
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-18-2020

Network Traffic Based Botnet Detection Using Machine Learning Network Traffic Based Botnet Detection Using Machine Learning

Anand Ravindra Vishwakarma

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, and the OS

and Networks Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by San Jose State University

https://core.ac.uk/display/322978612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

Network Traffic Based Botnet Detection Using Machine Learning

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Anand Ravindra Vishwakarma

May 2020

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

The Designated Project Committee Approves the Project Titled

Network Traffic Based Botnet Detection Using Machine Learning

by

Anand Ravindra Vishwakarma

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2020

Dr. Robert Chun Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Mr. Abhishek Sharma Twitter, Inc

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

i

ABSTRACT

The field of information and computer security is rapidly developing in today’s world as the

number of security risks is continuously being explored every day. The moment a new software

or a product is launched in the market, a new exploit or vulnerability is exposed and exploited by

the attackers or malicious users for different motives. Many attacks are distributed in nature and

carried out by botnets that cause widespread disruption of network activity by carrying out DDoS

(Distributed Denial of Service) attacks, email spamming, click fraud, information and identity

theft, virtual deceit and distributed resource usage for cryptocurrency mining. Botnet detection is

still an active area of research as no single technique is available that can detect the entire

ecosystem of a botnet like Neris, Rbot, and Virut. They tend to have different configurations and

heavily armored by malware writers to evade detection systems by employing sophisticated

evasion techniques. This report provides a detailed overview of a botnet and its characteristics and

the existing work that is done in the domain of botnet detection. The study aims to evaluate the

preprocessing techniques like variance thresholding and one-hot encoding to clean the botnet

dataset and feature selection technique like filter, wrapper and embedded method to boost the

machine learning model performance. This study addresses the dataset imbalance issues through

techniques like undersampling, oversampling, ensemble learning and gradient boosting by using

random forest, decision tree, AdaBoost and XGBoost. Lastly, the optimal model is then trained

and tested on the dataset of different attacks to study its performance.

Index Terms: Botnet Detection, Feature Selection, Imbalanced Learning, Machine Learning,

XGBoost.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Robert Chun, for his continued guidance and support in

successfully completing this project through his experience and research knowledge.

I would also like to extend my gratitude towards my committee members, Dr. Chris Pollett and

Mr. Abhishek Sharma for giving their time and support.

Lastly, I would like to thank my parents, relatives, and friends for always supporting and

believing in me.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

iii

TABLE OF CONTENTS

I. Introduction ... 1

II. Understanding Botnet .. 5

A. Configuration .. 5

B. Architecture ... 5

III. Botnet Attacks And Types .. 7

A. Lifecycle ... 7

B. Attack Methods ... 7

1.) Denial of Service (DoS) or Distributed Denial of Service (DDoS): ... 7

2.) Miscellaneous Attacks: ... 8

IV. Botnet Detection Methods .. 9

A. Classical Methods ... 9

B. Signature and Anomaly Based .. 9

C. Machine Learning-Based .. 11

D. Deep Learning-Based .. 14

V. Dataset .. 17

A. CTU-13 Dataset .. 17

B. Dataset Features .. 18

C. Descriptive Analytics .. 19

VI. Preprocessing .. 21

A. One Hot Encoding ... 21

B. Label Encoding ... 21

C. Dropping Columns .. 22

D. Scaling... 22

VII. Feature Selection ... 23

A. Removing Null Columns .. 23

B. Variance Thresholding .. 24

C. Filter Methods ... 24

D. Wrapper Methods .. 26

E. Embedded Methods .. 27

F. Feature importance and Correlation Heatmap .. 28

VIII. Addressing Data Imbalance .. 30

A. Undersampling .. 30

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

iv

B. Oversampling .. 31

C. Oversampling followed by Undersampling .. 32

D. Ensemble Learning ... 33

E. Cost-Sensitive Learning - XGBoost ... 34

IX. Machine Learning Classifiers ... 35

A. Decision Tree .. 35

B. Random Forest .. 35

C. AdaBoost... 36

X. Technology Stack .. 37

A. Hardware ... 37

B. Software and Libraries .. 37

XI. Implementation ... 38

XII. Evaluation Metrics .. 39

A. Classification Report ... 39

B. ROC Curve .. 40

XIII. Experiments .. 41

A. Baseline Model ... 41

B. Feature Reduced Model .. 42

1.) Strategy 1: All Features ... 43

2.) Strategy 2: Variance Thresholding.. 44

3.) Strategy 3: Reduced Classes ... 44

C. Oversampled Models .. 46

D. Undersampled Models .. 47

E. Oversampled + Undersampled Models ... 48

F. Ensemble Learners .. 49

G. Cost-Sensitive Model – XGBoost ... 50

H. XGBoost on all 13 scenarios ... 52

XIV. Results ... 53

XV. Conclusion .. 54

XVI. Future Work .. 55

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

v

LIST OF FIGURES

Figure 1: Conceptual Map of Project .. 4

Figure 2: Traffic Frequency Distribution .. 20

Figure 3: Protocol Frequency Distribution ... 20

Figure 4: Variance Thresholding .. 24

Figure 5: Flow Diagram for Filter Methods .. 25

Figure 6: Flow Diagram for Wrapper Methods .. 27

Figure 7: Flow Diagram for Embedded Methods ... 28

Figure 8: Correlation Heatmap Matrix .. 29

Figure 9: Illustration of Undersampling [22] .. 31

Figure 10: Illustration of Undersampling - Tomek Links [23] ... 31

Figure 11: Illustration of Oversampling [22] .. 32

Figure 12: Illustration of SMOTE [26] ... 32

Figure 13: XGBoost Model .. 34

Figure 14: Illustration of Decision Tree .. 35

Figure 15: Illustration of Random Forest .. 36

Figure 16: Illustration of AdaBoost .. 36

Figure 17: Illustration of Confusion Matrix .. 40

Figure 18: Interpretation of the ROC Curve ... 40

Figure 19: Frequency Distribution of Categorical Columns ... 41

Figure 20: Confusion Matrix for RFC and DT ... 46

Figure 21: Ensemble Learners Performance Comparison .. 50

Figure 22: XGBoost ROC-AUC Score ... 51

Figure 23: Models Performance Comparison ... 53

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

vi

LIST OF TABLES

Table 1: Dataset Scenario Description .. 17

Table 2: Dataset Diversity Distribution .. 18

Table 3: Feature Columns Description ... 19

Table 4: Continuous Features Statistics .. 22

Table 5: Baseline Model ROC-AUC Scores ... 42

Table 6: Feature Selection on Strategy1 Dataset .. 43

Table 7: Feature Selection on Strategy2 Dataset .. 44

Table 8: Feature Selection on Strategy3 Dataset .. 45

Table 9: Oversampling Results ... 47

Table 10: Undersampling Results ... 48

Table 11: Ensemble Learners Performance .. 49

Table 12: ROC Curve for XGBoost on 5 and 10 Features of Strategy1 Dataset .. 50

Table 13: XGBoost Results on 13 Scenarios .. 52

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

1

I. INTRODUCTION

The internet is plagued with information theft and security risks. Information theft includes

personal details stolen to conduct identity fraud, and debit and credit card credentials traded on the

dark web to carry out illicit transactions. Some of the security risks include but are not limited to

systems, servers, and networks compromised with malware, trojan horses, phishing, ad-wares,

deceive, ransomware, and viruses [1]. While accessing resources like audio, video, and images

and surfing the internet, users are targeted with unwanted ads, spam notification, and emails and

denial of service. The attacks mentioned are carried out in a distributed manner for illegal purposes,

monetary gains, to create biasedness among public opinion and harm the organization’s reputation

[1, 2].

Botnet comprises 80% of the attacks on the internet in the modern world. These nefarious

activities are well organized and carried out by a hacker. A botnet is a network of malware

compromised computers (called as bot or zombie) under the control of a hacker (also called as

botherder or bot-master). A botherder controls the bots by using a Command and Control server

(C&C). Identifying the vulnerable systems, propagating the malware, sending the command, and

code updates and carrying out the attack are primarily controlled by the C&C server. A collective

effort from the botnet attacks can result in Distributed Denial of Service (DDoS), phishing,

spamming, spreading of malware, information theft, unwanted ads, generating virtual clicks and

cryptocurrency mining. Prevention or detection of botnet attack is difficult because of its inherent

nature of changing the attacks modus operandi [2].

Many types of research have been done to effectively and successfully detect and block botnet

attacks. The goal of this project is to propose a machine learning model to detect botnets with

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

2

better precision and reduce false positives by studying existing work done in the botnet detection

area. The articles selected for this project include conference proceedings, articles and, published

papers. This project tries to answer the following questions:

1. To what length the existing botnet detection methods are successful and their fallacies over

each other?

2. What selection method can help us in identifying the optimal set of features for efficient and

accurate model training?

3. How the dataset imbalance issue of botnet originated traffic can be handled?

4. Is there any machine learning model that can detect a range of botnet attacks?

The literature establishes that there does not exist a single strategy that can work across all

types of botnet attack as identified in previous works. Selection methods work well on datasets

with fewer columns obtained after variance thresholding and one hot encoding. The handling of

botnet dataset imbalance is well done by using an undersampling strategy and bagging classifiers

with implicit imbalance handling. XGBoost emerges as a model in this project that scales well to

a wide range of botnet attacks.

The remaining section of the review is organized as follows: Section II focuses on architecture,

the configuration of botnets. Section III delineates the attack phase and widely known attack

methods. Section IV examines the classical methods of botnet detection and its failure and

contrasts it with various bettered methods of signature and anomaly-based detection. It also

reviews the contribution of machine learning and deep learning techniques in successful botnet

detection. Section V introduces the dataset under consideration and provides an overview of the

dataset using descriptive analytics. Preprocessing steps for dataset cleaning are mentioned in

section VI. Section VII focusses on the feature selection techniques for reducing the feature space

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

3

to improve model training time. The imbalance issue in the botnet dataset ecosystem and the

approaches that can be adopted to balance the dataset is mentioned in section VIII. Section IX and

X identify the machine learning classifiers that have been used and the technology stack in terms

of software and hardware. A brief description of implementation can be found in Section XI. The

evaluation metrics to measure the performance of the model is specified in section XII. A wide

range of experiments conducted on the botnet dataset using feature selection and imbalance

learning on machine learning classifier is explained in section XIII. The entire summary of the

experiments in the form of results can be found in Section XIV. Section XV introduces the

conclusion and section XVI ends with the future scope of the project. The entire project will follow

the conceptual map as shown in Figure. 1.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

4

Figure 1: Conceptual Map of Project

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

5

II. UNDERSTANDING BOTNET

As previously discussed in the introduction, Botnet is a network of infected computers

responsible for carrying out distributed attacks [2]. In this section, we delve into exploring the

architectures and configuration of the botnet and its lifecycle.

A. Configuration

Various configurations or topologies that can be summarized into below four categories are

described in [2-7] and [8]. In this star or Centralized C&C Topology, there is a single server

(botmaster) that communicates with all the botnet members. Failure of the server can cause

disruption of the botnet. Legacy botnets are based on this type of architecture but, recently shift

has been made towards P2P architectures. To make botnet fault-tolerant, instead of a standalone

server, multiple servers work in tandem to coordinate attacks, malware distribution, and weak

system identification by sending commands to bots in Multi-Server C&C Topology. Hierarchical C&C

Topology as the name implies has a central botmaster that controls bot and then the bot assumes

the role of botmaster and in turn controls its botnet members and so on. In Peer-to-Peer topology

there is no central server, instead, every bot member is capable enough to do tasks of a botnet. In

other words, every bot is a bot as well as a botmaster.

B. Architecture

Botnets are broadly classified based on the protocol used by command and control server into

IRC-based, HTTP-based, DNS-based or Peer to Peer (P2P) botnets [2, 3, 4, 5, 6]. There are also

some lesser-known botnet categories like POP-based botnets for email attacks, edge devices

botnets like SMS and MMS-based botnet and social network botnets as specified in [7].

An IRC-based botnet used Internet Relay Chat Protocol (IRC) [3]. An IRC network is made

up of multiple servers that work in co-ordination to relay messages across servers. Each server has

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

6

multiple channels that have published topics. A user connects to one of the IRC servers with a

UNIQUE Id and then uses one of the channels to communicate. [3] explains that a channel in an

IRC network is a bot (malware) and all the systems infected by the same malware belong to the

same channel. On the other hand, an HTTP-based botnet (also known as Web-based botnet) relies

on HyperText Transfer Protocol (HTTP) for its communication with the bot members. [4] specifies

that most of the internet traffic is HTTP traffic and HTTP-based botnets clearly take advantage of

this and disguise themselves as normal traffic. Compared to IRC-based botnet [3], [4] explains

HTTP-based botnet are relatively difficult to detect primarily for two reasons: first they hide

behind normal traffic and second, most of the firewall/proxies do not have the capability for deep

packet inspection (examine network packet at each layer).

A DNS-based botnet utilizes the Domain Name System protocol (DNS) useful for contacting

the C&C server by issuing DNS queries. DNS systems are a directory of IP addresses responsible

for converting Domain Name into IP addresses (also called as domain name resolution) and vice-

versa. [5] delineates that the bots and botmaster communicate by using DNS queries and in order

to avoid detection, the C&C server keeps changing the domain name by using Domain Generation

Algorithm (DGA) or fast-flux which makes them robust to detection. Newly generated IP and

domain names are constantly being updated in the DNS system. In comparison to IRC-based,

HTTP-based, and DNS-based, which uses client-server architecture as specified in [3, 4, 5], P2P-

based botnet uses peer to peer network in a distributed fashion which makes them robust for

detection. Since, there is no single master, every bot in the network is a master and capable of

infecting vulnerable systems and carry out the attack. [6] examines various P2P traffic types and

concludes that P2P-based detection is difficult owing to its inherent distributed nature.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

7

III. BOTNET ATTACKS AND TYPES

A. Lifecycle

Botnet lifecycle comprises of five stages as specified in [1, 2, 7]. In the initial Infection stage,

the C&C server scans the network and looks for vulnerabilities in the network, servers, and system.

Obvious flaws like buffer overflow, backdoors, incomplete mediation, password guessing on SQL

servers are done. Once the weak systems are identified, they are targeted with a shell script and

run on it in the secondary infection stage. The shell scripts enable the systems to download

malware or bot binary codes from the C&C server. In the connection stage, once the malware is

run on the host system, a connection is established to the C&C server and the botmaster can now

send the commands to the system and is now a part of the botnet. In Malicious Command and

Control phase, the C&C server sends attack commands to the botnet members to disrupt online

services. The update and maintenance phase is an ongoing process that is required as a C&C server

in order to avoid detection it keeps migrating the server.

B. Attack Methods

Botnet attacks are motivated by various reasons like economic, political and ideological

considerations. Sometimes, extortion or ransom, personal feuds, naïve enthusiasts or script kiddies

and cyber warfare could be the possible reasons for such attacks.

1.) Denial of Service (DoS) or Distributed Denial of Service (DDoS):

Denial of service is a kind of attack in which the target resource is inundated with many

requests which overwhelm the target making it unavailable to the user. Generally, DoS is

executed by a single machine and it is not capable enough to bring down the target system.

Practically, multiple machines are required to launch such attacks, hence DDoS attacks are

ubiquitous and difficult to break down [1, 2]. [8] broadly classifies DDoS attacks into three

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

8

categories: volume-based attacks, protocol attacks, and application-layer attacks. Volume-

based attacks include UDP flood and ICMP flood. A UDP flood is any DDoS attack that uses

User Datagram Protocol (UDP) packets to bring down the network by rapidly sending spoofed

UDP packets to the host. The host in response sends error messages since spoofed packets do

not have any legit connections. ICMP (Internet Control Message Protocol) flood is also known

as a ping attack in which diagnostic tools like traceroute or ping are used to check the device

health and connectivity. Many ping requests will require the same number of responses and

make the device crash.

2.) Miscellaneous Attacks:

The Spamming and Traffic Monitoring attack include bots that are used as a sniffer to steal

sensitive data like usernames and passwords from the infected machines. Internet users are

targeted with spam emails that are sent out in bulk using botnets such as Grum responsible for

25% of the total spam emails. With the help of botnet, bots can spread out keyloggers which

are software that captures key sequence presses on the keyboard and designed in such a way

that gets activated when popular keywords like PayPal and Yahoo are entered. Spam emails

are disguised as legit emails that direct users to legitimate websites to enter bank details, tax

details, personal details, and card details. Such information is traded on the dark web for fees.

Pay-per-click is one of Google’s AdSense program in which various websites display Google

advertisements and earn money when the user clicks on those ads. Botnet, apart from carrying

out attacks, also has the potential to propagate botnet over various geographical regions by

targeting less secure systems. Adware is harmless ads but in disguise collects browser data by

using spyware software. It is used to lure users into clicking false advertisements or apps with

the pretext of monetary or personal profits.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

9

IV. BOTNET DETECTION METHODS

In this section, we will dive deep into the traditional botnet detection method, state of the art

detection method followed by an amalgamation of machine learning, and deep learning techniques

for detecting botnet.

A. Classical Methods

A honeypot is a computer system that is placed in the DMZ (Demilitarized Zone) network of

the company that is used to lure the attackers into attacking it [8]. A honeypot is a vulnerable

system and any communication between honeypot and outside the system is considered suspicious.

[1, 2] broadly studied the concept of honeypot and identified that the system used as honeypot

does not have any production value. A typical honeypot captures information such as the signature

of the bot (malware), C&C server mechanism, botnet details, techniques used by the attacker,

attacker motivation and most importantly, the loophole of the system that bot exploited. Apart

from discussing the simplicity of the model, [1, 2, 7] also enlightened on the limitations associated

with the honeypots. Honeypots (or Honeynet) have limitations in detecting several exploitations,

bots that use propagation, cannot scale to other malicious attacks, and it can only generate a report

of the attack on the honeypot system. It cannot detect the attack in real-time as well as bot attacks

on some other system.

B. Signature and Anomaly Based

Intrusion Detection System (IDS) is the emerging field in botnet detection as an alternative

to Honeypots. IDS systems are classified as signature-based and anomaly-based detection. Recent

works in botnet detection as described in [10 – 15], utilizes the different mechanisms of anomaly-

based detection as compared to signature-based detection. Signature-based IDS maintains a

database of attack signature and uses it to scan and compare the incoming traffic against the

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

10

available signatures. Immediate detection and zero false-positive rates as noted in [9] are the

benefits of signature-based IDS. They are useful in the sense the exact cause of the attack is also

known in IDS Response and the network administrators can take appropriate steps by quarantining

the segment of the network or the infected system. [8] notes some of the associated disadvantages

like detection time decreases as the signature database increases in size, the signature needs to be

updated on daily basis, cannot detect variant of the botnet attack and cannot identify zero-day

attacks or new botnet. [10] renders signature-based IDS as ineffective owing to modern botnets

being equipped with advanced code patching and dodging techniques. Due to its inherent nature

of being static, anomaly-based detection techniques are widely implemented.

Research has shown that anomaly-based techniques are much better at detection as it does not

require a database of signature and is capable enough to detect new or unknown botnets. Anomaly-

based techniques try to detect botnet by using various network characteristics like network

protocols, packet size, stateful and stateless features, traffic size, unusual system, and abnormal

behaviors. They are implemented as either host-based IDS or network-based IDS as explained in

[9]. A host-based IDS is implemented on the system and is unaware of the network traffic whereas

a network-based IDS is unaware of host network traffic. Anomaly-based detections detect behavior

that goes out of normal behavior. Due to this feature, Anomaly-based IDS is effective in

identifying new or variant of existing botnets in real-time. Surveys on Anomaly-based IDS in [1,

2, 7, 8, 9] has confirmed that anomaly-based IDS cannot be used as a foolproof measure of

detecting botnet because as it is difficult to identify the normal threshold and also the network

activity changes over time and hence, the IDS has to evolve. Also, such systems cannot effectively

reveal the specific type of attack which makes it difficult to block the botnet. Hence, hybrid

systems of Anomaly and Signature-based implementation are widely used in insecure networks.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

11

C. Machine Learning-Based

The field of machine learning and deep learning is now the most widely implemented and

experimented area. [10 – 15] have described various techniques of botnet detection using machine

learning or deep learning in combination with botnet characteristics.

Botnet detection using machine learning techniques like k-NN (k-Nearest Neighbor), Decision

Tree (DT), Random Forest (RF), and Naïve Bayes model based on DNS Query data is mentioned

in [10]. Bots of the botnet receive code and commands from the C&C server by performing lookup

queries generated using DGA or fast-flux. [10] identifies that the IP address of the C&C server is

not a legit name and keeps on randomly changing to avoid detection. Also, the generated malicious

domain names have characteristics like DNS, network and lexical features entirely different from

benign domain names. [10] approaches to solve the problem by collecting 16 vocabulary features

from 2-g and 3-g clusters like mean, variance, standard deviation, entropy, consonants, vowels,

number, and character characteristics and 2 characteristics from vowel distribution. IP addresses

are random with datasets generated from Conficker, and DGA botnet (malicious) and top domain

names from Alexa Internet (benign) (collection of domain names) in conjunction with machine

learning models, [10] demonstrated the effectiveness of Random Forest machine learning model

by delivering an accuracy of 90.80% in botnet detection. Also, the proposed random forest-based

detection system suffered from a relatively high false-positive rate. Some related research papers

to [10], [16] implemented techniques for detecting botnets by administering the DNSBL (Domain

Name System Blacklist) list which contains IP addresses of spam bot members and matching it

with DNS queries domain names. [17] extends its work on the idea that most of the DNS queries

are made to terminated domains or NXDOMAIN (non-existent domains) as the C&C server keeps

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

12

on changing the IP addresses and it was successful in detecting traffic with a large number of

queries and terminated domains.

Botnet detection models in the works of literature are heavily built for network and network

devices as discussed in [10, 16, 17]. Work expressed in [14] proposes a detection model for the

Internet of Thing (IoT) devices by highlighting the fact that IoT specific behaviors are unique like

they have few endpoints for connections and the time interval between the packet is well regulated.

It postulates that botnets such as Mirai are exploiting insecure IoT devices to carry out DDoS

attacks in large numbers. A recent survey in [1, 2] predicts that by 2020, the number of IoT devices

will be around 20 billion and 10% of these devices have flaws ranging from un-encrypted data

transmission, outdated BIOS firmware, and exposed telnet ports. [14] considers Random Forest,

k-nearest neighbors, Decision Trees, SVM and neural network and train these models on network

flow parameters like length of the packet, size of the interval and protocol used. The detection

pipeline is flow-based (considers network behavior), uses either stateless or stateful features and

is protocol-agnostic (robust to different protocols). [14] expresses the issues surrounding IoT

devices like lightweight characteristics, limited memory, and computation power. Steps involved

in building an IoT-based detection model is capturing the traffic, grouping the packets based on

device (stateful) and by time (study temporal patterns), extracting stateful and stateless features

followed by a binary classification. [14] experimented with the dataset and found out that normal

traffic packet size varies between 100 to 1200 bytes whereas attack traffic is under 100 bytes owing

to repeated attacks. Also, the attack traffic has a lesser inter-packet interval in comparison to

normal traffic. Most of the time protocols used during attack were TCP as opposed to UDP during

normal situations. The classifiers were able to obtain training accuracy from 0.91 to 0.99.

However, though the accuracy was 0.99, it was built on simulated data generated using DDoS

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

13

attack. [14] predicts the model might be overfitting the data but is unsure of its performance on

real-time attacks which opens the door for future research in the detection of botnets.

Work was done in [11, 14] that focused on detecting botnet using IP address details and traffic

flow characteristic, respectively. On the other hand [16] focusses on leveraging the detection of

botnet using an efficient flow-based technique by reducing the packet size and time of traffic flow

under consideration. The model was developed to detect two P2P botnets namely Storm and

Waledac botnets during the honeynet project. It has been noted in many papers that modern botnets

are resilient to detection by employing techniques like protocols obfuscation, encrypted

communication, fast-flux and random domain name generation using DGA. P2P botnets have a

disastrous effect on industrial systems and their infrastructures. In order to train the models, [16]

captured network traffic of five tuples like source IP address, source port, destination IP address,

destination port and protocol used. As well for every traffic, 39 other statistical features were

extracted. [16] employed batch analysis and limited analysis of the captured traffic by using eight

different machine learning algorithms like Naïve Bayesian Classifier (NB), Logistic Regression

(LR), Bayesian Network Classifier (BNet), Linear Support Vector Machine (LSVM), Neural

Networks, Random Forest Classifier, Random Tree Classifier, and Decision Tree Classifier. In the

modeling process of botnet detection of [16], all MLA (machine learning algorithms) delivered

impressive performance except Naïve Bayesian Classifier for both malicious as well as non-

malicious traffic. The tree classifiers delivered promising classification performance, but Random

Forest Classifier delivered the highest accuracy. Remaining MLAs experimented in [16], delivered

the worst performance for non-malicious traffic as compared to normal traffic since the dataset

was skewed in the former case. Additionally, [16] was successful in stating that high performance

in detection was obtained by monitoring the traffic flow for only 60 seconds with an accuracy of

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

14

95%. Also, the initial 10 packets per flow are evident enough to detect botnet as opposed to

monitoring the entire flow.

To summarize, [14] experimented with detecting botnet on consumer internet of thing device

based attack. [11] considered a deep learning model, whereas [14] demonstrated the effectiveness

of k-NN, Linear Support Vector Machine (LSVM), Decision Tree, Random Forest, and Neural

Network by achieving an average accuracy of 99%. [14] also considered stateful features like

bandwidth, and IP destination address cardinality and novelty and stateless features like packet

size, inter-packet interval and protocols separately and together during the training phase. [15]

employed flow-based machine learning technique for botnet detection and experimented with

models like Naïve Bayes, Bayesian Net, Artificial Neural Network, Support Vector Machine,

Random Tree, Random Forest, and Decision Tree. The flow-based model was able to achieve

accurate detection of traffic only for 10 packets and 60 seconds of the flow. Next, we will consider

the advancements done using Deep Learning for botnet detection.

D. Deep Learning-Based

Deep Learning is a research field and is constantly evolving. Recent researches in the detection

of the botnet have shifted its gear towards building the model using Deep Learning techniques.

Autoencoders, Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN)

have played a leading role in blocking attacks of a botnet. Next, we describe deep learning models

developed for the detection of the botnet.

For botnet detection, [10] used a supervised learning model whereas [11] used an unsupervised

learning model. Most of the detection models are built for botnet on the network, [11] focused on

IoT devices that are more vulnerable to botnet attacks since they are relatively less secure owing

to their size and computation requirements. This paper studies the effect of Mirai and BASHLITE

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

15

botnet attack on IoT devices by capturing network snapshots of traffic behavior emanating from

malware attacked IoT devices. It promotes building a model that expedites the alerting process

which can effectively help in quarantining the device as soon as possible and specifically for large

scale enterprise networks where the number of connected IoT devices through Wi-Fi (Wireless

Fidelity) and Bluetooth is extremely large. [11] develops a novel network-based model using deep

learning-based autoencoder for each device which delivers a lower false-positive rate. The

autoencoder is trained on benign network behavior (snapshots) and tries to compress it called an

encoding phase. During the decoding phase, it tries to re-construct the snapshot, and failure to do

so means an anomalous behavior is observed. [10, 14, 15] focus on initial stages of infection, [11]

operated on the attack stage which provides benefits like heterogeneity tolerance (separate encoder

for each device), efficiency (trains on a batch of observation and then discards it) and Open World

(detect abnormal behavior). To build the model, [11] 23 features were obtained from 115 traffic

statistics over the various time frame of varying minutes. Throughout the training process,

hyperparameter learning was also performed followed by learning of threshold for abnormal

behavior and effective window size. TPR for autoencoder was 100%, though it raised few false

alarms and required the smallest detection time for most IoT devices. The deep autoencoder failed

in the scenarios as specified in [11] because it tends to fit common patterns.

A novel approach in the detection of the botnet by using graph-based features is discussed in

[15]. It employs the detection of malicious hosts by evaluating the temporal activity of the infected

device or network activity across a fixed interval and overlapped windows. It notes that 70% of all

the spam is controlled by botnets and the newer botnets use peer-to-peer architecture in comparison

to centralized architecture. Moreover, they make detection of botnet more difficult by changing

their peer-to-peer protocols and encrypt their packet data. [16] adopts a flow-based approach and

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

16

are often specific to a botnet and not generalizable. On the contrary, [15] uses graph-based model

that avoids the sequential characteristic of data and focusses on the communication structure of

the node. The model considered, Long Short-Term Memory (LSTM) is well suited for time-series

evaluation of parameters. In this case, LSTM gives True Positive Rate (TPR) of 0.946 which is

better than the state-of-the-art TPR but delivers a slightly higher False Positive Rate (FPR) of

0.037. It takes advantage of botnets' activity and dormancy tendency and extracts ten graph

features for an interval of 300 seconds long and with an overlap of 150 seconds with the previous

interval. [15] widely experimented on the CTU-13 dataset and took care of the imbalance problem

during the pre-processing phase by performing down-sampling by a ratio of 10:1: non-malicious:

malicious. By hyper-parameterizing step-size and window-size for the scenarios 6, 7, 10, 11 and

12, leverage LSTM’s property to remember previous values. However [15] suffers from

limitations like a major chunk of training goes in pre-processing of data using graph construction.

To summarize the techniques, [10, 11, 14, 15] considered only the current behavior of the

network and [12] employed temporal evolution of the network activity of the behavior for botnet

detection by using graph-based techniques. Tracking temporal activity is best done by using LSTM

(Long Short Term Memory) based neural network architecture. The botnet detection model

developed in [15] is robust to botnet architecture, insensitive to botnet characteristics and

generalizable to other botnet attacks. Despite detection models being made more robust, attackers

still try to develop code evasion techniques and are evading machine learning model based

detection by studying their prediction pattern. [13] proposes a reinforcement based deep learning

model that generates fake traffic to learn and deceive the detection model. Building a detection

model helps an attacker to build a model that can avoid detection. On the other hand, this motivates

researchers in developing more robust models to overcome such hacks of evading detection.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

17

V. DATASET

For successful detection of a botnet in real-time, it is necessary to first build a detection model

in a test environment before deploying it for real-time applications. Most of the dataset available

for botnet detection suffers from the problem like traffic obtained from simulated environment and

creation of fake traffic that does not reflect real-time traffic. The main aim in botnet detection

would be to have a real-time, not simulated one. The only dataset that complies is the CTU-13

dataset [18].

A. CTU-13 Dataset

The CTU-13 Dataset is a botnet traffic dataset that was captured in the year 2011 at CTU

University located in the Czech Republic. It is a labeled dataset that comprises of botnet, normal

and background traffic. The dataset is a mixture of traffic and consists of 13 scenarios where each

scene was created with a different malware sample as shown below in Table 1.

Table 1: Dataset Scenario Description

 A normal traffic is a traffic that corresponds to traffic created by a naive user like opening

mail inbox, surfing social media websites and scouring the internet for online resources [18]. On

the other hand, background traffic is the traffic that is generated to obscure the presence of botnet

traffic. As described previously, every attack scenario was captured in a pcap (packet capture) file

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

18

that involved all the three variants of the traffic. The pcap file was processed to obtain bidirectional

NetFlow files which are labeled and differentiate well between client and server. Much of the work

is done on scenarios 1 and the plan is to extend the model to all the remaining 12 scenarios. The

scenarios captured have a wide imbalance in the dataset as seen in Table 2.

Table 2: Dataset Diversity Distribution

Scenario Background Flows (%) Botnet Flows (%) Normal Flows (%) Total Flows

1 97.47 1.41 1.07 2,824,636

2 98.33 1.15 0.5 1,808,122

3 96.94 0.561 2.48 4,710,638

4 97.58 0.154 2.25 1,121,076

5 95.7 1.68 3.6 129,832

6 97.83 0.82 1.34 558,919

7 98.47 1.5 1.47 114,077

8 97.32 2.57 2.46 2,954,230

9 91.7 6.68 1.57 2,753,884

10 90.67 8.112 1.2 1,309,791

11 89.85 7.602 2.53 107,251

12 96.99 0.657 2.34 325,471

13 96.26 2.07 1.65 1,925,149

B. Dataset Features

The CTU-13 dataset scenarios have a total of 15 columns namely ‘StartTime’, ‘Dur’, ‘Proto’,

‘SrcAddr’, ‘Sport’, ‘Dir’, ‘DstAddr’, ‘Dport’, ‘State’, ‘sTos’, ‘dTos’, ‘TotPkts’, ‘TotBytes’,

‘SrcBytes’, and ‘Label’. The description of each column is shown in Table 3. The direction field

identifies the TCP connection source and the center character represents the transaction state. For

the direction column, it includes various symbols like ‘-’, ‘|’, ‘o’, ‘?’. The symbol ‘-’ means the

transaction was normal, ‘|’ means the transaction was RESET, ‘o’ means the transaction timed out

and ‘?’ means that the transaction direction was unknown. Each dataset of various scenarios has a

different distribution of the traffic and it means that it is widely imbalanced.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

19

Table 3: Feature Columns Description

StartTime It represents the start time of the attack and every record has a different timestam

p in the following format as 2011/08/10 12:30:13.516854

Dur It represents the duration of the attack and is specified in seconds

Proto It consisted of a total of 15 protocols namely 'tcp', 'udp', 'rtp', 'pim', 'icmp', 'arp', 'i

px/spx', 'rtcp', 'igmp', 'ipv6-icmp', 'ipv6', 'udt', 'esp', 'unas', 'rarp'

SrcAddr Source IP address

Sport Source Port address from where the traffic originated.

Dir Direction of the traffic represented as '->', ' ?>', '<->', '<?>', ' who', '<-', '<?'

DstAddr Destination IP Address

Dport Destination Port Address where the traffic was directed.

State This represents the state of the transaction according to the protocol and has a tot

al of 231 different unique values.

sTos Source Type of Service field typical 0, 1, 2, 3, 192, NaN

dTos Destination Type of Service field typical 0, 1, 2, 3, NaN

TotPkts It represents the total transaction packet count and ranges from 1 to 2686731

TotBytes Total transaction bytes ranging from 60 to 2689640464

SrcBytes Total transaction bytes from source to destination ranging from 0 to 2635366235

Label Three unique traffic labels namely background, botnet and normal.

C. Descriptive Analytics

CTU-13 dataset scenario 1 has total records of 2824636 records out of which 97.5 % traffic is

the background traffic, botnet traffic is 1.5 % and normal traffic is 1 %. The distribution of traffic

is shown in Figure 2 and it shows a wide imbalance that is present in the dataset. Protocol feature

has 80.4% traffic using UDP protocol, followed by 18% of TCP protocol and remaining others.

The distribution of protocol is shown in Figure 3. The direction of the traffic was mainly bi-

directional of 77.6 % followed by from source to destination with 21.8%. 99.9% of traffic utilized

‘sTos’ value of 0 and almost 100% of traffic used 0 value for dTos.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

20

Figure 2: Traffic Frequency Distribution

Figure 3: Protocol Frequency Distribution

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

21

VI. PREPROCESSING

CTU-13 Dataset contains an integer, float, object and categorical columns. Columns like Start

Time, Source and destination IP address, and source and destination port have a large cardinality,

and columns like sTos and dTos have a very low cardinality. In order to address these issues, pre-

processing needs to be done on the CTU-13 dataset to make it compatible with machine learning

training and prediction.

A. One Hot Encoding

A categorical column is a column that comprises of categories and the cardinality is minimal

in nature. In CTU-13 Dataset there are 4 columns identified as categorical columns namely ‘Dir’,

‘Proto’, ‘sTos’ and ‘dTos’. ‘Dir’ column has 7 categories, ‘Proto’ has 15 categories, ‘sTos’ column

has 6 categories and ‘dTos’ has 5 categories. One Hot encoding refers to the process of converting

categorical columns into vectors of 0’s and 1’s. A column having 2 and 3 classes will have a vector

length of 2 and 3, respectively. Converting a categorical column of 5 classes into a vector of 0’s

and 1’s of length 5 gives rise to the issues of multicollinearity. The problem of multicollinearity

results in supplying redundant information and having highly correlated predictors. The issues can

be solved by dropping one of the one-hot encoded classes of a column. So, a column with 5

categories will have a vector of length 4 instead of 5. In the case of CTU-13, the number of one-

hot encoded columns for 4 categorical columns will be now 29 columns.

B. Label Encoding

The target column in CTU-13 Dataset is the Label column. The Label column can be

categorized into three classes namely background, botnet and normal. For any machine learning

model to work properly, it is required to have all the predictor variables and response variables to

be numeric. In order to do so, the Label columns need to be converted into numbers. Label

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

22

Encoding refers to the process of assigning labels to those string categories starting with 0. In the

case of CTU-13 Dataset, background, botnet, and normal labels were mapped into 0, 1 and 2

respectively. Again, the distribution of those labels was imbalanced as discussed in Section V.C.

C. Dropping Columns

Columns with very high cardinality and columns that cannot be converted into any numeric

values can be dropped. In CTU-13 Dataset, columns like ‘StartTime’, ‘SrcAddr’, ‘Sport’,

‘DstAddr’, ‘Dport’ and ‘State’ were dropped to reduce some of the features in the dataset.

D. Scaling

Machine learning models often suffer from the problem of calculation done on big numbers as

the amount of calculation going under the hood is enormous. If not properly taken care of, this

may result in a memory leak, increased training time, slower prediction time, and it will not scale

well if the number of features presented to the model increases. An initial run of the baseline model

on not-scaled values resulted in the termination of the model training due to the memory resource

exhaustion. To handle such cases, it is necessary that such values be scaled to align in a range.

Such issues generally happen with a column that has many values and where the range is large.

Table 4 show the range of 4 such columns from the CTU-13 dataset. The columns specified were

scaled to lie in the range of 0 and 1.

Table 4: Continuous Features Statistics

Column Min Value Max Value Unique Count

Dur (in secs) 0.0 3600.031006 1073189

TotPkts (count) 1 2686731

3548

TotBytes (count) 60 2689640464

69949

SrcBytes (count) 0 2635366235

27124

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

23

VII. FEATURE SELECTION

The number of features present in the initial CTU-13 dataset was 15 features. After performing

one-hot encoding and dropping of irrelevant columns which basically affects the dataset, the

number of columns increased from 15 to 32. Training a machine learning model directly on all the

32 columns might not give the best results. Fundamentally, there are three problems associated

with having a multitude of columns: machine learning model training time increases, redundant

memory resource allocation, and multiple features often tend to confuse the model. The world of

machine learning often suffers from the problem of the curse of dimensionality, and a garbage

input to the model will always give garbage output. To deal with such issues of dimensionality,

feature selection, also called attribute selection or variable selection, is taken into consideration.

The following subsections give a deep dive into feature selection techniques that were considered

for obtaining optimal results.

A. Removing Null Columns

The simplest and easiest way of getting rid of redundant columns is by dropping columns that

have many null values. In the case of the CTU-13 dataset, the columns exhibiting null values were

‘Sport’, ‘Dport’, ‘State’, ‘sTos’ and ‘dTos’. Columns namely ‘Sport’, ‘Dport’ and ‘State’ were

dropped because of their nature that they could not be converted to numeric values. ‘sTos’ and

‘dTos’ were median imputed for the null values. In the CTU-13 dataset, null values were found in

‘Sport’, ‘Dport’, ‘State’, ‘sTos’ and ‘dTos’ columns. Apparently, ‘Sport’, ‘Dport’ and ‘State’ were

dropped. ‘sTos’ column null values were imputed with mode value of the column which was 0.0.

‘dTos’ column as seen in the next variance thresholding section was dropped.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

24

B. Variance Thresholding

The concept of variance thresholding stems from the fact that the columns that have the same

value or little difference in values do not contribute to response prediction. Technically as

suggested in [19], a column with low variance or zero variance can be discarded. The default

behavior of variance thresholding function from the sklearn library is to keep columns with non-

zero variance. For the CTU-13 dataset, a threshold of 0.9 was given to discard columns exhibiting

variance less than that which resulted in a significant reduction of feature columns. All the columns

of the CTU-13 dataset displayed some range of variance ranging from 0 to 1. The only column

that displayed close to zero variance was the ‘dTos’ column as 99.5% of the data belonged to one

value and remaining to other values as shown in Figure 4.

Figure 4: Variance Thresholding

C. Filter Methods

Filter methods are also called a univariate selection technique and it refers to the process of

performing statistical tests on each individual feature column with the target column

independently. The columns exhibiting statistical significance are kept for model training and

testing. From [20], it has been suggested that if the input column is numerical and the response

column is categorical, the statistical test that should be considered is ANOVA (analysis of

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

25

variance). If the input column is categorical, then Chi-Squared should be considered. The process

of filter methods helps to identify all features that satisfy a test which can be fed to a model for

performance evaluation. Figure 5 gives a pictorial representation of filter method modeling.

Figure 5: Flow Diagram for Filter Methods

For the CTU-13 dataset, the tests under consideration are ANOVA and Chi-Squared. ANOVA

is used for comparison of the mean of two or more different groups. It is well suitable for

hypothesis testing. The null hypothesis would be all means are the same i.e. 𝐻0: 𝜇1 = 𝜇1 = 𝜇2 =

𝜇3 = 𝜇𝑐 which means that all population means are equal. The alternate hypothesis will be that

not all population means are the same. For ANOVA, generally, F-test is done since the F-test tests

the hypothesis that two variances are equal. An F-distribution is given by 𝐹 =
𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛

2

𝜎𝑊𝑖𝑡ℎ𝑖𝑛
2 which is a

ratio of between-group variance and within-group variance a value close to 1 represents that

variance exists. Variance means spread around the means. Calculating F will give a value that

corresponds to a p-value, and if it is less than the confidence interval critical values, the hypothesis

is rejected suggesting that the variance exists. On the other hand, a Chi-squared test is a way to

compare collected data if variation exists in the data by chance or it exists between the variables.

Expression of chi-squared values is 𝑋𝑐
2 = ∑

(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 where 𝑂𝑖 is the observed value and 𝐸𝑖 is the

expected value. For example, if a coin is flipped 50 times, the head comes up 22 times and tail

come up 28 times. A chi-squared test also uses a null hypothesis to validate this chance of variance.

It uses a degree of freedom, i.e. 𝑘 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠) − 1 and critical values. Using these

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

26

values, the value of the Chi-Square test can be used to determine if the null hypothesis is rejected

or not, and thus if variance exists or not.

[21] says that ANOVA F-test is well suited if the features are quantitative and Chi-squared

tests if the features are categorical. The sklearn library provides the implementation of ANOVA

as f_classif and Chi-Squared as chi2 in the feature_selection package. Both functions automate the

process of statistical test calculation for sample input, namely X(train) and y(target). In order to

retrieve the best features from individual statistical tests, the scikit-learn library provides filter

methods that return top K features from all features using the SelectKBest method. The method

inputs the scoring function and k for top feature and returns (scores, p values) as an array. ANOVA

and Chi-Squared both ranked the following features in top 10 i.e. ‘Dur’, ‘Proto_tcp’, ‘Dir_ <->’,

‘Proto_udp’, ‘Proto_icmp’, ‘Dir_ <-‘, ‘Dir_ <?>’, ‘Dir_ ?>’, ‘Proto_rtp’, and ‘Proto_rtcp’.

D. Wrapper Methods

Filter methods as described above not take into consideration the interaction with individual

columns. On the other hand, wrapper methods take a subset of features and compares them with

other combinations of the subset. Such a selection of features can take any type of heuristics like

the forward feature selection and backward feature selection for addition and removal of features.

Forward feature selection starts with one feature followed by evaluation, and then more features

are added to see if the performance drops or not. Features causing a drop in performance are

dropped and the process is continued until all the features are tested to obtain the optimal feature

set. In the case of backward feature selection, the process is opposite as it starts with all the feature

columns and keeps on adding or removing features to obtain optimal performance. A typical

wrapper method process is as shown in Figure 6.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

27

Figure 6: Flow Diagram for Wrapper Methods

The widely used wrapper method is RFE (Recursive feature elimination) technique. This

technique is an optimization algorithm and a greedy one as it tries to find the best feature subset.

Initially, it starts with all the features and computes the score that can be obtained using coef_

attribute or feature importance attribute. It discards the lowest-performing feature and continues

the process until the desired number of k features is obtained. At every step, it takes a subset of

features and creates the model and keeps the best or worst performing feature and continues to do

so until all features are used up. In the end, features are returned based on the order they were

eliminated. The sklearn library feature_selection package has RFE() that takes an estimator and

number of features to select and return the feature set. RFE did a pretty good job of estimating the

features that were later selected for model training but suffered from time complexity issues as it

had to train the model repeatedly to get the top-performing features.

E. Embedded Methods

The filter method might fail to generate the best set of the feature while the wrapper method

always does. Also, the filter method is fast as compared to wrapper methods. Embedded Methods

comes with the capability of filter and wrapper method qualities. Generally, embedded method

based models have their own feature selection methods as shown in Figure 7. Lasso and Ridge-

based regression model that employs L1 and L2 penalty regularization are widely implemented

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

28

for the embedded model. Also, some tree-based classifiers do support the in-built feature selection

technique. Sklearn library has SelectFromModel() method that takes in estimators like Lasso and

Ridge Regression or Tree Classifiers and returns the features based on classifier

feature_importance attribute. Embedded methods tend to be expensive and can be shown

visualized in the below diagram. SelectFromModel() using Random Forest recommended only

using ‘Dur’, ‘TotPkts, ‘TotBytes’, ‘SrcBytes’ and in some cases only ‘Dur’ and ‘TotPkts’ without

a drop in performance.

Figure 7: Flow Diagram for Embedded Methods

F. Feature importance and Correlation Heatmap

Feature importance is applicable to any machine learning model that has the

feature_importance as a parameter. The correlation coefficient involves understanding correlation.

A covariance gives a nice description of how to feature vary with each other. Mathematical

expression for covariance between feature 𝑥 and 𝑦 is given by 𝜎𝑥𝑦 =
∑(𝑥−�̅�)(𝑦−�̅�)

𝑁
 where �̅� and �̅�

are the mean of the x and y feature. The correlation coefficient is given by 𝜌𝑥𝑦 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 where 𝜎𝑥

and 𝜎𝑦 are the variance of 𝑥 and 𝑦 respectively. Also, the correlation matrix depicts the correlation

between each input feature which ranges from -1 to +1. A value of 0 means there is no correlation

and otherwise, a correlation exists. For features that are highly correlated with each other, one of

the features can be dropped from the final feature selection set.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

29

The correlation matrix in Figure 8 indicates that the columns ‘TotBytes’ and ‘Totpkts’ are

highly correlated with a value of 0.99. Similarly, ‘SrcBytes’ is positively correlated with ‘TotPkts’

and ‘TotBytes’. Negatively correlated columns are ‘Proto_tcp’ and ‘Dir_ <->’. Also, by making

use of ExtraTressClassifier which internally uses decision Tree for feature importance resulted in

the selection of ‘Dur’, ‘TotPkts’, ‘TotBytes’, ‘SrcBytes’, ‘Dir_ <->’, ‘Dir_others’, ‘Proto_others’,

‘Proto_tcp’, ‘Proto_udp’ and ‘sTos_1.0’ columns.

Figure 8: Correlation Heatmap Matrix

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

30

VIII. ADDRESSING DATA IMBALANCE

As described previously, the CTU-13 dataset has an imbalance issue. Generally, the imbalance

issues are in the ration of 8:2 or 9:1 but in the CTU-13 dataset case, the imbalance is extreme.

Botnet traffic is just 1.5% of the entire network traffic where a majority of 97.5% of traffic is

background traffic. A critical task is to have a model that generalizes well to the minority class.

Machine learning models are inclined to learn the majority class features and tend to overfit the

training dataset. The accuracy obtained represents the majority class. In the CTU-13 dataset, the

accuracy obtained over the baseline model is 97.5% which is the same as the majority class

proportion. In order to address these, some techniques have been suggested in the literature to

overcome imbalance and extreme imbalance issues.

A. Undersampling

When the number of majority class samples are very high in comparison, under-sampling can

be used to reduce the number of samples from the majority class to make it equal to minority

classes as shown in Figure 9. It removes some of the observations from the majority class which

could result in underfitting as it may be representative of minority class and not majority class.

The imblearn.under_sampling package provides RandomUnderSampler() function to perform

under sampling on the majority class. This function balances the dataset by randomly choosing a

subset of data for the targeted class. RandomUnderSampler() is a controlled undersampling

technique. It also provides a facility to choose samples with or without replacement. This allows

us to specify the number of samples and falls under the category of controlled under-sampling.

There is another category of cleaning under-sampling technique that makes use of heuristics to

clean the dataset without specifying the number of samples for each class called as Tomek’s links

[22-24].

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

31

Figure 9: Illustration of Undersampling [22]

Figure 10: Illustration of Undersampling - Tomek Links

[23]

In RandomUnderSampling(), the samples from the majority class are removed randomly

without any consideration of the underlying distribution. The NearMiss algorithm mentioned in

[22] for undersampling uses a heuristic to clean the dataset and it has three variants of doing so in

selecting the data points from the majority class. Tomek links are widely popular for

undersampling as it works on a set of rules. [23] says that two samples have a Tomek’s link if they

are the nearest neighbors of each other and they are apparently deleted from the dataset space. A

nice general rule for the identification of two samples from x and y class is defined such that for a

sample z, it satisfies the equation 𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑧) 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) < 𝑑(𝑦, 𝑧) and is shown in Figure

10. The edited nearest neighbor (ENN) makes use of the nearest neighbor algorithm and removes

samples that do not agree with the nearest neighbor algorithm [24].

B. Oversampling

This method is the exact opposite of Undersampling. First one is the naïve random

oversampling provided in imblearn.over_sampling package RandomOverSampler function(). It

generates a new sample for minority class by simply creating samples with replacement from

minority class as depicted in Figure 11. This strategy of increasing the samples might bloat the

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

32

performance of the model, increase the training time and get complacent with the same minority

class sample. Apart from replacement oversampling, there are two other techniques namely

SMOTE (Synthetic Minority Oversampling Technique) as shown in Figure 12 and ADASYN

(Adaptive Synthetic) can be used to resample minority class.

Figure 11: Illustration of Oversampling [22]

Figure 12: Illustration of SMOTE [26]

RandomOverSampler randomly creates duplicates of minority samples to achieve a balanced

dataset. To overcome overfitting, [25, 26] proposes a technique of generating synthetic samples

using SMOTE and ADASYN. SMOTE identifies two nearest neighbor samples and calculates the

difference in the feature vector followed by multiplication with a random number to create a new

feature vector or sample. All the new feature samples fall in between the respective two nearby

samples. This is different in the case of ADASYN, where [26] employs the creation of a new

sample by adding some variance so that it is better scattered among the minority samples.

C. Oversampling followed by Undersampling

SMOTE, which is an oversampling method, generated a noisy sample which can affect the

model performance. It is necessary to clean the space resulting from over-sampling by employing

undersampling techniques, namely Tomek’s link and edited nearest neighbor (ENN) technique.

The imblearn.combine provides two functions SMOTETomek and SMOTEENN that combines

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

33

the features of oversampling followed by undersampling. [27] presents a brief account of how

oversampling followed by undersampling can solve some issues of space cleaning. However, there

is a tradeoff with performance as the time complexity increases by applying the nearest neighbor

algorithm twice. In the strategy3 dataset, the time complexity has increased, and it does not scale

well to increasing dataset size, and the prediction accuracy was not good enough to consider it for

future enhancements.

D. Ensemble Learning

Instead of having a single learner, it is better to have an ensemble of learners trying to learn

the same thing, and this technique generalizes well to the majority and minority class. In this

section, the working of ensemble learning is explained in detail.

A bagging classifier is an ensemble that trains the base classifiers on the random subsets of the

original dataset followed by aggregating their prediction to get a final prediction. In this case, the

base estimator is the decision tree. However, a bagging classifier does not handle the imbalance

scenarios. In order to do so [28] specifies that a balanced bagging classifier handles the imbalance

while at the same time doing ensemble learning, and it is found to deliver better results than single

learners. The behavior of the model can be controlled by fine-tuning the sampling strategy and the

replacement criteria. On the same line, the random forest classifier and balanced random forest

classifier has the same behavior as bagging classifier and balanced bagging classifier, respectively.

The easy ensemble is a technique of bagging boosted learners. Boosted learner typically starts with

a set of weak learners and chooses the best learners and iteratively continues to do so until a

stopping criterion is met. EasyEnsemble classifier makes use of base estimators like AdaBoost and

bags AdaBoost learners who are trained on balanced samples. RusBoostClassifier randomly

undersamples the available dataset followed by iteratively performing boosted learning.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

34

E. Cost-Sensitive Learning - XGBoost

Machine learning models are generally cost insensitive at the time of training meaning that

they do not consider the classification error made during training. While most of the models do

have fine-tuning parameters to support this, it is limited in its own way. XGBoost model is built

to work on an imbalanced dataset because it is robust to survive data imbalance since the

resampling occurs internally [30]. XGBoost is called extreme gradient boosting and is a sequential

decision tree as shown in Figure 13.

Figure 13: XGBoost Model

Initially, all the feature vectors have equal weights to increase the likelihood of being selected

for building the first decision tree classifier. The first tree classifier does its prediction and

increases the weight for every wrong classification done using the feature. Since the first classifier

was unable to do the correct classification, it is labeled as a weak classifier. The next classifier will

take the updated weights and re-train them. This process will continue until the last decision tree

classifier is built. In the end, the final classifier takes a vote among the weak learners to get the

final prediction. XGBoost algorithm has an inbuilt train and predict method and is available

through xgboost python package. The scikit-learn library has a wrapper on the top of the xgboost

called XGBClassifier to achieve the same purpose.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

35

IX. MACHINE LEARNING CLASSIFIERS

A wide array of machine learning models is suitable for classification stack. For this project,

most of the topics focus on the decision tree, random forest and AdaBoost classifier.

A. Decision Tree

A decision tree classification is made based on the mode of the class and used when the

dependent variable is categorical. The decision tree continues to grow until a stopping criterion is

reached. A full-grown decision tree is bound to overfit as it will not be able to handle the

unforeseen data. The Decision Tree works by identifying the features, selecting the condition for

splitting and the stopping criteria followed by pruning the overgrown branches. The decision split

is made using the Gini index, chi-square value, information gain or reduction in the variance.

Figure 14 represents a typical decision tree model.

Figure 14: Illustration of Decision Tree

B. Random Forest

A Random Forest is a forest of decision trees that makes it more robust and delivers higher

accuracy. The process of random forest starts with taking a subset of samples from the training set

of size N followed by taking m input features from a total of M features and then the decision tree

is built to the largest extent possible without pruning. Finally, the output is predicted by taking

majority votes from the individual trees. Random Forest is a bagging model, does not overfit and

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

36

works well for a dataset with large dimensionality. A pictorial representation of the random forest

is shown in Figure 15.

Figure 15: Illustration of Random Forest

C. AdaBoost

An AdaBoost (Adaptive Boosting) is a forest of trees where trees have a root node and two

children, and they are called stumps. Stumps are weak learners and AdaBoost combines the weak

learners to make the classification. Also, some of the stumps get more say in the classification than

others. Every other stump in the iteration is made by taking previous stumps into account.

AdaBoost starts by creating a stump for each feature column with an initial equal weight. Then it

calculates the accuracy and based on that the weights are decreased or increased when the

classification is wrong. Figure 16 highlights the AdaBoost process.

Figure 16: Illustration of AdaBoost

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

37

X. TECHNOLOGY STACK

A. Hardware

The models built were trained on a Windows 10 workstation and on Google Cloud.

1) Workstation:

a. Processor: Intel® Core ™ i7-8750H CPU @2.20GHz 2.21 GHz

b. RAM: 16.0 GB

c. System Type: 64-bit OS, x-64 based processor

2) Google Cloud:

a. Processor: Python 3 Google Compute Engine Backend

b. RAM: 13.0 GB

B. Software and Libraries

1) Jupyter Notebook: It is an open-source application that facilitates data preprocessing,

statistical modeling, data visualization, machine learning and much more.

2) Google Colab: It is a colab notebook hosted on google cloud servers providing access to

GPU’s and TPU’s for tasks that can be done in a Jupyter notebook

3) Libraries: Python was used as the scripting language for writing most of the code.

a. Scikit-learn: It is used for predictive analytics tasks like classification, regression,

clustering, dimensionality reduction, model selection and preprocessing.

b. Imblearn: This library provides an API for imbalanced learning and wide samples.

c. Xgboost: It is a highly efficient gradient boosting library for xgboost classifiers.

d. Pandas: It is a data analysis and manipulation library implemented in python

e. NumPy: It provides numerical computing capability and high-level mathematical

functions for multidimensional arrays and matrices.

f. Matplotlib & seaborn: This package was used to create visualizations.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

38

XI. IMPLEMENTATION

Initially, the CTU-13 dataset was loaded followed by descriptive analytics of the dataset and

individual analysis of the feature columns. Columns with zero variance and visually irrelevant

columns were dropped. Missing values in some of the columns were imputed. In the end, three

different sets of the dataset were created named as strategy1, strategy2, and strategy3.

On each of the three dataset, feature selection methods namely, univariate feature selection

with three different statistical tests, random feature selection using recursive feature elimination,

embedded using random forest and logistic regression and feature importance using extra tree

classifier was performed. This resulted in 15 different experiments and 2 different machine

learning models, namely random forest and decision tree classifier was run on the obtained features

to identify the relevant dataset for further consideration.

After identifying the strategy3 dataset as the potential dataset, data balancing techniques like

undersampling with RandomUnderSampling and NearMiss variants, oversampling with

RandomOverSampling, SMOTE and ADASYN variant, oversampling followed by undersampling

with SMOTETomek and SMOTEENN, ensemble learning with 6 bagging classifiers and XGBoost

classifier was performed on the dataset.

Finally, the metric evaluation was performed on each of those experiments to report the

efficacy of the trained models on the validation dataset. In the end, the final model was run on the

test dataset to report the model performance. Important note the dataset was split into training,

validation and testing strategy for all the mentioned experiments.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

39

XII. EVALUATION METRICS

After successfully hyper tuning and training the model, the performance and accuracy of the

model need to be evaluated. In this project, a classification report and roc curve were used as a

parameter to assess the model performance.

A. Classification Report

The classification report is a method from slearn.metrics that gives accuracy, precision, recall,

and f1-score. At the same time, it also displays the confusion matrix.

a. Accuracy: It is defined as the number of correct predictions from the total predictions. The

mathematical expression for it is 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
 . However, it only

works well on a balanced dataset, and the accuracy represented for an imbalanced dataset is

biased.

b. Precision: It represents the number of correct predictions for that class given the prediction

results. It is given by the following expression as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

c. Recall: It represents given a class, how much the classifier detects it and is given by the

following formula as 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

d. F-1 Score: It is the harmonic mean of recall and precision. It punishes the extreme value more

and F1 Score is represented mathematically as 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2. (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)

e. Confusion Matrix: Confusion matrix provides a one-stop solution to monitor model

performance on the imbalanced dataset. It provides a guide to calculate true positive (TP), true

negative (TN), false positive (FP) and false-negative (FN) for each class. Using the above

count, it can be used to calculate accuracy, recall, precision, recall, and F1-score. A sample

confusion matrix is in Figure 17 with markings for TP, TN, FP, and FN for a class.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

40

Figure 17: Illustration of Confusion Matrix

B. ROC Curve

ROC stands for receiver operating characteristic and is highly regarded for visualizing how

much tradeoff one can make while training the model. It is a plot of True Positive Rate vs False

Positive Rate at various thresholds. TPR is also called sensitivity and FPR is 1 −

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑜𝑟 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒. ROC AUC is the area under the curve often used to measure

ROC Curve and a sample is shown in Figure 18.

Figure 18: Interpretation of the ROC Curve

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

41

XIII. EXPERIMENTS

A. Baseline Model

In this setup of the baseline model the models that are considered are namely RFC and DT

classifier. Three different configurations of the dataset are considered for this baseline setup. The

first setup included all the columns obtained after performing column dropping, one-hot encoding,

and scaling. Columns that were dropped were namely ‘StartTime’, ‘SrcAddr’, ‘Sport’, ‘DstAddr’,

‘Dport’, ‘State’, ‘dTos’. One hot encoding was done on ‘Dir’, ‘Proto’ and ‘sTos’ columns. ‘Dur’,

‘TotPkts’, ‘TotBytes’ and ‘SrcBytes’ columns were scaled to lie in the range of 0 and 1. The second

setup focused on performing variance thresholding by dropping columns that had a very low

variance from the first setup of 31 columns. By performing variance thresholding, it was identified

that the column ‘dTos’ column had very low variance and it was dropped from the feature column

space reducing the feature count of the column from 31 to 28. The third setup involved reducing

the number of class labels by analyzing the frequency distribution of each column. In this, the

‘Proto’ column had 15 classes with a skewed distribution where ‘udp’, ‘tcp’ and ‘icmp’ made

99.8% of the distribution while the rest of the contribution was done by the remaining 13 classes.

On the same line, ‘Dir’ and ‘sTos’ column was skewed to a large extent as shown in Figure 19.

Factually, 99.9% of the ‘sTos’ distribution had a value of 0.0.

Figure 19: Frequency Distribution of Categorical Columns

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

42

After careful analysis and one-hot encoding, ‘Proto’ column was reduced to 4 columns of

‘Proto_udp’, ‘Proto_tcp’, ‘Proto_icmp’ and ‘Proto_others’, ‘Dir’ columns to 3 columns of ‘Proto_

<->’, ‘Dir ->’ and ‘Dir_others’ and ‘sTos’ columns to 2 columns of ‘sTos_0.0’ and ‘sTos_others’

and the feature size drastically reduced to 10 columns. Due to the third strategy, the random forest

was able to produce good results whereas the decision tree performed almost the same across all

strategies. Size of the training dataset in percentage across class is {background: 97.47%, botnet:

1.45%, normal: 1.08%}. Prediction of each classifier is written out in a 3 tuple format and it

represents the ROC-AUC score for each class. From the Table 5, one can easily summarize that as

by having a smaller number of features, the prediction has either increased or remained the same.

Table 5: Baseline Model ROC-AUC Scores

Strategy Feature
Count

Random Forest Prediction (%) Decision Tree Prediction(%)

Background Botnet Normal Background Botnet Normal

All Features 31 75 79 73 74 77 72

Variance
Thresholding

28 75 79 73 74 77 72

Reduced Classes 10 76 79 74 74 77 72

B. Feature Reduced Model

After creating three setups of different strategies 1, 2 and 3, where the number of feature

columns in each strategy is 31, 28 and 10 feature columns respectively, the target was to reduce

the feature space. For each strategy, filter methods, wrapper methods, embedded methods, and

feature importance were applied. In the filter method, three statistical methods were used like

ANOVA, Chi-Squared and correlation matrix. Two of the methods ANOVAs and Chi-Squared

used the SelectKBest method. Further, in wrapper methods, recursive feature elimination

technique was used. Embedded methods used SelectFromModel function to get features using

logistic regression and random forest. Also, ExtraTreesClassifier was used to get important

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

43

features from feature importance methods. The following subsections highlight the performance

of these four methods across the three different setups.

1.) Strategy 1: All Features

The ‘Top K features’ column basically represents the number of features that were considered

before feeding it to the random forest and decision tree classifier. The RFC was able to deliver the

best performance of (background = 74, botnet = 77, normal = 75) using the embedded method

technique. The RFC used only 4 features from 31 feature sets, and they were ['Dur', 'TotPkts',

'TotBytes', 'SrcBytes']. Also, in case of decision tree classifier, it achieved a performance of (

background = 73, botnet = 76, normal = 72) using ExtraTreesClassifier for 10 features namely

['Dur', 'TotPkts', 'TotBytes', 'SrcBytes', 'Dir_ ?>', 'Dir_ <-','Dir_ <->', 'Dir_ <?', 'Dir_ <?>', 'Dir_

who']. Random Forest and Decision Tree classifier performance across various method is

highlighted and described in detail in Table 6.

Table 6: Feature Selection on Strategy1 Dataset

Seq
No.

Technique Variant Top
K

Feat
ures

Strategy 1: All Features

Random Forest
Classifier (%)

Decision Tree
Classifier (%)

Backgr
ound

Bot
net

Nor
mal

Backgr
ound

Bot
net

Nor
mal

1 Filter
Method

SelectKBest using ANOVA 5 70 74 68 68 74 67

10 70 74 68 68 74 67

SelectKBest using Chi
Squared

5 70 74 70 68 74 67

10 70 74 70 68 74 67

Correlation HeatMap 5 70 74 68 68 74 67

10 70 74 68 68 74 67

2 Wrapper
Method

Recursive Feature
Elimination

5 69 72 68 67 72 67

10 70 74 70 68 74 67

3 Embedded
Method

SelectFromModel using
Logistic Regression

5 68 72 67 67 72 66

10 70 74 70 68 74 67

SelectFromModel using
Random Forest

5 74 77 75 72 75 72

10 74 77 75 72 75 72

4 Feature
Importance

ExtraTreesClassifier 5 74 77 74 72 75 72

10 74 78 74 73 76 72

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

44

2.) Strategy 2: Variance Thresholding

In Strategy 2, the performance was the same as Strategy 1 as the number of feature columns

reduced from 31 to 28. Table 7 highlights the performance with respect to the strategy1 dataset

where subscript number represents the increase or decrease in ROC-AUC scores. The red

highlighted value indicates that the prediction value has decreased, green indicates that

performance has improved, and the rest remained the same. In this strategy, the models performed

best by employing embedded method and feature importance using 5 and 10 features, respectively.

The feature columns were also the same as in the strategy1 dataset.

Table 7: Feature Selection on Strategy2 Dataset

Seq
No.

Technique Variant Top
K

Feat
ures

Strategy 2: Variance Thresholding

Random Forest
Classifier (%)

Decision Tree
Classifier (%)

Backgr
ound

Bot
net

Nor
mal

Backgr
ound

Bot
net

Nor
mal

1 Filter
Method

SelectKBest using ANOVA 5 70 74 70+2 68 74 67

10 70 74 68 68 74 67

SelectKBest using Chi
Squared

5 70 74 68-2 68 74 67

10 70 74 68-2 68 74 67

Correlation HeatMap 5 70 74 68 68 74 67

10 70 74 68 68 74 67

2 Wrapper
Method

Recursive Feature
Elimination

5 67-2 70-2 65-3 66-1 69-3 64-3

10 70 74 68 68 74 67

3 Embedded
Method

SelectFromModel using
Logistic Regression

5 69+1 72 68+1 67 72 67+1

10 70 74 70 68 74 67

SelectFromModel using
Random Forest

5 74 77 75 72 75 72

10 74 77 75 72 75 72

4 Feature
Importance

ExtraTreesClassifier 5 74 77 74 72 75 72

10 74 78 74 73 76 72

3.) Strategy 3: Reduced Classes

The winner of strategy 3 remains the same as in Strategy 1 and Strategy 2. The random forest

classifier achieved a performance of (background = 76, botnet = 79, normal = 74) by using

embedded methods of SelectFromModel using random forest. Only two features were used,

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

45

namely ‘Dur’ and ‘TotPkts’. It is commendable that by using only 2 features, a random forest

classifier was able to deliver the same performance for Strategy1 and Strategy2 dataset. The

decision tree classifier performance remained same but with a different set of features i.e. ‘Dur’,

‘TotPkts’, ‘TotBytes’, ‘SrcBytes’, ‘Dir_ <->’, ‘Dir_others’, ‘Proto_others’, ‘Proto_tcp’,

‘Proto_udp’ and ‘sTos_1.0’. However, the performance remained same with only 10 feature

columns. Also, Table 8 highlights that the performance of the models in the strategy3 dataset has

more green highlighted values in comparison to the strategy1 dataset and the subscript number

represents the increase or decrease in ROC-AUC scores.

Table 8: Feature Selection on Strategy3 Dataset

Seq
No.

Technique Variant Top
K

Feat
ures

Strategy 3: Reduced Classes

Random Forest
Classifier

Decision Tree
Classifier

Backgr
ound

Bot
net

Nor
mal

Backgr
ound

Bot
net

Nor
mal

1 Filter
Method

SelectKBest using ANOVA 5 70 74 68 68 74 67

10 75+5 79+5 74+6 74+6 77+3 72+5

SelectKBest using Chi
Squared

5 70 74 70 68 74 67

10 76+6 79+5 74+4 74+6 77+3 72+5

Correlation HeatMap 5 70 74 70+2 68 74 67

10 76+6 79+5 74+6 74+6 77+3 72+5

2 Wrapper
Method

Recursive Feature
Elimination

5 69 72 68 67 72 67

10 76+6 79+5 74+4 74+6 77+3 72+5

3 Embedded
Method

SelectFromModel using
Logistic Regression

5 69+1 72 68+1 67 72 67+1

10 70 74 68-2 68 74 67

SelectFromModel using
Random Forest

5 73-1 76-1 73-2 71-1 74-1 71-1

10 73-1 76-1 72-3 71-1 74-1 71-1

4 Feature
Importance

ExtraTreesClassifier 5 74 78+1 74 73+1 76+1 72

10 75+1 79+1 74 74+1 77+1 72

To conclude all the strategies, Strategy 3 performed best where random forest and decision

tree classifier used [‘Dur’, ‘TotPkts’] and [‘Dur’, ‘TotPkts’, ‘TotBytes’, ‘SrcBytes’, ‘Dir_ <->’,

‘Dir_others’, ‘Proto_others’, ‘Proto_tcp’, ‘Proto_udp’, ‘sTos_1.0’] respectively. Figure 20

represents the confusion matrix for random forest and decision tree classifiers. Most of them are

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

46

classified as backgrounds because of the tendency of the machine learning model to learn the

majority class. This report mainly considers the performance metric as ROC-AUC for model

evaluation because in the security domain, there is always a tradeoff made between how much can

be sacrificed in botnet detection in achieving optimal performance.

Figure 20: Confusion Matrix for RFC and DT

C. Oversampled Models

In the case of an imbalanced dataset, oversampling is the foremost technique considered.

Oversampling refers to making the minority class equivalent to the majority class. Most of the

oversampled and subsequent model will be using the dataset created from Strategy 3 with the 2

different feature columns [‘Dur’, ‘TotPkts’] and [‘Dur’, ‘TotPkts’, ‘TotBytes’, ‘SrcBytes’, ‘Dir_

<->’, ‘Dir_others’, ‘Proto_others’, ‘Proto_tcp’, ‘Proto_udp’, ‘sTos_1.0’]. Three different sampling

techniques have been considered here, namely RandomOverSampler, SMOTE, and ADASYN.

RandomOverSampler creates samples out of minority class by randomly duplicating minority

samples with replacement.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

47

Table 9: Oversampling Results

Technique K Features Random Forest Classifier (%) Decision Tree Classifier (%)

Background Botnet Normal Background Botnet Normal

RandomOverSampler 5 71 75 72 71 74 71

10 75 79 73 74 77 72

SMOTE 5 67 70 65 67 71 64

10 71 77 69 70 77 68

ADASYN 5 67 69 65 67 70 64

10 71 77 69 70 77 68

In Table 9, random forest classifier and decision tree were able to achieve a prediction

ROC-AUC of botnet class the maximum value of 79 % using RandomOverSampler and 77% using

SMOTE and RandomOverSampler, respectively. Both were able to reach the prediction accuracy

of 97% for the normal class. For the background class, the performance deteriorated despite the

dataset being balanced. The training time for the random forest and decision tree increased

primarily because of the size of the dataset.

D. Undersampled Models

The Oversampled models like RandomOverSampler, SMOTE and ADASYN suffered from

the problem of low prediction percentage of botnet class. Undersampling technique is not favored

for the imbalanced dataset in literature because it chops out relevant information from the dataset.

To perform undersampling, the dataset generated from strategy3 was used and for 5 and 10

features, respectively. 5 feature columns are [‘Dur’, ‘TotPkts’] and 10 feature columns are [‘Dur’,

‘TotPkts’, ‘TotBytes’, ‘SrcBytes’, ‘Dir_ <->’, ‘Dir_others’, ‘Proto_others’, ‘Proto_tcp’,

‘Proto_udp’, ‘sTos_1.0’]. Techniques considered to perform undersampling is

RandomUnderSampler and NearMiss. RandomUnderSampler randomly removes samples from

the majority class to balance it with minority class. NearMiss technique uses the nearest

neighborhood technique to identify samples to keep in the dataset. NearMiss is slow during

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

48

sampling time as under the hood it uses the nearest neighbor approach which is known to be slow

during inference time.

Table 10: Undersampling Results

Technique K Features Random Forest Classifier (%) Decision Tree Classifier (%)

Background Botnet Normal Background Normal Botnet

RandomUnderSampler 5 82 91 73 77 86 72

10 85 92 73 80 88 73

NearMiss 5 57 86 52 60 84 51

10 56 87 52 60 82 52

Random Forest classifier predicted botnet traffic with a ROC-AUC score of 92% and decision

tree predicted botnet and traffic with a ROC-AUC score of 88% as shown in Table 10. However,

they were both inefficient in predicting background traffic and normal traffic. NearMiss was

successful in predicting botnet traffic with a maximum ROC-AUC score of 87%. Both random

forest and decision Tree failed to perform well for background and normal traffic.

E. Oversampled + Undersampled Models

Oversampled models like SMOTE and ADASYN create a lot of outliers and inliers while

generating synthetic samples and creates a mess of cleaning space and confuses the model in

prediction. It is mandatory to then clean the space left after oversampling and this can be well

achieved by performing undersampling using Tomek Links or edited nearest neighbor (ENN). 5

feature columns are [‘Dur’, ‘TotPkts’] and 10 feature columns are [‘Dur’, ‘TotPkts’, ‘TotBytes’,

‘SrcBytes’, ‘Dir_ <->’, ‘Dir_others’, ‘Proto_others’, ‘Proto_tcp’, ‘Proto_udp’, ‘sTos_1.0’] from

strategy3 dataset was used for model training. In order to achieve oversampling followed by

undersampling, SMOTETomek and SMOTEENN methods are followed which performs the

required sampling. This method delivered results with a lower ROC-AUC score and took training

time of more than 2 days. So, this method was not considered further for experimentation.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

49

F. Ensemble Learners

In the case of an imbalanced dataset, it is not enough to completely rely on a single model.

Sometimes an ensemble of models training on a subset of data is needed. Decision Tree as we

know is a single model, whereas random forest is an ensemble model. These models are inclined

towards learning the majority class behavior and hence do not perform well in case of an

imbalanced dataset. There are some implementations of them that have an inbuilt balancing

technique to make them work on the imbalanced dataset. A brief tally of the classifiers like

decision tree, bagging, balanced bagging, random forest, balanced random forest, easy ensemble,

and RUSBoost classifier and their performance on 5 and 10 features strategy3 dataset is displayed

in Table 11.

Table 11: Ensemble Learners Performance

Technique 5-Features 10-Features

Background Botnet Normal Background Botnet Normal

Decision Tree 71 74 71 74 77 72

Bagging 73 76 73 76 79 75

Balanced Bagging 83 91 73 86 93 74

Random Forest 73 76 72 76 79 74

Balanced Random Forest 83 92 74 85 92 73

EasyEnsemble 67 75 67 67 75 67

RUSBoost 67 76 67 67 76 67

The given graph in Figure 21 is about ensemble learner’s performance on strategy3 dataset

reveals that a balanced bagging and balanced random forest classifier performed well in predicting

botnet and normal traffic very well.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

50

Figure 21: Ensemble Learners Performance Comparison

G. Cost-Sensitive Model – XGBoost

In the models considered till now, we were feeding it the dataset which was balanced before

training the classifiers. XGBoost, on the other hand, is sensitive to imbalance, which means that it

has inbuilt capability to train the model on the imbalanced dataset by assigning weights to the

features and accommodates the classification error for subsequent training. XGBoost classifier

was trained on strategy1 dataset for 5 features and 10 features and the obtained ROC curve was

same as shown in Table 12.

Table 12: ROC Curve for XGBoost on 5 and 10 Features of Strategy1 Dataset

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

51

XGBoost classifier enhanced the performance on the strategy3 dataset for 10 feature columns

by delivering a ROC-AUC for botnet class as 100% as shown in Figure 22.

Figure 22: XGBoost ROC-AUC Score

Considering the XGBoost classifier as the top-performing model, the model was tested on the

test dataset and the ROC-AUC score was (background = 98, botnet = 100, normal = 97) for the

test dataset.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

52

H. XGBoost on all 13 scenarios

XGBoost was then trained, validated and tested on all the 13 scenarios. The results obtained

are in par with the results that are obtained until now. The dataset of all the scenarios was first

preprocessed, one hot encoded and then passed to an XGBoost classifier. Basically, 13 XGBoost

models were created, which was validated and tested to get the below table of AUC-ROC. Table

13 presents the performance of XGBoost during validation and testing.

Table 13: XGBoost Results on 13 Scenarios

Scenario Validation Result (%) Test Result (%)

Background Botnet Normal Background Botnet Normal

1 98 100 97 98 100 97

2 99 100 99 99 100 99

3 100 100 100 100 100 100

4 95 100 95 95 100 95

5 94 99 94 94 98 94

6 97 100 96 97 100 96

7 96 96 96 94 93 94

8 98 100 98 98 100 98

9 98 99 96 98 99 96

10 100 100 97 100 100 97

11 100 100 99 100 100 99

12 94 98 94 95 99 95

13 99 100 99 99 100 99

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

53

XIV. RESULTS

In the feature selection strategy, it was identified that 'Dur', 'TotPkts', 'TotBytes', 'SrcBytes'

from strategy1 dataset and 'Dur', 'TotPkts', 'TotBytes', 'SrcBytes', 'Dir1', 'Dir2', 'Dir3', 'Dir4', 'Dir5',

'Dir6', 'Label' from strategy3 can be used for delivering equal performance. Through imbalance

learning, undersampling did well by detecting botnet traffic with an accuracy of 83%. To add it

further, ensemble learners like balanced bagging and balanced random forest classifiers delivered

an AUC-ROC score of (background = 86, botnet = 93 and normal = 74) for background, botnet,

and normal traffic. XGBoost was trained on the strategy1 and strategy3 feature set to deliver ROC-

AUC of (background = 98, botnet = 100, normal = 97) for the three traffic. A comparison of the

best performing model is given in Figure 23 in terms of ROC-AUC.

Figure 23: Models Performance Comparison

Also, the XGBoost model was trained and tested on all 13 scenarios and the ROC-AUC score

for all three types of traffic had an average of (background = 97.54, botnet = 99.38, normal =

96.92) during validation and (background = 97.46, botnet = 99.15, normal = 96.84) during test.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

54

XV. CONCLUSION

This project is entirely divided into dataset cleaning, feature selection, imbalance training, and

model selection. The dataset required much cleaning in terms of missing value, dropping low

variance column and dropping irrelevant columns. Once initial preprocessing was done, the dataset

was open to experimenting with initial models such as random forest and decision tree classifiers.

However, the accuracy reported had a bias towards the majority class. Feature selection was done,

and it was identified that by using fewer columns, namely 5 and 10 features, the model

performance remained the same, but now had fewer features.

A major task in this project was solving the problem of imbalance. Undersampling and

oversampling with different variants were considered to solve the imbalance issues. Oversampled

delivered low performance. However, Undersampling resulted in better prediction for botnet class

with a top accuracy of 83% by random forest classifier but performed low on background traffic.

To improve further, ensemble learners were trained on a subset of data by doing bagging and

boosting. Balanced bagging classifier and balanced random forest classifier performed equally

well detecting botnet class with 83% and normal traffic with 86%.

In order to perform equally across all three types of traffic, the XGBoost model utilized

duration, total packets, total bytes, and source bytes column for training and it delivered a ROC-

AUC score close to 100 for all three traffic types on the validation dataset. The XGBoost delivered

same performance on the test dataset as on validation dataset. Also, the XGBoost model delivered

a ROC-AUC score of more than 95% for all types of traffic on all types of attack scenarios.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

55

XVI. FUTURE WORK

There is always room for improvement as the technology and the botnet attacks continue to

evolve. While the XGBoost was able to classify the traffic types with better scores, the XGBoost

algorithm can be hyper-parameterized. However, this would be a time-consuming process due to

the algorithm complexity to improve upon ROC-AUC results that are obtained. Some of the

literature surveyed focused on the application of deep learning models in the domain of botnet

detection. It would be interesting to experiment with deep learning models and their performance

on the botnet dataset because of their inherent feature extraction mechanism.

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

56

REFERENCES

[1] M. Feily, A. Shahrestani and S. Ramadass, “A survey of botnet and botnet detection”, in

SECURWARE '09 Proc. 2009 3rd Int. Conf. Emerging Security Information, Systems and

Tech., June 18 – 23, 2009, pp. 268 – 273.

[2] P. Amini, M. A. Araghizadeh, R. Azmi, “A survey on botnet: classification, detection and

defense”, in 2015 Int. Electronics Symp. (IES), Sep. 29 – 30, 2016, DOI:

10.1109/ELECSYM.2015.7380847.

[3] W. Wang et al., “A novel approach to detect IRC-based botnets”, in 2009 Int. Conf. Netw.

Security, Wireless Comm. and Trusted Comput., Apr. 25 – 26, 2009, DOI:

10.1109/NSWCTC.2009.72.

[4] F. Hsu et al, “Detecting web-based botnets using bot communication traffic features”, in

Security and Comm. Netw, vol. 2017, Article ID 5960307, 11 pages, 2017. [Online],

Available: https://doi.org/10.1155/2017/5960307.

[5] M. Singh, M. Singh and S. Kaur, “Issues and challenges in DNS based botnet detection: A

survey”, in Computers & Security, vol. 86, Sep. 2019, pp. 28-52.

[6] S. Su et al, “Detecting P2P botnet in software-defined networks” in Security and Comm.

Netw., vol. 2018, Article ID 4723862, 13 pages, 2018. [Online] Available:

https://doi.org/10.1155/2018/4723862.

[7] M. Mahmoud, M. Nir and A. Matrawy, “A survey on botnet architectures, detection and

defenses”, in Int. Journal of Netw. Security, vol. 17, no. 3, pp. 272– 289, May 2015.

[8] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mechanisms: A

classification”, Jan. 2004, DOI: DOI: 10.1109/ISSPIT.2003.1341092.

[9] H. Zeidanloo et al, “A taxonomy of botnet detection techniques”, Aug. 2018, DOI:

10.1109/ICCSIT.2010.5563555.

[10] X. D. Hoang, Q. C. Nguyen Q C, “Botnet detection based on machine learning techniques

using DNS query data”, in Future Internet – Open Access Journal, May 18, 2018.

[11] Y. Meidan et al., “N-BaIoT: Network-based detection of IoT botnet attacks using deep

autoencoders”, in IEEE Pervasive Comput. 2018, Jul. – Sep. 2018, vol. 17, pp. 12 – 22,

DOI: 10.1109/MPRV.2018.03367731.

[12] K. Sinha, A. Vishwanathan and J. Bunn, “Tracking temporal evolution of network activity

for botnet detection”, Aug. 12, 2019. [Online]. Available:

https://arxiv.org/abs/1908.03443.

[13] D. Wu et al., “Evading machine learning botnet detection models via deep reinforcement

learning”, in ICC 2019 - 2019 IEEE Int. Conf. Comm. (ICC), 20 – 24 May 2019, DOI:

10.1109/ICC.2019.8761337.

https://ieeexplore.ieee.org/xpl/conhome/7368261/proceeding
https://doi.org/10.1155/2017/5960307
https://doi.org/10.1155/2018/4723862
https://arxiv.org/abs/1908.03443

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

57

[14] R. Doshi, N. Aphtorpe and N. Feamster, “Machine learning DDoS detection for consumer

internet of things devices”, Apr. 11, 2018, [Online]. Available:

https://arxiv.org/abs/1804.04159.

[15] M. Stevanovic and J. Pedersen, “An efficient flow-based botnet detection using supervised

machine learning”, in 2014 Int. Conf. Comput., Netw. and Comm. (ICNC), 3-6 Feb. 2014,

DOI: 10.1109/ICCNC.2014.6785439.

[16] A. Ramachandran, N. Feamster and D. Dagon, “Revealing botnet membership using

DNSBL counter-intelligence”, in Proc. of the 2nd USENIX: Steps to Reducing Unwanted

Traffic on the Internet, San Jose, CA, USA, July 7, 2006, pp. 49–54.

[17] V. Salomo and R. Brustoloni, “Identifying botnets using anomaly detection techniques

applied to DNS traffic”, in Proc. of the 5th IEEE consumer comm. and netw. conf. (CCNC

2008), Las Vegas, NV, USA, Jan. 10–12, 2008, pp. 476 – 481.

[18] S. Garcia et al., “An empirical comparison of botnet detection”, in Computers and Security,

vol. 45, pp. 100-123, Sep. 2014, doi: 10.1016/j.cose.2014.05.011

[19] P. De-Ford, G. Martinez, “Maximum likelihood thresholding algorithm based on four-

parameter gamma distributions” in Elec. Eng. Computing Science and Automatic Control

(CCE), 2014 11th Int. Conf., pp. 1-5.

[20] M. Cherrington et al, “Particle Swarm Optimization for Feature Selection: A Review of

Filter-based Classification to Identify Challenges and Opportunities”, Tech. Elec. and

Mobile Comm. Conf. (IEMCON) 2019 IEEE 10th Ann. Info., pp. 0523-0529, 2019

[21] Md. Subho et al, “A Univariate Feature selection approach for finding key factors of

Restaurant Business”, in 2019 IEEE Region Symp. (TENSYMP), June 7-9, 2019, doi:

10.1109/TENSYMP46218.2019.8971127

[22] I. Mani, I. Zhang. “kNN approach to unbalanced data distributions: a case study involving

information extraction,” in Proc. of workshop on learning from imbalanced dataset, 2003

[23] I. Tomek, “Two modifications of CNN,” in Systems, Man, and Cybernetics, IEEE Trans.

on, vol. 6, pp 769-772, 2010

[24] I. Tomek, “An Experiment with the Edited Nearest-Neighbor Rule,” IEEE Trans. on

Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, June 1976

[25] He et al, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” in

IEEE Int. Joint Conf. on Neural Netw. (IEEE World Congress on Comput. Intelligence),

pp. 1322-1328, 2008

https://arxiv.org/abs/1804.04159
https://doi.org/10.1109/ICCNC.2014.6785439
https://doi.org/10.1109/TENSYMP46218.2019.8971127

NETWORK TRAFFIC BASED BOTNET DETECTION USING MACHINE LEARNING

58

[26] N. V. Chawla et al, “SMOTE: synthetic minority over-sampling technique,” in Jour. of

artificial intelligence research, 16, 321-357, 2002

[27] G. Batista, R. C. Prati, M. C. Monard. “A study of the behavior of several methods for

balancing machine learning training data,” ACM Sigkdd Explorations Newsletter 6 (1), 20-

29, 2004

[28] Chen, Chao, Andy Liaw, and Leo Breiman, “Using random forest to learn imbalanced

data.”, in Univ. of California, Berkeley 110 (2004): 1-12

[29] X. Y. Liu, J. Wu, and Z. H. Zhou, “Exploratory Undersampling for Class-Imbalance

Learning,” in IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.

39, no. 2, pp. 539-550, April 2009

[30] Chen, Tianqi, and C. Guestrin, “XGBoost.”, in Proc. of the 22nd ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining - KDD ’16, (2016)

	Network Traffic Based Botnet Detection Using Machine Learning
	tmp.1589847388.pdf.7xmDj

