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Condition-Based Production Planning: Adjusting
Production Rates to Balance Output and Failure Risk

Michiel A. J. uit het Broek, Ruud H. Teunter,
Bram de Jonge, Jasper Veldman, Nicky D. van Foreest

University of Groningen, Faculty of Economics and Business, Operations,
Nettelbosje 2, 9747 AE Groningen, a.j.uit.het.broek@rug.nl

Problem definition: Many production systems deteriorate over time as a result of load and stress caused
by production. The deterioration rate of these systems typically depends on the production rate, implying
that the equipment’s deterioration rate can be controlled by adjusting the production rate. We introduce
the use of condition monitoring to dynamically adjust the production rate in order to minimize maintenance
costs and maximize production revenues. We study a single-unit system for which the next maintenance
action is scheduled upfront. Academic / Practical Relevance: Condition-based maintenance decisions
are frequently seen in the literature. However, in many real-life systems, maintenance planning has limited
flexibility and cannot be done last minute. As an alternative, we are the first to propose using condition
information to optimize the production rate, which is a more flexible short-term decision. Methodology:
We derive structural optimality results from the analysis of deterministic deterioration processes. A Markov
decision process formulation of the problem is used to obtain numerical results for stochastic deterioration
processes. Results: The structure of the optimal policy strongly depends on the (convex or concave) rela-
tion between the production rate and the corresponding deterioration rate. Condition-based production rate
decisions result in significant cost savings (by up to 50%), achieved by better balancing the failure risk and
production output. For several systems a win-win scenario is observed, with both reduced failure risk and
increased expected total production. Furthermore, condition-based production rates increase robustness and
lead to more stable profits and production output. Managerial Implications: Using condition information
to dynamically adjust production rates provides opportunities to improve the operational performance of
systems with production-dependent deterioration.

Key words : Optimal Production Control, Condition Monitoring, Adjustable Production Rate, Reliability,
Maintenance Cost, Operational Decision Making, Productivity

History : November 5, 2018

1. Introduction
Many production systems deteriorate over time as a result of load and stress caused by produc-
tion. Recent advances in modern sensor techniques have created opportunities for monitoring such
systems to improve their operational decision making. Researchers have designed sophisticated
condition-based maintenance policies that rely on various types of condition information, provid-
ing insights on how to reduce maintenance cost and increase equipment reliability. However, in
many real-life systems, maintenance planning has limited flexibility and cannot be done last minute
because arranging tools, parts, and technicians takes time.

A more short-term operational option is to control the equipment’s deterioration process by
adjusting the production rate. This applies, for instance, to wind turbine gearboxes and generators
that deteriorate faster at higher speeds (Feng et al. 2013, Zhang et al. 2015), conveyor belts that
fail more often when used at higher rotational speeds (Nourelfath and Yalaoui 2012), trucks that
fail earlier when heavier loaded (Filus 1987), large computer clusters that fail more often under
higher workloads (Ang and Tham 2007, Iyer and Rossetti 1986), and cutting tools that wear faster
at higher speeds (Dolinšek et al. 2001). In addition, the recent advent of the Internet of Things
(IoT) allows to control production rates remotely and in real-time, thereby making it practically
viable to exploit this relation between production and deterioration. Surprisingly, to the best of
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our knowledge, no studies exist that focus on controlling the equipment’s deterioration process by
adapting the production rate based on condition information.

As mentioned, maintenance operations often require many resources to be mobilized, making it
difficult (if at all possible) to reschedule maintenance activities. For this reason, plants like paper
mills, power plants, and refineries typically perform periodic maintenance activities at so-called
turnarounds. At these turnarounds, the entire system is shut down, which also allows for mainte-
nance activities to be clustered. However, equipment may deteriorate more slowly or faster than
expected and, therefore, it can be profitable to adjust the production rate based on condition
information in order to increase production or to avoid a possible costly failure before the next
turnaround.

This study explores the benefits of condition-based production rate optimization between con-
secutive maintenance operations that are planned well in advance. We analyze these benefits for
a single-unit system with a single measurable condition. The system is overhauled at prespecified
times and we study optimal production decisions between two consecutive maintenance activities.
The decision maker can, based on the current deterioration level and the remaining time until the
next maintenance moment, adjust the production rate and thereby the deterioration rate. Our main
contribution is to introduce and explore the concept of condition-based production rate decisions
for systems with an adjustable production rate that directly affects the deterioration rate.

Structural insights and exact analytical solutions are derived for deterministic deterioration pro-
cesses, and a numerical analysis shows that stochastic systems behave similarly. Our results reveal
that the system’s profitability, which is driven by a subtle trade-off between production revenues
and maintenance costs, can be significantly improved by dynamically adjusting the production rate.
An encouraging result is that we observe win-win scenarios for several systems, with both reduced
failure risk and increased expected production. Another insightful result is that the structure of
the optimal policy is very different for systems with decreasing or increasing marginal deterioration
rates as a function of the production rate. For decreasing marginal deterioration rates, the optimal
policy is to produce at the maximum rate and to switch off the system when the deterioration level
reaches a time-dependent threshold. For increasing marginal deterioration rates, it is optimal to
aim at a constant production rate.

The remainder of this paper is organized as follows. In Section 2 we discuss the relevant literature
on production planning and on the use of condition monitoring for operational decision making. In
Section 3 we provide a formal problem description. In Section 4 we analytically study the system with
a deterministic deterioration process. In Section 5 we use a Markov decision process formulation to
validate the insights from deterministic systems for systems with a stochastic deterioration process.
We conclude and provide suggestions for future research in Section 6.

2. Literature
In the current literature, production and maintenance decisions are often optimized separately
(e.g., Shen et al. 2014, Iravani and Krishnamurthy 2007). The literature on production planning
under uncertainty, including equipment failure uncertainty, is reviewed by Mula et al. (2006) and
an extensive review on the use of condition monitoring for maintenance decisions is conducted
by Alaswad and Xiang (2017). A review that addresses the joint optimization of production and
maintenance is carried out by Sethi et al. (2002). In what follows, we distinguish three streams of
literature on the interaction between production and system failures. The first introduces adjustable
production rates and assumes that higher production rates result in increased failure risk. The second
considers production-dependent deterioration without condition monitoring. Third, we discuss the
literature on the general use of condition monitoring for operational decision making, and also zoom
in on condition monitoring for production decisions.

There are many studies on systems with an adjustable production rate and production-dependent
failure rates. Liberopoulos and Caramanis (1994) consider a single-unit system with constant
demand, where corrective maintenance is performed upon failure. Their objective is to find a policy
that minimizes backorder and inventory costs. Boukas et al. (1995) include preventive maintenance
decisions into this system, and Hu et al. (1994) show that the reliability of the system can be
improved by reducing the production rate. Martinelli (2005, 2007) studies the structure of optimal
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production policies under production-dependent failures with two failure rates, and later generalizes
this to more general failure rate functions (Martinelli 2010). Recent extensions include a system
with two machines (Francie et al. 2014) and a run-based maintenance policy for the production
scheduling problem (Lu et al. 2015). These studies assume that failure rates only depend on the age
and the current production rate. Thus the production rate only affects the current failure risk and
has no effect on the future failure behavior of the system.

In many practical situations, the production rate does not only affect the current failure probabil-
ity but also results in permanent deterioration to the system, referred to as production-dependent
deterioration. Zied et al. (2011) analyze production-dependent deterioration by accelerating the
system’s aging proportional to the production rate. They consider a single-unit system with stochas-
tic demand and optimize a block-based maintenance policy. Between maintenance actions, the
adjustable production rate is used to balance inventory cost and failure risk. Ayed et al. (2012)
extend the system to two units. De Jonge and Jakobsons (2018) consider block-based maintenance
optimization for a machine for which the usage is random and that only deteriorates when it is turned
on. These studies include production-dependent deterioration, but do not consider the potential of
monitoring the actual deterioration level of the system, as we do.

It is well known that the use of condition monitoring can significantly improve operational decision
making. For example, condition-based maintenance results in improved system reliability and lower
maintenance costs (Makis and Jiang 2003, Kim and Makis 2013, Liu et al. 2017). The literature
on condition-based maintenance, not restricted to production systems, is rich and deterioration
processes depending on time, the current deterioration level, and exogenously given operational
modes are covered (Liu et al. 2013, Khaleghei and Makis 2016, Samuelson et al. 2017). A current
trend in the literature is to study the use of condition monitoring for other operational decisions
such as improved stock keeping of spare parts (Olde Keizer et al. 2017, Zhang and Zeng 2017),
managing rentals like cars (Slaugh et al. 2016), and determining optimal production lot-sizes (Peng
and Van Houtum 2016). The latter study uses condition monitoring to determine whether a new
lot is started or preventive maintenance is performed. These studies, in contrast to ours, exclude
the possibility to actively influence the deterioration process by adjusting the production rate.

Others have considered the use of condition information to schedule the production of multiple
product types. Sloan and Shanthikumar (2000) study a single-unit system in which the yield differs
between products and is affected by the deterioration level of the system. Condition information is
used to decide which product to produce and when to perform maintenance. Batun and Maillart
(2012) reconsider this study and point out an error in the objective function. Kazaz and Sloan
(2008, 2013) extend the system by incorporating products with different production times, and, as
a consequence, different expected deterioration increments. These studies assume that maintenance
can be performed at any time, that is, after a negligible planning time, whereas in our system
maintenance is only performed at prespecified maintenance times. Furthermore, their focus is on
production scheduling and the condition information is not used to adjust the production rate.

There are very few studies that do consider systems with adjustable production rates and condi-
tion monitoring. However, in these studies the production rate has no influence on the deterioration
rate of the system. Iravani and Duenyas (2002) minimize inventory holding costs by producing
at a slower rate if the deterioration level is low. Sloan (2004) extends the setting by introducing
stochastic demand.

We conclude that the interaction between production decisions and failure behavior of systems
is well studied, but that the potential value of using condition monitoring to adjust the production
rate, and thereby the deterioration rate, has been ignored.

3. Problem Description
We consider a single-unit system with a single condition parameter. The production rate of the
system is adjustable over time, and the deterioration rate (i.e., the average amount of additional
deterioration per time unit) depends on the current production rate. Maintenance is only performed
at prespecified maintenance moments and the next maintenance action is scheduled at time T . The
deterioration process of the system is continuously monitored and described by a continuous-time
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stochastic process X = {X(t) | t≥ 0}. Deterioration level 0 indicates that the system is as-good-as-
new and failure occurs when the deterioration level exceeds a fixed failure level L.

At any time t and deterioration level X(t), the decision maker can control the production rate
u(t,X(t)) of the system, which ranges between 0 (no production) and 1 (maximum production). If
the system has failed, it cannot produce and the production rate is fixed at 0. For a given state (t, x),
the set of feasible production rates A(x) is thus equal to

A(x) =

{
[0,1] if x<L,

{0} otherwise.

In words, the decision maker can only control the production rate as long as the system is func-
tioning, i.e., if it is in a state in the set S = {(t, x) | 0≤ t≤ T, 0≤ x≤ L}. We consider a policy to
be admissible if it specifies a feasible production rate for each state in the set S and, to facilitate
the proofs in the next section, if it has a finite, but arbitrary number of jumps over time. Clearly,
imposing the latter constraint does not have any practical implications. We let A denote the set of
all admissible policies.

The deterioration rate of the system depends on the production rate and is denoted by g(u). We
refer to this function g as the production-deterioration relation (pd-relation in short). It is natural
to assume that there are no production rates for which the condition of the system improves, hence g
is assumed to be nonnegative. We let gmin = minu∈[0,1] g(u) and gmax = maxu∈[0,1] g(u) refer to the
minimum and maximum deterioration rate, respectively. Notice that we distinguish systems that do
deteriorate for all production rates (gmin > 0) and systems that do not (gmin = 0). We remark that
systems may deteriorate (although slowly) even if the system is idle, for instance due to bearings that
may become slightly unbalanced due to one-sided pressure or as a result of corrosion. Furthermore,
we note that pd-relations are most likely to be increasing in practice, but our analysis does not
require this assumption.

The production revenue generated by the system is proportional to the production rate and
equals uπ per time unit when producing at rate u. The cost of performing maintenance depends on
the deterioration level at the moment of maintenance. If the system is still functioning, preventive
maintenance at a cost cpm is carried out, whereas more expensive corrective maintenance at a
cost ccm has to be performed if the system has failed. Thus the maintenance cost as a function of
the deterioration level X(T ) at the moment of maintenance equals

c(X(T )) =

{
cpm if X(T )<L,

ccm otherwise.

This cost structure is commonly used in the maintenance literature
(see, e.g., Liu et al. 2017, De Jonge et al. 2017, Zhang and Zeng 2017). It is often realistic, for
instance when maintenance means the replacement of a unit, implying that its cost is fixed as long
as the unit has not failed. A corrective replacement is often more expensive than a preventive
replacement, for instance if unit failure results in damage to other units as well. Furthermore, we
assume that maintenance will always be carried out at the scheduled moment, regardless of the
deterioration level. This is justified when maintenance has to be planned well in advance. Moreover,
under the optimal policy, production rates will be high as long as deterioration is low, implying
that it is very unlikely that the deterioration level is low at the maintenance moment.

The expected profit until the next maintenance moment for a given state (t, x) and a given
production policy u= {u(τ,X(τ)) | 0≤ τ ≤ T, 0≤X(τ)≤L} equals

J(u; t, x) =E

[
π

∫ T

t

u(τ,X(τ)) dτ − c(X(T ))

]
. (1)

Our aim is to maximize this expected total profit. However, for some scenarios, the supremum
J∗(t, x) = supu∈A J(u; t, x) cannot be attained because of the discontinuity in the maintenance cost
function c(X(T )). We therefore determine an admissible policy whose objective value is arbitrarily
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close to the supremum J∗(t, x). Thus, for any ε > 0, we determine an admissible policy u∗ ∈A such
that J(u∗; t, x)>J∗(t, x)− ε.

We note that the above described setting with a single condition parameter is not only applicable
to single-unit systems, but also to multi-unit systems in which one of the units requires a considerably
higher maintenance frequency than the other units. For such systems, the length of the maintenance
interval will be based on the unit that deteriorates fastest and that requires the highest maintenance
frequency. This critical unit will then be maintained after each maintenance interval, and these
maintenance moments will be used as opportunities to sometimes maintain the other, more slowly
deteriorating units as well (depending on their respective deterioration levels). In such settings, the
critical unit is also the main driver for the dynamic production rate.

4. Deterministic Deterioration
In this section we consider a deterministic deterioration process with deterioration increments that
are fixed for a given production rate. Although most deterioration processes behave stochastically
in practice, studying a deterministic deterioration process allows us to derive analytical insights into
the structure of the optimal production control. In Section 5 we will show that the same structure is
observed for stochastic processes. Given the deterministic deterioration process and an initial state
(t, x)∈ S, the problem reduces to

J∗(t, x) = sup
u∈A

{
π

∫ T

t

u(τ,X(τ)) dτ − c(X(T ))

}
, (2)

subject to

X(t) = x,

Ẋ(τ) = g(u(τ,X(τ))),

where Ẋ(τ) denotes the right derivative of X(τ). In the remainder of this section, we assume that
the pd-relation g is continuously differentiable. Moreover, for a given state (t, x) ∈ S, a policy u
fixes the trajectory of the deterioration process X(τ) for τ ≥ t. Thus, for a given state (t, x), we
can describe the optimal production rate as function of time, u(τ) for τ ≥ t, instead of a function
of both time and the deterioration level.

The first step of our analysis is to partition the set S into three subsets as illustrated in Figure 1.
When the deterioration level is relatively low compared to the remaining time until the maintenance
moment, the system remains functioning regardless of the production rate. We let the set S1 contain
all states in which the system will be functioning at time T even if the production rate with the
highest deterioration rate is chosen, i.e.,

S1 = {(t, x)∈ S | x+ (T − t)gmax <L}.

Recall that the highest deterioration rate gmax = maxu∈[0,1] g(u) does not necessarily correspond to
the maximum production rate u= 1. On the other hand, for systems that deteriorate for all produc-
tion rates, we know that the system will fail before maintenance takes place if the deterioration level
is close to the failure level given the remaining time until maintenance. We let the set S3 contain
all states in which the system will fail with certainty before time T , i.e.,

S3 = {(t, x)∈ S | x+ (T − t)gmin ≥L}.

The set S2 contains the remaining states, in which the system can either be functioning or failed
upon maintenance, depending on the selected production rates, thus S2 = S \ (S1 ∪S3).

For all practical cases we have gmax <∞ implying that the set S1 cannot be empty. The set S2

is empty if and only if gmin = gmax, which is the case if the production rate has no influence on the
deterioration rate. The set S3 is empty if and only if gmin = 0. A practical scenario with gmin = 0 is
a system that does not deteriorate when idle, that is, g(0) = 0.
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Figure 1 Schematic overview of the subsets of S = {(t, x) | 0≤ t≤ T, 0≤ x≤L}.

The remainder of this section is organized as follows. In Section 4.1, we show that there is a policy
whose objective value is arbitrarily close to the supremum (2), even if we restrict the decision maker
to control the production rate at prespecified times only. In Section 4.2, we derive the optimal policy
for states in S3. In Section 4.3, we find the optimal policy under the restriction that the system
does not fail. This is obviously the optimal policy starting in states in S1, as the system cannot fail
from those states. It also provides the best policy that avoids failure for states in S2. However, for
those states we further have to consider policies that deliberately let the system fail, which is done
in Section 4.4. We end with an illustrative example in Section 4.5.

4.1. Prespecified Decision Moments
We show that the supremum (2) can be approached arbitrarily close even if the decision maker
is only allowed to control the production rate at prespecified moments, as long as the maximum
duration between two consecutive decisions is sufficiently short. This allows us to use prespecified
partitionings in the proofs of subsequent sections.

Let P be a partitioning of the time interval [0, T ] into n subintervals [ti−1, ti) where
i∈ I = {1, . . . , n} and 0 = t0 < t1 < . . . < tn = T . The length of interval i equals δi = ti − ti−1 and
the longest interval has length δmax = maxi∈I δi. In each interval, the decision maker can only set a
single production rate ûP,i. We denote the restricted policy as ûP = (ûP,1, . . . , ûP,n) and the set of
all admissible policies on a given partitioning as ÂP . For notational ease, we drop the subscript P
for ûP,i, ûP , and ÂP in the remainder of the study and distinguish the restricted policy by the hat
symbol.

Recall that the optimal value of the problem equals J∗(t, x) = supu∈A J(u; t, x). Furthermore, the
set of feasible policies A is nonempty since the policy u(τ) = 0 for τ ≥ t is always feasible. Then, by
definition of the supremum, there is a policy in A whose corresponding objective value is arbitrarily
close to the supremum. That is, for every ε > 0 there is a policy u∗ ∈A such that

J(u∗; t, x)>J∗(t, x)− ε. (3)

For a given partitioning, we construct a policy û∗ corresponding to u∗ such that, in each inter-
val i ∈ I, û∗ takes the production rate of u∗ with the lowest corresponding deterioration rate,
i.e.,

û∗i = arg min
u∗(τ)

{g(u∗(τ)) : τ ∈ [ti−1, ti]} .

Because u∗ is feasible, it immediately follows that û∗ is feasible. Note that J(û∗; t, x)≤ J(u∗; t, x)
since û∗ ∈ Â, u∗ ∈A, and Â ⊂A.

Policy u∗ is Riemann-integrable over time since the production rate has a bounded range and
a finite number of jumps (see Rudin 1976, Theorem 11.33). By definition of Riemann-integrability
(see Abbott 2015, Theorem 8.1.2), it follows that for every ε̂ > 0 there is a δ > 0 such that for any
partitioning with δmax < δ we have

J(û∗; t, x)>J(u∗; t, x)− ε̂. (4)
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It follows from (3) and (4) that there are partitionings for which the objective value of the
restricted policy û∗ corresponding to u∗ is arbitrarily close to the supremum (2). Only the length of
the longest interval is relevant and thus we can use partitions both with equally and with unequally
sized intervals. Hence, for fine enough partitionings, maximizing the objective value with prespecified
decision moments is equivalent to maximizing the objective value of the unrestricted policy.

4.2. Optimal Policy with Unavoidable Failure
We first derive the optimal policy for states (t, x)∈ S3, i.e., states in which the system will fail with
certainty before the maintenance action at time T . Recall that the set S3 is empty for gmin = 0 and
thus in this section we have gmin > 0. We first show the optimal policy for general pd-relations, and
then simplify this for linear, strictly concave, and strictly convex pd-relations.

Proposition 1. For each state (t, x) ∈ S3, a sufficient condition for optimality is that
u(τ)∈ arg supu∈[0,1]{u/g(u)} for all τ ≥ t.

Proof. Suppose the system is in a state (t, x)∈ S3. Maximizing profit until maintenance is equiv-
alent to maximizing production revenues until maintenance since the system will fail with certainty
and thus the maintenance cost c(X(T )) equals ccm.

We partition the deterioration interval [x,L] into n equally large subintervals of size δ= (L−x)/n
and restrict the decision maker to set a single production rate in each interval (see Figure 2).
We partition the deterioration levels instead of the time horizon since each possible deterioration
trajectory will reach the failure level L before the end of the time horizon. The rate in interval i is
denoted by ũ

(n)
i where i ∈ I = {1, . . . , n}. The restricted policy is denoted as ũ(n) = (ũ

(n)
1 , . . . , ũ(n)

n )
and the set of all admissible policies as Ã(n). For notational purposes, we drop the superscript for
ũ

(n)
i , ũ(n), and Ã(n) in the remainder of the proof.
The total revenue for a given policy ũ is the sum of the revenues in the individual intervals, i.e.,

J(ũ; t, x) = π
∑
i∈I

ũiτ(ũi), (5)

where τ(ũi) is the time spent in interval i when producing at rate ũi. Since the system deteriorates
with rate g(ũi) we have τ(ũi) = δ/g(ũi). Substituting this into objective function (5) gives

J∗(t, x) = sup
ũ∈Ã

J(ũ; t, x) = δπ sup
ũ∈Ã

{∑
i∈I

ũi
g(ũi)

}
.

The terms within the summation depend on interval i only, thus are independent of the decisions
made in the other intervals. It follows that we can interchange the summation and the supremum,
hence

J∗(t, x) = δπ
∑
i∈I

(
sup

ũi∈[0,1]

{
ũi
g(ũi)

})
= (L−x)π sup

u∈[0,1]

{
u

g(u)

}
,

where the last equality follows by substituting δ= (L−x)/n. Observe that the objective value that
we attain is independent of the partitioning that is used. We conclude that the optimal value is
attained if u(τ)∈ arg sup{u/g(u)} for all τ ≥ t. �

Corollary 1. For any state for which a failure cannot be avoided, there is an optimal policy
that produces at a constant rate until failure.

Proposition 1 states that if the system is in state (t, x) ∈ S3, then any policy that maximizes
u/g(u) until the unavoidable failure is optimal. This result is intuitive since the decision maker
already knows that the system will fail and therefore aims to maximize the production gained for
each additional unit of deterioration. From now on, we refer to the set of production rates that
maximize u/g(u) as the set of efficient rates Ueff. The set Ueff is independent of time and thus there
exist an optimal policy that produces at a constant rate until failure (Corollary 1). However, this
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Figure 2 Overview of the restricted decisions and a possible trajectory for n= 4 and (t, x) = (0,0).

policy is not necessarily unique since Ueff can contain multiple elements. For example, consider a
pd-relation with g(u)> u for u ∈ [0,0.5) and g(u) = u for u ∈ [0.5,1]. The set of efficient rates for
this pd-relation equals Ueff = [0.5,1] and thus any admissible policy, also the non-constant ones,
with u(τ)∈ [0.5,1] for τ ≥ t is optimal.

The following lemma simplifies the result of Proposition 1 if we make specific assumptions on
the form of the pd-relation g. The proofs of this and all subsequent lemmas can be found in the
appendix.

Lemma 1. Consider a pd-relation g with gmin > 0.
a) If the pd-relation is strictly concave or linear, then the set of efficient rates is Ueff = {1}.
b) If the pd-relation is strictly convex, then there is only one efficient rate. The efficient rate can

be found by first solving z = arg{g(u) = ug′(u)} and consequently setting Ueff = {min(1, z)}.
From the above lemma, we know that if the system is in state (t, x) ∈ S3 and the pd-relation g

is linear, strictly concave, or strictly convex, then the optimal policy is unique and constant over
time. Furthermore, for the former two, the optimal policy is to produce at the maximum rate until
failure.

4.3. Optimal Policy with Maximum Deterioration Constraint
For states (t1, x1) ∈ S2 we have the option to prevent failure or to deliberately let the system fail.
In this section we consider the case in which failure is prevented by introducing a constraint that
describes a maximum allowed deterioration level x2 at time t2, that is, X(t2)≤ x2 where t1 < t2 ≤ T
and x1 < x2 < L. This scenario directly solves both the optimal policy for any state in S1 (as the
system is guaranteed not to fail from any such state) and the case in which the decision maker
decides to avoid a failure while being in a state in S2, namely by using t2 = T and x2 =L− ε where ε
is an arbitrarily small positive number. In addition, the insights hold for any functioning state and
thus also for states in S3. The results are also used in the next section to derive the optimal policy
for the case in which the decision maker decides to let the system fail while being in a state in S2.

We partition the time interval [t1, t2] into n equally large subintervals with length δ= (t2− t1)/n.
Furthermore, the decision maker is restricted to set a single production rate in each interval, denoted
by ûi for i ∈ I = {1, . . . , n}. The policy is denoted as û= (û1, . . . , ûn). We can use this partitioning
since the objective value of the restricted policy can approach the supremum arbitrarily closely if n
is large enough (see Section 4.1).

Under the maximum allowed deterioration constraint, it is clearly optimal to maximize production
revenues. The total revenue equals the sum of the revenues in the individual intervals, i.e.,

J(û; t1, x1) = δπ
∑
i∈I

ûi. (6)

The deterioration increase in interval i equals δ g(ûi), and the total deterioration increase over the
time interval [t1, t2] is allowed to be at most x2−x1. It follows that policy û must satisfy∑

i∈I

g(ûi)≤
x2−x1

δ
, (7)
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which we refer to as the maximum deterioration constraint. With (6) and (7) we can formulate
our optimization problem as max

∑
i∈I ûi subject to ûi ∈ [0,1] and

∑
i∈I g(ûi)≤ c, where c is some

constant. It trivially follows that whenever the policy û = (1, . . . ,1) is feasible, it is the unique
optimal policy; thus the optimal policy for any state (t, x)∈ S1 is to produce at the maximum rate
until maintenance.

To obtain structural insights into the optimal policy, we use the necessary conditions for opti-
mality described by the Karush-Kuhn-Tucker (KKT) conditions. These conditions imply a set of
necessary constraints on the Lagrange multipliers of the dual problem which must be satisfied by
the optimal policy. We note that the KKT conditions rely on the assumption that the pd-relation g
is continuously differentiable. Let ν be the multiplier corresponding to the maximum deterioration
constraint (7), let µ= (µ1, . . . , µn) be a vector with the multipliers corresponding to the constraints
ûi ≥ 0 for i ∈ I, and let λ= (λ1, . . . , λn) be a vector with the multipliers corresponding to the con-
straints ûi ≤ 1 for i∈ I. The KKT conditions state that for the optimal policy û∗ there must exist
values for ν, µ, and λ such that

1− νg′(ûi)−λi +µi = 0, for i∈ I, (8a)

ν

(∑
i∈I

g(ûi)− c

)
= 0, (8b)

λi(ûi− 1) = 0, for i∈ I, (8c)

µiûi = 0, for i∈ I, (8d)

ν, λ, µ≥ 0, (8e)

where g′ denotes the derivative of g, constraint (8a) is a necessary condition for being in an extreme
point of the feasible set, constraints (8b - 8d) represent the complementary slackness conditions,
and constraint (8e) implies dual feasibility. Considering the KKT conditions for objective (6) with
constraint (7) results in the following properties (see proofs in the appendix).

Lemma 2. Suppose we have a pd-relation g, the system is in a functioning state (t1, x1) ∈ S,
and there is a maximum deterioration constraint X(t2) ≤ x2 where x1 < x2 < L and t1 < t2 ≤ T .
Let û∗ = (û1, . . . , ûn) be an optimal policy, where ûi denotes the production rate in time interval
i∈ I = {1, . . . , n}.

a) If there is an i∈ I such that ûi < 1, then the maximum deterioration constraint is binding.
b) If the policy û= (1, . . . ,1) is feasible, then it is the unique optimal policy.
c) For all i, j ∈ I for which ûi, ûj ∈ (0,1), we have g′(ûi) = g′(ûj).
d) For all i∈ I for which ûi < 1, we have g′(ûi)> 0.
e) If g′ is a one-to-one function, then for all i, j ∈ I for which ûi, ûj ∈ (0,1), we have ûi = ûj.

Lemma 3. For all pd-relations g, there is an optimal policy with at most two production rates.

Lemma 2a states that production rates below the maximum rate are only used if this is enforced
by the maximum deterioration constraint. It immediately follows that the policy û= (1, . . . ,1) is
the unique optimal policy whenever it is feasible (Lemma 2b). This is in fact trivial, since no policy
can produce more than producing at the maximum rate over the whole time interval. It follows that
the optimal policy for any state (t, x)∈ S1 is to produce at the maximum rate until maintenance.

Lemma 2c follows from the condition that, as stated by Lemma 2a, the maximum deterioration
constraint must be binding for any policy that uses intermediate production rates. If a policy uses
two intermediate production rates ûi and ûj for which g′(ûi)> g

′(ûj), then the decision maker can
improve the generated revenue by marginally decreasing the production rate in interval i while
marginally increasing the production rate in interval j. Lemma 2d implies that rates u< 1 for which
g′(u)≤ 0 cannot be part of an optimal policy. This is intuitive, since for these rates one can increase
the production rate while the system would deteriorate slower.

Lemma 2e states that for pd-relations with a one-to-one derivative (e.g., strictly convex functions),
the optimal policy can only contain a single intermediate rate. Thus, for this class of pd-relations,
we know that the complexity of the optimal policy reduces to the class of policies that take at
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most three values over time, namely the minimum and maximum rate and one intermediate rate.
Lemma 3 states that for any pd-relation there is an optimal policy that uses at most two different
production rates over time.

So far we did not make assumptions on the structure of the pd-relation. In the following sec-
tions, we use the previous lemmas to derive exact closed-form optimal policies for strictly convex,
strictly concave, and linear pd-relations for any functioning state (t1, x1)∈ S with a given maximum
deterioration constraint X(t2)≤ x2 where t1 < t2 ≤ T and x1 <x2 <L.

4.3.1. Strictly Convex pd-relations First we show that the optimal production rate for
strictly convex pd-relations is constant over time, independent of the partitioning that is used.

Lemma 4. The optimal rate is constant over time for strictly convex pd-relations.

We know that either producing at the maximum rate is the unique optimal policy or the maximum
deterioration constraint is binding (see Lemma 2). Substituting δ = (t2 − t1)/n and a constant for
the rate (see Lemma 4) into the maximum deterioration constraint (7) gives

û∗i = g−1

(
x2−x1

t2− t1

)
for all i∈ I. (9)

Notice that the full inverse of g can have two solutions when g is first decreasing and then increasing.
By Lemma 2d, it directly follows that the solution in the increasing part is the optimal one. We
conclude that, under a maximum deterioration constraint, the optimal policy equals û∗ = (1, . . . ,1)
if this is feasible and otherwise the optimal rate is as given in (9). We summarize this finding in the
following proposition.

Proposition 2. Suppose the pd-relation g is strictly convex, the system is in a functioning state
(t1, x1) ∈ S, and there is a given maximum deterioration constraint X(t2)≤ x2 where x1 < x2 < L
and t1 < t2 ≤ T . Then the unique optimal policy is constant over time and equals u(τ) = 1 for τ ≥ t1
if feasible or, otherwise,

u(τ) = max

{
g−1

(
x2−x1

t2− t1

)}
for τ ≥ t1.

When the system is in a functioning state (t1, x1)∈ S2 and the decision maker wants to avoid the
failure, i.e., we have the constraint X(T )≤ L− ε where ε is an arbitrarily small positive number,
then by Proposition 2 we know that u(τ) = max{g−1((L− ε−x1)/(T − t1))} for τ ≥ t1 is the unique
optimal policy. Thus the optimal policy is to produce at the highest rate such that the system just
not fails upon the moment of maintenance.

4.3.2. Strictly Concave pd-relations The derivative of strictly concave functions is one-to-
one and thus the optimal policy for concave functions can use at most one intermediate rate (see
Lemma 2e). Lemma 5 strengthens this result and states that for strictly concave pd-relation the
optimal policy uses the intermediate rate in at most a single time interval.

Lemma 5. For strictly concave pd-relations, the optimal policy has at most one time interval in
which an intermediate production rate is used.

So the optimal policy has at most one time interval in which the system produces at an inter-
mediate rate. In all other intervals, the system is either idle or producing at the maximum rate.
Producing at the maximum rate generates more revenue than being idle and thus the optimal policy
produces at the maximum rate as much as possible. Remark that the possible single time interval in
which the system produces at an intermediate rate becomes negligible as the partitioning becomes
finer. Moreover, the specific time intervals in which the system is producing is irrelevant and thus
the optimal policy is not unique. We summarize this finding in the following proposition.

Proposition 3. Suppose the pd-relation g is strictly concave, the system is in a functioning state
(t1, x1) ∈ S, and there is a maximum deterioration constraint X(t2) ≤ x2 where x1 < x2 < L and
t1 < t2 ≤ T . Then an optimal policy is to produce at the maximum rate and then switch off the
system at the latest moment in time such that X(t2)≤ x2.
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4.3.3. Linear pd-relations We now consider a linear pd-relation g(u) = a+ bu, where a≥ 0
and a+b≥ 0 since the pd-relation is nonnegative. Note that by definition of S2, there is a production
policy that satisfies the maximum production constraint (7). The special case b = 0 implies that
all production rates result in the same deterioration rate, which in turn implies that producing at
the maximum rate is feasible in this case. If producing at the maximum rate is not feasible, then
the maximum deterioration constraint must be binding (see Lemma 2a). Substituting the linear
pd-relation g into the maximum deterioration constraint (7) gives

∑
i∈I

ûi =
n

b

(
x2−x1

t2− t1
− a
)
. (10)

Equation (10) provides a necessary condition for optimality, which does not need to be sufficient.
However, all policies that satisfy this necessary condition clearly result in the same profit, and
therefore all are optimal. Hence, given that the system is in a functioning state (t, x) ∈ S2 and the
decision maker wants to avoid failure, producing at the maximum rate is optimal if feasible, and
otherwise any policy that keeps the deterioration level just below the failure level at the moment of
maintenance is optimal.

4.4. Optimal Policy with Deliberate Failure
As mentioned at the start of Section 4.3, the optimal policy that avoids failure is clearly also the
overall optimal policy starting from states in S1. For the state (t1, x1)∈ S2, a comparison is needed
to the best policy for which the system fails, which is done in this section.

First notice that, for systems with gmin = 0, a failure can be avoided by switching to the production
rate corresponding to gmin just before the system fails. The resulting production loss is negligible
while the savings in maintenance costs are not. It immediately follows that for such systems, the
optimal policy always prevents a failure and thus we can apply the propositions from Section 4.3.
In the remainder of the subsection, we therefore consider a system with gmin > 0.

For these systems there are states for which failure cannot be avoided and thus the set S3 is
nonempty. Observe that the system’s state always enters S3 before it fails. We let (t2, x2)∈ S3 refer
to the state at which the system’s state transits from S2 to S3.

The problem can be seen as an optimal stopping problem in which the stopping time equals the
failure time. Let the decision variable tfail denote the time of failure. We have tfail ≥ t1 + (L−x1)gmax

since the system cannot fail earlier. Furthermore, for a given tfail, the properties derived in Section 4.3
can be used by using the maximum deterioration constraint with X(tfail)≤L.

Suppose the pd-relation is strictly convex. Then Proposition 1 implies that the optimal rate after
the system transits to S3 equals u∗(τ) ∈ Ueff for τ ≥ t2, which is unique by Lemma 1. Lemma 4
states that, for strictly convex pd-relations, the optimal rate between two functioning states in S is
constant over time and thus the optimal rate cannot change at time t2. Hence, for strictly convex
pd-relations, the unique optimal policy in case of a deliberate failure is to produce at the most
efficient rate, that is u∗(τ)∈Ueff for τ ≥ t1.

Suppose the pd-relation is strictly concave. Then by Lemma 1, the optimal policy produces at
the maximum rate as soon as the state enters S3, that is u∗(τ) = 1 for τ ≥ t2. Proposition 3 implies
that the optimal policy to move from (t1, x1) to (t2, x2) is to produce at the maximum rate for as
long as possible and then switch off the system. The revenue produced after time t2 decreases as we
postpone the time the system enters S3. Furthermore, the revenue produced between (t1, x1) and
(t2, x2) is constant since the optimal policy produces at the maximum rate until the state hits the
boundary between S2 and S3. Hence, for strictly concave pd-relations, the unique optimal policy in
case of a deliberate failure is u∗(τ) = 1 for τ ≥ t1.

Suppose the pd-relation is linear. Then the same argument as for strictly concave pd-relations
holds and it follows that the unique optimal policy in case of a deliberate failure is u∗(τ) = 1 for
τ ≥ t1.
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4.5. Illustrative Example
We end the section with an illustration and discussion of the optimal policy for both strictly concave
and strictly convex pd-relations. We focus on the structure of the optimal policy and postpone the
discussion of the cost savings compared to producing at the maximum rate to Section 5.

We study a system with failure level L = 10, where maintenance takes place after T = 10 time
units. The revenue per time unit is π = 2.5 when producing at the maximum rate. The preventive
and corrective maintenance costs are cpm = 10 and ccm = 15, respectively. We consider the pd-
relation g(u) = µmin + (µmax − µmin)uα, which is concave for 0< α < 1 and convex for α > 1. The
parameters µmin and µmax describe the deterioration rate when the system is idle or producing at
the maximum rate, respectively. In this example we use α = 0.5 (concave) and α = 1.6 (convex),
µmin = 0.4, and µmax = 1.5. The optimal policy for both the convex and the concave pd-relation are
depicted in Figure 3. The optimal production rate is indicated by grey scale, which ranges from
white (maximum rate) to black (idle). In the figures, we partition the set S2 (in which failure is
possible but avoidable) into S2A in which failure is avoided and S2B in which the failure is not
prevented.
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Figure 3 Optimal policy for a convex and concave pd-relation. The optimal production rate is indicated by grey
scale, which ranges from white (maximum rate) to black (idle). The dashed lines represents the bound-
aries between the different subsets of S.

First, consider the system with a strictly convex pd-relation (α= 1.6). For any given state, the
optimal policy is to produce at a constant rate until maintenance or a failure occurs. However,
depending on the time and deterioration level, any rate can be optimal. Within S1 the system
is always functioning at the moment of maintenance and the optimal policy is to produce at the
maximum rate. In S3 and S2B, failure is not prevented and the most efficient rate ueff ≈ 0.7 is used
in order to maximize the production. For any state in S2A, failure is prevented by producing at
the highest constant rate for which the system does not fail. Moreover, within S2A there are states
for which a lower production rate both prevents failure and increases the production compared to
producing at the maximum rate.

Now consider the optimal policy for the strictly concave pd-relation (α = 0.5) reflected on the
right hand side of Figure 3. The optimal policy is either to produce at the maximum rate until
maintenance or failure occurs, or to switch off the system in order to avoid failure. Within S1

the system cannot fail and production is maximized by producing at the maximum rate until
maintenance is performed. Within S3 and S2B, failure is not prevented and the system produces at
the most efficient rate, which is the maximum rate for any concave pd-relation. Within S2A, failure
is prevented by producing at the maximum rate as long as possible and then switch off the system.

5. Stochastic Deterioration
In this section we show that key insights obtained from the deterministic system carry over to
more realistic systems with stochastic deterioration. We first discuss the similarities and differences



Uit het Broek et al.: Condition-Based Production Planning
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 2019 INFORMS 13

between the optimal policies for stochastic and deterministic systems. Thereafter, we illustrate the
benefits of using condition-based production decisions by aid of a numerical example. The results are
obtained by formulating the system as a Markov decision process (MDP). Based on the differences
between the optimal policies for deterministic and stochastic systems, we then propose two heuristic
adaptations of the optimal deterministic policy for use in a stochastic setting.

5.1. Markov Decision Process
An MDP is defined by a set of states, a set of possible actions for each state, and state and action
dependent transition probabilities and rewards. We have a finite horizon problem and use backward
induction to determine optimal policies for the MDP (see Puterman 1994).

We first discretize the state space, the time horizon, and the range of production rates. The state
space [0,L] is partitioned into n equally sized intervals of length ∆X =L/n, and is then discretized
to the ordered set of midpoints {(i−0.5)∆X | i= 1, . . . , n} of these intervals. All deterioration levels
above L are combined into a single state with index n+ 1 that represents the failed state. Time is
discretized to {i∆t | i= 0, . . . ,m} with ∆t= T/m. The discrete production rates are constrained to
the set {i/η | i= 0, . . . , η} so that the rates are equally distributed over the interval [0,1], including
the boundaries.

We let Fu,∆t denote the distribution function of the additional amount of deterioration during a
single time period with length ∆t when producing at rate u. To obtain the transition probabilities
in the discretized process, we model the probability of staying in the same deterioration state as
Fu,∆t(0.5∆X). The probability of moving from state k to state k + i, where i ≥ 1 and k + i ≤ n,
equals Fu,∆t((i+ 0.5)∆X)− Fu,∆t((i− 0.5)∆X). The probability of moving from the kth state to
the failed state n+1 equals 1−Fu,∆t((i−0.5)∆X) where i= n−k+1. Summarizing, the transition
probability matrix of the discrete deterioration process can be written as

Pu(k, k+ i) =


0 if i < 0,

Fu,∆t (0.5∆X) if i= 0,

Fu,∆t ((i+ 0.5)∆X)−Fu,∆t ((i− 0.5)∆X) if 0< i< n− k+ 1,

1−Fu,∆t ((i− 0.5)∆X) if i= n− k+ 1.

5.2. Base System
As a base case for our numerical analysis, we consider a system with the following parameter values
(see also Table 1). Maintenance is scheduled at time T = 100 and the system has failure level
L = 100. At the maximum rate, the generated revenue per time unit is π = 0.1. The preventive
maintenance cost is cpm = 2 and the corrective maintenance cost is ccm = 6. To approximate the
continuous deterioration process, we partition the state space and the time horizon into small
subintervals with respective lengths ∆X = 0.1 and ∆t = 1. At each decision epoch, the decision
maker can choose from η = 100 different production rates. We consider the same parametric form
g(u) = µmin + (µmax−µmin)uα for the pd-relation as in Section 4.5, and we consider α= 0.5 (concave)
and α= 3 (convex), µmin = 0.15, and µmax = 0.8.

We model the underlying continuous deterioration process by a gamma process. This process is
appropriate for modeling monotonically increasing deterioration processes such as wear, erosion,
and fatigue (Van Noortwijk 2009, Alaswad and Xiang 2017). We use the same parametric form
with a shape and a scale parameter for the gamma process as De Jonge et al. (2017). To relate
the scale and shape parameter of the gamma process to the pd-relation g, we impose the following
three properties. First, when producing at rate u, the additional amount of deterioration per time
unit has mean g(u). Second, when producing at the maximum rate, the standard deviation of
the deterioration increments equals σmax. Third, the coefficient of variation of the deterioration
increments is the same for all production rates. For the given parametric form of the pd-relation,
these properties are obtained by setting the shape parameter equal to k= µ2

max/σ
2
max and the scale

parameter as a function of the production rate equal to θ(u) = g(u) ·σ2
max/µ

2
max. We note in passing

that we also modeled the deterioration process as a compound Poisson and as a Brownian motion
with positive drift. As the results were comparable, we did not include these.
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Table 1 Base system used in the numerical analysis

Parameter Value Interpretation

T 100 Length time horizon
L 100 Failure level
η 100 Number of production rates
π 0.1 Revenue per time unit at maximum rate
cpm 2 Preventive maintenance cost
ccm 6 Corrective maintenance cost
α 0.5, 3 Shape pd-relation
µmin 0.15 Deterioration rate when idle
µmax 0.80 Deterioration rate at maximum production rate

σmax

√
5 St.dev. deterioration increment at maximum rate

∆t 1.0 Partitioning size time horizon
∆X 0.1 Partitioning size deterioration level

5.3. Structure of Optimal Policy
We compare the structure of the optimal policy for stochastic systems with the optimal policy for
deterministic systems as derived in Section 4. The optimal policies for both the deterministic and
the stochastic system with both a concave and a convex pd-relation are shown in Figure 4. The
production rate is indicated by grey scale, which ranges from white (maximum rate) to black (idle).
We note that we have carried out a more extensive comparison in an online appendix to this paper.

The optimal policies for the concave pd-relation are shown in Figures 4a and 4b. For both systems
the optimal policy is to either produce at full speed or not to produce at all. We also see that
under both policies the system is switched off at the latest possible moment in time. Although the
policies are similar, there is one structural difference. The deterministic system is only switched
off on a line segment whereas the stochastic system is switched off within a larger bandwidth that
mainly lies below the line segment of the deterministic system. This larger bandwidth is due to
two reasons. First, also when the system is idle, the deterioration process is stochastic, and thus
the deterioration process would immediately move off a line segment. Given the bandwidth, it is
very likely that when the system is turned off, it will remain idle until the moment of maintenance.
Second, a jump process such as the gamma process would jump over a line segment. Notice that
since the uncertainty of the future deterioration trajectory decreases as we approach the moment
of maintenance, the bandwidth decreases at the end of the time horizon.

The optimal policies for the convex pd-relation are shown in Figures 4c and 4d. We directly observe
the similar structure for the two systems, which is also confirmed by the additional comparisons
in the online appendix. For high deterioration levels (the areas in the top-left part of the figures
above the darkest areas), both the deterministic and the stochastic system maximize the expected
production by producing at the most efficient rate, i.e., the rate that maximizes u/g(u). For low
deterioration levels, both systems maximize production by producing at the maximum rate. For
intermediate deterioration levels, both systems reduce the production rate. Hereby, the stochastic
system reduces the risk of a failure and the deterministic system avoids the failure with certainty.
However, we also observe two structural differences between the deterministic and the stochastic
system. First, for the intermediate deterioration levels the stochastic system produces at a slightly
lower rate than the deterministic system as it needs some safety margin in order to deal with the
uncertainty of the deterioration process. This also explains the reduced production rate for the
stochastic system at the end of the time horizon for highly deteriorated states. The second difference
is that, for the deterministic system, there is a sudden transition from producing slowly to producing
at the most efficient rate when we go from the region where failure is avoided to the region where
failure is not prevented (because this either would cause too much production losses or the failure
is unavoidable). These separate regions cannot be distinguished for the stochastic system, which
results in a gradual change in the production rate for this system. To lower the risk of failure, the
production rates for the stochastic system are also somewhat lower around this transition.

5.4. Cost Savings by Condition-Based Production
In order to assess the benefits of an adjustable production rate based on available condition infor-
mation, we will compare the optimal policy to three benchmark policies that differ in their degree
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(d) Stochastic convex
Figure 4 Optimal policies for both a concave and a convex pd-relation. White indicates that the system produces

at its maximum rate and black indicates that the system does not produce.

of flexibility. The max-rate policy has no adjustable production rate and the system produces at the
maximum rate until failure occurs or maintenance is performed. The fixed policy allows the decision
maker to set a single production rate at the start of the time horizon, i.e., t= 0, which cannot be
changed afterwards. This policy does not use condition monitoring but can use the system char-
acteristics such as the pd-relation. The on-off policy allows the decision maker to choose a single
production rate at the start of the time horizon. During the time horizon, the decision maker can
switch between this fixed rate and turning the system off. This policy uses both condition monitor-
ing and the knowledge on the pd-relation. The optimal policy allows the decision maker to set any
production rate at any time.

To numerically compare the performance of the policies we mainly focus on J̄(p) = πT − J(p),
where πT is the revenue that can be attained when it would be possible to always produce at the
maximum rate, and J(p) is the expected profit obtained under policy p. The function J̄(p) can be
interpreted as the total cost, consisting of the maintenance cost and the loss of revenue compared to
always producing at the maximum rate. This allows a more clearcut evaluation of comparative policy
performance than focusing on the total profit, since all considered policies produce at (almost) the
maximum rate and thus all policies generate (almost) maximum revenue for most of the planning
horizon. For completeness, however, we also report the expected profit, the expected production,
the failure probability, and the standard deviations of the expected profit and production.

Table 2 shows the performance of the four policies when these are applied to the base system
described in Section 5.2. We first consider the system with the convex pd-relation (α= 3.0). Com-
pared to the max-rate policy, the optimal policy significantly reduces the probability of a failure,
namely from 16.81% to 1.66%, while the drop in expected production is only 0.6% (from 96.63
to 96.02). By better balancing the production output and the failure risk, the optimal policy is able
to reduce total cost by 18.9% (from 2.91 to 2.36). We also observe lower standard deviations of both
the profit (0.85 instead of 2.08) and the realized production (5.61 instead of 7.17), implying a more
reliable production system.
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Table 2 Performance measures for the base system for various policies.

Convex Concave

Max-rate Fixed On-off Optimal Fixed On-off Optimal

Expected profit 6.99 7.05 7.26 7.54 6.99 7.26 7.26
St. dev. profit 2.08 1.65 1.53 0.85 2.08 1.53 1.53
Expected production 96.63 94.69 94.46 96.02 96.63 94.46 94.46
St. dev. production 7.17 5.12 10.58 5.61 7.17 10.58 10.58
Failure probability (%) 16.81 10.55 4.61 1.66 16.81 4.61 4.61

Total cost 2.91 2.85 2.64 2.36 2.91 2.64 2.64
- Maintenance cost 2.67 2.42 2.18 2.07 2.67 2.18 2.18
- Revenue loss 0.24 0.43 0.46 0.30 0.24 0.46 0.46

The more restrictive on-off policy is also able to significantly reduce the failure probability
to 4.61%. However, this policy has a lower expected production and is much less able to reduce
the uncertainty of the expected profit and actually increases the standard deviation of the expected
production. The higher uncertainty is due to the all or nothing nature of this policy. In most sce-
narios the policy does produce at the fixed rate. However, in case the system deteriorates faster
than expected, the policy can only react by switching off the system completely while the optimal
policy can respond subtler by slightly reducing the production rate.

Now consider the concave pd-relation (α = 0.5). The performance of the optimal policy and of
the on-off policy are the same because the former only uses the minimum and maximum rate as
seen in the previous section. Furthermore, the total cost is reduced by 9.3% (from 2.91 to 2.64)
and thus an adjustable production rate is less effective for concave pd-relations than for convex
pd-relations. This is because convex pd-relations have production rates that are more efficient than
the maximum rate while for a concave pd-relation the most efficient rate always is the maximum
rate (see Lemma 1). For the same reason, the fixed policy does not outperform the max-rate policy
for concave pd-relations.

5.5. Parameter Sensitivity
We continue by analyzing the effect of different system parameters on the performance of the
production policies. The results in this section are obtained by deviating one parameter value at a
time compared to the base system with the convex pd-relation (α= 3.0). For the first parameter,
we discuss the cost savings as well as the underlying trade-off between the failure risk and the
expected production. Because this trade-off is similar for all parameters, we only show the effect on
the resulting cost savings for the other parameters.

Let us first consider the influence of the revenue per time unit π when producing at the maximum
rate. When this revenue is small compared to the maintenance cost, the main priority of the decision
maker is to avoid a possible failure. Instead, when the production revenue is large, the main goal
is to maximize production. The effect of the revenue parameter on the failure probability and the
expected production for the four different policies is depicted in Figure 5. The relative cost savings
of the fixed, on-off, and optimal policy compared to the max-rate policy are shown in Figure 6a.

When the revenue parameter is low, all policies are able to realize a significant cost saving by
reducing the production and thereby the failure probability. However, when the revenue parameter
increases, the cost savings of the fixed and on-off policy rapidly diminish whilst the optimal policy
results in a cost saving for all values of the production revenue. The optimal policy reduces cost
even for high revenues since, in case the system deteriorates faster than expected, this policy can
increase production by postponing the failure.

For almost all values of the revenue parameter, the optimal policy has both the lowest failure
probability and the highest expected production. At first this seems counterintuitive, since the
failure probability is reduced by lowering the production rate. However, the optimal policy can
postpone the decision to focus either on avoiding a possible failure or on maximizing production
until condition information becomes available.
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Figure 5 Effect of the production revenue π on the failure probability and the expected production of the max-rate
( ), fixed ( ), on-off ( ), and optimal ( ) policy.

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

Production revenue π

C
o

s
t 

s
a
v
in

g
 (

%
)

(a)

2 4 6 8 10 12 14 16

0

10

20

30

40

50

Corrective maintenance cost ccm

C
o

s
t 

s
a
v
in

g
 (

%
)

(b)

0 2 4 6 8 10

0

5

10

15

20

25

Standard deviation σmax

C
o

s
t 

s
a
v
in

g
 (

%
)

(c)

0 100 200 300 400 500

0

10

20

30

40

50

Time horizon T

C
o

s
t 

s
a
v
in

g
 (

%
)

(d)

0.0 0.2 0.4 0.6 0.8

0

5

10

15

20

25

Minimum deterioration rate µmin

C
o

s
t 

s
a
v
in

g
 (

%
)

(e)

0 2 4 6 8 10

0

5

10

15

20

25

Shape pd−relation α

C
o

s
t 

s
a
v
in

g
 (

%
)

(f)

Figure 6 Effect of different parameters on the relative cost saving compared to the max-rate policy for the
fixed ( ), on-off ( ), and optimal ( ) policy.

Figure 6b depicts the effect of the cost of corrective maintenance on the relative cost savings. We
see that the benefit of the adjustable production rate increases as corrective maintenance becomes
more expensive compared to preventive maintenance. Furthermore, the optimal policy realizes a cost
saving even when preventive maintenance and corrective maintenance have the same cost (recall
cpm = 2), since the optimal policy can also increase the expected production.

Next, we consider the volatility of the deterioration process and its effect on the cost savings
compared to the max-rate policy, as shown in Figure 6c. For σmax = 0, the deterioration process is
deterministic and the system will be functioning at the turnaround when producing at the maximum
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rate over the whole time horizon. It is optimal to produce at the maximum rate and therefore
condition-based production decisions do not result in cost savings. For relatively small values of σmax,
the deterioration process has many small jumps of different sizes. The condition-based production
policies can effectively react to these jumps by adjusting the production rate after the occurrence
of a jump. For large values of σmax, the size of the deterioration increments increases and failure is
most likely caused by a single jump. Condition monitoring cannot provide information on the timing
of this jump and therefore the value of condition-based production diminishes as the volatility of
the deterioration process increases.

Figure 6d shows the effect of the time horizon on the cost saving compared to the max-rate
policy. The largest cost savings are realized for time horizons of moderate lengths. For short time
horizons, any policy produces at the maximum rate during the entire horizon, implying that they
are all equivalent. For extremely long time horizons, failure cannot be avoided, and all policies will
improve the production revenues by producing at the most efficient rate.

The effect of the pd-relation parameters µmin and α are given in Figures 6e and 6f. The deterio-
ration rate in the idle mode ranges from µmin = 0 (no deterioration when idle) to µmin = µmax = 0.8
(same deterioration rate for all production rates). We see that the optimal policy results in a sig-
nificant cost saving, even if the deterioration rate in idle mode is half of that in full mode (e.g., due
to exogenous conditions like weather). The fixed policy only results in a small cost saving if µmin

is low. For α < 1, the pd-relation is concave, implying that the optimal policy is an on-off policy
(see Section 5.3). The fixed policy only results in a cost saving for larger values of α. Furthermore,
for all convex pd-relations (α > 1), the optimal policy performs significantly better than the fixed
policy and the on-off policy.

5.6. Heuristics based on Deterministic Deterioration
The results until now have shown that, in settings with stochastic deterioration, the operational
performance can be considerably improved by using the optimal policy compared to simpler, less
flexible policies that we have considered so far. However, determining this policy can be compu-
tationally expensive and its complexity might hinder practical implementation. In the previous
sections, we observed that the deterministic and stochastic policies share many similarities. Build-
ing on this observation, we construct two simple heuristics for the stochastic system. We focus on
convex pd-relations, as those are arguably the most realistic, but a similar approach can be used to
develop heuristics for concave pd-relations.

The main difference between the optimal policy for the deterministic and for the stochastic case is
that the latter produces at a slightly lower rate for intermediate deterioration levels (see Section 5.3).
The main premise of the heuristics is therefore to produce at a slightly lower rate than the optimal
rate for the deterministic system, which is denoted by u(t, x). The first heuristic achieves this in
the most straightforward way, by subtracting some constant α1 from the optimal production rate,
i.e., u1(t, x) = u(t, x)−α1 (negative rates are set to 0). A downside of doing this is that the system
never operates at the maximum speed, even if it is in a very good state (given the time left until
maintenance). To avoid this, but still build in safety, the second heuristic adds some constant α2 to
the current deterioration level and then computes the production rate, i.e., u2(t, x) = u(t, x+α2),
where x+α2 is capped by failure level L. The heuristics select a production rate for each state and
thus the corresponding expected cost can be evaluated by solving a finite time Markov chain.

The effectiveness of the heuristics is analyzed by using the base case and deviating various system
parameters one by one. The cost savings of both heuristics, with the parameters α1 or α2 optimized
per instance, compared to the max-rate policy are shown in Figure 7. We clearly see that the
second heuristic outperforms the first heuristic. Apparently, it is indeed important to be able to
produce at maximum speed if the system is in a relatively good state. The second heuristic has
a near-optimal performance and strongly outperforms the fixed and the on-off introduced in the
previous sections. Since the heuristic is only a simple modification of the deterministic policy, its
performance underlines our intuition that the structure of the optimal policy for the deterministic
systems (partially) carries over to stochastic systems.

We remark that applying these heuristics still requires optimization of the policy parameters,
which is not straightforward. Figure 8 shows the cost savings realized by the second heuristic as a
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Figure 7 Effect of various system parameters on the relative cost saving compared to the max-rate policy for the
optimal policy ( ), and the first ( ) and second ( ) heuristic.
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Figure 8 Relative cost savings of the second heuristics as function of the policy parameter α2 compared to the
max-rate policy.
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Figure 9 Optimized policy parameter α2 for the second heuristic.

function of the policy parameter α2 when we apply this heuristic to the base case. We observe that
the relative cost saving is a convex function of the policy parameter. Furthermore, the heuristic
results in a considerable cost saving for all reasonable values of α2. For large values, the heuristic
is too conservative, resulting in an unnecessary low failure risk by sacrificing too much production.
For small values, the heuristic is too optimistic, resulting in high production revenues but high
maintenance costs as well. Moreover, for α2 = 0 the heuristic exactly equals the deterministic policy
and thus even applying the optimal deterministic policy results in a cost saving of 8.3%. The graph
only shows the result for the base case, however, similar results are observed for other problem
instances.

Figure 9 shows how the optimal value of α2 is affected by the system parameters π, ccm, and σmax

(only α2 is shown in order to keep the exposition concise). We observe that the heuristic is more
conservative when the production revenue is low or when the corrective maintenance cost is high.
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The effect of the volatility of the deterioration process is more complex. At first, with increasing
volatility, the heuristic becomes more conservative. However, if the deterioration process becomes
very volatile, it is better to always produce at a high rate as a failure is most likely caused by a large
deterioration jump that cannot be prevented by producing at a slightly lower rate. We conclude
that the relation between the system parameters and the optimal heuristic parameter is complex.
Approximate closed-form relations can be developed and tested to ease the implementation of the
heuristic, but we consider this to be outside the scope of this study.

6. Conclusion
This study is the first to introduce condition-based production rate decisions that affect the dete-
rioration rate of a system. We recognize that the advent of inexpensive sensor technology and the
recent advances in the Internet of Things offer opportunities to remotely monitor the equipment’s
deterioration level and to control its usage in real-time. Based on the available condition informa-
tion, the adjustable production rate can be used to control the deterioration process and thereby
we can balance the risk of a failure with the production revenues.

Exact analytical solutions are derived for deterministic deterioration processes, which reveal sev-
eral structural insights. Firstly, for all systems it can be beneficial to avoid a failure by reducing the
production rate. The optimal production policy depends on the specific system, and in particular on
the relation between the production rate and the deterioration rate. Secondly, if a failure cannot be
avoided, the production can be increased by producing at a more efficient rate. Likewise, even if a
failure can be prevented, it is sometimes better to maximize production and thereby let the system
fail. Thirdly, there exist win-win scenarios in which production rate adjustments both prevent a
failure and increase the production.

The numerical analysis, based on a Markov decision process formulation of the problem, shows
that the structural insights largely carry over to stochastic systems. Optimizing production rates
based on condition information reduces the total cost by up to 50% for the considered cases. Simpler
policies, such as an on-off policy that only switches between a single fixed rate and the idle mode, are
much less effective in reducing cost. We conclude that using condition monitoring to dynamically
adjust production rates over time provides significant opportunities to improve the operational
efficiency of production systems. The profitability of the system increases by reducing the expected
maintenance cost while increasing the expected production. Furthermore, although the optimal
dynamic policy may be complex, we also developed a simple heuristic that performs well and is
much easier to implement.

Based on the promising results of our exploratory study, we conclude that there is ample scope
for further research with three main avenues. The first avenue is to jointly and dynamically optimize
maintenance timing and production rates based on condition information. Our results show that
using condition-based production rates reduces the uncertainty of the deterioration process since
one can respond to the volatility of the process by dynamically adjusting the production rate.
This reduced uncertainty provides opportunities for maintenance policies to be less conservative by
scheduling fewer maintenance actions. For example, a lower maintenance frequency may be used
for block-based maintenance policies, and the threshold maintenance age could be increased for
age-based maintenance policies.

Secondly, one could consider multi-unit systems where the production per time unit must be in
a specified range (e.g., due to given supply contracts). Examples of such systems include offshore
wind farms (commonly consisting of many turbines) that have to produce a minimum amount of
electricity, and compressors in a gas network that together have to maintain a reliable gas pressure.
For such systems, condition-based production rates create opportunities to improve the clustering
of maintenance actions for several units. For example, one can decelerate the production speed
of highly deteriorated turbines and accelerate it for turbines in a good condition. Thereby, the
deterioration processes of these turbines are better synchronized and their maintenance can be
clustered to reduce cost.

The third avenue is to elaborate on the single-unit system either by incorporating settings com-
monly seen both in practice and in the maintenance literature, such as fluctuating production
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revenues, imperfect condition monitoring, uncertain failure levels, aperiodic inspections and pre-
ventive repair costs that depend on the deterioration level, or by studying analytical properties
for the system with stochastic deterioration. For future research on energy production, considering
price fluctuations seems particularly promising as price changes occur very frequently, and in fact
even negative prices exist in times with overproduction. The operational efficiency may improve
by producing at a high rate when prices are high and switch off the system when prices are low.
Lastly, an interesting research direction is to consider deterioration processes that not only depend
on the current production rate but also on the age of the system, the current deterioration level,
and environmental conditions such as weather.

Appendix A: Lemmas

Lemma 1. Consider a pd-relation g with gmin > 0.
a) If the pd-relation is strictly concave or linear, then the set of efficient rates is Ueff = {1}.
b) If the pd-relation is strictly convex, then there is only one efficient rate. The efficient rate can be found

by first solving z = arg{g(u) = ug′(u)} and consequently setting Ueff = {min(1, z)}.

Proof. The set of efficient production rates is defined as Ueff = arg max{u/g(u)}. Using the quotient rule
we get

d

du

u

g(u)
=
g(u)− g′(u)u

g(u)2
.

The denominator is clearly always positive and thus the sign of the derivative is determined by the sign of
the numerator. We define k(u) = g(u)−ug′(u) and thereby k′(u) =−ug′′(u).

For strictly concave pd-relations we have g′′(u)< 0 and thus k′(u)≥ 0 for 0≤ u≤ 1. Furthermore, gmin > 0
implies g(0) > 0 and thereby k(0) > 0. Combining these two observations implies k(u) > 0 for 0 ≤ u ≤ 1.
It follows that the derivative of u/g(u) is always positive. We conclude that u/g(u) is maximized by the
maximum production rate and thus for strictly concave pd-relations we have Ueff = {1}.

For linear pd-relations g(u) = a + bu, where a > 0 and a + b ≥ 0 since gmin > 0, we have k(u) = a and
k′(u) = 0. It immediately follows that u/g(u) is maximized by the maximum production rate and thus for
linear pd-relations we have Ueff = {1}.

For strictly convex pd-relations we have g′′(u) > 0 and thus k′(u) < 0 for u > 0. Next, gmin > 0 implies
g(0)> 0 and thereby k(0)> 0. Combining k(0)> 0 and k′(u)< 0 implies that the derivative of u/g(u) is first
positive and at some point becomes negative. Hence, there is only one rate that maximizes u/g(u). �

Lemma 2. Suppose we have a pd-relation g, the system is in a functioning state (t1, x1) ∈ S, and there is
a maximum deterioration constraint X(t2)≤ x2 where x1 < x2 <L and t1 < t2 ≤ T . Let û∗ = (û1, . . . , ûn) be
an optimal policy, where ûi denotes the production rate in time interval i∈ I = {1, . . . , n}.

a) If there is an i∈ I such that ûi < 1, then the maximum deterioration constraint is binding.

b) If the policy û= (1, . . . ,1) is feasible, then it is the unique optimal policy.

c) For all i, j ∈ I for which ûi, ûj ∈ (0,1), we have g′(ûi) = g′(ûj).

d) For all i∈ I for which ûi < 1, we have g′(ûi)> 0.

e) If g′ is a one-to-one function, then for all i, j ∈ I for which ûi, ûj ∈ (0,1), we have ûi = ûj.

Proof. (a) Consider a policy û for which ûi < 1 and suppose the maximum deterioration constraint is not
binding. Then the complementary slackness (8b) implies ν = 0. Substituting this into (8a) gives λi = µi + 1.
From the complementary slackness given by (8c) and (8d) it follows that at least one of λi or µi equals zero.
When λi = 0 we have µi = −1, which violates (8e). It follows µi = 0 ⇒ λi = 1 ⇒ ûi = 1. However,
ûi = 1 contradicts with the given policy where ûi < 1. Concluding, for any policy û with elements ûi < 1, the
maximum deterioration constraint as given in (7) is binding.

(b) Suppose û= (1, . . . ,1) is feasible, then this trivially is the unique optimal policy as no policy can produce
more than always producing at the maximum rate.

(c) Suppose we have 0< ûi < 1 for all i∈ I1 where I1 ⊆I. The complementary slackness implies λi = µi = 0
and substituting these values into (8a) gives ν = 1/g′(ûi). Since ν is a constant, we have g′(ûi) = g′(ûj) for all
i, j ∈ I1.

(d) Consider a policy û for which g′(ûi) ≤ 0. Then the total production can be increased by marginally
increasing ûi while the corresponding deterioration g(ûi) is non-increasing.

(e) This directly follows from (c). �

Lemma 3. For all pd-relations g, there is an optimal policy with at most two production rates.
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Proof. Suppose we have a policy that uses three or more different production rates. Then we can select
three arbitrary time intervals from this policy with different production rates, and improve the policy by
replacing one of the rates by a combination of the other two rates. As we select the three rates arbitrarily,
we can repeat the same procedure until only two rates are left. Notice that for any optimal policy which
uses intermediate production rates, the maximum deterioration constraint must be binding (see Lemma 2a).
Thus a policy can only improve by increasing its total production without increasing the corresponding total
deterioration.

Select three arbitrary intervals with different production rates from the given policy. Assume, without loss
of generality, that u1 <u2 <u3 and g(u1)< g(u2)< g(u3). The duration of the intervals is denoted by τ1, τ2,
and τ3. In the remainder of this proof, we refer to g(ui) as gi.

We first partition the second time interval into two subintervals with lengths (1− α)τ2 and ατ2. In the
first subinterval, the new policy produces with rate u1. In the second subinterval, the new policy produces
with rate u3. The deterioration of the given policy and the new policy equal τ1g1 + τ2g2 + τ3g3 and (τ1 + (1−
α)τ2)g1 +(τ3 +ατ2)g3, respectively. Equating the two deterioration levels gives α= (g2−g1)/(g3−g1). Notice
that 0<α< 1 since g1 < g2 < g3. The total production of the given and new policy equal τ1u1 + τ2u2 + τ3u3

and (τ1 + (1− α)τ2)u1 + (τ3 + ατ2)u3, respectively. Substituting α implies that the new policy produces at
least as much as the given policy if

g2 ≥ g1 + (u2−u1)
g3− g1

u3−u1

.

Secondly, we shorten the duration of interval 1 and 3 by α and β, respectively. The duration of interval
2 is increased with α+ β. Equating the deterioration level of the given and the new policy gives α= β(g3−
g1)/(g2 − g1). We select β such that the length of exactly one of the intervals becomes zero and the other
length remains nonnegative. Substituting α into the new total production function implies that the new policy
produces at least as much as the given policy if

g2 ≤ g1 + (u2−u1)
g3− g1

u3−u1

.

Observe that always one of the two conditions is satisfied. It follows that for any given policy which uses
more than two production rates, we can construct a policy with two production rates that produces at least
as much as the given policy. We conclude that, for any pd-relation g, there is an optimal policy with at most
two production rates. �

Lemma 4. The optimal rate is constant over time for strictly convex pd-relations.

Proof. The proof is structured as follows. First, we show that an optimal policy with rates smaller than
the maximum rate cannot contain the maximum rate. Second, we show that an optimal policy with rates
larger than the minimum rate cannot contain the minimum rate. Combining this with other lemmas implies
that the production rate is constant over time.

We divide I into two proper subsets I1 and I2 such that ûi < 1 for i ∈ I1 and ûj = 1 for j ∈ I2. The
complementary slackness give λi = 0 and µj = 0. Substituting these values into (8a) implies ν = (1+µi)/g

′(ûi)
and ν = (1− λj)/g

′(1). Equating the two expressions for ν gives λj = 1− (1 + µi) g
′(1)/g′(ûi). Since λj ≥ 0

we must have g′(ûi)/g
′(1)≥ 1, which is not possible for strictly convex functions g. Hence, for strictly convex

functions g, any policy that contains elements ûi < 1 and ûj = 1 cannot be optimal.
We divide I into two proper subsets I1 and I2 such that ûi > 0 for i ∈ I1 and ûj = 0 for j ∈ I2. The

complementary slackness give µi = 0 and λj = 0. Substituting these values into (8a) implies ν = (1−λi)/g
′(ûi)

and ν = (1 + µj)/g
′(0). Equating the two expressions for ν gives λi = 1− (1 + µj) g

′(ûi)/g
′(0). Since λi ≥ 0

we must have g′(0)/g′(ûi)≥ 1, which is not possible for strictly convex functions g. Hence, for strictly convex
functions g, any policy that contains elements ûi > 0 and ûj = 0 cannot be optimal.

The derivative of a strictly convex pd-relation is an one-to-one function. By Lemma 2e it follows that the
optimal policy can only contain a single intermediate rate. Combining this with the previous paragraphs
implies that the optimal rate is constant over time, independent of the partitioning that is used. �

Lemma 5. For strictly concave pd-relations, the optimal policy û∗ has at most one time interval in which
an intermediate production rate is used.

Proof. Divide the set I into three subsets I1, I2, and I3 such that ûi = 0 for i∈ I1, 0< ûj < 1 for j ∈ I2,
and ûk = 1 for k ∈ I3. We denote the overall policy by ûA and the cardinality of the subsets by η1, η2, and η3.
We assume that I2 contains at least two elements while the other two may be empty sets. Suppose, without
loss of generality, that 1 and 2 are elements of I2.
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We have ûj = ûl for all j, l ∈ I2 (see Lemma 2e) and
∑

i∈I g(ûi) = c (see Lemma 2a). The objective value for
policy ûA equals J(ûA) = û1 + û2 + (η2− 2) · û1 + η3. The maximum deterioration constraint can be written
as η1 g(0) + g(û1) + g(û2) + (η2− 2)g(û1) + η3 g(1) = c, which is rewritten to

g(û1) + g(û2) = c− η1 g(0)− (η2− 2)g(û1)− η3 g(1).

Now notice there exist two numbers 0< ε< δ such that

g(û1) + g(û2) = g(û1− ε) + g(û2 + δ),

which holds since g is strictly concave and g′(uj)> 0 for j ∈ I2 (see Lemma 2d). The objective value for the
new policy equals J(ûB) = (û1− ε) + (û2 + δ) + (η2−2) · û1 +η3. We have J(ûA)<J(ûB) since ε < δ and thus
ûA cannot be optimal. We only assumed that ûA uses an intermediate rate in at least two time intervals.
Hence, for strictly concave pd-relations g, the optimal policy uses an intermediate rates in at most one time
interval. �
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