimuli with the assumption 

that pre-experimental familiarity and semantic content were constant. We believe that our 

behavioural and ERP results suggest that recognition judgments were not based on 

recollection for three reasons (Leynes et al., 2017; Leynes & Zish, 2012; Whittlesea & 

Price, 2001). First, we did not observe an old/new FN400 effect, however, we did find an 

effect where Hit and CR were more positive than Miss, but there was no significant 

difference between Hit and CR. Second, a fluency ERP (200-400 ms post-stimulus at left-

parietal electrodes) discriminated Hit (old) stimuli from the other response categories. And 

third, an LPC-like effect was observed at central and centro-parietal electrodes where Hit 

stimuli elicited more positive amplitudes than the other response categories (Paller & 

Wagner, 2002; Friedman, 1998). We discuss these findings in detail below. 

No FN400 effect was detected during the recognition test, although a fluency ERP 

was observed at the right parietal site. A similar effect is reported in earlier studies (Paller 

et al., 2012; Rugg et al., 2007; Rugg et al., 1998). In the absence of meaningful stimuli 

(conceptual fluency), it was expected that we would not see an FN400 effect. However, in 

accordance with the FN400-reflects-familiarity theory, we expected to see a familiarity 

effect, which we did not. Instead, we observed a fluency ERP that corresponded with the 
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behavioural indices of recognition. These findings reveal that recognition judgment relied 

on perceptual fluency rather than familiarity (Leynes & Zish, 2012; Paller et al., 2012; 

Rugg et al., 2007).  

As described earlier, fluency and familiarity are two different perceptions that result 

from interpretive discrepancies (Whittlesea and Williams, 2001a, 2001b). For instance, the 

presentation of novel stimuli as well as familiar (old) stimuli may create a scenario where 

raw perceptual fluency and repetition fluency operate in parallel during recognition. As a 

result, these inconsistencies may have increased discrepancies between expectations and 

actual experiences, which eventually would lead to perceptions of familiarity (Leynes & 

Zish, 2015; Whittlesea and Leboe, 2003; Whittlesea and Williams, 2001a, 2001b). 

Therefore, we expected that the repetition (i.e. old more fluent than new) would serve as a 

basis for recognition by creating a context where repetition fluency would overcome 

semantic-emptiness to yield a familiarity signal (Westerman et al., 2002; Whittlesea & 

Williams, 2001a, 2001b).  

That would mean that the FN400 signal would reflect a pattern where Hit (Old) > 

Miss (Old) > New (CR). Instead, we observed a memory signal where Hit (Old) > New 

(CR) > Miss (Old). Rugg and colleagues (1998) used a shallow task to examine familiarity 

during recognition and found a different pattern (i.e. Hit (Old) > Miss (Old) > New (CR). 

They argued that the neural activity linked to Miss (old) ERP reflected implicit memory, 

which was active even when the word was not consciously recognized, suggesting that it 

represents a neural correlate of implicit memory. Consequently, in the present study, the 

absence of meanings associated with stimuli eliminated the presence of conceptual fluency 

resulting in reliance on perceptual fluency for recognition memory (see Table 3.2) (i.e. Hit 
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(fluency + old)  < CR (fluency) < Miss (old)) (also see Bruett & Leynes, 2015; Leynes & 

Zish, 2012; Voss & Paller, 2010). Previous studies have shown that a stimulus that is 

experienced in the past is processed more fluently, thus uses fewer neuronal resources to 

process (Whittlesea & Williams, 2001a; Jacoby & Dallas, 1981). Thus, we observed that 

“Hit” stimuli produced the least positive amplitudes than all others. The same pattern was 

observed during the encoding session. 

Rugg et al. (1998) reported that old stimuli elicited more positive potentials 

irrespective of the accuracy of recognition judgments. However, the pattern of our ERP 

results for recognition (Hit << CR, Miss) show that the fluency ERP effect contributed to 

recognition. The pattern of FN400 results (Hit > CR> Miss) shows that the FN400 is 

elicited by the illusion of familiarity and not repetition-driven familiarity. Had familiarity 

(repetition-driven) been responsible for the FN400, the pattern would have been (Hit > 

Miss > CR). It seems that a context based on the perceptual fluency of stimuli was 

developed and within that context, the violation of expectations surprised the participants, 

which led them to look for the cause of their surprise. The absence of a source for the 

surprise eventually led to an illusion of familiarity which was reflected in the FN400 

pattern such that Hit stimuli (fluent + old) were correctly identified as old stimuli, correctly-

rejected stimuli (fluent + new) were identified as new stimuli, but Miss stimuli (not-fluent) 

although old, were categorized as new as the cause of non-fluency could not be attributed 

to the oldness of the stimuli. This argument is based on the assumption that new items 

could be perceived fluent based on perceptual features (Snodgrass et al., 1996). 

Furthermore, it appears that the FN400 signal potentially reflected a perceptual fluency 

ERP effect; those stimuli which were perceived more fluently during the encoding task (SR 



 

 

95 

95 

items) were more positive than the new but fluent (CR) stimuli, whereas “Miss” items (i.e. 

SNR during the encoding phase) were the least positive of all (see Figure 3.4). Also, our 

data reveals that the difference between Hit and Miss at the mid-frontal electrode (Fz) 

during the recognition test was almost double of what it was during encoding (Encoding: 

M=0.3; Recognition: M=0.64) revealing that this effect gained from repetition (Bruett & 

Leynes, 2015; Leynes & Zish, 2012). Therefore, the pattern of the FN400 ERPs (Hit > CR 

> Miss) suggests that the basis of discrimination was perceptual fluency repetition leading 

to the discrepancies between expectations and actual experiences (Whittlesea & Williams, 

2001a; Jacoby & Dallas, 1981).  

These observations also support the idea that FN400 is “multiply determined” and 

suggest that different forms of implicit memory may contribute to either relative or absolute 

familiarity in some conditions (Mecklinger et al., 2014; Paller et al., 2012; 2007). It is 

argued that, depending on the context and stimuli, familiarity and conceptual implicit 

memory may co-occur in some circumstances, or that processes other than conceptual 

implicit associations can cause familiarity, or that conceptual implicit processing may 

happen with no resulting familiarity (Paller et al., 2012; 2007; Rugg et al., 2007). 

Therefore, we suspect that the FN400 component here reflected an illusion of familiarity 

that emerged from processing the violations of expectations that were attributed to either 

“oldness” of the stimuli (in some cases) or fluency in other cases  (e.g., ‘‘norms on the fly”, 

Whittlesea & Leboe, 2003). As argued by Leynes and colleagues (2017), the processing of 

discrepancy must be noticed, and expectations must be violated to generate an experience 

of familiarity. Hence, the stimuli that were relatively unique popped out during the “norm 
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on the fly” moment and generated a “familiarity perception strong enough to be revealed 

in the FN400 component (see Figure 3.5). 

The presence of fluency ERP as well as an LPC effect at parietal and centro-parietal 

electrodes supports the idea that recognition was supported by perceptual fluency; Hits 

(correctly remembered stimuli) elicited the highest positive amplitudes at central electrodes 

(C1, Cz, C2) and centro-parietal electrodes. Importantly, this effect was a replication of the 

effect we observed in our previous experiment (see Chapter 2). Results from both 

experiments showed strong discrimination between “Hit” and other response categories 

(Miss and CR) at central electrodes. Multiple studies have shown that correct source 

judgments elicit more positive amplitudes at parietal electrodes during a time window 

similar to that of the LPC effect (i.e., 500-800 ms) (Leynes & Phillips, 2008; Rugg & 

Curran, 2007; Mecklinger, 2006; Rugg & Wilding, 2000; Friedman & Johnson, 2000; 

Wilding, 1999).  

The Grand Comparison Between Experiment 1 and Experiment 2: The grand 

comparison between Experiment 1 (pictures) and Experiment 2 (fractals) supports the idea 

that different forms of implicit memory play a crucial role in learning and encoding. The 

only difference between the two experiments was the level of semantic associations that 

the stimuli carried, and this difference in stimulus context produced a significant difference 

in the FN400 potentials (see Table 3.3). This pattern of results suggests that the FN400 is 

linked to implicit memory. Furthermore, in the absence of conceptual fluency, perceptual 

fluency may help create a perception of familiarity that may appear in the FN400 effect. 

3.5     Conclusion 
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The findings of the current experiment suggest that explicit memory is not the only 

source of familiarity. Different forms of implicit memory (perceptual and conceptual 

fluency) may also contribute to make a stimulus feel familiar. These findings also indicate 

that familiarity and its association with the FN400 are complex. We believe that the 

Discrepancy Attribution Hypothesis provides an alternative explanation for the complex 

nature of familiarity (Whittlesea and Williams, 2001a, 2001b). Our results are compatible 

with previous findings that the FN400 component is multiply determined and reflects a 

number of processes, which could include familiarity and/or conceptual implicit memory 

processing, depending upon the context and type of stimulus (Bruett & Leynes, 2015; 

Lucas & Paller, 2013; Mecklinger et al., 2012); Voss et al., 2012; Paller et al., 2007; 2003). 

Also, perceptual fluency is capable of supporting the process of recognition when the other 

sources of familiarity are not available (Leynes et al., 2017). Collectively, and in agreement 

with previous findings, we suggest that the neural correlates of perceptual (fluency ERP) 

and conceptual (the FN400 component) implicit memory can influence decisions made by 

explicit memory. 

Limitations: It is important to note that the subsequent memory effect (500-1000 ms) 

observed in the present study differs in polarity from those reported in other studies (Paller 

& Wagner, 2002; Friedman, 1998; Paller et al., 2003). These studies have reported more 

positive amplitudes to later remembered items as opposed to later not-remembered items 

during this time window. Further, these stimuli generated a negative component as opposed 

to the LPC signal during the encoding phase, however, a positive LPC signal was observed 

during the recognition test. We are unsure why this polarity difference existed; however, 

different reasons may account for the discrepancy. These polarity differences within the 
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study suggest that several factors may have shaped the LPC or the SME effect. One 

possibility is that different underlying mechanisms may be involved in these processes. For 

instance, the nature of the task or the types of stimuli that may elicit implicit or explicit 

processing may have led to certain interpretive discrepancies (Whittlesea and Leboe, 2003; 

Köhle et al., 2000). A better understanding could be achieved if we could disentangle these 

complex processes, which appear to co-vary in the same time window. Our experimental 

design was not capable of distinguishing different levels of cognitive processing. In future, 
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we would consider a design where we could manipulate different levels of perceptual and 

conceptual fluency during encoding. 
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4    Chapter: The familiarity heuristic and the FN400 effect 

4.1  Introduction 

The FN400 ERP component (a negative deflection at frontal electrode around 400 

ms post-stimulus) results from a number of processes, which could include familiarity 

and/or implicit memory processing depending upon the context (Paller et al., 2017; Bruett 

& Leynes, 2015; Lucas & Paller, 2013; Voss et al., 2012; Paller et al., 2007; Tsivilis et al., 

2001). In our previous experiments, we received mixed evidence that conceptual fluency 

as well as perceptual fluency contribute to the FN400 ERP component (see Chapters 2 and 

3). Given that implicit memory has multiple aspects including perceptual and conceptual 

fluency, it remains to be known how and which aspects of implicit memory affect 

recognition judgments.  

Explicit memory typically refers to conscious voluntary recollection of prior 

experiences, whereas implicit memory refers to another type of memory that involves an 

unconscious, unintentional and involuntary recollection (Jacoby, 1984). The question 

whether recognition memory strictly depends on explicit memory or whether it is 

influenced by the processes related to implicit memory has divided the recognition 

literature into two camps; those who support either the single- or dual-process models of 

recognition. While researchers who support the single-process account and researchers 

who support the dual-process account agree that recollection is a conscious process that 

captures the contextual details of an event, including source information, there is a great 

deal of controversy regarding familiarity, which refers to a sense of oldness with no 

contextual details (Diana et al., 2008; Parks & Yonelinas, 2007; Wixted, 2007). Supporters 

of the ‘dual-process signal detection’ (DPSD) model posit that familiarity and recollection 
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are two distinct expressions of explicit memory that have different underlying neural 

mechanisms (Rugg et al., 2008; Yonelinas et al., 2002; Friedman et al., 2000; Hockley & 

Consoli, 1999; Rugg et al., 1998) and have distinct ERP signatures such that familiarity is 

reflected by the FN400 component whereas recollection is reflected by the late parietal 

component (a positive deflection elicited between 500 - 800 ms time window at parietal 

sites (LPC)) ((Rugg et al., 2008; Rugg & Curran, 2007; Yonelinas et al., 2002; Friedman 

et al., 2000; Rugg et al., 1998). On the other hand, supporters of the ‘single process’ model 

suggest that recognition is determined by the strength of a single, continuously varying 

process that results from the strength of a neural signal in response to a stimulus process, 

of which, familiarity and recollection lie at the two hierarchical levels (Squire et al., 2007; 

Wixted, 2007; Yonelinas, 2002). 

They also assume that implicit memory may support recognition and believe that 

the FN400 component reflects conceptual implicit memory in cases where strong concepts 

are associated with the stimulus (Paller et al., 2012; Nessler et al., 2006; Schott et al., 2005; 

Tulving & Schacter, 1990). While researchers from both sides appear to agree that the LPC 

component reflects the recollection process, the status of the FN400 component remains 

disputed. 

The FN400 resembles the well-known N400 component, which reflects semantic 

or conceptual priming and occurs in the same time window as the FN400 (e.g. 300-500 

ms) (Kutas & Federmeier, 2011; Voss et al., 2010). Priming is an expression of implicit 

memory, which unconsciously facilitates the response to that stimulus based on a previous 

experience with the same or a related stimulus (Schacter & Buckner, 1998; Tulving & 

Schacter, 1992; Schacter, 1987). Priming induces fluency, that is ease of processing, and 
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therefore alters the behavioural measures of a response to a stimulus (Voss et al., 2012; 

Voss et al., 2010; Schacter, & Tulving, 1994; Schacter & Buckner, 1998; Roediger et al., 

1987; Schacter, 1987). This could be done in multiple ways based on the stimulus type and 

the relationship between the priming stimulus and the test stimulus (Schacter & Buckner, 

1998; Whittlesea, 1993). For instance, the repetition of perceptually similar stimuli induces 

an ease of sensory processing referred to as perceptual fluency that does not involve the 

meanings of the stimuli (Voss et al., 2012; Paller et al., 2007). In contrast, a word prime 

right before a stimulus will enhance conceptual fluency driven by the meaning of the 

stimulus - information that is beyond the physical characteristics of the stimuli (Paller et 

al., 2007). In most cases, both perceptual and conceptual fluency are attached to a stimulus 

because it is difficult to disassociate one from the other (Guo et al., 2015; Voss et al., 

2010).  

Studies have linked conceptual and perceptual fluency to different neural 

mechanisms (Wang et al., 2015; Voss et al., 2010; Woollams et al., 2008). Thus, if these 

fluencies contribute to familiarity, it is likely that familiarity originates from multiple 

neural sources (Nessler et al., 2005; Henson, 2003). Moreover, the FN400 effect is related 

to the famous N400 effect, which is linked to conceptual priming (Voss & Paller, 2012; 

Paller et al., 2007; Kutas & Nessler et al., 2005; Kutas & Hillyard, 1980), suggesting that 

conceptual fluency may be capable of providing the basis for the FN400 effect. 

Furthermore, findings from recent studies suggest that it is conceptual fluency that 

contributes to FN400 (Paller et al., 2012; Voss et al., 2012; Voss & Paller, 2010a). In fact, 

it has been claimed that in a paradigm where conceptual memory co-varies with the 
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familiarity indices, the FN400 component captures conceptual implicit memory instead of 

familiarity (Paller et al., 2012; Voss et al., 2012).  

Voss and Paller (2012) reviewed a series of experiments to disentangle the neural 

correlates of conceptual implicit memory and familiarity using different stimuli that 

involved meaningfulness and priming. One of their experiments contrasted ERPs linked to 

different kinds of squiggles such that some squiggles could evoke conceptual associations 

whereas others had no meanings associated with them (Voss et al., 2011; 2010; Voss & 

Paller, 2007). In their recognition test, the FN400 component was found to correlate with 

familiarity of meaningful squiggles only, indicating that FN400 captured conceptual 

implicit memory and familiarity. No FN400 was observed for meaningless squiggles (Voss 

& Paller, 2007). In their other experiments, they used the same squiggles with related and 

unrelated primes to enhance the effects of conceptual implicit memory and familiarity. 

They found that the size of the FN400 effect was directly related to the degree of conceptual 

priming of meaningful squiggles (Voss, et al., 2010).  In other words, the FN400 

amplitudes seem to capture familiarity because familiarity accompanies conceptual fluency 

in most cases (Voss, et al., 2012; Lucas et al., 2012; Woollams et al., 2008). Put another 

way, conceptual fluency seems to contaminate the neural measures of familiarity when 

familiarity and conceptual implicit processing co-occur, creating an FN400 effect. 

However, Mecklinger and colleagues (2012) did not agree with this claim, and showed in 

their study that the FN400 amplitudes do not always correlate with the behavioural 

measures of conceptual priming even though it co-varies with perceptual manipulations 

(Mecklinger et al., 2012; Stenberg et al., 2009). They argued that conceptual implicit 

memory may contribute to FN400 in some circumstances, but it is unlikely that the FN400 
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exclusively reflects conceptual implicit memory (Mecklinger et al., 2012). Other studies 

have reported that perceptual fluency may also contribute to relative familiarity and 

therefore may influence the FN400 (Lucas et al., 2012; Leynes and Zish, 2012; Woollams 

et al., 2008; Nessler et al., 2005; Whittlesea, 2002; Rajaram, 1993; Jacoby & Whitehouse, 

1989). However, perceptual fluency is attributed to familiarity in cases when participants 

are uncertain about the source of fluency (Whittlesea & Williams, 2001a, 2001b).  

Conversely, the perceptual fluency effect is linked to a positive ERP component 

around 300 ms post stimulus at the parietal region of the brain (Schott et al., 2002; Tulving 

& Schacter, 1990). Similarly, we found in our previous experiments that ERP indices of 

recognition judgments were affected by the perceptual fluency, such that subsequently-

remembered stimuli elicited fewer positive amplitudes than subsequently-not-remembered 

stimuli at parietal electrodes during the 200–400 ms interval (Chapter 2 and 3). We called 

this effect a fluency ERP as it has been linked to the perceptual fluency of stimuli (Bruett 

& Leynes, 2015; Leynes & Zish, 2012; Voss et al., 2012; Paller et al., 2007). Schott and 

colleagues (2002) observed that processes associated with perceptual fluency occurred 

earlier than those processes that were associated with explicit memory. Given that 

perceptual fluency is another form of implicit memory, Jacoby and Dallas (1981) noted 

that the “oldness” of an item makes it more fluent when processed (Jacoby & Dallas, 1981). 

Studies have shown that perceptually fluent but novel items may get mistaken as old items 

if the participants are uncertain about the source of fluency (Westerman, 2008; Whittlesea 

& Williams, 2001a, 2001b). In other words, participants are more likely to attribute 

“perceptual fluency” to familiarity as a result of a past experience (Olds and Westerman, 

2012; Kurilla & Westerman, 2008; Nessler et al., 2005; Westerman et al., 2002; Whittlesea, 
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2002; Westerman, 2001; Whittlesea et al., 1990; Jacoby & Whitehouse, 1989). For 

example, Whittlesea and Williams (1998) instructed participants to memorize words from 

a pool of real words (e.g., frog, cancer) and pseudohomophones (e.g., phrawg, kanser) in 

random order. During recognition, they were asked to read some of the old words mixed 

randomly with some new words and nonwords and were instructed to decide if they had 

seen the words previously. Although, the real words were more fluent than the nonwords, 

some new pseudohomophones were erroneously “recognized” as items from the past 

(study). Therefore, Whittlesea and Williams (1998) suggested that familiarity resulted not 

only from the absolute fluency of the real words but also emerged erroneously from the 

nonwords that were processed relatively more fluently than expected.  

According to the discrepancy-attribution hypothesis, unexpected fluency of 

performance is erroneously attributed to familiarity (Whittlesea & Williams, 2001a; 

2001b). If the processing of a stimulus is easier than expected, and the source of the fluency 

enhancement is unknown, this unexpected ease is surprising. The ‘surprise’ caused by 

unexpected fluency, is unconsciously attributed to an experience in the past and to a 

subjective feeling of familiarity in the present (Whittlesea & Leboe, 2003; Jacoby & 

Whitehouse, 1989). Whittlesea and Leboe (2003) argued that the feeling of familiarity is 

an acknowledgment of the perception that the processing of an event is unknowingly 

strange. Who is this person in the mall? Why does she look so familiar? Perhaps, she is 

someone from my workplace! Therefore the discrepancy between one’s expectations and 

one’s experience of processing the event (‘that person is familiar to me’) engages an 

attribution process based on the magnitude of the violation, which eventually leads to an 

evaluation of the fluidity of the processing.  For example, it was reported that when clear 
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and blurred images of common objects were randomly presented, an FN400 effect was 

observed. Apparently, random variations in perceptual fluency helped participants develop 

a context, based on which the processing of some stimuli (clear images) were unexpectedly 

more fluent than others based on the “norm” generated by the participants (e.g., “norm on 

the fly,'' Kahneman & Miller, 1986). This violation of expectation was unconsciously 

attributed to familiarity, hence this discrepancy was reflected in the FN400 component 

(Leynes & Zish, 2012).  Whittlesea et al. (2001a; 2001b) called this attributed familiarity 

‘relative familiarity’ (Whittlesea & Leboe, 2003; Whittlesea, 2002; Whittlesea & Williams, 

2001a, 2001b). On the other hand, variations in perceptual features of face types (Nessler 

et al., 2005) or variations in repetition (Woollams et al., 2008) correlated with a fluency 

ERP that was temporally and spatially distinct from the FN400 effect and the enhanced 

fluency was attributed to familiarity.   

To sum it up, this debate suggests that the role of the fluency ERP is key to 

understanding the heuristic of familiarity (Leboe et al., 2000). Knowing that the FN400 

component indexes an unknown combination of familiarity and implicit memory including 

processes of perceptual and conceptual fluency (Voss & Paller, 2017; Leynes & Bruett, 

2017), the relative contribution of these fluencies to creating the experience of familiarity 

and their impact on the FN400 component is unclear (Leynes & Zish, 2012; Whittlesea & 

Leboe, 2003; Whittlesea, 2002; Whittlesea & Williams, 2001a, 2001b). A predominant 

method for manipulating familiarity is by exposing participants to stimuli a varying number 

of times (Stenberg et al., 2009; Jacoby, 1984; Mandler, 1980). However, the repetition of 

a stimulus appears to initiate several cognitive processes, including perceptual fluency, 

conceptual fluency, and/or familiarity, as all three of these phenomena co-vary with 
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repetition (Bruett & Leynes, 2015; Leynes & Zish, 2012) making that their respective 

neural signatures difficult to disentangle (Voss et al., 2010; Paller et al., 2007; Voss et al., 

2007). Therefore, a new design is required to disentangle these processes for examination. 

4.2 Hypothesis 

Traditionally, much of previous literature on encoding has focused on classic 

subsequent memory effects (SME) and involve a single presentation of a stimulus that 

distinguishes subsequently remembered items from subsequently forgotten items. To our 

knowledge, few studies have examined effects beyond the SME. Griffin and colleagues 

(2013) attempted to examine the differences between implicit and explicit memory effects 

on the FN400 component during encoding when participants were engaged in implicit 

recognition during an incidental encoding task (Griffin et al., 2013; Reder et al., 2009). 

They showed that FN400 effects can reliably appear at encoding. Griffin and colleagues 

demonstrated that the FN400 ERP traditionally thought to reflect explicit memory 

processes was present when participants were engaged in implicit recognition during an 

incidental encoding task (Griffin et al., 2013; Reder et al., 2009). 

ERP components traditionally associated with explicit memory tests at the encoding stage were 

measured (Griffin et al., 2013). We expected that back-sorting based on response-based performance from 

the recognition test would reveal the effects of priming, fluency and repetition without the contamination of 

associated motor responses (Griffin et al., 2013; Reder et al., 2009). This paradigm allowed us to examine 

the relationship between FN400 amplitudes and priming and repetition, in light of the previous research that 

has demonstrated that the FN400 component is associated with both conceptual implicit memory (Voss & 

Paller, 2017; Voss et al., 2010; Voss and Paller, 2009; Paller et al., 2007) and repetition (Rugg et al., 2008; 

Rugg & Curran, 2007; Yonelinas et al., 2002; Friedman et al., 2000; Rugg et al., 1998).    

In an attempt to disentangle the “mix of familiarity and other co-occurring memory phenomena” 

(Paller et al., 2007), we employed a subsequent-memory design where we manipulated perceptual fluency, 
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conceptual fluency, and repetition-driven familiarity. A shallow task was chosen to ensure that our ERPs 

captured the familiarity effect and not recollection. The duration of presentation of the images was brief to 

generate only weak memory traces such that retrieval would be based on familiarity and not recollection 

(Rugg et al., 1998).  The experimental protocol involved presenting primed and unprimed images of common 

objects one at a time. Similarly, some images were presented more than once to examine the effects of 

repetition and to increase familiarity based on repetition. In order to uncover the effects of perceptual fluency 

on recognition performance, the image clarity was manipulated by applying two levels of blur to some of 

these images. Additionally, guided by the discrepancy attribution hypothesis (Whittlesea & Williams, 2001a, 

2001b) we also examined the link between fluency and familiarity (the FN400 component). The multi-factor 

design allowed us to test multiple sources of fluency and how discrepancies may arise from different 

combinations of these fluencies. In sum, we attempted to disentangle the effects of many of the factors that 

affect memory encoding or recognition performance such as familiarity, implicit memory or fluency of the 

images, but remain in dispute (see Figure 4.1). Event-related potentials (ERPs) were recorded while 

participants viewed primed and unprimed, blurred and clear images of common objects that were presented 

once, twice or three times during the encoding phase. Based on these manipulations stated above, we expected 

that: 

1. Given that familiarity may result from assessing inconsistencies between experienced and expected 

fluencies (Whittlesea & Leboe, 2003), we expected that the primed stimuli would become more fluent 

than unprimed stimuli which would lead to larger FN400 effects in the primed condition.  

2. The fluency differences between blurred and clear images would result in a fluency ERP effect.  

3. If the FN400 component reflects processes involved in conceptual implicit memory, then primed stimuli 

should trigger a robust FN400 effect, as conceptual priming would provide a strong basis for implicit 

memory.  

4. Or, if the FN400 is driven by repetition-based familiarity, then repeated stimuli should elicit a stronger 

FN400 effect.  

Additionally, the manipulation of image clarity allowed us to examine the effects of perceptual 

fluency on the subsequent fluency ERP effect and the FN400.  
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4.3 Methods 

4.3.1 Participants 

Twenty-one students (11 females, ages 18-22 years) at Wilfrid Laurier University 

were recruited through the online Participant Research Experience Program (PREP) system 

and consented to the procedures approved by the Wilfrid Laurier University Research 

Ethics Board. These students participated for course credit and were healthy, right-handed 

individuals with normal or corrected to normal vision. No participant reported ever 

experiencing a psychiatric illness.  

4.3.2 Stimuli and Procedures:  

The stimulus pool consisted of three blocks that each included 108 black and white 

pictures of common objects. These blocks varied in terms of filter conditions (F0, F1, and 

F2) such that block one consisted of unaltered images (F0), block two consisted of lightly 

blurred but recognizable images (F1) and block three consisted of highly blurred images 

(F2). To blur the images, we added Gaussian noise (a MATLAB function) of variance 0.01 

(F1, slightly blurred) and 0.07 (F2, highly blurred). Furthermore, within each block, 36 

images were presented once (R1), 36 were presented twice (R2), and 36 were presented 

three times (R3).  Half of the stimuli in each block were primed using words presented in 

black Arial font of font-size 44. The words were conceptually related to the corresponding 

image and presented for 50 ms immediately prior to the display of the stimulus (for more 

details see Appendix A1). The primes were presented before the last presentation of the 

image during the encoding phase. In other words, for an image that was repeated three 

times, the prime was presented right before the third presentation. The repeated images in 

the study phase were randomized within the block; however, each participant was 
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presented with the same order of images.  Participants were informed in advance that they 

would be tested for their memory of the photographs and to watch each item carefully so 

that they could subsequently perform the recognition memory test.  

There were short breaks after each block. Participants initiated each block by 

pressing a button on a response pad. The rest of the trials of the block were automatically 

run with no control from participants. Each trial started with a 1,000 ms pre-encoding 

period, where participants had to focus on a blank screen with a central fixation dot. Each 

image was presented for 250 ms, followed by a 1,000-ms encoding period, during which 

the computer screen remained blank.  

After a short break, participants performed the recognition session during which 

524 pictures (324 old, 200 new) were randomly presented to them. During the recognition 

test, pictures were presented on the screen until a response was recorded. Participants were 

instructed to press ‘3’ on the response pad if they remembered seeing the picture or press 

‘4’ if they did not previously see the picture.  
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Figure 4.1. Schematic diagram of the encoding phase of the experiment. 

 

4.3.3 EEG data and Acquisition  

EEG data were recorded using a NeuroScan GSN 64 1.0 Ag/AgCl electrode Quik-

cap (Compumedics, Charlotte, NC, USA) in a sound-attenuated, electrically shielded booth 

(Raymond EMC, Ottawa, ON, Canada) while participants performed the encoding and 

recognition tasks. Electrodes were positioned according to the International 10-20 EEG 

System with one ground electrode such that electrodes were fixed over the frontal lobes 

(FP1, FP2, F7, F3, FZ, F4, F8, FC3, FCZ, FC4), temporal lobes (FT7, FT8, T7, T8, TP7, 

TP8), parietal lobes (CP3, CPZ, CP4, P7, PZ, P4, P8), occipital lobes (O1, O2), and at the 

central position of the scalp (C3, CZ, C4). Electrode CZ was visually centered above the 

central vertex found halfway between the glabella and the external occipital protuberance 
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medially and the preauricular points laterally. Electro-gel was used to improve conduction 

between the skin and the electrode surface. Surface electromyographic electrodes were 

positioned at the outer canthi of both eyes and above and below the left eye. EEG signals 

were initially referenced to the mastoid electrodes (M1, M2), which were placed on the 

mastoid process behind each ear. Impedances were kept below 5kΩ. The presentation of 

stimuli was controlled by programmable experiment generation software Stim2 

(Compumedics, Charlotte, NC, USA) and signals were acquired across all 64 electrodes.  

4.3.4 Data Processing 

Behavioural data: The performance in the recognition task was analyzed first. We 

investigated participant task accuracy and reaction time. Each participant’s Hit, Miss, 

Correct-Rejection (CR) and False Alarm rates (FA) were computed for each condition. The 

perceptual sensitivity of the recognition task was estimated using signal detection theory 

(SDT) by computing A′ for each participant. The signal detection measure A′, which is a 

measure of sensitivity, was calculated by computing Hit rates and FA rates.  Performance 

during the encoding phase was compared between the subsequent hits (SH) and subsequent 

misses (SM) trials based on the performance in the recognition task. Reaction times during 

the recognition task were analyzed using a one-way ANOVA for each condition whereas 

the hit performance for each condition was analyzed using a repeated-measures ANOVA 

model with Item type (Primed, Unprimed), Filter (F0, F1, F3) and Repetition (R1, R2, R3) 

as factors.  
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EEG Data: Custom MATLAB scripts in conjunction with the open-source EEGLAB 

toolbox (Delorme and Makeig 2004, http://sccn.ucsd.edu/eeglab) were used to analyze the 

data. We inspected and corrected the continuous data for outliers, body movements, and 

muscle and cardiac artifacts by using Artifact Subspace Reconstruction (ASR) (Bigdely-

Shamlo et al., 2015). For further artifact correction, independent component analysis 

(Delorme and Makeig 2004) was used (see Chapter 2 for detailed information). Statistical 

analyses were carried out using SPSS Statistics (SPSS, Inc., 2009, Chicago, IL, 

www.spss.com) on the mean voltage differences at the corresponding electrodes and time 

windows. 

Signals were averaged, re-referenced and initially high pass filtered (1 Hz) 

(Winkler et al., 2015). For ERP analysis, signals were passband filtered between 1 and 30 

Hz. Trials above 50 μV voltage potential from baseline were rejected. On average, 10% of 

the trials per participant were rejected. ERP components were computed as the average 

activity relative to a -200 to 0 ms pre-stimulus baseline activity (Luck, 2014). ERPs 

recorded during the encoding phase were grouped into subsequently hit items (SH) and 

subsequently missed items (SM), based on the participants’ responses during the 

recognition task for each condition (Voss et al., 2010; Paller & Wagner, 2002; Rugg & 

Allan, 2000). Findings from previous studies have linked perceptual fluency with an ERP 

~200 to 400 ms post stimulus onset, where old items elicit more negative ERPs than new 

items (e.g., Wang et al., 2015; Bruett & Leynes, 2015; Leynes & Zish, 2012).  

To investigate the hypotheses, we used several levels of analysis. First we analyzed 

our ERPs with repeated-measures ANOVA with the factors of SME (Subsequently-

Hit/SH, Subsequently Miss/SM) X Prime (Primed, Unprimed) X Repetitions (R1, R2, R3) 
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X Filter (F0, F1, F3) for the encoding phase based on the performance from recognition. 

We conducted this analysis on frontal and mid-frontal electrodes for the FN400 effect, 

whereas for the fluency ERP we did this analysis on posterior and occipital electrodes. 

Next, a series of pair-wise, post hoc t-tests further examined ERP differences across 

response types. Fluency ERPs were quantified by computing the activity during the 200 – 

400 ms interval at all posterior electrodes as well as the central electrodes (C3, C1, CZ, C2, 

and C4). The FN400 analyses examined ERP measures during the 300–500 ms time 

interval at anterior electrodes sites as well as central electrodes. Significant effects were 

corrected for non-sphericity using Greenhouse–Geisser corrections, and significant effects 

are reported with the corrected degrees of freedom when appropriate. 

4.4 Results 

4.4.1 Behavioural Results 

Our results for memory performance showed that participants, in general, were 

capable of discriminating old from new pictures above chance, as indicated by an average 

A′ of 0.77 (SD: +/− .08; range 0.73 to 0.80). The further the A′ value is away from 0.5; the 

better is the performance of the participants. Thus, a A′ value of 0.77 would mean that 

participants were able to discriminate well above chance. 

Table 4.1 displays means and standard deviations for hits and misses and the 

corresponding response times for each condition. A three-way interaction of priming, filter 

and repetition was observed, F (4, 1508) = 6.35, p < 0.001. Further analysis revealed that 

repetition as well as priming enhanced the recognition performance when images were 

blurred (F (4, 1508) = 29.11, p < 0.001; F (4, 1508) = 7.29, p = 0.001); however, repetition 

had no effect on priming (F < 1). Additionally, each factor (prime, filter and repetition) 
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significantly differed from each other revealing that repetition had the strongest effect of 

all (Prime: F(1, 377) = 11.76, p = 0.001, η2 = .03; Filter: F(2,754) = 116.55, p < 0.001, η2 = 

.24; Repetition: F(2,754) = 127.27, p < 0.001, η2 = .25). 

 

Table 4.1 

Proportion of Hits and response time (ms) values, reported along with their standard 

deviations across participants in parentheses for each condition. 
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Figure 4.2. Subsequent Hit accuracy percentage for primed and unprimed images. Blue, green and 

yellow bars represent one, two and three exposures of the images, whereas F0, F1, and F2 illustrates 

unfiltered, slightly filtered and highly filtered images, respectively. 

 

4.4.2     ERP Results 

At the encoding phase, for the two time windows reflecting the Fluency ERP (200 

– 400 ms) and the FN400 (300 – 500 ms), a three-way repeated- measures ANOVA with 

SME (Subsequent Hit /SH, Subsequent Miss/SM) X Prime effect (Primed, Unprimed) X 

Filter (F0, F1, F2) X Repetition (R1, R2, R3) was computed. The probe for the FN400 

effect was focused on frontal and fronto central electrodes whereas the fluency ERP was 

more focused on centro-parietal and posterior electrodes. A general overview of the grand-

average ERP data of both ERP components is presented in Figure 4.3. A group comparison 

analysis for each condition revealed significant differences for the following intervals, 

which are listed as follows: 
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Fluency ERP (200–400 ms): A four-way repeated-measures ANOVA revealed several 

significant interactions and main effects of all factors on the ERP within the fluency ERP 

window during encoding at certain electrode sites (see Figure 4.3).  

 A three-way interaction with SME X Repetition X Filter was observed at right as 

well as the left parieto-occipital electrodes revealing that the fluency ERP was affected by 

the clarity of the images when those images were presented repeatedly (PO3: F(4,80) = 

3.79, p = 0.007, η2 = .16; PO5: F(4,80) = 3.5, p = 0.01, η2 = .15; PO7: F(4,80) = 2.66, p = 

0.04, η2 = .12; P7: F(4,80) = 3.87, p = 0.006, η2 = .16) (see Figure 4.4, which shows the 

PO3 electrode where this effect was maximal). Furthermore, the interaction between clarity 

and priming was maximal at mid-occipital and mid-parietal sites (Prime X Filter: F(2,40) 

= 3.4, p = 0.04, η2 = .15). Additionally, an interaction of Prime and fluency ERP was 

observed at central parietal and left parietal sites only (Prime X Fluency SME: F(1,20) = 

4.94, p = 0.04, η2 = .2). 

It is apparent from Figure 4.3 that the fluency subsequent memory effect (SME) 

was concentrated at central and centro-parietal sites of the brain (CZ: F(1, 20) = 3.88, p = 

0.02, η2 = .24; CP1: F(1,20) = 7.02, p < 0.02, η2 = .26; CPZ: F(1,20) = 6.49, p < 0.02, η2 = 

.25; CP2: F(1,20) = 5.91, p = 0.03, η2 = .23). The topographic effect map (Figure 4.3, and 

also Figure. 4.6) indicates that the effect of image clarity (Filter) on the fluency ERP 

component was bilateral. However, the priming effect was more concentrated on the left 

site, particularly at parieto-occipital sites (P07: F(1, 20) = 5.41, p = 0.03, η2 = .21; P05: F(1, 

20) = 5.85, p < 0.03, η2 = .23; O1: F(1, 20) = 9.6, p = 0.006, η2 = .32)(see Figure 8). 

Moreover, a repetition effect was observed mostly at the right-parietal site (P8: F(1, 20) = 

7.76, p = 0.001, η2 = .28; P6: F(1, 20) = 8.38, p = 0.004, η2 = .30) (see Figure 4.9).  
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In sum, the filter effect was bilateral at posterior regions; however, the interaction 

between filter and priming was more prominent at central occipital and left parietal regions, 

whereas the filter effect interacted with repetition at the right parietal sites (see Figure 4.3).  

FN400 (300 – 500 ms): A four-way repeated-measure ANOVA revealed a significant 

three-way interaction between the FN400 SME, Prime and Repetition at right fronto-

central sites (FC6: F(2,40) = 7.4, p = 0.002, η2 = .27). Further analysis revealed that not 

only priming affected the FN400 SME potentials but also repetition was observed to have 

a main effect at these sites (FN400 SME X Prime: F(1,20) = 6.9, p = 0.02, η2 = .26; 

Repetition: F(1,20) = 5.69, p = 0.007, η2 = .22) (see Figure 4.3).  

 Also, a three-way interaction of the FN400 SME X Repetition X Prime was 

observed at right fronto-polar sites (FN400 SME X Repetition X Filter: F(4,80) = 2.71, p 

= 0.04, η2 = .12).  Further analysis revealed that the FN400 potentials were affected by 

priming only during the first exposure. Primed stimuli were more negative than unprimed 

stimuli for all filter conditions. During the second exposure, unprimed stimuli were more 

positive (FN400 SME X Prime: F(1,20) = 6.22, p = 0.02, η2 = .24) (see Figure 4.3).  

Likewise, the FN400 effect seemed to be driven by Filter manipulations at the left 

frontal and fronto-central sites of the brain (FN400 SME X Filter: F(2,40) = 3.6, p = 0.04, 

η2 = .15; Filter: F(2,40) = 4.75, p = 0.01, η2 = .19) (see Figure 13). Moreover, the FN400 

amplitudes appeared to be driven by repetition at the FC1 and C4 electrodes only; however, 

the effect was maximal at the FC1 electrode (FN400 SME X Repetition (FC1): F(2,40) = 

4.95, p = 0.01, η2 = .20; FN400 SME X Repetition (C4): F(2,40) = 3.28, p = 0.05, η2 = .14). 

Collectively, it was observed that the priming effect on the FN400 component was 

confined mostly towards anterior and right anterior sites of the scalp (see Figure 4.3). 
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However, the filter effect had an impact on FN400 SME potentials at the left fronto-central 

regions. An in-depth analysis of this interaction at the FC5 electrode revealed that this 

effect was observed in the absence of any filter effect (see Figure 4.3). 
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Figure 4.3. The significant results of the four-way repeated-measures ANOVA with SME 

(Subsequent Hit /SH, Subsequent Miss/SM) X Prime effect (Primed, Unprimed) X Filter (F0, F1, 

F2) X Repetition (R1, R2, R3) for the two time windows reflecting the Fluency ERP (200 – 400 

ms) and FN400 (300 – 500 ms) are depicted in a topographic map revealing the effect and the 

location of the effect. Each colored circle represents a significant main effect and interaction. No 

significant effect was observed at the electrode sites with white circles.   
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Figure 4.4. Grand-average ERPs at the mid-central (CZ) electrode. (a) (top panel) shows ERPs 

elicited by primed SR and SM stimuli, averaged across all participants, whereas (b) shows ERPs 

elicited by unprimed stimuli. 
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Figure 4.5. Grand-average ERPs elicited by primed and unprimed stimuli at FPZ electrode. R1, 

R2, and R3 corresponds to repetition 1, 2 and 3 respectively. Whereas F0, F1, and F2 represent 

clear, slightly blurred and highly blurred images respectively. 
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Figure 4.6. Grand-average ERPs elicited by primed and unprimed stimuli at FP2 electrode. Both 

Figure 5.5 and 5.6 reveal that primed ERPs elicited by first exposure (R1) were more negative than 

the unprimed stimuli. Similar effect could be seen by highly blurred R3 condition. 
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Figure 4.7. The grand average ERP at (a) PO7 and (b) PO8  electrodes reveal that filter condition 

(perceptual fluency) affected the fluency ERP bilaterally . 
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Figure 4.8. Grand-average ERPs elicited by primed and unprimed stimuli at O1 electrode. For 

primed condition, R3 stimuli were the least negative around 200 ms post-stimulus, particularly for 

clear images.  
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Figure 4.9. Grand-average ERPs elicited by primed and unprimed stimuli at P6 electrode based on 

perceptual fluency (filter condition). Figure reveals that for both primed and unprimed conditions, 

ERPs elicited by clear images during third exposure (R3) were the least positive. 
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4.5     Discussion 

The main purpose of the present study was to examine the concept of familiarity by 

looking at the encoding strategies that influence the process of incidental recognition. 

Perceptual fluency, conceptual implicit priming and repetition were manipulated to 

examine their effects on the FN400 and fluency components. ur goal was to discriminate 

between two processes that have been proposed to elicit the FN400 effect. We 

hypothesized that if the FN400 captures conceptual implicit memory, then primed stimuli 

should elicit stronger FN400 effects regardless of the repetition condition. However, if the 

FN400 reflects familiarity as an exhibit of explicit memory then repeated stimuli should 

elicit strong FN400 effects regardless of the primed and unprimed condition. Additionally, 

the variations in perceptual fluency should reveal the differences in the fluency ERP and 

its influence on the FN400 component. We hypothesized that if familiarity arises from 

assessing inconsistencies between experienced and expected fluencies (Whittlesea and 

Williams, 2001a, 2001b), the discrepancies between these fluencies should influence 

FN400 as well as the fluency ERP. Although, the pattern of our behavioural results and 

ERP effects provided convergent support for the view that the FN400 component is 

multiply determined, there are several important points worthy of careful consideration. 

Our behavioural results reveal that participants took less time to respond to primed 

stimuli that were clear or slightly blurred images. However, the highly blurred stimuli 

showed slower response times when primed as compared to unprimed stimuli (see Table. 

4.1). The priming effect influenced the recognition judgments only when images were not 

clear (i.e. F1, F2 conditions). Interestingly, no significant difference was observed between 

primed and unprimed conditions when it came to subsequent hit rate in response to clear 
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images. That said, for these two filter conditions, hit rate linearly increased with each 

repetition (see Figure 4.2). However, this was not the case with the highly blurred images. 

Participants recalled fewer images that were from the high filter condition and the 

responses to these stimuli were the slowest. It is apparent from the behavioural results that 

repetition and clarity contributed to recognition judgments. Our ERP results showed that 

there was no recollection effect (i.e. no difference between Hits and Misses in the late 

positive component (LPC)) revealing that the interaction context created by the clarity and 

repetition conditions only contributed to the fluency and the FN400 components (Leynes 

& Zish, 2012; Whittlesea & Williams, 2001a, 2001b). 

 It is important to note that previous studies including our previous work (see 

Chapters 2 and 3) suggested that the FN400 component is not entirely associated with 

explicit memory and can be observed during encoding (Griffin et al, 2013; Reder et al., 

2009). These studies have shown that FN400 during encoding was not distinct, in terms of 

time window or scalp localization, from the FN400 component typically observed in 

recognition phase.  

The pattern of ERP results suggests that in some cases the FN400 ERP component 

was affected by conceptual priming and in other cases it was affected by familiarity 

(repetition based explicit memory) or even perceptual fluency. Likewise, the fluency ERP 

showed an interesting pattern of interactions and an effect at posterior sites, which is 

discussed in the following paragraphs. The fluency and FN400 effects were dissociated by 

location and time. The distribution of these effects is shown in the head map (see Figure. 

4.3). This map reveals that the priming effect was mostly confined to the anterior and right-

anterior sites, familiarity was mid-frontal based, and perceptual fluency was bilaterally 
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distributed over parietal and occipital sites (see Figure 4.3). ERP results at the mid-frontal 

and central electrodes revealed that SH stimuli triggered relatively more positive FN400 

potentials than SM stimuli during the first exposure of the stimuli (R1 condition) regardless 

of whether the stimuli were primed or not or/and blurred or clear (see Figure 4.4a and 4.4b). 

Additionally, it could be seen that primed highly blurred SH stimuli elicited more positive 

FN400 potentials for all repetitions whereas unprimed stimuli did not elicit such an effect 

(Figure 4.4a). Similar results were reported by other studies revealing that conceptual 

fluency affects behavioural measures of subsequent recognition (Wang et al., 2015; Guo et 

al., 2015; Paller et al., 2007). It is noteworthy that the conceptual implicit priming factor 

altered the behavioural responses when clarity was manipulated suggesting that when the 

perceptual information was altered, subjects tended to rely on conceptual priming more 

than repetition (Figure 4.4a and 4.4b)  These findings are challenging to reconcile with 

either the view that “FN400 reflects familiarity” or that the “FN400 captures conceptual 

implicit memory”, given that there was a clear distinction between the conditions (primed 

vs. unprimed, repetition, and filters). 

FN400 Reflects Familiarity? 

First of all, our results showed that the behavioural indices of recognition were 

altered by repetition such that hit rate went up with each repetition in all cases except for 

the highly blurred stimuli￼(i.e. F2 condition). This finding may suggest that familiarity 

supported recognition, however, this behavioural effect of familiarity was revealed in the 

FN400 component only at the mid-central electrode (CZ). However, our ERP results did 

show that the filter condition also affected the FN400 component. It is noteworthy that SH 

primed stimuli at the mid-central electrodes were more positive than the SM stimuli. 
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However, this effect was observed either during the first exposure of the stimulus or when 

the stimulus was blurred (F1 or F2 conditions) (see Figure 4a and b, also see Figure 4.3). 

These results indicate that the FN400 ERP is affected by perceptual fluency only under 

certain conditions (Voss et al., 2012). Likewise, similar observations at other electrodes 

(anterior and right-frontal) lead to the possibility that different sources of fluency may have 

interacted with the processes related to familiarity and altered the FN400 component (see 

Figure 4.3). Therefore, in our study the FN400 did not reflect stimulus-induced familiarity, 

but instead may have reflected a top-down mechanism triggered by the stimulus (Leynes 

et al., 2017; Bruett & Leynes, 2015; Wang et al., 2015; Gazzaley & Nobre, 2012).  

FN400 Reflects Conceptual Fluency? 

Displaying a name or concept before a conceptually related image was expected to 

evoke a robust FN400 effect. Although conceptual priming affected behavioural responses 

(i.e. quicker response times to primed stimuli), this effect was not captured by the FN400 

component. This observation is contrary to the claim that conceptual memory co-varies 

with the FN400 component more than familiarity (Paller et al., 2012; Voss et al., 2012). 

However, our results do support the claim that the FN400 amplitudes do not always 

correlate with the behavioural measures of conceptual priming (Mecklinger et al., 2012; 

Stenberg et al., 2009), suggesting that conceptual implicit memory may contribute to 

FN400 in some cases but not always. The question then becomes what possible system 

could the FN400 reflect that sometimes involves implicit memory, but not always? Reder 

and colleagues (2009) argued that the proposed distinction between implicit and explicit 

memory as two isolated and distinct systems is not valid due to the fact that some implicit 

and explicit memory tasks share the same memory representations (see a comprehensive 
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review by Reder et al., 2009; also Turk-Browne et al., 2006). They further argued that the 

distinction is likely task-driven, and that some tasks will involve implicit memory or 

explicit, or both, depending on the nature of the task (Griffin et al., 2013; Reder et al., 2009; 

Roediger & McDermott, 1993; Roediger et al., 1990)). 

Interestingly, in our study, FN400 values were slightly more positive at the mid-

frontal and central electrodes for primed stimuli than unprimed stimuli during the first 

exposure or when the stimuli were filtered, however, this effect was reversed at the fronto-

polar sites (see Figure 4.3). This interaction between the perceptual fluency of the stimuli 

and conceptual priming has been noted previously by Mollison and Curran (2012), who 

found that the FN400 amplitudes vary when perceptual information is manipulated and 

conceptual information is held constant (Mollison & Curran, 2012). This finding supports 

the idea that different forms of implicit memory (perceptual and conceptual fluency) 

contribute to familiarity through a discrepancy attribution framework revealing that 

familiarity is a multiply determined phenomenon (Lucas & Paller, 2013; Mecklinger et al, 

2012; Mollison & Curran, 2012).   

Fluency Effect and Recognition Judgments 

Last but not the least, our results also indicate that perceptual fluency influenced 

recognition judgments (see Figure 4.2). A fluency ERP driven by an image clarity 

interaction was observed bilaterally at posterior regions; however, the interaction between 

fluency ERP and priming occurred more towards central occipital and left parietal regions, 

whereas the filter conditions interacted with repetition at the right parietal sites (see Figure 

4.3). Assessment of the fluency ERPs at the PO7 and PO8 electrodes revealed that this 

effect was more pronounced for the stimuli that were presented three times, irrespective of 
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whether they were primed or not (see Figure 4.7). Interestingly, the fluency ERP effect 

suggested graded levels of perceptual fluency such that clear images (F0 condition) showed 

the least positive voltages (F0 < F1 < F2). However, it is not clear why no such effect was 

observed during the first and second presentation of the stimuli (R1 and R2 conditions). 

These results yet again confirm that the fluency ERP is closely linked to perceptual fluency 

and F0 images being the most fluent used the least neuronal resources, and hence exhibited 

the least positive amplitudes of all (Lucas & Paller, 2013; Voss et al., 2012; Paller et al., 

2007).  

Likewise, a similar fluency ERP effect was observed at occipital sites. Additionally, 

occipital electrodes (particularly O1 electrode) also showed a repetition effect; however, 

this effect captured an effect of repetition only for the F0 images (see Figure 4.8). 

Interestingly, the fluency ERP at occipital sites revealed graded levels based on 

repetition  (i.e. R1 > R2 > R3). When the images were blurred the effect of repetition was 

diminished. Similar results were observed in our previous studies and in other studies that 

revealed that repetition helps create a context for fluency (i.e. old seem more fluent) (Bruett 

& Leynes., 2015; Leynes & Zish., 2012). As mentioned earlier, the fluency effect is a 

cognitive experience that results from interpretive processes (Bruett & Leynes, 2015; 

Whittlesea & Williams, 2001a; 2001b). Moreover, the interpretive process that underlies 

fluency is instantaneous and relative to the context; and mostly based on the perceptual 

features of the stimulus (Lucas & Paller, 2013; Voss & Paller, 2010). Therefore, the 

different levels of perceptual fluency across the trials produced a norm and expectations 

based on this norm. These expectations may have been violated upon exposure with clear 

fluent images (F0) in comparisons with the non-fluent blurred images (F1 or F2), 
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suggesting that this effect may have integrated into a feeling of familiarity (Lucas & Paller, 

2013; Voss & Paller, 2010; Whittlesea & Williams, 2001a; 2001b). So collectively, these 

results add support for the notion that perceptual fluency is capable of influencing 

recognition judgments in certain cases (Whittlesea and Leboe, 2003).  

 

So What Does FN400 Reflect? 

The above stated results indicate that neither of the perspectives regarding FN400 

completely account for the effects we observed in our study (see Leynes et al., 2017 for 

similar arguments). However, one cannot ignore the fact that there is substantial evidence 

in favour of both views.  

One possible resolution to the conflicting pattern of results for the FN400 in our 

study and in the literature may come from the classic “discrepancy attribution hypothesis” 

(Whittlesea & Leboe, 2003; Whittlesea, 2002; Whittlesea & Williams, 2001a, 2001b). As 

mentioned earlier, when unexpected fluency is experienced while encountering a stimulus, 

the violation of expectation is unconsciously attributed to the illusion of familiarity 

(Whittlesea & Williams, 2001a; 2001b), particularly, when the source of enhanced fluency 

is not known (Whittlesea & Leboe, 2003; Jacoby & Whitehouse, 1989). If the discrepancy 

between the experienced and expected fluency is violated, it gets noticed and the 

participants look for a source to explain the unexpected ease of processing. More likely, 

the source is attributed to prior experience if the participant is uncertain about the source 

of the unexpected fluency (Whittlesea & Williams, 2000). However, the feeling of 

familiarity may not arise if an alternative explanation is available, as there would still be a 

discrepancy between the experienced and expected fluency but the source of discrepancy 
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would be explainable (Whittlesea & Leboe, 2003). Therefore, it is possible that the 

discrepancy between different sources of fluencies (highly fluent in terms of perceptual, 

conceptual or explicit memory) of the stimuli and the complexity of the less-fluent stimuli 

(blurred images) gave rise to an experience of ‘relative familiarity’ that is observed in the 

ERP differences -- reflected not only in the FN400 component, but also in the fluency ERP 

(200 – 400 ms) (Whittlesea and Williams, 2001a, 2001b; Lucas & Paller, 2013; Voss et al., 

2012; Paller et al., 2007).  

In our study there were multiple sources of fluency (perceptual manipulation, 

repetition and conceptual priming). The presentation of novel (R1) and familiar (R2 and 

R3) images, clear (F0) and blurred (F1 and F2) images, and primed and unprimed images 

may have created a scenario where bottom-up and top-down mechanisms were pitted 

against each other. These variations may have increased the discrepancies between 

expectations and actual experiences, which eventually would lead to different levels of 

familiarity depending upon the stimulus and the relative manipulation associated with it 

(Whittlesea and Leboe, 2003; Whittlesea and Williams, 2001a, 2001b). For instance, since 

priming enhances fluency unconsciously, the participant would be uncertain of the source 

of fluency of these stimuli relative to the less fluent unprimed stimuli. This discrepancy 

between experienced and expected fluencies could lead to the feeling of familiarity. It is 

noteworthy that this discrimination of primed and unprimed stimuli was observed only for 

the FN400 at the frontopolar sites (see Figure 4.6). On the other hand, the ease of 

processing of a clear image (F0) among a pool of blurred stimuli may also have created a 

violation of expectations. However, in these cases the source of fluency was not uncertain 

(image clarity), therefore, this effect was attributed to perceptual fluency, which was 
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reflected in the fluency ERP at parietal sites. Likewise, the ease of processing offered by a 

stimulus repeatedly seen among stimuli that were only presented once may also create a 

discrepancy between expected and experienced fluencies. The source of this discrepancy 

is also not uncertain and therefore reflected only in the fluency ERPs. However, for this to 

happen, this ERP should discriminate stimuli on the basis of repetition. Indeed, we did 

observe a discrimination based on repetition in the fluency ERPs at the occipital sites of 

the scalp (see Figure 4.8).  

Although we found that the fluency ERP captured perceptual fluency (Leynes & Zish, 

2012; Voss & Paller, 2010), the fluency component captured graded levels of perceptual 

fluency mostly when stimuli were presented for the third time.  

On the other hand, the fluency ERP seemed to be drawn from the repetition effect 

at occipital sites and even more interestingly, this effect was observed for the clear images 

mostly (F0) (see Figure 4.8). In this case, R3 images were the least positive in voltage than 

the other repetition conditions supporting the idea that fluent stimuli use fewer neuronal 

resources to be processed (Whittlesea & Williams, 2001a; Jacoby & Dallas, 1981). It is 

interesting to note that the fluency ERP driven by perceptual fluency and the same ERP 

driven by repetition are separated by scalp location but not time.  These results suggest that 

the processing underlying these different fluencies may overlap ((Lucas & Paller, Reder et 

al., 2009), interact or even interfere with each other.  

4.6     Conclusion  

In sum, the fluency ERP co-varied with the behavioural indices revealing that 

perceptual fluency influences recognition judgments in cases when other sources of 

familiarity are uncertain (Bruett & Leynes, 2015; Leynes & Zish, 2012). Our results also 
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reveal that manipulation of perceptual fluency alters the recognition judgments even if 

other sources of fluency are available (i.e. conceptual fluency or repetition). These 

observations further strengthen the idea that implicit and explicit memory systems do not 

work in isolation from each other.  Depending on the task and stimulus, either of the 

memory processes could be recruited. The current study suggests that the FN400 is 

“multiply determined” and is capable of reflecting familiarity (explicit memory driven) or 

conceptual fluency depending on the task and stimulus (Mecklinger et al., 2014; Paller et 

al., 2012; 2007). Perceptual fluency is not reflected by the FN400 component, however, it 

plays a crucial role in shaping the FN400 component. Although our results support the 

discrepancy attribution hypothesis framework, further research is needed to better examine 

these processes.   

Results from these studies suggest that the processes of recognition are closely 

linked to the processes of encoding.  This means that when we attempt to explore these two 

different memory processes, using electrophysiological indices, one process could be 

interacting with the other. Findings from our current research indicate that familiarity 

emerges from the interaction of different forms of implicit memory (perceptual and 

conceptual fluency) as well as explicit memory (absolute familiarity) and that these 

processes may originate from different and in some cases shared mechanisms.  These 

findings also indicate that familiarity is more complicated than single-processor dual-

process models of recognition may suggest. Interactions between different sources of 

fluency and familiarity should be taken into consideration when designing experiments to 

capture these processes separately. Additionally, we believe that the Discrepancy 

Attribution Hypothesis provides a better understanding of the interactions between 
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familiarity and other co-varying phenomena and therefore new studies should consider this 

framework in their experimental design (Whittlesea and Williams, 2001a, 2001b). 
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5    Chapter: General Discussion and Conclusion 

The general aim of this thesis was to understand the basic framework of memory 

encoding and recognition and to investigate whether these two processes share the same 

neural mechanisms. However, the nature of the association between the processes that lead 

to encoding and the processes that lead to recognition remains unclear. Few studies have 

directly investigated whether the encoding strategies during encoding contribute to 

recognition (Richter & Yeung, 2016; Ritter, 1996). The basic question that we asked in 

these studies is: what is the role of implicit and explicit memory in setting up the encoding 

strategies and how do these encoding strategies influence retrieval? Memory models 

support the idea that familiarity and recollection are largely a subjective experience, 

however, the association between these processes remains disputed.  

The dual-process signal detection (DPSD) model supports the idea that recognition 

memory relies on two explicit memory processes, familiarity and recollection which are 

linked to two distinct ERPs; the FN400 and the LPC effect (Rugg et al., 2008; Yonelinas 

et al., 2002; Friedman et al., 2000; Rugg et al., 1998). This model suggests that the FN400 

effect is produced by familiarity-driven recognition and the LPC effect is the reflection of 

a threshold-based recollection process (Rugg & Curran, 2007; Curran & Cleary, 2003; 

Curran, 2000). On the other hand, the univariate signal detection (UVSD) model or simply 

the ‘single-process’ model, proposes that recognition is assessed by the strength of a 

continuously varying unitary signal, of which, familiarity and recollection lie at the two 

hierarchical ends (Berry et al., 2008; Squire et al., 2007; Wixted, 2007). Specifically, the 

model assumes that recognition memory relies on the strength of a continuously varying 

neural signal that may not rely solely on explicit memory but also may get support from 



 

 

139 

139 

implicit memory (Paller & Voss, 2012; Wilding & Ranganath, 2011; Wixted, 2007; Nessler 

et al., 2006; Schott et al., 2005; Donaldson, 1996; Tulving & Schacter, 1990). A large body 

of research has shown that although implicit and explicit memory mechanisms are 

dissociable, it is difficult to disentangle them during a recognition task. To understand the 

mechanisms that support recognition memory, its reliance on explicit or implicit memory, 

and how encoding is linked to recognition, we conducted three studies. Significant results 

from these studies are discussed below. 

5.1 Significant Findings 

5.1.1 Experiment 1 

Experiment 1 examined the role of the mid-frontal FN400 effect in regards to familiarity-

driven recognition. According to the DPSD model, recognition memory relies on two 

distinct processes; familiarity and recollection. The mid-frontal FN400 effect reflects 

familiarity-driven recognition, whereas the late positive component (LPC) reflects a 

threshold-based all-or-none process all known as recollection. In contrast, our ERP results 

indicated that the FN400 component during encoding may have indexed conceptual 

fluency (implicit memory) and not familiarity (explicit memory) (Voss & Paller, 2010a; 

2007). This finding is in agreement with the classic view of Jacoby and Dallas (1981) that 

familiarity stems from conceptual attributions based on previous experiences (Jacoby & 

Dallas, 1981). Additionally, we observed that during the encoding phase, subsequent 

recognition was related to a “fluency effect” such that subsequently-remembered stimuli 

elicited less positive amplitudes than subsequently-not-remembered stimuli at parietal 

electrodes during the 200–400 ms interval. We called this a fluency ERP effect because 
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previous studies have linked this ERP difference to the perceptual fluency of stimuli (Bruett 

& Leynes, 2015; Leynes & Zish, 2012; Voss et al., 2012; Paller et al., 2007). Perceptually 

more fluent stimuli or more easily perceived stimuli use less neurocognitive resources to 

process and hence generate less positive ERP amplitudes (Leynes et al., 2015; 2012; Voss 

& Paller, 2010). The participants in this study did not perform well and perhaps the reason 

behind our participants’ weak performance on subsequent memory is that they were 

expected to remember 800 pictures and they were tested on only 300 from that pool. Also, 

studies showed that perceptually too fluent (very common objects) do not leave a strong 

memory trace (Guo et al., 2015; Beskin & Mulligan, 2013; Paller & Wagner, 2002). 

Moreover, a shallow task engages a low level of processing, which yields relatively low 

SM performance as compared to a deep level of processing (Craik et al, 2002; 1972). 

Interestingly, a similarity in the patterns of encoding and recognition ERPs were observed, 

suggesting that the process of recognition is closely linked to the process of encoding 

(Craik, 2007; Craik & Lockhart, 2002). Furthermore, according to the discrepancy 

attribution hypothesis, for a stimulus to be remembered in a shallow task, it has to violate 

expectations and that violation must be noticed (Whittlesea & Leboe, 2003).  

Collectively, we showed that the FN400 does not reflect familiarity exclusively; 

rather this effect may also reflect conceptual fluency and/or relative familiarity depending 

upon the context (Bruett & Leynes, 2015; Lucas & Paller, 2013; Paller et al., 2007). These 

findings are in support of other recognition studies, which have shown that conceptual 

implicit memory contaminates the neural measures of familiarity when familiarity and 

conceptual implicit processing co-occur (Paller et al., 2012; Voss et al., 2012; Voss & 

Paller, 2010a). However, with our paradigm and the type of stimuli, we were not able to 
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disentangle familiarity and conceptual memory from each other. There is evidence that the 

repetition of a stimulus may initiate several cognitive processes such as perceptual fluency, 

conceptual fluency, and familiarity because all three of these concepts appear to co-vary 

with repetition (Lucas & Paller, 2013; Leynes & Zish, 2012; Voss et al., 2012; Paller et al., 

2007). Therefore, for our next study, we chose stimuli with no attached meanings to rule 

out the possibility of pre-existing conceptual memory associated with these stimuli.  

5.1.2 Experiment 2 

Our main finding from Experiment 2 was that the neural correlates of the conceptual 

implicit memory process could influence the decisions driven by explicit memory. 

Experiment 2 investigated whether familiarity is an expression of explicit memory or 

implicit memory using the same protocol but with different stimuli, i.e. meaningless novel 

stimuli (fractals) were used instead of pictures of common objects. Our ERP results during 

encoding showed that the frontal FN400 ERP component that is elicited in the time window 

(300-500 ms) is distinct from a fluency ERP, which is linked to perceptual fluency and 

elicited at left parietal sites during the time window (200-400 ms) post-stimulus. Most 

importantly, no FN400 effect was detected at frontal sites during the recognition test; 

however, an FN400-like effect was observed which discriminated Hits from Miss 

significantly but the difference between CR and Hit was not significant. Additionally, a 

fluency ERP was elicited at right parietal sites. This finding suggests that participants relied 

on perceptual fluency and not repetition based familiarity to assist their decision-making 

process for recognition (Leynes et al., 2017; Whittlesea & Leboe, 2003). In other words, a 

fluency ERP was found to influence the behavioural indices of recognition. Last but not 

the least, early encoding and recognition ERPs were similar, revealing that the processes 
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during encoding and recognition were linked. Collectively, and in agreement with previous 

findings, the conceptual and perceptual implicit memory processes influenced the 

decisions driven by explicit memory.  

In sum, these results are compatible with previous findings that showed that the 

FN400 amplitudes result from a number of processes, which could include familiarity 

and/or conceptual implicit memory processing depending upon the context (Bruett & 

Leynes., 2015; Lucas & Paller, 2013; Voss et al., 2012; Paller et al., 2007). It is clear from 

the findings listed above that recognition judgments relied on perceptual fluency rather 

than familiarity (Leynes & Zish, 2012; Paller et al., 2012; Rugg et al., 2007; Whittlesea 

and Price, 2001). The question becomes then how and when recognition relies on fluency 

and how is fluency linked to familiarity? Therefore, we conducted another experiment to 

study the link between fluency and familiarity and to better understand these complex 

processes, which appear to co-vary in the same time window.   

5.1.3 Experiment 3 

Our previous studies raised several questions concerning the role of perceptual 

fluency, familiarity and conceptual fluency regarding how and when these processes 

influence recognition judgments. A subsequent-memory design was used in Experiment 3 

to examine the contribution of these processes to recognition judgments. Participants’ 

responses were quicker for clear images (i.e. F0 and F1 condition) that were primed, 

however, subsequent hit rates for clear images were not affected by conceptual priming. 

Repetition on the other hand, for the F0 and F1 filter conditions, significantly affected hit 

rate in a graded manner (i.e. R3 > R2 > R1). Participants recalled fewer images that were 

from the high filter condition (F2) and the responses to these stimuli were the slowest. It is 
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apparent from the behavioural results that all three conditions i.e. priming, repetition, and 

clarity affected recognition judgments. 

Our ERP results indicated that perceptual fluency, conceptual fluency, and 

repetition-driven familiarity were distinguishable from each other in terms of the scalp 

location of their related ERPs during encoding. Conceptual priming (FN400) was 

significant over anterior and right frontal electrodes, perceptual fluency (fluency ERP) was 

observed over the posterior sites, and the repetition-driven familiarity effect (FN400) was 

detected at the central electrode sites. Apart from that, our behavioural and ERP results 

provided convergent support for the view that the FN400 component is multiply 

determined and may reflect a number of processes depending upon the stimulus and task. 

Results from Experiment 3 also validated our previous observations that implicit and 

explicit memory processing may share at least some neuronal mechanisms.  

5.2 Conclusion 

Collectively, we found that conceptual priming affected the FN400 but not always; 

in other cases it was affected by familiarity (repetition based explicit memory) and/or 

perceptual fluency. Additionally, results from all three studies support the idea that 

recognition judgments were influenced more by perceptual fluency than familiarity (in this 

particular paradigm). The question arises what does it mean that the FN400 is elicited by a 

manipulation in some contexts, but is not elicited by the same manipulation in other 

contexts? And, how does the fluency of a stimulus influence the mechanisms reflected by 

the FN400?  We believe the Discrepancy-Attribution Hypothesis can best account for these 

conflicting results (Whittlesea & Williams, 2001a, 2001b).  
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The discrepancy attribution hypothesis proposes that familiarity emerges from the 

evaluation of discrepancies between the experienced and the expected fluency of 

processing of a stimulus based on recent events (Whittlesea & Williams, 2001a, 2001b). 

Thus, key to understanding the processing of these discrepancies is resolving the 

relationship between fluency and familiarity  (Whittlesea & Leboe, 2003; Whittlesea & 

Williams, 2001a, 2001b; Jacobi & Whitehouse, 1989). Whittlesea and Williams (1998) 

proposed that familiarity results not only from absolute fluency but also can emerge 

erroneously when items are processed more fluently than expected relative to recent 

events.  

The discrepancy between expected and experienced fluency is attributed to sources 

that are either in the past or the present (Whittlesea, 1993). On facing a discrepancy or 

surprise, people look for the source. If the participant knows the source of discrepancy, the 

attribution will be registered accordingly. However, an unexplainable discrepancy will 

more likely be attributed to familiarity (erroneously), which the authors termed ‘relative 

familiarity’ (Whittlesea & Leboe, 2003). For instance, in our first study, we found that 

almost all participants recognized the image of Buddha during recognition. The semantic 

richness of the Buddha image among all other common objects made it stand out and it 

was therefore noticed. The discrepancy between the expected degree of fluency when 

viewing a common object (e.g. a cup) and the experience of the more fluent processing of 

the picture of Buddha, may have triggered a surprise. Based on participants’ performance, 

it appears that the participant knew the source of their surprise. Hence the discrepancy was 

attributed to the conceptual fluency associated with Buddha, which was reflected by the 
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amplitude of the FN400. Conversely, in the cases where the source of discrepant 

fluency not known, the participant may have attributed it to relative familiarity.  

Here, we present a model, which takes into account both the level of processing 

framework (Craik et al, 2002; 1972) and the discrepancy attribution hypothesis (Whittlesea 

& Williams, 2001a; 2001b) (see Figure 5.1). The model suggests that memory retrieval 

varies as a function of the depth of neural processing that takes place at the time of 

encoding. The “depth” of an encoding process ranges between the shallowest to the deepest 

level of processing (Craik, 2002). The shallowest level refers to the perceptual processing 

such as the physical and sensory characteristics of the stimulus and the deepest level is the 

semantic processing such as comprehension and pattern recognition. Based on this model 

we speculate that the most “shallow” level of processing would be the task that is capable 

of activating a neural mechanism capable enough to encode a memory item that is 

recognizable during the retrieval phase as a familiar item. Whereas, a “deep” level of 

encoding would be a task that is capable of activating multiple levels of processing that 

involve multiple neural mechanisms and result in successful recollection when all 

contextual details are available at the time of retrieval.  

In general, meaningful pictures or pictures with names can generate both kinds of 

fluency as it may generate perceptual fluency for the visual attributes and conceptual 

fluency for meaning in case of repetition (Voss et al 2010a). In this case, perceptual and 

conceptual implicit memory co-occurs and the interaction of these processes collectively 

generates a feeling of familiarity (Paller et al., 2012; 2007; Rugg et al., 2007).  In an ideal 

world, if subjects are presented with a nameless stimulus that has no meanings attached, 

they are likely to rely on perceptual characteristics of the stimulus only. The repetition of 
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such a stimulus would give rise to perceptual fluency that would be reflected in the fluency 

ERP.  

However, when encountering a series of such events, participants adopt a ‘norm’ 

or an expectation based on the processing of events. As mentioned previously, the 

processing of discrepancy must be noticed, and expectations must be violated to generate 

relative familiarity. This means that with every ongoing event, relative familiarity is 

continuously re-assessed (e.g., ‘‘norms on the fly”, Whittlesea & Leboe, 2003). One could 

assume then that both fluency (e.g., the fluency attribution model, Lucas et al., 2012; 

Jacoby & Whitehouse, 1989) and familiarity (e.g., the discrepancy attribution hypothesis, 

Whittlesea and Williams, 2001a, 2001b) are assessed on a trial-by-trial basis. 

In fact, participants unconsciously set an actuarial value or “a norm” to assess discrepancies 

driven by stimuli as well as task and context (Whittlesea and Leboe, 2003; Jacoby & 

Whitehouse, 1989; Kahneman & Miller, 1986). This generation of a norm is purely 

subjective and one’s pre-experimental associations specific to events may contribute to set 

up this norm (Kahneman & Miller, 1986). 

 

 In our second study (Chapter 3) a fluency ERP at parietal sites was observed during 

recognition when all the stimuli were meaningless fractals. In that experiment, fluency 

varied on the basis of repetition, as it was the only source of fluency. It appears from our 

behavioural and ERP results that random variations in fluency on the basis of repetition 

produced a fluency effect, which was reflected in the fluency ERP (Leynes & Zish, 2015; 

Whittlesea and Leboe, 2003; Whittlesea and Williams, 2001a, 2001b). However, in our 

third study, an FN400 was observed when perceptual fluency was manipulated by 

presenting both clear and blurry images during the first presentation of the stimuli (Chapter 
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4). In that case, when perceptual fluency was intentionally varied across trials, the 

enhanced fluency of some images (in comparison to others) was perceived to be the result 

of previous experience with the stimulus and experienced as relative familiarity (Jacoby & 

Dallas, 1981), eliciting the FN400 effect (see Figure 5.1).  

On the other hand, we found fractals that were remembered by almost all 

participants, even though no concept was associated with them (Chapter 3). Thus, the 

“norm” while encountering these events may have derived from the sum of the subjective 

expectations generated through processing the perceptual features of the geometrical 

shapes hidden in these stimuli (fractals). Failing to name the fractal may have caused the 

participants to focus more on the features of each fractal instead holistically processing the 

image. It is likely that a familiar shape within each fractal may have triggered richer 

associations in terms of perceptual or even conceptual fluency. A fractal, which was 

different in shape from the majority of the stimuli (Julia set) may have caused a violation 

of the “norm” and triggered an associated neural process. Note that for an experience of 

familiarity to be assessed, the processing of discrepancy must be noticed, and expectations 

must be violated (Leynes et al., 2017; Whittlesea & Leboe, 2003). Therefore, fractals, 

which violated the expectations based on the “norm” that evolved or trials for each 

individual participant, triggered a discrepancy strong enough to be revealed in the FN400 

component during encoding (see Figure 5.1). Perhaps, this is the reason that in some cases 

the FN400 component has been observed when participants were presented with nameless 

objects or pseudo words (Stróżak et al., 2016; Groh-Bordin et al., 2006).  During 

recognition, the discrepancy between experienced and expected fluencies was apparently 
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attributed to relative familiarity. This could be one of the reasons that we had a large 

number of false alarm rates (Whittlesea & Leboe, 2003). 

Normally, meaningful images can generate both kinds of fluency as they may 

generate perceptual fluency for the visual attributes, and conceptual fluency for a meaning 

or associated concept (Voss et al 2010a). In such cases, perceptual and conceptual implicit 

memory co-occur and collectively these processes can formulate familiarity (Paller et al., 

2012; 2007; Rugg et al., 2007). The question arises how familiarity is assessed when there 

are multiple sources of fluency? In conjunction with the discrepancy attribution 

hypothesis, Leynes and colleagues (2017) argued that familiarity could emerge from any 

source that could alter the processing of the “norm”. Given that there were multiple sources 

of fluency in our third experiment (perceptual manipulation, repetition and conceptual 

priming), the variations in these fluencies may have increased discrepancies between 

expectations and actual experiences, which eventually may have led to different 

perceptions depending upon the stimulus and the relative manipulations associated with it 

(Whittlesea and Leboe, 2003; Whittlesea and Williams, 2001a, 2001b). Although, there 

was substantial variability in our ERP results, the relative familiarity or unexpected fluency 

of performance likely arose when there was a violation of expectation (unexplainable ease 

of processing) and the source of the fluency was uncertain. If true, one would hypothesize 

that the FN400 potentials for false alarm rates would go up due to relative familiarity. And 

indeed our behavioural results from Experiment 2 (fractals) did show that false alarm rates 

were higher than those in Experiment 1 (pictures) revealing that relative familiarity was 

integrated into an FN400 effect elicited by FA stimuli (see Figure 5.2; also Figure 3.2). 
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Similarly, relative fluency was reflected by the fluency ERP elicited by FA stimuli at 

parietal and occipital sites (Whittlesea and Leboe, 2003).  

We reported in Experiment 3 (Chapter 4) that primed and unprimed stimuli did not 

differ in terms of subsequent hit rates in response to clear images. However, for the same 

stimuli, hit rates increased with each repetition. Strangely, this effect did not get reflected 

in the FN400 ERP. Instead, the fluency ERP at parietal and occipital electrodes was 

observed to be associated with this behavioural effect. These results suggest that repetition 

and perceptual fluency contributed to recognition judgments. It seems that during the 250 

ms exposure time of each image (the time the stimulus was on the screen) gave participants 

only enough time to setup a norm based on the perceptual features of the stimuli and no 

information beyond that. We suspect that the brief time of exposure made participants rely 

more on the perceptual features and expectations based on this norm were violated each 

time they encountered either a clear image (F0) or an image that was repeated multiple 

times. Since the source of fluency in these cases was known (perceptual fluency and 

repetition), this effect was integrated into a fluency ERP rather than a FN400 revealing that 

fluency driven by perceptual features or repetition is capable of influencing recognition 

judgments under certain restrictions (Whittlesea & Leboe, 2003; Jacoby & Whitehouse, 

1989). 

Collectively, our findings from all three studies are consistent with the discrepancy 

attribution hypothesis and support the idea that different forms of implicit memory are 

capable to influence behavioural judgments of recognition (Voss & Paller, 2017; 

Mecklinger et al., 2012; Paller et al., 2007). Guided by the discrepancy attribution 

hypothesis we found evidence that perceptual fluency is linked to familiarity and the role 
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of the fluency is crucial to understanding the heuristics of familiarity (Leboe et al., 

2000).  Our findings also indicate that familiarity and fluency are two different perceptions 

that are assessed fluidly relative to other events, and their electrophysiological indices are 

distinguishable in time and scalp locations. These findings also extend support for the 

notion that the FN400 is “multiply determined” revealing that familiarity could be driven 

by multiple sources such as perceptual or conceptual fluency and/or repetition (Voss & 

Paller, 2017; Voss et al., 2012).  

 

Figure 5.1: A schematic diagram of the process of encoding and recognition and the role of level 

of processing at encoding in terms of the discrepancy attribution hypothesis regarding familiarity. 
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Figure 5.2. Grand average ERPs from (a) Experiment 1 using pictures of common objects and 

(b) Experiment 2 using pictures of abstract objects (fractals).  
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A.1 Appendix: Schematic design of stimuli used in Experiment 3 

 

 

 

 



 

 

153 

153 

References 

Addante, R. J., Ranganath, C., & Yonelinas, A. P. (2012). Examining ERP correlates of recognition 

memory: Evidence of accurate source recognition without recollection. NeuroImage, 62(1), 439–450. 

https://doi.org/10.1016/j.neuroimage.2012.04.031 

Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. Trends in 

Cognitive Sciences, 18(6), 279–292. https://doi.org/10.1016/j.tics.2014.03.002 

Azizian, A., & Polich, J. (2007). Evidence for Attentional Gradient in the Serial Position Memory Curve 

from Event-related Potentials. Journal of Cognitive Neuroscience, 19(12), 2071–2081. 

https://doi.org/10.1162/jocn.2007.19.12.2071 

Baddeley, A. D., & Hitch, G. J. (2017). Is the Levels of Processing effect language-limited? Journal of 

Memory and Language, 92, 1–13. https://doi.org/10.1016/j.jml.2016.05.001 

Balaban, H., & Luria, R. (2015). The number of objects determines visual working memory capacity 

allocation for complex items. NeuroImage, 119, 54–62. 

https://doi.org/10.1016/j.neuroimage.2015.06.051 

Berry, C. J., Shanks, D. R., & Henson, R. N. A. (2008). A unitary signal-detection model of implicit and 

explicit memory. Trends in Cognitive Sciences, 12(10), 367–373. 

https://doi.org/10.1016/j.tics.2008.06.005 

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: 

standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9(June), 1–

20. https://doi.org/10.3389/fninf.2015.00016 

Boehm, S. G., Sommer, W., & Lueschow, A. (2005). Correlates of implicit memory for words and faces in 

event-related brain potentials. International Journal of Psychophysiology, 55(1), 95–112. 

https://doi.org/10.1016/j.ijpsycho.2004.06.008 

Boucher, O., Chouinard-Leclaire, C., Muckle, G., Westerlund, A., Burden, M. J., Jacobson, S. W., & 

Jacobson, J. L. (2016). An ERP study of recognition memory for concrete and abstract pictures in 

school-aged children. International Journal of Psychophysiology, 106, 106–114. 

https://doi.org/10.1016/j.ijpsycho.2016.06.009 

Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive 

storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 

14325–14329. https://doi.org/10.1073/pnas.0803390105 

Brown, S. C., & Craik, F. I. M. (2000). Encoding and retrieval of information. In The Oxford handbook of 

memory.(pp. 93–107). New York,  NY, US: Oxford University Press. 

Bruett, H., & Leynes, P. A. (2015). Event-related potentials indicate that fluency can be interpreted as 

familiarity. Neuropsychologia, 78, 41–50. https://doi.org/10.1016/j.neuropsychologia.2015.09.035 

Chen, Y. Y., Lithgow, K., Hemmerich, J. A., & Caplan, J. B. (2014). Is what goes in what comes out? 

Encoding and retrieval event-related potentials together determine memory outcome. Experimental 

Brain Research, 232(10), 3175–3190. https://doi.org/10.1007/s00221-014-4002-1 



 

 

154 

154 

Cheyette, S. J., & Plaut, D. C. (2017). Modeling the N400 ERP component as transient semantic over-

activation within a neural network model of word comprehension. Cognition, 162, 153–166. 

https://doi.org/10.1016/j.cognition.2016.10.016 

Cohen, M. X. (2017). Where Does EEG Come From and What Does It Mean? Trends in Neurosciences, 

40(4), 208–218. https://doi.org/10.1016/j.tins.2017.02.004 

Colgin, L. L. (2013). Mechanisms and Functions of Theta Rhythms. Annual Review of Neuroscience, 36(1), 

295–312. https://doi.org/10.1146/annurev-neuro-062012-170330 

Conroy, M. A., Hopkins, R. O., & Squire, L. R. (2005). On the contribution of perceptual fluency and 

priming to recognition memory. Cognitive, Affective, & Behavioral Neuroscience, 5(1), 14–20. 

https://doi.org/10.3758/CABN.5.1.14 

Craik, F. (2007). Levels of processing : Past , present . . . and future ? 

https://doi.org/10.1080/09658210244000135 

Craik, F. I. M. (2002). Levels of processing: Past, present... and future? Memory, 10(5–6), 305–318. 

https://doi.org/10.1080/09658210244000135 

Craik, F., & Lockhart, R. (1972). Levels of Processing : A Framework for Memory Research 1, 684, 671–

684. 

Curran, T., Tepe, K. L., & Piatt, C. (2006). ERP explorations of dual processes in recognition memory. 

Binding in Human Memory: A Neurocognitive Approach, 467–492. 

Curran, T., & Cleary, A. M. (2003). Using ERPs to dissociate recollection from familiarity in picture 

recognition. Cognitive Brain Research, 15(2), 191–205. https://doi.org/10.1016/S0926-

6410(02)00192-1 

Curran, T., & Hancock, J. (2007). The FN400 indexes familiarity-based recognition of faces. NeuroImage, 

36(2), 464–471. https://doi.org/10.1016/j.neuroimage.2006.12.016 

Diana, R. a, Yonelinas, A. P., & Ranganath, C. (2008). The effects of unitization on familiarity-based 

source memory: Testing a behavioral prediction derived from neuroimaging data. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 34(4), 730–740. 

https://doi.org/10.1037/0278-7393.34.4.730 

Donaldson, W. (1996). The role of decision processes in remembering and knowing. Memory and 

Cognition, 24(4), 523–533. https://doi.org/10.3758/BF03200940 

Duarte, A., Ranganath, C., Winward, L., Hayward, D., & Knight, R. T. (2004). Dissociable neural 

correlates for familiarity and recollection during the encoding and retrieval of pictures. Cognitive 

Brain Research, 18(3), 255–272. https://doi.org/10.1016/j.cogbrainres.2003.10.010 

Dudai, Y., Karni, A., & Born, J. (2015). The Consolidation and Transformation of Memory. Neuron, 88(1), 

20–32. https://doi.org/10.1016/j.neuron.2015.09.004 

Düzel, E., Yonelinas, a P., Mangun, G. R., Heinze, H. J., & Tulving, E. (1997). Event-related brain 

potential correlates of two states of conscious awareness in memory. Proceedings of the National 

Academy of Sciences of the United States of America, 94(May), 5973–5978. 

https://doi.org/10.1073/pnas.94.11.5973 



 

 

155 

155 

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The Medial Temporal Lobe and Recognition 

Memory. Annual Review of Neuroscience, 30(1), 123–152. 

https://doi.org/10.1146/annurev.neuro.30.051606.094328 

Fellner, M. C., Bäuml, K. H. T., & Hanslmayr, S. (2013). Brain oscillatory subsequent memory effects 

differ in power and long-range synchronization between semantic and survival processing. 

NeuroImage, 79, 361–370. https://doi.org/10.1016/j.neuroimage.2013.04.121 

Friedman, D., & Johnson, R. (2000). Event-related potential (ERP) studies of memory encoding and 

retrieval: A selective review. Microscopy Research and Technique, 51(1), 6–28. 

https://doi.org/10.1002/1097-0029(20001001)51:1<6::AID-JEMT2>3.0.CO;2-R 

Frithsen, A., & Miller, M. B. (2014). The posterior parietal cortex: Comparing remember/know and source 

memory tests of recollection and familiarity. Neuropsychologia, 61(1), 31–44. 

https://doi.org/10.1016/j.neuropsychologia.2014.06.011 

Fukuda, K., & Woodman, G. F. (2015). Predicting and Improving Recognition Memory Using Multiple 

Electrophysiological Signals in Real Time. Psychological Science, 26(7), 1026–1037. 

https://doi.org/10.1177/0956797615578122 

Gabrieli, J. D. E. (1998). COGNITIVE NEUROSCIENCE OF HUMAN MEMORY. Annual Review of 

Psychology, 49(1), 87–115. https://doi.org/10.1146/annurev.psych.49.1.87 

Gabrieli, J. D. E., Fleischman, D. A., Keane, M. M., Reminger, S. L., & Morrell, F. (1995). Double 

Dissociation Between Memory Systems Underlying Explicit and Implicit Memory in the Human 

Brain. Psychological Science, 6(2), 76–82. https://doi.org/10.1111/j.1467-9280.1995.tb00310.x 

Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working 

memory. Trends in Cognitive Sciences, 16(2), 129–135. https://doi.org/10.1016/j.tics.2011.11.014 

Grady, C. L., McIntosh, A. R., Rajah, M. N., & Craik, F. I. (1998). Neural correlates of the episodic 

encoding of pictures and words. Proceedings of the National Academy of Sciences of the United 

States of America, 95(5), 2703–2708. https://doi.org/10.1073/pnas.95.5.2703 

Griffin, M., Dewolf, M., Keinath, A., Liu, X., & Reder, L. (2013). Identical versus conceptual repetition 

FN400 and parietal old/new ERP components occur during encoding and predict subsequent 

memory. Brain Research, 1512, 68–77. https://doi.org/10.1016/j.brainres.2013.03.014 

Groh-Bordin, C., Zimmer, H. D., & Ecker, U. K. H. (2006). Has the butcher on the bus dyed his hair? 

When color changes modulate ERP correlates of familiarity and recollection. NeuroImage, 32(4), 

1879–1890. https://doi.org/10.1016/j.neuroimage.2006.04.215 

Guo, C., Li, B., Gao, C., & Wang, W. (2015). Processing fluency hinders subsequent recollection: an 

electrophysiological study. Frontiers in Psychology, 6(June), 1–10. 

https://doi.org/10.3389/fpsyg.2015.00863 

Guo, ChunyanLi, B., Gao, C., & Wang, W. (2015). Processing fluency hinders subsequent recollection: an 

electrophysiological study. Frontiers in Psychology, 6(June), 1–10. 

https://doi.org/10.3389/fpsyg.2015.00863 

Hockley, W. E., & Consoli, A. (1999). Familiarity and recollection in item and associative recognition. 

Memory and Cognition, 27(4), 657–664. https://doi.org/10.3758/BF03211559 

Jacoby, J. (1984). Comments Perspectives on Information Overload, 10(March). 

https://doi.org/10.1016/j.tics.2011.11.014


 

 

156 

156 

Jacoby, L. L., & Dallas, M. (1981). On the Relationship Between Autobiographical Memory and 

Perceptual Learning. Journal of Experimental Psychology: General, 110(3), 306–340. 

https://doi.org/10.1007/s12665-018-7476-5 

Jacoby, Larry L., Brooks, L. R. (1984). MEMORY. PERCEPTION. AND CONCEPT LEARNING. 

Psychology of learning and motivation. Retrieved from 

https://books.google.ca/books?hl=en&lr=&id=p5X51gkLKOwC&oi=fnd&pg=PA1&ots=gVIOWoB

kLl&sig=Tccq7yJ0k7qRsOh6m6jYgK8DkIA#v=onepage&q&f=false 

Jacoby, L. L., & Whitehouse, K. (1989). An Illusion of Memory: False Recognition Influenced by 

Unconscious Perception. Journal of Experimental Psychology: General, 118(2), 126–135. 

https://doi.org/10.1037/0096-3445.118.2.126 

Janiszewski, C., & Meyvis, T. (2001). Effects of Brand Logo Complexity, Repetition, and Spacing on 

Processing Fluency and Judgment. Journal of Consumer Research, 28(1), 18–32. 

https://doi.org/10.1086/321945 

Kahneman, D., & Miller, D. T. (1986). Norm theory: Comparing reality to its alternatives. Psychological 

Review, 93(2), 136–153. Retrieved from 

http://csaweb115v.csa.com.proxy1.cl.msu.edu/ids70/view_record.php?id=2&recnum=7&log=from_t

oc&SID=7dj482jqas5n5eqenvn67p7l42&mark_id=cache%3A1%2C0%2C19 

Köhler, S., Moscovitch, M., Winocur, G., & Mcintosh, A. R. (2000). Episodic encoding and recognition of 

pictures and words: role of the human medial temporal lobes. Acta Psychologica, 105, 159–179. 

https://doi.org/10.1016/S0001-6918(00)00059-7 

Kurilla, B. P., & Gonsalves, B. D. (2012). An ERP investigation into the strategic regulation of the fluency 

heuristic during recognition memory. Brain Research, 1442(3), 36–46. 

https://doi.org/10.1016/j.brainres.2011.12.060 

Kutas, M., & Federmeier, K. D. (2000). Electropsysiology reveals semantic memory use in language 

comprehension. Trends in Cognitive Science, 12(12), 463–470. https://doi.org/10.1016/S1364-

6613(00)01560-6 

Kutas, M., & Hillyard, S. (1980). Reading senseless sentences: brain potentials reflect semantic 

incongruity. Science, 207(4427), 203–205. https://doi.org/10.1126/science.7350657 

Kutas, M., & Federmeier, K. D. (2010). Thirty Years and Counting: Finding Meaning in the N400 

Component of the Event-Related Brain Potential (ERP). Ssrn. 

https://doi.org/10.1146/annurev.psych.093008.131123 

Leboe, Jason P., Whittlesea, B. W. A. (2000). The heuristic basis of remembering and classification : 

Fluency , generation , and resemblance The Heuristic Basis of Remembering and Classification : 

Fluency , Generation , and Resemblance, 129(January), 84–106. https://doi.org/10.1037/0096-

3445.129.1.84 

Leynes, P. A., & Addante, R. J. (2016). Neurophysiological evidence that perceptions of fluency produce 

mere exposure effects. Cognitive, Affective and Behavioral Neuroscience, 16(4), 754–767. 

https://doi.org/10.3758/s13415-016-0428-1 

Leynes, P. A., Bruett, H., Krizan, J., & Veloso, A. (2017). What psychological process is reflected in the 

FN400 event-related potential component? Brain and Cognition, 113, 142–154. 

https://doi.org/10.1016/j.bandc.2017.02.004 



 

 

157 

157 

Leynes, P. A., & Zish, K. (2012). Event-related potential (ERP) evidence for fluency-based recognition 

memory. Neuropsychologia, 50(14), 3240–3249. 

https://doi.org/10.1016/j.neuropsychologia.2012.10.004 

Lockhart, R. S., & Craik, F. I. M. (1972). Levels of Processing: a Framework for Memory Research. 

Journal of Verbal Learning and Verbal Behavior, 11, 671–684. https://doi.org/10.1016/S0022-

5371(72)80001-X 

Lockhart, R. S., & Craik, H. L. M. (1990). Canadian Journal of Psychology Outstanding Contributions 

Series Levels of Processing: A Retrospective Commentary on a Framework for Memory Research. 

Canadian Journal of Psychology, 44(1), 87–112. https://doi.org/10.1037/h0084237 

Lucas, H. D., Taylor, J. R., Henson, R. N., & Paller, K. A. (2012). Neuropsychologia Many roads lead to 

recognition : Electrophysiological correlates of familiarity derived from short-term masked repetition 

priming. Neuropsychologia, 50(13), 3041–3052. 

https://doi.org/10.1016/j.neuropsychologia.2012.07.036 

Lucas, H. D., & Paller, K. A. (2013). Manipulating letter fluency for words alters electrophysiological 

correlates of recognition memory. NeuroImage, 83, 849–861. 

https://doi.org/10.1016/j.neuroimage.2013.07.039 

Lucas, H. D., Taylor, J. R., Henson, R. N., & Paller, K. A. (2012). Many roads lead to recognition: 

Electrophysiological correlates of familiarity derived from short-term masked repetition priming. 

Neuropsychologia, 50(13), 3041–3052. https://doi.org/10.1016/j.neuropsychologia.2012.07.036 

Lucas, H. D., Voss, J. L., & Paller, K. A. (2010). Familiarity or conceptual priming? Good question! 

Comment on Stenberg, Hellman, Johansson, and Rosén (2009). Journal of Cognitive Neuroscience, 

22(4), 615–617. https://doi.org/10.1162/jocn.2009.21264 

Luck, S. J. (2014). Reading, Writing, and Reviewing ERP Papers. An Introduction to the Event-Related 

Potential Technique, Online Chapter 15. 

MacKenzie, G., & Donaldson, D. I. (2007). Dissociating recollection from familiarity: Electrophysiological 

evidence that familiarity for faces is associated with a posterior old/new effect. NeuroImage, 36(2), 

454–463. https://doi.org/10.1016/j.neuroimage.2006.12.005 

Manns, J. R., Hopkins, R. O., & Squire, L. R. (2003). Semantic Memory and the Human Hippocampus. 

Neuron, 38(1), 127–133. https://doi.org/10.1016/S0896-6273(03)00146-6 

Marzi, T., & Viggiano, M. P. (2010). Deep and shallow encoding effects on face recognition: An ERP 

study. International Journal of Psychophysiology, 78(3), 239–250. 

https://doi.org/10.1016/j.ijpsycho.2010.08.005 

Mecklinger, A., Frings, C., & Rosburg, T. (2012). Response to Paller et al.: The role of familiarity in 

making inferences about unknown quantities. Trends in Cognitive Sciences, 16(6), 315–316. 

https://doi.org/10.1016/j.tics.2012.04.009 

Meeuwissen, E. B., Takashima, A., Fernández, G., & Jensen, O. (2011). Increase in posterior alpha activity 

during rehearsal predicts successful long-term memory formation of word sequences. Human Brain 

Mapping, 32(12), 2045–2053. https://doi.org/10.1002/hbm.21167 

Mollison, M. V., & Curran, T. (2012). Familiarity in source memory. Neuropsychologia, 50(11), 2546–

2565. https://doi.org/10.1016/j.neuropsychologia.2012.06.027 



 

 

158 

158 

Murray, J. G., Howie, C. A., & Donaldson, D. I. (2015). The neural mechanism underlying recollection is 

sensitive to the quality of episodic memory: Event related potentials reveal a some-or-none threshold. 

NeuroImage, 120, 298–308. https://doi.org/10.1016/j.neuroimage.2015.06.069 

Nessler, D., Mecklinger, A., & Penney, T. B. (2005). Perceptual fluency, semantic familiarity and 

recognition-related familiarity: An electrophysiological exploration. Cognitive Brain Research, 22(2), 

265–288. https://doi.org/10.1016/j.cogbrainres.2004.03.023 

Nittono, H., Shibuya, Y., & Hori, T. (2007). Anterior N2 predicts subsequent viewing time and interest 

rating for novel drawings. Psychophysiology, 44(5), 687–696. https://doi.org/10.1111/j.1469-

8986.2007.00539.x 

Olichney, J. M., Van Petten, C., Paller, K. A., Salmon, D. P., Iragui, V. J., & Kutas, M. (2000). Word 

repetition in amnesia: Electrophysiological measures of impaired and spared memory. Brain, 123(9), 

1948–1963. https://doi.org/10.1093/brain/123.9.1948 

Oppenheimer, D. M. (2008). The secret life of fluency. Trends in Cognitive Sciences, 12(6), 237–241. 

https://doi.org/10.1016/j.tics.2008.02.014 

Ortu, D., Allan, K., & Donaldson, D. I. (2013). Is the N400 effect a neurophysiological index of associative 

relationships? Neuropsychologia, 51(9), 1742–1748. 

https://doi.org/10.1016/j.neuropsychologia.2013.05.003 

Packard, P. A., Rodríguez-Fornells, A., Bunzeck, N., Nicolás, B., de Diego-Balaguer, R., & Fuentemilla, L. 

(2017). Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory 

Encoding. The Journal of Neuroscience, 37(2), 291–301. https://doi.org/10.1523/JNEUROSCI.1622-

16.2016 

Paller, K. A., & Wagner, A. D. (2002). Observing the transformation of experience into memory. Trends in 

Cognitive Sciences, 6(2), 93–102. https://doi.org/10.1016/S1364-6613(00)01845-3 

Paller, K. A., Hutson, C. A., Miller, B. B., & Boehm, S. G. (2003). Neural manifestations of memory with 

and without awareness. Neuron, 38(3), 507–516. https://doi.org/10.1016/S0896-6273(03)00198-3 

Paller, K. A., Lucas, H. D., & Voss, J. L. (2012). Assuming too much from “familiar” brain potentials. 

Trends in Cognitive Sciences, 16(6), 313–315. https://doi.org/10.1016/j.tics.2012.04.010 

Paller, K. A., Voss, J. L., & Boehm, S. G. (2007). Validating neural correlates of familiarity. Trends in 

Cognitive Sciences, 11(6), 243–250. https://doi.org/10.1016/j.tics.2007.04.002 

Park, J. L., & Donaldson, D. I. (2016). Investigating the relationship between implicit and explicit memory: 

Evidence that masked repetition priming speeds the onset of recollection. NeuroImage, 139, 8–16. 

https://doi.org/10.1016/j.neuroimage.2016.06.013 

Parks, C. M., & Yonelinas, A. P. (2007). Moving beyond pure signal-detection models: Comment on 

wixted (2007). Psychological Review, 114(1), 188–201. https://doi.org/10.1037/0033-

295X.114.1.188 

Rajaram, S., & Geraci, L. (2000). Conceptual Fluency Selectively Influences Knowing. Journal of 

Experimental Psychology: Learning Memory and Cognition, 26(4), 1070–1074. 

https://doi.org/10.1037/0278-7393.26.4.1070 

Reder, L. M., Park, H., & Kieffaber, P. D. (2009). Memory Systems Do Not Divide on Consciousness: 

Reinterpreting Memory in Terms of Activation and Binding. Psychological Bulletin, 135(1), 23–49. 

https://doi.org/10.1037/a0013974 



 

 

159 

159 

Richter, F. R., & Yeung, N. (2016). ERP correlates of encoding success and encoding selectivity in 

attention switching. PLoS ONE, 11(12), 1–23. https://doi.org/10.1371/journal.pone.0167396 

Ritter Walter, S. J. G. F. D. (1996). ERPs during study as a function of subsequent direct and indirect 

memory testing in young and old adults. Cognitive Brain Research, 4(1), 1–13. 

https://doi.org/10.1016/0926-6410(95)00041-0 

Roediger, H. L., Weldon, M. S., & Challis, B. H. (1987). Explaining Dissociations Between Implicit and 

Explicit Measures af Retention:, (1983). 

Roediger, H., & McDermott, K. B. (1993). Implicit memory in normal human subject. In H. Spinnler & F. 

Boller (Eds.) (Ed.), Handbook of neuropsychology(pp. 63–131). Amsterdam: Elsevier. 

Rugg, M. D. (1985). The Effects of Semantic Priming and Word Repetition on Event-Related Potentials. 

Psychophysiology, 22(6), 642–647. https://doi.org/10.1111/j.1469-8986.1985.tb01661.x 

Rugg, M. D. (1994). Event-related potential studies of human memory. The Cognitive Neurosciences. 

Rugg, M. D., & Allan, K. (2000). Memory retrieval: an electrophysiological perspective. The New 

Cognitive Neurosciences. 

Rugg, M. D., & Allan, K. (2000). Event-related potential studies of human memory. The Oxford Handbook 

of Memory. 

Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive 

Sciences, 11(6), 251–257. https://doi.org/10.1016/j.tics.2007.04.004 

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation 

of the neural correlates of implicit and explicit memory. Nature, 392(6676), 595–598. 

https://doi.org/10.1038/33396 

Schacter, D. L. (1992). Priming and multiple memory systems: Perceptual mechanisms of implicit memory. 

Journal of Cognitive Neuroscience, 4(3), 244–256. https://doi.org/10.1162/jocn.1992.4.3.244 

Schacter, D. L., & Tulving, E. (1994). What are the memory systems of 1994? 

Schacter, D. L. (1990). Introduction to “Implicit memory: Multiple perspectives.” Tucson, AZ 85721. 

Schacter, D. L. (2008). Priming and Multiple Memory Systems: Perceptual Mechanisms of Implicit 

Memory. Journal of Cognitive Neuroscience, 4(3), 244–256. 

https://doi.org/10.1162/jocn.1992.4.3.244 

Schacter, D. L. (1987). Implicit Memory: History and Current Status. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 13(3), 501–518. 

Schott, B. H., Henson, R. N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H.-J., & Duzel, E. 

(2005). Redefining implicit and explicit memory: The functional neuroanatomy of priming, 

remembering, and control of retrieval. Proceedings of the National Academy of Sciences, 102(4), 

1257–1262. https://doi.org/10.1073/pnas.0409070102 

Schott, B., Richardson-Klavehn, A., Heinze, H. J., & Düzel, E. (2002). Perceptual priming versus explicit 

memory: Dissociable neural correlates at encoding. Journal of Cognitive Neuroscience, 14(4), 578–

592. https://doi.org/10.1162/08989290260045828 



 

 

160 

160 

Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2004). The selective processing of briefly 

presented affective pictures: An ERP analysis. Psychophysiology, 41(3), 441–449. 

https://doi.org/10.1111/j.1469-8986.2004.00174.x 

Smith, E., & DeCoster, J. (2000). Dual process models in social and cognitive psychology: Conceptual 

integration and links to underlying memory systems. Personality and Social Psychology Review, 

4(2), 108–131. 

Snodgrass, J. G., Hirshman, E., & Fan, J. (1996). The sensory match effect in recognition memory: 

Perceptual fluency or episodic trace? Memory and Cognition, 24(3), 367–383. 

https://doi.org/10.3758/BF03213300 

Snodgrass, J., Volvovitz, R., & Walfish, E. (1972). Recognition memory for words, pictures, and words + 

pictures. Psychonomic Science, 27(6), 345–347. 

Squire, L. R., & Knowlton, B. J. (1995). Memory, hippocampus, and brain systems. The Cognitive 

Neurosciences. 

Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe: a 

new perspective. Nature Reviews Neuroscience, 8(11), 872–883. https://doi.org/10.1038/nrn2154 

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research 

Methods, Instruments, & Computers, 31(1), 137–149. https://doi.org/10.3758/BF03207704 

Stenberg, G., Hellman, J., Johansson, M., & Rosén, I. (2009). Familiarity or Conceptual Priming: Event-

related Potentials in Name Recognition. Journal of Cognitive Neuroscience, 21(3), 447–460. 

https://doi.org/10.1162/jocn.2009.21045 

Strózak, P., Abedzadeh, D., & Curran, T. (2016). Separating the FN400 and N400 potentials across 

recognition memory experiments. Brain Research, 1635, 41–60. 

https://doi.org/10.1016/j.brainres.2016.01.015 

Stróżak, P., Abedzadeh, D., & Curran, T. (2016). Separating the FN400 and N400 potentials across 

recognition memory experiments. Brain Research, 1635(2), 41–60. 

https://doi.org/10.1016/j.brainres.2016.01.015 

Stróżak, P., Bird, C. W., Corby, K., Frishkoff, G., & Curran, T. (2016). FN400 and LPC memory effects 

for concrete and abstract words. Psychophysiology, 53(11), 1669–1678. 

https://doi.org/10.1111/psyp.12730 

Susser, J. A., Jin, A., & Mulligan, N. W. (2015). Identity Priming Consistently Affects Perceptual Fluency 

but Only Affects Metamemory When Primes Are Obvious, 42(4), 657–662. 

https://doi.org/10.1037/xlm0000189 

Tsivilis, D., Otten, L. J., & Rugg, M. D. (2001). Context effects on the neural correlates of recognition 

memory: an electrophysiological study. Neuron, 31(3), 497–505. https://doi.org/10.1016/S0896-

6273(01)00376-2 

Tulving, E. (1995). Organization of Memory: Quo Vadis? The Cognitive Neurosciences. 

https://doi.org/10.1017/S0140525X00047257 

Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301–306. 

https://doi.org/10.1126/science.2296719 



 

 

161 

161 

Turk-Browne, N. B., Yi, D. J., & Chun, M. M. (2006). Linking implicit and explicit memory: Common 

encoding factors and shared representations. Neuron, 49(6), 917–927. 

https://doi.org/10.1016/j.neuron.2006.01.030 

Voss, J. L., & Paller, K. A. (2007). Neural correlates of conceptual implicit memory and their 

contamination of putative neural correlates of explicit memory. Learning & Memory, 14(4), 259–267. 

https://doi.org/10.1101/lm.529807 

Voss, J. L., & Paller, K. A. (2010). Real-Time Neural Signals of Perceptual Priming with Unfamiliar 

Geometric Shapes. Journal of Neuroscience, 30(27), 9181–9188. 

https://doi.org/10.1523/JNEUROSCI.0403-10.2010 

Voss, J. L., Baym, C. L., & Paller, K. A. (2008). Accurate forced-choice recognition without awareness of 

memory retrieval. Learning and Memory, 15(6), 454–459. https://doi.org/10.1101/lm.971208 

Voss, J. L., Lucas, H. D., & Paller, K. A. (2010). Conceptual priming and familiarity: Different expressions 

of memory during recognition testing with distinct neurophysiological correlates. Journal of 

Cognitive Neuroscience, 22(11), 2638–2651. https://doi.org/10.1162/jocn.2009.21341 

Voss, J. L., Lucas, H. D., & Paller, K. A. (2010). Conceptual priming and familiarity: Different expressions 

of memory during recognition testing with distinct neurophysiological correlates. Journal of 

Cognitive Neuroscience, 22(11), 2638–2651. https://doi.org/10.1162/jocn.2009.21341 

Voss, J. L., Lucas, H. D., & Paller, K. A. (2012). More than a feeling: Pervasive influences of memory 

without awareness of retrieval. Cognitive Neuroscience, 3(3–4), 193–207. 

https://doi.org/10.1080/17588928.2012.674935 

Voss, J. L., & Paller, K. A. (2008). Brain substrates of implicit and explicit memory: The importance of 

concurrently acquired neural signals of both memory types. Neuropsychologia, 46(13), 3021–3029. 

https://doi.org/10.1016/j.neuropsychologia.2008.07.010 

Voss, J. L., & Paller, K. A. (2017). Neural Substrates of Remembering: Event-Related Potential Studies☆. 

Learning and Memory: A Comprehensive Reference(Third Edit). Elsevier. 

https://doi.org/10.1016/B978-0-12-809324-5.21070-5 

Voss, J. L., Schendan, H. E., & Paller, K. A. (2010). Finding meaning in novel geometric shapes influences 

electrophysiological correlates of repetition and dissociates perceptual and conceptual priming. 

NeuroImage, 49(3), 2879–2889. https://doi.org/10.1016/j.neuroimage.2009.09.012 

Waldhauser, G. T., Braun, V., & Hanslmayr, S. (2016). Episodic Memory Retrieval Functionally Relies on 
Very Rapid Reactivation of Sensory Information. Journal of Neuroscience, 36(1), 251–260. 

https://doi.org/10.1523/jneurosci.2101-15.2016 

Wang, W., Gao, C., Guo, C., Guo, C., Taylor, J. R., Wang, W., & Gao, C. (2017). Electrophysiological 

signals associated with fluency of different levels of processing reveal multiple contributions to 

recognition memory. Consciousness and Cognition, 53(May), 1–13. 

https://doi.org/10.1016/j.concog.2017.05.001 

Wang, W., Li, B., Gao, C., Xiao, X., & Guo, C. (2015). Electrophysiological correlates associated with 

contributions of perceptual and conceptual fluency to familiarity. Frontiers in Human Neuroscience, 

9(June), 1–11. https://doi.org/10.3389/fnhum.2015.00321 

Wang, W., Li, B., Gao, C., Xu, H., & Guo, C. (2015). Conceptual fluency increases recollection: 

Behavioral and electrophysiological evidence. Frontiers in Human Neuroscience, 9(JUNE), 1–11. 

https://doi.org/10.3389/fnhum.2015.00377 



 

 

162 

162 

Westerman, D. L., Lloyd, M. E., & Miller, J. K. (2002). The attribution of perceptual fluency in recognition 

memory: the role of expectation. Journal of Memory and Language, 47(4), 607–617. 

https://doi.org/10.1016/S0749-596X(02)00022-0 

Westerman, D. L. (2008). Relative fluency and illusions of recognition memory. Psychonomic Bulletin & 

Review, 15(6), 1196–1200. https://doi.org/10.3758/PBR.15.6.1196 

Whittlesea, B. W. A. (1993). Illusions of familiarity. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 19(6), 1235. 

Whittlesea, B. W. A., & Williams, L. D. (2001). The discrepancy-attribution hypothesis: I. The heuristic 

basis of feelings and familiarity. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 27(1), 3–13. https://doi.org/10.1037/0278-7393.27.1.3 

Whittlesea, B. W. A., & Williams, L. D. (2001). The discrepancy-attribution hypothesis: II. Expectation, 

uncertainty, surprise, and feelings of familiarity. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 27(1), 14–33. https://doi.org/10.1037/0278-7393.27.1.14 

Whittlesea, B. W. A., & Leboe, J. P. (2003). Two fluency heuristics (and how to tell them apart). Journal of 

Memory and Language, 49(1), 62–79. https://doi.org/10.1016/S0749-596X(03)00009-3 

Whittlesea, B. W. A., & Williams, L. D. (1998). Why do strangers feel familiar, but friends don’t? A 

discrepancy-attribution account of feelings of familiarity. Acta Psychologica, 98(2–3), 141–165. 

https://doi.org/10.1016/S0001-6918(97)00040-1 

Wilding. (1999). Separating retrieval strategies from retrieval success: an event-related potential study of 

source memory. Neuropsychologia, 37, pp 441-454. 

Wilding, E. L. (2000). In what way does the parietal ERP oldrnew effect index recollection? International 

Journal of Psychophysiology, 35, 81–87. 

Wilding, E. L., & Rugg, M. D. (1996). An event-related potential study of recognition memory with and 

without retrieval of source, (January), 889–905. https://doi.org/10.1016/0028-3932(95)00017-W 

Wilding, E. L., & Ranganath, C. (2011). Electrophysiological Correlates of Episodic Memory Processes. 

Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.013.0187 

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. 

Psychological Review, 114(1), 152–176. https://doi.org/10.1037/0033-295X.114.1.152 

Winkler, I., Debener, S., Muller, K. R., & Tangermann, M. (2015). On the influence of high-pass filtering 

on ICA-based artifact reduction in EEG-ERP. Proceedings of the Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-Novem, 4101–4105. 

https://doi.org/10.1109/EMBC.2015.7319296 

Woollams, A. M., Taylor, J. R., Karayanidis, F., & Henson, R. N. (2008). Event-related potentials 

associated with masked priming of test cues reveal multiple potential contributions to recognition 

memory. Journal of Cognitive Neuroscience, 20(6), 1114–1129. 

https://doi.org/10.1162/jocn.2008.20076 

Yonelinas, A. P., Aly, M., Wang, W., & Koen, J. D. (2014). Recollection and Familiarity: Examining 

Controversial Assumptions and New Directions Andrew. Hippocampus, 20(11), 1178–1194. 

https://doi.org/10.1002/hipo.20864.Recollection 

https://doi.org/10.1037/0033-295X.114.1.152


 

 

163 

163 

Yonelinas, A. P. (1999). A formal dual-process model and an analysis of receiver operating characteristics. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(6), 1415–1434. 

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. 

Journal of Memory and Language, 46(3), 441–517. https://doi.org/10.1006/jmla.2002.2864 

Yonelinas, A. P., Widaman, K., Mungas, D., Reed, B., Weiner, M. W., & Chui, H. C. (2007). Memory in 

the aging brain: Doubly dissociating the contribution of the hippocampus and entorhinal cortex. 

Hippocampus, 17(11), 1134–1140. https://doi.org/10.1002/hipo.20341 

Yovel, G., & Paller, K. A. (2004). The neural basis of the butcher-on-the-bus phenomenon: When a face 

seems familiar but is not remembered. NeuroImage, 21(2), 789–800. 

https://doi.org/10.1016/j.neuroimage.2003.09.034 

Zarella, M. M., Vaidya, C. J., Monti, L. A., Gabrieli, J. D. E., Keane, M. M., & Gutiérrez-Rivas, H. (2005). 

Evidence for multiple mechanisms of conceptual priming on implicit memory tests. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 23(6), 1324–1343. 

https://doi.org/10.1037/0278-7393.23.6.1324 

 

 

https://doi.org/10.1016/j.neuroimage.2003.09.034

	What Makes an Image Memorable? Effects of Encoding on the Mechanism of Recognition
	Recommended Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Illustrations
	List of Appendices
	A.1 Appendix: Schematic design of stimuli used in Experiment ……152
	1    Chapter: Introduction
	1.1 Event-related potentials (ERP) and Electroencephalogram (EEG)
	1.1.1 Encoding ERPs
	1.1.2 Recognition Memory Processing and Recognition ERPs

	1.2 Dual-Process-Signal Detection Model
	1.3 Single-Process Model
	1.3.1 Implicit Memory and Recognition
	1.3.1.1 Conceptual Fluency
	1.3.1.2 Perceptual Fluency


	1.4 Link between Encoding and Recognition Memory Processing

	2    Chapter:  An ERP Study of Encoding and Recognition Memory for Pictures of Common Objects
	2.1 Introduction
	2.2 Methods
	2.2.1 Participants
	2.2.2 Stimuli and procedures
	2.2.3 EEG data and Acquisition
	2.2.4 Behavioural Analyses 
	2.2.5 Controlling for Fatigue

	2.3 ERP Preprocessing and Analyses 
	2.4 Results
	2.4.1 Behavioural Results
	2.4.2 ERP Results
	2.4.2.1 Encoding Task
	2.4.2.2     Recognition Task


	2.5    Discussion
	2.6    Conclusion


	3    Chapter: Familiarity and Implicit Memory
	3.1 Introduction
	3.2 Method
	3.2.1 Participants
	3.2.2 Stimuli and Procedures
	3.2.3 EEG data and Acquisition
	3.2.4 ERP preprocessing and analyses 
	3.2.5 ERP data and analysis procedures:

	3.3 Results
	3.3.1 Behavioural Results
	3.2    ERP Results
	3.3.2.1   Encoding Task
	3.3.2.2   Recognition Task


	3.4    Discussion
	3.4.1 Encoding ERPs
	3.4.2     Recognition ERPs

	3.5     Conclusion

	4    Chapter: The familiarity heuristic and the FN400 effect
	4.1  Introduction
	4.2 Hypothesis
	4.3 Methods
	4.3.1 Participants
	4.3.2 Stimuli and Procedures:
	4.3.3 EEG data and Acquisition
	4.3.4 Data Processing
	EEG Data: Custom MATLAB scripts in conjunction with the open-source EEGLAB toolbox (Delorme and Makeig 2004, http://sccn.ucsd.edu/eeglab) were used to analyze the data. We inspected and corrected the continuous data for outliers, body movements, and m...

	4.4 Results
	4.4.1 Behavioural Results



	Table 4.1
	Proportion of Hits and response time (ms) values, reported along with their standard deviations across participants in parentheses for each condition.
	4.4.2     ERP Results

	Figure 4.3. The significant results of the four-way repeated-measures ANOVA with SME (Subsequent Hit /SH, Subsequent Miss/SM) X Prime effect (Primed, Unprimed) X Filter (F0, F1, F2) X Repetition (R1, R2, R3) for the two time windows reflecting the Flu...
	5    Chapter: General Discussion and Conclusion
	5.1 Significant Findings
	5.1.1 Experiment 1
	5.1.2 Experiment 2
	5.1.3 Experiment 3

	5.2 Conclusion
	A.1 Appendix: Schematic design of stimuli used in Experiment 3



	References

