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Abstract

Training recurrent neural networks on long
texts, in particular scholarly documents,
causes problems for learning. While hierarchi-
cal attention networks (HANs) are effective in
solving these problems, they still lose impor-
tant information about the structure of the text.
To tackle these problems, we propose the use
of HANs combined with structure-tags which
mark the role of sentences in the document.
Adding tags to sentences, marking them as cor-
responding to title, abstract or main body text,
yields improvements over the state-of-the-art
for scholarly document quality prediction: sub-
stantial gains on average against other mod-
els and consistent improvements over HANs
without structure-tags. The proposed system is
applied to the task of accept/reject prediction
on the PeerRead dataset and compared against
a recent BiLSTM-based model and joint tex-
tual+visual model. It gains 4.7% accuracy
over the best of both models on the compu-
tation and language domain and loses 2.4%
against the best of both on the machine learn-
ing domain. Compared to plain HANs, ac-
curacy increases on both domains, with 1.5%
and 2% respectively. We also obtain improve-
ments when introducing the tags for prediction
of the number of citations for 88k scientific
publications that we compiled from the Allen
AI S2ORC dataset. For our HAN-system with
structure-tags we reach 28.5% explained vari-
ance, an improvement of 1.0% over HANs
without structure-tags.

1 Introduction

Automatic prediction of the quality of scientific
and other texts is a new topic within the field of
deep learning. Deep learning has been successfully
applied to many natural language processing (NLP)
problems including text classification, as well as
many computer vision applications including docu-
ment structure analysis. These successes suggest

automatic quality assessment of scientific docu-
ments, while still highly ambitious, are feasible for
scientific study.

Sequential deep learning models, particularly re-
current neural networks (RNNs), long short-term
memories (LSTMs) and their variants, have been
particularly successful for applications that require
the encoding and/or generation of relatively short
sequences of text, typically at most a few sentences,
see for example (Rao and Spasojevic, 2016; Rock-
tÃd’schel et al., 2015). For such applications, in-
cluding (neural) machine translation (Bahdanau
et al., 2014; Luong et al., 2015) and parsing, ear-
lier models not relying on deep learning have typi-
cally been beaten by a large margin by their newer
deep learning based competitors. This trend has
only increased by the newer attention-based mod-
els, particularly the transformer model (Vaswani
et al., 2017), which are even more apt at using all
of the possible context when building encodings
of sentences. Transformers are also used as the
basis to build general sentence embeddings with
the BERT model (Devlin et al., 2018), which are
used as a versatile basis on top of which many other
applications can be performed with high accuracy.

In comparison to these major successes, the accu-
rate classification of full documents remains more
challenging. To be effective, a deep learning model
for longer text should fulfill the following three
criteria:

1. Trainability: The model should be trainable
on long texts.

2. Computational efficiency: The model should
be computationally efficient as well as par-
allelizable, in order to make efficient use of
GPUs.

3. Rich context: The model should have access
to rich context at sentence and document level
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while encoding the text. Therefore it should
avoid: 1) the assumption that sentences at dif-
ferent locations are independent, 2) the even
even more crippling assumption that words in
the document can be modeled as being statis-
tically independent.

Plain sequential models such as RNNs and
LSTMs model text as unstructured word sequences .
This cause problems on longer texts because of the
vanishing gradient and exploding gradient problem
(Pascanu et al., 2013), which hampers trainability,
the first criterion for effectiveness. Gradient bound-
ing methods including gradient clipping (Hochre-
iter, 1998), can help to reduce these problems, but
provide no solution for documents with thousands
of words. A general approach towards increasing
the trainability of very deep neural networks is
adding residual connections, which skip over one
or multiple layers (He et al., 2015; Srivastava et al.,
2015). But with sequential models for text, this ap-
proach does not solve the other important problem
of non-parallizability across the sequence direction
because of the sequential dependencies. Thus this
approach does not fulfill the second requirement of
computational efficiency. Transformers and BERT
are not a good match for long texts either. While
not suffering from exploding and vanishing gra-
dients, these models have a computational cost
that grows quadratically with sentence length, con-
sequently state-of-the-art BERT implementations
limit their input to 512 tokens. Arguably, bag-of-
word models, including models performing average
pooling over word embeddings form a way to deal
effectively with large texts by fulfilling the first
two criteria of trainability and computational effi-
ciency. However, their computational cheapness
is achieved at the price of making very strong sta-
tistical independence assumptions that hamper the
quality of predictions. Thus, these models fail on
the third criterion of allowing use of rich context
while creating an encoding the text.

There is however a group of models that does
fulfill all three criteria: hierarchical versions of
sequential models, in particular hierarchical atten-
tion networks (HANs). HANs use a hierarchical
stacking of LSTM models with attention for the
sentence and text level. This massively increases
parallelization while simultaneously reducing the
number of steps the gradient signal needs to be
back-propagated during training, increasing learn-
ability. The hierarchical text encodings produced

by these models can still take much context into
account at every level in the representation, thanks
to the use of LSTMs.

HANs are thus highly effective in forming ade-
quate representations of longer texts to be used for
text classification and other tasks. However, these
hierarchical encoding models of text are still defi-
cient in the use of structure information inherent in
the text. The reason is simple: these models have
only one encoding sub-model per level in the hier-
archy, a LSTM in case of HAN. This sub-model is
used to encode all the inputs at that level, without
access to relevant structure context. For example,
the LSTM at the first level encodes all the sentences
in the input, with no information about what part
of the text these sentences belong to, or about their
relative position in the text. In this work we ob-
serve that this deficiency can be effectively solved
by adding XML-like structure-tags at the beginning
and end of each sentence in the input. The effec-
tiveness of our approach is demonstrated on two
tasks:

A Paper accept/reject prediction on the Peer-
Read dataset (Kang et al., 2018).

B Number of citations prediction for scholarly
documents, on a new dataset with 88K articles
compiled from the Allen AI S2ORC dataset,
more than 23 times larger than datasets used
earlier in the literature.

The experiments for both tasks show that using
just three tags to mark abstract, title and body text,
already provides substantial improvements over a
baseline where such information is not provided.
Notably, this type of structure-tags used in this first
exploration is still restricted, and larger gains can
likely be made by further enriching the tag-set. In
particular, it would be straightforward enough to
add more and more fine-grained tags, as well as
tags encoding positional information, somewhat
similar in spirit to positional encodings in the trans-
former model. This does not take away however
from our main contribution, a proof of concept
that shows that structure-tags can yield substantial
improvements to text classification and text-based
regression. This is particularly useful in the domain
of scholarly document understanding, since while
these document are typically long, they are also
highly structured.

The rest of the paper is structured as follows. In
section 2 we discuss the various existing and alter-



native NLP models for the aforementioned tasks
of quality prediction. Section 3 describes the pro-
posed HAN model combined with structure-tags.
Section 4 and 5 respectively discuss their use for
accept/reject and number of citations prediction.

2 Related Work

Multiple methods have been proposed to estimate
the quality of scientific papers. The most common
approach is to use the citation counts as a mea-
sure of quality, to be predicted by models. Fu and
Aliferis (2008) proposed one of the first models
which used both the papers content in the form
of the paper title, abstract and keywords as well
as bibliometric information such as the number of
articles for the first author, publication type and
quality of first authorâĂŹs institution. Notably
they used automated scripts to query web of sci-
ence for retrieving bibliometric information, even
so their final corpus is still relatively modest in
size, containing 3788 papers. While Brody et al.
(2006) use information that becomes available after
publication, like citation count, Fu and Aliferis use
only information available before publication by
using term-vectors as input to a SVM. IbÃąÃśez
et al. (2009) expands upon this research by using
several different classification methods. Both the
naive Bayes as well as the logistic regression model
outperform the model proposed by Fu and Aliferis.

More recent papers use deep learning techniques
to predict the citations of papers. Abrishami and
Aliakbary (2019) use recurrent neural networks
to predict future citations, outperforming all other
state-of-the-art methods. However, like the model
proposed by Brody et al., this method is only ap-
plicable for predicting future citations when some
citations are already available.

Limited recent research is available on the sub-
ject of predicting the quality of papers using the
textual content. One recent method which does
use the textual content is proposed by Shen et al.
(2019). In this paper, visual and textual content
are combined using a CNN and LSTM respectively.
The authors make use of the Wikipedia and the
arXiv datasets. The authors propose a joint model
that classifies the quality of papers. To generate
textual embeddings, the authors use a bi-directional
LSTM model similar to the one proposed by the
same authors in (Shen et al., 2017). The input to the
model is the word embeddings of a paper which are
obtained using GloVe, and the output is a textual

embedding.

Some recent work focuses on predicting the
number of citations from both the paper contents
text augmented with review text. To do so, Li et al.
(2019) create a datset of abstracts and reviews
from the ICLR and NIPS conferences. For the
ICLR conferences they collected a total of 1739
abstracts with in total of 7171 reviews and for the
NIPS conference a total of 384 abstract with in
total 1119 reviews. Plank and van Dale (2019)
collect a datset of 3427 papers with 12260 reviews.
Both papers show improvement in the results from
using the review information.

Hierarchical sequential models
Hierarchical versions of sequential models have
already been pioneered in the literature for a long
time in the form of hierarchical recurrent neural
networks (Hihi and Bengio, 1996). More recently
however, use of LSTMs instead of RNNs and use of
attention resulted in the now popular HAN model
(Yang et al., 2016), which was successfully applied
to sentiment analysis and different text classifica-
tion tasks. Recently, (Qiao et al., 2018) used a
hybyrid hierarchical network, with a convolutional
layer plus attention pooling layer to represent the
content of entire article sections and an LSTM with
attention to merge the section representations into
a final document representation. Their approach
is tested on the task of predicting aspect scores
on papers from aspect-score labeled portion of the
PeerRead dataset. Compared to HAN which uses
LSTMs on both layers, using a convolution layer
with attention in their section encoding restricts the
amount of context that is accesible when construct-
ing this encoding.

Adding structure through additional inputs
Our proposed structure-tag framework is most sim-
ilar in spirit to the approach that been used for
automatic translation of multiple source languages
to multiple target languages using a unified model
(Johnson et al., 2016), in which a special “com-
mand token” is used to indicate which kind of trans-
lation is desired. Related also is the idea of using
multiple embeddings for different types of informa-
tion, as introduced in the field of neural machine
translation by (Sennrich and Haddow, 2016), which
was later also exploited in the popular transformer
model (Vaswani et al., 2017). In contrast to the
latter approaches though which change the embed-
ding layer, like (Johnson et al., 2016) we leave the
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(b) Model proposed by Shen et al. (2019).

Figure 1: Most important models compared in this work.

(HAN) model exactly as is and only change the
input, however with LSTMs it may be expected
that to a large extent adding information through
extra tokens or through additional embeddings can
achieve the same effect.

3 Models

In this work we use and refine state-of-the-art text-
based deep learning models for text classification
and regression tasks: accept/reject prediction and
number of citations prediction respectively. Our
contributions focus on HANs, which we show for
these tasks to be equally or better performing than
models that use a flat BiLSTM encoder at their core
(Shen et al., 2019). Figure 3a shows a diagram of
our HAN model with structure-tags added to the
input, and Figure 3b shows a diagram of the (Shen
et al., 2019) BiLSTM-based model, which is our
baseline for comparison. As can be seen from the
diagrams, both models use a BiLSTM at the text
level that works on embeddings computed for the
sentences of the text. However, while HAN uses
the sequential order to compute an embedding, the
baseline model averages word vectors, disregard-
ing order similar to bag-of-word representations.

For HAN we furthermore propose to add more
text structure information. This is done by adding
structure-tags at the sentence-level, implemented
as special symbols at the start and end of sentences.

3.1 Sentence type tags for more structure
The hierarchical structure of text characterized by
structure elements such as sections, paragraphs
and sentences and labeling elements such as docu-
ment titles and section titles reveals important in-
formation. Models without hierarchy such as plain
RNN/LSTM models ignore this structure, which
motivated HAN (Yang et al., 2016).

HAN uses an LSTM with attention to create en-
codings of each sentence separately and combines
this with a second LSTM with attention on top to
transform these into an encoding of the entire text.
The hierarchical structure of HAN provides several
advantages over flat sequential models, i.e. plain
RNNs/LSTMs:

1. Trainability on long texts: HAN realizes
a much smaller amount of steps for back-
propagating gradients during training, allow-
ing it to process much longer texts without run-
ning into vanishing/exploding gradient prob-



lems. And it can do so while maintaining
high-resolution when forming sentence-level
encodings. While HAN and our proposed
model uses two levels of LSTMs, more levels
can be added to model more levels of structure
and possibly deal with even longer texts.

2. Computational efficiency: The hierarchical
structure makes the computations of HAN
much better parallelized, since children at the
same hierarchical level, such as sentence-level
LSTMs, can process their inputs in parallel.

3. Interpretability of predictions: The hierarchi-
cal attention of HAN can be visualized, fa-
cilitating some qualitative insight into what
inputs are most important for making predic-
tions at a sentence and word level.

Despite these large advantages, HAN in its nor-
mal application still remains limited in its use of
structure. In particular, while HAN encodes sen-
tences in a hierarchical way, it does so while using
the same LSTM encoder for every sentence. Unfor-
tunately, in doing so it provides no meta informa-
tion about the role of these sentences in the text or
about other meta-information such as the relative
positions of these sentences. In this work we intro-
duce a way to overcome these problems by adding
sentence type tags encoding the role of a sentences
or other information, which is then directly avail-
able to the BiLSTM when encoding the sentences.
This is illustrated in Figure 2. First the input is
segmented into a list of sentences, just as is done
also in preprocessing for regular HAN. Then the
role of each sentence is added at the beginning and
end of each sentence. In our current experiments
the roles are restricted to three options: TITLE,
ABSTRACT, BODY_TEXT, however, the idea is
general enough to include much more specific tags
as well as tags encoding relative or absolute sen-
tence position information. We leave exploring
more types of tags for future work.

The tag-base approach has the advantage over
other possible solutions, such as using different
BiLSTMs for different types of sentences, is that
it is much more simpler as well as more scalable.
Equally important, it allows the BiLSTM to only
specialize its functioning to specific types of sen-
tences where needed, while effectively sharing
what can be generalized independent of sentence
type.

<TITLE>Cross-Task Knowledge-Constrained Self Training
</TITLE>

<ABSTRACT> Abstract </ABSTRACT>
<ABSTRACT> We present an algorithmic framework for learn-
ing multiple related tasks. </ABSTRACT>
<ABSTRACT> Our framework exploits a form of prior knowl-
edge that relates the output spaces of these tasks. </AB-
STRACT>
. . . <BODY_TEXT> 1 Introduction </BODY_TEXT>
<BODY_TEXT> When two NLP systems are run on the same
data, we expect certain constraints to hold between their out-
puts. </BODY_TEXT>
<BODY_TEXT> This is a form of prior knowledge.
</BODY_TEXT>
<BODY_TEXT> We propose a self-training framework that
uses such information to significantly boost the performance
of one of the systems. </BODY_TEXT>
<BODY_TEXT> The key idea is to perform self-training only
on outputs that obey the constraints.</BODY_TEXT>
. . .

Figure 2: Example of structure-tags for a paper from
in the PeerRead computation and language (CL) arXiv
dataset. The input text is segmented into sentences and
every sentence is tagged with structure-tags at the start
and end of it.

4 Accept/Reject prediction on PeerRead

The first scholarly document quality prediction task
we test our methods on is accept/reject prediction
on arXiv papers from the PeerRead dataset (Kang
et al., 2018). This dataset is chosen because of
the large amount of earlier work in the literature
reporting results on it, allowing us to compare our
models against the state-of-the-art on a well studied
task.

The full PeerRead dataset holds 14784 papers
in total, each of which contains implicit or explicit
accept/reject labels. Furthermore, PeerRead con-
tains different subsets of papers. The largest subset
consists of arXiv papers (11778) in three computer-
science sub-domains1: machine learning (cs.LG),
computation and language (cs.CL), artificial intel-
ligence (cs.AI), and has only accept/reject labels;
this is the dataset that we use. A part of the papers
also include reviews (3006 papers) and a subset
of the latter that also contains aspect scores (586
papers). However, of these papers with reviews,
the large majority is from NIPS (2420 papers), and
those papers are all accepted. This, and the fact
that the subset of papers with reviews is also really
small for deep learning model training purposes
explains the fact that most work has focused on the

1Based on arXiv categories within computer science, see:
https://arxiv.org/archive/cs



training validation testing
total

num acc:rej num acc:rej num acc:rej
machine learning 4543 36.4% : 63.6% 252 36.5% : 63.5% 253 32.0% : 68.0% 5048

computation
& language

2374 24.3% : 75.7% 132 22.0% : 78.0% 132 31.1% : 68.9% 2638

artificial intelligence 3682 10.5% : 89.5% 205 8.3% : 91.7% 205 7.8% : 92.2% 4092

Table 1: Data sizes and division between the ratio of accepted and rejected papers for the arXiv subsets

PeerRead classification S2ORC regression
optimizer Adam
learning rate 0.005
maximum input characters 20000
vocabulary size 10000
weight initialization

general Xavier normal
lstm Xavier normal
bias zero

loss function cross entropy mean absolute error
dropout probability 0.5 0.2
BiLSTM hidden size 256 100
batch size 4 64
embedding size 50 300

Table 2: Hyperparameters used in the experiments.

larger arXiv subset, and the task of accept/reject
prediction for the papers in this set.

Table 1 shows the sizes of the different subsets
of the arXiv PeerRead dataset, as well as their re-
spective division in number of accept and reject
examples. One observation is that for each of the
three domains, this division is imbalanced, with
the least imbalance for the machine learning sub-
set and the most – an extreme – imbalance for the
artificial intelligence subset, in which around 90%
of the examples is rejected. These imbalances in
the number of examples for each of the classes
make learning harder, but can be partly overcome
by using strategies such as re-sampling.

4.1 Experimental Setup

In our experiments we tried to stay close to the
experimental setup used by (Shen et al., 2019),
while deviating from their settings when neces-
sary. Table 2 gives an overview of the used hy-
perparameters that are shared across experiments,
as well as the hyperparameters that are specific to
the accept/reject prediction task. We used Adam
(Kingma and Ba, 2014) as optimizer, used Xavier
(Glorot) uniform and normal weight initialization
(Glorot and Bengio, 2010) to initialize general

and lstm weights respectively, and initialized bias
weights to zero.2 We use a considerably larger
learning rate of 0.005, compared to 0.0001 used by
(Shen et al., 2019).3. We use a small batch size of
4. This is necessary for HAN as it uses relatively
much memory, because it builds rich hierarchi-
cal BiLSTM-based representations directly from
the word embeddings. In comparison, the BiL-
STM model of (Shen et al., 2019) uses less mem-
ory, since it starts out from sentence embeddings
implemented as the average word embeddings of
sentences. We furthermore use re-sampling on
the computational language (cs.CL) subset, as we
find that without re-sampling, due to the imbal-
ance in the labels learning fails. The re-sampling
is done for each epoch, by keeping the full sub-
set of examples with the less frequent label, but
sub-sampling an equal number of random exam-
ples from the more frequent label subset. In early
exploratory experiments, we also trained models
with re-weighing the loss function, with weight in-
versely proportional to the relative class frequency

2We also tried Xavier uniform instead of normal initializa-
tion for LSTMs, a short investigation suggested that in our
setting this gives not much difference for the results.

3We found the learning rate 0.0001 used by (Shen et al.,
2019b) to give poor results in our experiment.



arXiv
sub-domain
dataset

Majority
class
prediction

Benchmark
(Kang et al.,
2018)

BiLSTM
(Shen et al.,
2019)

Joint
(Shen et al.,
2019)

HANstruct-tag
(Our best
model)

computation
& language

68.9% 75.7% 76.2 ± 1.30% 77.1 ± 3.10% 81.8 ± 1.91%

machine
learning

68.0% 70.7% 81.1 ± 0.83% 79.9 ± 2.54% 78.7 ± 0.69

Table 3: PeerRead accept/reject prediction accuracy: comparison of our best model against state-of-the-art

arXiv
sub-domain
dataset

metric
Majority
class
prediction

Average
Word
Embeddings

HAN HANstruct-tag

computation
& language

accuracy 68.9% 73.7 ± 0.87% 80.3 ± 2.00% 81.8 ± 1.91%
AUC 50% 74.0 ± 1.00% 71.2 ± 2.90 % 74.5 ± 1.10%

machine
learning

accuracy 67.9% 72.9 ± 0.60% 76.7 ± 2.77 % 78.7 ± 0.69 %
AUC 50% 66.2 ± 0.31% 74.3 ± 1.92 % 75.8 ± 1.49%

Table 4: PeerRead accept/reject prediction accuracy and AUC (area under ROC curve) scores for our models.

4. However, we found that this does not fix the prob-
lem that the model is not learning beyond predict-
ing always the majority class, whereas re-sampling
does. In our experiments the training of all our
models proceeds slower than the number of epochs
(60) used by Shen et al. (2019) suggests. This
observation holds in spite of the fact that we are
using a higher learning rate. We therefore used
a higher number of 360 training epochs. In each
experiment, we used the highest accuracy score on
the validation set to select the best model, using
the last epoch that achieves that score in case of
ties.5 In addition to accuracy we also report the
AUC (area under the ROC curve) scores for the
PeerRead dataset.

4.1.1 Input cutoff
Using the full text as input is in theory preferred
over using only a selection of it, for the simple
reason of not losing information prematurely. In
practice however, this is not feasible with high res-
olution deep learning models such as HANs, with
take input that starts at the word level. To save
memory and computation, models may instead start
out from the sentence level, using embeddings di-
rectly as inputs. But this leads to a substantial loss
of information from the input, which may ham-

4Pytorch supports this directly in the CrossEntropyLoss
code.

5In a pre-study, we experimented with using either the first
or the last best epoch in case there were multiple that tied for
the best score. Generally the last best epoch model seemed to
work better in case of ties, so we select that.

per performance. In spite of this risk, (Shen et al.,
2019) apply this strategy in a basic way by comput-
ing the average word embedding for each sentence,
and using a BiLSTM model on top of that. Never-
theless, they still use a limit on the input length, by
allowing only a maximum of 350 sentences. With
HAN, which uses more memory and computation-
intense sentence-level encodings, a limitation of
the input length is even more crucial.

However, rather than limiting the number of sen-
tences, we instead opted for a cutoff on the maxi-
mum allowed number of characters, which we set
to 20000. We found that with hierarchical attention
networks the latter gives better results than using
the 360 sentences cutoff, even though on average it
corresponds to less words. Looking for an expla-
nation for this counter-intuitive finding, we looked
at the distribution over the number of words per
example for each of the two length cutoff policies,
see Table 5. We found that fixing the number of
sentences instead of the number of characters leads
to a large variance in the number of words of ex-
amples. A likely cause for this is differences in
writing styles across authors. In contrast, fixing the
number of characters by definition assures that the
length of the input, and hence to a lesser extent the
number of words (which is proportional to number
of characters) is (more) constant. We assume that a
more constant number of words also corresponds to
a more constant amount of information in the input.
We believe that this more constant amount of in-
put information to predict from makes the learning



easier, more so due to the small size of the training
set.

4.1.2 Results

Table 3 shows our best results on the PeerRead
dataset, using HANs with structure-tags. The same
table also shows the previous literature results of
(Shen et al., 2019) and (Kang et al., 2018). Observe
that in the computation & language domain, we
gain 4.7% accuracy over the best of the these litera-
ture models (Joint), while on the machine learning
domain dataset we lose 2.4% in comparison to the
best performing of these literature models on this
domain (BiLSTM).

In Table 4 we show the results for both our HAN
models as well as for the average word embeddings
baseline. These results show a clear improvement
from using structure-tags: 1.5% accuracy for the
computation & language domain and 2.1% for the
machine learning domain.

In summary, the results show: 1) that our HAN
models are competitive with the literature results,
2) that structure-tags help to further improve the
performance of HAN.

5 Number of citations prediction

The second scholarly document quality prediction
task we test our models in is number of citations
prediction. A key advantage of this task over the
accept/reject prediction task is that much larger
datasets can be obtained relatively easily. Obtain-
ing accept/reject labels in large quantities typically
requires having an agreement with publishers, and
even then because of legal problems, it is hard
to obtain and publish such data.6 Using number
of citations as a label solves these problems to a
large extent, since it is information that is publicly
available and that can be relatively easily obtained
from public resources such as Semantic Scholar
Database or services like the google scholar API.

While it is nice that number of citations infor-
mation can be easily obtained, it is reasonable to
wonder how useful it is to predict this information.
More specifically: is the number of citations of
a paper predictive of its quality? Intuitively one
would expect this to be the case at least to some
extent. Figure 3 shows histograms of the numbers
of citations of articles from the PeerRead datasets

6Note that while the PeerRead arXiv accept/reject dataset
is relatively large, its labels are based on heuristics.

for accepted and rejected papers.7 While there are
some differences between the two domains, the
main trend is the same in both cases: for rejected
papers, the counts are peaked around zero citations
and quickly decrease to one or zero for high cita-
tion counts. In contrast, the number of citations
for accepted papers is two to three times higher on
average, depending on the domain. Accepted pa-
pers also have a substantial number of occurrences
for high numbers of citations. Finally, we formally
computed correlation in the form of the Spearman
rank-order correlation coefficient (ρ) and associ-
ated p-value for both domains. For both domains,
the value of ρ is high and the p-value extremely
close to zero, which indicates significant correla-
tion can be concluded at all p-levels of significance
for a two-sided test. These histograms and num-
bers prove that there is indeed a strong correlation
between acceptance/rejection and the number of
citations. Therefore it makes sense to consider the
number of citations as an imperfect but nonetheless
useful proxy for the quality of scholarly documents.

5.1 A dataset of of document text, number of
citations information pairs

Recent works undertake the task of number of cita-
tions prediction based on the scholarly document
text, but mostly do so while using relatively small
datasets. As discussed in related work, some of the
recent work adds review text to the input. However,
creating models using reviewer comments limits
their practical application to after reviewing and
reduces the data available for training.

These observations motivated us to
rather aim for a relatively large dataset of
paper, number of citations〉 pairs, which we
compile using the S2ORC data (Lo et al., 2020).
We selected a subset of papers from the computer
science domain from S2ORC, for which title,
abstract and body text information is present. We
did this for papers in the year range 2000–2010,
and counted the number of citations of citing
papers that are published within 8 years after the
publication of a paper.8 Randomly ordering the
papers, from this we compiled a dataset with in
total about 88K papers, and statistics as shown in

7To keep counts comparable across papers with different
publication years, we restrict the count of citations by other
papers to those citing papers published within two years of
each paper’s publication.

8Since exact publication date is not generally available,
only citation year, this is somewhat approximate.



average words per example median words per example
20000 characters length cutoff 3909 ± 692 4076

360 sentences length cutoff 5246 ± 1717 5514

Table 5: The effect of the length cutoff policy on the number of words distribution.

data subset num examples avg num words
training 78894 839.1 ± 473.7

validation 4383 849.1 ± 477.5
testing 4382 856.4 ± 489.0

Table 6: S2ORC dataset size statistics.

Table 6. Note that to the best of our knowledge,
the largest number of articles used for citation
prediction in earlier work is described in (Plank
and van Dale, 2019), we use more than 23 times
the number of articles used in their experiments.9

While we kept the maximum number of words
per example at 20000, the average number of words
lies around 840 words per example which is much
lower, since the number of words provided in the
body_text fields of S2ORC is still limited in prac-
tice. We leave creating examples with the full paper
text for future work. The the thus created exam-
ples consists of the combined title, abstract and
body_text. The labels added to these examples con-
sist not exactly of the number of citations but rather
a derivative function of this number, as explained
in the next subsection.

5.2 The logarithm of number of citations as a
proxy for quality

The number of citations follow of scholarly doc-
uments follow a Zipfian distribution (Silagadze,
1997). That is, most papers have little citations, but
those that obtain more citations tend to get expo-
nentially more. To account for this, we used the
log of the number of citations to create a metric
that aims to approximates a measure of quality on
a linear scale. In practice, we use the function:

citation_score = loge(n+ 1) (1)

adding one to the number of citations n before
taking the log, to make sure the function is well-
defined even for papers that have zero citations.

9We plan to make our dataset available upon acceptance
of this article.

5.2.1 Comparison to alternative citation
scores

What alternatives to our log-based metric have been
explored in the literature? Li et al. (2019) map ci-
tation counts to the [0,1] range, presumably by
simply scaling them after the paper with the maxi-
mum and minimum number of citations in a dataset
have been determined. But this approach transfers
poorly to new data, since the number of citations
follows the Zipfian distribution, there is a large
chance of encountering an even higher number of
citations in unseen data. Furthermore, because of
the Zipfian nature of the number of citations, this
transformation will map the citation score of many
papers to a number close to zero, thereby drasti-
cally inflating the evaluation scores of predictions
for this citation score. A better alternative approach
is to discretize the number of citations into a fixed
number of ranges. In order to predict the impact
of scientific papers, Plank and van Dale (2019) dis-
cretize time-normalized citation statistics into low,
medium and high impact papers based on a boxplot
and outlier analysis. In comparison however, our
approach does not require discretization/binning,
which has advantages: 1) It does not commit to a
fixed resolution, 2) it avoids problems for papers
with a number of citations on the border of two bins,
3) it allows the predicted scores to be determinis-
tically transformed back into an actual number of
citations.

5.3 Loss function and evaluation metrics

Having motivated our chosen citation score (1),
the next important question is what loss function
we should optimize when training our networks to
predict this score. Whereas mean-squared-error
is the default choice for regression problems, we
found this loss function to perform poorly in com-
bination with our score. In contrast, preliminary
experiments showed that mean absolute error facil-
itates effective and relatively stable optimization,
so we decided to use this as our loss function in the
rest of our experiments.

In addition to the choice of loss function, an-
other important question is what quality metrics we
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(b) Machine Learning domain

Domain
Average number of citations

Spearman rank-order
correlation coefficient
(ρ), p-valuerejected articles accepted articles

Computation and Language 14.8 ± 44.3 59.0 ± 105.9 0.466, 1.6× 10−128

Machine Learning 24.0 ± 127.3 61.0 ± 232.6 0.375, 5× 10−153

(c) Global statistics and formal correlation measure: average number of citations for rejected and accepted papers and Spearman
rank-order correlation in the different domains.

Figure 3: Histograms and global statistics of number of citations for accepted and rejected papers for the sub-
domains of PeerRead. Histograms are truncated on the right at 100 citations.

are interested in? Mean-squared-error and mean-
absolute-error are standard metrics for regression
evaluation, so we report those. However, in ad-
dition, we report the R2 score, which denotes the
proportion of the variance in the dependent variable
that is predictable from the independent variable(s).

The R2 function is defined as:

R2 = 1− FVU = 1− MSE(Y, Y ′)

var[Y ]
(2)

With Y ′ and Y being the predicted and actual labels
respectively, MSE being the mean-squared-error
and and FVU the fraction of variance unexplained.
This explains how the R2 score normalizes for the
relative difficulty for the task, by normalizing by

the variance of the labels in the test set. Another
interpretation is that the R2 score normalizes by
the error obtained by always predicting the aver-
age of the test labels. Consequently, a R2 score
larger than 0 means performance better than this
“average prediction baseline”, and below 0 means
worse than this baseline. This avoids the need to
add scores for this dummy baseline for comparison,
making the R2 score more directly interpretable
than mean-squared-error or mean-absolute-error.
As such, use of the R2 score also becomes partic-
ularly useful for assuring comparability of model
scores across datasets, which will typically differ
in test set variance. For these reasons, the R2 score



HAN HANstruct-tag

R2 score 0.275 ± 0.008 0.285 ± 0.002
mean squared error 1.201 ± 0.007 1.184 ± 0.002
mean absolute error 0.833 ± 0.003 0.831 ± 0.001

Table 7: Test scores for the log number of citations prediction on the S2ORC dataset.

is our preferred metric when comparing the perfor-
mance of models.

5.4 Number of citations prediction results
Table 7 shows the results of our models trained
on our new S2ORC number of citations prediction
dataset. We observe that the HANstruct-tag model
outperforms HAN. (Shen et al., 2019).

6 Conclusion

This work showed the usefulness of HAN and rich
context tags to the processing of scientific doc-
uments, which are significantly longer than the
text inputs of usual NLP problems. Substantial
improvements in prediction quality were obtained
for both accept/reject estimation and number of
citations prediction. A strong and significant cor-
relation between accept/reject labels and number
of citations was demonstrated, signaling the useful-
ness of the latter as a measure of scholarly docu-
ment quality. We derived a new citation prediction
dataset from the S2ORC data, more than 23 times
larger than alternatives used before in the literature.
Our approach demonstrates the feasibility of au-
tomatically generating large datasets for number
of citations prediction from open resources. This
opens new paths for the application of more ad-
vanced deep learning models to scholarly document
quality prediction, models that are more accurate
but also require more data to train effectively.
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Bielza. 2009. Predicting citation count of Bioin-
formatics papers within four years of publication.
Bioinformatics, 25(24):3303–3309.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. CoRR,
abs/1611.04558.

Dongyeop Kang, Waleed Ammar, Bhavana Dalvi,
Madeleine van Zuylen, Sebastian Kohlmeier, Ed-
uard Hovy, and Roy Schwartz. 2018. A dataset of
peer reviews (peerread): Collection, insights and nlp
applications.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

https://doi.org/10.1016/j.joi.2019.02.011
https://doi.org/10.1016/j.joi.2019.02.011
https://doi.org/10.1016/j.joi.2019.02.011
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://eprints.soton.ac.uk/260713/
https://eprints.soton.ac.uk/260713/
https://eprints.soton.ac.uk/260713/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
https://doi.org/10.1093/bioinformatics/btp585
https://doi.org/10.1093/bioinformatics/btp585
http://arxiv.org/abs/1804.09635
http://arxiv.org/abs/1804.09635
http://arxiv.org/abs/1804.09635
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Siqing Li, Wayne Xin Zhao, Eddy Jing Yin, and Ji-
Rong Wen. 2019. A neural citation count prediction
model based on peer review text. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4914–4924, Hong Kong,
China. Association for Computational Linguistics.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel S. Weld. 2020. S2orc: The seman-
tic scholar open research corpus. In Proceedings of
ACL.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neu-
ral networks. In ICML (3), volume 28 of JMLR
Workshop and Conference Proceedings, pages 1310–
1318. JMLR.org.

Barbara Plank and Reinard van Dale. 2019. Cite-
tracked: A longitudinal dataset ofpeer reviews
and citations. In Proceedings of the 4th Joint
Workshop on Bibliometric-enhanced Information Re-
trieval and Natural Language Processing for Digital
Libraries (BIRNDL 2019).

Feng Qiao, Lizhen Xu, and Xiaowei Han. 2018. Mod-
ularized and attention-based recurrent convolutional
neural network for automatic academic paper aspect
scoring. In Web Information Systems and Applica-
tions, pages 68–76, Cham. Springer International
Publishing.

Adithya Rao and Nemanja Spasojevic. 2016. Action-
able and political text classification using word em-
beddings and lstm.

Tim RocktÃd’schel, Edward Grefenstette, Karl Moritz
Hermann, TomÃąÅą KoÄ iskÃ¡, and Phil Blunsom.
2015. Reasoning about entailment with neural atten-
tion.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
CoRR, abs/1606.02892.

Aili Shen, Jianzhong Qi, and Timothy Baldwin.
2017. A hybrid model for quality assessment of
wikipedia articles. In Proceedings of the Aus-
tralasian Language Technology Association Work-
shop 2017, pages 43–52.

Ali Shen, Bahar Salehi, Timothy Baldwin, and
Jianzhong Qi. 2019. A joint model for multimodal
document quality assessment. In JCDL ’19: Pro-
ceedings of the 18th Joint Conference on Digital Li-
braries, pages 107–110.

Z. K. Silagadze. 1997. Citations and the zipf-
mandelbrot’s law. Complex Systems, 11(6):487–
499.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. CoRR,
abs/1505.00387.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1497
https://doi.org/10.18653/v1/D19-1497
https://arxiv.org/abs/1911.02782
https://arxiv.org/abs/1911.02782
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1607.02501
http://arxiv.org/abs/1607.02501
http://arxiv.org/abs/1607.02501
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1606.02892
http://arxiv.org/abs/1606.02892
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174

