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Who gains and who loses from congestion pricing

in a monocentric city with a bottleneck?∗

Yuki Takayama†

October 25, 2019

Abstract

This study develops a model in which heterogeneous commuters choose their res-

idential locations and departure times from home in a closed monocentric city with

a bottleneck located at the entrance to the central business district (CBD). We show

that commuters sort themselves both temporally and spatially according to their in-

come, value of time, and flexibility at the equilibria with and without an optimal

congestion pricing. These two equilibria exhibit fundamentally different properties,

indicating that congestion pricing alters the urban spatial structure. We then consider

two cases wherein rich commuters are either flexible or inflexible and demonstrate that

(a) rich commuters reside farther from the CBD in the former case and closer to the

CBD in the latter case; (b) congestion pricing makes cities denser and more compact

in the former, whereas it causes cities to become less dense and to expand spatially

in the latter; and (c) in both cases, pricing helps rich commuters but hurts poor com-

muters. We further reveal that although expanding the capacity of the bottleneck

generates a Pareto improvement when commuters do not relocate, it can lead to an

unbalanced distribution of benefits among commuters: commuters residing closer to

the CBD gain, while those residing farther from the CBD lose. This suggests that ex-

panding capacity financed by the revenue from congestion pricing could be regressive

in a city where rich commuters are inflexible.

Keywords: peak-load pricing; residential location; distributional effects;

1 Introduction

Peak-period traffic congestion has long been a serious problem and an important policy

issue for many cities. Congestion pricing is the widely known tool to alleviate traffic

congestion, but it has hardly been implemented in practice mainly because of a concern
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about its distributional effects. Pricing might make some commuters worse off since it

reduces travel time but increases monetary costs.

The literature on traffic congestion has been devoted to examining the distributional

impacts of peak-load pricing and to proposing a measure that generates a Pareto improve-

ment (e.g., Vickrey, 1973; Cohen, 1987; Arnott et al., 1994; van den Berg and Verhoef,

2011a,b, 2014; Liu et al., 2015; Hall, 2018). The standard approach is to analyze the

bottleneck model with heterogeneous commuters, implying that commuters are assumed

not to relocate. Since it is well recognized that alleviating traffic congestion changes the

spatial distribution of residents in the long-run, we can say that the literature focuses on

the short-run effects of congestion pricing.

Traditional models of urban spatial structure, which are based on the monocentric

city model (Alonso, 1964; Mills, 1967; Muth, 1969), have succeeded in predicting the

empirically observed patterns of residential location based on the trade-off between land

rent and commuting costs. These traditional models, however, mostly describe traffic

congestion by using static congestion models, in which congestion at a location depends

only on the total traffic demand (i.e., the total number of commuters passing a location),

regardless of the time-of-use pattern (e.g., Kanemoto, 1980; Wheaton, 1998; Anas et al.,

1998). This indicates that these models do not capture peak-period traffic congestion that

takes the form of queuing at a bottleneck.

Several studies have incorporated a spatial dimension into the bottleneck model by em-

bedding the dynamic bottleneck congestion into a simple monocentric city model (Arnott,

1998; Gubins and Verhoef, 2014; Takayama and Kuwahara, 2017; Fosgerau et al., 2018;

Fosgerau and Kim, 2019). Their models, however, consider homogeneous commuters,

thereby being inapplicable to examining the long-run distributional impacts of peak-load

pricing. The only exception is Takayama and Kuwahara (2017) who incorporate het-

erogeneity in commuters’ income (value of time) and flexibility. They demonstrate that

congestion pricing helps rich commuters but hurts poor commuters. This result, however,

essentially depends on the assumption of quasi-linear preferences since this assumption

makes the income elasticity of the demand for land equal to zero, which is inconsistent

with empirical evidence (Wheaton, 1977; Glaeser et al., 2008). In other words, they sup-

pose that the expenditure on land is the same across all commuters regardless of their

income levels and does not change even if a congestion toll is imposed. This means

that their model ignores the effects of peak-period congestion and congestion pricing on

commuters’ land use pattern. Therefore, the long-run distributional effects of peak-load

pricing have yet to be clarified.

This study develops a model of trip timing and residential location choices of hetero-

geneous commuters that resolves the limitations of the literature discussed above. We

consider a closed monocentric city with a bottleneck located at the entrance to the CBD

as in Gubins and Verhoef (2014) and Fosgerau et al. (2018) and employ a utility function

that allows the income elasticity of the demand for land to be positive. We show that
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commuters sort themselves both temporally and spatially depending not only on their

income and value of time, but also on their flexibility. We also find that cities with more

flexible commuters are less dense, i.e., cities expand outward as commuters become more

flexible.

This study then investigates the long-run effects of an optimal peak-load pricing.1 We

show that congestion pricing changes commuting costs, thereby altering commuters’ lot

sizes and spatial distribution. In addition, even if congestion pricing generates a Pareto

improvement in the short-run (i.e., if commuters do not relocate), it does not necessarily

lead to a Pareto improvement in the long-run. This occurs for the following reasons:

improvements in commuting cost increase the lot size of commuters residing near the

CBD; this causes the city to expand outward; the spatial expansion of the city increases

commuting distance of commuters residing farther from the CBD. To demonstrate con-

cretely the distributional effects of pricing, we analyze the model for two cases wherein

rich commuters are either flexible or inflexible. This analysis clarifies that (a) rich com-

muters reside farther from the CBD in the former and closer to the CBD in the latter;

(b) congestion pricing makes cities denser and more compact in the former, whereas it

causes cities to become less dense and to expand spatially in the latter; and (c) in both

cases, pricing helps rich commuters but hurts poor commuters.

We further reveal that although the bottleneck capacity expansion generates a Pareto

improvement in the short-run, it can lead to an unbalanced distribution of benefits among

commuters in the long-run: commuters residing closer to the CBD gain and commuters

residing farther from the CBD lose. This occurs because decreasing commuting costs

causes the city to spatially expand, thereby increasing commuting distance of commuters

residing farther from the CBD. Thus, the capacity expansion financed by the revenue from

congestion pricing could be progressive when rich commuters are flexible, while regressive

when rich commuters are inflexible.2

This study proceeds as follows. Section 2 presents a model in which heterogeneous

commuters choose their departure times from home and residential locations in a mono-

centric city. Sections 3 and 4 characterize equilibria with and without an optimal con-

gestion pricing, respectively. Section 5 clarifies the effects of peak-load pricing. Section 6

concludes the study.

1The tradable network permit scheme (Wada and Akamatsu, 2013; Akamatsu and Wada, 2017), which
resolves important issues for implementing congestion pricing, has the same effect as an optimal peak-load
pricing. Therefore, its long-run effects are identical to those obtained in this paper. Similar schemes have
been proposed by, e.g., Verhoef et al. (1997), Yang and Wang (2011), Nie (2012), He et al. (2013), and
Nie and Yin (2013).

2In the model of Takayama and Kuwahara (2017), commuters sort spatially according to their value of
time but not to flexibility and commuters with a high value of time must reside closer to the CBD. Fur-
thermore, the capacity expansion helps all commuters. Therefore, the results of this study are essentially
different from those obtained in Takayama and Kuwahara (2017).
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Figure 1: Urban spatial structure

2 The model

2.1 Assumptions

We consider a long narrow city with a spaceless CBD, in which all job opportunities are

located. The CBD is located at the edge of the city and a residential location is indexed

by distance x from the CBD (see Figure 1). In the city, land is uniformly distributed with

unit density along a road. As is common in the literature, the land is owned by absentee

landlords.3 The road has a single bottleneck with capacity s at the entrance to the CBD

(i.e., x = 0). If arrival rates at the bottleneck exceed its capacity, a queue develops.

To model queuing congestion, we employ first-in-first-out (FIFO) and a point queue, in

which vehicles have no physical length as in standard bottleneck models (Vickrey, 1969;

Arnott et al., 1993). Free-flow travel time per unit distance is assumed to be constant at

τ > 0 (i.e., free-flow speed is 1/τ).

There are G groups of commuters, who differ in their income, value of (travel) time,

and schedule delay cost for arriving at work earlier or later than desired. The number

of commuters of group i ∈ G ≡ {1, 2, · · · , G}, whom we call “commuters i,” is fixed and

denoted by Ni. They have a common desired arrival time t∗ at work. The commuting

cost of commuter i who resides at x and arrives at work at time t is the sum of travel

time cost αi{q(t) + τx} and schedule delay cost di(t− t∗):

ci(x, t) = αi{q(t) + τx}+ di(t− t∗), (1a)

di(t− t∗) =







βi(t
∗ − t) if t ≤ t∗,

γi(t− t∗) if t ≥ t∗,
(1b)

where αi > 0 is the value of time of commuters i, q(t) denotes the queuing time of

commuters arriving at work at time t, and τx represents the free-flow travel time of

commuters residing at x. βi > 0 and γi > 0 are the marginal early and late delay costs,

respectively.

This study imposes the following assumptions about the value of time and the marginal

schedule delay costs, which is common to the literature employing a bottleneck model with

commuter heterogeneity (e.g., Vickrey, 1973; Arnott et al., 1992, 1994; van den Berg and

Verhoef, 2011b; Hall, 2018).

3We can make the alternative assumption that the land is publicly owned and that the aggregate land
rent is equally redistributed to all commuters. As we demonstrate in Appendix E, the results under this
assumption (public land ownership) are essentially identical to those obtained with absentee landlords.
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Assumption 1

(i) αi > βi for all i ∈ G.

(ii) γi/βi = η > 1 for all i ∈ G.

Assumption 1 (i) requires that the value of time αi is higher than the marginal early

delay cost βi for all commuters i ∈ G. This assumption implies that commuters prefer

to wait at the office rather than wait in traffic. If this condition is violated, there is no

equilibrium that satisfies the FIFO property (i.e., vehicles must leave the bottleneck in the

same order as their arrival at the bottleneck). Assumption 1 (ii) means that commuters

with a high early delay cost also have a high late delay cost.

It is well known that the primary source of heterogeneity in the value of time (αi)i∈I

is variation in their income (yi)i∈I .
4 Thus, we suppose that commuters with a high (low)

value of time are assumed to be rich (poor).

Assumption 2 If αi ≥ αj, then yi ≥ yj.

Each commuter consumes a numéraire good and land. The preferences of commuter

i who resides at x and arrives at work at time t are represented by the Cobb-Douglas

utility function

u(zi(x, t), ai(x, t)) = {zi(x, t)}
1−µ{ai(x, t)}

µ, (2)

where µ ∈ (0, 1), zi(x, t) denotes consumption of the numéraire good, and ai(x, t) is the lot

size. As in the standard bottleneck models (e.g., Vickrey, 1969; Hendrickson and Kocur,

1981; Arnott et al., 1990b; Fosgerau and de Palma, 2012) and Fosgerau et al. (2018), we

treat the travel time cost αi{q(t) + τx} and the schedule delay cost di(t − t∗) as money

metric and let them enter the budget constraint for analytical simplicity.5 The budget

constraint is then given by

yi = zi(x, t) + {r(x) + rA} ai(x, t) + ci(x, t), (3)

where rA > 0 is the exogenous agricultural rent and r(x) + rA denotes land rent at x.

The first-order conditions of the utility maximization problem give

zi(x, t) = (1− µ)Ii(x, t), ai(x, t) =
µIi(x, t)

r(x) + rA
, Ii(x, t) ≡ yi − ci(x, t), (4)

where Ii(x, t) denotes the income net of commuting cost earned by commuters i who

reside at x and arrive at work at t. Substituting this into the utility function, we obtain

4Other sources of heterogeneity in the value of time include trip purpose (work or recreation), time of
day, physical or psychological amenities available during travel, and the total duration of the trip (Small
and Verhoef, 2007).

5This assumption implies that commuters’ working hours are treated as given.
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the indirect utility function

v(Ii(x, t), r(x) + rA) = (1− µ)1−µµµIi(x, t){r(x) + rA}
−µ. (5)

2.2 Equilibrium conditions

Similar to models in Gubins and Verhoef (2014) and Takayama and Kuwahara (2017), we

assume commuters make short-run decisions about day-specific trip timing and long-run

decisions about residential location. In the short-run, commuters i minimize commuting

cost ci(x, t) by selecting their arrival time t at work taking their residential location x as

given. In the long-run, each commuter i chooses a residential location x so as to maximize

his/her utility. We therefore present the short- and long-run equilibrium conditions.

2.2.1 Short-run equilibrium conditions

In the short-run, commuters determine only their day-specific arrival time t at work,

which implies that the number Ni(x) of commuters i residing at x (spatial distribution

of commuters) is assumed to be a given. It follows from (1) that the commuting cost

ci(x, t) of commuters i consists of a cost αiτx of free-flow travel time depending only

on residential location x and a bottleneck cost cbi(t) owing to queuing congestion and a

schedule delay depending only on arrival time t at work:

ci(x, t) = cbi(t) + αiτx, (6a)

cbi(t) ≡ αiq(t) + di(t− t∗). (6b)

This implies that each commuter i chooses arrival time t so as to minimize his/her bot-

tleneck cost cbi(t). Therefore, short-run equilibrium conditions coincide with those in the

standard bottleneck model, which are given by the following three conditions:







cbi(t) = cb∗i if ni(t) > 0

cbi(t) ≥ cb∗i if ni(t) = 0
∀i ∈ G, (7a)







∑

k∈G nk(t) = s if q(t) > 0
∑

k∈G nk(t) ≤ s if q(t) = 0
∀t ∈ R+, (7b)

∫

ni(t)dt = Ni ∀i ∈ G, (7c)

where ni(t) denotes the number of commuters i who arrive at work at time t (i.e., arrival

rate of commuters i at the CBD) and cb∗i is the short-run equilibrium bottleneck cost of

commuters i.

Condition (7a) represents the no-arbitrage condition for the choice of arrival time

t. This condition means that, at the short-run equilibrium, no commuter can reduce

the bottleneck cost by altering arrival time unilaterally. Condition (7b) is the capacity
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constraint of the bottleneck, which requires that the total departure rate
∑

k∈G nk(t) at

the bottleneck equals capacity s if there is a queue; otherwise, the total departure rate is

(weakly) lower than s. Condition (7c) is flow conservation for commuting demand.

These conditions give ni(t), q(t), and cb∗i at the short-run equilibrium as functions

of (Ni)i∈G .
6 The short-run equilibrium commuting cost c∗i (x) and the income net of

commuting cost Ii(x) of commuters i residing at x are given by

c∗i (x) = cb∗i + αiτx, (8a)

Ii(x) ≡ yi − c∗i (x). (8b)

2.2.2 Long-run equilibrium conditions

In the long-run, each commuter i chooses a residential location x so as to maximize

indirect utility (5). Thus, long-run equilibrium conditions are expressed as the following

complementarity problems:







v(Ii(x), r(x) + rA) = v∗i if Ni(x) > 0

v(Ii(x), r(x) + rA) ≤ v∗i if Ni(x) = 0
∀x ∈ R+, ∀i ∈ G, (9a)







∑

k∈G a(Ii(x), r(x) + rA)Nk(x) = 1 if r(x) > 0
∑

k∈G a(Ii(x), r(x) + rA)Nk(x) ≤ 1 if r(x) = 0
∀x ∈ R+ (9b)

∫ ∞

0
Ni(x) dx = Ni ∀i ∈ G, (9c)

where v∗i is the long-run equilibrium utility level of commuters i and a(Ii(x), r(x) + rA)

denotes the lot size of commuters i at location x, which is given by

a(Ii(x), r(x) + rA) =
µIi(x)

r(x) + rA
. (10)

Condition (9a) is the equilibrium condition for commuters’ choice of residential loca-

tion. This condition implies that, at the long-run equilibrium, no commuter has incentive

to change residential location unilaterally. Condition (9b) is the land market clearing con-

dition. This condition requires that, if total land demand
∑

k∈G a(Ik(x), r(x) + rA)Nk(x)

for housing at x equals supply 1, land rent r(x) + rA is (weakly) larger than agricultural

rent rA. Condition (9c) expresses the population constraint.

As is discussed in Takayama and Kuwahara (2017), traditional bid-rent approach

(Alonso, 1964; Kanemoto, 1980; Fujita, 1989; Duranton and Puga, 2015) is equivalent to

our approach using complementarity problems (for the proof, see Appendix A.1). Specif-

ically, long-run equilibrium conditions (9) coincide with those of the bid-rent approach.

Therefore, even if we use the traditional bid-rent approach, we obtain the same results as

those presented in this study.

6Note that the short-run equilibrium conditions depend on (Ni)i∈G but not on Ni(x).
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3 Equilibrium

3.1 Short-run equilibrium

The short-run equilibrium conditions (7) coincide with those in the standard bottleneck

model, as discussed above. Therefore, we can invoke the results of studies utilizing the

bottleneck model to characterize the short-run equilibrium (Arnott et al., 1994; Lindsey,

2004; Iryo and Yoshii, 2007; Liu et al., 2015). In particular, the following properties of

the short-run equilibrium are useful for investigating the properties of our model.

Lemma 1 (Lindsey, 2004; Iryo and Yoshii, 2007) Suppose Assumption 1 (i). Then,

the short-run equilibrium has the following properties:

(a) The short-run equilibrium bottleneck cost cb∗i is uniquely determined.

(b) The short-run equilibrium number (n∗i (t))i∈G of commuters arriving at time t coin-

cides with the solution of the following linear programming problem:

min
(ni(t))i∈G

∑

i∈G

∫

di(t− t∗)

αi
ni(t)dt (11a)

s.t.
∑

i∈G

ni(t) ≤ s ∀t ∈ R, (11b)

∫

ni(t) dt = Ni ∀i ∈ G, (11c)

ni(t) ≥ 0 ∀i ∈ G, ∀t ∈ R. (11d)

Let us define time-based cost as the cost converted into equivalent travel time. Since

that cost for commuters i is given by dividing the cost by αi, we say that di(t−t∗)
αi

represents

the time-based schedule delay cost of commuters i. Therefore, Lemma 1 (b) shows that,

at the short-run equilibrium, the total time-based schedule delay cost is minimized, but

the total schedule delay cost is not necessarily minimized.7

We let supp (n∗i ) = {t ∈ R+ | n∗i (t) > 0} be the support of the short-run equilibrium

number n∗i (t) of commuters i who arrive at work at t. From Lemma 1 (b), we have

supp (
∑

i∈G n
∗
i ) = [tE, tL], (12)

where tE and tL denote the earliest and latest arrival times of commuters, which satisfy

tL = tE +

∑

i∈G Ni

s
. (13)

This indicates that, at the short-run equilibrium, a rush hour in which queuing congestion

occurs must be a single time interval.

7As will be shown in Section 4.1, under an optimal peak-load toll, the total schedule delay cost (the
social cost of commuting) is minimized at the short-run equilibrium.

8



By using short-run equilibrium condition (7a), we obtain

ci(ti)

αi
+
cj(tj)

αj
≤
ci(tj)

αi
+
cj(ti)

αj
∀ti ∈ supp (n∗i ), tj ∈ supp (n∗j ). (14)

Substituting (6b) into this, we have







(

βi

αi
−

βj

αj

)

(ti − tj) ≥ 0 if max{ti, tj} ≤ t∗
(

γi
αi

−
γj
αj

)

(ti − tj) ≤ 0 if min{ti, tj} ≥ t∗
∀i, j ∈ G. (15)

This leads to the following proposition as given in Arnott et al. (1994) and Liu et al.

(2015):

Proposition 1 Suppose Assumption 1. Then, at the short-run equilibrium, commuters

with a high marginal time-based schedule delay cost (βi/αi) arrive closer to their preferred

arrival time t∗.

This proposition indicates that the short-run equilibrium has the following properties:

if marginal schedule delay cost of commuters i is lower than that of commuters j (i.e.,

βi/αi < βj/αj), early-arriving commuters i arrive at the CBD earlier than early-arriving

commuters j and late-arriving commuters i arrive at the CBD later than late-arriving

commuters j. This occurs because commuters with a lower time-based schedule delay

cost avoid queuing time rather than a schedule delay.

By using Proposition 1, we can explicitly obtain the short-run equilibrium bottleneck

cost. For the moment, we assume, without loss of generality, that commuters with small

i have a (weakly) higher marginal time-based schedule delay cost:

Assumption 3 βi−1

αi−1
≥ βi

αi
for all i ∈ G\{1}.

Under this assumption, commuters with smaller i arrive (weakly) closer to their pre-

ferred arrival time t∗. Therefore, the short-run bottleneck cost cb∗i of commuters i is

derived by following the procedure employed in literature employing a bottleneck model

with commuter heterogeneity (see, e.g., van den Berg and Verhoef, 2011b):

cb∗i =
η

1 + η

{

βi

∑i
k=1Nk

s
+ αi

G
∑

k=i+1

βk
αk

Nk

s

}

∀i ∈ G. (16)

This indicates that commuters with high value of travel time or high schedule delay cost

incur higher bottleneck costs at the short-run equilibrium.

We see from the results of this subsection that the indirect utility (5) is uniquely de-

termined. Therefore, in the following subsection, we characterize the long-run equilibrium

by using the properties of the complementarity problems (9).
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3.2 Long-run equilibrium

We examine the properties of urban spatial structure at the long-run equilibrium. From

(9b) and (10), we have

r(x) + rA = R(I(x)) =







µI(x) if µI(x) ≥ rA,

rA if µI(x) ≤ rA,
(17a)

I(x) ≡
∑

i∈G

Ii(x)Ni(x), (17b)

where I(x) denotes the total income net of commuting cost in location x. Substituting

this into (5), the indirect utility is expressed as

vi(x) = (1− µ)1−µµµIi(x){R(I(x))}
−µ (18)

Therefore, the long-run equilibrium conditions in (9) are rewritten as







vi(x) = v∗i if Ni(x) > 0

vi(x) ≤ v∗i if Ni(x) = 0
∀x ∈ R+, ∀i ∈ G, (19a)

∫ ∞

0
Ni(x) dx = Ni ∀i ∈ G. (19b)

The equilibrium conditions (9) or (19) are equivalent to the Karush-Kuhn-Tucker

(KKT) conditions of the following optimization problems, which can be used to examine

the uniqueness of the long-run equilibrium:

Lemma 2

(a) The spatial distribution (Ni(x))i∈G of commuters is a long-run equilibrium if and

only if it satisfies the KKT conditions of the following optimization problem:

max
(Ni(x))i∈G

P ((Ni(x))i∈G) = P1((Ni(x))i∈G) + P2((Ni(x))i∈G) (20a)

s.t.

∫ ∞

0
Ni(x)dx = Ni ∀i ∈ G, (20b)

Ni(x) ≥ 0 ∀i ∈ G, ∀x ∈ R+, (20c)

where P1((Ni(x))i∈G) and P2((Ni(x))i∈G) are expressed as

P1((Ni(x))i∈G) =

∫ ∞

0

∑

i∈G

v(Ii(x), R(I(x)))Ni(x) dx, (20d)

P2((Ni(x))i∈G) = (1− µ)−µµµ
∫ ∞

0

{

R(I(x))1−µ − r1−µ
A

}

dx. (20e)

(b) The set of utility level (v∗i )i∈G and land rent r(x) + rA is a long-run equilibrium if
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and only if it satisfies the KKT conditions of the following optimization problem:

min
r(x),(v∗i )i∈G

D((v∗i )i∈G , r(x)) = D1((v
∗
i )i∈G) +D2(r(x)) (21a)

s.t. v∗i ≥ v(Ii(x), r(x) + rA) ∀i ∈ G, ∀x ∈ R+, (21b)

r(x) ≥ 0 ∀x ∈ R+, (21c)

where D1((v
∗
i )i∈G) and D2(r(x)) are expressed as

D1((v
∗
i )i∈G) =

∑

i∈G

Niv
∗
i (21d)

D2(r(x)) = (1− µ)−µµµ
∫ ∞

0

{

[r(x) + rA]
1−µ − r1−µ

A

}

dx (21e)

Proof The KKT conditions of problem (20) correspond to the long-run equilibrium con-

ditions (19). The KKT conditions of problem (21) correspond to the conditions (9a).

Thus, we have Lemma 2.

Since the long-run equilibrium conditions are represented by (19), the model of com-

muters’ location choice can be viewed as a multiple population game in which the set of

population is G, the set of players of population i is [0, Ni], the strategy set is R+, and the

payoff is (vi(x))i∈G . Furthermore, P ((Ni(x))i∈G) is a potential function of the game since
∂P ((Ni(x))i∈G)

∂Ni(x)
= vi(x) for all i ∈ G and x ∈ R+. Therefore, Lemma 2 (a) suggests that a

long-run equilibrium of our model can be considered a Nash equilibrium of the potential

game with a continuous strategy set, which is studied in Cheung and Lahkar (2018).

The objective function P ((Ni(x))i∈G) of the optimization problem (20) is concave,

but it is not strictly concave. This implies that the equilibrium spatial distribution of

commuters (N∗
i (x))i∈G is not necessarily unique. However, by using Lemma 2 (b), we can

show the uniqueness of r(x) and (v∗i )i∈G .

Lemma 3 The long-run equilibrium land rent r(x) + rA and utility level (v∗i )i∈G are

uniquely determined.

Proof See Appendix B.

By using the equilibrium condition (19a), we can see that there is no vacant location

between any two populated locations, as shown in Lemma 4.

Lemma 4 The long-run equilibrium number
∑

i∈G N
∗
i (x) of commuters residing at x has

the following properties:

(a) the support of
∑

i∈G N
∗
i (x) is given by

supp (
∑

i∈G N
∗
i ) = [0, XB], (22)
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where XB denotes the residential location for commuters farthest from the CBD

(i.e., city boundary).

(b) the land rent r(x) + rA satisfies

r(x) + rA = µI(x) > rA ∀x ∈ supp (
∑

i∈G N
∗
i )\{X

B}, (23a)

r(XB) + rA = µI(XB) = rA. (23b)

Proof See Appendix C.

It follows immediately from Lemma 4 that the indirect utility vi(x) of commuters i is

given by

vi(x) = (1− µ)1−µIi(x){I(xi)}
−µ ∀i ∈ G, ∀x ∈ [0, XB]. (24)

This implies that the optimization problem (20) is rewritten as

max
(Ni(x))i∈G

1

1− µ

∫ XB

0

∑

i∈G

vi(x)Ni(x) dx (25a)

s.t.

∫ XB

0
Ni(x)dx = Ni ∀i ∈ G, (25b)

Ni(x) ≥ 0 ∀i ∈ G, ∀x ∈ [0, XB], (25c)

This shows that the total utility is maximized in the long-run and thus the long-run equi-

librium is Pareto optimal. Note that since the short-run equilibrium bottleneck cost cb∗i is

taken as given, this does not indicate that the equilibrium is efficient but instead indicates

that market failures in the model are caused only by traffic (bottleneck) congestion.

The long-run equilibrium condition (9a) yields

vi(xi) · vj(xj) ≥ vi(xj) · vj(xi) ∀xi ∈ supp (N∗
i ), ∀xj ∈ supp (N∗

j ), ∀i, j ∈ G, (26)

where N∗
i (x) denotes the long-run equilibrium number of commuters i residing at x.

Substituting (24) into this, we have

{

yi − cb∗i
αi

−
yj − cb∗j
αj

}

(xi − xj) ≥ 0 ∀xi ∈ supp (N∗
i ), ∀xj ∈ supp (N∗

j ), ∀i, j ∈ G.

(27)

This condition implies that if Ii(x)
αi

>
Ij(x)
αj

, then xi ≥ xj at the long-run equilibrium,8

8Let Ψi(x, v
∗
i ) denote bid-rent function of commuters i. Then, as shown in Appendix A.2, Ψi(x, v

∗
i ) is

steeper than Ψj(x, v
∗
j ) if and only if the condition Ii(x)/αi > Ij(x)/αj holds. Therefore, we can say that

Proposition 2 is consistent with the standard results obtained in the literature studying the traditional
location model (e.g., Kanemoto, 1980; Fujita, 1989; Duranton and Puga, 2015).
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which yields the following proposition.

Proposition 2 Commuters with a high time-based income net of commuting cost (Ii(x)/αi)

reside farther from the CBD at the long-run equilibrium.

This proposition states that commuters sort themselves spatially depending not only

on their income and value of time, but also on their flexibility. This is because commuters

with a high income net of commuting cost consume a larger amount of land and commuters

with a high value of time want to reduce their free-flow travel time cost.

Proposition 2 also indicates that if
yi−cb∗i

αi
̸=

yj−cb∗j
αj

for all i, j ∈ G, (N∗
i (x))i∈G is

uniquely determined. If there exist i, j ∈ G such that
yi−cb∗i

αi
=

yj−cb∗j
αj

, (N∗
i (x))i∈G is not

unique because the locations of commuters i and j are interchangeable without affecting

their utilities.

By using Proposition 2, we examine properties of the long-run equilibrium. For this,

we assume, without loss of generality, that commuters with small i have lower time-based

income net of commuting cost:

Assumption 4 Ii−1(x)
αi−1

≤ Ii(x)
αi

for all i ∈ G\{1}.

For the moment, we also assume that all commuters i − 1 reside closer than every

commuter i for examining the properties of r(x) and (v∗i )i∈G at the long-run equilibrium,

each of which is uniquely determined. Let Xi denote the location for commuters i residing

nearest the CBD. Then, this assumption means that commuters i reside in [Xi, Xi+1] (i.e.,

supp (N∗
i ) = [Xi, Xi+1]). Therefore, we have vi(x) = vi(Xi) for all x ∈ supp (N∗

i ). This,

together with the population constraint (19b), yields the following lemma

Lemma 5 Suppose Assumption 4 and supp (N∗
i ) = [Xi, Xi+1] for any i ∈ G. Then, the

long-run equilibrium land rent at location Xi is given by

r(Xi) + rA = ri ≡

G
∑

k=i

αkτNk + rA. (28)

Proof See Appendix D.

Substituting this into (61), we obtain Xi as follows:

X1 = 0, Xi+1 =

i
∑

j=1

[

{rj+1}
−µ − {rj}

−µ
]

{ri+1}
µ
yj − cb∗j
αjτ

∀i ∈ G, (29)

From these results, we have the following lemma:

Lemma 6 Suppose Assumption 4. Then, at the long-run equilibrium,

13



(a) the city boundary XB is given by

XB =
∑

i∈G

[

{ri+1}
−µ − {ri}

−µ
]

{rA}
µ yi − cb∗i

αiτ
(30)

where ri is represented as (28).

(b) the long-run equilibrium utility level (v∗i )i∈G, land rent r(x) + rA, and lot size ai(x)

are given by

v∗i = (1− µ)1−µµµαi



{ri+1}
−µ yi − cb∗i

αi
−

i
∑

j=1

[

{rj+1}
−µ − {rj}

−µ
] yj − cb∗j

αj



 ∀i ∈ G,

(31a)

r(x) + rA = (1− µ)
1−µ
µ µ

{

Ii(x)

v∗i

}
1
µ

∀x ∈ supp (N∗
i ), (31b)

ai(x) = (1− µ)
− 1−µ

µ {Ii(x)}
− 1−µ

µ {v∗i }
1
µ ∀x ∈ supp (N∗

i ). (31c)

We see from Lemma 6 (a) that the city boundary XB increases with an increase in

the time-based income net of bottleneck cost (
yi−cb∗i

αi
). This shows that the spatial size

of the city is affected not only by commuters’ income and value of time, but also by their

flexibility. Furthermore, cities with richer or more flexible commuters are less dense. That

is, cities expand outward as commuters become richer or more flexible.

From Lemma 6 (b), we have

d{r(x) + rA}

dx
= −

αiτ

ai(x)
< 0 ∀x ∈ supp (N∗

i ), (32)

which is known as the Alonso-Muth condition. This states that, at the long-run equilib-

rium, the marginal commuting cost αiτ equals the marginal land cost saving−d{r(x)+rA}
dx ai(x).

Thus, the land rent r(x) + rA decreases with distance x from the CBD.

Lemma 6 (b) also allows us to examine the long-run effect of the bottleneck capacity

expansion. It follows from (16) that the short-run equilibrium bottleneck cost cb∗i decreases

with the bottleneck capacity s. That is, in the short-run, the capacity expansion generates

a Pareto improvement. However, we can see by differentiating the equilibrium utility level

(v∗i )i∈G with respect to the capacity that there can exist i ∈ G such that
dv∗i
ds < 0. More

specifically, since we have

dv∗i
ds

= (1− µ)1−µµµαi



−{ri+1}
−µ 1

αi

dcb∗i
ds

+

i
∑

j=1

[

{rj+1}
−µ − {rj}

−µ
] 1

αj

dcb∗j
ds



 , (33a)

dv∗1
ds

= −(1− µ)1−µµµ{r1}
−µdc

b∗
1

ds
> 0, (33b)
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1

αi−1

dv∗i−1

ds
>

1

αi

dv∗i
ds

∀i ∈ G\{1}, (33c)

the capacity expansion cannot lead to a Pareto improvement in the long-run if there exists

i ∈ G such that

{ri+1}
−µ

αi

dcb∗i
ds

>

i
∑

j=1

{rj+1}
−µ − {rj}

−µ

αj

dcb∗j
ds

. (34)

That is, if (34) holds for some i, commuters residing closer to the CBD gain, but those

residing farther from the CBD lose from the capacity expansion. This is due to the

fact that the expansion increases the city boundary XB, thereby increasing commuting

distance of commuters residing farther from the CBD.

The results obtained thus far are summarized as follows.

Proposition 3

(a) The spatial size of the city depends on commuters’ income, value of time, and flex-

ibility. Furthermore, cities with richer or more flexible commuters are less dense.

(b) The bottleneck capacity expansion generates a Pareto improvement in the short-run,

but it can lead to an unbalanced distribution of benefits in the long-run: commuters

residing closer to the CBD gain and those residing farther from the CBD lose.

4 Optimal peak-load pricing

Studies utilizing the standard bottleneck model show that queuing time is a pure dead-

weight loss. Hence, in our model, there is no queue at the social optimum, and the social

optimum is achieved by imposing an optimal peak-load toll (e.g., Arnott, 1998; Gubins

and Verhoef, 2014; Takayama and Kuwahara, 2017). This section examines the effect of

an optimal pricing by analyzing equilibrium under this pricing policy.

4.1 Short-run equilibrium

An optimal congestion toll p(t) eliminates queuing congestion. Thus, the commuting cost

coi (x, t) of commuters i is given by

coi (x, t) = cboi (t) + αiτx, (35a)

cboi (t) ≡ p(t) + di(t− t∗). (35b)

Superscript o describes variable under the optimal congestion toll.

Since we consider heterogeneous commuters, the congestion toll p(t) does not equal the

queuing time cost αiq(t) at the no-toll equilibrium, and it is set so that travel demand no(t)
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at the bottleneck equals supply (i.e., capacity) s. Therefore, the short-run equilibrium

conditions are expressed as







cboi (t) = cbo∗i if noi (t) > 0

cboi (t) ≥ cbo∗i if noi (t) = 0
∀i ∈ G, ∀t ∈ R, (36a)







∑

i∈G n
o
i (t) = s if p(t) > 0

∑

i∈G n
o
i (t) ≤ s if p(t) = 0

∀t ∈ R, (36b)

∫

noi (t) dt = Ni ∀i ∈ G. (36c)

Condition (36a) is the no-arbitrage condition for commuters’ arrival time choices.

Condition (36b) denotes the bottleneck capacity constraints, which assure that queuing

congestion is eliminated at the equilibrium. Condition (36c) provides the flow conser-

vation for commuting demand. These conditions give noi (t), p(t), c
bo∗
i at the short-run

equilibrium.

As in the case without the congestion toll, by invoking the results of studies employing

the bottleneck model, we have the following lemma.

Lemma 7 (Lindsey, 2004; Iryo and Yoshii, 2007) Suppose Assumption 1 (i). Then,

the short-run equilibrium under the congestion toll has the following properties:

(a) The bottleneck cost cbo∗i is uniquely determined.

(b) The short-run equilibrium number (no∗i (t))i∈G of commuters arriving at time t co-

incides with the solution of the following linear programming problem:

min
(no

i (t))i∈G

∑

i∈G

∫

di(t− t∗)noi (t) dt (37a)

s.t.
∑

i∈G

noi (t) ≤ s ∀t ∈ R, (37b)

∫

noi (t) dt = Ni ∀i ∈ G, (37c)

noi (t) ≥ 0 ∀i ∈ G, ∀t ∈ R. (37d)

Lemma 7 (b) suggests that total schedule delay cost is minimized at the short-run

equilibrium under the congestion toll. Note that total schedule delay cost equals total

commuting cost minus total toll revenue. Hence, Lemma 7 (b) indicates that, in the

short-run, the optimal congestion toll minimizes the social cost of commuting.

From the short-run equilibrium condition (36a), we have

cboi (ti) + cboj (tj) ≤ cboi (tj) + cboj (ti) ∀ti ∈ supp (no∗i ), ∀tj ∈ supp (no∗j ), ∀i, j ∈ G. (38)
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Substituting (35b) into this, we have







(βi − βj) (ti − tj) ≥ 0 if max{ti, tj} ≤ t∗,

(γi − γj) (ti − tj) ≤ 0 if min{ti, tj} ≥ t∗.
(39)

Therefore, we obtain the following proposition.

Proposition 4 Suppose Assumption 1. Then, at the short-run equilibrium, commuters

with a high marginal schedule delay cost (βi) arrive closer to their preferred arrival time

t∗.

Propositions 1 and 4 show that the equilibrium bottleneck cost under the congestion

toll cbo∗i generally differs from the no-toll equilibrium bottleneck cost cb∗i when we consider

commuter heterogeneity in the value of time. To see this concretely, we assume, without

loss of generality, that commuters with small i have a (weakly) higher marginal schedule

delay cost:

Assumption 5 βi−1 ≥ βi for all i ∈ G\{1}.

Then, we can obtain the short-run equilibrium bottleneck cost cbo∗i and commuting cost

co∗i (x) under the toll in the same manner as in (16).

cbo∗i =
η

1 + η

{

βi

∑i
k=1Nk

s
+

G
∑

k=i+1

βk
Nk

s

}

∀i ∈ G, (40a)

co∗i (x) = cbo∗i + αiτx. (40b)

This shows that inflexible commuters have higher bottleneck costs at the equilibrium un-

der the toll, which is fundamentally different from the properties of the no-toll equilibrium

bottleneck cost cb∗i .

4.2 Long-run equilibrium

We characterize the urban spatial structure at the long-run equilibrium under the toll

by using the short-run equilibrium bottleneck cost cbo∗i . In the long-run, the difference

between cases with and without pricing appears only in the income net of commuting cost.

Specifically, under the congestion toll, the income net of commuting cost is expressed as

Ioi (x) ≡ yi − co∗i (x), Io(x) ≡
∑

i∈G

Ioi (x)Ni(x). (41)

The long-run equilibrium conditions are thus represented as (9) with the use of (41).

Without loss of generality, let us introduce the following assumption, as in the case

without the toll.

Assumption 6
Ioi−1(x)

αi−1
≤

Ioi (x)
αi

for all i ∈ G\{1}.
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Then, following the same procedure as in Section 3.2 reveals the following properties of

the long-run equilibrium with an optimal congestion pricing.

Lemma 8 Under the congestion toll, the long-run equilibrium has the following proper-

ties.

(a) Let supp (No∗
i ) be the support of the long-run equilibrium number No∗

i (x) of com-

muters residing at x. Then, for any xi ∈ supp (No∗
i ) and xj ∈ supp (No∗

j ),

{

yi − cbo∗i

αi
−
yj − cbo∗j

αj

}

(xi − xj) ≥ 0. (42)

(b) Suppose Assumption 6. Then, the city boundary XoB and equilibrium utility level

(vo∗i )i∈G are uniquely determined and are given by

XoB =
∑

i∈G

[

{ri+1}
−µ − {ri}

−µ
]

{rA}
µ yi − cbo∗i

αiτ
, (43a)

vo∗i = (1− µ)1−µµµαi



{ri+1}
−µ yi − cbo∗i

αi
−

i
∑

j=1

[

{rj+1}
−µ − {rj}

−µ
] yj − cbo∗j

αj



 ∀i ∈ G,

(43b)

where ri is represented as (28).

(c) The spatial distribution (No
i (x))i∈G of commuters is a long-run equilibrium if and

only if it satisfies the KKT conditions of the following optimization problem:

max
(Ni(x))i∈G

1

1− µ

∫ XoB

0

∑

i∈G

voi (x)Ni(x) dx (44a)

s.t.

∫ XoB

0
Ni(x)dx = Ni ∀i ∈ G, (44b)

Ni(x) ≥ 0 ∀i ∈ G, ∀x ∈ [0, XoB], (44c)

where voi (x) is expressed as

voi (x) = (1− µ)1−µIoi (x){I
o(xi)}

−µ ∀i ∈ G, ∀x ∈ [0, XoB]. (44d)

Lemmas 8 (a) and (b) show that the urban spatial structure at the long-run equilibrium

under the congestion toll has the same properties as the case without pricing: commuters

with a high time-based income net of commuting cost reside farther from the CBD; cities

expand outward as commuters become richer or more flexible. Furthermore, imposing an

optimal congestion toll can lead to changes in the city boundary and the spatial sorting

pattern of commuters since it alters the short-run bottleneck costs of commuters when

commuters are heterogeneous in their value of time.
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From Lemma 8 (b), we can also see that the capacity expansion causes the city to

physically expand outward. Furthermore, although the expansion generates a Pareto

improvement in the short-run, it does not necessarily lead to a Pareto improvement in

the long-run like the case without pricing.

Lemma 8 (c), together with Lemma 7 (b), demonstrates that the equilibrium with

pricing corresponds to the social optimum given that the social cost of commuting is

minimized in the short-run and a Pareto optimal distribution of commuters is achieved

in the long-run.

This lemma yields the following proposition.

Proposition 5

(a) Commuters with a high time-based income net of commuting cost (Ioi (x)/αi) reside

farther from the CBD at the long-run equilibrium under an optimal peak-load toll.

(b) Imposing an optimal peak-load toll alters the urban spatial structure if commuters

are heterogeneous in their value of time.

(c) The bottleneck capacity expansion generates a Pareto improvement in the short-run,

but it can lead to an unbalanced distribution of benefits in the long-run: commuters

residing closer to the CBD gain and those residing farther from the CBD lose.

5 Comparison between equilibria with and without pricing

5.1 Short- and long-run equilibria

In the previous sections, we have investigated the properties of equilibria with and without

pricing and have shown that the urban spatial structure changes with the imposition of

an optimal congestion toll. This section compares these equilibria to demonstrate the

effects of the congestion toll concretely. Note that its effects essentially depend on the

distributions of income, values of time, and schedule delays. We set (yi)i∈G , (αi)i∈G ,

and (βi)i∈G such that the relationship between residential location and commute timing

choices is consistent with the empirical evidence provided by Fosgerau and Kim (2019).9

Specifically, by supposing Assumptions 1–6, we consider a situation in which commuters

who reside farther from the CBD arrive at work farther from t∗ at the equilibria with and

without pricing.

Under this setting, commuters with small i are inflexible and have a high marginal

time-based schedule delay cost. Therefore, they are willing to pay in travel time or money

to reduce schedule delay, thereby arriving closer to their preferred arrival time t∗ at the

short-run equilibrium. The difference between short-run equilibrium bottleneck costs with

9Fosgerau and Kim (2019) show empirically that commuters traveling a longer distance tend to arrive
at work at the edge of the morning peak time while ones traveling a shorter distance at the peak time.
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and without pricing is thus given by

cbo∗i − cb∗i =
η

1 + η

G
∑

k=i+1

(αk − αi)
βk
αk

Nk

s
∀i ∈ G. (45)

This clearly shows that the sign of cbo∗i − cb∗i depends on the difference in commuters’

value of time.

Commuters with small i have a low time-based income net of commuting costs both

before and after imposing the toll. This implies that they reside closer to the CBD at the

long-run equilibrium. Therefore, we have

XoB −XB =
∑

i∈G

[

{ri+1}
−µ − {ri}

−µ
]

{rA}
µ c

b∗
i − cbo∗i

αiτ
, (46a)

vo∗i − v∗i = (1− µ)1−µµµ



{ri+1}
−µ{cb∗i − cbo∗i } −

i
∑

j=1

[

{rj+1}
−µ − {rj}

−µ
] αi

αj
{cb∗j − cbo∗j }



 ∀i ∈ G.

(46b)

(46a) indicates that the spatial size of the city can expand or shrink by imposing the toll

due to changes in the short-run bottleneck cost. (46b) shows that the difference between

the bottleneck costs with and without pricing affects the commuters’ benefits from the

imposition of the toll.

The difference of the equilibrium utility level (46b) also shows that even if congestion

pricing generates a Pareto improvement in the short-run (i.e., cbo∗i ≤ cb∗i for all i ∈ G), it

does not necessarily lead to a Pareto improvement in the long-run (i.e., vo∗i ≥ v∗i for all

i ∈ G). This can occur in the following mechanism: improvements in the bottleneck cost

increase the income net of commuting cost and the lot size of commuters residing near the

CBD; this causes the city to expand outward; the spatial expansion of the city increases

the commuting distance of commuters residing farther from the CBD, which decreases

their income net of commuting cost.

To see the effects of an optimal peak-load pricing more concretely, we introduce an

additional assumption on the value of time in the following subsection. Specifically, we

analyze the following two cases:

Case A: rich commuters are flexible

Case B: rich commuters are inflexible

5.2 Simple examples

5.2.1 Case A: rich commuters are flexible

We first introduce the following assumption in addition to Assumptions 1–6.

Assumption 7 αi−1 < αi for all i ∈ G\{1}.
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Note that Assumptions 2–7 are not too restrictive. Indeed, if the income yi of commuters

i is proportional to their value of time αi (i.e., yi = φαi), Assumptions 5 and 7 (i.e.,

βi−1 ≥ βi and αi−1 < αi for all i ∈ G\{1}) are sufficient conditions for these assumptions

to hold.

In Case A, rich commuters are flexible and have a lower marginal time-based schedule

delay cost. This implies that rich commuters tend to avoid queuing time and paying

the toll rather than schedule delay. Thus, they arrive farther from their preferred arrival

time t∗ at the short-run equilibria with and without pricing. The short-run equilibrium

bottleneck costs with and without pricing satisfy

cbo∗i−1 − cb∗i−1 > cbo∗i − cb∗i ∀i ∈ G\{1}, (47a)

cbo∗G − cb∗G = 0. (47b)

We see from (47) that congestion pricing increases short-run equilibrium bottleneck costs

of all commuters other than richest ones. This reflects the fact that poor commuters pay

a higher toll and that the richest commuters are those who face no queuing cost at the

equilibrium without pricing and face no toll at the equilibrium with pricing.

The toll decreases the income net of commuting cost, which leads to a decrease in lot

size and the spatial size of city. This can be seen by substituting (47) into (46a). This

means that the city becomes denser with pricing, which is same as the standard results

of traditional location models considering static congestion (Kanemoto, 1980; Wheaton,

1998; Anas et al., 1998).

We see from (46b) and (47) that the difference between the equilibrium utility levels

with and without pricing satisfy

vo∗i−1 − v∗i−1 < vo∗i − v∗i ∀i ∈ G\{1}, (48a)

vo∗1 − v∗1 < 0, (48b)

vo∗G − v∗G > 0. (48c)

This shows that rich commuters gain and poor commuters lose from pricing in Case A.

This occurs because the spatial shrinkage of the city reduces the commuting distance,

which helps commuters residing farther from the CBD.

These results establish the following proposition.

Proposition 6 Suppose Assumptions 1–7. Then,

(a) rich commuters arrive farther from their preferred arrival time and reside farther

from the CBD at the equilibria with and without pricing;

(b) an optimal congestion pricing weakly increases the bottleneck costs of all commuters,

which causes the city to become denser and more compact;

(c) rich commuters gain and poor commuters lose from imposing the toll.
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5.2.2 Case B: rich commuters are inflexible

In Case B, we assume that rich commuters are inflexible and have a higher marginal

time-based schedule delay cost. That is, we suppose Assumptions 1–6 and 8.

Assumption 8 αi−1 > αi for all i ∈ G\{1}.

Note that Assumptions 2–6 and 8 are also not too restrictive. Indeed, if the income yi

of commuters i is given by φαi + ψ with φ > 0 and ψ > cbo∗1 , the sufficient conditions

for these assumptions to hold are given by Assumptions 3 and 8 (i.e., βi−1

αi−1
≥ βi

αi
and

αi−1 > αi for all i ∈ G\{1}).

In Case B, rich commuters are willing to pay in travel time or money to reduce schedule

delay, thereby arriving closer to their preferred arrival time t∗ at the short-run equilibria

with and without pricing. Thus, the short-run equilibrium bottleneck costs with and

without pricing satisfy

cbo∗i−1 − cb∗i−1 < cbo∗i − cb∗i ∀i ∈ G\{1}, (49a)

cbo∗G − cb∗G = 0. (49b)

The conditions in (49) shows that, in the short-run, a Pareto improvement is achieved

by imposing an optimal congestion toll. This happens because rich commuters experience

larger queuing time at the no-toll equilibrium and imposing the toll eliminates all queuing.

The conditions in (49) also indicate that the toll increases their income net of com-

muting cost. This leads to increases in their lot size, thereby increasing the city boundary

(i.e., XoB > XB). This can be confirmed by substituting (49) into (46a). This means

that the city becomes less dense with pricing, which contrasts with the standard results of

traditional location models that consider static congestion (Kanemoto, 1980; Wheaton,

1998; Anas et al., 1998).

By using (49), we obtain the following conditions on the equilibrium utility level,

which reveal that rich commuters gain and poor commuters lose from pricing in Case B.

vo∗i−1 − v∗i−1 > vo∗i − v∗i ∀i ∈ G\{1}, (50a)

vo∗1 − v∗1 > 0, (50b)

vo∗G − v∗G < 0. (50c)

This is due to the fact that the spatial expansion of the city increases the commuting

distance, thereby increasing commuting cost of poor commuters who reside farther from

the CBD.

We summarize the results as the following proposition.

Proposition 7 Suppose Assumptions 1–6 and 8. Then,

(a) rich commuters arrive closer to their preferred arrival time and reside closer to the

CBD at the equilibria with and without pricing.
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(b) an optimal congestion pricing generates a Pareto improvement in the short-run,

but it causes the city to become less dense and to spatially expand outward in the

long-run.

(c) rich commuters gain and poor commuters lose from imposing the toll.

5.3 Numerical examples

We numerically analyze the model to show the effects of an optimal congestion toll and

the bottleneck capacity expansion. In this analysis, we use the following parameter values:

G = 4, µ = 0.25, τ = 2 (min/km), rA = 1000, (Ni)i∈G = (100, 1000, 1000, 100).

(51a)

The values of yi, αi, βi, η are set to be consistent with Assumptions 2–8 and the empirical

result (Small, 1982):

Case A:







(yi)i∈G = (90, 120, 150, 240), (αi)i∈G = (0.3, 0.4, 0.5, 0.8),

(βi)i∈G = (0.28, 0.25, 0.25, 0.05), η = 4.0.
(51b)

Case B:







(yi)i∈G = (230, 220, 195, 185), (αi)i∈G = (0.8, 0.7, 0.45, 0.35),

(βi)i∈G = (0.75, 0.65, 0.35, 0.02), η = 4.0.
(51c)

We conduct comparative statics with respect to bottleneck capacity s. As we can see

from Figure 2, imposing the toll results in a denser urban spatial structure in Case A,

whereas it leads to spatial expansion of the city in Case B. Figures 3 and 4 indicate that,

in both cases, congestion pricing leads to an unbalanced distribution of benefits among

commuters: rich commuters gain and poor commuters lose. These results are consistent

with those presented in Section 5.2.

Figures 3 (b) and 4 (b) also show that
dv∗4
ds < 0 and that

dvo∗4
ds < 0. This implies

that a Pareto improvement is not achieved by expanding the bottleneck capacity in both

cases. More specifically, commuters residing farthest from the CBD lose from a capacity

improvement. This is also consistent with Propositions 3 and 5.

6 Conclusion

This study develops a model in which heterogeneous commuters choose their departure

times from home and residential locations in a closed monocentric city. We show that

commuters sort themselves both temporally and spatially according to their income, value

of time, and flexibility. We also reveal that the imposition of an optimal congestion toll

causes the city to spatially shrink or expand—this can help rich commuters but hurt poor

commuters. Furthermore, although the bottleneck capacity expansion generates a Pareto
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(a) Case A (b) Case B

Figure 2: Difference between city boundaries with and without pricing

without pricing

with pricing

(a) commuters 1 (the poorest commuters)

without pricing

with pricing

(b) commuters 4 (the richest commuters)

Figure 3: Utility of commuters in Case A

without pricing

with pricing

(a) commuters 1 (the richest commuters)

without pricing

with pricing

(b) commuters 4 (the poorest commuters)

Figure 4: Utility of commuters in Case B

improvement in the short-run, it can lead to an unbalanced distribution of benefits among

commuters in the long-run: commuters residing closer to the CBD gain and commuters

residing farther from the CBD lose. This implies that if poor commuters reside farther

from the CBD, the capacity expansion financed by the revenue from congestion pricing

could be regressive.

In this paper, we consider a city with a single bottleneck. Therefore, we need to

examine the robustness of our result by analyzing a model with multiple bottlenecks

(Kuwahara, 1990; Akamatsu et al., 2015; Fosgerau and Kim, 2019). In addition, it would

be valuable for future research to study toll-revenue redistribution schemes that lead to

a Pareto improvement. It is also important to investigate effects of policies other than

optimal congestion pricing, such as step tolls (Arnott et al., 1990a; Laih, 1994, 2004; Xiao
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et al., 2011; Lindsey et al., 2012), TDM measures (Mun and Yonekawa, 2006; Takayama,

2015) for alleviating traffic congestion, and urban policies (e.g., urban growth boundary,

floor-to-area ratio regulations) to substitute for congestion pricing (Brueckner, 2007; Anas

and Rhee, 2007; Pines and Kono, 2012)

A Equivalence between the bid-rent and complementarity

approaches

A.1 Equilibrium conditions

We show that long-run equilibrium conditions (9) coincide with those of the bid-rent

approach. The condition (9a) can be rewritten as







r(x) + rA = Ψi(x, v
∗
i ) if Ni(x) > 0

r(x) + rA ≥ Ψi(x, v
∗
i ) if Ni(x) = 0

∀x ∈ R+, ∀i ∈ G. (52)

Ψi(x, v
∗
i ) is given by

Ψi(x, v
∗
i ) =

{

(1− µ)1−µµµIi(x)

v∗i

}

1
µ

. (53)

Furthermore, since maxai [Ii(x)−{v∗i }
1/(1−µ)a

−µ/(1−µ)
i ]/ai = Ψi(x, v

∗
i ),

10 Ψi(x, v
∗
i ) can be

interpreted as the bid-rent function of commuters i.11 This shows that conditions in (9b),

(9c), and (52) are the equilibrium conditions of the bid-rent approach (see, e.g., Fujita,

1989, Definition 4.2).

A.2 Relative steepness of bid-rent curves

As is shown in Fujita (1985), we can say that Ψi(x, v
∗
j ) is steeper than Ψj(x, v

∗
i ) if and

only if the following condition holds:

∂Ψi(x, v
∗
i )

∂x
<
∂Ψj(x, v

∗
j )

∂x
whenever Ψi(x, v

∗
i ) = Ψj(x, v

∗
j ). (54)

Differentiating the bid-rent function Ψi(x, v
∗
i ) with respect to location x, we have

∂Ψi(x, v
∗
i )

∂x
= −

Ψi(x, v
∗
i )

1/µ

µ

αiτ

Ii(x)
. (55)

10{v∗}1/(1−µ)a
−µ/(1−µ)
i represents the amount of numéraire good that is necessary to achieve utility

level v∗ when the lot size of the house is ai.
11As shown in, e.g., Fujita (1989), this maximization problem defines the bid-rent function.
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Therefore, the condition (54) can be rewritten as

Ii(x)

αi
>
Ij(x)

αj
. (56)

B Proof of Lemma 3

The optimization problem (21) is equivalent to

min
r(x)

∑

i∈G

Nimax
x

v(Ii(x), r(x) + rA) +D2(r(x)) (57a)

s.t. r(x) ≥ 0 ∀x ∈ R+. (57b)

Since the objective function of this problem is strictly convex, r(x) is uniquely determined.

Furthermore, the uniqueness of r(x) implies that the indirect utility v(Ii(x), r(x) + rA) is

uniquely determined. Therefore, (v∗i )i∈G is also uniquely determined.

C Proof of Lemma 4

For any xa, xb(> xa) ∈ supp (
∑

i∈G N
∗
i ), there is no x

c ∈ (xa, xb) such that
∑

i∈G N
∗
i (x

c) =

0 since the indirect utility is given by (18). Thus, we obtain Lemma 4 (a).

Differentiating the indirect utility with respect to location x, we have

dvi(x)

dx
=







vi(x)
{

− αiτ
Ii(x)

− µ
I(x)

dI(x)
dx

}

if µI(x) ≥ rA,

vi(x)
{

− αiτ
Ii(x)

}

< 0 if µI(x) ≤ rA.
(58a)

Therefore, at the long-run equilibrium, the total income net of commuting costs satisfies







dI(x)
dx < 0

µI(x) ≥ rA
∀x ∈ supp (

∑

i∈G N
∗
i ). (59)

Furthermore, it follows from the long-run equilibrium condition (9a) that I(XB) also

satisfies

µI(XB) = rA. (60)

Thus, we have Lemma 4 (b).
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D Proof of Lemma 5

At the long-run equilibrium, the indirect utility (5) satisfies vi(x) = vi(Xi+1) for all

x ∈ supp (N∗
i ), and this condition gives

r(x) + rA
r(Xi+1) + rA

=

{

Ii(x)

Ii(Xi+1)

}
1
µ

. (61)

Furthermore, from (9b) and Proposition 2, we have ai(x) = 1
N∗

i (x)
. Substituting these

into (4), we obtain N∗
i (x) as follows:

N∗
i (x) =

1

µ
{Ii(x)}

1−µ
µ {Ii(Xi+1)}

− 1
µ {r(Xi+1) + rA}. (62)

Therefore, the population constraint (19b) can be rewritten as

Ni = −
1

αiτ
{r(Xi+1) + rA}

[

1−

{

Ii(Xi)

Ii(Xi+1)

}
1
µ

]

= −
r(Xi+1)− r(Xi)

αiτ
. (63)

Since r(XI+1) = 0, we have Lemma 5.

E The case of public land ownership

We consider the case of public land ownership, in which the aggregate land rent is equally

redistributed to all commuters. In this case, the budget constraint of commuter i who

resides at x and arrives at work at time t is given by

yi +
R

∑

j∈G Nj
= zi(x, t) + {r(x) + rA}ai(x, t) + ci(X, t), (64)

where R =
∫ XB

0 r(x)dx is the aggregate land rent.

The land rent r(x) + rA is obtained by following the same procedure as in the case

wherein land is owned by absentee landlords:

r(x) + rA =

{

ζ
I⋆i (x)

v⋆i

}
1
µ

(65)

where ζ ≡ (1− µ)1−µµµ and

I⋆i (x) = Ib⋆i − αiτx, (66a)

Ib⋆i = yi +
R

∑

j∈G Nj
− cb⋆i , (66b)

v⋆i = ζI⋆i (X
⋆
i+1)r

−µ
i+1 = ζI⋆i (X

⋆
i )r

−µ
i (66c)
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X⋆
i =

i−1
∑

j=1

[

{rj+1}
−µ − {rj}

−µ
]

{ri}
µ
Ib⋆j
αjτ

, (66d)

cb⋆i =







cb∗i without pricing,

cbo∗i with pricing.
(66e)

It follows from this that the aggregate land rent R satisfies

R =
µ

1 + µ

∑

i∈G

1

αiτ

{

riI
⋆
i (X

⋆
i )− ri+1I

⋆
i (X

⋆
i+1)

}

− rAX
⋆B, (67)

where X⋆B = X⋆
G+1. After some tedious calculations, this equation is rewritten as

R =
µ

1 + µ

{

R+
∑

i∈G

Ni(yi − cb⋆i )

}

−
1

1 + µ
rAX

⋆B. (68)

Therefore, we have

R =

∑

i∈G

(

µNi − [{ri+1}
−µ − {ri}

−µ] {rA}
1+µ 1

αiτ

)

(yi − cb∗i )

1 +
∑

i∈G [{ri+1}−µ − {ri}−µ] {rA}1+µ 1
αiτ

∑
j∈G Nj

. (69)

We can investigate the properties of equilibria with and without pricing in the case of

public land ownership by replacing the income yi of the main text with yi +R/
∑

j∈G Nj .

We conduct comparative statics with respect to bottleneck capacity s under the same

parameter values as in Section 5.3. We see from Figures 5–7 that the results in the

case of public land ownership are qualitatively the same as those obtained with absentee

landlords.
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