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Abstract6

We consider an infinitely repeated prisoner’s dilemma under costly observation.7

Players choose whether to observe the opponent or not after they choose their actions.8

If a player observes the opponent, he pays a small observation cost and he can observe9

the action chosen by his opponent in that period. Otherwise, he receives no signal or an10

inaccurate private signal. First, we prove an efficiency result that players can achieve a11

symmetric nearly Pareto efficient outcome. Then, we extend the idea with an interim12

public randomization device, which is realized just after players choose actions. Players13

can decide their observational decision after they see the interim public randomization14

device. We present a folk theorem for a sufficiently small observation cost when players15

are sufficiently patient.16

Keywords Costly observation; Efficiency; Folk theorem; Prisoner’s dilemma17

JEL Classification: C72; C73; D8218

1 Introduction19

A standard insight in the theory of repeated games is that repetition enables players to20

obtain collusive and efficient outcomes. However, a common and important assumption21

behind such results is that the players in the repeated game can monitor each other’s past22

behavior without any cost. We analyze an infinitely repeated prisoner’s dilemma game where23

each player can only observe his opponent’s previous action at a (small) cost after they24

choose actions. We establish an approximate efficient result. Then, we introduce an interim25

public randomization device, which is realized just after they choose actions, and show an26

approximate folk theorem.27
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In our model, we consider costly observation as a monitoring structure. Each player1

chooses his action, and then he makes an observational decision. If a player chooses to observe2

his opponent, then he can observe the action chosen by the opponent. The observational3

decision itself is unobservable. The player receives extremely inaccurate private signal.4

Furthermore, no player can statistically identify the observational decision of his oppo-5

nent. That is, our monitoring structure is neither almost-public private monitoring (Hörner6

and Olszewski (2009); Mailath and Morris (2002, 2006); Mailath and Olszewski (2011)), nor7

almost perfect private monitoring (Bhaskar and Obara (2002); Chen (2010); Ely and Välimäki8

(2002); Ely et al. (2005); Hörner and Olszewski (2006); Sekiguchi (1997); Piccione (2002);9

Yamamoto (2007, 2009))10

We present two results. First, we show that the symmetric Pareto efficient payoff vector11

can be approximated by a sequential equilibrium under some assumptions regarding the12

payoff matrix when players are patient and the observation cost is small (efficiency). This13

first result shows that collusive outcomes can be approximated if it is symmetric. The14

second result is an approximate folk theorem. We introduce an interim public randomization15

device just after players choose actions. Players can see the public randomization before they16

choose their observational decisions. We present an approximate folk theorem under some17

assumptions regarding the payoff matrix when players are patient and the observation cost is18

small. We also show that a (standard) public randomization device which is realized at the19

end of stage game does not work instead of the interim public randomization device. This20

second result shows that any collusive outcomes can be approximated if an interim public21

randomization device is available.22

The nature of our strategy is similar to the keep-them-guessing strategies in Chen (2010).23

In our strategy, each player i chooses Ci with certainty at the cooperation state, but random-24

izes the observational decision. Depending on the observation result, players change their25

actions from the next period. If the player plays Ci and observes Cj, he remains in a cooper-26

ation state. However, in other cases (for example, the player does not observe his opponent),27

player i moves out of the cooperation state and chooses Di. From the perspective of player j,28

player i plays the game as if he randomizes Ci and Di, even though player i chooses pure29

actions in each state. Such randomized observations create uncertainty about the opponents’30

state in each period and give an incentive to observe.31

Our main contribution is the efficiency result and an approximate folk theorem in an32

infinitely repeated prisoner’s dilemma. Some previous studies show that the efficiency result33

holds if communication or private signals are available. For example, Miyagawa et al. (2008)34

assume that some noisy information is available even if players do not observe their opponent.35

We discuss previous studies in Section 2. Our efficiency result holds in the least stringent36

setting compared with other studies.37

Another contribution of the paper is a new approach to the construction of a sequential38

equilibrium. We consider randomization of observation, whereas previous studies confine39

their attention to randomization of actions. In many cases, the observational decision is40

supposed to be unobservable in costly observation models. Therefore, even if a player ob-41

serves his opponent, he cannot know whether the opponent observes him. If the continuation42

strategy of the opponent depends on the observational decision in the previous period, the43

opponent might randomize actions from the perspective of the player, even though the op-44

ponent chooses pure actions in each history. This new approach enables us to construct a45

nontrivial sequential equilibrium.46

The rest of this paper is organized as follows. In Section 2, we discuss previous studies,47
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and in Section 2.1, we focus on some previous literature and explain some difficulties in1

constructing a cooperative relationship in an infinitely repeated prisoner’s dilemma under2

costly observation. Section 3 introduces a repeated prisoner’s dilemma model with costly3

observation. In Section 4, we present our efficiency result. For efficiency result, we do not4

utilize an interim public randomization device. After that, applying the efficiency result,5

we present a folk theorem with an interim public randomization device. Section 5 provides6

concluding remarks.7

2 Literature Review8

We review previous studies on repeated games under costly observation.9

One of the greatest difficulties in costly observation is observing the observation activity10

of opponents, because observational behavior under costly observation is often assumed to be11

unobservable. Each player has to check this unobservable observation behavior to motivate12

the other player to observe. Some previous studies circumvent the difficulty by assuming that13

the observational decision is observable. Kandori and Obara (2004) and Lehrer and Solan14

(2018) assume that players can observe other players’ observational decisions.15

Ben-Porath and Kahneman (2003) analyze an information acquisition model with com-16

munication. They show that players can share their information through explicit communica-17

tion, and present a folk theorem for any level of observation cost. Ben-Porath and Kahneman18

(2003) consider randomizing actions on the equilibrium path. In their strategy, players re-19

port their observations to each other. Then, each player can check whether the other player20

observes him by the reports. Therefore, players can check the observation activities of other21

players.22

Miyagawa et al. (2008) consider that communication is not allowed, but players can obtain23

imperfect private signals about the other player’s action even when they do not observe their24

opponent. They show that players can communicate with each other using private signals,25

and present a folk theorem for any level of observation cost.26

Another approach is introduction of nonpublic randomization device to infinitely repeated27

prisoner’s dilemma. The nonpublic randomization device enables players to correlate their28

actions. Hino (2019) shows that if a nonpublic randomization device is available before players29

choose their actions and observational decisions, then players can achieve an efficiency result.30

If these assumptions do not hold, that is, if costless information is unavailable, then31

cooperation is difficult. Two other papers present folk theorems without costless information.32

Flesch and Perea (2009) consider observation structures similar to our structure. In their33

model, players can purchase the information about the actions taken in the past if the players34

incur an additional cost. That is, some organization keeps track of all the sequence of the35

action profiles, and each player can purchase the information from the organization. Flesch36

and Perea (2009) present a folk theorem for an arbitrary observation cost. Miyagawa et al.37

(2003) consider less stringent models. They assume that no organization keeps track of all38

the sequence of the action profiles for players. Players can observe the opponent’s action39

in the current period, and cannot purchase the information about the actions in the past.40

Therefore, if a player wants to keep track of actions chosen by the opponent, he has to pay41

observation cost every period. This observation structure is the same as the one in the current42

paper. Miyagawa et al. (2003) present a folk theorem with a small observation cost.43

The above two studies, Flesch and Perea (2009) and Miyagawa et al. (2003), consider44
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communication through mixed actions. To communicate with each other by mixed actions,1

the above two papers need more than two actions for each player. This means that their2

approach cannot be applied to infinitely repeated prisoner’s dilemma under costly. We discuss3

their implicit communication in Miyagawa et al. (2003); Flesch and Perea (2009) in Section 2.14

in more detail.5

It is an open question of whether players can achieve an efficiency result and a folk6

theorem in two-action games, even though the observation cost is sufficiently small. We7

show an efficiency result without any randomization device using a mixed observation rather8

than mixed actions when observation cost is small. We will extend the efficiency result using9

public randomization, and present a folk theorem in infinitely repeated prisoner’s dilemma10

when observation cost is small.11

2.1 Cooperation failure in the prisoner’s dilemma (Miyagawa et al.12

(2003))13

Consider the bilateral trade game with moral hazard in Bhaskar and van Damme (2002)14

simplified by Miyagawa et al. (2003).15

Player 2
C2 D2 E2

Player 1
C1 1 , 1 −1 , 2 −1 , −1
D1 2 , −1 0 , 0 −1 , −1
E1 −1 , −1 −1 , −1 0 , 0

Table 1: Extended prisoner’s dilemma

Players choose whether he observes the opponent or not together with his action choice.16

Miyagawa et al. (2003) consider the following keep-them-guessing automaton strategy to17

approximate payoff vector (1, 1). There are three states: cooperation, punishment, and18

defection.19

In the cooperation state, each player chooses Ci with a sufficiently high probability and20

chooses Di with the remaining probability. Players observe their opponent irrespective of21

their actions in the cooperation state. If players observe (C1, C2) or (D1, D2), the state22

remains the same. When (C1, D2) or (D1, C2) is realized, the state moves to the punishment23

state. The state moves to the defection state if player i chooses Ei or observes Ej. In the24

punishment state, both players choose Ei for some periods, and then the state moves back25

to a cooperation state. In the defection state, both players choose Ei, and the state remains26

the same. In both the punishment state and the defection state, the players do not observe27

their opponent.28

Players have an incentive to observe their opponent because their opponent randomizes29

actions Cj and Dj in the cooperation state. If a player does not observe their opponent,30

the player cannot know in which state the opponent is in the next period. If the opponent31

is in the cooperation state, action Ei is a suboptimal because the opponent never chooses32

action Ej. That is, choosing action Ei has some opportunity cost because the opponent33

is in the cooperation state with a positive probability. However, if the opponent is the34

punishment state, then action Ei is a unique optimal action. Choosing actions Ci or Di35

also has opportunity costs because the opponent is in the punishment state with a positive36

probability. To avoid these opportunity costs, players have an incentive to observe.37
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These ideas do not hold in two-action games. Suppose that action Ei is not available1

and consider the prisoner’s dilemma as an example. If players randomize Ci and Di in2

the cooperation state, then one of the best response actions in the cooperation state is3

action Di. The best response action in punishment and defection states is also Di. As a4

result, irrespective of player i’s observation result, one of the optimal continuation strategies5

is choosing Di and not observe player j every period. Therefore, Players don’t have an6

incentive to observe.7

I consider the following automaton strategy. In the initial state, player i randomizes8

actions and observe the opponent with a positive probability only when he chooses Ci. If he9

chooses Ci and observes Cj, he moves to the cooperation state in the next period. Otherwise,10

he moves to the defection state.1 In the cooperation state, player i chooses action Ci with11

probability one, but randomizes observational decision. Only if player i chooses Ci and12

observes Cj, player i can remain in the cooperation state. Otherwise, player i moves to the13

defection state.14

The reason why our strategy works is that the strategy prescribes pure action of Ci and15

does not prescribe a mixed actions in the cooperation state. The repetition of Di from the16

cooperation state is not prescribed action. However, it causes another problem related to the17

observation incentive. As player j does not randomize his action in the cooperation state,18

player i can easily guess player j’s action if he knows that player j is in the cooperation state.19

In such a situation, player i loses the observation incentive again.20

Our strategy can overcome this difficulty as well. Since player j randomize his obser-21

vational decisions in the cooperation state, player i in the cooperation state cannot know22

whether player j observed player i or not. If player j does not observes player i, player j23

moves to the defection state and chooses Dj. Player i cannot be certain that player j is24

in the cooperation state even if he chooses Ci and observes Cj in the previous period. To25

obtain the latest information about player j’s state, player i has an incentive to observe the26

opponent in the cooperation state. This is why player i has an incentive to observe player j27

given our strategy.28

3 Model29

The stage game is a symmetric prisoner’s dilemma, but it has two phases: the action phase30

and the observation phase. In the action phase, each player i (i = 1, 2) chooses an action,31

Ci or Di. Let Ai ≡ {Ci, Di} be the set of actions for player i. After both players chooses32

actions, each player i receives a signal zi costlessly and privately. The set of private signal33

for player i is finite set and denoted by Zi. A signal profile z = (z1, z2) =∈ Z ≡ Z1 × Z2 is34

realized with probability ρ(z|a) given an action profile a = (a1, a2) ∈ A ≡ A1 × A2.35

Assumption 1. There exists some ζ > 0 such that36

ρ(z|a) > ζ, ∀z ∈ Z, ∀a ∈ A.

We define the accuracy ηi of the signal zi as follows.37

ηi ≡1− min
zi∈Zi,a,a′∈A

ρ(zi|a
′)

ρ(zi|a)
.

1For the formal proof, we need another state (transition state). Transition state is crucial only when we
consider off the equilibrium path. Therefore, it is omitted here.
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The base game payoff for player i is given by πi(ai, zi). Given an action profile a ∈ A, an1

expected base game payoff for player i, ui(a) ≡ Σzi∈Zi
P (zi|a)πi(ai, zi), is displayed in Table 2.2

Player 2
C2 D2

Player 1
C1 1 , 1 −ℓ , 1 + g
D1 1 + g, −ℓ 0 , 0

Table 2: Prisoner’s dilemma

3

We make a usual assumption about the above payoff matrix.4

Assumption 2. (i) g > 0 and ℓ > 0; (ii) g − ℓ < 1.5

The first condition implies that action Ci is dominated by action Di for each player i, and the6

second condition ensures that the payoff vector of action profile (C1, C2) is Pareto efficient.7

We impose an additional assumption.8

Assumption 3. g − ℓ > 0.9

Assumption 3 is the same as Assumption 1 in Chen (2010).10

Players simultaneously choose their observational decision in the observation phase after11

they choose their actions in the action phase. Let mi represent the observational decision12

for player i. Let Mi ≡ {0, 1} be the set of observational decisions for player i, where mi = 113

represents “to observe the opponent,” and mi = 0 represents “not to observe the opponent.”14

If player i observes the opponent, he incurs an observation cost λ > 0, and receives complete15

information about the action chosen by the opponent at the end of the stage game. If16

player i does not observe the opponent, he does not incur any observation cost and obtains17

no information about his opponent’s action. We assume that the observational decision for18

a player is unobservable.19

A stage behavior for player i is a pair of base game action ai for player i and observational20

decision mi for player i and is denoted by bi = (ai,mi). An outcome of the stage game is a21

pair of stage behaviors b = (b1, b2). Let Bi ≡ Ai×Mi be the set of stage-behaviors for player i,22

and let B ≡ B1 × B2 be the set of outcomes of the stage game. Given an outcome b ∈ B,23

the stage game payoff πi(b) for player i is given by24

Ui(b) ≡ ui(a1, a2)−mi · λ.

For any observation cost λ > 0, the stage game has a unique stage game Nash equilibrium25

outcome, b∗ = ((D1, 0), (D2, 0)).26

Let δ ∈ (0, 1) be a common discount factor. Players maximize their expected average27

discounted stage game payoffs. Given a sequence of outcomes of the stage games (bt)∞t=1,28

player i’s payoff is given by average discounted stage game payoff:29

(1− δ)
∞
∑

t=1

δt−1Ui(b
t).

Player i’s nonaveraged payoff is given by:30

∞
∑

t=1

δt−1Ui(b
t).
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We assume that an interim public randomization device is available just before players1

choose their observational decisions. The random variable X is uniformly distributed over2

[0, 1) independently of the action profile. Each player observes the realized public random-3

ization without any cost.4

Let oi ∈ Aj ∪ {ϕi} be an observation result for player i. Observation result oi = aj ∈ Aj5

implies that player i chose observational decision mi = 1 and observed aj. Observation6

result oi = ϕi implies that player i chose mi = 0, that is, he obtains no information about7

the action chosen by the opponent.8

Let hti be a (private) history of player i at the beginning of the action phase in pe-9

riod t ≥ 2. This history hti is a sequence of his own actions, realized public randomizations,10

observation results, and private signals up to period t− 1: hti = (aki , x
k, oki , z

k
i )

t−1
k=1. We omit11

the observational decisions mk
i (k < t) from hti because observation result oki implies the ob-12

servational decision mk
i for any k < t. Let H t

i denote the set of all the histories for player i13

at the beginning of the action phase in period t ≥ 1, where H1
i is an arbitrary singleton set.14

Similarly, a history ĥti at the beginning of the observation phase in period t ≥ 1 is (hti, a
t
i, x

t).15

An action strategy for player i in the repeated game is a function of the history hti of16

player i in the action phase to his (mixed) actions. An observation strategy for player i17

in the repeated game is a function of a history ĥti in the observation phase to his (mixed)18

observational decision. A (behavior) strategy is a pair of action strategy and observation19

strategy.20

The belief ψt
i of player i in period t is a function of the history hti in period t to a21

probability distribution over the set of histories for player j in period t; H t
j . Let ψi ≡ (ψt

i)
∞
t=122

be a belief for player i, and ψ = (ψ1, ψ2) denote a system of beliefs.23

A strategy profile σ is a pair of strategies σ1 and σ2. Given a strategy profile σ, a sequence24

of completely mixed behavior strategy profiles (σn)∞n=1 that converges to σ is called a tremble.25

Each completely mixed behavior strategy profile σn induces a unique system of beliefs ψn.26

The solution concept is a sequential equilibrium. We say that a system of beliefs ψ is27

consistent with strategy profile σ if a tremble (σn)∞n=1 exists such that the corresponding28

sequence of systems of beliefs (ψn)∞n=1 converges to ψ. Given the system of beliefs ψ, strategy29

profile σ is sequentially rational if, for each player i, the continuation strategy from any30

history in each phase is optimal given his belief and the opponent’s strategy. It is defined31

that a strategy profile σ is a sequential equilibrium if a consistent system of beliefs ψ for32

which σ is sequentially rational exists.33

4 Results34

In this section, we show our efficiency result. Then, applying the efficiency result, we present35

a folk theorem with an interim public randomization device.36

To prove the desired propositions, first, we assume η1 = η2 = 0. It means that a player37

obtains no information about the action of the opponent if he does not observe the opponent.38

We present related propositions given η1 = η2 = 0. After that, we will show the desired39

propositions using the related propositions.40
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4.1 Efficiency1

The following proposition shows that the symmetric efficient outcome is approximated by a2

sequential equilibrium if the observation cost λ is small and the discount factor δ is moderately3

low.4

Proposition 1. Suppose that η1 = η2 = 0, Assumptions 2 and 3 are satisfied. For any ε > 0,5

there exist δ ∈
(

g

1+g
, 1
)

, δ ∈ (δ, 1), and λ > 0 such that for any discount factor δ ∈ [δ, δ] and6

for any observation cost λ ∈ (0, λ), there exists a symmetric sequential equilibrium σ∗ whose7

payoff vector (v∗1, v
∗
2) satisfies v

∗
i ≥ 1− ε for each i = 1, 2.8

Proof. See Appendix A.9

We here present the main idea. The precise proof will be give in Appendix A.10

Strategy11

First, we define our strategy σ∗. Fix any ε > 0. We define ε, δ, δ, and λ as follows.12

ε ≡
ℓ2

54(1 + 2g)3
ε

1 + ε
,

δ ≡
g

1 + g
+ ε,

δ ≡
g

1 + g
+ 2ε < 1,

λ ≡
1

16

ℓ

(1 + 2g)2
ε2.

We fix an arbitrary discount factor δ ∈ [δ, δ] and an arbitrary observation cost λ ∈ (0, λ).13

Our strategy σ∗ is represented by an automaton independently of private signal z. Let us14

consider the following automaton who has four types of states: initial state ω1
i , cooperation15

state (ωC,t
i )∞t=2, transition state (ωE,t

i )∞t=2, and defection state ωD
i . In the initial state ω1

i ,16

player i chooses Di with probability βi,1, and chooses Ci with probability 1 − βi,1.
2When17

player i chooses Ci, he observes the opponent with probability 1−βi,2. Player i never observes18

the opponent when player i chooses Di. In the cooperation state ωC,t
i (t ≥ 2), player i chooses19

Ci. If player i chooses Ci, he chooses mi = 1 with probability 1 − βi,t+1. When player i20

chooses Di, he never observes the opponent. In the transition state ωE,t
i (t ≥ 2) and defection21

state ωD
i , player i chooses Di and does not observe the opponent irrespective of his action.22

The prescribed actions and observational decisions are summarized in the table below.23

State ω1
i ωC,t

i ωE,t
i ωD

i

Action
Ci w.p. 1− βi,1
Di w.p. βi,1

Ci Di Di

mi given Ci
mi = 1 w.p. 1− βi,2
mi = 0 w.p. βi,2

mi = 1 w.p. 1− βi,t+1

mi = 0 w.p. βi,t+1
mi = 0 mi = 0

mi given Di mi = 0

Table 3: Actions and observational decisions

2The probability βi,t(t ≥ 1) will be defined using (1) and (2) later.
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The state transition function is defined as follows. In the initial state ω1
i , if player i1

observes (ati, o
t
i) = (Ci, Cj), he moves to the cooperation state ωC,2

i . When player i chooses Di2

or observes Dj, the state in the next period is ωD
i . Only when player i observes (ati, o

t
i) =3

(Ci, ϕi), the state moves to the transition state ωE,2
i . In the cooperation state and transition4

state in period t, player i moves to the cooperation state ωC,t+1
i if he observes (ati, o

t
i) =5

(Ci, Cj). If (a
t
i, o

t
i) = (Ci, ϕi), he moves to the transition state ωE,t+1

i . If player i chooses Di6

or observes Dj, the state moves to the defection state ωD
i . Note that player i moves back7

to the cooperation state ωC,t+1
i from the transition state in period t if he observes (Ci, Cj),8

which is the event off the equilibrium path. The defection state ωD
i is an absorbing state and9

player i never moves to another state from the defection state ωD
i .10

The state transition is summarized in Figure 1.11

ω1
i ωC,2

i ωC,3
i ωC,t

i ωC,t+1
i

(Ci, Cj) (Ci, Cj)

. . .

(Ci, Cj)

ωD
i ωE,2

i ωE,t
i
. . . ωE,t

i ωE,t+1
i

(Ci, ϕi) (Ci, ϕi)

(Ci, ϕi) (Ci, ϕi) (Ci, ϕi)

(Ci, Cj) (Ci, Cj)

If player i chooses Di or observes Dj in any state, the state moves to ωD
i .

Figure 1: State transition function

Using the above automaton, we fix randomization probabilities in each state. Let us12

define ε′ ≡ δ − g

1+g
. First, we fix a small probability βi,1 ≡

1+g+ℓ

g+ℓ
ε′. We fix a probability βi,213

so that player j is indifferent between actions Cj and Dj in the initial state ω1
j . Hence, βi,214

is determined as the solution of the following equality.15

(1− βi,1)(1 + g) = (1− βi,1) · 1− βi,1 · ℓ+ δ(1− βi,1)(1− βi,2)(1 + g). (1)

The left-side is the nonaveraged payoff when player j chooses (a1j ,m
1
j) = (Dj, 0) in the initial16

state ω1
j . The right-side is the one when player j chooses (a1j ,m

1
j) = (Cj, 0).17

Probability βi,t+2(t ≥ 1) is determined to make player j in state ωC,t
j indifferent between18

mj = 1 and mj = 0 given his action Cj. Player j believes that player i is in the cooperation19

state with probability 1 − βi,t because he observes Cj in the previous period and he is sure20

that player j was in the cooperation state ωC,t−1
j in the previous period t − 1. Therefore,21

probability βi,t+2 is a solution of the following equality.22

δ(1− βi,t)(1− βi,t+1)(1 + g)

=(1− βi,t) · 1− βi,t · ℓ− λ

+ δ(1− βi,t) {(1− βi,t+1) · 1− βi,t+1 · ℓ+ δ(1− βi,t+1)(1− βi,t+2)(1 + g)} (2)
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The left-side is the nonaveraged payoff when player j chooses mj = 0 in period t. The right-1

side is the one when player j chooses mj = 1 in period t and chooses (Cj, 0) if he is in the2

cooperation state ωC,t+1
j in period t+ 1.3

Specifically, βi,2 is defined by (1), and βi,t+2 (t ∈ N) is defined by (2), or4

βi,2 =
(1− βi,1) {δ(1 + g)− g} − βi,1ℓ

δ(1− βi,1)(1 + g)

=
g + g2 − ℓ2 − (1 + g + ℓ)(1 + g)ε′

(g + ℓ) {g + (1 + g)ε′}
(

1− 1+g+ℓ

g+ℓ
ε′
)ε′

=
1 + g − ℓ

g
ℓ− (1 + g + ℓ)1+g

g
ε′

1 + ℓ
g

1
g+ℓ

ε′ − (1+g)(1+g+ℓ)
g(g+ℓ)

(ε′)2

1

g + ℓ
ε′

βi,t+2 =
(1− βi,t+1) {δ(1 + g)− g} − βi,t+1ℓ−

λ
δ(1−βi,t)

δ(1− βi,t+1)(1 + g)
, ∀ t ∈N.

The following Lemma 1, which is proved in Appendix B, ensures that any βi,t is greater than5

zero and smaller than one.6

Lemma 1. Suppose that Assumptions 2 and 3 are satisfied. Fix any discount factor δ ∈ [δ, δ]7

and observation cost λ ∈ (0, λ). Then, it holds that8

1

2

1 + g − ℓ

g + ℓ
ε′ < βi,2 < βi,4 < βi,6 · · · < βi,5 < βi,3 < βi,1 =

1 + g + ℓ

g + ℓ
ε′.

Strategy σ∗ is the strategy defined by the above automaton.9

Next we define a consistent system of beliefs with strategy profile σ∗. We consider a10

sequence of behavioral strategy profiles (σ̂n)∞n=1 such that each strategy profile attaches a11

positive probability to every move, but puts far greater weights on the trembles on Ci in the12

defection state ωD
i compared with other stage behaviors in the other states. These trembles13

induce a consistent system of beliefs that player i at any defection state ωD
i is sure that the14

state of their opponent is the defection state ωD
j or transition state ωE,t

j for some t ≥ 2.15

Let us confirm this property of the belief. There are two cases where player i moves to the16

defection state ωD
i ; (1) player i observes Dj, (2) player i chooses Di. The property is obvious17

in the first case. In any state of player j, player j moves to the defection state ωD
j after he18

chooses Dj. Furthermore, the defection state ωD
j is an absorbing state. Therefore, player i is19

certain that player j is in the defection state ωD
j after player i observes Dj. The property is20

not obvious in the second case; ai = Di. Let us consider the following history of player i in21

period 3. Player i chooses ai = Di and mi = 0 in period 1, and he chooses Ci and mi = 1 (by22

mistakes) and observes Cj in period 2. We can consider the following two types of player j’s23

histories which are consistent with the history of player i. The first type of history is that24

player j chooses aj = Dj in period 1, and he chooses aj = Cj (by mistake) at the defection25

state ωD
j in period 2. The second type of history is that player j chooses aj = Cj and mj = 026

in period 1, and he chooses aj = Cj (by mistake) at the transition state ωE,2
j in period 2. As27

we put far greater weights on the trembles on Cj in the defection state ωD
j , player i is sure28

that the first type of history is realized, and player j is in the defection state ωD
j . A similar29

argument holds even if player i observes (ai, oi) = (Ci, Cj) many times after he chooses Di.30
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An illustration1

We here explain that the strategy σ∗ is a sequential equilibrium whose payoff vector (v∗1, v
∗
2)2

satisfies v∗i ≥ 1− ε for each i = 1, 2.3

Let us consider sequential rationality in each state. First, we consider the defection4

state ωD
i . As we have considered above, player i in the defection state ωD

i is certain that5

player j is in the defection state ωD
j . Therefore, action Di is optimal because player i is sure6

that player j does not observe player i. As player i is certain that player j is in the defection7

state ωD
j and chooses Dj, observational decision mi = 0 is also optimal.8

Let us consider sequential rationality in the initial and cooperation states. By the defini-9

tion of βj,2 and βj,3, player i is indifferent among (Ci, 1), (Ci, 0), and (Di, 0). Furthermore,10

if player i chooses Di in the initial state ω1
i , player j moves to the transition state ωE,2

j or11

defection state ωD
j . In either case, the continuation strategy of player j is a repetition of12

(aj,mj) = (Dj, 0). As the observation result has no effect on the conjecture over the con-13

tinuation strategy, player i has no incentive to choose mi = 0 when he chooses action Di.14

Therefore, it is optimal for player i to follow strategy σ∗ in the initial state ω1
i .15

In the cooperation state ωC,t
i (t ≥ 2), player i is indifferent to his observational decisions16

by the definition of βj,t+2. It is also suboptimal to choose (ati,m
t
i) = (Di, 1) as in the initial17

state ω1
i . Furthermore, the definition of βj,t+1 ensures that player i strictly prefers action Ci18

to Di in the cooperation state ωC,t
i . Using (2) for t− 1, we obtain the following equation.19

(1− βj,t)− βj,t+1ℓ+ δ(1− βj,t)(1− βj,t+1)(1 + g)− δ(1 + g) =
λ

δ(1− βj,t−1)
(3)

The first three terms on the right-hand side represent the nonaveraged payoff when player i20

chooses Ci and mi = 0 in the cooperation state ωC,t
i . The last term on the right-hand side is21

the nonaveraged payoff when player i chooses (ai,mi) = (Di, 0) in the cooperation state ωC,t
i .22

Therefore, (3) shows that choosing Di at the cooperation ω
C,t
i state is not optimal. Sequential23

rationality at the cooperation state ωC,t
i is satisfied.24

Another explanation is as follows. Suppose that player i weakly prefers action Di at the25

cooperation state ωC,t
i in period t. As player j moves to the transition state ωE,t+1

i or the26

defection state ωD
j after player i chooses Di in period t, the assumption implies that player i27

weakly prefers (ai,mi) = (Di, 0) from period t onwards. One of the optimal continuation28

strategies from the cooperation state ωC,t
i coincides with the one from the defection state ωD

i .29

Then, player i has no incentive to observe player j in the cooperation state ωt−1
i because the30

repetition of (ai,mi) = (Di, 0) is one of his optimal continuation strategies irrespective of the31

observation result. It contradicts the definition of βj,t+1. Therefore, player i strictly prefers32

action Ci in the cooperation state ωC,t
i .33

Next, let us consider the transition state ωE,t
i . In the transition state ωE,t

i , player i does not34

know the action chosen by the opponent in the previous period t− 1. If (ai, aj) = (Ci, Cj) is35

realized in the previous period, player i should be at the cooperation state ωC,t
i and action Di36

is suboptimal.37

Although action Di is suboptimal in the cooperation state ωC,t
i , the payoff when player i38

chooses Di at ω
C,t
i is close enough to the one when he chooses Di at ω

C,t
i when the observation39

cost λ is sufficiently small. If the payoffs are not close to each other, player i strictly prefers40

mi = 1 at the cooperation state ωC,t−1
i to know which state he should move to because the41

observation cost is small.42

11 / 29



The loss from choosing Di in the transition state ωE,t
i is small. The loss from choosing1

Ci is strictly positive. Player j is in the transition state ωE,t
j or defection state ωD

j with2

probability at least (1−βj,t−1)(1−βj,t), and then choosing Ci makes a loss of −ℓ. Therefore,3

choosing Ci is suboptimal at the transition state ωE,t
i . We will prove this fact in Appendix A.4

Next, let us consider the observation decision in the transition state ωE,t
i . It is straightfor-5

ward that if player i chooses Di, then mi = 0 is optimal. Assume that player i chooses Ci. If6

player j chooses Cj in the previous period, then player i should have been at the cooperation7

state ωC,t
i and one of the optimal stage behaviors given action Ci was mi = 0. If player j8

chooses Dj in the previous period, then one of player i’s optimal stage behaviors was mi = 0.9

In each case, mi = 0 is optimal. Therefore, mi = 0 is optimal in the transition state ωE,t
i .10

Lastly, let us consider the payoff. As player 1 prefers action Di in the initial state ω1
i , his11

payoff is given by12

v∗i = (1− δ)(1− βj,1)(1 + g)

= {1− (1 + g)ε′}

(

1−
1 + g + ℓ

g + ℓ
ε′
)

> 1−

(

1 + g +
1 + g + ℓ

g + ℓ

)

ε′

> 1− ε.

Therefore, we have obtained Proposition 1.13

Remark 1. In our strategy σ∗, the observation result in the current period determines the14

state in the next period independently of the past observation result (on the path of σ∗).15

Thus, each player has no incentive to acquire information in the past. Therefore, even if we16

allow players to purchase information in the past, our efficiency result holds.17

Remark 2. As we do not use interim public randomization, the assumption that each player18

chooses an observational decision after he chooses his action is not crucial. Even if each player19

chooses his action and observational decision together, we can define a strategy and belief in20

a similar manner to strategy σ∗ and belief ψ.21

Proposition 2. Fix any positive ζ > 0. Suppose that Assumptions 2 and 3 are satisfied.22

For any ε > 0, there exist δ ∈
(

g

1+g
, 1
)

, δ ∈ (δ, 1), λ > 0, and η > 0 such that for any23

discount factor δ ∈ [δ, δ], any observation cost λ ∈ (0, λ), and any η1, η2 ∈ [0, η), there exists24

a symmetric sequential equilibrium σ∗ whose payoff vector (v∗1, v
∗
2) satisfies v∗i ≥ 1 − ε for25

each i = 1, 2.26

Proof of Proposition 2 . We show that the strategy σ∗ in the proof of Appendix A is a se-27

quential equilibrium under small η1 and η2. If player i is in the cooperation state ωC,t
i , he28

observed Cj in the previous period. Thus, private signal zi has no effect on player i’s belief.29

The best response stage-behavior in the cooperation state ωC,t
i is unchanged. Let us consider30

the transition state ωE,t
i or the defection state ωD

i . In the proof of Appendix A, it has been31

proved that player i strictly prefers Di and mi = 0 in those states given η1 = η2 = 0. There-32

fore, because of continuity of expected utility function, player i strictly prefers prefers Di33

and mi = 0 when η1 and η2 is sufficiently close to zero. Hence, the strategy σ∗ is a sequential34

equilibrium when η1 and η2 is sufficiently small.35
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Next, we extend Proposition 2 using Lemma 2.1

Lemma 2. Fix any payoff vector v and any ε > 0. Suppose that there exist δ ∈
(

g

1+g
, 1
)

,2

δ ∈ (δ, 1) such that for any discount factor δ ∈ [δ, δ], there exists a sequential equilibrium3

whose payoff vector (v∗1, v
∗
2) satisfies |v∗i − vi| ≤ ε for each i = 1, 2. Then, there exists4

δ∗ ∈
(

g

1+g
, 1
)

such that for any discount factor δ ∈ [δ∗, 1), there exists a sequential equilibrium5

whose payoff vector (v∗1, v
∗
2) satisfies |v∗i − vi| ≤ ε for each i = 1, 2.6

Proof of Lemma 2 . We use the technique of Lemma 2 in Ellison (1994). We define δ∗ ≡ δ/δ,7

and choose any discount factor δ ∈ (δ∗, 1). Then, we choose some integer n∗ that satisfies8

δn
∗

∈ [δ, δ]. Then there exists a strategy σ∗′ whose payoff vector is (v∗1, v
∗
2) given δn

∗

. We9

divide the repeated game into n∗ distinct repeated games. The first repeated game is played in10

period 1, n∗+1, 2n∗+1 . . . , the second repeated game is played in period 2, n∗+1, 2n∗+2 . . . ,11

and so on. Each repeated game can be regarded as a repeated game with discount factor δn
∗

.12

Let us consider the following strategy σL. In the 1st game, players follow strategy σ∗′ . In the13

2nd game, players follow strategy σ∗′ . In the n(n ≤ n∗)th game, players follow strategy σ∗′ .14

Then, strategy σL is a sequential equilibrium because strategy σ∗′ is a sequential equilibrium15

in each game. As the equilibrium payoff vector in each game satisfies |v∗i − vi| ≤ ε for each16

i = 1, 2, the equilibrium payoff of strategy σL also satisfies |v∗i − vi| ≤ ε for each i = 1, 2.17

We obtain efficiency for a sufficiently high discount factor.18

Proposition 3. Fix any ζ > 0. Suppose that Assumptions 2 and 3 are satisfied. For any19

ε > 0, there exist δ∗ ∈ (0, 1), λ > 0, and η > 0 such that for any discount factor δ ∈ (δ∗, 1),20

any λ ∈ (0, λ), and any η1, η2 ∈ [0, η), there exists a sequential equilibrium whose payoff21

vector (v∗1, v
∗
2) satisfies v

∗
i ≥ 1− ε for each i = 1, 2.22

Proof of Proposition 3 . Apply Lemma 2 to Proposition 1.23

Remark 3. Proposition 3 shows monotonicity of efficiency on the discount factor. If effi-24

ciency holds given some ε, observation cost λ, η1, η2 and discount factor δ, then efficiency25

holds given a sufficiently large discount factor δ′ > δ.26

4.2 Folk theorem27

In what follows, we introduce an interim public randomization device at the end of the action28

phase. Public signal x is uniformly distributed over [0, 1) independently of the action profile29

chosen. Each player observes the interim public signal without cost. The purpose of interim30

public randomization is to prove a folk theorem (Theorem 1).31

Let32

F ≡ convex hull of {u(a)| a ∈ A} ,

F∗ ≡{v ∈ F| v1 ≥ 0 and v2 ≥ 0} .

Theorem 1 (Approximate folk theorem). Suppose that an interim public randomization is33

available, and Assumptions 2 and 3 are satisfied. Fix any positive ζ > 0. Fix any interior34

point v = (v1, v2) of F∗. Fix any ε > 0. There exist a discount factor δ ∈
(

g

1+g
, 1
)

,35

observation cost λ > 0, and η > 0 such that for any δ ∈ [δ, 1), any λ ∈ (0, λ), and any36

η1, η2 ∈ [0, η), there exists a sequential equilibrium whose payoff vector vF = (vF1 , v
F
2 ) satisfies37

|vFi − vi| ≤ ε.38
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To prove Theorem 1, we prove the following proposition first.1

Proposition 4. Suppose that a public randomization device is available, and η1 = η2 = 0,2

Assumptions 2 and 3 are satisfied. For any ε > 0, there exist δ ∈
(

g

1+g
, 1
)

, δ ∈ (δ, 1), and3

λ > 0 such that for any discount factor δ ∈ [δ, δ] and for any observation cost λ ∈ (0, λ),4

there exists a sequential equilibrium σ∗∗ whose payoff vector (v∗∗1 , v
∗∗
2 ) satisfies v∗∗1 = 0 and5

v∗∗2 ≥ 1+g+ℓ

1+ℓ
− ε.6

Strategy7

First, we define strategy σ∗∗ independently of private signal z, which will be used to present8

Proposition 4.9

Fix any ε > 0. We define ε, δ, δ, and λ as follows.10

ε ≡
ℓ2

54(1 + g)3
ε

1 + ε
,

δ ≡
g

1 + g
+ ε,

δ ≡
g

1 + g
+ 2ε < 1,

λ ≡
1

16

ℓ

(1 + 2g)2
ε2.

We fix an arbitrary discount factor δ ∈ [δ, δ] and an arbitrary observation cost λ ∈ (0, λ). We11

show that there exists a sequential equilibrium whose payoff vector (v∗∗1 , v
∗∗
2 ) satisfies v∗∗1 = 012

and v∗∗2 ≥ 1+g+ℓ

1+ℓ
− ε.13

Applying the strategy in Section 4.1, let us consider another automaton strategy pro-14

file σ∗∗. Player 1 has five types of states: Initial state ω̂1
1, adjustment state ωA

1 , cooperation15

states (ωC,t
1 )∞t=3, transition states (ωE,t

1 )∞t=3, and defection state ωD
1 . Player 2 also has five16

types of states: Initial state ω̂1
2, adjustment state ωA

2 , cooperation states (ωC,t
2 )∞t=3, transition17

states (ωE,t
2 )∞t=1, and defection state ωD

2 .18

The stage behaviors and transition functions in the cooperation states (ωC,t
1 )∞t=3 and19

(ωC,t
2 )∞t=2, transition states (ωE,t

1 )∞t=3 and (ωE,t
2 )∞t=2, and the defections state ωD

i are the same20

as those given in strategy σ∗. Note that ω̂1
i , ω

A
i , and ω

E,1
2 are new states.21

To define the stage behaviors and transition functions in the new states, we use the22

sequence (βi,t)
∞
i=1,2,t=1, which is defined in the proof of Proposition 1. Let us define23

x̂ ≡
ℓ

δ(1− β2,2)(1 + g)
.

Player 1 chooses stage behavior C1 with probability β1,1, and D1 with probability 1−β1,124

in the initial state ω̂1
1. Irrespective of player 1’s action, he chooses m1 = 0. The state remains25

the same if realized x is greater than x̂. Player 1 moves to the adjustment state ωA
1 if player 126

chose C1 and realized x is smaller than x̂. Player 1 moves to the defection state ωD
1 if player 127

chose C1 and realized x is smaller than x̂. In the adjustment state ωA
1 , player 1 chooses C128

with probability 1− β1,2. If player 1 chooses Ci, he chooses m1 = 1 with probability 1− β1,3.29

When player 1 chooses D1, he never observes the opponent. The transition function in the30

adjustment state ωA
1 is the same as the one in the transition state ωE,2

1 .31
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The prescribed actions and observational decisions, and state transition function are sum-1

marized in the table and figure below.2

State ω̂1
1 ωA

1 ωC,t
1 ωE,t

1 ωD
1

Action
C1 w.p. 1− β1,1
D1 w.p. β1,1

C1 w.p. 1− β1,2,
D1 w.p. β1,2 Same as in

strategy σ∗

m1 given C1 m1 = 0
m1 = 1 w.p. 1− β1,3
m1 = 0 w.p. β1,3

m1 given D1 m1 = 0

Table 4: Actions and observational decisions of player 1

ω̂1
1 ωA

1 ωC,3
1 ωC,4

1

ωD
1 ωE,3

1 ωE,4
1

. . .

. . .

x > x̂

a1 = D1

and
x ≤ x̂

a1 = C1

and
x ≤ x̂

a1 = D1

or
o1 = D2

(C1, C2) (C1, C2) (C1, C2)

(C1, ϕ1) (C1, ϕ1) (C1, ϕ1)

(C1, C2) (C1, C2)

(C1, ϕ1) (C1, ϕ1)

If player 1 chooses D1 or observes D2 in states ωA
1 , ω

C,t
1 , or ωE,t

1

for some t ≥ 3, the state moves to ωD
1 .

Figure 2: State transition function of player 1

Player 2 chooses D2 in the initial state ω̂1
2. Player 2 observes player 1 with probability 1−3

β2,1 irrespective of her action when realized x is not greater than x̂. The state remains the4

same if realized x is smaller than x̂. Player 2 moves to the adjustment state ωA
2 if she5

observes C1 and realized x is smaller than x̂. Player 1 moves to the defection state ωD
1 if she6

observes C1 and realized x is smaller than x̂. Player 2 moves to the adjustment state ωE,1
2 if7

she chooses m2 = 0 and realized x is smaller than x̂. In the adjustment state ωA
2 , player 28

chooses C2. When player 2 chooses C2, she observes player 1 with probability 1 − β2,2 If9

player 2 chooses D2, she does not observe the opponent. In the transition state ωE,1
2 , player 210

chooses D2 and m2 = 0 irrespective of her action. The transition functions in the adjustment11

state ωA
2 and the transition state ωE,1

2 are the same as the one in the initial state ω1
2 given12

strategy σ∗. That is, if player 2 observes (C2, C1), she moves to the cooperation state ωC,2
2 .13

If player 2 chooses C2 but does not observe, she moves to the transition state ωE,2
2 . When14

player 2 chooses D2 or observes D1, she moves to the defection state ωD
2 .15

The prescribed actions and observational decisions, and state transition function are sum-16

marized in the table and figure below.17

15 / 29



State ω̂1
2 ωA

2 ωE,1
2 ωC,t

2
ωE,t
2

(t ≥ 2 )
ωD
2

Action D2 C2 D2 Same as in
strategy σ∗m2 given C2

m2 = 1 w.p. 1− β2,1
m2 = 0 w.p. β2,1

m2 = 1 w.p. 1− β2,2
m2 = 0 w.p. β2,2

m2 = 0

m2 given D2 mi = 0

Table 5: Actions and observational decisions of player 2

ω̂1
2 ωA

2 ωC,2
2 ωC,3

2

ωD
2 ωE,1

2 ωE,2
2 ωE,3

2

. . .

. . .

x > x̂

a2 = D2

and
x ≤ x̂

a2 = C2

and
x ≤ x̂

(C2, ϕ2)
and
x ≤ x̂

(C2, C1) (C2, C1) (C2, C1)

(C2, ϕ2) (C2, ϕ2) (C2, ϕ2)

(C2, C1) (C2, C1) (C2, C1)

(C2, ϕ2) (C2, ϕ2) (C2, ϕ2)

If player 2 chooses D2 or observes D2 in states ωA
2 ,ω

C,t
1 ,

or ωE,t
2 for some t ≥ 1, the state moves to the defection state ωD

2 .

Figure 3: State transition function of player 2

Let strategy σ∗∗ be the strategy defined by the above automaton. Next, we define a1

consistent system of beliefs with strategy profile σ∗∗. We consider a sequence of behavioral2

strategy profiles (σ̂n)∞n=1 such that each strategy profile attaches a positive probability to3

every move, but puts far greater weights on the trembles on Ci in the defection state ωD
i4

compared with other stage behaviors in the other states. These trembles induce a consistent5

system of beliefs that player i at any defection state ωD
i is sure that the state of their opponent6

is the defection state ωD
j or transition state ωE,t

j for some t ≥ 2.7

Proof of Proposition 4 . Here we prove Proposition 4 using strategy σ∗∗.8

Let us consider the sequential rationality of player 1. We consider the defection state ωD
1 .9

As in the proof of Proposition 1, player 1 in the defection state ωD
1 is certain that player 2 is10

in the defection state ωD
2 or transition state ωE,t

2 for some t ≥ 1. Therefore, it is optimal for11

player 1 to choose action D1 and choose m1 = 0 irrespective of his action.12

Next, let us consider a cooperation state ωC,t
1 (t ≥ 3). Player 1 believes that player 2 is in13

the cooperation state ωC,t−1
1 with probability 1− β2,t−1 and the transition state ωE,t−1

1 with14

the remaining probability β2,t−1. This is the same belief over the opponent’s state as the15

one that player 1 has in the cooperation state ωC,t−1
1 given strategy σ∗. Hence, the optimal16

stage behavior is also the same as the one of the cooperation state ωC,t−1
1 given strategy σ∗.17

Therefore, it is optimal for player 1 to choose C1. When player 1 chooses C1, player 1 is18
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indifferent to his observational decision. Using the same argument, the sequential rationality1

in the transition state ωE,3
1 (t ≥ 3) is also straightforward.2

Let us consider the adjustment state ωA
1 . Player 2 is in the adjustment state ωA

2 with3

probability 1 − β2,1. Player 2 observes player 1 with probability 1 − β2,3 given action C24

in the adjustment state ωA
2 . Furthermore, the state transition functions in the adjustment5

state ωA
2 and the state transition state ωE,1

2 are the same as the one in the initial state ω1
26

given strategy σ∗. This conjecture over the continuation play of player 1 is the same as the7

one in the initial state ω1
1 given strategy σ∗. Therefore, player 1 is indifferent among (C1, 1),8

(C1, 0), and (D1, 0). When player 1 chooses D1, player 1 prefers m1 = 0.9

Finally, let us consider the initial state ω̂1
1. If player 1 chooses D1, he obtains zero payoff.10

If player 1 chooses C1 and x ≤ x̂ is realized, player 1 will move to the adjustment state.11

Then, choosing (D1, 0) in the adjustment state, player 1 obtains (1 − δ)(1 − β2,1)(1 + g).12

Therefore, the indifference condition between action C1 and action D1 is given by13

0 = −ℓ+ x̂δ(1− δ)(1− β2,1)(1 + g).

This condition is ensured by the definition of x̂. In addition, m1 = 0 is optimal irrespective14

of his actions because player 2 chooses D2 with certainty. Therefore, it is optimal for player 115

to follow the strategy σ∗∗.16

Next, let us consider player 2. Applying similar arguments of player 1 to states ωD
2 ,17

ωC,t
2 (t ≥ 2), and ωE,t

2 (t ≥ 2), we can show the sequential rationality in those states. The18

sequential rationality in the defection state ωD
2 is straightforward because player 2 is sure19

that player 1 is in the transition state or the defection state. In the cooperation state ωC,t
2 ,20

player 1 is in the cooperation state ωC,t+1
1 with probability 1 − β1,t+1. This belief over the21

continuation play of player 1 is the same as the one that player 2 has in the cooperation state22

ωC,t+1
2 given strategy σ∗. Therefore, choosing C2 is optimal and player 2 is indifferent to her23

observational decision given C2. When player 2 chooses D2, she prefers m2 = 0. Similarly,24

it is obvious that D2 and m2 = 0 irrespective of his action are optimal in the transition25

state ωE,t
2 .26

Let us consider the adjustment state ωA
2 . Then, player 2 is certain that player 1 is in27

the adjustment state ωA
1 . Then, player 1 chooses C1 with probability 1− β1,2, and observes28

player 2 with probability 1 − β1,3 given C1. Furthermore, the state transition function of29

player 1 is the same as the one in the cooperation state ωC,2
1 . The conjecture is the same as30

the one in the cooperation state ωC,2
2 given strategy σ∗. Therefore, choosing C2 is optimal,31

and player 2 is indifferent to her observation decisions given C2. When player 2 chooses D2,32

she prefers m2 = 0. We apply the same argument to the transition state ωE,1
2 and obtain33

that it is optimal for player 2 to choose D2 and m2 = 0 irrespective of her action.34

Using similar arguments again, we can consider the initial state ω̂1
2 as well. Consider35

observation phase after x ≤ x̂ is realized. If player 2 observes C1, player 1 moves to the36

adjustment state ωA
1 for sure. As we confirmed before, the belief in the adjustment state ωA

237

is the same as the one in the cooperation state ωC,2
2 given strategy σ∗. If player 2 observes D1,38

player 1 moves to the adjustment state ωD
1 with certainty. This conjecture is the same as the39

one player 2 faces in the observation phase given C2 in the initial state ω1
2 given strategy σ∗.40

Therefore, player 2 is indifferent between m2 = 1 and m2 = 0. Furthermore, it is obvious41

that player 2 has no incentive to choose D2 in the action phase in the initial state ω̂1
2 because42

player 1 does not observe player 2 in the initial state ω̂1
1. It has been proved that this43

strategy σ∗∗ is a sequential equilibrium.44

17 / 29



Finally, let us consider the equilibrium payoff. It is obvious that v∗∗1 equals zero because1

player 1 (weakly) prefers action D1 in the initial state ω̂1
1. Player 2 prefers action D2 in the2

initial state ω̂1
2. In the adjustment state ωA

2 , one of the best responses is choosing C2 and3

m2 = 0, and the payoff is bounded below by the one of choosing D2 and m2 = 0. Therefore,4

player 2’s payoff is bounded below by5

v∗∗2 >(1− δ) {(1− β1,1)(1 + g)− x̂λ}+ δx̂(1− δ)(1− β1,2)(1 + g) + δ(1− x̂)v∗∗2
>(1− δ) {(1− β1,1)(1 + g)− λ}+ x̂(1− δ)(1− β1,2)g + δ(1− x̂)v∗∗2
>(1− δ) (1− β1,1) (1 + g + x̂g)− (1− δ)λ+ δ(1− x̂)v∗∗2 .

The second inequality holds because δ > δ > g

1+g
and x̂ < 1 hold. Lemma 1 ensures6

β1,2 < β1,1 and the third inequality.7

Subtracting δ(1− x̂)v∗∗2 from both sides, we obtain8

v∗∗2 >

(

1− 1+g+ℓ

g+ℓ
ε′
)

(1 + g + x̂g)− λ

1 + δ
1−δ

x̂
>

1 + g + x̂g − 2(1 + g)1+g+ℓ

g+ℓ
ε′

1 + δ
1−δ

x̂
.

In what follows, we often use the following lemma.9

Lemma 3. For any y ∈
(

0, 1
2

)

, it holds that10

1 + y <
1

1− y
< 1 + 2y,

1− y <
1

1 + y
< 1.

Proof of Lemma 3. This can be shown with simple calculations.11

Let us consider the denominator.12

1 +
δ

1− δ
x̂ =1 +

g + (1 + g)ε′

1− (1 + g)ε′
x̂ = 1 +

(

1 + g

1− (1 + g)ε′
− 1

)

x̂

<1 + {(1 + g)(1 + 2(1 + g)ε′)− 1} x̂

=1 +
{

g + 2g(1 + g)2ε′
}

x̂

Lemma 3 ensures the inequality.13

The value of x̂ is bounded above by14

x̂ =
ℓ

δ(1− β2,2)(1 + g)
<

1

1− 1+g+ℓ

g+ℓ
ε′
ℓ

g
<

(

1 + 2
1 + g + ℓ

g + ℓ
ε′
)

ℓ

g
.

Lemma 3 ensures the last inequality. Therefore, we have an upper bound of the denominator15

as follows.16

1 +
δ

1− δ
x̂ <1 +

{

g + 2(1 + g)2ε′
}

(

1 + 2
1 + g + ℓ

g + ℓ
ε′
)

ℓ

g

<1 +
{

ℓ+ 2(1 + g)2ε′
}

(

1 + 2
1 + 2g

g
ε′
)

<1 + ℓ+ 2(1 + g)2ε′ + 2(1 + 2g)ε′ + (1 + g)2ε′

<1 + ℓ+ 5(1 + 2g)2ε′.
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The third inequality follows from Assumption 3 and ε′ < 2ε.1

Next, let us consider a lower bound of the numerator.2

1 + g + x̂g − 2(1 + g)
1 + g + ℓ

g + ℓ
ε′ >1 + g + x̂g − 2

(1 + 2g)2

g
ε′.

The value of x̂ has the following lower bound.3

x̂ >
ℓ

g + (1 + g)ε′
=

1

1 + 1+g

g
ε′
ℓ

g
>

(

1−
1 + g

g
ε′
)

ℓ

g
=
ℓ

g
−

1 + g

g
ε′.

Thus, the numerator is bounded below by4

1 + g +

(

ℓ

g
−

1 + g

g
ε′
)

g − 2
(1 + 2g)2

g
ε′ > 1 + g + ℓ− 3

(1 + 2g)2

g
ε′.

The last inequality is ensured by Lemma 3.5

Therefore, we obtain a lower bound of v∗∗2 as follows.6

v∗∗2 >
1 + g + ℓ− 3 (1+2g)2

g
ε′

1 + ℓ+ 5(1 + 2g)2ε′

>
1 + g + ℓ

1 + ℓ





1− 3 (1+2g)2

g(1+g+ℓ)
ε′

1 + 5 (1+2g)2

1+ℓ
ε′





>
1 + g + ℓ

1 + ℓ

(

1− 3
(1 + 2g)2

g(1 + g + ℓ)
ε′
)(

1− 5
(1 + 2g)2

1 + ℓ
ε′
)

>
1 + g + ℓ

1 + ℓ

(

1− 3
(1 + 2g)2

g
ε′
)(

1− 5
(1 + 2g)2

g
ε′
)

>
1 + g + ℓ

1 + ℓ

(

1− 8
(1 + 2g)2

g
ε′
)

>
1 + g + ℓ

1 + ℓ
− 8

(1 + 2g)3

g
ε′ > 1− ε.

7

Let us explain why we need an interim public randomization device and why we cannot8

use a public randomization device at the end of the observation phase instead of interim9

public randomization. In our strategy, the defection state ωD
i is an absorbing state. It is10

also obvious that the payoff vector of (D1, D2) is Pareto inefficient. Therefore, to achieve11

a nearly Pareto-efficient outcome, the probability that each player i moves to the defection12

state ωD
i must be small enough. It means that the observation probability of player 2 in13

the initial state ω̂1
2 and the probability of C1 in the initial state ω̂1

1 must be high enough.14

However, taking Assumption 3 into account, player 1 has a stronger incentive to choose15

C1 given strategy σ∗∗ than given strategy σ∗, and does not randomize actions C1 and D1.16

To mitigate this strong incentive, we need a public randomization device. It is well known17

that we can decrease the efficient discount factor by dividing the game into several games18

(e.g., Ellison (1994)). Moving back to the initial state irrespective of stage behavior with19

a certain probability, player i considers the continuation payoff to be less important. Let δ̂20
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be an efficient discount factor in the initial state. If player 1 chooses D1 in the initial state,1

he obtains 0. If player 1 chooses C1 in the initial state, he obtains a nonaveraged payoff2

−ℓ + δ̂(1 + g). Therefore, to make player 1 indifferent between actions C1 and D1 in the3

initial state ω̂1
1, the efficient discount factor must be close to ℓ

1+g
.4

It will affect not only player 1 but also player 2’s incentive. As the continuation payoff5

is less important, player 2’s observation incentive decreases. To keep the right-hand side of6

(3) unchanged, the probability γ1,1 of D1 in the initial state ω̂1
1 must satisfy the following7

equation.8

δ(1− β1,2) = δ̂(1− γ1,1)

or,9

γ1,1 = 1−
δ

δ̂
(1− β1,2).

Taking δ ∼ g

1+g
, δ̂ ∼ ℓ

1+g
, Assumption 3, and β1,2 ∼ 0 into account, we find that γ1,1 ∼ 1− ℓ

g
is10

negative. Therefore, we cannot make player 2 indifferent to her observational decisions when11

player 1 is indifferent between actions C1 and D1. We need an interim public randomization12

device to mitigate player 1’s incentive independently of player 2’s incentive.13

Corollary 4.1. Suppose that an interim public randomization device is available, and As-14

sumptions 2 and 3 are satisfied. Fix any positive ζ > 0. For any ε > 0, there exist15

δ ∈
(

g

1+g
, 1
)

, δ ∈ (δ, 1), λ > 0, and η > 0 such that for any discount factor δ ∈ [δ, δ],16

any observation cost λ ∈ (0, λ), and any η1, η2 ≤ η, there exists a sequential equilibrium σ∗∗
17

whose payoff vector (v∗∗1 , v
∗∗
2 ) satisfies v∗∗1 = 0 and v∗∗2 ≥ 1+g+ℓ

1+ℓ
− ε.18

Proof of Corollary 4.1 . Let us show that strategy σ∗∗ is a sequential equilibrium if η1 and19

η2 is sufficiently small. If player i is in the cooperation state ωC,t
i , the private signal zi has20

no effect on the belief of player i because player i directly observed player j’s action, Cj, in21

the previous period. In the adjustment state ωA
1 , player 1 is certain that player 2 chose D2 in22

the initial state ω̂1
2. Hence, the private signal zi does not change the belief and best response23

stage-behavior of player 1 when player 1 is in the cooperation or adjustment states. In the24

transition or defection states, player 1 strictly prefers action D1 and m1 = 0 when η2 = 0.25

Therefore, because of continuity of expected utility function, it is optimal for player 1 to26

choose action D1 and m1 = 0 if η2 is sufficiently small. Thus, it is optimal for player 1 to27

follow strategy σ∗∗ if η2 is sufficiently small.28

Let us consider player 2. In any transition state ωE,t
2 (t ≥ 1), player 2 strictly prefers29

action D2 and m2 = 0 when η1 = 0. Thus, it is optimal for player 2 choose action D230

and m2 = 0 when η1 is sufficiently small. In adjustment and cooperation states, the private31

signal z2 has no effect to player 2’s belief because player 2 observed C1 in the previous period.32

Hence, it is optimal for player 2 to follow strategy σ∗∗ if η1 is sufficiently small. Thus, the33

strategy σ∗∗ is a sequential equilibrium if η1 and η2 are sufficiently small.34

Corollary 4.2. Suppose that an interim public randomization device is available, and As-35

sumptions 2 and 3 are satisfied. Fix any ζ > 0. For any ε > 0, there exist δ ∈
(

g

1+g
, 1
)

,36

λ > 0, and η > 0 such that for any discount factor δ ∈ [δ, 1), any observation cost λ ∈ (0, λ),37

and any η1, η2 ∈ [0, η), there exists a sequential equilibrium σ∗∗ whose payoff vector (v∗∗1 , v
∗∗
2 )38

satisfies v∗∗1 = 0 and v∗∗2 ≥ 1+g+ℓ

1+ℓ
− ε.39
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Proof of Corollary 4.2 . Use Lemma 2.1

We have shown that two payoff vectors can be approximated by sequential equilibria2

(Propositions 1 and 4) when the discount factor is sufficiently large and the observation cost3

is sufficiently small. It is straightforward that a payoff vector
(

1+g+ℓ

1+ℓ
, 0
)

can be approximated4

by a sequential equilibrium exchanging the roles of player 1 and player 2.5

Using the technique in Ellison (1994) again and alternating four strategies σ∗, σ∗∗, and6

the repetition of the stage game Nash equilibrium, we can approximate any payoff vector7

in F∗.8

Proof of Theorem 1. See Appendix C.9

Remark 4. As Miyagawa et al. (2008) mentioned, some previous literature requires a very10

complicate strategy and a very high discount factor for their results. On the other hand,11

our strategy is much simpler than theirs and a required discount factor is not high. For the12

payoff vector (1, 1) or
(

1+g+ℓ

1+ℓ
, 0
)

, a slightly larger discount factor than g

1+g
is required (See13

Propositions 1 and 4). If we can use a public randomization device at the beginning of the14

repeated game, our folk theorem holds with the same level of discount factor.15

Remark 5. Let us discuss what happens if the prisoner’s dilemma is asymmetric, as in16

Table 6.17

Player 2
C2 D2

Player 1
C1 1 , 1 −ℓ1 , 1 + g2
D1 1 + g1, −ℓ2 0 , 0

Table 6: Asymmetric prisoner’s dilemma

In the proofs of the propositions and theorems, we require that the discount factor δ is18

sufficiently close to g

1+g
. This condition is needed to approximate a Pareto-efficient payoff19

vector. If g1 ̸= g2, it is impossible to ensure that the discount factor δ is sufficiently close to20

both g1
1+g1

and g2
1+g2

. Therefore, we have to confine our attention to the case of g1 = g2 = g.21

Let us consider Propositions 1 and 3. In the construction of the strategy, the randomiza-22

tion probability of player i is defined based on the incentive constraint of the opponent only,23

or, it is determined based on δ, g, ℓj and is independent of ℓi. Hence, if g1 = g2 and Assump-24

tions 2 and 3 for each ℓi (i = 1, 2) hold, our approximate efficiency result and approximate25

folk theorem hold under a small observation cost. Symmetricity of ℓ1 and ℓ2 is not important26

for our strategy although symmetricity of g1 = g2 is crucial.27

5 Concluding Remarks28

Prisoner’s dilemma is a minimal model to describe cooperation because it has only two29

actions: cooperation and uncooperation. Prisoner’s dilemma under costly observation has30

some difficulties in cooperation.31

First, the number of actions is limited. This means that players cannot communicate using32

a variety of actions. If more than two actions are available, we can consider an equilibrium33

strategy where each player randomizes some two actions on the equilibrium path. If a player34

has an incentive to randomize actions Ci and Di on the path in infinitely repeated prisoner’s35
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dilemma, it means that the repetition of Di is one of the optimal strategies. Player i loses1

an incentive to observe because one of his optimal strategies is unchanged irrespective of his2

observation result.3

Second, the number of players is limited. If there are three players A,B, and C, it4

is easy to check the observation deviation of the opponents. Player A can monitor the5

observational decisions of players B and C by comparing their actions. If players B and6

C choose inconsistent actions toward each other, player A finds that players B or C do7

not observe some of the players. Third, there is no free-cost informative signal. To obtain8

information about the actions chosen by their opponents, players have to observe. Despite9

the above limitations, we have shown our efficiency without randomization device.10

We considered an interim public randomization device and obtained a folk theorem. It is11

worth mentioning that our folk theorem holds in some asymmetric prisoner’s dilemma. Our12

results might be applied to more general games.13

Appendix14

A Proof of Proposition 115

Proof. We prove Proposition 1. Now, let us show that the strategy profile σ∗ is a sequential16

equilibrium. The equilibrium payoff and the sequential rationalities in the initial, coopera-17

tion, and defection states have already been shown in Section 4. We consider th sequential18

rationality in the transition state ωE,t
i in detail.19

We consider any history in period t (≥ 2) associated with the transition state. Strategy σ∗
20

prescribes Di and mi = 0 irrespective of his actions in the transition state. Let us consider21

a nonaveraged continuation payoff when player i chooses action Ci. Let p be the belief of22

player i that his opponent is in the cooperation state ωC,t
j . Therefore, if player i observes23

his opponent in period t, then (ati, o
t
i) = (Ci, Cj) is realized with probability p and the state24

moves to the cooperation state ωC,t+1
i . Let25

Wi,t ≡ {(1− βj,t) · 1− βj,t · ℓ}+ δ(1− βj,t)(1− βj,t+1)(1 + g). (4)

The value of Wi,t is the nonaveraged continuation payoff from the cooperation state ωC,t
i26

when player i follows strategy σ∗
i . Therefore, the upper bound of the nonaveraged payoff27

when player i chooses action Ci in period t is given by28

p− (1− p)ℓ+ δpWi,t+1.

The nonaveraged payoff when player i chooses Di is bounded above by p(1 + g). Therefore,29

action Di is profitable if the following value is negative.30

p− (1− p)ℓ+ δpWi,t+1 − p(1 + g).
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We can rewrite the above value as follows.1

p− (1− p)ℓ+ δpWi,t+1 − p(1 + g)

=(1− βj,t)− βj,tℓ− λ+ δ(1− βj,t)Wi,t+1 − (1− βj,t)(1 + g)

+ λ+ {p− (1− βj,t)} {1 + ℓ+ δWi,t+1 − (1 + g)}

=Wi,t − (1− βj,t)(1 + g) + λ+ {p− (1− βj,t)} {δWi,t+1 − (g − ℓ)}

=
λ

δ(1− βj,t−1)
+ λ+ {p− (1− βj,t)} {δWi,t+1 − (g − ℓ)} . (5)

The second equality follows from equation (4) in period t. The last equality is ensured by (3)2

in period t− 1.3

Using equation (3), we obtain the lower bound of δWt+1 − (g − ℓ) as follows.4

δWi,t+1 − (g − ℓ) ≥δ(1− βj,t+1)(1 + g)− (g − ℓ)

≥{g + (1 + g)ε′}

(

1−
1 + g + ℓ

g + ℓ
ε′
)

− (g − ℓ)

≥
ℓ

2
. (6)

The second inequality follows from βi,t ≤
1+g+ℓ

g+ℓ
ε′ by Lemma 1. The last inequality is ensured5

by ε′ ≤ 2ε. The maximum value of p is (1 − βj,t−1)(1 − βj,t). Taking (6) into account, we6

show that (5) is negative as follows.7

λ

δ(1− βj,t−1)
+ λ− {(1− βj,t)− p} {δWj,t+1 − (g − ℓ)}

≤
λ

δ(1− βj,t−1)
+ λ− (1− βj,t)βj,t−1

ℓ

2

≤
1 + g

g

1

1− 1+g+ℓ

g+ℓ
ε′
λ+ λ−

(

1−
1 + g + ℓ

g + ℓ
ε′
)

1

2

1 + g − ℓ

g + ℓ
ε′
ℓ

2
< 0.

The second inequality is ensured by δ ∈ [δ, δ] by Lemma 1 and βj,t, βj,t−1 ∈
[

1
2
1+g−ℓ

g+ℓ
ε′, 1+g+ℓ

g+ℓ
ε′
]

.8

Therefore, player i prefers Di to Ci. Hence, it has been proven that it is optimal for player i9

to follow strategy σ∗. The strategy σ∗ is a sequential equilibrium. Proposition 1 has been10

proved.11

B Proof of Lemma 112

Proof of Lemma 1. To prove Lemma 1, we will use the following Lemma 4 holds.13

Lemma 4. Suppose that Assumptions 2 and 3 are satisfied. Fix any discount factor δ ∈ [δ, δ]14

and observation cost λ ∈ (0, λ). Then, βi,1 − βi,2 ≥ ℓ
g+ℓ

ε′ holds and, for any t ∈ N, it holds15

that16

0 <
ℓ

2g
<−

βi,t+2 − βi,t+1

βi,t+1 − βi,t
< 1.
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Assume that Lemma 4 holds. Using βi,t, βi,t+1, and −
βi,t+2−βi,t+1

βi,t+1−βi,t
, we can express βi,t+2 as1

follows.2

βi,t+2 =βi,t + (βi,t+1 − βi,t) + (βi,t+2 − βi,t+1)

=βi,t + (βi,t+1 − βi,t)

{

1−

(

−
βi,t+2 − βi,t+1

βi,t+1 − βi,t

)}

=

(

−
βi,t+2 − βi,t+1

βi,t+1 − βi,t

)

βi,t +

{

1−

(

−
βi,t+2 − βi,t+1

βi,t+1 − βi,t

)}

βi,t+1.

Therefore, if βi,t, βi,t+1 ∈ [0, 1], and ℓ
2g
< −

βi,t+2−βi,t+1

βi,t+1−βi,t
< 1 hold,3

we obtain βi,t+2 ∈ (min{βi,t, βi,t+1},max{βi,t, βi,t+1}) because βi,t+2 is a convex combination4

of βi,t and βi,t+1.5

Let us compare βi,1, βi,2, and βi,3. By Lemma 4, βi,1 − βi,2 is greater than
ℓ

g+ℓ
ε′. Further-6

more, we have βi,2 < βi,3 < βi,1 because −
(

−
βi,t+2−βi,t+1

βi,t+1−βi,t

)

∈ (0, 1) by Lemma 4 and, then,7

βi,3 is a convex combination of βi,1 and βi,2. Next, let us compare βi,2, βi,3, and βi,4. As we8

find, βi,2 is smaller than βi,3. Therefore, we have βi,2 < βi,4 < βi,3 because βi,4 is a convex9

combination of βi,2 and βi,3. Similarly, for any s ∈ N, it holds that (βi,2s <)βi,2s+1 < βi,2s−1,10

and βi,2s < βi,2s+2(< βi,2s+1).11

Next, we prove Lemma 4.12

Proof of Lemma 4. First, let us derive −
βi,3−βi,2

βi,2−βi,1
. By (1), we have13

0 = −(1− βi,1)g − βi,1ℓ+ δ(1 + g)(1− βi,1)(1− βi,2). (7)

Furthermore, by (3), we have14

λ

δ(1− βi,1)
= −(1− βi,2)g − βi,2ℓ+ δ(1 + g)(1− βi,2)(1− βi,3) (8)

By (7) and (8), we obtain15

(βi,2 − βi,1)(g − ℓ)− δ(1 + g)(1− βi,2) {(βi,3 − βi,2) + (βi,2 − βi,1)} =
λ

δ(1− βi,1)
. (9)

Let us consider the lower bound of βi,2. As ε
′ ∈ [ε, 2ε] and 0 < ℓ

g
< 1 hold, we have16

βi,2 =
1 + g − ℓ

g
ℓ− (1 + g + ℓ)1+g

g
ε′

1 + ℓ
g

1
g+ℓ

ε′ − (1+g)(1+g+ℓ)
g(g+ℓ)

(ε′)2

1

g + ℓ
ε′

>
3
4
(1 + g − ℓ)

3
2

1

g + ℓ
ε′ >

1

2

1 + g − ℓ

g + ℓ
ε′.

Next, let us consider the upper bound of βi,2.17

βi,2 =
1 + g − ℓ

g
ℓ− (1 + g + ℓ)1+g

g
ε′

1 + ℓ
g

1
g+ℓ

ε′ − (1+g)(1+g+ℓ)
g(g+ℓ)

(ε′)2

1

g + ℓ
ε′

<
1 + g − ℓ

g
ℓ

1− (1+g)(1+g+ℓ)
g(g+ℓ)

(ε′)2

1

g + ℓ
ε′ <

1 + g

g + ℓ
ε′.
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The last inequality is ensured by ε′ < 2ε. Thus, we obtain1

1

2

1 + g − ℓ

g + ℓ
ε′ < βi,2 <

1 + g

g + ℓ
ε′.

As βi,2 < 1+g

g+ℓ
ε′ < β1 = 1+g+ℓ

g+ℓ
ε′, we can divide both sides of (9) by βi,2 − βi,1 and ob-2

tain −
βi,3−βi,2

βi,2−βi,1
.3

−
βi,3 − βi,2
βi,2 − βi,1

=
ℓ+ δ(1 + g)(1− βi,2)− g + λ

δ(1−βi,1)(βi,2−βi,1)

δ(1 + g)(1− βi,2)
.

As Assumption 3, βi,1, βi,2 < 1, and βi,2−βi,1 < 0 hold, we find an upper bound of −
βi,3−βi,2

βi,2−βi,1
.4

−
βi,3 − βi,2
βi,2 − βi,1

≤
δ(1 + g)(1− βi,2) +

λ
δ(1−βi,1)(βi,2−βi,1)

δ(1 + g)(1− βi,2)
< 1.

Taking βi,1 =
1+g+ℓ

g+ℓ
ε′, βi,2 <

1+g

g+ℓ
ε′, and −(βi,2 − βi,1) >

ℓ
g+ℓ

ε′ > ℓ
2g
ε′ into account, we have a5

lower bound of −
βi,3−βi,2

βi,2−βi,1
as follows.6

−
βi,3 − βi,2
βi,2 − βi,1

>
ℓ+ g

(

1− 1+g

g+ℓ
ε′
)

− g − λ
g

1+g (1−
1+g+ℓ

g+ℓ
ε′) ℓ

2g
ε′

(

g

1+g
+ ε′

)

(1 + g)

>
ℓ− 1+g

g+ℓ
gε′ − 4(1+g)

ℓ
λ
ε′

g + (1 + g)ε′
>

3
4
ℓ

3
2
g
>

ℓ

2g
.

The first inequality follows from δ = g

1+g
+ε′ > g

1+g
. The third inequality is ensured by ε′ < 2ε7

and λ < λ. Therefore, we have obtained ℓ
2g
< −

βi,3−βi,2

βi,2−βi,1
< 1 and βi,3 ∈ (βi,2, βi,2). That is,8

βi,3 − βi,2 > 0.9

Next, let us derive −
βi,t+3−βi,t+2

βi,t+2−βi,t+1
inductively. Suppose that ℓ

2g
< −

βi,s+2−βi,s+1

βi,s+1−βi,s
< 1 and10

βi,s+2 ∈ (min {βi,s, βi,s+1} ,max {βi,s, βi,s+1}) hold for period s = 1, 2, . . . , t. We have shown11

that this supposition holds for t = 1. We show that ℓ
2g
< −

βi,t+3−βi,t+2

βi,t+2−βi,t+1
< 1 and βi,t+3 ∈12

(min {βi,t+1, βi,t+2} ,max {βi,t+1, βi,t+2}) hold.13

By (3) for t+ 1 and t+ 2, we have14

{

λ
δ(1−βi,t)

= −(1− βi,t+1)g − βi,t+1ℓ+ δ(1− βi,t+1)(1− βi,t+2)(1 + g),
λ

δ(1−βi,t+1)
= −(1− βi,t+2)g − βi,t+2ℓ+ δ(1− βi,t+2)(1− βi,t+3)(1 + g),

or,15

−
βi,t+1 − βi,t

δ(1− βi,t)(1− βi,t+1)
λ

=− (βi,t+2 − βi,t+1)(g − ℓ) + δ(1− βi,t+2) {(βi,t+3 − βi,t+2) + (βi,t+2 − βi,t+1)} (1 + g).

The suppositions ensure βi,t+2 − βi,t+1 ̸= 0. Divide both sides of the above equation by16

βi,t+2 − βi,t+1. Then, we obtain17

−
βi,t+3 − βi,t+2

βi,t+2 − βi,t+1

=

ℓ+ δ(1 + g)(1− βi,t+2)− g + 1

δ(1−βi,t)(1−βi,t+1)
βi,t+2−βi,t+1

βi,t+1−βi,t

λ

δ(1 + g)(1− βi,t+2)
.
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As Assumption 3 and
βi,t+2−βi,t+1

βi,t+1−βi,t
< 0 hold, −

βi,t+3−βi,t+2

βi,t+2−βi,t+1
is bounded above by1

−
βi,t+3 − βi,t+2

βi,t+2 − βi,t+1

≤

δ(1 + g)(1− βi,t+2) +
1

δ(1−βi,t)(1−βi,t+1)
βi,t+2−βi,t+1

βi,t+1−βi,t

λ

δ(1 + g)(1− βi,t+2)
< 1.

Taking 0 < βi,t+1, βi,t+2 <
1+g+ℓ

g+ℓ
ε′ = βi,1, and

ℓ
2g
< −

βi,t+2−βi,t+1

βi,t+1−βi,t
< 1 into account, we find2

the following lower bound of −
βi,t+3−βi,t+2

βi,t+2−βi,t+1
.3

−
βi,t+3 − βi,t+2

βi,t+2 − βi,t+1

=

ℓ+ δ(1− βi,t+2)(1 + g)− g + 1

δ(1−βi,t)(1−βi,t+1)
βi,t+2−βi,t+1

βi,t+1−βi,t

λ

δ(1 + g)(1− βi,t+2)

>

ℓ+ g
(

1− 1+g+ℓ

g+ℓ
ε′
)

− g − 1

( g

1+g
+ε′)(1− 1+g+ℓ

g+ℓ
ε′)

2 2g

ℓ

λ

(

g

1+g
+ ε′

)

(1 + g)

>
ℓ− 1+g+ℓ

g+ℓ
gε′ − 1

g

1+g
· 1
4
·2
ε′

g + (1 + g)ε′
>

3
4
ℓ

3
2
g
>

ℓ

2g
.

Therefore, we obtain ℓ
2g
< −

βi,t+3−βi,t+2

βi,t+2−βi,t+1
< 1 and4

βi,t+3 ∈ (min {βi,t+1, βi,t+2} ,max {βi,t+1, βi,t+2}).5

C Proof of Theorem 16

Proof. Let us fix n such that:7

n ≥
4 + 2g

ε
.

We use the same technique as in Lemma 2. We divide the repeated game into n distinct8

repeated games. The first repeated game is played in period 1, n+ 1, 2n+ 1 . . . , the second9

repeated game is played in period 2, n + 1, 2n + 2 . . . , and so on. Each repeated game can10

be regarded as a repeated game with discount factor δn.11

We can find a sequential equilibrium strategy σ̂∗ whose payoff vector v̂∗ = (v∗1, v
∗
2) satisfies12

|v̂∗i − 1| < 1
n
when discount factor δn is sufficiently large by Proposition 3. By Corollary 4.2,13

there exists a sequential equilibrium strategy σ̂∗∗ whose payoff vector v̂∗∗ = (v∗∗1 , v
∗∗
2 ) satisfies14

v̂∗∗1 = 0 and
∣

∣v̂∗∗2 − 1+g+ℓ

1+ℓ

∣

∣ < 1
n
when discount factor δn is sufficiently large.15

Let us assume that vF1 ≤ vF2 . We choose sufficiently large discount factor δ so that we16

can use Proposition 4 and Corollary 4.2, and the discount factor δ satisfies the following17

condition:18

1− δ

1− δn
≤

2

n
.

The desired payoff vector v can be expressed uniquely as a convex combination of v̂∗, v̂∗∗19

and (0, 0) with some α1, α2 ∈ (0, 1) as below.20

v = α1δv̂
∗ + α2δv̂

∗∗ + (1− α1 − α2) · 0.
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(1, 1)

(−ℓ, 1 + g)

(1 + g,−ℓ)

(0, 0)

(

0, 1+g+ℓ

1+ℓ

)

(

1+g+ℓ

1+ℓ
, 0
)

vF
v̂∗∗

v̂∗

Figure 4: vF , v̂∗, v̂∗∗

Let us define n1 and n2 as follows.1

n1 ≡ argmin
n∈N∪{0}

∣

∣

∣

∣

1− δn

1− δn
− α1

∣

∣

∣

∣

, n2 ≡ argmin
n∈N∪{0}

∣

∣

∣

∣

δn1 − δn1+n

1− δn
− α2

∣

∣

∣

∣

.

Then, n1 and n2 satisfy2

∣

∣

∣

∣

1− δn1

1− δn
− α1

∣

∣

∣

∣

≤

(

1− δ

1− δn
≤

)

2

n
,

∣

∣

∣

∣

δn1 − δn1+n2

1− δn
− α2

∣

∣

∣

∣

≤
2

n
.

Let us consider the following strategy σF . In the first n1-th games, players play strat-3

egy σ̂∗. From the n1 + 1-th game to the n1 + n2-th game, players play strategy σ̂∗∗. From4

the n1 + n2 + 1-th to n-th game, players play the stage game Nash equilibrium repetitively.5

It is straightforward that the strategy σF is a sequential equilibrium.6

The payoff vFi for player i is given by7

vFi =
(1− δn1)v̂∗i + (δn1 − δn1+n2)v̂∗∗i + (δn1+n2 − δn) · 0

1− δn
.

Therefore, we have8

∣

∣vFi − v
∣

∣ <

∣

∣

∣

∣

1− δn1

1− δn
v̂∗i − α1v̂

∗
i

∣

∣

∣

∣

+

∣

∣

∣

∣

δn1 − δn1+n2

1− δn
v̂∗∗i − α2 · v

∗∗
i

∣

∣

∣

∣

+ 0

<
2

n
· 1 +

2

n
· (1 + g) =

4 + 2g

n
< ε.

We obtain that the payoff vector v can be approximated by a sequential equilibrium payoff9

vector when v1 ≤ v2 holds.10

By symmetricity of the payoff matrix, it is straightforward that the payoff vector v can11

be approximated by a sequential equilibrium payoff vector when v1 ≥ v2 also holds.12
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