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Timely HIV treatment improves health (1)
and reduces transmission (2). These individ-
ual-level benefits of HIV treatment for both
clinical and preventive purposes are well
established, but several questions remain
about the population-level impact of HIV
treatment as prevention (3). In PNAS, Eaton
and Hallett (4) use a mathematical model to
address one such question: Does the propor-
tion of transmission during early HIV infec-
tion affect the impact of HIV treatment on
HIV incidence?
Transmission rates are sharply elevated

during the first few months of HIV infection
(5), likely due to increased viral concentrations
(6) and founder virus transmission advan-
tages that facilitate transmission at a lower

inoculum (7). Quantifying the corresponding
fraction of transmissions attributable to con-
tact with persons in early-stage infection has
been challenging, with mathematical model-
ing and phylogenetic studies producing a wide
range of estimates (8, 9). Because HIV treat-
ment typically begins well after the early pe-
riod of heighted transmissibility, intuition
tells us that the prevention benefit of HIV
treatment programs will be compromised if
a large fraction of transmission events are
untouched. However, this prediction has
been a matter of considerable debate (10).
Eaton and Hallett (4) approach this ques-

tion with a mathematical model of HIV in
South Africa. They used a Bayesian approach
to calibrate their model to empirical HIV

prevalence data, allowing for behavioral het-
erogeneity across individuals, changes in risk
behavior over time, and varying levels of
increased infectivity during early infection.
They simulated treatment interventions ag-
ainst a range of scenarios consistent with
the observed South African epidemic, allow-
ing analysis of the relationship between early-
stage transmission and treatment impact.
Surprisingly, the amount of unabated

transmission from untreated people with
early infection had little impact on long-term
intervention effects. To explain these results,
Eaton and Hallett refer to relationships
among three quantities: the rate at which
incident (new) cases increase at the outset of
an epidemic (the initial growth rate), the
basic reproductive number (R0), and the gen-
eration time (Tg). R0 is the average number of
secondary infections that a typical infected
person causes in a wholly susceptible pop-
ulation, and Tg is the average time between
infection of an index case and his second-
ary cases.
If early HIV infection plays a large role in

transmission (Fig. 1B), then the generation
time distribution will be skewed toward
smaller values (more rapid transmission on
average). Thus, for a given, observed growth
rate, R0 must be smaller. In contrast, if early
HIV plays a smaller role (larger Tg), then R0

must be larger to achieve the same growth
rate (Fig. 1A). Typically, the larger the R0,
the more difficult an epidemic will be to
control, because more effort is needed to
reduce R0 below the value of 1 required for
elimination (11).
In the model of Eaton and Hallett, as the

proportion of early-stage transmissions in-
creased across scenarios, Tg decreased and R0
declined. That is, although the fraction of
transmission events that are not prevented
by treatment is greater in scenarios with
large early-stage transmission contributions,
R0 is lower. The lower R0 at the time of
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Fig. 1. Initial growth, generation time, and R0. Red circles represent new cases. The horizontal distance between
one case and those directly connected to it represents generation time Tg. The number of arrows emanating from
a case represents the basic reproductive number R0. Increases from one new case at time 0 to 16 new cases at time t
is compatible with, for example, (A) two discrete generations after infection introduction, each with a longer time Tg
between generations and R0 = 4; or (B) four discrete generations, each with a shorter Tg and R0 = 2. (In reality,
generations will be distributed in time, but we present discrete generations to illustrate basic concepts.)
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intervention initiation means that there are
fewer secondary infections to prevent and
the intervention is more likely to be effec-
tive. In other words, the increased role of
early-stage transmission is detrimental to
the intervention, but the lower R0 appears
to perfectly counterbalance this effect.
Are we to take Eaton and Hallett’s model

as the final word and assume that we need
not worry about early HIV? We suggest that
such a conclusion is premature for several
reasons. First, the model predicts a moderate
long-term impact of treatment: a 22% inci-
dence reduction. That is, the intervention
does not dramatically affect endemic preva-
lence. Near endemic prevalence, the system is
relatively insensitive to changes in the repro-
ductive number, because behavioral heteroge-
neity and saturation effects in high-risk groups
buffer such changes. In other words, near-en-
demic incidence reductions are not expected
to differ much across scenarios with different
early-stage contributions and R0 values.
Second, the relationship between R0 and

the effort required to control infection can
be subtle for infections (like HIV) with a long
infectious period and variable infectivity. In
these situations, intervention performance
depends not only on R0, but more impor-
tantly on the timing of transmission and in-
tervention initiation within the infectious
period (12). Increasing HIV testing rates to

achieve earlier diagnosis can be expected to
reduce the preintervention delay and im-
prove the impact of treatment (Fig. 2). How-
ever, if most secondary infections occur early
in infection, then effectiveness improvements
will be limited as long as early-stage trans-
missions are unaffected. Therefore, in scaling
up treatment to achieve more than a 22% in-
cidence reduction, the role of early infection
will be crucial (13).

Finally, variability in behavioral patterns
across different epidemic settings is likely to
be greater than the within-epidemic variabil-
ity examined in South Africa, suggesting that
the model may have limited applicability
outside of a generalized, heterosexual epi-
demic. Indeed, phylogenetic analyses among
men who have sex with men in Western
settings, populations in whom treatment is
widespread and incidence may be increasing
(14, 15), suggest large early-stage contribu-
tions (16, 17).
HIV treatment coverage is increasing,

causing decreased morbidity and mortality
worldwide (18). HIV incidence appears to be
decreasing in some (18) but not all (14, 15,
18) settings, indicating that HIV treatment as
prevention is not yet achieving maximal
gains. Eaton and Hallett use a well-founded
argument to conclude that early-stage trans-
mission may not compromise treatment as
prevention in some settings. However, to take
treatment as prevention forward toward an
elimination goal, the role of early infection
cannot yet be disregarded.
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12 Bonači�c Marinovi�c AA, et al. (2014) Speed versus coverage trade
off in targeted interventions during an outbreak. Epidemics 8:28–40.
13 Kretzschmar ME, Schim van der Loeff MF, Birrell PJ, De Angelis D,
Coutinho RA (2013) Prospects of elimination of HIV with test-and-
treat strategy. Proc Natl Acad Sci USA 110(39):15538–15543.
14 Bezemer D, et al. (2008) A resurgent HIV-1 epidemic among men
who have sex with men in the era of potent antiretroviral therapy.
AIDS 22(9):1071–1077.
15 Birrell PJ, et al. (2013) HIV incidence in men who have sex with
men in England and Wales 2001-10: A nationwide population study.
Lancet Infect Dis 13(4):313–318.
16 Brenner B, Wainberg MA, Roger M (2013) Phylogenetic
inferences on HIV-1 transmission: Implications for the design of
prevention and treatment interventions. AIDS 27(7):1045–1057.
17 Volz EM, et al. (2013) HIV-1 transmission during early infection in
men who have sex with men: A phylodynamic analysis. PLoS Med
10(12):e1001568, discussion e1001568.
18 Joint United Nations Programme on HIV/AIDS (2013) Global
Report: UNAIDS report on the global AIDS epidemic 2013. Available
at www.unaids.org/en/media/unaids/contentassets/documents/
epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf.
Accessed October 2, 2014.

Pr
op

or
�o

n 
of

 2
0

ca
se

s a
ris

in
g 

at
 �

m
e 

t

Time t a�er infec�on acquisi�on Time t a�er infec�on acquisi�on

Interven�on start 
(�me T)

Interven�on start 
(�me T)

A B

Fig. 2. Preintervention delay and intervention impact. Curves show the distribution of times within the infectious period
that onward transmissions occur for two hypothetical scenarios that differ in terms of the early-stage transmission con-
tribution. Red and green regions represent transmissions unaverted and averted by the intervention, respectively. The area
under the curve represents R0. (A) Smaller proportion of early-stage transmissions (higher R0). (B) Higher proportion of early-
stage transmissions (lower R0). In both scenarios, earlier intervention initiation (smaller T) will result in greater fractions of
averted infections, but the prevention impact will be greater in A than in B as long as early transmission is missed.
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